xref: /freebsd/contrib/llvm-project/compiler-rt/lib/asan/asan_thread.cpp (revision db33c6f3ae9d1231087710068ee4ea5398aacca7)
1 //===-- asan_thread.cpp ---------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of AddressSanitizer, an address sanity checker.
10 //
11 // Thread-related code.
12 //===----------------------------------------------------------------------===//
13 #include "asan_thread.h"
14 
15 #include "asan_allocator.h"
16 #include "asan_interceptors.h"
17 #include "asan_mapping.h"
18 #include "asan_poisoning.h"
19 #include "asan_stack.h"
20 #include "lsan/lsan_common.h"
21 #include "sanitizer_common/sanitizer_common.h"
22 #include "sanitizer_common/sanitizer_placement_new.h"
23 #include "sanitizer_common/sanitizer_stackdepot.h"
24 #include "sanitizer_common/sanitizer_tls_get_addr.h"
25 
26 namespace __asan {
27 
28 // AsanThreadContext implementation.
29 
30 void AsanThreadContext::OnCreated(void *arg) {
31   CreateThreadContextArgs *args = static_cast<CreateThreadContextArgs *>(arg);
32   if (args->stack)
33     stack_id = StackDepotPut(*args->stack);
34   thread = args->thread;
35   thread->set_context(this);
36 }
37 
38 void AsanThreadContext::OnFinished() {
39   // Drop the link to the AsanThread object.
40   thread = nullptr;
41 }
42 
43 static ThreadRegistry *asan_thread_registry;
44 static ThreadArgRetval *thread_data;
45 
46 static Mutex mu_for_thread_context;
47 // TODO(leonardchan@): It should be possible to make LowLevelAllocator
48 // threadsafe and consolidate this one into the GlobalLoweLevelAllocator.
49 // We should be able to do something similar to what's in
50 // sanitizer_stack_store.cpp.
51 static LowLevelAllocator allocator_for_thread_context;
52 
53 static ThreadContextBase *GetAsanThreadContext(u32 tid) {
54   Lock lock(&mu_for_thread_context);
55   return new (allocator_for_thread_context) AsanThreadContext(tid);
56 }
57 
58 static void InitThreads() {
59   static bool initialized;
60   // Don't worry about thread_safety - this should be called when there is
61   // a single thread.
62   if (LIKELY(initialized))
63     return;
64   // Never reuse ASan threads: we store pointer to AsanThreadContext
65   // in TSD and can't reliably tell when no more TSD destructors will
66   // be called. It would be wrong to reuse AsanThreadContext for another
67   // thread before all TSD destructors will be called for it.
68 
69   // MIPS requires aligned address
70   alignas(alignof(ThreadRegistry)) static char
71       thread_registry_placeholder[sizeof(ThreadRegistry)];
72   alignas(alignof(ThreadArgRetval)) static char
73       thread_data_placeholder[sizeof(ThreadArgRetval)];
74 
75   asan_thread_registry =
76       new (thread_registry_placeholder) ThreadRegistry(GetAsanThreadContext);
77   thread_data = new (thread_data_placeholder) ThreadArgRetval();
78   initialized = true;
79 }
80 
81 ThreadRegistry &asanThreadRegistry() {
82   InitThreads();
83   return *asan_thread_registry;
84 }
85 
86 ThreadArgRetval &asanThreadArgRetval() {
87   InitThreads();
88   return *thread_data;
89 }
90 
91 AsanThreadContext *GetThreadContextByTidLocked(u32 tid) {
92   return static_cast<AsanThreadContext *>(
93       asanThreadRegistry().GetThreadLocked(tid));
94 }
95 
96 // AsanThread implementation.
