xref: /freebsd/contrib/llvm-project/compiler-rt/lib/asan/asan_allocator.cpp (revision 963f5dc7a30624e95d72fb7f87b8892651164e46)
1 //===-- asan_allocator.cpp ------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of AddressSanitizer, an address sanity checker.
10 //
11 // Implementation of ASan's memory allocator, 2-nd version.
12 // This variant uses the allocator from sanitizer_common, i.e. the one shared
13 // with ThreadSanitizer and MemorySanitizer.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "asan_allocator.h"
18 
19 #include "asan_mapping.h"
20 #include "asan_poisoning.h"
21 #include "asan_report.h"
22 #include "asan_stack.h"
23 #include "asan_thread.h"
24 #include "lsan/lsan_common.h"
25 #include "sanitizer_common/sanitizer_allocator_checks.h"
26 #include "sanitizer_common/sanitizer_allocator_interface.h"
27 #include "sanitizer_common/sanitizer_errno.h"
28 #include "sanitizer_common/sanitizer_flags.h"
29 #include "sanitizer_common/sanitizer_internal_defs.h"
30 #include "sanitizer_common/sanitizer_list.h"
31 #include "sanitizer_common/sanitizer_quarantine.h"
32 #include "sanitizer_common/sanitizer_stackdepot.h"
33 
34 namespace __asan {
35 
36 // Valid redzone sizes are 16, 32, 64, ... 2048, so we encode them in 3 bits.
37 // We use adaptive redzones: for larger allocation larger redzones are used.
38 static u32 RZLog2Size(u32 rz_log) {
39   CHECK_LT(rz_log, 8);
40   return 16 << rz_log;
41 }
42 
43 static u32 RZSize2Log(u32 rz_size) {
44   CHECK_GE(rz_size, 16);
45   CHECK_LE(rz_size, 2048);
46   CHECK(IsPowerOfTwo(rz_size));
47   u32 res = Log2(rz_size) - 4;
48   CHECK_EQ(rz_size, RZLog2Size(res));
49   return res;
50 }
51 
52 static AsanAllocator &get_allocator();
53 
54 static void AtomicContextStore(volatile atomic_uint64_t *atomic_context,
55                                u32 tid, u32 stack) {
56   u64 context = tid;
57   context <<= 32;
58   context += stack;
59   atomic_store(atomic_context, context, memory_order_relaxed);
60 }
61 
62 static void AtomicContextLoad(const volatile atomic_uint64_t *atomic_context,
63                               u32 &tid, u32 &stack) {
64   u64 context = atomic_load(atomic_context, memory_order_relaxed);
65   stack = context;
66   context >>= 32;
67   tid = context;
68 }
69 
70 // The memory chunk allocated from the underlying allocator looks like this:
71 // L L L L L L H H U U U U U U R R
72 //   L -- left redzone words (0 or more bytes)
73 //   H -- ChunkHeader (16 bytes), which is also a part of the left redzone.
74 //   U -- user memory.
75 //   R -- right redzone (0 or more bytes)
76 // ChunkBase consists of ChunkHeader and other bytes that overlap with user
77 // memory.
78 
79 // If the left redzone is greater than the ChunkHeader size we store a magic
80 // value in the first uptr word of the memory block and store the address of
81 // ChunkBase in the next uptr.
82 // M B L L L L L L L L L  H H U U U U U U
83 //   |                    ^
84 //   ---------------------|
85 //   M -- magic value kAllocBegMagic
86 //   B -- address of ChunkHeader pointing to the first 'H'
87 
88 class ChunkHeader {
89  public:
90   atomic_uint8_t chunk_state;
91   u8 alloc_type : 2;
92   u8 lsan_tag : 2;
93 
94   // align < 8 -> 0
95   // else      -> log2(min(align, 512)) - 2
96   u8 user_requested_alignment_log : 3;
97 
98  private:
99   u16 user_requested_size_hi;
100   u32 user_requested_size_lo;
101   atomic_uint64_t alloc_context_id;
102 
103  public:
104   uptr UsedSize() const {
105     uptr R = user_requested_size_lo;
106     if (sizeof(uptr) > sizeof(user_requested_size_lo))
107       R += (uptr)user_requested_size_hi << (8 * sizeof(user_requested_size_lo));
108     return R;
109   }
110 
111   void SetUsedSize(uptr size) {
112     user_requested_size_lo = size;
113     if (sizeof(uptr) > sizeof(user_requested_size_lo)) {
114       size >>= (8 * sizeof(user_requested_size_lo));
115       user_requested_size_hi = size;
116       CHECK_EQ(user_requested_size_hi, size);
117     }
118   }
119 
120   void SetAllocContext(u32 tid, u32 stack) {
121     AtomicContextStore(&alloc_context_id, tid, stack);
122   }
123 
124   void GetAllocContext(u32 &tid, u32 &stack) const {
125     AtomicContextLoad(&alloc_context_id, tid, stack);
126   }
127 };
128 
129 class ChunkBase : public ChunkHeader {
130   atomic_uint64_t free_context_id;
131 
132  public:
133   void SetFreeContext(u32 tid, u32 stack) {
134     AtomicContextStore(&free_context_id, tid, stack);
135   }
136 
137   void GetFreeContext(u32 &tid, u32 &stack) const {
138     AtomicContextLoad(&free_context_id, tid, stack);
139   }
140 };
141 
142 static const uptr kChunkHeaderSize = sizeof(ChunkHeader);
143 static const uptr kChunkHeader2Size = sizeof(ChunkBase) - kChunkHeaderSize;
144 COMPILER_CHECK(kChunkHeaderSize == 16);
145 COMPILER_CHECK(kChunkHeader2Size <= 16);
146 
147 enum {
148   // Either just allocated by underlying allocator, but AsanChunk is not yet
149   // ready, or almost returned to undelying allocator and AsanChunk is already
150   // meaningless.
151   CHUNK_INVALID = 0,
152   // The chunk is allocated and not yet freed.
153   CHUNK_ALLOCATED = 2,
154   // The chunk was freed and put into quarantine zone.
