xref: /freebsd/contrib/llvm-project/compiler-rt/lib/asan/asan_allocator.cpp (revision 7d91d6b83e74edf278dde375e6049aca833cbebd)
1 //===-- asan_allocator.cpp ------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of AddressSanitizer, an address sanity checker.
10 //
11 // Implementation of ASan's memory allocator, 2-nd version.
12 // This variant uses the allocator from sanitizer_common, i.e. the one shared
13 // with ThreadSanitizer and MemorySanitizer.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "asan_allocator.h"
18 
19 #include "asan_mapping.h"
20 #include "asan_poisoning.h"
21 #include "asan_report.h"
22 #include "asan_stack.h"
23 #include "asan_thread.h"
24 #include "lsan/lsan_common.h"
25 #include "sanitizer_common/sanitizer_allocator_checks.h"
26 #include "sanitizer_common/sanitizer_allocator_interface.h"
27 #include "sanitizer_common/sanitizer_errno.h"
28 #include "sanitizer_common/sanitizer_flags.h"
29 #include "sanitizer_common/sanitizer_internal_defs.h"
30 #include "sanitizer_common/sanitizer_list.h"
31 #include "sanitizer_common/sanitizer_quarantine.h"
32 #include "sanitizer_common/sanitizer_stackdepot.h"
33 
34 namespace __asan {
35 
36 // Valid redzone sizes are 16, 32, 64, ... 2048, so we encode them in 3 bits.
37 // We use adaptive redzones: for larger allocation larger redzones are used.
38 static u32 RZLog2Size(u32 rz_log) {
39   CHECK_LT(rz_log, 8);
40   return 16 << rz_log;
41 }
42 
43 static u32 RZSize2Log(u32 rz_size) {
44   CHECK_GE(rz_size, 16);
45   CHECK_LE(rz_size, 2048);
46   CHECK(IsPowerOfTwo(rz_size));
47   u32 res = Log2(rz_size) - 4;
48   CHECK_EQ(rz_size, RZLog2Size(res));
49   return res;
50 }
51 
52 static AsanAllocator &get_allocator();
53 
54 static void AtomicContextStore(volatile atomic_uint64_t *atomic_context,
55                                u32 tid, u32 stack) {
56   u64 context = tid;
57   context <<= 32;
58   context += stack;
59   atomic_store(atomic_context, context, memory_order_relaxed);
60 }
61 
62 static void AtomicContextLoad(const volatile atomic_uint64_t *atomic_context,
63                               u32 &tid, u32 &stack) {
64   u64 context = atomic_load(atomic_context, memory_order_relaxed);
65   stack = context;
66   context >>= 32;
67   tid = context;
68 }
69 
70 // The memory chunk allocated from the underlying allocator looks like this:
71 // L L L L L L H H U U U U U U R R
72 //   L -- left redzone words (0 or more bytes)
73 //   H -- ChunkHeader (16 bytes), which is also a part of the left redzone.
74 //   U -- user memory.
75 //   R -- right redzone (0 or more bytes)
76 // ChunkBase consists of ChunkHeader and other bytes that overlap with user
77 // memory.
78 
79 // If the left redzone is greater than the ChunkHeader size we store a magic
80 // value in the first uptr word of the memory block and store the address of
81 // ChunkBase in the next uptr.
82 // M B L L L L L L L L L  H H U U U U U U
83 //   |                    ^
84 //   ---------------------|
85 //   M -- magic value kAllocBegMagic
86 //   B -- address of ChunkHeader pointing to the first 'H'
87 
88 class ChunkHeader {
89  public:
90   atomic_uint8_t chunk_state;
91   u8 alloc_type : 2;
92   u8 lsan_tag : 2;
93 
94   // align < 8 -> 0
95   // else      -> log2(min(align, 512)) - 2
96   u8 user_requested_alignment_log : 3;
97 
98  private:
99   u16 user_requested_size_hi;
100   u32 user_requested_size_lo;
101   atomic_uint64_t alloc_context_id;
102 
103  public:
104   uptr UsedSize() const {
105     static_assert(sizeof(user_requested_size_lo) == 4,
106                   "Expression below requires this");
107     return FIRST_32_SECOND_64(0, ((uptr)user_requested_size_hi << 32)) +
108            user_requested_size_lo;
109   }
110 
111   void SetUsedSize(uptr size) {
112     user_requested_size_lo = size;
113     static_assert(sizeof(user_requested_size_lo) == 4,
114                   "Expression below requires this");
115     user_requested_size_hi = FIRST_32_SECOND_64(0, size >> 32);
116     CHECK_EQ(UsedSize(), size);
117   }
118 
119   void SetAllocContext(u32 tid, u32 stack) {
120     AtomicContextStore(&alloc_context_id, tid, stack);
121   }
122 
123   void GetAllocContext(u32 &tid, u32 &stack) const {
124     AtomicContextLoad(&alloc_context_id, tid, stack);
125   }
126 };
127 
128 class ChunkBase : public ChunkHeader {
129   atomic_uint64_t free_context_id;
130 
131  public:
132   void SetFreeContext(u32 tid, u32 stack) {
133     AtomicContextStore(&free_context_id, tid, stack);
134   }
135 
136   void GetFreeContext(u32 &tid, u32 &stack) const {
137     AtomicContextLoad(&free_context_id, tid, stack);
138   }
139 };
140 
141 static const uptr kChunkHeaderSize = sizeof(ChunkHeader);
142 static const uptr kChunkHeader2Size = sizeof(ChunkBase) - kChunkHeaderSize;
143 COMPILER_CHECK(kChunkHeaderSize == 16);
144 COMPILER_CHECK(kChunkHeader2Size <= 16);
145 
146 enum {
147   // Either just allocated by underlying allocator, but AsanChunk is not yet
148   // ready, or almost returned to undelying allocator and AsanChunk is already
149   // meaningless.
150   CHUNK_INVALID = 0,
151   // The chunk is allocated and not yet freed.
152   CHUNK_ALLOCATED = 2,
153   // The chunk was freed and put into quarantine zone.