97 
98 AsanThread *AsanThread::Create(const void *start_data, uptr data_size,
99                                u32 parent_tid, StackTrace *stack,
100                                bool detached) {
101   uptr PageSize = GetPageSizeCached();
102   uptr size = RoundUpTo(sizeof(AsanThread), PageSize);
103   AsanThread *thread = (AsanThread *)MmapOrDie(size, __func__);
104   if (data_size) {
105     uptr availible_size = (uptr)thread + size - (uptr)(thread->start_data_);
106     CHECK_LE(data_size, availible_size);
107     internal_memcpy(thread->start_data_, start_data, data_size);
108   }
109   AsanThreadContext::CreateThreadContextArgs args = {thread, stack};
110   asanThreadRegistry().CreateThread(0, detached, parent_tid, &args);
111 
112   return thread;
113 }
114 
115 void AsanThread::GetStartData(void *out, uptr out_size) const {
116   internal_memcpy(out, start_data_, out_size);
117 }
118 
119 void AsanThread::TSDDtor(void *tsd) {
120   AsanThreadContext *context = (AsanThreadContext *)tsd;
121   VReport(1, "T%d TSDDtor\n", context->tid);
122   if (context->thread)
123     context->thread->Destroy();
124 }
125 
126 void AsanThread::Destroy() {
127   int tid = this->tid();
128   VReport(1, "T%d exited\n", tid);
129 
130   bool was_running =
131       (asanThreadRegistry().FinishThread(tid) == ThreadStatusRunning);
132   if (was_running) {
133     if (AsanThread *thread = GetCurrentThread())
134       CHECK_EQ(this, thread);
135     malloc_storage().CommitBack();
136     if (common_flags()->use_sigaltstack)
137       UnsetAlternateSignalStack();
138     FlushToDeadThreadStats(&stats_);
139     // We also clear the shadow on thread destruction because
140     // some code may still be executing in later TSD destructors
141     // and we don't want it to have any poisoned stack.
142     ClearShadowForThreadStackAndTLS();
143     DeleteFakeStack(tid);
144   } else {
145     CHECK_NE(this, GetCurrentThread());
146   }
147   uptr size = RoundUpTo(sizeof(AsanThread), GetPageSizeCached());
148   UnmapOrDie(this, size);
149   if (was_running)
150     DTLS_Destroy();
151 }
152 
153 void AsanThread::StartSwitchFiber(FakeStack **fake_stack_save, uptr bottom,
154                                   uptr size) {
155   if (atomic_load(&stack_switching_, memory_order_relaxed)) {
156     Report("ERROR: starting fiber switch while in fiber switch\n");
157     Die();
158   }
159 
160   next_stack_bottom_ = bottom;
161   next_stack_top_ = bottom + size;
162   atomic_store(&stack_switching_, 1, memory_order_release);
163 
164   FakeStack *current_fake_stack = fake_stack_;
165   if (fake_stack_save)
166     *fake_stack_save = fake_stack_;
167   fake_stack_ = nullptr;
168   SetTLSFakeStack(nullptr);
169   // if fake_stack_save is null, the fiber will die, delete the fakestack
170   if (!fake_stack_save && current_fake_stack)
171     current_fake_stack->Destroy(this->tid());
172 }
173 
174 void AsanThread::FinishSwitchFiber(FakeStack *fake_stack_save, uptr *bottom_old,
175                                    uptr *size_old) {
176   if (!atomic_load(&stack_switching_, memory_order_relaxed)) {
177     Report("ERROR: finishing a fiber switch that has not started\n");
178     Die();
179   }
180 
181   if (fake_stack_save) {
182     SetTLSFakeStack(fake_stack_save);
183     fake_stack_ = fake_stack_save;
184   }
185 
186   if (bottom_old)
187     *bottom_old = stack_bottom_;
188   if (size_old)
189     *size_old = stack_top_ - stack_bottom_;
190   stack_bottom_ = next_stack_bottom_;
191   stack_top_ = next_stack_top_;
192   atomic_store(&stack_switching_, 0, memory_order_release);
193   next_stack_top_ = 0;
194   next_stack_bottom_ = 0;
195 }
196 
197 inline AsanThread::StackBounds AsanThread::GetStackBounds() const {
198   if (!atomic_load(&stack_switching_, memory_order_acquire)) {
199     // Make sure the stack bounds are fully initialized.
200     if (stack_bottom_ >= stack_top_)
201       return {0, 0};
202     return {stack_bottom_, stack_top_};
203   }
204   char local;
205   const uptr cur_stack = (uptr)&local;
206   // Note: need to check next stack first, because FinishSwitchFiber
207   // may be in process of overwriting stack_top_/bottom_. But in such case
208   // we are already on the next stack.
