1 //===-- asan_allocator.cpp ------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is a part of AddressSanitizer, an address sanity checker. 10 // 11 // Implementation of ASan's memory allocator, 2-nd version. 12 // This variant uses the allocator from sanitizer_common, i.e. the one shared 13 // with ThreadSanitizer and MemorySanitizer. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "asan_allocator.h" 18 #include "asan_mapping.h" 19 #include "asan_poisoning.h" 20 #include "asan_report.h" 21 #include "asan_stack.h" 22 #include "asan_thread.h" 23 #include "sanitizer_common/sanitizer_allocator_checks.h" 24 #include "sanitizer_common/sanitizer_allocator_interface.h" 25 #include "sanitizer_common/sanitizer_errno.h" 26 #include "sanitizer_common/sanitizer_flags.h" 27 #include "sanitizer_common/sanitizer_internal_defs.h" 28 #include "sanitizer_common/sanitizer_list.h" 29 #include "sanitizer_common/sanitizer_stackdepot.h" 30 #include "sanitizer_common/sanitizer_quarantine.h" 31 #include "lsan/lsan_common.h" 32 33 namespace __asan { 34 35 // Valid redzone sizes are 16, 32, 64, ... 2048, so we encode them in 3 bits. 36 // We use adaptive redzones: for larger allocation larger redzones are used. 37 static u32 RZLog2Size(u32 rz_log) { 38 CHECK_LT(rz_log, 8); 39 return 16 << rz_log; 40 } 41 42 static u32 RZSize2Log(u32 rz_size) { 43 CHECK_GE(rz_size, 16); 44 CHECK_LE(rz_size, 2048); 45 CHECK(IsPowerOfTwo(rz_size)); 46 u32 res = Log2(rz_size) - 4; 47 CHECK_EQ(rz_size, RZLog2Size(res)); 48 return res; 49 } 50 51 static AsanAllocator &get_allocator(); 52 53 // The memory chunk allocated from the underlying allocator looks like this: 54 // L L L L L L H H U U U U U U R R 55 // L -- left redzone words (0 or more bytes) 56 // H -- ChunkHeader (16 bytes), which is also a part of the left redzone. 57 // U -- user memory. 58 // R -- right redzone (0 or more bytes) 59 // ChunkBase consists of ChunkHeader and other bytes that overlap with user 60 // memory. 61 62 // If the left redzone is greater than the ChunkHeader size we store a magic 63 // value in the first uptr word of the memory block and store the address of 64 // ChunkBase in the next uptr. 65 // M B L L L L L L L L L H H U U U U U U 66 // | ^ 67 // ---------------------| 68 // M -- magic value kAllocBegMagic 69 // B -- address of ChunkHeader pointing to the first 'H' 70 static const uptr kAllocBegMagic = 0xCC6E96B9; 71 72 struct ChunkHeader { 73 // 1-st 8 bytes. 74 u32 chunk_state : 8; // Must be first. 75 u32 alloc_tid : 24; 76 77 u32 free_tid : 24; 78 u32 from_memalign : 1; 79 u32 alloc_type : 2; 80 u32 rz_log : 3; 81 u32 lsan_tag : 2; 82 // 2-nd 8 bytes 83 // This field is used for small sizes. For large sizes it is equal to 84 // SizeClassMap::kMaxSize and the actual size is stored in the 85 // SecondaryAllocator's metadata. 86 u32 user_requested_size : 29; 87 // align < 8 -> 0 88 // else -> log2(min(align, 512)) - 2 89 u32 user_requested_alignment_log : 3; 90 u32 alloc_context_id; 91 }; 92 93 struct ChunkBase : ChunkHeader { 94 // Header2, intersects with user memory. 95 u32 free_context_id; 96 }; 97 98 static const uptr kChunkHeaderSize = sizeof(ChunkHeader); 99 static const uptr kChunkHeader2Size = sizeof(ChunkBase) - kChunkHeaderSize; 100 COMPILER_CHECK(kChunkHeaderSize == 16); 101 COMPILER_CHECK(kChunkHeader2Size <= 16); 102 103 // Every chunk of memory allocated by this allocator can be in one of 3 states: 104 // CHUNK_AVAILABLE: the chunk is in the free list and ready to be allocated. 105 // CHUNK_ALLOCATED: the chunk is allocated and not yet freed. 106 // CHUNK_QUARANTINE: the chunk was freed and put into quarantine zone. 107 enum { 108 CHUNK_AVAILABLE = 0, // 0 is the default value even if we didn't set it. 109 CHUNK_ALLOCATED = 2, 110 CHUNK_QUARANTINE = 3 111 }; 112 113 struct AsanChunk: ChunkBase { 114 uptr Beg() { return reinterpret_cast<uptr>(this) + kChunkHeaderSize; } 115 uptr UsedSize(bool locked_version = false) { 116 if (user_requested_size != SizeClassMap::kMaxSize) 117 return user_requested_size; 118 return *reinterpret_cast<uptr *>( 119 get_allocator().GetMetaData(AllocBeg(locked_version))); 120 } 121 void *AllocBeg(bool locked_version = false) { 122 if (from_memalign) { 123 if (locked_version) 124 return get_allocator().GetBlockBeginFastLocked( 125 reinterpret_cast<void *>(this)); 126 return get_allocator().GetBlockBegin(reinterpret_cast<void *>(this)); 127 } 128 return reinterpret_cast<void*>(Beg() - RZLog2Size(rz_log)); 129 } 130 bool AddrIsInside(uptr addr, bool locked_version = false) { 131 return (addr >= Beg()) && (addr < Beg() + UsedSize(locked_version)); 132 } 133 }; 134 135 struct QuarantineCallback { 136 QuarantineCallback(AllocatorCache *cache, BufferedStackTrace *stack) 137 : cache_(cache), 138 stack_(stack) { 139 } 140 141 void Recycle(AsanChunk *m) { 142 CHECK_EQ(m->chunk_state, CHUNK_QUARANTINE); 143 atomic_store((atomic_uint8_t*)m, CHUNK_AVAILABLE, memory_order_relaxed); 144 CHECK_NE(m->alloc_tid, kInvalidTid); 145 CHECK_NE(m->free_tid, kInvalidTid); 146 PoisonShadow(m->Beg(), 147 RoundUpTo(m->UsedSize(), SHADOW_GRANULARITY), 148 kAsanHeapLeftRedzoneMagic); 149 void *p = reinterpret_cast<void *>(m->AllocBeg()); 150 if (p != m) { 151 uptr *alloc_magic = reinterpret_cast<uptr *>(p); 152 CHECK_EQ(alloc_magic[0], kAllocBegMagic); 153 // Clear the magic value, as allocator internals may overwrite the 154 // contents of deallocated chunk, confusing GetAsanChunk lookup. 