154   CHUNK_QUARANTINE = 3,
155 };
156 
157 class AsanChunk : public ChunkBase {
158  public:
159   uptr Beg() { return reinterpret_cast<uptr>(this) + kChunkHeaderSize; }
160   bool AddrIsInside(uptr addr) {
161     return (addr >= Beg()) && (addr < Beg() + UsedSize());
162   }
163 };
164 
165 class LargeChunkHeader {
166   static constexpr uptr kAllocBegMagic =
167       FIRST_32_SECOND_64(0xCC6E96B9, 0xCC6E96B9CC6E96B9ULL);
168   atomic_uintptr_t magic;
169   AsanChunk *chunk_header;
170 
171  public:
172   AsanChunk *Get() const {
173     return atomic_load(&magic, memory_order_acquire) == kAllocBegMagic
174                ? chunk_header
175                : nullptr;
176   }
177 
178   void Set(AsanChunk *p) {
179     if (p) {
180       chunk_header = p;
181       atomic_store(&magic, kAllocBegMagic, memory_order_release);
182       return;
183     }
184 
185     uptr old = kAllocBegMagic;
186     if (!atomic_compare_exchange_strong(&magic, &old, 0,
187                                         memory_order_release)) {
188       CHECK_EQ(old, kAllocBegMagic);
189     }
190   }
191 };
192 
193 struct QuarantineCallback {
194   QuarantineCallback(AllocatorCache *cache, BufferedStackTrace *stack)
195       : cache_(cache),
196         stack_(stack) {
197   }
198 
199   void Recycle(AsanChunk *m) {
200     void *p = get_allocator().GetBlockBegin(m);
201     if (p != m) {
202       // Clear the magic value, as allocator internals may overwrite the
203       // contents of deallocated chunk, confusing GetAsanChunk lookup.
204       reinterpret_cast<LargeChunkHeader *>(p)->Set(nullptr);
205     }
206 
207     u8 old_chunk_state = CHUNK_QUARANTINE;
208     if (!atomic_compare_exchange_strong(&m->chunk_state, &old_chunk_state,
209                                         CHUNK_INVALID, memory_order_acquire)) {
210       CHECK_EQ(old_chunk_state, CHUNK_QUARANTINE);
211     }
212 
213     PoisonShadow(m->Beg(), RoundUpTo(m->UsedSize(), ASAN_SHADOW_GRANULARITY),
214                  kAsanHeapLeftRedzoneMagic);
215 
216     // Statistics.
217     AsanStats &thread_stats = GetCurrentThreadStats();
218     thread_stats.real_frees++;
219     thread_stats.really_freed += m->UsedSize();
220 
221     get_allocator().Deallocate(cache_, p);
222   }
223 
224   void *Allocate(uptr size) {
225     void *res = get_allocator().Allocate(cache_, size, 1);
226     // TODO(alekseys): Consider making quarantine OOM-friendly.
227     if (UNLIKELY(!res))
228       ReportOutOfMemory(size, stack_);
229     return res;
230   }
231 
232   void Deallocate(void *p) {
233     get_allocator().Deallocate(cache_, p);
234   }
235 
236  private:
237   AllocatorCache* const cache_;
238   BufferedStackTrace* const stack_;
239 };
240 
241 typedef Quarantine<QuarantineCallback, AsanChunk> AsanQuarantine;
242 typedef AsanQuarantine::Cache QuarantineCache;
243 
244 void AsanMapUnmapCallback::OnMap(uptr p, uptr size) const {
245   PoisonShadow(p, size, kAsanHeapLeftRedzoneMagic);
246   // Statistics.
247   AsanStats &thread_stats = GetCurrentThreadStats();
248   thread_stats.mmaps++;
249   thread_stats.mmaped += size;
250 }
251 void AsanMapUnmapCallback::OnUnmap(uptr p, uptr size) const {
252   PoisonShadow(p, size, 0);
253   // We are about to unmap a chunk of user memory.
254   // Mark the corresponding shadow memory as not needed.
255   FlushUnneededASanShadowMemory(p, size);
256   // Statistics.
257   AsanStats &thread_stats = GetCurrentThreadStats();
258   thread_stats.munmaps++;
259   thread_stats.munmaped += size;
260 }
261 
262 // We can not use THREADLOCAL because it is not supported on some of the
263 // platforms we care about (OSX 10.6, Android).
264 // static THREADLOCAL AllocatorCache cache;
265 AllocatorCache *GetAllocatorCache(AsanThreadLocalMallocStorage *ms) {
266   CHECK(ms);
267   return &ms->allocator_cache;
268 }
269 
270 QuarantineCache *GetQuarantineCache(AsanThreadLocalMallocStorage *ms) {
271   CHECK(ms);
272   CHECK_LE(sizeof(QuarantineCache), sizeof(ms->quarantine_cache));
273   return reinterpret_cast<QuarantineCache *>(ms->quarantine_cache);
274 }
275 
276 void AllocatorOptions::SetFrom(const Flags *f, const CommonFlags *cf) {
277   quarantine_size_mb = f->quarantine_size_mb;
278   thread_local_quarantine_size_kb = f->thread_local_quarantine_size_kb;
279   min_redzone = f->redzone;
280   max_redzone = f->max_redzone;
281   may_return_null = cf->allocator_may_return_null;
282   alloc_dealloc_mismatch = f->alloc_dealloc_mismatch;
283   release_to_os_interval_ms = cf->allocator_release_to_os_interval_ms;
284 }
285 
286 void AllocatorOptions::CopyTo(Flags *f, CommonFlags *cf) {
287   f->quarantine_size_mb = quarantine_size_mb;
288   f->thread_local_quarantine_size_kb = thread_local_quarantine_size_kb;
289   f->redzone = min_redzone;
290   f->max_redzone = max_redzone;
291   cf->allocator_may_return_null = may_return_null;
292   f->alloc_dealloc_mismatch = alloc_dealloc_mismatch;
293   cf->allocator_release_to_os_interval_ms = release_to_os_interval_ms;
294 }
295 
296 struct Allocator {
297   static const uptr kMaxAllowedMallocSize =
298       FIRST_32_SECOND_64(3UL << 30, 1ULL << 40);
299 
300   AsanAllocator allocator;
301   AsanQuarantine quarantine;
302   StaticSpinMutex fallback_mutex;
303   AllocatorCache fallback_allocator_cache;
304   QuarantineCache fallback_quarantine_cache;
305 
306   uptr max_user_defined_malloc_size;
307 
308   // ------------------- Options --------------------------
309   atomic_uint16_t min_redzone;
310   atomic_uint16_t max_redzone;
311   atomic_uint8_t alloc_dealloc_mismatch;
312 
313   // ------------------- Initialization ------------------------
314   explicit Allocator(LinkerInitialized)
315       : quarantine(LINKER_INITIALIZED),
316         fallback_quarantine_cache(LINKER_INITIALIZED) {}
317 
318   void CheckOptions(const AllocatorOptions &options) const {
319     CHECK_GE(options.min_redzone, 16);
320     CHECK_GE(options.max_redzone, options.min_redzone);
321     CHECK_LE(options.max_redzone, 2048);
322     CHECK(IsPowerOfTwo(options.min_redzone));
323     CHECK(IsPowerOfTwo(options.max_redzone));
324   }
325 
326   void SharedInitCode(const AllocatorOptions &options) {
327     CheckOptions(options);
328     quarantine.Init((uptr)options.quarantine_size_mb << 20,
329                     (uptr)options.thread_local_quarantine_size_kb << 10);
330     atomic_store(&alloc_dealloc_mismatch, options.alloc_dealloc_mismatch,
331                  memory_order_release);
332     atomic_store(&min_redzone, options.min_redzone, memory_order_release);
333     atomic_store(&max_redzone, options.max_redzone, memory_order_release);
334   }
335 
336   void InitLinkerInitialized(const AllocatorOptions &options) {
337     SetAllocatorMayReturnNull(options.may_return_null);
338     allocator.InitLinkerInitialized(options.release_to_os_interval_ms);
339     SharedInitCode(options);
340     max_user_defined_malloc_size = common_flags()->max_allocation_size_mb
341                                        ? common_flags()->max_allocation_size_mb
342                                              << 20
343                                        : kMaxAllowedMallocSize;
344   }
345 
346   void RePoisonChunk(uptr chunk) {
347     // This could be a user-facing chunk (with redzones), or some internal
348     // housekeeping chunk, like TransferBatch. Start by assuming the former.