209   if (cur_stack >= next_stack_bottom_ && cur_stack < next_stack_top_)
210     return {next_stack_bottom_, next_stack_top_};
211   return {stack_bottom_, stack_top_};
212 }
213 
214 uptr AsanThread::stack_top() { return GetStackBounds().top; }
215 
216 uptr AsanThread::stack_bottom() { return GetStackBounds().bottom; }
217 
218 uptr AsanThread::stack_size() {
219   const auto bounds = GetStackBounds();
220   return bounds.top - bounds.bottom;
221 }
222 
223 // We want to create the FakeStack lazily on the first use, but not earlier
224 // than the stack size is known and the procedure has to be async-signal safe.
225 FakeStack *AsanThread::AsyncSignalSafeLazyInitFakeStack() {
226   uptr stack_size = this->stack_size();
227   if (stack_size == 0)  // stack_size is not yet available, don't use FakeStack.
228     return nullptr;
229   uptr old_val = 0;
230   // fake_stack_ has 3 states:
231   // 0   -- not initialized
232   // 1   -- being initialized
233   // ptr -- initialized
234   // This CAS checks if the state was 0 and if so changes it to state 1,
235   // if that was successful, it initializes the pointer.
236   if (atomic_compare_exchange_strong(
237           reinterpret_cast<atomic_uintptr_t *>(&fake_stack_), &old_val, 1UL,
238           memory_order_relaxed)) {
239     uptr stack_size_log = Log2(RoundUpToPowerOfTwo(stack_size));
240     CHECK_LE(flags()->min_uar_stack_size_log, flags()->max_uar_stack_size_log);
241     stack_size_log =
242         Min(stack_size_log, static_cast<uptr>(flags()->max_uar_stack_size_log));
243     stack_size_log =
244         Max(stack_size_log, static_cast<uptr>(flags()->min_uar_stack_size_log));
245     fake_stack_ = FakeStack::Create(stack_size_log);
246     DCHECK_EQ(GetCurrentThread(), this);
247     SetTLSFakeStack(fake_stack_);
248     return fake_stack_;
249   }
250   return nullptr;
251 }
252 
253 void AsanThread::Init(const InitOptions *options) {
254   DCHECK_NE(tid(), kInvalidTid);
255   next_stack_top_ = next_stack_bottom_ = 0;
256   atomic_store(&stack_switching_, false, memory_order_release);
257   CHECK_EQ(this->stack_size(), 0U);
258   SetThreadStackAndTls(options);
259   if (stack_top_ != stack_bottom_) {
260     CHECK_GT(this->stack_size(), 0U);
261     CHECK(AddrIsInMem(stack_bottom_));
262     CHECK(AddrIsInMem(stack_top_ - 1));
263   }
264   ClearShadowForThreadStackAndTLS();
265   fake_stack_ = nullptr;
266   if (__asan_option_detect_stack_use_after_return &&
267       tid() == GetCurrentTidOrInvalid()) {
268     // AsyncSignalSafeLazyInitFakeStack makes use of threadlocals and must be
269     // called from the context of the thread it is initializing, not its parent.
270     // Most platforms call AsanThread::Init on the newly-spawned thread, but
271     // Fuchsia calls this function from the parent thread.  To support that
272     // approach, we avoid calling AsyncSignalSafeLazyInitFakeStack here; it will
273     // be called by the new thread when it first attempts to access the fake
274     // stack.
275     AsyncSignalSafeLazyInitFakeStack();
276   }
277   int local = 0;
278   VReport(1, "T%d: stack [%p,%p) size 0x%zx; local=%p\n", tid(),
279           (void *)stack_bottom_, (void *)stack_top_, stack_top_ - stack_bottom_,
280           (void *)&local);
281 }
282 
283 // Fuchsia doesn't use ThreadStart.
284 // asan_fuchsia.c definies CreateMainThread and SetThreadStackAndTls.
285 #if !SANITIZER_FUCHSIA
286 
287 void AsanThread::ThreadStart(tid_t os_id) {
288   Init();
289   asanThreadRegistry().StartThread(tid(), os_id, ThreadType::Regular, nullptr);
290 
291   if (common_flags()->use_sigaltstack)
292     SetAlternateSignalStack();
293 }
294 
295 AsanThread *CreateMainThread() {
296   AsanThread *main_thread = AsanThread::Create(
297       /* parent_tid */ kMainTid,
298       /* stack */ nullptr, /* detached */ true);
299   SetCurrentThread(main_thread);
300   main_thread->ThreadStart(internal_getpid());
301   return main_thread;
302 }
303 
304 // This implementation doesn't use the argument, which is just passed down
305 // from the caller of Init (which see, above).  It's only there to support
306 // OS-specific implementations that need more information passed through.
