1 //===-- asan_allocator.cpp ------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is a part of AddressSanitizer, an address sanity checker. 10 // 11 // Implementation of ASan's memory allocator, 2-nd version. 12 // This variant uses the allocator from sanitizer_common, i.e. the one shared 13 // with ThreadSanitizer and MemorySanitizer. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "asan_allocator.h" 18 #include "asan_mapping.h" 19 #include "asan_poisoning.h" 20 #include "asan_report.h" 21 #include "asan_stack.h" 22 #include "asan_thread.h" 23 #include "sanitizer_common/sanitizer_allocator_checks.h" 24 #include "sanitizer_common/sanitizer_allocator_interface.h" 25 #include "sanitizer_common/sanitizer_errno.h" 26 #include "sanitizer_common/sanitizer_flags.h" 27 #include "sanitizer_common/sanitizer_internal_defs.h" 28 #include "sanitizer_common/sanitizer_list.h" 29 #include "sanitizer_common/sanitizer_stackdepot.h" 30 #include "sanitizer_common/sanitizer_quarantine.h" 31 #include "lsan/lsan_common.h" 32 33 namespace __asan { 34 35 // Valid redzone sizes are 16, 32, 64, ... 2048, so we encode them in 3 bits. 36 // We use adaptive redzones: for larger allocation larger redzones are used. 37 static u32 RZLog2Size(u32 rz_log) { 38 CHECK_LT(rz_log, 8); 39 return 16 << rz_log; 40 } 41 42 static u32 RZSize2Log(u32 rz_size) { 43 CHECK_GE(rz_size, 16); 44 CHECK_LE(rz_size, 2048); 45 CHECK(IsPowerOfTwo(rz_size)); 46 u32 res = Log2(rz_size) - 4; 47 CHECK_EQ(rz_size, RZLog2Size(res)); 48 return res; 49 } 50 51 static AsanAllocator &get_allocator(); 52 53 // The memory chunk allocated from the underlying allocator looks like this: 54 // L L L L L L H H U U U U U U R R 55 // L -- left redzone words (0 or more bytes) 56 // H -- ChunkHeader (16 bytes), which is also a part of the left redzone. 57 // U -- user memory. 58 // R -- right redzone (0 or more bytes) 59 // ChunkBase consists of ChunkHeader and other bytes that overlap with user 60 // memory. 61 62 // If the left redzone is greater than the ChunkHeader size we store a magic 63 // value in the first uptr word of the memory block and store the address of 64 // ChunkBase in the next uptr. 65 // M B L L L L L L L L L H H U U U U U U 66 // | ^ 67 // ---------------------| 68 // M -- magic value kAllocBegMagic 69 // B -- address of ChunkHeader pointing to the first 'H' 70 static const uptr kAllocBegMagic = 0xCC6E96B9; 71 72 struct ChunkHeader { 73 // 1-st 8 bytes. 74 u32 chunk_state : 8; // Must be first. 75 u32 alloc_tid : 24; 76 77 u32 free_tid : 24; 78 u32 from_memalign : 1; 79 u32 alloc_type : 2; 80 u32 rz_log : 3; 81 u32 lsan_tag : 2; 82 // 2-nd 8 bytes 83 // This field is used for small sizes. For large sizes it is equal to 84 // SizeClassMap::kMaxSize and the actual size is stored in the 85 // SecondaryAllocator's metadata. 86 u32 user_requested_size : 29; 87 // align < 8 -> 0 88 // else -> log2(min(align, 512)) - 2 89 u32 user_requested_alignment_log : 3; 90 u32 alloc_context_id; 91 }; 92 93 struct ChunkBase : ChunkHeader { 94 // Header2, intersects with user memory. 95 u32 free_context_id; 96 }; 97 98 static const uptr kChunkHeaderSize = sizeof(ChunkHeader); 99 static const uptr kChunkHeader2Size = sizeof(ChunkBase) - kChunkHeaderSize; 100 COMPILER_CHECK(kChunkHeaderSize == 16); 101 COMPILER_CHECK(kChunkHeader2Size <= 16); 102 103 // Every chunk of memory allocated by this allocator can be in one of 3 states: 104 // CHUNK_AVAILABLE: the chunk is in the free list and ready to be allocated. 105 // CHUNK_ALLOCATED: the chunk is allocated and not yet freed. 106 // CHUNK_QUARANTINE: the chunk was freed and put into quarantine zone. 107 enum { 108 CHUNK_AVAILABLE = 0, // 0 is the default value even if we didn't set it. 109 CHUNK_ALLOCATED = 2, 110 CHUNK_QUARANTINE = 3 111 }; 112 113 struct AsanChunk: ChunkBase { 114 uptr Beg() { return reinterpret_cast<uptr>(this) + kChunkHeaderSize; } 115 uptr UsedSize(bool locked_version = false) { 116 if (user_requested_size != SizeClassMap::kMaxSize) 117 return user_requested_size; 118 return *reinterpret_cast<uptr *>( 119 get_allocator().GetMetaData(AllocBeg(locked_version))); 120 } 121 void *AllocBeg(bool locked_version = false) { 122 if (from_memalign) { 123 if (locked_version) 124 return get_allocator().GetBlockBeginFastLocked( 125 reinterpret_cast<void *>(this)); 126 return get_allocator().GetBlockBegin(reinterpret_cast<void *>(this)); 127 } 128 return reinterpret_cast<void*>(Beg() - RZLog2Size(rz_log)); 129 } 130 bool AddrIsInside(uptr addr, bool locked_version = false) { 131 return (addr >= Beg()) && (addr < Beg() + UsedSize(locked_version)); 132 } 133 }; 134 135 struct QuarantineCallback { 136 QuarantineCallback(AllocatorCache *cache, BufferedStackTrace *stack) 137 : cache_(cache), 138 stack_(stack) { 139 } 140 141 void Recycle(AsanChunk *m) { 142 CHECK_EQ(m->chunk_state, CHUNK_QUARANTINE); 143 atomic_store((atomic_uint8_t*)m, CHUNK_AVAILABLE, memory_order_relaxed); 144 CHECK_NE(m->alloc_tid, kInvalidTid); 145 CHECK_NE(m->free_tid, kInvalidTid); 146 PoisonShadow(m->Beg(), 147 RoundUpTo(m->UsedSize(), SHADOW_GRANULARITY), 148 kAsanHeapLeftRedzoneMagic); 149 void *p = reinterpret_cast<void *>(m->AllocBeg()); 150 if (p != m) { 151 uptr *alloc_magic = reinterpret_cast<uptr *>(p); 152 CHECK_EQ(alloc_magic[0], kAllocBegMagic); 153 // Clear the magic value, as allocator internals may overwrite the 154 // contents of deallocated chunk, confusing GetAsanChunk lookup. 