349     AsanChunk *ac = GetAsanChunk((void *)chunk);
350     uptr allocated_size = allocator.GetActuallyAllocatedSize((void *)chunk);
351     if (ac && atomic_load(&ac->chunk_state, memory_order_acquire) ==
352                   CHUNK_ALLOCATED) {
353       uptr beg = ac->Beg();
354       uptr end = ac->Beg() + ac->UsedSize();
355       uptr chunk_end = chunk + allocated_size;
356       if (chunk < beg && beg < end && end <= chunk_end) {
357         // Looks like a valid AsanChunk in use, poison redzones only.
358         PoisonShadow(chunk, beg - chunk, kAsanHeapLeftRedzoneMagic);
359         uptr end_aligned_down = RoundDownTo(end, ASAN_SHADOW_GRANULARITY);
360         FastPoisonShadowPartialRightRedzone(
361             end_aligned_down, end - end_aligned_down,
362             chunk_end - end_aligned_down, kAsanHeapLeftRedzoneMagic);
363         return;
364       }
365     }
366 
367     // This is either not an AsanChunk or freed or quarantined AsanChunk.
368     // In either case, poison everything.
369     PoisonShadow(chunk, allocated_size, kAsanHeapLeftRedzoneMagic);
370   }
371 
372   void ReInitialize(const AllocatorOptions &options) {
373     SetAllocatorMayReturnNull(options.may_return_null);
374     allocator.SetReleaseToOSIntervalMs(options.release_to_os_interval_ms);
375     SharedInitCode(options);
376 
377     // Poison all existing allocation's redzones.
378     if (CanPoisonMemory()) {
379       allocator.ForceLock();
380       allocator.ForEachChunk(
381           [](uptr chunk, void *alloc) {
382             ((Allocator *)alloc)->RePoisonChunk(chunk);
383           },
384           this);
385       allocator.ForceUnlock();
386     }
387   }
388 
389   void GetOptions(AllocatorOptions *options) const {
390     options->quarantine_size_mb = quarantine.GetSize() >> 20;
391     options->thread_local_quarantine_size_kb = quarantine.GetCacheSize() >> 10;
392     options->min_redzone = atomic_load(&min_redzone, memory_order_acquire);
393     options->max_redzone = atomic_load(&max_redzone, memory_order_acquire);
394     options->may_return_null = AllocatorMayReturnNull();
395     options->alloc_dealloc_mismatch =
396         atomic_load(&alloc_dealloc_mismatch, memory_order_acquire);
397     options->release_to_os_interval_ms = allocator.ReleaseToOSIntervalMs();
398   }
399 
400   // -------------------- Helper methods. -------------------------
401   uptr ComputeRZLog(uptr user_requested_size) {
402     u32 rz_log = user_requested_size <= 64 - 16            ? 0
403                  : user_requested_size <= 128 - 32         ? 1
404                  : user_requested_size <= 512 - 64         ? 2
405                  : user_requested_size <= 4096 - 128       ? 3
406                  : user_requested_size <= (1 << 14) - 256  ? 4
407                  : user_requested_size <= (1 << 15) - 512  ? 5
408                  : user_requested_size <= (1 << 16) - 1024 ? 6
409                                                            : 7;
410     u32 hdr_log = RZSize2Log(RoundUpToPowerOfTwo(sizeof(ChunkHeader)));
411     u32 min_log = RZSize2Log(atomic_load(&min_redzone, memory_order_acquire));
412     u32 max_log = RZSize2Log(atomic_load(&max_redzone, memory_order_acquire));
413     return Min(Max(rz_log, Max(min_log, hdr_log)), Max(max_log, hdr_log));
414   }
415 
416   static uptr ComputeUserRequestedAlignmentLog(uptr user_requested_alignment) {
417     if (user_requested_alignment < 8)
418       return 0;
419     if (user_requested_alignment > 512)
420       user_requested_alignment = 512;
421     return Log2(user_requested_alignment) - 2;
422   }
423 
424   static uptr ComputeUserAlignment(uptr user_requested_alignment_log) {
425     if (user_requested_alignment_log == 0)
426       return 0;
427     return 1LL << (user_requested_alignment_log + 2);
428   }
429 
430   // We have an address between two chunks, and we want to report just one.
431   AsanChunk *ChooseChunk(uptr addr, AsanChunk *left_chunk,
432                          AsanChunk *right_chunk) {
433     if (!left_chunk)
434       return right_chunk;
435     if (!right_chunk)
436       return left_chunk;
437     // Prefer an allocated chunk over freed chunk and freed chunk
438     // over available chunk.
439     u8 left_state = atomic_load(&left_chunk->chunk_state, memory_order_relaxed);
440     u8 right_state =
441         atomic_load(&right_chunk->chunk_state, memory_order_relaxed);
442     if (left_state != right_state) {
443       if (left_state == CHUNK_ALLOCATED)
444         return left_chunk;
445       if (right_state == CHUNK_ALLOCATED)
446         return right_chunk;
447       if (left_state == CHUNK_QUARANTINE)
448         return left_chunk;
449       if (right_state == CHUNK_QUARANTINE)
450         return right_chunk;
451     }
452     // Same chunk_state: choose based on offset.