155   CHUNK_QUARANTINE = 3,
156 };
157 
158 class AsanChunk : public ChunkBase {
159  public:
160   uptr Beg() { return reinterpret_cast<uptr>(this) + kChunkHeaderSize; }
161   bool AddrIsInside(uptr addr) {
162     return (addr >= Beg()) && (addr < Beg() + UsedSize());
163   }
164 };
165 
166 class LargeChunkHeader {
167   static constexpr uptr kAllocBegMagic =
168       FIRST_32_SECOND_64(0xCC6E96B9, 0xCC6E96B9CC6E96B9ULL);
169   atomic_uintptr_t magic;
170   AsanChunk *chunk_header;
171 
172  public:
173   AsanChunk *Get() const {
174     return atomic_load(&magic, memory_order_acquire) == kAllocBegMagic
175                ? chunk_header
176                : nullptr;
177   }
178 
179   void Set(AsanChunk *p) {
180     if (p) {
181       chunk_header = p;
182       atomic_store(&magic, kAllocBegMagic, memory_order_release);
183       return;
184     }
185 
186     uptr old = kAllocBegMagic;
187     if (!atomic_compare_exchange_strong(&magic, &old, 0,
188                                         memory_order_release)) {
189       CHECK_EQ(old, kAllocBegMagic);
190     }
191   }
192 };
193 
194 struct QuarantineCallback {
195   QuarantineCallback(AllocatorCache *cache, BufferedStackTrace *stack)
196       : cache_(cache),
197         stack_(stack) {
198   }
199 
200   void Recycle(AsanChunk *m) {
201     void *p = get_allocator().GetBlockBegin(m);
202     if (p != m) {
203       // Clear the magic value, as allocator internals may overwrite the
204       // contents of deallocated chunk, confusing GetAsanChunk lookup.
205       reinterpret_cast<LargeChunkHeader *>(p)->Set(nullptr);
206     }
207 
208     u8 old_chunk_state = CHUNK_QUARANTINE;
209     if (!atomic_compare_exchange_strong(&m->chunk_state, &old_chunk_state,
210                                         CHUNK_INVALID, memory_order_acquire)) {
211       CHECK_EQ(old_chunk_state, CHUNK_QUARANTINE);
212     }
213 
214     PoisonShadow(m->Beg(),
215                  RoundUpTo(m->UsedSize(), SHADOW_GRANULARITY),
216                  kAsanHeapLeftRedzoneMagic);
217 
218     // Statistics.
219     AsanStats &thread_stats = GetCurrentThreadStats();
220     thread_stats.real_frees++;
221     thread_stats.really_freed += m->UsedSize();
222 
223     get_allocator().Deallocate(cache_, p);
224   }
225 
226   void *Allocate(uptr size) {
227     void *res = get_allocator().Allocate(cache_, size, 1);
228     // TODO(alekseys): Consider making quarantine OOM-friendly.
229     if (UNLIKELY(!res))
230       ReportOutOfMemory(size, stack_);
231     return res;
232   }
233 
234   void Deallocate(void *p) {
235     get_allocator().Deallocate(cache_, p);
236   }
237 
238  private:
239   AllocatorCache* const cache_;
240   BufferedStackTrace* const stack_;
241 };
242 
243 typedef Quarantine<QuarantineCallback, AsanChunk> AsanQuarantine;
244 typedef AsanQuarantine::Cache QuarantineCache;
245 
246 void AsanMapUnmapCallback::OnMap(uptr p, uptr size) const {
247   PoisonShadow(p, size, kAsanHeapLeftRedzoneMagic);
248   // Statistics.
249   AsanStats &thread_stats = GetCurrentThreadStats();
250   thread_stats.mmaps++;
251   thread_stats.mmaped += size;
252 }
253 void AsanMapUnmapCallback::OnUnmap(uptr p, uptr size) const {
254   PoisonShadow(p, size, 0);
255   // We are about to unmap a chunk of user memory.
256   // Mark the corresponding shadow memory as not needed.
257   FlushUnneededASanShadowMemory(p, size);
258   // Statistics.
259   AsanStats &thread_stats = GetCurrentThreadStats();
260   thread_stats.munmaps++;
261   thread_stats.munmaped += size;
262 }
263 
264 // We can not use THREADLOCAL because it is not supported on some of the
265 // platforms we care about (OSX 10.6, Android).
266 // static THREADLOCAL AllocatorCache cache;
267 AllocatorCache *GetAllocatorCache(AsanThreadLocalMallocStorage *ms) {
268   CHECK(ms);
269   return &ms->allocator_cache;
270 }
271 
272 QuarantineCache *GetQuarantineCache(AsanThreadLocalMallocStorage *ms) {
273   CHECK(ms);
274   CHECK_LE(sizeof(QuarantineCache), sizeof(ms->quarantine_cache));
275   return reinterpret_cast<QuarantineCache *>(ms->quarantine_cache);
276 }
277 
278 void AllocatorOptions::SetFrom(const Flags *f, const CommonFlags *cf) {
279   quarantine_size_mb = f->quarantine_size_mb;
280   thread_local_quarantine_size_kb = f->thread_local_quarantine_size_kb;
281   min_redzone = f->redzone;
282   max_redzone = f->max_redzone;
283   may_return_null = cf->allocator_may_return_null;
284   alloc_dealloc_mismatch = f->alloc_dealloc_mismatch;
285   release_to_os_interval_ms = cf->allocator_release_to_os_interval_ms;
286 }
287 
288 void AllocatorOptions::CopyTo(Flags *f, CommonFlags *cf) {
289   f->quarantine_size_mb = quarantine_size_mb;
290   f->thread_local_quarantine_size_kb = thread_local_quarantine_size_kb;
291   f->redzone = min_redzone;
292   f->max_redzone = max_redzone;
293   cf->allocator_may_return_null = may_return_null;
294   f->alloc_dealloc_mismatch = alloc_dealloc_mismatch;
295   cf->allocator_release_to_os_interval_ms = release_to_os_interval_ms;
296 }
297 
298 struct Allocator {
299   static const uptr kMaxAllowedMallocSize =
300       FIRST_32_SECOND_64(3UL << 30, 1ULL << 40);
301 
302   AsanAllocator allocator;
303   AsanQuarantine quarantine;
304   StaticSpinMutex fallback_mutex;
305   AllocatorCache fallback_allocator_cache;
306   QuarantineCache fallback_quarantine_cache;
307 
308   uptr max_user_defined_malloc_size;
309   atomic_uint8_t rss_limit_exceeded;
310 
311   // ------------------- Options --------------------------
312   atomic_uint16_t min_redzone;
313   atomic_uint16_t max_redzone;
314   atomic_uint8_t alloc_dealloc_mismatch;
315 
316   // ------------------- Initialization ------------------------
317   explicit Allocator(LinkerInitialized)
318       : quarantine(LINKER_INITIALIZED),
319         fallback_quarantine_cache(LINKER_INITIALIZED) {}
320 
321   void CheckOptions(const AllocatorOptions &options) const {
322     CHECK_GE(options.min_redzone, 16);
323     CHECK_GE(options.max_redzone, options.min_redzone);
324     CHECK_LE(options.max_redzone, 2048);
325     CHECK(IsPowerOfTwo(options.min_redzone));
326     CHECK(IsPowerOfTwo(options.max_redzone));
327   }
328 
329   void SharedInitCode(const AllocatorOptions &options) {
330     CheckOptions(options);
331     quarantine.Init((uptr)options.quarantine_size_mb << 20,
332                     (uptr)options.thread_local_quarantine_size_kb << 10);
333     atomic_store(&alloc_dealloc_mismatch, options.alloc_dealloc_mismatch,
334                  memory_order_release);
335     atomic_store(&min_redzone, options.min_redzone, memory_order_release);
336     atomic_store(&max_redzone, options.max_redzone, memory_order_release);
337   }
338 
339   void InitLinkerInitialized(const AllocatorOptions &options) {
340     SetAllocatorMayReturnNull(options.may_return_null);
341     allocator.InitLinkerInitialized(options.release_to_os_interval_ms);
342     SharedInitCode(options);
343     max_user_defined_malloc_size = common_flags()->max_allocation_size_mb
344                                        ? common_flags()->max_allocation_size_mb
345                                              << 20
346                                        : kMaxAllowedMallocSize;
347   }
348 
349   bool RssLimitExceeded() {
350     return atomic_load(&rss_limit_exceeded, memory_order_relaxed);
351   }
352 
353   void SetRssLimitExceeded(bool limit_exceeded) {
354     atomic_store(&rss_limit_exceeded, limit_exceeded, memory_order_relaxed);
355   }
356 
357   void RePoisonChunk(uptr chunk) {
358     // This could be a user-facing chunk (with redzones), or some internal
359     // housekeeping chunk, like TransferBatch. Start by assuming the former.
