1 //===-- asan_allocator.cpp ------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is a part of AddressSanitizer, an address sanity checker. 10 // 11 // Implementation of ASan's memory allocator, 2-nd version. 12 // This variant uses the allocator from sanitizer_common, i.e. the one shared 13 // with ThreadSanitizer and MemorySanitizer. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "asan_allocator.h" 18 19 #include "asan_mapping.h" 20 #include "asan_poisoning.h" 21 #include "asan_report.h" 22 #include "asan_stack.h" 23 #include "asan_thread.h" 24 #include "lsan/lsan_common.h" 25 #include "sanitizer_common/sanitizer_allocator_checks.h" 26 #include "sanitizer_common/sanitizer_allocator_interface.h" 27 #include "sanitizer_common/sanitizer_errno.h" 28 #include "sanitizer_common/sanitizer_flags.h" 29 #include "sanitizer_common/sanitizer_internal_defs.h" 30 #include "sanitizer_common/sanitizer_list.h" 31 #include "sanitizer_common/sanitizer_quarantine.h" 32 #include "sanitizer_common/sanitizer_stackdepot.h" 33 34 namespace __asan { 35 36 // Valid redzone sizes are 16, 32, 64, ... 2048, so we encode them in 3 bits. 37 // We use adaptive redzones: for larger allocation larger redzones are used. 38 static u32 RZLog2Size(u32 rz_log) { 39 CHECK_LT(rz_log, 8); 40 return 16 << rz_log; 41 } 42 43 static u32 RZSize2Log(u32 rz_size) { 44 CHECK_GE(rz_size, 16); 45 CHECK_LE(rz_size, 2048); 46 CHECK(IsPowerOfTwo(rz_size)); 47 u32 res = Log2(rz_size) - 4; 48 CHECK_EQ(rz_size, RZLog2Size(res)); 49 return res; 50 } 51 52 static AsanAllocator &get_allocator(); 53 54 static void AtomicContextStore(volatile atomic_uint64_t *atomic_context, 55 u32 tid, u32 stack) { 56 u64 context = tid; 57 context <<= 32; 58 context += stack; 59 atomic_store(atomic_context, context, memory_order_relaxed); 60 } 61 62 static void AtomicContextLoad(const volatile atomic_uint64_t *atomic_context, 63 u32 &tid, u32 &stack) { 64 u64 context = atomic_load(atomic_context, memory_order_relaxed); 65 stack = context; 66 context >>= 32; 67 tid = context; 68 } 69 70 // The memory chunk allocated from the underlying allocator looks like this: 71 // L L L L L L H H U U U U U U R R 72 // L -- left redzone words (0 or more bytes) 73 // H -- ChunkHeader (16 bytes), which is also a part of the left redzone. 74 // U -- user memory. 75 // R -- right redzone (0 or more bytes) 76 // ChunkBase consists of ChunkHeader and other bytes that overlap with user 77 // memory. 78 79 // If the left redzone is greater than the ChunkHeader size we store a magic 80 // value in the first uptr word of the memory block and store the address of 81 // ChunkBase in the next uptr. 82 // M B L L L L L L L L L H H U U U U U U 83 // | ^ 84 // ---------------------| 85 // M -- magic value kAllocBegMagic 86 // B -- address of ChunkHeader pointing to the first 'H' 87 88 class ChunkHeader { 89 public: 90 atomic_uint8_t chunk_state; 91 u8 alloc_type : 2; 92 u8 lsan_tag : 2; 93 94 // align < 8 -> 0 95 // else -> log2(min(align, 512)) - 2 96 u8 user_requested_alignment_log : 3; 97 98 private: 99 u16 user_requested_size_hi; 100 u32 user_requested_size_lo; 101 atomic_uint64_t alloc_context_id; 102 103 public: 104 uptr UsedSize() const { 105 static_assert(sizeof(user_requested_size_lo) == 4, 106 "Expression below requires this"); 107 return