453     sptr l_offset = 0, r_offset = 0;
454     CHECK(AsanChunkView(left_chunk).AddrIsAtRight(addr, 1, &l_offset));
455     CHECK(AsanChunkView(right_chunk).AddrIsAtLeft(addr, 1, &r_offset));
456     if (l_offset < r_offset)
457       return left_chunk;
458     return right_chunk;
459   }
460 
461   bool UpdateAllocationStack(uptr addr, BufferedStackTrace *stack) {
462     AsanChunk *m = GetAsanChunkByAddr(addr);
463     if (!m) return false;
464     if (atomic_load(&m->chunk_state, memory_order_acquire) != CHUNK_ALLOCATED)
465       return false;
466     if (m->Beg() != addr) return false;
467     AsanThread *t = GetCurrentThread();
468     m->SetAllocContext(t ? t->tid() : kMainTid, StackDepotPut(*stack));
469     return true;
470   }
471 
472   // -------------------- Allocation/Deallocation routines ---------------
473   void *Allocate(uptr size, uptr alignment, BufferedStackTrace *stack,
474                  AllocType alloc_type, bool can_fill) {
475     if (UNLIKELY(!asan_inited))
476       AsanInitFromRtl();
477     if (UNLIKELY(IsRssLimitExceeded())) {
478       if (AllocatorMayReturnNull())
479         return nullptr;
480       ReportRssLimitExceeded(stack);
481     }
482     Flags &fl = *flags();
483     CHECK(stack);
484     const uptr min_alignment = ASAN_SHADOW_GRANULARITY;
485     const uptr user_requested_alignment_log =
486         ComputeUserRequestedAlignmentLog(alignment);
487     if (alignment < min_alignment)
488       alignment = min_alignment;
489     if (size == 0) {
490       // We'd be happy to avoid allocating memory for zero-size requests, but
491       // some programs/tests depend on this behavior and assume that malloc
492       // would not return NULL even for zero-size allocations. Moreover, it
493       // looks like operator new should never return NULL, and results of
494       // consecutive "new" calls must be different even if the allocated size
495       // is zero.
496       size = 1;
497     }
498     CHECK(IsPowerOfTwo(alignment));
499     uptr rz_log = ComputeRZLog(size);
500     uptr rz_size = RZLog2Size(rz_log);
501     uptr rounded_size = RoundUpTo(Max(size, kChunkHeader2Size), alignment);
502     uptr needed_size = rounded_size + rz_size;
503     if (alignment > min_alignment)
504       needed_size += alignment;
505     // If we are allocating from the secondary allocator, there will be no
506     // automatic right redzone, so add the right redzone manually.
507     if (!PrimaryAllocator::CanAllocate(needed_size, alignment))
508       needed_size += rz_size;
509     CHECK(IsAligned(needed_size, min_alignment));
510     if (size > kMaxAllowedMallocSize || needed_size > kMaxAllowedMallocSize ||
511         size > max_user_defined_malloc_size) {
512       if (AllocatorMayReturnNull()) {
513         Report("WARNING: AddressSanitizer failed to allocate 0x%zx bytes\n",
514                size);
515         return nullptr;
516       }
517       uptr malloc_limit =
518           Min(kMaxAllowedMallocSize, max_user_defined_malloc_size);
519       ReportAllocationSizeTooBig(size, needed_size, malloc_limit, stack);
520     }
521 
522     AsanThread *t = GetCurrentThread();
523     void *allocated;
524     if (t) {
525       AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
526       allocated = allocator.Allocate(cache, needed_size, 8);
527     } else {
528       SpinMutexLock l(&fallback_mutex);
529       AllocatorCache *cache = &fallback_allocator_cache;
530       allocated = allocator.Allocate(cache, needed_size, 8);
531     }
532     if (UNLIKELY(!allocated)) {
533       SetAllocatorOutOfMemory();
534       if (AllocatorMayReturnNull())
535         return nullptr;
536       ReportOutOfMemory(size, stack);
537     }
538 
539     if (*(u8 *)MEM_TO_SHADOW((uptr)allocated) == 0 && CanPoisonMemory()) {
540       // Heap poisoning is enabled, but the allocator provides an unpoisoned
541       // chunk. This is possible if CanPoisonMemory() was false for some
542       // time, for example, due to flags()->start_disabled.
543       // Anyway, poison the block before using it for anything else.
544       uptr allocated_size = allocator.GetActuallyAllocatedSize(allocated);
545       PoisonShadow((uptr)allocated, allocated_size, kAsanHeapLeftRedzoneMagic);
546     }
547 
548     uptr alloc_beg = reinterpret_cast<uptr>(allocated);
549     uptr alloc_end = alloc_beg + needed_size;
550     uptr user_beg = alloc_beg + rz_size;
551     if (!IsAligned(user_beg, alignment))
552       user_beg = RoundUpTo(user_beg, alignment);
553     uptr user_end = user_beg + size;
554     CHECK_LE(user_end, alloc_end);
555     uptr chunk_beg = user_beg - kChunkHeaderSize;
556     AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
557     m->alloc_type = alloc_type;
558     CHECK(size);
559     m->SetUsedSize(size);
560     m->user_requested_alignment_log = user_requested_alignment_log;
561 
562     m->SetAllocContext(t ? t->tid() : kMainTid, StackDepotPut(*stack));
563 
564     uptr size_rounded_down_to_granularity =
565         RoundDownTo(size, ASAN_SHADOW_GRANULARITY);
566     // Unpoison the bulk of the memory region.
567     if (size_rounded_down_to_granularity)
568       PoisonShadow(user_beg, size_rounded_down_to_granularity, 0);
569     // Deal with the end of the region if size is not aligned to granularity.
570     if (size != size_rounded_down_to_granularity && CanPoisonMemory()) {
571       u8 *shadow =
572           (u8 *)MemToShadow(user_beg + size_rounded_down_to_granularity);
573       *shadow = fl.poison_partial ? (size & (ASAN_SHADOW_GRANULARITY - 1)) : 0;
574     }
575 
576     AsanStats &thread_stats = GetCurrentThreadStats();
577     thread_stats.mallocs++;
578     thread_stats.malloced += size;
579     thread_stats.malloced_redzones += needed_size - size;
580     if (needed_size > SizeClassMap::kMaxSize)
581       thread_stats.malloc_large++;
582     else
583       thread_stats.malloced_by_size[SizeClassMap::ClassID(needed_size)]++;
584 
585     void *res = reinterpret_cast<void *>(user_beg);
586     if (can_fill && fl.max_malloc_fill_size) {
587       uptr fill_size = Min(size, (uptr)fl.max_malloc_fill_size);
588       REAL(memset)(res, fl.malloc_fill_byte, fill_size);
589     }
590 #if CAN_SANITIZE_LEAKS
591     m->lsan_tag = __lsan::DisabledInThisThread() ? __lsan::kIgnored
592                                                  : __lsan::kDirectlyLeaked;
593 #endif
594     // Must be the last mutation of metadata in this function.