360     AsanChunk *ac = GetAsanChunk((void *)chunk);
361     uptr allocated_size = allocator.GetActuallyAllocatedSize((void *)chunk);
362     if (ac && atomic_load(&ac->chunk_state, memory_order_acquire) ==
363                   CHUNK_ALLOCATED) {
364       uptr beg = ac->Beg();
365       uptr end = ac->Beg() + ac->UsedSize();
366       uptr chunk_end = chunk + allocated_size;
367       if (chunk < beg && beg < end && end <= chunk_end) {
368         // Looks like a valid AsanChunk in use, poison redzones only.
369         PoisonShadow(chunk, beg - chunk, kAsanHeapLeftRedzoneMagic);
370         uptr end_aligned_down = RoundDownTo(end, SHADOW_GRANULARITY);
371         FastPoisonShadowPartialRightRedzone(
372             end_aligned_down, end - end_aligned_down,
373             chunk_end - end_aligned_down, kAsanHeapLeftRedzoneMagic);
374         return;
375       }
376     }
377 
378     // This is either not an AsanChunk or freed or quarantined AsanChunk.
379     // In either case, poison everything.
380     PoisonShadow(chunk, allocated_size, kAsanHeapLeftRedzoneMagic);
381   }
382 
383   void ReInitialize(const AllocatorOptions &options) {
384     SetAllocatorMayReturnNull(options.may_return_null);
385     allocator.SetReleaseToOSIntervalMs(options.release_to_os_interval_ms);
386     SharedInitCode(options);
387 
388     // Poison all existing allocation's redzones.
389     if (CanPoisonMemory()) {
390       allocator.ForceLock();
391       allocator.ForEachChunk(
392           [](uptr chunk, void *alloc) {
393             ((Allocator *)alloc)->RePoisonChunk(chunk);
394           },
395           this);
396       allocator.ForceUnlock();
397     }
398   }
399 
400   void GetOptions(AllocatorOptions *options) const {
401     options->quarantine_size_mb = quarantine.GetSize() >> 20;
402     options->thread_local_quarantine_size_kb = quarantine.GetCacheSize() >> 10;
403     options->min_redzone = atomic_load(&min_redzone, memory_order_acquire);
404     options->max_redzone = atomic_load(&max_redzone, memory_order_acquire);
405     options->may_return_null = AllocatorMayReturnNull();
406     options->alloc_dealloc_mismatch =
407         atomic_load(&alloc_dealloc_mismatch, memory_order_acquire);
408     options->release_to_os_interval_ms = allocator.ReleaseToOSIntervalMs();
409   }
410 
411   // -------------------- Helper methods. -------------------------
412   uptr ComputeRZLog(uptr user_requested_size) {
413     u32 rz_log = user_requested_size <= 64 - 16            ? 0
414                  : user_requested_size <= 128 - 32         ? 1
415                  : user_requested_size <= 512 - 64         ? 2
416                  : user_requested_size <= 4096 - 128       ? 3
417                  : user_requested_size <= (1 << 14) - 256  ? 4
418                  : user_requested_size <= (1 << 15) - 512  ? 5
419                  : user_requested_size <= (1 << 16) - 1024 ? 6
420                                                            : 7;
421     u32 hdr_log = RZSize2Log(RoundUpToPowerOfTwo(sizeof(ChunkHeader)));
422     u32 min_log = RZSize2Log(atomic_load(&min_redzone, memory_order_acquire));
423     u32 max_log = RZSize2Log(atomic_load(&max_redzone, memory_order_acquire));
424     return Min(Max(rz_log, Max(min_log, hdr_log)), Max(max_log, hdr_log));
425   }
426 
427   static uptr ComputeUserRequestedAlignmentLog(uptr user_requested_alignment) {
428     if (user_requested_alignment < 8)
429       return 0;
430     if (user_requested_alignment > 512)
431       user_requested_alignment = 512;
432     return Log2(user_requested_alignment) - 2;
433   }
434 
435   static uptr ComputeUserAlignment(uptr user_requested_alignment_log) {
436     if (user_requested_alignment_log == 0)
437       return 0;
438     return 1LL << (user_requested_alignment_log + 2);
439   }
440 
441   // We have an address between two chunks, and we want to report just one.
442   AsanChunk *ChooseChunk(uptr addr, AsanChunk *left_chunk,
443                          AsanChunk *right_chunk) {
444     if (!left_chunk)
445       return right_chunk;
446     if (!right_chunk)
447       return left_chunk;
448     // Prefer an allocated chunk over freed chunk and freed chunk
449     // over available chunk.
450     u8 left_state = atomic_load(&left_chunk->chunk_state, memory_order_relaxed);
451     u8 right_state =
452         atomic_load(&right_chunk->chunk_state, memory_order_relaxed);
453     if (left_state != right_state) {
454       if (left_state == CHUNK_ALLOCATED)
455         return left_chunk;
456       if (right_state == CHUNK_ALLOCATED)
457         return right_chunk;
458       if (left_state == CHUNK_QUARANTINE)
459         return left_chunk;
460       if (right_state == CHUNK_QUARANTINE)
461         return right_chunk;
462     }
463     // Same chunk_state: choose based on offset.