155 alloc_magic[0] = 0; 156 CHECK_EQ(alloc_magic[1], reinterpret_cast<uptr>(m)); 157 } 158 159 // Statistics. 160 AsanStats &thread_stats = GetCurrentThreadStats(); 161 thread_stats.real_frees++; 162 thread_stats.really_freed += m->UsedSize(); 163 164 get_allocator().Deallocate(cache_, p); 165 } 166 167 void *Allocate(uptr size) { 168 void *res = get_allocator().Allocate(cache_, size, 1); 169 // TODO(alekseys): Consider making quarantine OOM-friendly. 170 if (UNLIKELY(!res)) 171 ReportOutOfMemory(size, stack_); 172 return res; 173 } 174 175 void Deallocate(void *p) { 176 get_allocator().Deallocate(cache_, p); 177 } 178 179 private: 180 AllocatorCache* const cache_; 181 BufferedStackTrace* const stack_; 182 }; 183 184 typedef Quarantine<QuarantineCallback, AsanChunk> AsanQuarantine; 185 typedef AsanQuarantine::Cache QuarantineCache; 186 187 void AsanMapUnmapCallback::OnMap(uptr p, uptr size) const { 188 PoisonShadow(p, size, kAsanHeapLeftRedzoneMagic); 189 // Statistics. 190 AsanStats &thread_stats = GetCurrentThreadStats(); 191 thread_stats.mmaps++; 192 thread_stats.mmaped += size; 193 } 194 void AsanMapUnmapCallback::OnUnmap(uptr p, uptr size) const { 195 PoisonShadow(p, size, 0); 196 // We are about to unmap a chunk of user memory. 197 // Mark the corresponding shadow memory as not needed. 198 FlushUnneededASanShadowMemory(p, size); 199 // Statistics. 200 AsanStats &thread_stats = GetCurrentThreadStats(); 201 thread_stats.munmaps++; 202 thread_stats.munmaped += size; 203 } 204 205 // We can not use THREADLOCAL because it is not supported on some of the 206 // platforms we care about (OSX 10.6, Android). 207 // static THREADLOCAL AllocatorCache cache; 208 AllocatorCache *GetAllocatorCache(AsanThreadLocalMallocStorage *ms) { 209 CHECK(ms); 210 return &ms->allocator_cache; 211 } 212 213 QuarantineCache *GetQuarantineCache(AsanThreadLocalMallocStorage *ms) { 214 CHECK(ms); 215 CHECK_LE(sizeof(QuarantineCache), sizeof(ms->quarantine_cache)); 216 return reinterpret_cast<QuarantineCache *>(ms->quarantine_cache); 217 } 218 219 void AllocatorOptions::SetFrom(const Flags *f, const CommonFlags *cf) { 220 quarantine_size_mb = f->quarantine_size_mb; 221 thread_local_quarantine_size_kb = f->thread_local_quarantine_size_kb; 222 min_redzone = f->redzone; 223 max_redzone = f->max_redzone; 224 may_return_null = cf->allocator_may_return_null; 225 alloc_dealloc_mismatch = f->alloc_dealloc_mismatch; 226 release_to_os_interval_ms = cf->allocator_release_to_os_interval_ms; 227 } 228 229 void AllocatorOptions::CopyTo(Flags *f, CommonFlags *cf) { 230 f->quarantine_size_mb = quarantine_size_mb; 231 f->thread_local_quarantine_size_kb = thread_local_quarantine_size_kb; 232 f->redzone = min_redzone; 233 f->max_redzone = max_redzone; 234 cf->allocator_may_return_null = may_return_null; 235 f->alloc_dealloc_mismatch = alloc_dealloc_mismatch; 236 cf->allocator_release_to_os_interval_ms = release_to_os_interval_ms; 237 } 238 239 struct Allocator { 240 static const uptr kMaxAllowedMallocSize = 241 FIRST_32_SECOND_64(3UL << 30, 1ULL << 40); 242 243 AsanAllocator allocator; 244 AsanQuarantine quarantine; 245 StaticSpinMutex fallback_mutex; 246 AllocatorCache fallback_allocator_cache; 247 QuarantineCache fallback_quarantine_cache; 248 249 atomic_uint8_t rss_limit_exceeded; 250 251 // ------------------- Options -------------------------- 252 atomic_uint16_t min_redzone; 253 atomic_uint16_t max_redzone; 254 atomic_uint8_t alloc_dealloc_mismatch; 255 256 // ------------------- Initialization ------------------------ 257 explicit Allocator(LinkerInitialized) 258 : quarantine(LINKER_INITIALIZED), 259 fallback_quarantine_cache(LINKER_INITIALIZED) {} 260 261 void CheckOptions(const AllocatorOptions &options) const { 262 CHECK_GE(options.min_redzone, 16); 263 CHECK_GE(options.max_redzone, options.min_redzone); 264 CHECK_LE(options.max_redzone, 2048); 265 CHECK(IsPowerOfTwo(options.min_redzone)); 266 CHECK(IsPowerOfTwo(options.max_redzone)); 267 } 268 269 void SharedInitCode(const AllocatorOptions &options) { 270 CheckOptions(options); 271 quarantine.Init((uptr)options.quarantine_size_mb << 20, 272 (uptr)options.thread_local_quarantine_size_kb << 10); 273 atomic_store(&alloc_dealloc_mismatch, options.alloc_dealloc_mismatch, 274 memory_order_release); 275 atomic_store(&min_redzone, options.min_redzone, memory_order_release); 276 atomic_store(&max_redzone, options.max_redzone, memory_order_release); 277 } 278 279 void InitLinkerInitialized(const AllocatorOptions &options) { 280 SetAllocatorMayReturnNull(options.may_return_null); 281 allocator.InitLinkerInitialized(options.release_to_os_interval_ms); 282 SharedInitCode(options); 283 } 284 285 bool RssLimitExceeded() { 286 return atomic_load(&rss_limit_exceeded, memory_order_relaxed); 287 } 288 289 void SetRssLimitExceeded(bool limit_exceeded) { 290 atomic_store(&rss_limit_exceeded, limit_exceeded, memory_order_relaxed); 291 } 292 293 void RePoisonChunk(uptr chunk) { 294 // This could be a user-facing chunk (with redzones), or some internal 295 // housekeeping chunk, like TransferBatch. Start by assuming the former. 