595     atomic_store(&m->chunk_state, CHUNK_ALLOCATED, memory_order_release);
596     if (alloc_beg != chunk_beg) {
597       CHECK_LE(alloc_beg + sizeof(LargeChunkHeader), chunk_beg);
598       reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Set(m);
599     }
600     ASAN_MALLOC_HOOK(res, size);
601     return res;
602   }
603 
604   // Set quarantine flag if chunk is allocated, issue ASan error report on
605   // available and quarantined chunks. Return true on success, false otherwise.
606   bool AtomicallySetQuarantineFlagIfAllocated(AsanChunk *m, void *ptr,
607                                               BufferedStackTrace *stack) {
608     u8 old_chunk_state = CHUNK_ALLOCATED;
609     // Flip the chunk_state atomically to avoid race on double-free.
610     if (!atomic_compare_exchange_strong(&m->chunk_state, &old_chunk_state,
611                                         CHUNK_QUARANTINE,
612                                         memory_order_acquire)) {
613       ReportInvalidFree(ptr, old_chunk_state, stack);
614       // It's not safe to push a chunk in quarantine on invalid free.
615       return false;
616     }
617     CHECK_EQ(CHUNK_ALLOCATED, old_chunk_state);
618     // It was a user data.
619     m->SetFreeContext(kInvalidTid, 0);
620     return true;
621   }
622 
623   // Expects the chunk to already be marked as quarantined by using
624   // AtomicallySetQuarantineFlagIfAllocated.
625   void QuarantineChunk(AsanChunk *m, void *ptr, BufferedStackTrace *stack) {
626     CHECK_EQ(atomic_load(&m->chunk_state, memory_order_relaxed),
627              CHUNK_QUARANTINE);
628     AsanThread *t = GetCurrentThread();
629     m->SetFreeContext(t ? t->tid() : 0, StackDepotPut(*stack));
630 
631     Flags &fl = *flags();
632     if (fl.max_free_fill_size > 0) {
633       // We have to skip the chunk header, it contains free_context_id.
634       uptr scribble_start = (uptr)m + kChunkHeaderSize + kChunkHeader2Size;
635       if (m->UsedSize() >= kChunkHeader2Size) {  // Skip Header2 in user area.
636         uptr size_to_fill = m->UsedSize() - kChunkHeader2Size;
637         size_to_fill = Min(size_to_fill, (uptr)fl.max_free_fill_size);
638         REAL(memset)((void *)scribble_start, fl.free_fill_byte, size_to_fill);
639       }
640     }
641 
642     // Poison the region.
643     PoisonShadow(m->Beg(), RoundUpTo(m->UsedSize(), ASAN_SHADOW_GRANULARITY),
644                  kAsanHeapFreeMagic);
645 
646     AsanStats &thread_stats = GetCurrentThreadStats();
647     thread_stats.frees++;
648     thread_stats.freed += m->UsedSize();
649 
650     // Push into quarantine.
651     if (t) {
652       AsanThreadLocalMallocStorage *ms = &t->malloc_storage();
653       AllocatorCache *ac = GetAllocatorCache(ms);
654       quarantine.Put(GetQuarantineCache(ms), QuarantineCallback(ac, stack), m,
655                      m->UsedSize());
656     } else {
657       SpinMutexLock l(&fallback_mutex);
658       AllocatorCache *ac = &fallback_allocator_cache;
659       quarantine.Put(&fallback_quarantine_cache, QuarantineCallback(ac, stack),
660                      m, m->UsedSize());
661     }
662   }
663 
664   void Deallocate(void *ptr, uptr delete_size, uptr delete_alignment,
665                   BufferedStackTrace *stack, AllocType alloc_type) {
666     uptr p = reinterpret_cast<uptr>(ptr);
667     if (p == 0) return;
668 
669     uptr chunk_beg = p - kChunkHeaderSize;
670     AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
671 
672     // On Windows, uninstrumented DLLs may allocate memory before ASan hooks
673     // malloc. Don't report an invalid free in this case.
674     if (SANITIZER_WINDOWS &&
675         !get_allocator().PointerIsMine(ptr)) {
676       if (!IsSystemHeapAddress(p))
677         ReportFreeNotMalloced(p, stack);
678       return;
679     }
680 
681     ASAN_FREE_HOOK(ptr);
682 
683     // Must mark the chunk as quarantined before any changes to its metadata.
684     // Do not quarantine given chunk if we failed to set CHUNK_QUARANTINE flag.
685     if (!AtomicallySetQuarantineFlagIfAllocated(m, ptr, stack)) return;
686 
687     if (m->alloc_type != alloc_type) {
688       if (atomic_load(&alloc_dealloc_mismatch, memory_order_acquire)) {
689         ReportAllocTypeMismatch((uptr)ptr, stack, (AllocType)m->alloc_type,
690                                 (AllocType)alloc_type);
691       }
692     } else {
693       if (flags()->new_delete_type_mismatch &&
694           (alloc_type == FROM_NEW || alloc_type == FROM_NEW_BR) &&
695           ((delete_size && delete_size != m->UsedSize()) ||
696            ComputeUserRequestedAlignmentLog(delete_alignment) !=
697                m->user_requested_alignment_log)) {
698         ReportNewDeleteTypeMismatch(p, delete_size, delete_alignment, stack);
699       }
700     }
701 
702     QuarantineChunk(m, ptr, stack);
703   }
704 
705   void *Reallocate(void *old_ptr, uptr new_size, BufferedStackTrace *stack) {
706     CHECK(old_ptr && new_size);
707     uptr p = reinterpret_cast<uptr>(old_ptr);
708     uptr chunk_beg = p - kChunkHeaderSize;
709     AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
710 
711     AsanStats &thread_stats = GetCurrentThreadStats();
712     thread_stats.reallocs++;
713     thread_stats.realloced += new_size;
714 
715     void *new_ptr = Allocate(new_size, 8, stack, FROM_MALLOC, true);
716     if (new_ptr) {
717       u8 chunk_state = atomic_load(&m->chunk_state, memory_order_acquire);
718       if (chunk_state != CHUNK_ALLOCATED)
719         ReportInvalidFree(old_ptr, chunk_state, stack);
720       CHECK_NE(REAL(memcpy), nullptr);
721       uptr memcpy_size = Min(new_size, m->UsedSize());
722       // If realloc() races with free(), we may start copying freed memory.
723       // However, we will report racy double-free later anyway.
724       REAL(memcpy)(new_ptr, old_ptr, memcpy_size);
725       Deallocate(old_ptr, 0, 0, stack, FROM_MALLOC);
726     }
727     return new_ptr;
728   }
729 
730   void *Calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) {
731     if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
732       if (AllocatorMayReturnNull())
733         return nullptr;
734       ReportCallocOverflow(nmemb, size, stack);
735     }
736     void *ptr = Allocate(nmemb * size, 8, stack, FROM_MALLOC, false);
737     // If the memory comes from the secondary allocator no need to clear it
738     // as it comes directly from mmap.