155 alloc_magic[0] = 0; 156 CHECK_EQ(alloc_magic[1], reinterpret_cast<uptr>(m)); 157 } 158 159 // Statistics. 160 AsanStats &thread_stats = GetCurrentThreadStats(); 161 thread_stats.real_frees++; 162 thread_stats.really_freed += m->UsedSize(); 163 164 get_allocator().Deallocate(cache_, p); 165 } 166 167 void *Allocate(uptr size) { 168 void *res = get_allocator().Allocate(cache_, size, 1); 169 // TODO(alekseys): Consider making quarantine OOM-friendly. 170 if (UNLIKELY(!res)) 171 ReportOutOfMemory(size, stack_); 172 return res; 173 } 174 175 void Deallocate(void *p) { 176 get_allocator().Deallocate(cache_, p); 177 } 178 179 private: 180 AllocatorCache* const cache_; 181 BufferedStackTrace* const stack_; 182 }; 183 184 typedef Quarantine<QuarantineCallback, AsanChunk> AsanQuarantine; 185 typedef AsanQuarantine::Cache QuarantineCache; 186 187 void AsanMapUnmapCallback::OnMap(uptr p, uptr size) const { 188 PoisonShadow(p, size, kAsanHeapLeftRedzoneMagic); 189 // Statistics. 190 AsanStats &thread_stats = GetCurrentThreadStats(); 191 thread_stats.mmaps++; 192 thread_stats.mmaped += size; 193 } 194 void AsanMapUnmapCallback::OnUnmap(uptr p, uptr size) const { 195 PoisonShadow(p, size, 0); 196 // We are about to unmap a chunk of user memory. 197 // Mark the corresponding shadow memory as not needed. 198 FlushUnneededASanShadowMemory(p, size); 199 // Statistics. 200 AsanStats &thread_stats = GetCurrentThreadStats(); 201 thread_stats.munmaps++; 202 thread_stats.munmaped += size; 203 } 204 205 // We can not use THREADLOCAL because it is not supported on some of the 206 // platforms we care about (OSX 10.6, Android). 207 // static THREADLOCAL AllocatorCache cache; 208 AllocatorCache *GetAllocatorCache(AsanThreadLocalMallocStorage *ms) { 209 CHECK(ms); 210 return &ms->allocator_cache; 211 } 212 213 QuarantineCache *GetQuarantineCache(AsanThreadLocalMallocStorage *ms) { 214 CHECK(ms); 215 CHECK_LE(sizeof(QuarantineCache), sizeof(ms->quarantine_cache)); 216 return reinterpret_cast<QuarantineCache *>(ms->quarantine_cache); 217 } 218 219 void AllocatorOptions::SetFrom(const Flags *f, const CommonFlags *cf) { 220 quarantine_size_mb = f->quarantine_size_mb; 221 thread_local_quarantine_size_kb = f->thread_local_quarantine_size_kb; 222 min_redzone = f->redzone; 223 max_redzone = f->max_redzone; 224 may_return_null = cf->allocator_may_return_null; 225 alloc_dealloc_mismatch = f->alloc_dealloc_mismatch; 226 release_to_os_interval_ms = cf->allocator_release_to_os_interval_ms; 227 } 228 229 void AllocatorOptions::CopyTo(Flags *f, CommonFlags *cf) { 230 f->quarantine_size_mb = quarantine_size_mb; 231 f->thread_local_quarantine_size_kb = thread_local_quarantine_size_kb; 232 f->redzone = min_redzone; 233 f->max_redzone = max_redzone; 234 cf->allocator_may_return_null = may_return_null; 235 f->alloc_dealloc_mismatch = alloc_dealloc_mismatch; 236 cf->allocator_release_to_os_interval_ms = release_to_os_interval_ms; 237 } 238 239 struct Allocator { 240 static const uptr kMaxAllowedMallocSize = 241 FIRST_32_SECOND_64(3UL << 30, 1ULL << 40); 242 243 AsanAllocator allocator; 244 AsanQuarantine quarantine; 245 StaticSpinMutex fallback_mutex; 246 AllocatorCache fallback_allocator_cache; 247 QuarantineCache fallback_quarantine_cache; 248 249 uptr max_user_defined_malloc_size; 250 atomic_uint8_t rss_limit_exceeded; 251 252 // ------------------- Options -------------------------- 253 atomic_uint16_t min_redzone; 254 atomic_uint16_t max_redzone; 255 atomic_uint8_t alloc_dealloc_mismatch; 256 257 // ------------------- Initialization ------------------------ 258 explicit Allocator(LinkerInitialized) 259 : quarantine(LINKER_INITIALIZED), 260 fallback_quarantine_cache(LINKER_INITIALIZED) {} 261 262 void CheckOptions(const AllocatorOptions &options) const { 263 CHECK_GE(options.min_redzone, 16); 264 CHECK_GE(options.max_redzone, options.min_redzone); 265 CHECK_LE(options.max_redzone, 2048); 266 CHECK(IsPowerOfTwo(options.min_redzone)); 267 CHECK(IsPowerOfTwo(options.max_redzone)); 268 } 269 270 void SharedInitCode(const AllocatorOptions &options) { 271 CheckOptions(options); 272 quarantine.Init((uptr)options.quarantine_size_mb << 20, 273 (uptr)options.thread_local_quarantine_size_kb << 10); 274 atomic_store(&alloc_dealloc_mismatch, options.alloc_dealloc_mismatch, 275 memory_order_release); 276 atomic_store(&min_redzone, options.min_redzone, memory_order_release); 277 atomic_store(&max_redzone, options.max_redzone, memory_order_release); 278 } 279 280 void InitLinkerInitialized(const AllocatorOptions &options) { 281 SetAllocatorMayReturnNull(options.may_return_null); 282 allocator.InitLinkerInitialized(options.release_to_os_interval_ms); 283 SharedInitCode(options); 284 max_user_defined_malloc_size = common_flags()->max_allocation_size_mb 285 ? common_flags()->max_allocation_size_mb 286 << 20 287 : kMaxAllowedMallocSize; 288 } 289 290 bool RssLimitExceeded() { 291 return atomic_load(&rss_limit_exceeded, memory_order_relaxed); 292 } 293 294 void SetRssLimitExceeded(bool limit_exceeded) { 295 atomic_store(&rss_limit_exceeded, limit_exceeded, memory_order_relaxed); 296 } 297 298 void RePoisonChunk(uptr chunk) { 299 // This could be a user-facing chunk (with redzones), or some internal 300 // housekeeping chunk, like TransferBatch. Start by assuming the former. 