FIRST_32_SECOND_64(0, ((uptr)user_requested_size_hi << 32)) + 108 user_requested_size_lo; 109 } 110 111 void SetUsedSize(uptr size) { 112 user_requested_size_lo = size; 113 static_assert(sizeof(user_requested_size_lo) == 4, 114 "Expression below requires this"); 115 user_requested_size_hi = FIRST_32_SECOND_64(0, size >> 32); 116 CHECK_EQ(UsedSize(), size); 117 } 118 119 void SetAllocContext(u32 tid, u32 stack) { 120 AtomicContextStore(&alloc_context_id, tid, stack); 121 } 122 123 void GetAllocContext(u32 &tid, u32 &stack) const { 124 AtomicContextLoad(&alloc_context_id, tid, stack); 125 } 126 }; 127 128 class ChunkBase : public ChunkHeader { 129 atomic_uint64_t free_context_id; 130 131 public: 132 void SetFreeContext(u32 tid, u32 stack) { 133 AtomicContextStore(&free_context_id, tid, stack); 134 } 135 136 void GetFreeContext(u32 &tid, u32 &stack) const { 137 AtomicContextLoad(&free_context_id, tid, stack); 138 } 139 }; 140 141 static const uptr kChunkHeaderSize = sizeof(ChunkHeader); 142 static const uptr kChunkHeader2Size = sizeof(ChunkBase) - kChunkHeaderSize; 143 COMPILER_CHECK(kChunkHeaderSize == 16); 144 COMPILER_CHECK(kChunkHeader2Size <= 16); 145 146 enum { 147 // Either just allocated by underlying allocator, but AsanChunk is not yet 148 // ready, or almost returned to undelying allocator and AsanChunk is already 149 // meaningless. 150 CHUNK_INVALID = 0, 151 // The chunk is allocated and not yet freed. 152 CHUNK_ALLOCATED = 2, 153 // The chunk was freed and put into quarantine zone. 154 CHUNK_QUARANTINE = 3, 155 }; 156 157 class AsanChunk : public ChunkBase { 158 public: 159 uptr Beg() { return reinterpret_cast<uptr>(this) + kChunkHeaderSize; } 160 bool AddrIsInside(uptr addr) { 161 return (addr >= Beg()) && (addr < Beg() + UsedSize()); 162 } 163 }; 164 165 class LargeChunkHeader { 166 static constexpr uptr kAllocBegMagic = 167 FIRST_32_SECOND_64(0xCC6E96B9, 0xCC6E96B9CC6E96B9ULL); 168 atomic_uintptr_t magic; 169 AsanChunk *chunk_header; 170 171 public: 172 AsanChunk *Get() const { 173 return atomic_load(&magic, memory_order_acquire) == kAllocBegMagic 174 ? chunk_header 175 : nullptr; 176 } 177 178 void Set(AsanChunk *p) { 179 if (p) { 180 chunk_header = p; 181 atomic_store(&magic, kAllocBegMagic, memory_order_release); 182 return; 183 } 184 185 uptr old = kAllocBegMagic; 186 if (!atomic_compare_exchange_strong(&magic, &old, 0, 187 memory_order_release)) { 188 CHECK_EQ(old, kAllocBegMagic); 189 } 190 } 191 }; 192 193 struct QuarantineCallback { 194 QuarantineCallback(AllocatorCache *cache, BufferedStackTrace *stack) 195 : cache_(cache), 196 stack_(stack) { 197 } 198 199 void Recycle(AsanChunk *m) { 200 void *p = get_allocator().GetBlockBegin(m); 201 if (p != m) { 202 // Clear the magic value, as allocator internals may overwrite the 203 // contents of deallocated chunk, confusing GetAsanChunk lookup. 204 reinterpret_cast<LargeChunkHeader *>(p)->Set(nullptr); 205 } 206 207 u8 old_chunk_state = CHUNK_QUARANTINE; 208 if (!atomic_compare_exchange_strong(&m->chunk_state, &old_chunk_state, 209 CHUNK_INVALID, memory_order_acquire)) { 210 CHECK_EQ(old_chunk_state, CHUNK_QUARANTINE); 211 } 212 213 PoisonShadow(m->Beg(), 214 RoundUpTo(m->UsedSize(), SHADOW_GRANULARITY), 215 kAsanHeapLeftRedzoneMagic); 216 217 // Statistics. 