296 AsanChunk *ac = GetAsanChunk((void *)chunk); 297 uptr allocated_size = allocator.GetActuallyAllocatedSize((void *)ac); 298 uptr beg = ac->Beg(); 299 uptr end = ac->Beg() + ac->UsedSize(true); 300 uptr chunk_end = chunk + allocated_size; 301 if (chunk < beg && beg < end && end <= chunk_end && 302 ac->chunk_state == CHUNK_ALLOCATED) { 303 // Looks like a valid AsanChunk in use, poison redzones only. 304 PoisonShadow(chunk, beg - chunk, kAsanHeapLeftRedzoneMagic); 305 uptr end_aligned_down = RoundDownTo(end, SHADOW_GRANULARITY); 306 FastPoisonShadowPartialRightRedzone( 307 end_aligned_down, end - end_aligned_down, 308 chunk_end - end_aligned_down, kAsanHeapLeftRedzoneMagic); 309 } else { 310 // This is either not an AsanChunk or freed or quarantined AsanChunk. 311 // In either case, poison everything. 312 PoisonShadow(chunk, allocated_size, kAsanHeapLeftRedzoneMagic); 313 } 314 } 315 316 void ReInitialize(const AllocatorOptions &options) { 317 SetAllocatorMayReturnNull(options.may_return_null); 318 allocator.SetReleaseToOSIntervalMs(options.release_to_os_interval_ms); 319 SharedInitCode(options); 320 321 // Poison all existing allocation's redzones. 322 if (CanPoisonMemory()) { 323 allocator.ForceLock(); 324 allocator.ForEachChunk( 325 [](uptr chunk, void *alloc) { 326 ((Allocator *)alloc)->RePoisonChunk(chunk); 327 }, 328 this); 329 allocator.ForceUnlock(); 330 } 331 } 332 333 void GetOptions(AllocatorOptions *options) const { 334 options->quarantine_size_mb = quarantine.GetSize() >> 20; 335 options->thread_local_quarantine_size_kb = quarantine.GetCacheSize() >> 10; 336 options->min_redzone = atomic_load(&min_redzone, memory_order_acquire); 337 options->max_redzone = atomic_load(&max_redzone, memory_order_acquire); 338 options->may_return_null = AllocatorMayReturnNull(); 339 options->alloc_dealloc_mismatch = 340 atomic_load(&alloc_dealloc_mismatch, memory_order_acquire); 341 options->release_to_os_interval_ms = allocator.ReleaseToOSIntervalMs(); 342 } 343 344 // -------------------- Helper methods. ------------------------- 345 uptr ComputeRZLog(uptr user_requested_size) { 346 u32 rz_log = 347 user_requested_size <= 64 - 16 ? 0 : 348 user_requested_size <= 128 - 32 ? 1 : 349 user_requested_size <= 512 - 64 ? 2 : 350 user_requested_size <= 4096 - 128 ? 3 : 351 user_requested_size <= (1 << 14) - 256 ? 4 : 352 user_requested_size <= (1 << 15) - 512 ? 5 : 353 user_requested_size <= (1 << 16) - 1024 ? 6 : 7; 354 u32 min_rz = atomic_load(&min_redzone, memory_order_acquire); 355 u32 max_rz = atomic_load(&max_redzone, memory_order_acquire); 356 return Min(Max(rz_log, RZSize2Log(min_rz)), RZSize2Log(max_rz)); 357 } 358 359 static uptr ComputeUserRequestedAlignmentLog(uptr user_requested_alignment) { 360 if (user_requested_alignment < 8) 361 return 0; 362 if (user_requested_alignment > 512) 363 user_requested_alignment = 512; 364 return Log2(user_requested_alignment) - 2; 365 } 366 367 static uptr ComputeUserAlignment(uptr user_requested_alignment_log) { 368 if (user_requested_alignment_log == 0) 369 return 0; 370 return 1LL << (user_requested_alignment_log + 2); 371 } 372 373 // We have an address between two chunks, and we want to report just one. 374 AsanChunk *ChooseChunk(uptr addr, AsanChunk *left_chunk, 375 AsanChunk *right_chunk) { 376 // Prefer an allocated chunk over freed chunk and freed chunk 377 // over available chunk. 378 if (left_chunk->chunk_state != right_chunk->chunk_state) { 379 if (left_chunk->chunk_state == CHUNK_ALLOCATED) 380 return left_chunk; 381 if (right_chunk->chunk_state == CHUNK_ALLOCATED) 382 return right_chunk; 383 if (left_chunk->chunk_state == CHUNK_QUARANTINE) 384 return left_chunk; 385 if (right_chunk->chunk_state == CHUNK_QUARANTINE) 386 return right_chunk; 387 } 388 // Same chunk_state: choose based on offset. 