301 AsanChunk *ac = GetAsanChunk((void *)chunk); 302 uptr allocated_size = allocator.GetActuallyAllocatedSize((void *)ac); 303 uptr beg = ac->Beg(); 304 uptr end = ac->Beg() + ac->UsedSize(true); 305 uptr chunk_end = chunk + allocated_size; 306 if (chunk < beg && beg < end && end <= chunk_end && 307 ac->chunk_state == CHUNK_ALLOCATED) { 308 // Looks like a valid AsanChunk in use, poison redzones only. 309 PoisonShadow(chunk, beg - chunk, kAsanHeapLeftRedzoneMagic); 310 uptr end_aligned_down = RoundDownTo(end, SHADOW_GRANULARITY); 311 FastPoisonShadowPartialRightRedzone( 312 end_aligned_down, end - end_aligned_down, 313 chunk_end - end_aligned_down, kAsanHeapLeftRedzoneMagic); 314 } else { 315 // This is either not an AsanChunk or freed or quarantined AsanChunk. 316 // In either case, poison everything. 317 PoisonShadow(chunk, allocated_size, kAsanHeapLeftRedzoneMagic); 318 } 319 } 320 321 void ReInitialize(const AllocatorOptions &options) { 322 SetAllocatorMayReturnNull(options.may_return_null); 323 allocator.SetReleaseToOSIntervalMs(options.release_to_os_interval_ms); 324 SharedInitCode(options); 325 326 // Poison all existing allocation's redzones. 327 if (CanPoisonMemory()) { 328 allocator.ForceLock(); 329 allocator.ForEachChunk( 330 [](uptr chunk, void *alloc) { 331 ((Allocator *)alloc)->RePoisonChunk(chunk); 332 }, 333 this); 334 allocator.ForceUnlock(); 335 } 336 } 337 338 void GetOptions(AllocatorOptions *options) const { 339 options->quarantine_size_mb = quarantine.GetSize() >> 20; 340 options->thread_local_quarantine_size_kb = quarantine.GetCacheSize() >> 10; 341 options->min_redzone = atomic_load(&min_redzone, memory_order_acquire); 342 options->max_redzone = atomic_load(&max_redzone, memory_order_acquire); 343 options->may_return_null = AllocatorMayReturnNull(); 344 options->alloc_dealloc_mismatch = 345 atomic_load(&alloc_dealloc_mismatch, memory_order_acquire); 346 options->release_to_os_interval_ms = allocator.ReleaseToOSIntervalMs(); 347 } 348 349 // -------------------- Helper methods. ------------------------- 350 uptr ComputeRZLog(uptr user_requested_size) { 351 u32 rz_log = 352 user_requested_size <= 64 - 16 ? 0 : 353 user_requested_size <= 128 - 32 ? 1 : 354 user_requested_size <= 512 - 64 ? 2 : 355 user_requested_size <= 4096 - 128 ? 3 : 356 user_requested_size <= (1 << 14) - 256 ? 4 : 357 user_requested_size <= (1 << 15) - 512 ? 5 : 358 user_requested_size <= (1 << 16) - 1024 ? 6 : 7; 359 u32 min_rz = atomic_load(&min_redzone, memory_order_acquire); 360 u32 max_rz = atomic_load(&max_redzone, memory_order_acquire); 361 return Min(Max(rz_log, RZSize2Log(min_rz)), RZSize2Log(max_rz)); 362 } 363 364 static uptr ComputeUserRequestedAlignmentLog(uptr user_requested_alignment) { 365 if (user_requested_alignment < 8) 366 return 0; 367 if (user_requested_alignment > 512) 368 user_requested_alignment = 512; 369 return Log2(user_requested_alignment) - 2; 370 } 371 372 static uptr ComputeUserAlignment(uptr user_requested_alignment_log) { 373 if (user_requested_alignment_log == 0) 374 return 0; 375 return 1LL << (user_requested_alignment_log + 2); 376 } 377 378 // We have an address between two chunks, and we want to report just one. 379 AsanChunk *ChooseChunk(uptr addr, AsanChunk *left_chunk, 380 AsanChunk *right_chunk) { 381 // Prefer an allocated chunk over freed chunk and freed chunk 382 // over available chunk. 383 if (left_chunk->chunk_state != right_chunk->chunk_state) { 384 if (left_chunk->chunk_state == CHUNK_ALLOCATED) 385 return left_chunk; 386 if (right_chunk->chunk_state == CHUNK_ALLOCATED) 387 return right_chunk; 388 if (left_chunk->chunk_state == CHUNK_QUARANTINE) 389 return left_chunk; 390 if (right_chunk->chunk_state == CHUNK_QUARANTINE) 391 return right_chunk; 392 } 393 // Same chunk_state: choose based on offset. 394 sptr l_offset = 0, r_offset = 0; 395 CHECK(AsanChunkView(left_chunk).AddrIsAtRight(addr, 1, &l_offset)); 396 CHECK(AsanChunkView(right_chunk).AddrIsAtLeft(addr, 1, &r_offset)); 397 if (l_offset < r_offset) 398 return left_chunk; 399 return right_chunk; 400 } 401 402 bool UpdateAllocationStack(uptr addr, BufferedStackTrace *stack) { 403 AsanChunk *m = GetAsanChunkByAddr(addr); 404 if (!m) return false; 405 if (m->chunk_state != CHUNK_ALLOCATED) return false; 406 if (m->Beg() != addr) return false; 407 atomic_store((atomic_uint32_t *)&m->alloc_context_id, StackDepotPut(*stack), 408 memory_order_relaxed); 409 return true; 410 } 411 412 // -------------------- Allocation/Deallocation routines --------------- 413 void *Allocate(uptr size, uptr alignment, BufferedStackTrace *stack, 414 AllocType alloc_type, bool can_fill) { 415 if (UNLIKELY(!asan_inited)) 416 AsanInitFromRtl(); 417 if (RssLimitExceeded()) { 418 if (AllocatorMayReturnNull()) 419 return nullptr; 420 ReportRssLimitExceeded(stack); 421 } 422 Flags &fl = *flags(); 423 CHECK(stack); 424 const uptr min_alignment = SHADOW_GRANULARITY; 425 const uptr user_requested_alignment_log = 426 ComputeUserRequestedAlignmentLog(alignment); 427 if (alignment < min_alignment) 428 alignment = min_alignment; 429 if (size == 0) { 430 // We'd be happy to avoid allocating memory for zero-size requests, but 431 // some programs/tests depend on this behavior and assume that malloc 432 // would not return NULL even for zero-size allocations. Moreover, it 433 // looks like operator new should never return NULL, and results of 434 // consecutive "new" calls must be different even if the allocated size 435 // is zero. 436 size = 1; 437 } 438 CHECK(IsPowerOfTwo(alignment)); 439 uptr rz_log = ComputeRZLog(size); 440 uptr rz_size = RZLog2Size(rz_log); 441 uptr rounded_size = RoundUpTo(Max(size, kChunkHeader2Size), alignment); 442 uptr needed_size = rounded_size + rz_size; 443 if (alignment > min_alignment) 444 needed_size += alignment; 445 bool using_primary_allocator = true; 446 // If we are allocating from the secondary allocator, there will be no 447 // automatic right redzone, so add the right redzone manually. 448 if (!PrimaryAllocator::CanAllocate(needed_size, alignment)) { 449 needed_size += rz_size; 450 using_primary_allocator = false; 451 } 452 CHECK(IsAligned(needed_size, min_alignment)); 453 if (size > kMaxAllowedMallocSize || needed_size > kMaxAllowedMallocSize || 454 size > max_user_defined_malloc_size) { 455 if (AllocatorMayReturnNull()) { 456 Report("WARNING: AddressSanitizer failed to allocate 0x%zx bytes\n", 457 (void*)size); 458 return nullptr; 459 } 460 uptr malloc_limit = 461 Min(kMaxAllowedMallocSize, max_user_defined_malloc_size); 462 ReportAllocationSizeTooBig(size, needed_size, malloc_limit, stack); 463 } 464 465 AsanThread *t = GetCurrentThread(); 466 void *allocated; 467 if (t) { 468 AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage()); 469 allocated = allocator.Allocate(cache, needed_size, 8); 470 } else { 471 SpinMutexLock l(&fallback_mutex); 472 AllocatorCache *cache = &fallback_allocator_cache; 473 allocated = allocator.Allocate(cache, needed_size, 8); 474 } 475 if (UNLIKELY(!allocated)) { 476 SetAllocatorOutOfMemory(); 477 if (AllocatorMayReturnNull()) 478 return nullptr; 479 ReportOutOfMemory(size, stack); 480 } 481 482 if (*(u8 *)MEM_TO_SHADOW((uptr)allocated) == 0 && CanPoisonMemory()) { 483 // Heap poisoning is enabled, but the allocator provides an unpoisoned 484 // chunk. This is possible if CanPoisonMemory() was false for some 485 // time, for example, due to flags()->start_disabled. 486 // Anyway, poison the block before using it for anything else. 487 uptr allocated_size = allocator.GetActuallyAllocatedSize(allocated); 488 PoisonShadow((uptr)allocated, allocated_size, kAsanHeapLeftRedzoneMagic); 489 } 490 491 uptr alloc_beg = reinterpret_cast<uptr>(allocated); 492 uptr alloc_end = alloc_beg + needed_size; 493 uptr beg_plus_redzone = alloc_beg + rz_size; 494 uptr user_beg = beg_plus_redzone; 495 if (!IsAligned(user_beg, alignment)) 496 user_beg = RoundUpTo(user_beg, alignment); 497 uptr user_end = user_beg + size; 498 CHECK_LE(user_end, alloc_end); 499 uptr chunk_beg = user_beg - kChunkHeaderSize; 500 AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg); 501 m->alloc_type = alloc_type; 502 m->rz_log = rz_log; 503 u32 alloc_tid = t ? t->tid() : 0; 504 m->alloc_tid = alloc_tid; 505 CHECK_EQ(alloc_tid, m->alloc_tid); // Does alloc_tid fit into the bitfield? 506 m->free_tid = kInvalidTid; 507 m->from_memalign = user_beg != beg_plus_redzone; 508 if (alloc_beg != chunk_beg) { 509 CHECK_LE(alloc_beg+ 2 * sizeof(uptr), chunk_beg); 510 reinterpret_cast<uptr *>(alloc_beg)[0] = kAllocBegMagic; 511 reinterpret_cast<uptr *>(alloc_beg)[1] = chunk_beg; 512 } 513 if (using_primary_allocator) { 514 CHECK(size); 515 m->user_requested_size = size; 516 CHECK(allocator.FromPrimary(allocated)); 517 } else { 518 CHECK(!allocator.FromPrimary(allocated)); 519 m->user_requested_size = SizeClassMap::kMaxSize; 520 uptr *meta = reinterpret_cast<uptr *>(allocator.GetMetaData(allocated)); 521 meta[0] = size; 522 meta[1] = chunk_beg; 523 } 524 m->user_requested_alignment_log = user_requested_alignment_log; 525 526 m->alloc_context_id = StackDepotPut(*stack); 527 528 uptr size_rounded_down_to_granularity = 529 RoundDownTo(size, SHADOW_GRANULARITY); 530 // Unpoison the bulk of the memory region. 531 if (size_rounded_down_to_granularity) 532 PoisonShadow(user_beg, size_rounded_down_to_granularity, 0); 533 // Deal with the end of the region if size is not aligned to granularity. 