218 AsanStats &thread_stats = GetCurrentThreadStats(); 219 thread_stats.real_frees++; 220 thread_stats.really_freed += m->UsedSize(); 221 222 get_allocator().Deallocate(cache_, p); 223 } 224 225 void *Allocate(uptr size) { 226 void *res = get_allocator().Allocate(cache_, size, 1); 227 // TODO(alekseys): Consider making quarantine OOM-friendly. 228 if (UNLIKELY(!res)) 229 ReportOutOfMemory(size, stack_); 230 return res; 231 } 232 233 void Deallocate(void *p) { 234 get_allocator().Deallocate(cache_, p); 235 } 236 237 private: 238 AllocatorCache* const cache_; 239 BufferedStackTrace* const stack_; 240 }; 241 242 typedef Quarantine<QuarantineCallback, AsanChunk> AsanQuarantine; 243 typedef AsanQuarantine::Cache QuarantineCache; 244 245 void AsanMapUnmapCallback::OnMap(uptr p, uptr size) const { 246 PoisonShadow(p, size, kAsanHeapLeftRedzoneMagic); 247 // Statistics. 248 AsanStats &thread_stats = GetCurrentThreadStats(); 249 thread_stats.mmaps++; 250 thread_stats.mmaped += size; 251 } 252 void AsanMapUnmapCallback::OnUnmap(uptr p, uptr size) const { 253 PoisonShadow(p, size, 0); 254 // We are about to unmap a chunk of user memory. 255 // Mark the corresponding shadow memory as not needed. 256 FlushUnneededASanShadowMemory(p, size); 257 // Statistics. 258 AsanStats &thread_stats = GetCurrentThreadStats(); 259 thread_stats.munmaps++; 260 thread_stats.munmaped += size; 261 } 262 263 // We can not use THREADLOCAL because it is not supported on some of the 264 // platforms we care about (OSX 10.6, Android). 265 // static THREADLOCAL AllocatorCache cache; 266 AllocatorCache *GetAllocatorCache(AsanThreadLocalMallocStorage *ms) { 267 CHECK(ms); 268 return &ms->allocator_cache; 269 } 270 271 QuarantineCache *GetQuarantineCache(AsanThreadLocalMallocStorage *ms) { 272 CHECK(ms); 273 CHECK_LE(sizeof(QuarantineCache), sizeof(ms->quarantine_cache)); 274 return reinterpret_cast<QuarantineCache *>(ms->quarantine_cache); 275 } 276 277 void AllocatorOptions::SetFrom(const Flags *f, const CommonFlags *cf) { 278 quarantine_size_mb = f->quarantine_size_mb; 279 thread_local_quarantine_size_kb = f->thread_local_quarantine_size_kb; 280 min_redzone = f->redzone; 281 max_redzone = f->max_redzone; 282 may_return_null = cf->allocator_may_return_null; 283 alloc_dealloc_mismatch = f->alloc_dealloc_mismatch; 284 release_to_os_interval_ms = cf->allocator_release_to_os_interval_ms; 285 } 286 287 void AllocatorOptions::CopyTo(Flags *f, CommonFlags *cf) { 288 f->quarantine_size_mb = quarantine_size_mb; 289 f->thread_local_quarantine_size_kb = thread_local_quarantine_size_kb; 290 f->redzone = min_redzone; 291 f->max_redzone = max_redzone; 292 cf->allocator_may_return_null = may_return_null; 293 f->alloc_dealloc_mismatch = alloc_dealloc_mismatch; 294 cf->allocator_release_to_os_interval_ms = release_to_os_interval_ms; 295 } 296 297 struct Allocator { 298 static const uptr kMaxAllowedMallocSize = 299 FIRST_32_SECOND_64(3UL << 30, 1ULL << 40); 300 301 AsanAllocator allocator; 302 AsanQuarantine quarantine; 303 StaticSpinMutex fallback_mutex; 304 AllocatorCache fallback_allocator_cache; 305 QuarantineCache fallback_quarantine_cache; 306 307 uptr max_user_defined_malloc_size; 308 atomic_uint8_t rss_limit_exceeded; 309 310 // ------------------- Options -------------------------- 311 atomic_uint16_t min_redzone; 312 atomic_uint16_t max_redzone; 313 atomic_uint8_t alloc_dealloc_mismatch; 314 315 // ------------------- Initialization ------------------------ 316 explicit Allocator(LinkerInitialized) 317 : quarantine(LINKER_INITIALIZED), 318 fallback_quarantine_cache(LINKER_INITIALIZED) {} 319 320 void CheckOptions(const AllocatorOptions &options) const { 321 CHECK_GE(options.min_redzone, 16); 322 CHECK_GE(options.max_redzone, options.min_redzone); 323 CHECK_LE(options.max_redzone, 2048); 324 CHECK(IsPowerOfTwo(options.min_redzone)); 325 CHECK(IsPowerOfTwo(options.max_redzone)); 326 } 327 328 void SharedInitCode(const AllocatorOptions &options) { 329 CheckOptions(options); 330 quarantine.Init((uptr)options.quarantine_size_mb << 20, 331 (uptr)options.thread_local_quarantine_size_kb << 10); 332 atomic_store(&alloc_dealloc_mismatch, options.alloc_dealloc_mismatch, 333 memory_order_release); 334 atomic_store(&min_redzone, options.min_redzone, memory_order_release); 335 atomic_store(&max_redzone, options.max_redzone, memory_order_release); 336 } 337 338 void InitLinkerInitialized(const AllocatorOptions &options) { 339 SetAllocatorMayReturnNull(options.may_return_null); 340 allocator.InitLinkerInitialized(options.release_to_os_interval_ms); 341 SharedInitCode(options); 342 max_user_defined_malloc_size = common_flags()->max_allocation_size_mb 343 ? common_flags()->max_allocation_size_mb 344 << 20 345 : kMaxAllowedMallocSize; 346 } 347 348 bool RssLimitExceeded() { 349 return atomic_load(&rss_limit_exceeded, memory_order_relaxed); 350 } 351 352 void SetRssLimitExceeded(bool limit_exceeded) { 353 atomic_store(&rss_limit_exceeded, limit_exceeded, memory_order_relaxed); 354 } 355 356 void RePoisonChunk(uptr chunk) { 357 // This could be a user-facing chunk (with redzones), or some internal 358 // housekeeping chunk, like TransferBatch. Start by assuming the former. 359 AsanChunk *ac = GetAsanChunk((void *)chunk); 360 uptr allocated_size = allocator.GetActuallyAllocatedSize((void *)chunk); 361 if (ac && atomic_load(&ac->chunk_state, memory_order_acquire) == 362 CHUNK_ALLOCATED) { 363 uptr beg = ac->Beg(); 364 uptr end = ac->Beg() + ac->UsedSize(); 365 uptr chunk_end = chunk + allocated_size; 366 if (chunk < beg && beg < end && end <= chunk_end) { 367 // Looks like a valid AsanChunk in use, poison redzones only. 368 PoisonShadow(chunk, beg - chunk, kAsanHeapLeftRedzoneMagic); 369 uptr end_aligned_down = RoundDownTo(end, SHADOW_GRANULARITY); 370 FastPoisonShadowPartialRightRedzone( 371 end_aligned_down, end - end_aligned_down, 372 chunk_end - end_aligned_down, kAsanHeapLeftRedzoneMagic); 373 return; 374 } 375 } 376 377 // This is either not an AsanChunk or freed or quarantined AsanChunk. 378 // In either case, poison everything. 379 PoisonShadow(chunk, allocated_size, kAsanHeapLeftRedzoneMagic); 380 } 381 382 void ReInitialize(const AllocatorOptions &options) { 383 SetAllocatorMayReturnNull(options.may_return_null); 384 allocator.SetReleaseToOSIntervalMs(options.release_to_os_interval_ms); 385 SharedInitCode(options); 386 387 // Poison all existing allocation's redzones. 