389 sptr l_offset = 0, r_offset = 0; 390 CHECK(AsanChunkView(left_chunk).AddrIsAtRight(addr, 1, &l_offset)); 391 CHECK(AsanChunkView(right_chunk).AddrIsAtLeft(addr, 1, &r_offset)); 392 if (l_offset < r_offset) 393 return left_chunk; 394 return right_chunk; 395 } 396 397 // -------------------- Allocation/Deallocation routines --------------- 398 void *Allocate(uptr size, uptr alignment, BufferedStackTrace *stack, 399 AllocType alloc_type, bool can_fill) { 400 if (UNLIKELY(!asan_inited)) 401 AsanInitFromRtl(); 402 if (RssLimitExceeded()) { 403 if (AllocatorMayReturnNull()) 404 return nullptr; 405 ReportRssLimitExceeded(stack); 406 } 407 Flags &fl = *flags(); 408 CHECK(stack); 409 const uptr min_alignment = SHADOW_GRANULARITY; 410 const uptr user_requested_alignment_log = 411 ComputeUserRequestedAlignmentLog(alignment); 412 if (alignment < min_alignment) 413 alignment = min_alignment; 414 if (size == 0) { 415 // We'd be happy to avoid allocating memory for zero-size requests, but 416 // some programs/tests depend on this behavior and assume that malloc 417 // would not return NULL even for zero-size allocations. Moreover, it 418 // looks like operator new should never return NULL, and results of 419 // consecutive "new" calls must be different even if the allocated size 420 // is zero. 421 size = 1; 422 } 423 CHECK(IsPowerOfTwo(alignment)); 424 uptr rz_log = ComputeRZLog(size); 425 uptr rz_size = RZLog2Size(rz_log); 426 uptr rounded_size = RoundUpTo(Max(size, kChunkHeader2Size), alignment); 427 uptr needed_size = rounded_size + rz_size; 428 if (alignment > min_alignment) 429 needed_size += alignment; 430 bool using_primary_allocator = true; 431 // If we are allocating from the secondary allocator, there will be no 432 // automatic right redzone, so add the right redzone manually. 433 if (!PrimaryAllocator::CanAllocate(needed_size, alignment)) { 434 needed_size += rz_size; 435 using_primary_allocator = false; 436 } 437 CHECK(IsAligned(needed_size, min_alignment)); 438 if (size > kMaxAllowedMallocSize || needed_size > kMaxAllowedMallocSize) { 439 if (AllocatorMayReturnNull()) { 440 Report("WARNING: AddressSanitizer failed to allocate 0x%zx bytes\n", 441 (void*)size); 442 return nullptr; 443 } 444 ReportAllocationSizeTooBig(size, needed_size, kMaxAllowedMallocSize, 445 stack); 446 } 447 448 AsanThread *t = GetCurrentThread(); 449 void *allocated; 450 if (t) { 451 AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage()); 452 allocated = allocator.Allocate(cache, needed_size, 8); 453 } else { 454 SpinMutexLock l(&fallback_mutex); 455 AllocatorCache *cache = &fallback_allocator_cache; 456 allocated = allocator.Allocate(cache, needed_size, 8); 457 } 458 if (UNLIKELY(!allocated)) { 459 SetAllocatorOutOfMemory(); 460 if (AllocatorMayReturnNull()) 461 return nullptr; 462 ReportOutOfMemory(size, stack); 463 } 464 465 if (*(u8 *)MEM_TO_SHADOW((uptr)allocated) == 0 && CanPoisonMemory()) { 466 // Heap poisoning is enabled, but the allocator provides an unpoisoned 467 // chunk. This is possible if CanPoisonMemory() was false for some 468 // time, for example, due to flags()->start_disabled. 469 // Anyway, poison the block before using it for anything else. 470 uptr allocated_size = allocator.GetActuallyAllocatedSize(allocated); 471 PoisonShadow((uptr)allocated, allocated_size, kAsanHeapLeftRedzoneMagic); 472 } 473 474 uptr alloc_beg = reinterpret_cast<uptr>(allocated); 475 uptr alloc_end = alloc_beg + needed_size; 476 uptr beg_plus_redzone = alloc_beg + rz_size; 477 uptr user_beg = beg_plus_redzone; 478 if (!IsAligned(user_beg, alignment)) 479 user_beg = RoundUpTo(user_beg, alignment); 480 uptr user_end = user_beg + size; 481 CHECK_LE(user_end, alloc_end); 482 uptr chunk_beg = user_beg - kChunkHeaderSize; 483 AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg); 484 m->alloc_type = alloc_type; 485 m->rz_log = rz_log; 486 u32 alloc_tid = t ? t->tid() : 0; 487 m->alloc_tid = alloc_tid; 488 CHECK_EQ(alloc_tid, m->alloc_tid); // Does alloc_tid fit into the bitfield? 489 m->free_tid = kInvalidTid; 490 m->from_memalign = user_beg != beg_plus_redzone; 491 if (alloc_beg != chunk_beg) { 492 CHECK_LE(alloc_beg+ 2 * sizeof(uptr), chunk_beg); 493 reinterpret_cast<uptr *>(alloc_beg)[0] = kAllocBegMagic; 494 reinterpret_cast<uptr *>(alloc_beg)[1] = chunk_beg; 495 } 496 if (using_primary_allocator) { 497 CHECK(size); 498 m->user_requested_size = size; 499 CHECK(allocator.FromPrimary(allocated)); 500 } else { 501 CHECK(!allocator.FromPrimary(allocated)); 502 m->user_requested_size = SizeClassMap::kMaxSize; 503 uptr *meta = reinterpret_cast<uptr *>(allocator.GetMetaData(allocated)); 504 meta[0] = size; 505 meta[1] = chunk_beg; 506 } 507 m->user_requested_alignment_log = user_requested_alignment_log; 508 509 m->alloc_context_id = StackDepotPut(*stack); 510 511 uptr size_rounded_down_to_granularity = 512 RoundDownTo(size, SHADOW_GRANULARITY); 513 // Unpoison the bulk of the memory region. 514 if (size_rounded_down_to_granularity) 515 PoisonShadow(user_beg, size_rounded_down_to_granularity, 0); 516 // Deal with the end of the region if size is not aligned to granularity. 517 if (size != size_rounded_down_to_granularity && CanPoisonMemory()) { 518 u8 *shadow = 519 (u8 *)MemToShadow(user_beg + size_rounded_down_to_granularity); 520 *shadow = fl.poison_partial ? (size & (SHADOW_GRANULARITY - 1)) : 0; 521 } 522 523 AsanStats &thread_stats = GetCurrentThreadStats(); 524 thread_stats.mallocs++; 525 thread_stats.malloced += size; 526 thread_stats.malloced_redzones += needed_size - size; 527 if (needed_size > SizeClassMap::kMaxSize) 528 thread_stats.malloc_large++; 529 else 530 thread_stats.malloced_by_size[SizeClassMap::ClassID(needed_size)]++; 531 532 void *res = reinterpret_cast<void *>(user_beg); 533 if (can_fill && fl.max_malloc_fill_size) { 534 uptr fill_size = Min(size, (uptr)fl.max_malloc_fill_size); 535 REAL(memset)(res, fl.malloc_fill_byte, fill_size); 536 } 537 #if CAN_SANITIZE_LEAKS 538 m->lsan_tag = __lsan::DisabledInThisThread() ? __lsan::kIgnored 539 : __lsan::kDirectlyLeaked; 540 #endif 541 // Must be the last mutation of metadata in this function. 