739     if (ptr && allocator.FromPrimary(ptr))
740       REAL(memset)(ptr, 0, nmemb * size);
741     return ptr;
742   }
743 
744   void ReportInvalidFree(void *ptr, u8 chunk_state, BufferedStackTrace *stack) {
745     if (chunk_state == CHUNK_QUARANTINE)
746       ReportDoubleFree((uptr)ptr, stack);
747     else
748       ReportFreeNotMalloced((uptr)ptr, stack);
749   }
750 
751   void CommitBack(AsanThreadLocalMallocStorage *ms, BufferedStackTrace *stack) {
752     AllocatorCache *ac = GetAllocatorCache(ms);
753     quarantine.Drain(GetQuarantineCache(ms), QuarantineCallback(ac, stack));
754     allocator.SwallowCache(ac);
755   }
756 
757   // -------------------------- Chunk lookup ----------------------
758 
759   // Assumes alloc_beg == allocator.GetBlockBegin(alloc_beg).
760   // Returns nullptr if AsanChunk is not yet initialized just after
761   // get_allocator().Allocate(), or is being destroyed just before
762   // get_allocator().Deallocate().
763   AsanChunk *GetAsanChunk(void *alloc_beg) {
764     if (!alloc_beg)
765       return nullptr;
766     AsanChunk *p = reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Get();
767     if (!p) {
768       if (!allocator.FromPrimary(alloc_beg))
769         return nullptr;
770       p = reinterpret_cast<AsanChunk *>(alloc_beg);
771     }
772     u8 state = atomic_load(&p->chunk_state, memory_order_relaxed);
773     // It does not guaranty that Chunk is initialized, but it's
774     // definitely not for any other value.
775     if (state == CHUNK_ALLOCATED || state == CHUNK_QUARANTINE)
776       return p;
777     return nullptr;
778   }
779 
780   AsanChunk *GetAsanChunkByAddr(uptr p) {
781     void *alloc_beg = allocator.GetBlockBegin(reinterpret_cast<void *>(p));
782     return GetAsanChunk(alloc_beg);
783   }
784 
785   // Allocator must be locked when this function is called.
786   AsanChunk *GetAsanChunkByAddrFastLocked(uptr p) {
787     void *alloc_beg =
788         allocator.GetBlockBeginFastLocked(reinterpret_cast<void *>(p));
789     return GetAsanChunk(alloc_beg);
790   }
791 
792   uptr AllocationSize(uptr p) {
793     AsanChunk *m = GetAsanChunkByAddr(p);
794     if (!m) return 0;
795     if (atomic_load(&m->chunk_state, memory_order_acquire) != CHUNK_ALLOCATED)
796       return 0;
797     if (m->Beg() != p) return 0;
798     return m->UsedSize();
799   }
800 
801   AsanChunkView FindHeapChunkByAddress(uptr addr) {
802     AsanChunk *m1 = GetAsanChunkByAddr(addr);
803     sptr offset = 0;
804     if (!m1 || AsanChunkView(m1).AddrIsAtLeft(addr, 1, &offset)) {
805       // The address is in the chunk's left redzone, so maybe it is actually
806       // a right buffer overflow from the other chunk to the left.
807       // Search a bit to the left to see if there is another chunk.
808       AsanChunk *m2 = nullptr;
809       for (uptr l = 1; l < GetPageSizeCached(); l++) {
810         m2 = GetAsanChunkByAddr(addr - l);
811         if (m2 == m1) continue;  // Still the same chunk.
812         break;
813       }
814       if (m2 && AsanChunkView(m2).AddrIsAtRight(addr, 1, &offset))
815         m1 = ChooseChunk(addr, m2, m1);
816     }
817     return AsanChunkView(m1);
818   }
819 
820   void Purge(BufferedStackTrace *stack) {
821     AsanThread *t = GetCurrentThread();
822     if (t) {
823       AsanThreadLocalMallocStorage *ms = &t->malloc_storage();
824       quarantine.DrainAndRecycle(GetQuarantineCache(ms),
825                                  QuarantineCallback(GetAllocatorCache(ms),
826                                                     stack));
827     }
828     {
829       SpinMutexLock l(&fallback_mutex);
830       quarantine.DrainAndRecycle(&fallback_quarantine_cache,
831                                  QuarantineCallback(&fallback_allocator_cache,
832                                                     stack));
833     }
834 
835     allocator.ForceReleaseToOS();
836   }
837 
838   void PrintStats() {
839     allocator.PrintStats();
840     quarantine.PrintStats();
841   }
842 
843   void ForceLock() SANITIZER_ACQUIRE(fallback_mutex) {
844     allocator.ForceLock();
845     fallback_mutex.Lock();
846   }
847 
848   void ForceUnlock() SANITIZER_RELEASE(fallback_mutex) {
849     fallback_mutex.Unlock();
850     allocator.ForceUnlock();
851   }
852 };
853 
854 static Allocator instance(LINKER_INITIALIZED);
855 
856 static AsanAllocator &get_allocator() {
857   return instance.allocator;
858 }
859 
860 bool AsanChunkView::IsValid() const {
861   return chunk_ && atomic_load(&chunk_->chunk_state, memory_order_relaxed) !=
862                        CHUNK_INVALID;
863 }
864 bool AsanChunkView::IsAllocated() const {
865   return chunk_ && atomic_load(&chunk_->chunk_state, memory_order_relaxed) ==
866                        CHUNK_ALLOCATED;
867 }
868 bool AsanChunkView::IsQuarantined() const {
869   return chunk_ && atomic_load(&chunk_->chunk_state, memory_order_relaxed) ==
870                        CHUNK_QUARANTINE;
871 }
872 uptr AsanChunkView::Beg() const { return chunk_->Beg(); }
873 uptr AsanChunkView::End() const { return Beg() + UsedSize(); }
874 uptr AsanChunkView::UsedSize() const { return chunk_->UsedSize(); }
875 u32 AsanChunkView::UserRequestedAlignment() const {
876   return Allocator::ComputeUserAlignment(chunk_->user_requested_alignment_log);
877 }
878 
879 uptr AsanChunkView::AllocTid() const {