388 if (CanPoisonMemory()) { 389 allocator.ForceLock(); 390 allocator.ForEachChunk( 391 [](uptr chunk, void *alloc) { 392 ((Allocator *)alloc)->RePoisonChunk(chunk); 393 }, 394 this); 395 allocator.ForceUnlock(); 396 } 397 } 398 399 void GetOptions(AllocatorOptions *options) const { 400 options->quarantine_size_mb = quarantine.GetSize() >> 20; 401 options->thread_local_quarantine_size_kb = quarantine.GetCacheSize() >> 10; 402 options->min_redzone = atomic_load(&min_redzone, memory_order_acquire); 403 options->max_redzone = atomic_load(&max_redzone, memory_order_acquire); 404 options->may_return_null = AllocatorMayReturnNull(); 405 options->alloc_dealloc_mismatch = 406 atomic_load(&alloc_dealloc_mismatch, memory_order_acquire); 407 options->release_to_os_interval_ms = allocator.ReleaseToOSIntervalMs(); 408 } 409 410 // -------------------- Helper methods. ------------------------- 411 uptr ComputeRZLog(uptr user_requested_size) { 412 u32 rz_log = user_requested_size <= 64 - 16 ? 0 413 : user_requested_size <= 128 - 32 ? 1 414 : user_requested_size <= 512 - 64 ? 2 415 : user_requested_size <= 4096 - 128 ? 3 416 : user_requested_size <= (1 << 14) - 256 ? 4 417 : user_requested_size <= (1 << 15) - 512 ? 5 418 : user_requested_size <= (1 << 16) - 1024 ? 6 419 : 7; 420 u32 hdr_log = RZSize2Log(RoundUpToPowerOfTwo(sizeof(ChunkHeader))); 421 u32 min_log = RZSize2Log(atomic_load(&min_redzone, memory_order_acquire)); 422 u32 max_log = RZSize2Log(atomic_load(&max_redzone, memory_order_acquire)); 423 return Min(Max(rz_log, Max(min_log, hdr_log)), Max(max_log, hdr_log)); 424 } 425 426 static uptr ComputeUserRequestedAlignmentLog(uptr user_requested_alignment) { 427 if (user_requested_alignment < 8) 428 return 0; 429 if (user_requested_alignment > 512) 430 user_requested_alignment = 512; 431 return Log2(user_requested_alignment) - 2; 432 } 433 434 static uptr ComputeUserAlignment(uptr user_requested_alignment_log) { 435 if (user_requested_alignment_log == 0) 436 return 0; 437 return 1LL << (user_requested_alignment_log + 2); 438 } 439 440 // We have an address between two chunks, and we want to report just one. 441 AsanChunk *ChooseChunk(uptr addr, AsanChunk *left_chunk, 442 AsanChunk *right_chunk) { 443 if (!left_chunk) 444 return right_chunk; 445 if (!right_chunk) 446 return left_chunk; 447 // Prefer an allocated chunk over freed chunk and freed chunk 448 // over available chunk. 449 u8 left_state = atomic_load(&left_chunk->chunk_state, memory_order_relaxed); 450 u8 right_state = 451 atomic_load(&right_chunk->chunk_state, memory_order_relaxed); 452 if (left_state != right_state) { 453 if (left_state == CHUNK_ALLOCATED) 454 return left_chunk; 455 if (right_state == CHUNK_ALLOCATED) 456 return right_chunk; 457 if (left_state == CHUNK_QUARANTINE) 458 return left_chunk; 459 if (right_state == CHUNK_QUARANTINE) 460 return right_chunk; 461 } 462 // Same chunk_state: choose based on offset. 463 sptr l_offset = 0, r_offset = 0; 464 CHECK(AsanChunkView(left_chunk).AddrIsAtRight(addr, 1, &l_offset)); 465 CHECK(AsanChunkView(right_chunk).AddrIsAtLeft(addr, 1, &r_offset)); 466 if (l_offset < r_offset) 467 return left_chunk; 468 return right_chunk; 469 } 470 471 bool UpdateAllocationStack(uptr addr, BufferedStackTrace *stack) { 472 AsanChunk *m = GetAsanChunkByAddr(addr); 473 if (!m) return false; 474 if (atomic_load(&m->chunk_state, memory_order_acquire) != CHUNK_ALLOCATED) 475 return false; 476 if (m->Beg() != addr) return false; 477 AsanThread *t = GetCurrentThread(); 478 m->SetAllocContext(t ? t->tid() : kMainTid, StackDepotPut(*stack)); 479 return true; 480 } 481 482 // -------------------- Allocation/Deallocation