542 atomic_store((atomic_uint8_t *)m, CHUNK_ALLOCATED, memory_order_release); 543 ASAN_MALLOC_HOOK(res, size); 544 return res; 545 } 546 547 // Set quarantine flag if chunk is allocated, issue ASan error report on 548 // available and quarantined chunks. Return true on success, false otherwise. 549 bool AtomicallySetQuarantineFlagIfAllocated(AsanChunk *m, void *ptr, 550 BufferedStackTrace *stack) { 551 u8 old_chunk_state = CHUNK_ALLOCATED; 552 // Flip the chunk_state atomically to avoid race on double-free. 553 if (!atomic_compare_exchange_strong((atomic_uint8_t *)m, &old_chunk_state, 554 CHUNK_QUARANTINE, 555 memory_order_acquire)) { 556 ReportInvalidFree(ptr, old_chunk_state, stack); 557 // It's not safe to push a chunk in quarantine on invalid free. 558 return false; 559 } 560 CHECK_EQ(CHUNK_ALLOCATED, old_chunk_state); 561 return true; 562 } 563 564 // Expects the chunk to already be marked as quarantined by using 565 // AtomicallySetQuarantineFlagIfAllocated. 566 void QuarantineChunk(AsanChunk *m, void *ptr, BufferedStackTrace *stack) { 567 CHECK_EQ(m->chunk_state, CHUNK_QUARANTINE); 568 CHECK_GE(m->alloc_tid, 0); 569 if (SANITIZER_WORDSIZE == 64) // On 32-bits this resides in user area. 570 CHECK_EQ(m->free_tid, kInvalidTid); 571 AsanThread *t = GetCurrentThread(); 572 m->free_tid = t ? t->tid() : 0; 573 m->free_context_id = StackDepotPut(*stack); 574 575 Flags &fl = *flags(); 576 if (fl.max_free_fill_size > 0) { 577 // We have to skip the chunk header, it contains free_context_id. 578 uptr scribble_start = (uptr)m + kChunkHeaderSize + kChunkHeader2Size; 579 if (m->UsedSize() >= kChunkHeader2Size) { // Skip Header2 in user area. 580 uptr size_to_fill = m->UsedSize() - kChunkHeader2Size; 581 size_to_fill = Min(size_to_fill, (uptr)fl.max_free_fill_size); 582 REAL(memset)((void *)scribble_start, fl.free_fill_byte, size_to_fill); 583 } 584 } 585 586 // Poison the region. 587 PoisonShadow(m->Beg(), 588 RoundUpTo(m->UsedSize(), SHADOW_GRANULARITY), 589 kAsanHeapFreeMagic); 590 591 AsanStats &thread_stats = GetCurrentThreadStats(); 592 thread_stats.frees++; 593 thread_stats.freed += m->UsedSize(); 594 595 // Push into quarantine. 596 if (t) { 597 AsanThreadLocalMallocStorage *ms = &t->malloc_storage(); 598 AllocatorCache *ac = GetAllocatorCache(ms); 599 quarantine.Put(GetQuarantineCache(ms), QuarantineCallback(ac, stack), m, 600 m->UsedSize()); 601 } else { 602 SpinMutexLock l(&fallback_mutex); 603 AllocatorCache *ac = &fallback_allocator_cache; 604 quarantine.Put(&fallback_quarantine_cache, QuarantineCallback(ac, stack), 605 m, m->UsedSize()); 606 } 607 } 608 609 void Deallocate(void *ptr, uptr delete_size, uptr delete_alignment, 610 BufferedStackTrace *stack, AllocType alloc_type) { 611 uptr p = reinterpret_cast<uptr>(ptr); 612 if (p == 0) return; 613 614 uptr chunk_beg = p - kChunkHeaderSize; 615 AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg); 616 617 // On Windows, uninstrumented DLLs may allocate memory before ASan hooks 618 // malloc. Don't report an invalid free in this case. 619 if (SANITIZER_WINDOWS && 620 !get_allocator().PointerIsMine(ptr)) { 621 if (!IsSystemHeapAddress(p)) 622 ReportFreeNotMalloced(p, stack); 623 return; 624 } 625 626 ASAN_FREE_HOOK(ptr); 627 628 // Must mark the chunk as quarantined before any changes to its metadata. 629 // Do not quarantine given chunk if we failed to set CHUNK_QUARANTINE flag. 630 if (!AtomicallySetQuarantineFlagIfAllocated(m, ptr, stack)) return; 631 632 if (m->alloc_type != alloc_type) { 633 if (atomic_load(&alloc_dealloc_mismatch, memory_order_acquire)) { 634 ReportAllocTypeMismatch((uptr)ptr, stack, (AllocType)m->alloc_type, 635 (AllocType)alloc_type); 636 } 637 } else { 638 if (flags()->new_delete_type_mismatch && 639 (alloc_type == FROM_NEW || alloc_type == FROM_NEW_BR) && 640 ((delete_size && delete_size != m->UsedSize()) || 641 ComputeUserRequestedAlignmentLog(delete_alignment) != 642 m->user_requested_alignment_log)) { 643 ReportNewDeleteTypeMismatch(p, delete_size, delete_alignment, stack); 644 } 645 } 646 647 QuarantineChunk(m, ptr, stack); 648 } 649 650 void *Reallocate(void *old_ptr, uptr new_size, BufferedStackTrace *stack) { 651 CHECK(old_ptr && new_size); 652 uptr p = reinterpret_cast<uptr>(old_ptr); 653 uptr chunk_beg = p - kChunkHeaderSize; 654 AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg); 655 656 AsanStats &thread_stats = GetCurrentThreadStats(); 657 thread_stats.reallocs++; 658 thread_stats.realloced += new_size; 659 660 void *new_ptr = Allocate(new_size, 8, stack, FROM_MALLOC, true); 661 if (new_ptr) { 662 u8 chunk_state = m->chunk_state; 663 if (chunk_state != CHUNK_ALLOCATED) 664 ReportInvalidFree(old_ptr, chunk_state, stack); 665 CHECK_NE(REAL(memcpy), nullptr); 666 uptr memcpy_size = Min(new_size, m->UsedSize()); 667 // If realloc() races with free(), we may start copying freed memory. 