880   u32 tid = 0;
881   u32 stack = 0;
882   chunk_->GetAllocContext(tid, stack);
883   return tid;
884 }
885 
886 uptr AsanChunkView::FreeTid() const {
887   if (!IsQuarantined())
888     return kInvalidTid;
889   u32 tid = 0;
890   u32 stack = 0;
891   chunk_->GetFreeContext(tid, stack);
892   return tid;
893 }
894 
895 AllocType AsanChunkView::GetAllocType() const {
896   return (AllocType)chunk_->alloc_type;
897 }
898 
899 u32 AsanChunkView::GetAllocStackId() const {
900   u32 tid = 0;
901   u32 stack = 0;
902   chunk_->GetAllocContext(tid, stack);
903   return stack;
904 }
905 
906 u32 AsanChunkView::GetFreeStackId() const {
907   if (!IsQuarantined())
908     return 0;
909   u32 tid = 0;
910   u32 stack = 0;
911   chunk_->GetFreeContext(tid, stack);
912   return stack;
913 }
914 
915 void InitializeAllocator(const AllocatorOptions &options) {
916   instance.InitLinkerInitialized(options);
917 }
918 
919 void ReInitializeAllocator(const AllocatorOptions &options) {
920   instance.ReInitialize(options);
921 }
922 
923 void GetAllocatorOptions(AllocatorOptions *options) {
924   instance.GetOptions(options);
925 }
926 
927 AsanChunkView FindHeapChunkByAddress(uptr addr) {
928   return instance.FindHeapChunkByAddress(addr);
929 }
930 AsanChunkView FindHeapChunkByAllocBeg(uptr addr) {
931   return AsanChunkView(instance.GetAsanChunk(reinterpret_cast<void*>(addr)));
932 }
933 
934 void AsanThreadLocalMallocStorage::CommitBack() {
935   GET_STACK_TRACE_MALLOC;
936   instance.CommitBack(this, &stack);
937 }
938 
939 void PrintInternalAllocatorStats() {
940   instance.PrintStats();
941 }
942 
943 void asan_free(void *ptr, BufferedStackTrace *stack, AllocType alloc_type) {
944   instance.Deallocate(ptr, 0, 0, stack, alloc_type);
945 }
946 
947 void asan_delete(void *ptr, uptr size, uptr alignment,
948                  BufferedStackTrace *stack, AllocType alloc_type) {
949   instance.Deallocate(ptr, size, alignment, stack, alloc_type);
950 }
951 
952 void *asan_malloc(uptr size, BufferedStackTrace *stack) {
953   return SetErrnoOnNull(instance.Allocate(size, 8, stack, FROM_MALLOC, true));
954 }
955 
956 void *asan_calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) {
957   return SetErrnoOnNull(instance.Calloc(nmemb, size, stack));
958 }
959 
960 void *asan_reallocarray(void *p, uptr nmemb, uptr size,
961                         BufferedStackTrace *stack) {
962   if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
963     errno = errno_ENOMEM;
964     if (AllocatorMayReturnNull())
965       return nullptr;
966     ReportReallocArrayOverflow(nmemb, size, stack);
967   }
968   return asan_realloc(p, nmemb * size, stack);
969 }
970 
971 void *asan_realloc(void *p, uptr size, BufferedStackTrace *stack) {
972   if (!p)
973     return SetErrnoOnNull(instance.Allocate(size, 8, stack, FROM_MALLOC, true));
974   if (size == 0) {
975     if (flags()->allocator_frees_and_returns_null_on_realloc_zero) {
976       instance.Deallocate(p, 0, 0, stack, FROM_MALLOC);
977       return nullptr;
978     }
979     // Allocate a size of 1 if we shouldn't free() on Realloc to 0
980     size = 1;
981   }
982   return SetErrnoOnNull(instance.Reallocate(p, size, stack));
983 }
984 
985 void *asan_valloc(uptr size, BufferedStackTrace *stack) {
986   return SetErrnoOnNull(
987       instance.Allocate(size, GetPageSizeCached(), stack, FROM_MALLOC, true));
988 }
989 
990 void *asan_pvalloc(uptr size, BufferedStackTrace *stack) {
991   uptr PageSize = GetPageSizeCached();
992   if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) {
993     errno = errno_ENOMEM;
994     if (AllocatorMayReturnNull())
995       return nullptr;
996     ReportPvallocOverflow(size, stack);
997   }
998   // pvalloc(0) should allocate one page.
999   size = size ? RoundUpTo(size, PageSize) : PageSize;
1000   return SetErrnoOnNull(
1001       instance.Allocate(size, PageSize, stack, FROM_MALLOC, true));
1002 }
1003 
1004 void *asan_memalign(uptr alignment, uptr size, BufferedStackTrace *stack,
1005                     AllocType alloc_type) {
1006   if (UNLIKELY(!IsPowerOfTwo(alignment))) {
1007     errno = errno_EINVAL;
1008     if (AllocatorMayReturnNull())
1009       return nullptr;
1010     ReportInvalidAllocationAlignment(alignment, stack);
1011   }
1012   return SetErrnoOnNull(
1013       instance.Allocate(size, alignment, stack, alloc_type, true));
1014 }
1015 
1016 void *asan_aligned_alloc(uptr alignment, uptr size, BufferedStackTrace *stack) {
1017   if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) {
1018     errno = errno_EINVAL;
1019     if (AllocatorMayReturnNull())
1020       return nullptr;
1021     ReportInvalidAlignedAllocAlignment(size, alignment, stack);
1022   }
1023   return SetErrnoOnNull(
1024       instance.Allocate(size, alignment, stack, FROM_MALLOC, true));
1025 }
1026 
1027 int asan_posix_memalign(void **memptr, uptr alignment, uptr size,
1028                         BufferedStackTrace *stack) {
1029   if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) {
1030     if (AllocatorMayReturnNull())
1031       return errno_EINVAL;
1032     ReportInvalidPosixMemalignAlignment(alignment, stack);
1033   }
1034   void *ptr = instance.Allocate(size, alignment, stack, FROM_MALLOC, true);
1035   if (UNLIKELY(!ptr))
1036     // OOM error is already taken care of by Allocate.