464     sptr l_offset = 0, r_offset = 0;
465     CHECK(AsanChunkView(left_chunk).AddrIsAtRight(addr, 1, &l_offset));
466     CHECK(AsanChunkView(right_chunk).AddrIsAtLeft(addr, 1, &r_offset));
467     if (l_offset < r_offset)
468       return left_chunk;
469     return right_chunk;
470   }
471 
472   bool UpdateAllocationStack(uptr addr, BufferedStackTrace *stack) {
473     AsanChunk *m = GetAsanChunkByAddr(addr);
474     if (!m) return false;
475     if (atomic_load(&m->chunk_state, memory_order_acquire) != CHUNK_ALLOCATED)
476       return false;
477     if (m->Beg() != addr) return false;
478     AsanThread *t = GetCurrentThread();
479     m->SetAllocContext(t ? t->tid() : kMainTid, StackDepotPut(*stack));
480     return true;
481   }
482 
483   // -------------------- Allocation/Deallocation routines ---------------
484   void *Allocate(uptr size, uptr alignment, BufferedStackTrace *stack,
485                  AllocType alloc_type, bool can_fill) {
486     if (UNLIKELY(!asan_inited))
487       AsanInitFromRtl();
488     if (RssLimitExceeded()) {
489       if (AllocatorMayReturnNull())
490         return nullptr;
491       ReportRssLimitExceeded(stack);
492     }
493     Flags &fl = *flags();
494     CHECK(stack);
495     const uptr min_alignment = SHADOW_GRANULARITY;
496     const uptr user_requested_alignment_log =
497         ComputeUserRequestedAlignmentLog(alignment);
498     if (alignment < min_alignment)
499       alignment = min_alignment;
500     if (size == 0) {
501       // We'd be happy to avoid allocating memory for zero-size requests, but
502       // some programs/tests depend on this behavior and assume that malloc
503       // would not return NULL even for zero-size allocations. Moreover, it
504       // looks like operator new should never return NULL, and results of
505       // consecutive "new" calls must be different even if the allocated size
506       // is zero.
507       size = 1;
508     }
509     CHECK(IsPowerOfTwo(alignment));
510     uptr rz_log = ComputeRZLog(size);
511     uptr rz_size = RZLog2Size(rz_log);
512     uptr rounded_size = RoundUpTo(Max(size, kChunkHeader2Size), alignment);
513     uptr needed_size = rounded_size + rz_size;
514     if (alignment > min_alignment)
515       needed_size += alignment;
516     // If we are allocating from the secondary allocator, there will be no
517     // automatic right redzone, so add the right redzone manually.
518     if (!PrimaryAllocator::CanAllocate(needed_size, alignment))
519       needed_size += rz_size;
520     CHECK(IsAligned(needed_size, min_alignment));
521     if (size > kMaxAllowedMallocSize || needed_size > kMaxAllowedMallocSize ||
522         size > max_user_defined_malloc_size) {
523       if (AllocatorMayReturnNull()) {
524         Report("WARNING: AddressSanitizer failed to allocate 0x%zx bytes\n",
525                (void*)size);
526         return nullptr;
527       }
528       uptr malloc_limit =
529           Min(kMaxAllowedMallocSize, max_user_defined_malloc_size);
530       ReportAllocationSizeTooBig(size, needed_size, malloc_limit, stack);
531     }
532 
533     AsanThread *t = GetCurrentThread();
534     void *allocated;
535     if (t) {
536       AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
537       allocated = allocator.Allocate(cache, needed_size, 8);
538     } else {
539       SpinMutexLock l(&fallback_mutex);
540       AllocatorCache *cache = &fallback_allocator_cache;
541       allocated = allocator.Allocate(cache, needed_size, 8);
542     }
543     if (UNLIKELY(!allocated)) {
544       SetAllocatorOutOfMemory();
545       if (AllocatorMayReturnNull())
546         return nullptr;
547       ReportOutOfMemory(size, stack);
548     }
549 
550     if (*(u8 *)MEM_TO_SHADOW((uptr)allocated) == 0 && CanPoisonMemory()) {
551       // Heap poisoning is enabled, but the allocator provides an unpoisoned
552       // chunk. This is possible if CanPoisonMemory() was false for some
553       // time, for example, due to flags()->start_disabled.
554       // Anyway, poison the block before using it for anything else.
555       uptr allocated_size = allocator.GetActuallyAllocatedSize(allocated);
556       PoisonShadow((uptr)allocated, allocated_size, kAsanHeapLeftRedzoneMagic);
557     }
558 
559     uptr alloc_beg = reinterpret_cast<uptr>(allocated);
560     uptr alloc_end = alloc_beg + needed_size;
561     uptr user_beg = alloc_beg + rz_size;
562     if (!IsAligned(user_beg, alignment))
563       user_beg = RoundUpTo(user_beg, alignment);
564     uptr user_end = user_beg + size;
565     CHECK_LE(user_end, alloc_end);
566     uptr chunk_beg = user_beg - kChunkHeaderSize;
567     AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
568     m->alloc_type = alloc_type;
569     CHECK(size);
570     m->SetUsedSize(size);
571     m->user_requested_alignment_log = user_requested_alignment_log;
572 
573     m->SetAllocContext(t ? t->tid() : kMainTid, StackDepotPut(*stack));
574 
575     uptr size_rounded_down_to_granularity =
576         RoundDownTo(size, SHADOW_GRANULARITY);
577     // Unpoison the bulk of the memory region.
578     if (size_rounded_down_to_granularity)
579       PoisonShadow(user_beg, size_rounded_down_to_granularity, 0);
580     // Deal with the end of the region if size is not aligned to granularity.
581     if (size != size_rounded_down_to_granularity && CanPoisonMemory()) {
582       u8 *shadow =
583           (u8 *)MemToShadow(user_beg + size_rounded_down_to_granularity);
584       *shadow = fl.poison_partial ? (size & (SHADOW_GRANULARITY - 1)) : 0;
585     }
586 
587     AsanStats &thread_stats = GetCurrentThreadStats();
588     thread_stats.mallocs++;
589     thread_stats.malloced += size;
590     thread_stats.malloced_redzones += needed_size - size;
591     if (needed_size > SizeClassMap::kMaxSize)
592       thread_stats.malloc_large++;
593     else
594       thread_stats.malloced_by_size[SizeClassMap::ClassID(needed_size)]++;
595 
596     void *res = reinterpret_cast<void *>(user_beg);
597     if (can_fill && fl.max_malloc_fill_size) {
598       uptr fill_size = Min(size, (uptr)fl.max_malloc_fill_size);
599       REAL(memset)(res, fl.malloc_fill_byte, fill_size);
600     }
601 #if CAN_SANITIZE_LEAKS
602     m->lsan_tag = __lsan::DisabledInThisThread() ? __lsan::kIgnored
603                                                  : __lsan::kDirectlyLeaked;
604 #endif
605     // Must be the last mutation of metadata in this function.
606     atomic_store(&m->chunk_state, CHUNK_ALLOCATED, memory_order_release);
607     if (alloc_beg != chunk_beg) {
608       CHECK_LE(alloc_beg + sizeof(LargeChunkHeader), chunk_beg);
609       reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Set(m);
610     }
611     ASAN_MALLOC_HOOK(res, size);
612     return res;
613   }
614 
615   // Set quarantine flag if chunk is allocated, issue ASan error report on
616   // available and quarantined chunks. Return true on success, false otherwise.