668 // However, we will report racy double-free later anyway. 669 REAL(memcpy)(new_ptr, old_ptr, memcpy_size); 670 Deallocate(old_ptr, 0, 0, stack, FROM_MALLOC); 671 } 672 return new_ptr; 673 } 674 675 void *Calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) { 676 if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) { 677 if (AllocatorMayReturnNull()) 678 return nullptr; 679 ReportCallocOverflow(nmemb, size, stack); 680 } 681 void *ptr = Allocate(nmemb * size, 8, stack, FROM_MALLOC, false); 682 // If the memory comes from the secondary allocator no need to clear it 683 // as it comes directly from mmap. 684 if (ptr && allocator.FromPrimary(ptr)) 685 REAL(memset)(ptr, 0, nmemb * size); 686 return ptr; 687 } 688 689 void ReportInvalidFree(void *ptr, u8 chunk_state, BufferedStackTrace *stack) { 690 if (chunk_state == CHUNK_QUARANTINE) 691 ReportDoubleFree((uptr)ptr, stack); 692 else 693 ReportFreeNotMalloced((uptr)ptr, stack); 694 } 695 696 void CommitBack(AsanThreadLocalMallocStorage *ms, BufferedStackTrace *stack) { 697 AllocatorCache *ac = GetAllocatorCache(ms); 698 quarantine.Drain(GetQuarantineCache(ms), QuarantineCallback(ac, stack)); 699 allocator.SwallowCache(ac); 700 } 701 702 // -------------------------- Chunk lookup ---------------------- 703 704 // Assumes alloc_beg == allocator.GetBlockBegin(alloc_beg). 705 AsanChunk *GetAsanChunk(void *alloc_beg) { 706 if (!alloc_beg) return nullptr; 707 if (!allocator.FromPrimary(alloc_beg)) { 708 uptr *meta = reinterpret_cast<uptr *>(allocator.GetMetaData(alloc_beg)); 709 AsanChunk *m = reinterpret_cast<AsanChunk *>(meta[1]); 710 return m; 711 } 712 uptr *alloc_magic = reinterpret_cast<uptr *>(alloc_beg); 713 if (alloc_magic[0] == kAllocBegMagic) 714 return reinterpret_cast<AsanChunk *>(alloc_magic[1]); 715 return reinterpret_cast<AsanChunk *>(alloc_beg); 716 } 717 718 AsanChunk *GetAsanChunkByAddr(uptr p) { 719 void *alloc_beg = allocator.GetBlockBegin(reinterpret_cast<void *>(p)); 720 return GetAsanChunk(alloc_beg); 721 } 722 723 // Allocator must be locked when this function is called. 724 AsanChunk *GetAsanChunkByAddrFastLocked(uptr p) { 725 void *alloc_beg = 726 allocator.GetBlockBeginFastLocked(reinterpret_cast<void *>(p)); 727 return GetAsanChunk(alloc_beg); 728 } 729 730 uptr AllocationSize(uptr p) { 731 AsanChunk *m = GetAsanChunkByAddr(p); 732 if (!m) return 0; 733 if (m->chunk_state != CHUNK_ALLOCATED) return 0; 734 if (m->Beg() != p) return 0; 735 return m->UsedSize(); 736 } 737 738 AsanChunkView FindHeapChunkByAddress(uptr addr) { 739 AsanChunk *m1 = GetAsanChunkByAddr(addr); 740 if (!m1) return AsanChunkView(m1); 741 sptr offset = 0; 742 if (AsanChunkView(m1).AddrIsAtLeft(addr, 1, &offset)) { 743 // The address is in the chunk's left redzone, so maybe it is actually 744 // a right buffer overflow from the other chunk to the left. 745 // Search a bit to the left to see if there is another chunk. 746 AsanChunk *m2 = nullptr; 747 for (uptr l = 1; l < GetPageSizeCached(); l++) { 748 m2 = GetAsanChunkByAddr(addr - l); 749 if (m2 == m1) continue; // Still the same chunk. 750 break; 751 } 752 if (m2 && AsanChunkView(m2).AddrIsAtRight(addr, 1, &offset)) 753 m1 = ChooseChunk(addr, m2, m1); 754 } 755 return AsanChunkView(m1); 756 } 757 758 void Purge(BufferedStackTrace *stack) { 759 AsanThread *t = GetCurrentThread(); 760 if (t) { 761 AsanThreadLocalMallocStorage *ms = &t->malloc_storage(); 762 quarantine.DrainAndRecycle(GetQuarantineCache(ms), 763 QuarantineCallback(GetAllocatorCache(ms), 764 stack)); 765 } 766 { 767 SpinMutexLock l(&fallback_mutex); 768 quarantine.DrainAndRecycle(&fallback_quarantine_cache, 769 QuarantineCallback(&fallback_allocator_cache, 770 stack)); 771 } 772 773 allocator.ForceReleaseToOS(); 774 } 775 776 void PrintStats() { 777 allocator.PrintStats(); 778 quarantine.PrintStats(); 779 } 780 781 void ForceLock() { 782 allocator.ForceLock(); 783 fallback_mutex.Lock(); 784 } 785 786 void ForceUnlock() { 787 fallback_mutex.Unlock(); 788 allocator.ForceUnlock(); 789 } 790 }; 791 792 static Allocator instance(LINKER_INITIALIZED); 793 794 static AsanAllocator &get_allocator() { 795 return instance.allocator; 796 } 797 798 bool AsanChunkView::IsValid() const { 799 return chunk_ && chunk_->chunk_state != CHUNK_AVAILABLE; 800 } 801 bool AsanChunkView::IsAllocated() const { 802 return chunk_ && chunk_->chunk_state == CHUNK_ALLOCATED; 803 } 804 bool AsanChunkView::IsQuarantined() const { 805 return chunk_ && chunk_->chunk_state == CHUNK_QUARANTINE; 806 } 807 uptr AsanChunkView::Beg() const { return chunk_->Beg(); } 808 uptr AsanChunkView::End() const { return Beg() + UsedSize(); } 809 uptr AsanChunkView::UsedSize() const { return chunk_->UsedSize(); } 810 u32 AsanChunkView::UserRequestedAlignment() const { 811 return