307 void AsanThread::SetThreadStackAndTls(const InitOptions *options) {
308   DCHECK_EQ(options, nullptr);
309   uptr tls_size = 0;
310   uptr stack_size = 0;
311   GetThreadStackAndTls(tid() == kMainTid, &stack_bottom_, &stack_size,
312                        &tls_begin_, &tls_size);
313   stack_top_ = RoundDownTo(stack_bottom_ + stack_size, ASAN_SHADOW_GRANULARITY);
314   stack_bottom_ = RoundDownTo(stack_bottom_, ASAN_SHADOW_GRANULARITY);
315   tls_end_ = tls_begin_ + tls_size;
316   dtls_ = DTLS_Get();
317 
318   if (stack_top_ != stack_bottom_) {
319     int local;
320     CHECK(AddrIsInStack((uptr)&local));
321   }
322 }
323 
324 #endif  // !SANITIZER_FUCHSIA
325 
326 void AsanThread::ClearShadowForThreadStackAndTLS() {
327   if (stack_top_ != stack_bottom_)
328     PoisonShadow(stack_bottom_, stack_top_ - stack_bottom_, 0);
329   if (tls_begin_ != tls_end_) {
330     uptr tls_begin_aligned = RoundDownTo(tls_begin_, ASAN_SHADOW_GRANULARITY);
331     uptr tls_end_aligned = RoundUpTo(tls_end_, ASAN_SHADOW_GRANULARITY);
332     FastPoisonShadow(tls_begin_aligned, tls_end_aligned - tls_begin_aligned, 0);
333   }
334 }
335 
336 bool AsanThread::GetStackFrameAccessByAddr(uptr addr,
337                                            StackFrameAccess *access) {
338   if (stack_top_ == stack_bottom_)
339     return false;
340 
341   uptr bottom = 0;
342   if (AddrIsInStack(addr)) {
343     bottom = stack_bottom();
344   } else if (FakeStack *fake_stack = get_fake_stack()) {
345     bottom = fake_stack->AddrIsInFakeStack(addr);
346     CHECK(bottom);
347     access->offset = addr - bottom;
348     access->frame_pc = ((uptr *)bottom)[2];
349     access->frame_descr = (const char *)((uptr *)bottom)[1];
350     return true;
351   }
352   uptr aligned_addr = RoundDownTo(addr, SANITIZER_WORDSIZE / 8);  // align addr.
353   uptr mem_ptr = RoundDownTo(aligned_addr, ASAN_SHADOW_GRANULARITY);
354   u8 *shadow_ptr = (u8 *)MemToShadow(aligned_addr);
355   u8 *shadow_bottom = (u8 *)MemToShadow(bottom);
356 
357   while (shadow_ptr >= shadow_bottom &&
358          *shadow_ptr != kAsanStackLeftRedzoneMagic) {
359     shadow_ptr--;
360     mem_ptr -= ASAN_SHADOW_GRANULARITY;
361   }
362 
363   while (shadow_ptr >= shadow_bottom &&
364          *shadow_ptr == kAsanStackLeftRedzoneMagic) {
365     shadow_ptr--;
366     mem_ptr -= ASAN_SHADOW_GRANULARITY;
367   }
368 
369   if (shadow_ptr < shadow_bottom) {
370     return false;
371   }
372 
373   uptr *ptr = (uptr *)(mem_ptr + ASAN_SHADOW_GRANULARITY);
374   CHECK(ptr[0] == kCurrentStackFrameMagic);
375   access->offset = addr - (uptr)ptr;
376   access->frame_pc = ptr[2];
377   access->frame_descr = (const char *)ptr[1];
378   return true;
379 }
380 
381 uptr AsanThread::GetStackVariableShadowStart(uptr addr) {
382   uptr bottom = 0;
383   if (AddrIsInStack(addr)) {
384     bottom = stack_bottom();
385   } else if (FakeStack *fake_stack = get_fake_stack()) {
386     bottom = fake_stack->AddrIsInFakeStack(addr);
387     if (bottom == 0) {
388       return 0;
389     }
390   } else {
391     return 0;
392   }
393 
394   uptr aligned_addr = RoundDownTo(addr, SANITIZER_WORDSIZE / 8);  // align addr.