534 if (size != size_rounded_down_to_granularity && CanPoisonMemory()) { 535 u8 *shadow = 536 (u8 *)MemToShadow(user_beg + size_rounded_down_to_granularity); 537 *shadow = fl.poison_partial ? (size & (SHADOW_GRANULARITY - 1)) : 0; 538 } 539 540 AsanStats &thread_stats = GetCurrentThreadStats(); 541 thread_stats.mallocs++; 542 thread_stats.malloced += size; 543 thread_stats.malloced_redzones += needed_size - size; 544 if (needed_size > SizeClassMap::kMaxSize) 545 thread_stats.malloc_large++; 546 else 547 thread_stats.malloced_by_size[SizeClassMap::ClassID(needed_size)]++; 548 549 void *res = reinterpret_cast<void *>(user_beg); 550 if (can_fill && fl.max_malloc_fill_size) { 551 uptr fill_size = Min(size, (uptr)fl.max_malloc_fill_size); 552 REAL(memset)(res, fl.malloc_fill_byte, fill_size); 553 } 554 #if CAN_SANITIZE_LEAKS 555 m->lsan_tag = __lsan::DisabledInThisThread() ? __lsan::kIgnored 556 : __lsan::kDirectlyLeaked; 557 #endif 558 // Must be the last mutation of metadata in this function. 559 atomic_store((atomic_uint8_t *)m, CHUNK_ALLOCATED, memory_order_release); 560 ASAN_MALLOC_HOOK(res, size); 561 return res; 562 } 563 564 // Set quarantine flag if chunk is allocated, issue ASan error report on 565 // available and quarantined chunks. Return true on success, false otherwise. 566 bool AtomicallySetQuarantineFlagIfAllocated(AsanChunk *m, void *ptr, 567 BufferedStackTrace *stack) { 568 u8 old_chunk_state = CHUNK_ALLOCATED; 569 // Flip the chunk_state atomically to avoid race on double-free. 570 if (!atomic_compare_exchange_strong((atomic_uint8_t *)m, &old_chunk_state, 571 CHUNK_QUARANTINE, 572 memory_order_acquire)) { 573 ReportInvalidFree(ptr, old_chunk_state, stack); 574 // It's not safe to push a chunk in quarantine on invalid free. 575 return false; 576 } 577 CHECK_EQ(CHUNK_ALLOCATED, old_chunk_state); 578 return true; 579 } 580 581 // Expects the chunk to already be marked as quarantined by using 582 // AtomicallySetQuarantineFlagIfAllocated. 583 void QuarantineChunk(AsanChunk *m, void *ptr, BufferedStackTrace *stack) { 584 CHECK_EQ(m->chunk_state, CHUNK_QUARANTINE); 585 CHECK_GE(m->alloc_tid, 0); 586 if (SANITIZER_WORDSIZE == 64) // On 32-bits this resides in user area. 587 CHECK_EQ(m->free_tid, kInvalidTid); 588 AsanThread *t = GetCurrentThread(); 589 m->free_tid = t ? t->tid() : 0; 590 m->free_context_id = StackDepotPut(*stack); 591 592 Flags &fl = *flags(); 593 if (fl.max_free_fill_size > 0) { 594 // We have to skip the chunk header, it contains free_context_id. 595 uptr scribble_start = (uptr)m + kChunkHeaderSize + kChunkHeader2Size; 596 if (m->UsedSize() >= kChunkHeader2Size) { // Skip Header2 in user area. 597 uptr size_to_fill = m->UsedSize() - kChunkHeader2Size; 598 size_to_fill = Min(size_to_fill, (uptr)fl.max_free_fill_size); 599 REAL(memset)((void *)scribble_start, fl.free_fill_byte, size_to_fill); 600 } 601 } 602 603 // Poison the region. 604 PoisonShadow(m->Beg(), 605 RoundUpTo(m->UsedSize(), SHADOW_GRANULARITY), 606 kAsanHeapFreeMagic); 607 608 AsanStats &thread_stats = GetCurrentThreadStats(); 609 thread_stats.frees++; 610 thread_stats.freed += m->UsedSize(); 611 612 // Push into quarantine. 613 if (t) { 614 AsanThreadLocalMallocStorage *ms = &t->malloc_storage(); 615 AllocatorCache *ac = GetAllocatorCache(ms); 616 quarantine.Put(GetQuarantineCache(ms), QuarantineCallback(ac, stack), m, 617 m->UsedSize()); 618 } else { 619 SpinMutexLock l(&fallback_mutex); 620 AllocatorCache *ac = &fallback_allocator_cache; 621 quarantine.Put(&fallback_quarantine_cache, QuarantineCallback(ac, stack), 622 m, m->UsedSize()); 623 } 624 } 625 626 void Deallocate(void *ptr, uptr delete_size, uptr delete_alignment, 627 BufferedStackTrace *stack, AllocType alloc_type) { 628 uptr p = reinterpret_cast<uptr>(ptr); 629 if (p == 0) return; 630 631 uptr chunk_beg = p - kChunkHeaderSize; 632 AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg); 633 634 // On Windows, uninstrumented DLLs may allocate memory before ASan hooks 635 // malloc. Don't report an invalid free in this case. 636 if (SANITIZER_WINDOWS && 637 !get_allocator().PointerIsMine(ptr)) { 638 if (!IsSystemHeapAddress(p)) 639 ReportFreeNotMalloced(p, stack); 640 return; 641 } 642 643 ASAN_FREE_HOOK(ptr); 644 645 // Must mark the chunk as quarantined before any changes to its metadata. 646 // Do not quarantine given chunk if we failed to set CHUNK_QUARANTINE flag. 647 if (!AtomicallySetQuarantineFlagIfAllocated(m, ptr, stack)) return; 648 649 if (m->alloc_type != alloc_type) { 650 if (atomic_load(&alloc_dealloc_mismatch, memory_order_acquire)) { 651 ReportAllocTypeMismatch((uptr)ptr, stack, (AllocType)m->alloc_type, 652 (AllocType)alloc_type); 653 } 654 } else { 655 if (flags()->new_delete_type_mismatch && 656 (alloc_type == FROM_NEW || alloc_type == FROM_NEW_BR) && 657 ((delete_size && delete_size != m->UsedSize()) || 658 ComputeUserRequestedAlignmentLog(delete_alignment) != 659 m->user_requested_alignment_log)) { 660 ReportNewDeleteTypeMismatch(p, delete_size, delete_alignment, stack); 661 } 662 } 663 664 QuarantineChunk(m, ptr, stack); 665 } 666 667 void *Reallocate(void *old_ptr, uptr new_size, BufferedStackTrace *stack) { 668 CHECK(old_ptr && new_size); 669 uptr p = reinterpret_cast<uptr>(old_ptr); 670 uptr chunk_beg = p - kChunkHeaderSize; 671 AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg); 672 673 AsanStats &thread_stats = GetCurrentThreadStats(); 674 thread_stats.reallocs++; 675 thread_stats.realloced += new_size; 676 677 void *new_ptr = Allocate(new_size, 8, stack, FROM_MALLOC, true); 678 if (new_ptr) { 679 u8 chunk_state = m->chunk_state; 680 if (chunk_state != CHUNK_ALLOCATED) 681 ReportInvalidFree(old_ptr, chunk_state, stack); 682 CHECK_NE(REAL(memcpy), nullptr); 683 uptr memcpy_size = Min(new_size, m->UsedSize()); 684 // If realloc() races with free(), we may start copying freed memory. 