Allocator::ComputeUserAlignment(chunk_->user_requested_alignment_log); 812 } 813 uptr AsanChunkView::AllocTid() const { return chunk_->alloc_tid; } 814 uptr AsanChunkView::FreeTid() const { return chunk_->free_tid; } 815 AllocType AsanChunkView::GetAllocType() const { 816 return (AllocType)chunk_->alloc_type; 817 } 818 819 static StackTrace GetStackTraceFromId(u32 id) { 820 CHECK(id); 821 StackTrace res = StackDepotGet(id); 822 CHECK(res.trace); 823 return res; 824 } 825 826 u32 AsanChunkView::GetAllocStackId() const { return chunk_->alloc_context_id; } 827 u32 AsanChunkView::GetFreeStackId() const { return chunk_->free_context_id; } 828 829 StackTrace AsanChunkView::GetAllocStack() const { 830 return GetStackTraceFromId(GetAllocStackId()); 831 } 832 833 StackTrace AsanChunkView::GetFreeStack() const { 834 return GetStackTraceFromId(GetFreeStackId()); 835 } 836 837 void InitializeAllocator(const AllocatorOptions &options) { 838 instance.InitLinkerInitialized(options); 839 } 840 841 void ReInitializeAllocator(const AllocatorOptions &options) { 842 instance.ReInitialize(options); 843 } 844 845 void GetAllocatorOptions(AllocatorOptions *options) { 846 instance.GetOptions(options); 847 } 848 849 AsanChunkView FindHeapChunkByAddress(uptr addr) { 850 return instance.FindHeapChunkByAddress(addr); 851 } 852 AsanChunkView FindHeapChunkByAllocBeg(uptr addr) { 853 return AsanChunkView(instance.GetAsanChunk(reinterpret_cast<void*>(addr))); 854 } 855 856 void AsanThreadLocalMallocStorage::CommitBack() { 857 GET_STACK_TRACE_MALLOC; 858 instance.CommitBack(this, &stack); 859 } 860 861 void PrintInternalAllocatorStats() { 862 instance.PrintStats(); 863 } 864 865 void asan_free(void *ptr, BufferedStackTrace *stack, AllocType alloc_type) { 866 instance.Deallocate(ptr, 0, 0, stack, alloc_type); 867 } 868 869 void asan_delete(void *ptr, uptr size, uptr alignment, 870 BufferedStackTrace *stack, AllocType alloc_type) { 871 instance.Deallocate(ptr, size, alignment, stack, alloc_type); 872 } 873 874 void *asan_malloc(uptr size, BufferedStackTrace *stack) { 875 return SetErrnoOnNull(instance.Allocate(size, 8, stack, FROM_MALLOC, true)); 876 } 877 878 void *asan_calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) { 879 return SetErrnoOnNull(instance.Calloc(nmemb, size, stack)); 880 } 881 882 void *asan_reallocarray(void *p, uptr nmemb, uptr size, 883 BufferedStackTrace *stack) { 884 if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) { 885 errno = errno_ENOMEM; 886 if (AllocatorMayReturnNull()) 887 return nullptr; 888 ReportReallocArrayOverflow(nmemb, size, stack); 889 } 890 return asan_realloc(p, nmemb * size, stack); 891 } 892 893 void *asan_realloc(void *p, uptr size, BufferedStackTrace *stack) { 894 if (!p) 895 return SetErrnoOnNull(instance.Allocate(size, 8, stack, FROM_MALLOC, true)); 896 if (size == 0) { 897 if (flags()->allocator_frees_and_returns_null_on_realloc_zero) { 898 instance.Deallocate(p, 0, 0, stack, FROM_MALLOC); 899 return nullptr; 900 } 901 // Allocate a size of 1 if we shouldn't free() on Realloc to 0 902 size = 1; 903 } 904 return SetErrnoOnNull(instance.Reallocate(p, size, stack)); 905 } 906 907 void *asan_valloc(uptr size, BufferedStackTrace *stack) { 908 return SetErrnoOnNull( 909 instance.Allocate(size, GetPageSizeCached(), stack, FROM_MALLOC, true)); 910 } 911 912 void *asan_pvalloc(uptr size, BufferedStackTrace *stack) { 913 uptr PageSize = GetPageSizeCached(); 914 if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) { 915 errno = errno_ENOMEM; 916 if (AllocatorMayReturnNull()) 917 return nullptr; 918 ReportPvallocOverflow(size, stack); 919 } 920 // pvalloc(0) should allocate one page. 921 size = size ? RoundUpTo(size, PageSize) : PageSize; 922 return SetErrnoOnNull( 923 instance.Allocate(size, PageSize, stack, FROM_MALLOC, true)); 924 } 925 926 void *asan_memalign(uptr alignment, uptr size, BufferedStackTrace *stack, 927 AllocType alloc_type) { 928 if (UNLIKELY(!IsPowerOfTwo(alignment))) { 929 errno = errno_EINVAL; 930 if (AllocatorMayReturnNull()) 931 return nullptr; 932 ReportInvalidAllocationAlignment(alignment, stack); 933 } 934 return SetErrnoOnNull( 935 instance.Allocate(size, alignment, stack, alloc_type, true)); 936 } 937 938 void *asan_aligned_alloc(uptr alignment, uptr size, BufferedStackTrace *stack) { 939 if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) { 940 errno = errno_EINVAL; 941 if (AllocatorMayReturnNull()) 942 return nullptr; 943 ReportInvalidAlignedAllocAlignment(size, alignment, stack); 944 } 945 return SetErrnoOnNull( 946 instance.Allocate(size, alignment, stack, FROM_MALLOC, true)); 947 } 948 949 int asan_posix_memalign(void **memptr, uptr alignment, uptr size, 950 BufferedStackTrace *stack) { 951 if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) { 952 if (AllocatorMayReturnNull()) 953 return errno_EINVAL; 954 ReportInvalidPosixMemalignAlignment(alignment, stack); 955 } 956 void *ptr = instance.Allocate(size, alignment, stack, FROM_MALLOC, true); 957 if (UNLIKELY(!ptr)) 958 // OOM error is already taken care of by Allocate. 