395   u8 *shadow_ptr = (u8 *)MemToShadow(aligned_addr);
396   u8 *shadow_bottom = (u8 *)MemToShadow(bottom);
397 
398   while (shadow_ptr >= shadow_bottom &&
399          (*shadow_ptr != kAsanStackLeftRedzoneMagic &&
400           *shadow_ptr != kAsanStackMidRedzoneMagic &&
401           *shadow_ptr != kAsanStackRightRedzoneMagic))
402     shadow_ptr--;
403 
404   return (uptr)shadow_ptr + 1;
405 }
406 
407 bool AsanThread::AddrIsInStack(uptr addr) {
408   const auto bounds = GetStackBounds();
409   return addr >= bounds.bottom && addr < bounds.top;
410 }
411 
412 static bool ThreadStackContainsAddress(ThreadContextBase *tctx_base,
413                                        void *addr) {
414   AsanThreadContext *tctx = static_cast<AsanThreadContext *>(tctx_base);
415   AsanThread *t = tctx->thread;
416   if (!t)
417     return false;
418   if (t->AddrIsInStack((uptr)addr))
419     return true;
420   FakeStack *fake_stack = t->get_fake_stack();
421   if (!fake_stack)
422     return false;
423   return fake_stack->AddrIsInFakeStack((uptr)addr);
424 }
425 
426 AsanThread *GetCurrentThread() {
427   AsanThreadContext *context =
428       reinterpret_cast<AsanThreadContext *>(AsanTSDGet());
429   if (!context) {
430     if (SANITIZER_ANDROID) {
431       // On Android, libc constructor is called _after_ asan_init, and cleans up
432       // TSD. Try to figure out if this is still the main thread by the stack
433       // address. We are not entirely sure that we have correct main thread
434       // limits, so only do this magic on Android, and only if the found thread
435       // is the main thread.
436       AsanThreadContext *tctx = GetThreadContextByTidLocked(kMainTid);
437       if (tctx && ThreadStackContainsAddress(tctx, &context)) {
438         SetCurrentThread(tctx->thread);
439         return tctx->thread;
440       }
441     }
442     return nullptr;
443   }
444   return context->thread;
445 }
446 
447 void SetCurrentThread(AsanThread *t) {
448   CHECK(t->context());
449   VReport(2, "SetCurrentThread: %p for thread %p\n", (void *)t->context(),
450           (void *)GetThreadSelf());
451   // Make sure we do not reset the current AsanThread.
452   CHECK_EQ(0, AsanTSDGet());
453   AsanTSDSet(t->context());
454   CHECK_EQ(t->context(), AsanTSDGet());
455 }
456 
457 u32 GetCurrentTidOrInvalid() {
458   AsanThread *t = GetCurrentThread();
459   return t ? t->tid() : kInvalidTid;
460 }
461 
462 AsanThread *FindThreadByStackAddress(uptr addr) {
463   asanThreadRegistry().CheckLocked();
464   AsanThreadContext *tctx = static_cast<AsanThreadContext *>(
465       asanThreadRegistry().FindThreadContextLocked(ThreadStackContainsAddress,
466                                                    (void *)addr));
467   return tctx ? tctx->thread : nullptr;
468 }
469 
470 void EnsureMainThreadIDIsCorrect() {
471   AsanThreadContext *context =
472       reinterpret_cast<AsanThreadContext *>(AsanTSDGet());
473   if (context && (context->tid == kMainTid))
474     context->os_id = GetTid();
475 }
476 
477 __asan::AsanThread *GetAsanThreadByOsIDLocked(tid_t os_id) {
478   __asan::AsanThreadContext *context = static_cast<__asan::AsanThreadContext *>(
479       __asan::asanThreadRegistry().FindThreadContextByOsIDLocked(os_id));
480   if (!context)
481     return nullptr;
482   return context->thread;
483 }
484 }  // namespace __asan
485 
486 // --- Implementation of LSan-specific functions --- {{{1
487 namespace __lsan {
488 void LockThreads() {
489   __asan::asanThreadRegistry().Lock();
490   __asan::asanThreadArgRetval().Lock();
491 }
492 
493 void UnlockThreads() {
494   __asan::asanThreadArgRetval().Unlock();
495   __asan::asanThreadRegistry().Unlock();
496 }
497 
498 static ThreadRegistry *GetAsanThreadRegistryLocked() {
499   __asan::asanThreadRegistry().CheckLocked();
500   return &__asan::asanThreadRegistry();
501 }
502 
503 void EnsureMainThreadIDIsCorrect() { __asan::EnsureMainThreadIDIsCorrect(); }
504 
505 bool GetThreadRangesLocked(tid_t os_id, uptr *stack_begin, uptr *stack_end,
506                            uptr *tls_begin, uptr *tls_end, uptr *cache_begin,
507                            uptr *cache_end, DTLS **dtls) {
508   __asan::AsanThread *t = __asan::GetAsanThreadByOsIDLocked(os_id);
509   if (!t)
510     return false;
511   *stack_begin = t->stack_bottom();
512   *stack_end = t->stack_top();
513   *tls_begin = t->tls_begin();
514   *tls_end = t->tls_end();
515   // ASan doesn't keep allocator caches in TLS, so these are unused.