617   bool AtomicallySetQuarantineFlagIfAllocated(AsanChunk *m, void *ptr,
618                                               BufferedStackTrace *stack) {
619     u8 old_chunk_state = CHUNK_ALLOCATED;
620     // Flip the chunk_state atomically to avoid race on double-free.
621     if (!atomic_compare_exchange_strong(&m->chunk_state, &old_chunk_state,
622                                         CHUNK_QUARANTINE,
623                                         memory_order_acquire)) {
624       ReportInvalidFree(ptr, old_chunk_state, stack);
625       // It's not safe to push a chunk in quarantine on invalid free.
626       return false;
627     }
628     CHECK_EQ(CHUNK_ALLOCATED, old_chunk_state);
629     // It was a user data.
630     m->SetFreeContext(kInvalidTid, 0);
631     return true;
632   }
633 
634   // Expects the chunk to already be marked as quarantined by using
635   // AtomicallySetQuarantineFlagIfAllocated.
636   void QuarantineChunk(AsanChunk *m, void *ptr, BufferedStackTrace *stack) {
637     CHECK_EQ(atomic_load(&m->chunk_state, memory_order_relaxed),
638              CHUNK_QUARANTINE);
639     AsanThread *t = GetCurrentThread();
640     m->SetFreeContext(t ? t->tid() : 0, StackDepotPut(*stack));
641 
642     Flags &fl = *flags();
643     if (fl.max_free_fill_size > 0) {
644       // We have to skip the chunk header, it contains free_context_id.
645       uptr scribble_start = (uptr)m + kChunkHeaderSize + kChunkHeader2Size;
646       if (m->UsedSize() >= kChunkHeader2Size) {  // Skip Header2 in user area.
647         uptr size_to_fill = m->UsedSize() - kChunkHeader2Size;
648         size_to_fill = Min(size_to_fill, (uptr)fl.max_free_fill_size);
649         REAL(memset)((void *)scribble_start, fl.free_fill_byte, size_to_fill);
650       }
651     }
652 
653     // Poison the region.
654     PoisonShadow(m->Beg(),
655                  RoundUpTo(m->UsedSize(), SHADOW_GRANULARITY),
656                  kAsanHeapFreeMagic);
657 
658     AsanStats &thread_stats = GetCurrentThreadStats();
659     thread_stats.frees++;
660     thread_stats.freed += m->UsedSize();
661 
662     // Push into quarantine.
663     if (t) {
664       AsanThreadLocalMallocStorage *ms = &t->malloc_storage();
665       AllocatorCache *ac = GetAllocatorCache(ms);
666       quarantine.Put(GetQuarantineCache(ms), QuarantineCallback(ac, stack), m,
667                      m->UsedSize());
668     } else {
669       SpinMutexLock l(&fallback_mutex);
670       AllocatorCache *ac = &fallback_allocator_cache;
671       quarantine.Put(&fallback_quarantine_cache, QuarantineCallback(ac, stack),
672                      m, m->UsedSize());
673     }
674   }
675 
676   void Deallocate(void *ptr, uptr delete_size, uptr delete_alignment,
677                   BufferedStackTrace *stack, AllocType alloc_type) {
678     uptr p = reinterpret_cast<uptr>(ptr);
679     if (p == 0) return;
680 
681     uptr chunk_beg = p - kChunkHeaderSize;
682     AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
683 
684     // On Windows, uninstrumented DLLs may allocate memory before ASan hooks
685     // malloc. Don't report an invalid free in this case.
686     if (SANITIZER_WINDOWS &&
687         !get_allocator().PointerIsMine(ptr)) {
688       if (!IsSystemHeapAddress(p))
689         ReportFreeNotMalloced(p, stack);
690       return;
691     }
692 
693     ASAN_FREE_HOOK(ptr);
694 
695     // Must mark the chunk as quarantined before any changes to its metadata.
696     // Do not quarantine given chunk if we failed to set CHUNK_QUARANTINE flag.
697     if (!AtomicallySetQuarantineFlagIfAllocated(m, ptr, stack)) return;
698 
699     if (m->alloc_type != alloc_type) {
700       if (atomic_load(&alloc_dealloc_mismatch, memory_order_acquire)) {
701         ReportAllocTypeMismatch((uptr)ptr, stack, (AllocType)m->alloc_type,
702                                 (AllocType)alloc_type);
703       }
704     } else {
705       if (flags()->new_delete_type_mismatch &&
706           (alloc_type == FROM_NEW || alloc_type == FROM_NEW_BR) &&
707           ((delete_size && delete_size != m->UsedSize()) ||
708            ComputeUserRequestedAlignmentLog(delete_alignment) !=
709                m->user_requested_alignment_log)) {
710         ReportNewDeleteTypeMismatch(p, delete_size, delete_alignment, stack);
711       }
712     }
713 
714     QuarantineChunk(m, ptr, stack);
715   }
716 
717   void *Reallocate(void *old_ptr, uptr new_size, BufferedStackTrace *stack) {
718     CHECK(old_ptr && new_size);
719     uptr p = reinterpret_cast<uptr>(old_ptr);
720     uptr chunk_beg = p - kChunkHeaderSize;
721     AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
722 
723     AsanStats &thread_stats = GetCurrentThreadStats();
724     thread_stats.reallocs++;
725     thread_stats.realloced += new_size;
726 
727     void *new_ptr = Allocate(new_size, 8, stack, FROM_MALLOC, true);
728     if (new_ptr) {
729       u8 chunk_state = atomic_load(&m->chunk_state, memory_order_acquire);
730       if (chunk_state != CHUNK_ALLOCATED)
731         ReportInvalidFree(old_ptr, chunk_state, stack);
732       CHECK_NE(REAL(memcpy), nullptr);
733       uptr memcpy_size = Min(new_size, m->UsedSize());
734       // If realloc() races with free(), we may start copying freed memory.
735       // However, we will report racy double-free later anyway.
736       REAL(memcpy)(new_ptr, old_ptr, memcpy_size);
737       Deallocate(old_ptr, 0, 0, stack, FROM_MALLOC);
738     }
739     return new_ptr;
740   }
741 
742   void *Calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) {
743     if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
744       if (AllocatorMayReturnNull())
745         return nullptr;
746       ReportCallocOverflow(nmemb, size, stack);
747     }
748     void *ptr = Allocate(nmemb * size, 8, stack, FROM_MALLOC, false);
749     // If the memory comes from the secondary allocator no need to clear it
750     // as it comes directly from mmap.