685 // However, we will report racy double-free later anyway. 686 REAL(memcpy)(new_ptr, old_ptr, memcpy_size); 687 Deallocate(old_ptr, 0, 0, stack, FROM_MALLOC); 688 } 689 return new_ptr; 690 } 691 692 void *Calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) { 693 if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) { 694 if (AllocatorMayReturnNull()) 695 return nullptr; 696 ReportCallocOverflow(nmemb, size, stack); 697 } 698 void *ptr = Allocate(nmemb * size, 8, stack, FROM_MALLOC, false); 699 // If the memory comes from the secondary allocator no need to clear it 700 // as it comes directly from mmap. 701 if (ptr && allocator.FromPrimary(ptr)) 702 REAL(memset)(ptr, 0, nmemb * size); 703 return ptr; 704 } 705 706 void ReportInvalidFree(void *ptr, u8 chunk_state, BufferedStackTrace *stack) { 707 if (chunk_state == CHUNK_QUARANTINE) 708 ReportDoubleFree((uptr)ptr, stack); 709 else 710 ReportFreeNotMalloced((uptr)ptr, stack); 711 } 712 713 void CommitBack(AsanThreadLocalMallocStorage *ms, BufferedStackTrace *stack) { 714 AllocatorCache *ac = GetAllocatorCache(ms); 715 quarantine.Drain(GetQuarantineCache(ms), QuarantineCallback(ac, stack)); 716 allocator.SwallowCache(ac); 717 } 718 719 // -------------------------- Chunk lookup ---------------------- 720 721 // Assumes alloc_beg == allocator.GetBlockBegin(alloc_beg). 722 AsanChunk *GetAsanChunk(void *alloc_beg) { 723 if (!alloc_beg) return nullptr; 724 if (!allocator.FromPrimary(alloc_beg)) { 725 uptr *meta = reinterpret_cast<uptr *>(allocator.GetMetaData(alloc_beg)); 726 AsanChunk *m = reinterpret_cast<AsanChunk *>(meta[1]); 727 return m; 728 } 729 uptr *alloc_magic = reinterpret_cast<uptr *>(alloc_beg); 730 if (alloc_magic[0] == kAllocBegMagic) 731 return reinterpret_cast<AsanChunk *>(alloc_magic[1]); 732 return reinterpret_cast<AsanChunk *>(alloc_beg); 733 } 734 735 AsanChunk *GetAsanChunkByAddr(uptr p) { 736 void *alloc_beg = allocator.GetBlockBegin(reinterpret_cast<void *>(p)); 737 return GetAsanChunk(alloc_beg); 738 } 739 740 // Allocator must be locked when this function is called. 741 AsanChunk *GetAsanChunkByAddrFastLocked(uptr p) { 742 void *alloc_beg = 743 allocator.GetBlockBeginFastLocked(reinterpret_cast<void *>(p)); 744 return GetAsanChunk(alloc_beg); 745 } 746 747 uptr AllocationSize(uptr p) { 748 AsanChunk *m = GetAsanChunkByAddr(p); 749 if (!m) return 0; 750 if (m->chunk_state != CHUNK_ALLOCATED) return 0; 751 if (m->Beg() != p) return 0; 752 return m->UsedSize(); 753 } 754 755 AsanChunkView FindHeapChunkByAddress(uptr addr) { 756 AsanChunk *m1 = GetAsanChunkByAddr(addr); 757 if (!m1) return AsanChunkView(m1); 758 sptr offset = 0; 759 if (AsanChunkView(m1).AddrIsAtLeft(addr, 1, &offset)) { 760 // The address is in the chunk's left redzone, so maybe it is actually 761 // a right buffer overflow from the other chunk to the left. 762 // Search a bit to the left to see if there is another chunk. 763 AsanChunk *m2 = nullptr; 764 for (uptr l = 1; l < GetPageSizeCached(); l++) { 765 m2 = GetAsanChunkByAddr(addr - l); 766 if (m2 == m1) continue; // Still the same chunk. 767 break; 768 } 769 if (m2 && AsanChunkView(m2).AddrIsAtRight(addr, 1, &offset)) 770 m1 = ChooseChunk(addr, m2, m1); 771 } 772 return AsanChunkView(m1); 773 } 774 775 void Purge(BufferedStackTrace *stack) { 776 AsanThread *t = GetCurrentThread(); 777 if (t) { 778 AsanThreadLocalMallocStorage *ms = &t->malloc_storage(); 779 quarantine.DrainAndRecycle(GetQuarantineCache(ms), 780 QuarantineCallback(GetAllocatorCache(ms), 781 stack)); 782 } 783 { 784 SpinMutexLock l(&fallback_mutex); 785 quarantine.DrainAndRecycle(&fallback_quarantine_cache, 786 QuarantineCallback(&fallback_allocator_cache, 787 stack)); 788 } 789 790 allocator.ForceReleaseToOS(); 791 } 792 793 void PrintStats() { 794 allocator.PrintStats(); 795 quarantine.PrintStats(); 796 } 797 798 void ForceLock() { 799 allocator.ForceLock(); 800 fallback_mutex.Lock(); 801 } 802 803 void ForceUnlock() { 804 fallback_mutex.Unlock(); 805 allocator.ForceUnlock(); 806 } 807 }; 808 809 static Allocator instance(LINKER_INITIALIZED); 810 811 static AsanAllocator &get_allocator() { 812 return instance.allocator; 813 } 814 815 bool AsanChunkView::IsValid() const { 816 return chunk_ && chunk_->chunk_state != CHUNK_AVAILABLE; 817 } 818 bool AsanChunkView::IsAllocated() const { 819 return chunk_ && chunk_->chunk_state == CHUNK_ALLOCATED; 820 } 821 bool AsanChunkView::IsQuarantined() const { 822 return chunk_ && chunk_->chunk_state == CHUNK_QUARANTINE; 823 } 824 uptr AsanChunkView::Beg() const { return chunk_->Beg(); } 825 uptr AsanChunkView::End() const { return Beg() + UsedSize(); } 826 uptr AsanChunkView::UsedSize() const { return chunk_->UsedSize(); } 827 u32 AsanChunkView::UserRequestedAlignment() const { 828 return Allocator::ComputeUserAlignment(chunk_->user_requested_alignment_log); 829 } 830 uptr AsanChunkView::AllocTid() const { return chunk_->alloc_tid; } 831 uptr AsanChunkView::FreeTid() const { return chunk_->free_tid; } 832 AllocType AsanChunkView::GetAllocType() const { 833 return (AllocType)chunk_->alloc_type; 834 } 835 836 static StackTrace GetStackTraceFromId(u32 id) { 837 CHECK(id); 838 StackTrace res = StackDepotGet(id); 839 CHECK(res.trace); 840 return res; 841 } 842 843 u32 AsanChunkView::GetAllocStackId() const { return chunk_->alloc_context_id; } 844 u32 AsanChunkView::GetFreeStackId() const { return chunk_->free_context_id; } 845 846 StackTrace AsanChunkView::GetAllocStack() const { 847 return GetStackTraceFromId(GetAllocStackId()); 848 } 849 850 StackTrace AsanChunkView::GetFreeStack() const { 851 return GetStackTraceFromId(GetFreeStackId()); 852 } 853 854 void InitializeAllocator(const AllocatorOptions &options) { 855 instance.InitLinkerInitialized(options); 856 } 857 858 void ReInitializeAllocator(const AllocatorOptions &options) { 859 instance.ReInitialize(options); 860 } 861 862 void GetAllocatorOptions(AllocatorOptions *options) { 863 instance.GetOptions(options); 864 } 865 866 AsanChunkView FindHeapChunkByAddress(uptr addr) { 867 return instance.FindHeapChunkByAddress(addr); 868 } 869 AsanChunkView FindHeapChunkByAllocBeg(uptr addr) { 870 return AsanChunkView(instance.GetAsanChunk(reinterpret_cast<void*>(addr))); 871 } 872 873 void AsanThreadLocalMallocStorage::CommitBack() { 874 GET_STACK_TRACE_MALLOC; 875 instance.CommitBack(this, &stack); 876 } 877 878 void PrintInternalAllocatorStats() { 879 instance.PrintStats(); 880 } 881 882 void asan_free(void *ptr, BufferedStackTrace *stack, AllocType alloc_type) { 883 instance.Deallocate(ptr, 0, 0, stack, alloc_type); 884 } 885 886 void asan_delete(void *ptr, uptr size, uptr alignment, 887 BufferedStackTrace *stack, AllocType alloc_type) { 888 instance.Deallocate(ptr, size, alignment, stack, alloc_type); 889 } 890 891 void *asan_malloc(uptr size, BufferedStackTrace *stack) { 892 return SetErrnoOnNull(instance.Allocate(size, 8, stack, FROM_MALLOC, true)); 893 } 894 895 void *asan_calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) { 896 return SetErrnoOnNull(instance.Calloc(nmemb, size, stack)); 897 } 898 899 void *asan_reallocarray(void *p, uptr nmemb, uptr size, 900 BufferedStackTrace *stack) { 901 if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) { 902 errno = errno_ENOMEM; 903 if (AllocatorMayReturnNull()) 904 return nullptr; 905 ReportReallocArrayOverflow(nmemb, size, stack); 906 } 907 return asan_realloc(p, nmemb * size, stack); 908 } 909 910 void *asan_realloc(void *p, uptr size, BufferedStackTrace *stack) { 911 if (!p) 912 return SetErrnoOnNull(instance.Allocate(size, 8, stack, FROM_MALLOC, true)); 913 if (size == 0) { 914 if (flags()->allocator_frees_and_returns_null_on_realloc_zero) { 915 instance.Deallocate(p, 0, 0, stack, FROM_MALLOC); 916 return nullptr; 917 } 918 // Allocate a size of 1 if we shouldn't free() on Realloc to 0 919 size = 1; 920 } 921 return SetErrnoOnNull(instance.Reallocate(p, size, stack)); 922 } 923 924 void *asan_valloc(uptr size, BufferedStackTrace *stack) { 925 return SetErrnoOnNull( 926 instance.Allocate(size, GetPageSizeCached(), stack, FROM_MALLOC, true)); 927 } 928 929 void *asan_pvalloc(uptr size, BufferedStackTrace *stack) { 930 uptr PageSize = GetPageSizeCached(); 931 if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) { 932 errno = errno_ENOMEM; 933 if (AllocatorMayReturnNull()) 934 return nullptr; 935 ReportPvallocOverflow(size, stack); 936 } 937 // pvalloc(0) should allocate one page. 938 size = size ? RoundUpTo(size, PageSize) : PageSize; 939 return SetErrnoOnNull( 940 instance.Allocate(size, PageSize, stack, FROM_MALLOC, true)); 941 } 942 943 void *asan_memalign(uptr alignment, uptr size, BufferedStackTrace *stack, 944 AllocType alloc_type) { 945 if (UNLIKELY(!IsPowerOfTwo(alignment))) { 946 errno = errno_EINVAL; 947 if (AllocatorMayReturnNull()) 948 return nullptr; 949 ReportInvalidAllocationAlignment(alignment, stack); 950 } 951 return SetErrnoOnNull( 952 instance.Allocate(size, alignment, stack, alloc_type, true)); 953 } 954 955 void *asan_aligned_alloc(uptr alignment, uptr size, BufferedStackTrace *stack) { 956 if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) { 957 errno = errno_EINVAL; 958 if (AllocatorMayReturnNull()) 959 return nullptr; 960 ReportInvalidAlignedAllocAlignment(size, alignment, stack); 961 } 962 return SetErrnoOnNull( 963 instance.Allocate(size, alignment, stack, FROM_MALLOC, true)); 964 } 965 966 int asan_posix_memalign(void **memptr, uptr alignment, uptr size, 967 BufferedStackTrace *stack) { 968 if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) { 969 if (AllocatorMayReturnNull()) 970 return errno_EINVAL; 971 ReportInvalidPosixMemalignAlignment(alignment, stack); 972 } 973 void *ptr = instance.Allocate(size, alignment, stack, FROM_MALLOC, true); 974 if (UNLIKELY(!ptr)) 975 // OOM error is already taken care of by Allocate. 