516   *cache_begin = 0;
517   *cache_end = 0;
518   *dtls = t->dtls();
519   return true;
520 }
521 
522 void GetAllThreadAllocatorCachesLocked(InternalMmapVector<uptr> *caches) {}
523 
524 void GetThreadExtraStackRangesLocked(tid_t os_id,
525                                      InternalMmapVector<Range> *ranges) {
526   __asan::AsanThread *t = __asan::GetAsanThreadByOsIDLocked(os_id);
527   if (!t)
528     return;
529   __asan::FakeStack *fake_stack = t->get_fake_stack();
530   if (!fake_stack)
531     return;
532 
533   fake_stack->ForEachFakeFrame(
534       [](uptr begin, uptr end, void *arg) {
535         reinterpret_cast<InternalMmapVector<Range> *>(arg)->push_back(
536             {begin, end});
537       },
538       ranges);
539 }
540 
541 void GetThreadExtraStackRangesLocked(InternalMmapVector<Range> *ranges) {
542   GetAsanThreadRegistryLocked()->RunCallbackForEachThreadLocked(
543       [](ThreadContextBase *tctx, void *arg) {
544         GetThreadExtraStackRangesLocked(
545             tctx->os_id, reinterpret_cast<InternalMmapVector<Range> *>(arg));
546       },
547       ranges);
548 }
549 
550 void GetAdditionalThreadContextPtrsLocked(InternalMmapVector<uptr> *ptrs) {
551   __asan::asanThreadArgRetval().GetAllPtrsLocked(ptrs);
552 }
553 
554 void GetRunningThreadsLocked(InternalMmapVector<tid_t> *threads) {
555   GetAsanThreadRegistryLocked()->RunCallbackForEachThreadLocked(
556       [](ThreadContextBase *tctx, void *threads) {
557         if (tctx->status == ThreadStatusRunning)
558           reinterpret_cast<InternalMmapVector<tid_t> *>(threads)->push_back(
559               tctx->os_id);
560       },
561       threads);
562 }
563 
564 }  // namespace __lsan
565 
566 // ---------------------- Interface ---------------- {{{1
567 using namespace __asan;
568 
569 extern "C" {
570 SANITIZER_INTERFACE_ATTRIBUTE
571 void __sanitizer_start_switch_fiber(void **fakestacksave, const void *bottom,
572                                     uptr size) {
573   AsanThread *t = GetCurrentThread();
574   if (!t) {
575     VReport(1, "__asan_start_switch_fiber called from unknown thread\n");
576     return;
577   }
578   t->StartSwitchFiber((FakeStack **)fakestacksave, (uptr)bottom, size);
579 }
580 
581 SANITIZER_INTERFACE_ATTRIBUTE
582 void __sanitizer_finish_switch_fiber(void *fakestack, const void **bottom_old,
583                                      uptr *size_old) {
584   AsanThread *t = GetCurrentThread();
585   if (!t) {
586     VReport(1, "__asan_finish_switch_fiber called from unknown thread\n");
587     return;
588   }
589   t->FinishSwitchFiber((FakeStack *)fakestack, (uptr *)bottom_old,
590                        (uptr *)size_old);
591 }
592 }
593