751     if (ptr && allocator.FromPrimary(ptr))
752       REAL(memset)(ptr, 0, nmemb * size);
753     return ptr;
754   }
755 
756   void ReportInvalidFree(void *ptr, u8 chunk_state, BufferedStackTrace *stack) {
757     if (chunk_state == CHUNK_QUARANTINE)
758       ReportDoubleFree((uptr)ptr, stack);
759     else
760       ReportFreeNotMalloced((uptr)ptr, stack);
761   }
762 
763   void CommitBack(AsanThreadLocalMallocStorage *ms, BufferedStackTrace *stack) {
764     AllocatorCache *ac = GetAllocatorCache(ms);
765     quarantine.Drain(GetQuarantineCache(ms), QuarantineCallback(ac, stack));
766     allocator.SwallowCache(ac);
767   }
768 
769   // -------------------------- Chunk lookup ----------------------
770 
771   // Assumes alloc_beg == allocator.GetBlockBegin(alloc_beg).
772   // Returns nullptr if AsanChunk is not yet initialized just after
773   // get_allocator().Allocate(), or is being destroyed just before
774   // get_allocator().Deallocate().
775   AsanChunk *GetAsanChunk(void *alloc_beg) {
776     if (!alloc_beg)
777       return nullptr;
778     AsanChunk *p = reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Get();
779     if (!p) {
780       if (!allocator.FromPrimary(alloc_beg))
781         return nullptr;
782       p = reinterpret_cast<AsanChunk *>(alloc_beg);
783     }
784     u8 state = atomic_load(&p->chunk_state, memory_order_relaxed);
785     // It does not guaranty that Chunk is initialized, but it's
786     // definitely not for any other value.
787     if (state == CHUNK_ALLOCATED || state == CHUNK_QUARANTINE)
788       return p;
789     return nullptr;
790   }
791 
792   AsanChunk *GetAsanChunkByAddr(uptr p) {
793     void *alloc_beg = allocator.GetBlockBegin(reinterpret_cast<void *>(p));
794     return GetAsanChunk(alloc_beg);
795   }
796 
797   // Allocator must be locked when this function is called.
798   AsanChunk *GetAsanChunkByAddrFastLocked(uptr p) {
799     void *alloc_beg =
800         allocator.GetBlockBeginFastLocked(reinterpret_cast<void *>(p));
801     return GetAsanChunk(alloc_beg);
802   }
803 
804   uptr AllocationSize(uptr p) {
805     AsanChunk *m = GetAsanChunkByAddr(p);
806     if (!m) return 0;
807     if (atomic_load(&m->chunk_state, memory_order_acquire) != CHUNK_ALLOCATED)
808       return 0;
809     if (m->Beg() != p) return 0;
810     return m->UsedSize();
811   }
812 
813   AsanChunkView FindHeapChunkByAddress(uptr addr) {
814     AsanChunk *m1 = GetAsanChunkByAddr(addr);
815     sptr offset = 0;
816     if (!m1 || AsanChunkView(m1).AddrIsAtLeft(addr, 1, &offset)) {
817       // The address is in the chunk's left redzone, so maybe it is actually
818       // a right buffer overflow from the other chunk to the left.
819       // Search a bit to the left to see if there is another chunk.
820       AsanChunk *m2 = nullptr;
821       for (uptr l = 1; l < GetPageSizeCached(); l++) {
822         m2 = GetAsanChunkByAddr(addr - l);
823         if (m2 == m1) continue;  // Still the same chunk.
824         break;
825       }
826       if (m2 && AsanChunkView(m2).AddrIsAtRight(addr, 1, &offset))
827         m1 = ChooseChunk(addr, m2, m1);
828     }
829     return AsanChunkView(m1);
830   }
831 
832   void Purge(BufferedStackTrace *stack) {
833     AsanThread *t = GetCurrentThread();
834     if (t) {
835       AsanThreadLocalMallocStorage *ms = &t->malloc_storage();
836       quarantine.DrainAndRecycle(GetQuarantineCache(ms),
837                                  QuarantineCallback(GetAllocatorCache(ms),
838                                                     stack));
839     }
840     {
841       SpinMutexLock l(&fallback_mutex);
842       quarantine.DrainAndRecycle(&fallback_quarantine_cache,
843                                  QuarantineCallback(&fallback_allocator_cache,
844                                                     stack));
845     }
846 
847     allocator.ForceReleaseToOS();
848   }
849 
850   void PrintStats() {
851     allocator.PrintStats();
852     quarantine.PrintStats();
853   }
854 
855   void ForceLock() ACQUIRE(fallback_mutex) {
856     allocator.ForceLock();
857     fallback_mutex.Lock();
858   }
859 
860   void ForceUnlock() RELEASE(fallback_mutex) {
861     fallback_mutex.Unlock();
862     allocator.ForceUnlock();
863   }
864 };
865 
866 static Allocator instance(LINKER_INITIALIZED);
867 
868 static AsanAllocator &get_allocator() {
869   return instance.allocator;
870 }
871 
872 bool AsanChunkView::IsValid() const {
873   return chunk_ && atomic_load(&chunk_->chunk_state, memory_order_relaxed) !=
874                        CHUNK_INVALID;
875 }
876 bool AsanChunkView::IsAllocated() const {
877   return chunk_ && atomic_load(&chunk_->chunk_state, memory_order_relaxed) ==
878                        CHUNK_ALLOCATED;
879 }
880 bool AsanChunkView::IsQuarantined() const {
881   return chunk_ && atomic_load(&chunk_->chunk_state, memory_order_relaxed) ==
882                        CHUNK_QUARANTINE;
883 }
884 uptr AsanChunkView::Beg() const { return chunk_->Beg(); }
885 uptr AsanChunkView::End() const { return Beg() + UsedSize(); }
886 uptr AsanChunkView::UsedSize() const { return chunk_->UsedSize(); }
887 u32 AsanChunkView::UserRequestedAlignment() const {
888   return Allocator::ComputeUserAlignment(chunk_->user_requested_alignment_log);
889 }
890 
891 uptr AsanChunkView::AllocTid() const {
892   u32 tid = 0;
893   u32 stack = 0;
894   chunk_->GetAllocContext(tid, stack);
895   return tid;
896 }
897 
898 uptr AsanChunkView::FreeTid() const {
899   if (!IsQuarantined())
900     return kInvalidTid;