976 return errno_ENOMEM; 977 CHECK(IsAligned((uptr)ptr, alignment)); 978 *memptr = ptr; 979 return 0; 980 } 981 982 uptr asan_malloc_usable_size(const void *ptr, uptr pc, uptr bp) { 983 if (!ptr) return 0; 984 uptr usable_size = instance.AllocationSize(reinterpret_cast<uptr>(ptr)); 985 if (flags()->check_malloc_usable_size && (usable_size == 0)) { 986 GET_STACK_TRACE_FATAL(pc, bp); 987 ReportMallocUsableSizeNotOwned((uptr)ptr, &stack); 988 } 989 return usable_size; 990 } 991 992 uptr asan_mz_size(const void *ptr) { 993 return instance.AllocationSize(reinterpret_cast<uptr>(ptr)); 994 } 995 996 void asan_mz_force_lock() { 997 instance.ForceLock(); 998 } 999 1000 void asan_mz_force_unlock() { 1001 instance.ForceUnlock(); 1002 } 1003 1004 void AsanSoftRssLimitExceededCallback(bool limit_exceeded) { 1005 instance.SetRssLimitExceeded(limit_exceeded); 1006 } 1007 1008 } // namespace __asan 1009 1010 // --- Implementation of LSan-specific functions --- {{{1 1011 namespace __lsan { 1012 void LockAllocator() { 1013 __asan::get_allocator().ForceLock(); 1014 } 1015 1016 void UnlockAllocator() { 1017 __asan::get_allocator().ForceUnlock(); 1018 } 1019 1020 void GetAllocatorGlobalRange(uptr *begin, uptr *end) { 1021 *begin = (uptr)&__asan::get_allocator(); 1022 *end = *begin + sizeof(__asan::get_allocator()); 1023 } 1024 1025 uptr PointsIntoChunk(void* p) { 1026 uptr addr = reinterpret_cast<uptr>(p); 1027 __asan::AsanChunk *m = __asan::instance.GetAsanChunkByAddrFastLocked(addr); 1028 if (!m) return 0; 1029 uptr chunk = m->Beg(); 1030 if (m->chunk_state != __asan::CHUNK_ALLOCATED) 1031 return 0; 1032 if (m->AddrIsInside(addr, /*locked_version=*/true)) 1033 return chunk; 1034 if (IsSpecialCaseOfOperatorNew0(chunk, m->UsedSize(/*locked_version*/ true), 1035 addr)) 1036 return chunk; 1037 return 0; 1038 } 1039 1040 uptr GetUserBegin(uptr chunk) { 1041 __asan::AsanChunk *m = __asan::instance.GetAsanChunkByAddrFastLocked(chunk); 1042 CHECK(m); 1043 return m->Beg(); 1044 } 1045 1046 LsanMetadata::LsanMetadata(uptr chunk) { 1047 metadata_ = reinterpret_cast<void *>(chunk - __asan::kChunkHeaderSize); 1048 } 1049 1050 bool LsanMetadata::allocated() const { 1051 __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_); 1052 return m->chunk_state == __asan::CHUNK_ALLOCATED; 1053 } 1054 1055 ChunkTag LsanMetadata::tag() const { 1056 __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_); 1057 return static_cast<ChunkTag>(m->lsan_tag); 1058 } 1059 1060 void LsanMetadata::set_tag(ChunkTag value) { 1061 __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_); 1062 m->lsan_tag = value; 1063 } 1064 1065 uptr LsanMetadata::requested_size() const { 1066 __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_); 1067 return m->UsedSize(/*locked_version=*/true); 1068 } 1069 1070 u32 LsanMetadata::stack_trace_id() const { 1071 __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_); 1072 return m->alloc_context_id; 1073 } 1074 1075 void ForEachChunk(ForEachChunkCallback callback, void *arg) { 1076 __asan::get_allocator().ForEachChunk(callback, arg); 1077 } 1078 1079 IgnoreObjectResult IgnoreObjectLocked(const void *p) { 1080 uptr addr = reinterpret_cast<uptr>(p); 1081 __asan::AsanChunk *m = __asan::instance.GetAsanChunkByAddr(addr); 1082 if (!m) return kIgnoreObjectInvalid; 1083 if ((m->chunk_state == __asan::CHUNK_ALLOCATED) && m->AddrIsInside(addr)) { 1084 if (m->lsan_tag == kIgnored) 1085 return kIgnoreObjectAlreadyIgnored; 1086 m->lsan_tag = __lsan::kIgnored; 1087 return kIgnoreObjectSuccess; 1088 } else { 1089 return kIgnoreObjectInvalid; 1090 } 1091 } 1092 } // namespace __lsan 1093 1094 // ---------------------- Interface ---------------- {{{1 1095 using namespace __asan; 1096 1097 // ASan allocator doesn't reserve extra bytes, so normally we would 1098 // just return "size". We don't want to expose our redzone sizes, etc here. 1099 uptr __sanitizer_get_estimated_allocated_size(uptr size) { 1100 return size; 1101 } 1102 1103 int __sanitizer_get_ownership(const void *p) { 1104 uptr ptr = reinterpret_cast<uptr>(p); 1105 return instance.AllocationSize(ptr) > 0; 1106 } 1107 1108 uptr __sanitizer_get_allocated_size(const void *p) { 1109 if (!p) return 0; 1110 uptr ptr = reinterpret_cast<uptr>(p); 1111 uptr allocated_size = instance.AllocationSize(ptr); 1112 // Die if p is not malloced or if it is already freed. 1113 if (allocated_size == 0) { 1114 GET_STACK_TRACE_FATAL_HERE; 1115 ReportSanitizerGetAllocatedSizeNotOwned(ptr, &stack); 1116 } 1117 return allocated_size; 1118 } 1119 1120 void __sanitizer_purge_allocator() { 1121 GET_STACK_TRACE_MALLOC; 1122 instance.Purge(&stack); 1123 } 1124 1125 int __asan_update_allocation_context(void* addr) { 1126 GET_STACK_TRACE_MALLOC; 1127 return instance.UpdateAllocationStack((uptr)addr, &stack); 1128 } 1129 1130 #if !SANITIZER_SUPPORTS_WEAK_HOOKS 1131 // Provide default (no-op) implementation of malloc hooks. 1132 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_malloc_hook, 1133 void *ptr, uptr size) { 1134 (void)ptr; 1135 (void)size; 1136 } 1137 1138 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_free_hook, void *ptr) { 1139 (void)ptr; 1140 } 1141 #endif 1142