1037     return errno_ENOMEM;
1038   CHECK(IsAligned((uptr)ptr, alignment));
1039   *memptr = ptr;
1040   return 0;
1041 }
1042 
1043 uptr asan_malloc_usable_size(const void *ptr, uptr pc, uptr bp) {
1044   if (!ptr) return 0;
1045   uptr usable_size = instance.AllocationSize(reinterpret_cast<uptr>(ptr));
1046   if (flags()->check_malloc_usable_size && (usable_size == 0)) {
1047     GET_STACK_TRACE_FATAL(pc, bp);
1048     ReportMallocUsableSizeNotOwned((uptr)ptr, &stack);
1049   }
1050   return usable_size;
1051 }
1052 
1053 uptr asan_mz_size(const void *ptr) {
1054   return instance.AllocationSize(reinterpret_cast<uptr>(ptr));
1055 }
1056 
1057 void asan_mz_force_lock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
1058   instance.ForceLock();
1059 }
1060 
1061 void asan_mz_force_unlock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
1062   instance.ForceUnlock();
1063 }
1064 
1065 }  // namespace __asan
1066 
1067 // --- Implementation of LSan-specific functions --- {{{1
1068 namespace __lsan {
1069 void LockAllocator() {
1070   __asan::get_allocator().ForceLock();
1071 }
1072 
1073 void UnlockAllocator() {
1074   __asan::get_allocator().ForceUnlock();
1075 }
1076 
1077 void GetAllocatorGlobalRange(uptr *begin, uptr *end) {
1078   *begin = (uptr)&__asan::get_allocator();
1079   *end = *begin + sizeof(__asan::get_allocator());
1080 }
1081 
1082 uptr PointsIntoChunk(void *p) {
1083   uptr addr = reinterpret_cast<uptr>(p);
1084   __asan::AsanChunk *m = __asan::instance.GetAsanChunkByAddrFastLocked(addr);
1085   if (!m || atomic_load(&m->chunk_state, memory_order_acquire) !=
1086                 __asan::CHUNK_ALLOCATED)
1087     return 0;
1088   uptr chunk = m->Beg();
1089   if (m->AddrIsInside(addr))
1090     return chunk;
1091   if (IsSpecialCaseOfOperatorNew0(chunk, m->UsedSize(), addr))
1092     return chunk;
1093   return 0;
1094 }
1095 
1096 uptr GetUserBegin(uptr chunk) {
1097   __asan::AsanChunk *m = __asan::instance.GetAsanChunkByAddrFastLocked(chunk);
1098   return m ? m->Beg() : 0;
1099 }
1100 
1101 LsanMetadata::LsanMetadata(uptr chunk) {
1102   metadata_ = chunk ? reinterpret_cast<void *>(chunk - __asan::kChunkHeaderSize)
1103                     : nullptr;
1104 }
1105 
1106 bool LsanMetadata::allocated() const {
1107   if (!metadata_)
1108     return false;
1109   __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
1110   return atomic_load(&m->chunk_state, memory_order_relaxed) ==
1111          __asan::CHUNK_ALLOCATED;
1112 }
1113 
1114 ChunkTag LsanMetadata::tag() const {
1115   __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
1116   return static_cast<ChunkTag>(m->lsan_tag);
1117 }
1118 
1119 void LsanMetadata::set_tag(ChunkTag value) {
1120   __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
1121   m->lsan_tag = value;
1122 }
1123 
1124 uptr LsanMetadata::requested_size() const {
1125   __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
1126   return m->UsedSize();
1127 }
1128 
1129 u32 LsanMetadata::stack_trace_id() const {
1130   __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
1131   u32 tid = 0;
1132   u32 stack = 0;
1133   m->GetAllocContext(tid, stack);
1134   return stack;
1135 }
1136 
1137 void ForEachChunk(ForEachChunkCallback callback, void *arg) {
1138   __asan::get_allocator().ForEachChunk(callback, arg);
1139 }
1140 
1141 IgnoreObjectResult IgnoreObjectLocked(const void *p) {
1142   uptr addr = reinterpret_cast<uptr>(p);
1143   __asan::AsanChunk *m = __asan::instance.GetAsanChunkByAddr(addr);
1144   if (!m ||
1145       (atomic_load(&m->chunk_state, memory_order_acquire) !=
1146        __asan::CHUNK_ALLOCATED) ||
1147       !m->AddrIsInside(addr)) {
1148     return kIgnoreObjectInvalid;
1149   }
1150   if (m->lsan_tag == kIgnored)
1151     return kIgnoreObjectAlreadyIgnored;
1152   m->lsan_tag = __lsan::kIgnored;
1153   return kIgnoreObjectSuccess;
1154 }
1155 
1156 void GetAdditionalThreadContextPtrs(ThreadContextBase *tctx, void *ptrs) {
1157   // Look for the arg pointer of threads that have been created or are running.
1158   // This is necessary to prevent false positive leaks due to the AsanThread
1159   // holding the only live reference to a heap object.  This can happen because
1160   // the `pthread_create()` interceptor doesn't wait for the child thread to
1161   // start before returning and thus loosing the the only live reference to the
1162   // heap object on the stack.
1163 
1164   __asan::AsanThreadContext *atctx =
1165       reinterpret_cast<__asan::AsanThreadContext *>(tctx);
1166   __asan::AsanThread *asan_thread = atctx->thread;
1167 
1168   // Note ThreadStatusRunning is required because there is a small window where
1169   // the thread status switches to `ThreadStatusRunning` but the `arg` pointer
1170   // still isn't on the stack yet.
1171   if (atctx->status != ThreadStatusCreated &&
1172       atctx->status != ThreadStatusRunning)
1173     return;
1174 
1175   uptr thread_arg = reinterpret_cast<uptr>(asan_thread->get_arg());
1176   if (!thread_arg)
1177     return;
1178 
1179   auto ptrsVec = reinterpret_cast<InternalMmapVector<uptr> *>(ptrs);
1180   ptrsVec->push_back(thread_arg);
1181 }
1182 
1183 }  // namespace __lsan
1184 
1185 // ---------------------- Interface ---------------- {{{1
1186 using namespace __asan;
1187 
1188 // ASan allocator doesn't reserve extra bytes, so normally we would
1189 // just return "size". We don't want to expose our redzone sizes, etc here.
1190 uptr __sanitizer_get_estimated_allocated_size(uptr size) {
1191   return size;
1192 }
1193 
1194 int __sanitizer_get_ownership(const void *p) {
1195   uptr ptr = reinterpret_cast<uptr>(p);
1196   return instance.AllocationSize(ptr) > 0;
1197 }
1198 
1199 uptr __sanitizer_get_allocated_size(const void *p) {
1200   if (!p) return 0;
1201   uptr ptr = reinterpret_cast<uptr>(p);
1202   uptr allocated_size = instance.AllocationSize(ptr);
1203   // Die if p is not malloced or if it is already freed.
1204   if (allocated_size == 0) {
1205     GET_STACK_TRACE_FATAL_HERE;
1206     ReportSanitizerGetAllocatedSizeNotOwned(ptr, &stack);
1207   }
1208   return allocated_size;
1209 }
1210 
1211 void __sanitizer_purge_allocator() {
1212   GET_STACK_TRACE_MALLOC;
1213   instance.Purge(&stack);
1214 }
1215 
1216 int __asan_update_allocation_context(void* addr) {
1217   GET_STACK_TRACE_MALLOC;
1218   return instance.UpdateAllocationStack((uptr)addr, &stack);
1219 }
1220 
1221 #if !SANITIZER_SUPPORTS_WEAK_HOOKS
1222 // Provide default (no-op) implementation of malloc hooks.
1223 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_malloc_hook,
1224                              void *ptr, uptr size) {
1225   (void)ptr;
1226   (void)size;
1227 }
1228 
1229 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_free_hook, void *ptr) {
1230   (void)ptr;
1231 }
1232 #endif
1233