901   u32 tid = 0;
902   u32 stack = 0;
903   chunk_->GetFreeContext(tid, stack);
904   return tid;
905 }
906 
907 AllocType AsanChunkView::GetAllocType() const {
908   return (AllocType)chunk_->alloc_type;
909 }
910 
911 static StackTrace GetStackTraceFromId(u32 id) {
912   CHECK(id);
913   StackTrace res = StackDepotGet(id);
914   CHECK(res.trace);
915   return res;
916 }
917 
918 u32 AsanChunkView::GetAllocStackId() const {
919   u32 tid = 0;
920   u32 stack = 0;
921   chunk_->GetAllocContext(tid, stack);
922   return stack;
923 }
924 
925 u32 AsanChunkView::GetFreeStackId() const {
926   if (!IsQuarantined())
927     return 0;
928   u32 tid = 0;
929   u32 stack = 0;
930   chunk_->GetFreeContext(tid, stack);
931   return stack;
932 }
933 
934 StackTrace AsanChunkView::GetAllocStack() const {
935   return GetStackTraceFromId(GetAllocStackId());
936 }
937 
938 StackTrace AsanChunkView::GetFreeStack() const {
939   return GetStackTraceFromId(GetFreeStackId());
940 }
941 
942 void InitializeAllocator(const AllocatorOptions &options) {
943   instance.InitLinkerInitialized(options);
944 }
945 
946 void ReInitializeAllocator(const AllocatorOptions &options) {
947   instance.ReInitialize(options);
948 }
949 
950 void GetAllocatorOptions(AllocatorOptions *options) {
951   instance.GetOptions(options);
952 }
953 
954 AsanChunkView FindHeapChunkByAddress(uptr addr) {
955   return instance.FindHeapChunkByAddress(addr);
956 }
957 AsanChunkView FindHeapChunkByAllocBeg(uptr addr) {
958   return AsanChunkView(instance.GetAsanChunk(reinterpret_cast<void*>(addr)));
959 }
960 
961 void AsanThreadLocalMallocStorage::CommitBack() {
962   GET_STACK_TRACE_MALLOC;
963   instance.CommitBack(this, &stack);
964 }
965 
966 void PrintInternalAllocatorStats() {
967   instance.PrintStats();
968 }
969 
970 void asan_free(void *ptr, BufferedStackTrace *stack, AllocType alloc_type) {
971   instance.Deallocate(ptr, 0, 0, stack, alloc_type);
972 }
973 
974 void asan_delete(void *ptr, uptr size, uptr alignment,
975                  BufferedStackTrace *stack, AllocType alloc_type) {
976   instance.Deallocate(ptr, size, alignment, stack, alloc_type);
977 }
978 
979 void *asan_malloc(uptr size, BufferedStackTrace *stack) {
980   return SetErrnoOnNull(instance.Allocate(size, 8, stack, FROM_MALLOC, true));
981 }
982 
983 void *asan_calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) {
984   return SetErrnoOnNull(instance.Calloc(nmemb, size, stack));
985 }
986 
987 void *asan_reallocarray(void *p, uptr nmemb, uptr size,
988                         BufferedStackTrace *stack) {
989   if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
990     errno = errno_ENOMEM;
991     if (AllocatorMayReturnNull())
992       return nullptr;
993     ReportReallocArrayOverflow(nmemb, size, stack);
994   }
995   return asan_realloc(p, nmemb * size, stack);
996 }
997 
998 void *asan_realloc(void *p, uptr size, BufferedStackTrace *stack) {
999   if (!p)
1000     return SetErrnoOnNull(instance.Allocate(size, 8, stack, FROM_MALLOC, true));
1001   if (size == 0) {
1002     if (flags()->allocator_frees_and_returns_null_on_realloc_zero) {
1003       instance.Deallocate(p, 0, 0, stack, FROM_MALLOC);
1004       return nullptr;
1005     }
1006     // Allocate a size of 1 if we shouldn't free() on Realloc to 0
1007     size = 1;
1008   }
1009   return SetErrnoOnNull(instance.Reallocate(p, size, stack));
1010 }
1011 
1012 void *asan_valloc(uptr size, BufferedStackTrace *stack) {
1013   return SetErrnoOnNull(
1014       instance.Allocate(size, GetPageSizeCached(), stack, FROM_MALLOC, true));
1015 }
1016 
1017 void *asan_pvalloc(uptr size, BufferedStackTrace *stack) {
1018   uptr PageSize = GetPageSizeCached();
1019   if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) {
1020     errno = errno_ENOMEM;
1021     if (AllocatorMayReturnNull())
1022       return nullptr;
1023     ReportPvallocOverflow(size, stack);
1024   }
1025   // pvalloc(0) should allocate one page.
1026   size = size ? RoundUpTo(size, PageSize) : PageSize;
1027   return SetErrnoOnNull(
1028       instance.Allocate(size, PageSize, stack, FROM_MALLOC, true));
1029 }
1030 
1031 void *asan_memalign(uptr alignment, uptr size, BufferedStackTrace *stack,
1032                     AllocType alloc_type) {
1033   if (UNLIKELY(!IsPowerOfTwo(alignment))) {
1034     errno = errno_EINVAL;
1035     if (AllocatorMayReturnNull())
1036       return nullptr;
1037     ReportInvalidAllocationAlignment(alignment, stack);
1038   }
1039   return SetErrnoOnNull(
1040       instance.Allocate(size, alignment, stack, alloc_type, true));
1041 }
1042 
1043 void *asan_aligned_alloc(uptr alignment, uptr size, BufferedStackTrace *stack) {
1044   if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) {
1045     errno = errno_EINVAL;
1046     if (AllocatorMayReturnNull())
1047       return nullptr;
1048     ReportInvalidAlignedAllocAlignment(size, alignment, stack);
1049   }
1050   return SetErrnoOnNull(
1051       instance.Allocate(size, alignment, stack, FROM_MALLOC, true));
1052 }
1053 
1054 int asan_posix_memalign(void **memptr, uptr alignment, uptr size,
1055                         BufferedStackTrace *stack) {
1056   if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) {
1057     if (AllocatorMayReturnNull())
1058       return errno_EINVAL;
1059     ReportInvalidPosixMemalignAlignment(alignment, stack);
1060   }
1061   void *ptr = instance.Allocate(size, alignment, stack, FROM_MALLOC, true);
1062   if (UNLIKELY(!ptr))
1063     // OOM error is already taken care of by Allocate.