959 return errno_ENOMEM; 960 CHECK(IsAligned((uptr)ptr, alignment)); 961 *memptr = ptr; 962 return 0; 963 } 964 965 uptr asan_malloc_usable_size(const void *ptr, uptr pc, uptr bp) { 966 if (!ptr) return 0; 967 uptr usable_size = instance.AllocationSize(reinterpret_cast<uptr>(ptr)); 968 if (flags()->check_malloc_usable_size && (usable_size == 0)) { 969 GET_STACK_TRACE_FATAL(pc, bp); 970 ReportMallocUsableSizeNotOwned((uptr)ptr, &stack); 971 } 972 return usable_size; 973 } 974 975 uptr asan_mz_size(const void *ptr) { 976 return instance.AllocationSize(reinterpret_cast<uptr>(ptr)); 977 } 978 979 void asan_mz_force_lock() { 980 instance.ForceLock(); 981 } 982 983 void asan_mz_force_unlock() { 984 instance.ForceUnlock(); 985 } 986 987 void AsanSoftRssLimitExceededCallback(bool limit_exceeded) { 988 instance.SetRssLimitExceeded(limit_exceeded); 989 } 990 991 } // namespace __asan 992 993 // --- Implementation of LSan-specific functions --- {{{1 994 namespace __lsan { 995 void LockAllocator() { 996 __asan::get_allocator().ForceLock(); 997 } 998 999 void UnlockAllocator() { 1000 __asan::get_allocator().ForceUnlock(); 1001 } 1002 1003 void GetAllocatorGlobalRange(uptr *begin, uptr *end) { 1004 *begin = (uptr)&__asan::get_allocator(); 1005 *end = *begin + sizeof(__asan::get_allocator()); 1006 } 1007 1008 uptr PointsIntoChunk(void* p) { 1009 uptr addr = reinterpret_cast<uptr>(p); 1010 __asan::AsanChunk *m = __asan::instance.GetAsanChunkByAddrFastLocked(addr); 1011 if (!m) return 0; 1012 uptr chunk = m->Beg(); 1013 if (m->chunk_state != __asan::CHUNK_ALLOCATED) 1014 return 0; 1015 if (m->AddrIsInside(addr, /*locked_version=*/true)) 1016 return chunk; 1017 if (IsSpecialCaseOfOperatorNew0(chunk, m->UsedSize(/*locked_version*/ true), 1018 addr)) 1019 return chunk; 1020 return 0; 1021 } 1022 1023 uptr GetUserBegin(uptr chunk) { 1024 __asan::AsanChunk *m = __asan::instance.GetAsanChunkByAddrFastLocked(chunk); 1025 CHECK(m); 1026 return m->Beg(); 1027 } 1028 1029 LsanMetadata::LsanMetadata(uptr chunk) { 1030 metadata_ = reinterpret_cast<void *>(chunk - __asan::kChunkHeaderSize); 1031 } 1032 1033 bool LsanMetadata::allocated() const { 1034 __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_); 1035 return m->chunk_state == __asan::CHUNK_ALLOCATED; 1036 } 1037 1038 ChunkTag LsanMetadata::tag() const { 1039 __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_); 1040 return static_cast<ChunkTag>(m->lsan_tag); 1041 } 1042 1043 void LsanMetadata::set_tag(ChunkTag value) { 1044 __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_); 1045 m->lsan_tag = value; 1046 } 1047 1048 uptr LsanMetadata::requested_size() const { 1049 __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_); 1050 return m->UsedSize(/*locked_version=*/true); 1051 } 1052 1053 u32 LsanMetadata::stack_trace_id() const { 1054 __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_); 1055 return m->alloc_context_id; 1056 } 1057 1058 void ForEachChunk(ForEachChunkCallback callback, void *arg) { 1059 __asan::get_allocator().ForEachChunk(callback, arg); 1060 } 1061 1062 IgnoreObjectResult IgnoreObjectLocked(const void *p) { 1063 uptr addr = reinterpret_cast<uptr>(p); 1064 __asan::AsanChunk *m = __asan::instance.GetAsanChunkByAddr(addr); 1065 if (!m) return kIgnoreObjectInvalid; 1066 if ((m->chunk_state == __asan::CHUNK_ALLOCATED) && m->AddrIsInside(addr)) { 1067 if (m->lsan_tag == kIgnored) 1068 return kIgnoreObjectAlreadyIgnored; 1069 m->lsan_tag = __lsan::kIgnored; 1070 return kIgnoreObjectSuccess; 1071 } else { 1072 return kIgnoreObjectInvalid; 1073 } 1074 } 1075 } // namespace __lsan 1076 1077 // ---------------------- Interface ---------------- {{{1 1078 using namespace __asan; 1079 1080 // ASan allocator doesn't reserve extra bytes, so normally we would 1081 // just return "size". We don't want to expose our redzone sizes, etc here. 1082 uptr __sanitizer_get_estimated_allocated_size(uptr size) { 1083 return size; 1084 } 1085 1086 int __sanitizer_get_ownership(const void *p) { 1087 uptr ptr = reinterpret_cast<uptr>(p); 1088 return instance.AllocationSize(ptr) > 0; 1089 } 1090 1091 uptr __sanitizer_get_allocated_size(const void *p) { 1092 if (!p) return 0; 1093 uptr ptr = reinterpret_cast<uptr>(p); 1094 uptr allocated_size = instance.AllocationSize(ptr); 1095 // Die if p is not malloced or if it is already freed. 1096 if (allocated_size == 0) { 1097 GET_STACK_TRACE_FATAL_HERE; 1098 ReportSanitizerGetAllocatedSizeNotOwned(ptr, &stack); 1099 } 1100 return allocated_size; 1101 } 1102 1103 void __sanitizer_purge_allocator() { 1104 GET_STACK_TRACE_MALLOC; 1105 instance.Purge(&stack); 1106 } 1107 1108 #if !SANITIZER_SUPPORTS_WEAK_HOOKS 1109 // Provide default (no-op) implementation of malloc hooks. 1110 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_malloc_hook, 1111 void *ptr, uptr size) { 1112 (void)ptr; 1113 (void)size; 1114 } 1115 1116 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_free_hook, void *ptr) { 1117 (void)ptr; 1118 } 1119 #endif 1120