1064     return errno_ENOMEM;
1065   CHECK(IsAligned((uptr)ptr, alignment));
1066   *memptr = ptr;
1067   return 0;
1068 }
1069 
1070 uptr asan_malloc_usable_size(const void *ptr, uptr pc, uptr bp) {
1071   if (!ptr) return 0;
1072   uptr usable_size = instance.AllocationSize(reinterpret_cast<uptr>(ptr));
1073   if (flags()->check_malloc_usable_size && (usable_size == 0)) {
1074     GET_STACK_TRACE_FATAL(pc, bp);
1075     ReportMallocUsableSizeNotOwned((uptr)ptr, &stack);
1076   }
1077   return usable_size;
1078 }
1079 
1080 uptr asan_mz_size(const void *ptr) {
1081   return instance.AllocationSize(reinterpret_cast<uptr>(ptr));
1082 }
1083 
1084 void asan_mz_force_lock() NO_THREAD_SAFETY_ANALYSIS { instance.ForceLock(); }
1085 
1086 void asan_mz_force_unlock() NO_THREAD_SAFETY_ANALYSIS {
1087   instance.ForceUnlock();
1088 }
1089 
1090 void AsanSoftRssLimitExceededCallback(bool limit_exceeded) {
1091   instance.SetRssLimitExceeded(limit_exceeded);
1092 }
1093 
1094 }  // namespace __asan
1095 
1096 // --- Implementation of LSan-specific functions --- {{{1
1097 namespace __lsan {
1098 void LockAllocator() {
1099   __asan::get_allocator().ForceLock();
1100 }
1101 
1102 void UnlockAllocator() {
1103   __asan::get_allocator().ForceUnlock();
1104 }
1105 
1106 void GetAllocatorGlobalRange(uptr *begin, uptr *end) {
1107   *begin = (uptr)&__asan::get_allocator();
1108   *end = *begin + sizeof(__asan::get_allocator());
1109 }
1110 
1111 uptr PointsIntoChunk(void *p) {
1112   uptr addr = reinterpret_cast<uptr>(p);
1113   __asan::AsanChunk *m = __asan::instance.GetAsanChunkByAddrFastLocked(addr);
1114   if (!m || atomic_load(&m->chunk_state, memory_order_acquire) !=
1115                 __asan::CHUNK_ALLOCATED)
1116     return 0;
1117   uptr chunk = m->Beg();
1118   if (m->AddrIsInside(addr))
1119     return chunk;
1120   if (IsSpecialCaseOfOperatorNew0(chunk, m->UsedSize(), addr))
1121     return chunk;
1122   return 0;
1123 }
1124 
1125 uptr GetUserBegin(uptr chunk) {
1126   __asan::AsanChunk *m = __asan::instance.GetAsanChunkByAddrFastLocked(chunk);
1127   return m ? m->Beg() : 0;
1128 }
1129 
1130 LsanMetadata::LsanMetadata(uptr chunk) {
1131   metadata_ = chunk ? reinterpret_cast<void *>(chunk - __asan::kChunkHeaderSize)
1132                     : nullptr;
1133 }
1134 
1135 bool LsanMetadata::allocated() const {
1136   if (!metadata_)
1137     return false;
1138   __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
1139   return atomic_load(&m->chunk_state, memory_order_relaxed) ==
1140          __asan::CHUNK_ALLOCATED;
1141 }
1142 
1143 ChunkTag LsanMetadata::tag() const {
1144   __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
1145   return static_cast<ChunkTag>(m->lsan_tag);
1146 }
1147 
1148 void LsanMetadata::set_tag(ChunkTag value) {
1149   __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
1150   m->lsan_tag = value;
1151 }
1152 
1153 uptr LsanMetadata::requested_size() const {
1154   __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
1155   return m->UsedSize();
1156 }
1157 
1158 u32 LsanMetadata::stack_trace_id() const {
1159   __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
1160   u32 tid = 0;
1161   u32 stack = 0;
1162   m->GetAllocContext(tid, stack);
1163   return stack;
1164 }
1165 
1166 void ForEachChunk(ForEachChunkCallback callback, void *arg) {
1167   __asan::get_allocator().ForEachChunk(callback, arg);
1168 }
1169 
1170 IgnoreObjectResult IgnoreObjectLocked(const void *p) {
1171   uptr addr = reinterpret_cast<uptr>(p);
1172   __asan::AsanChunk *m = __asan::instance.GetAsanChunkByAddr(addr);
1173   if (!m ||
1174       (atomic_load(&m->chunk_state, memory_order_acquire) !=
1175        __asan::CHUNK_ALLOCATED) ||
1176       !m->AddrIsInside(addr)) {
1177     return kIgnoreObjectInvalid;
1178   }
1179   if (m->lsan_tag == kIgnored)
1180     return kIgnoreObjectAlreadyIgnored;
1181   m->lsan_tag = __lsan::kIgnored;
1182   return kIgnoreObjectSuccess;
1183 }
1184 
1185 void GetAdditionalThreadContextPtrs(ThreadContextBase *tctx, void *ptrs) {
1186   // Look for the arg pointer of threads that have been created or are running.
1187   // This is necessary to prevent false positive leaks due to the AsanThread
1188   // holding the only live reference to a heap object.  This can happen because
1189   // the `pthread_create()` interceptor doesn't wait for the child thread to
1190   // start before returning and thus loosing the the only live reference to the
1191   // heap object on the stack.
1192 
1193   __asan::AsanThreadContext *atctx =
1194       reinterpret_cast<__asan::AsanThreadContext *>(tctx);
1195   __asan::AsanThread *asan_thread = atctx->thread;
1196 
1197   // Note ThreadStatusRunning is required because there is a small window where
1198   // the thread status switches to `ThreadStatusRunning` but the `arg` pointer
1199   // still isn't on the stack yet.
1200   if (atctx->status != ThreadStatusCreated &&
1201       atctx->status != ThreadStatusRunning)
1202     return;
1203 
1204   uptr thread_arg = reinterpret_cast<uptr>(asan_thread->get_arg());
1205   if (!thread_arg)
1206     return;
1207 
1208   auto ptrsVec = reinterpret_cast<InternalMmapVector<uptr> *>(ptrs);
1209   ptrsVec->push_back(thread_arg);
1210 }
1211 
1212 }  // namespace __lsan
1213 
1214 // ---------------------- Interface ---------------- {{{1
1215 using namespace __asan;
1216 
1217 // ASan allocator doesn't reserve extra bytes, so normally we would
1218 // just return "size". We don't want to expose our redzone sizes, etc here.
1219 uptr __sanitizer_get_estimated_allocated_size(uptr size) {
1220   return size;
1221 }
1222 
1223 int __sanitizer_get_ownership(const void *p) {
1224   uptr ptr = reinterpret_cast<uptr>(p);
1225   return instance.AllocationSize(ptr) > 0;
1226 }
1227 
1228 uptr __sanitizer_get_allocated_size(const void *p) {
1229   if (!p) return 0;
1230   uptr ptr = reinterpret_cast<uptr>(p);
1231   uptr allocated_size = instance.AllocationSize(ptr);
1232   // Die if p is not malloced or if it is already freed.
1233   if (allocated_size == 0) {
1234     GET_STACK_TRACE_FATAL_HERE;
1235     ReportSanitizerGetAllocatedSizeNotOwned(ptr, &stack);
1236   }
1237   return allocated_size;
1238 }
1239 
1240 void __sanitizer_purge_allocator() {
1241   GET_STACK_TRACE_MALLOC;
1242   instance.Purge(&stack);
1243 }
1244 
1245 int __asan_update_allocation_context(void* addr) {
1246   GET_STACK_TRACE_MALLOC;
1247   return instance.UpdateAllocationStack((uptr)addr, &stack);
1248 }
1249 
1250 #if !SANITIZER_SUPPORTS_WEAK_HOOKS
1251 // Provide default (no-op) implementation of malloc hooks.
1252 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_malloc_hook,
1253                              void *ptr, uptr size) {
1254   (void)ptr;
1255   (void)size;
1256 }
1257 
1258 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_free_hook, void *ptr) {
1259   (void)ptr;
1260 }
1261 #endif
1262