routines --------------- 483 void *Allocate(uptr size, uptr alignment, BufferedStackTrace *stack, 484 AllocType alloc_type, bool can_fill) { 485 if (UNLIKELY(!asan_inited)) 486 AsanInitFromRtl(); 487 if (RssLimitExceeded()) { 488 if (AllocatorMayReturnNull()) 489 return nullptr; 490 ReportRssLimitExceeded(stack); 491 } 492 Flags &fl = *flags(); 493 CHECK(stack); 494 const uptr min_alignment = SHADOW_GRANULARITY; 495 const uptr user_requested_alignment_log = 496 ComputeUserRequestedAlignmentLog(alignment); 497 if (alignment < min_alignment) 498 alignment = min_alignment; 499 if (size == 0) { 500 // We'd be happy to avoid allocating memory for zero-size requests, but 501 // some programs/tests depend on this behavior and assume that malloc 502 // would not return NULL even for zero-size allocations. Moreover, it 503 // looks like operator new should never return NULL, and results of 504 // consecutive "new" calls must be different even if the allocated size 505 // is zero. 506 size = 1; 507 } 508 CHECK(IsPowerOfTwo(alignment)); 509 uptr rz_log = ComputeRZLog(size); 510 uptr rz_size = RZLog2Size(rz_log); 511 uptr rounded_size = RoundUpTo(Max(size, kChunkHeader2Size), alignment); 512 uptr needed_size = rounded_size + rz_size; 513 if (alignment > min_alignment) 514 needed_size += alignment; 515 // If we are allocating from the secondary allocator, there will be no 516 // automatic right redzone, so add the right redzone manually. 517 if (!PrimaryAllocator::CanAllocate(needed_size, alignment)) 518 needed_size += rz_size; 519 CHECK(IsAligned(needed_size, min_alignment)); 520 if (size > kMaxAllowedMallocSize || needed_size > kMaxAllowedMallocSize || 521 size > max_user_defined_malloc_size) { 522 if (AllocatorMayReturnNull()) { 523 Report("WARNING: AddressSanitizer failed to allocate 0x%zx bytes\n", 524 size); 525 return nullptr; 526 } 527 uptr malloc_limit = 528 Min(kMaxAllowedMallocSize, max_user_defined_malloc_size); 529 ReportAllocationSizeTooBig(size, needed_size, malloc_limit, stack); 530 } 531 532 AsanThread *t = GetCurrentThread(); 533 void *allocated; 534 if (t) { 535 AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage()); 536 allocated = allocator.Allocate(cache, needed_size, 8); 537 } else { 538 SpinMutexLock l(&fallback_mutex); 539 AllocatorCache *cache = &fallback_allocator_cache; 540 allocated = allocator.Allocate(cache, needed_size, 8); 541 } 542 if (UNLIKELY(!allocated)) { 543 SetAllocatorOutOfMemory(); 544 if (AllocatorMayReturnNull()) 545 return nullptr; 546 ReportOutOfMemory(size, stack); 547 } 548 549 if (*(u8 *)MEM_TO_SHADOW((uptr)allocated) == 0 && CanPoisonMemory()) { 550 // Heap poisoning is enabled, but the allocator provides an unpoisoned 551 // chunk. This is possible if CanPoisonMemory() was false for some 552 // time, for example, due to flags()->start_disabled. 553 // Anyway, poison the block before using it for anything else. 554 uptr allocated_size = allocator.GetActuallyAllocatedSize(allocated); 555 PoisonShadow((uptr)allocated, allocated_size, kAsanHeapLeftRedzoneMagic); 556 } 557 558 uptr alloc_beg = reinterpret_cast<uptr>(allocated); 559 uptr alloc_end = alloc_beg + needed_size; 560 uptr user_beg = alloc_beg + rz_size; 561 if (!IsAligned(user_beg, alignment)) 562 user_beg = RoundUpTo(user_beg, alignment); 563 uptr user_end = user_beg + size; 564 CHECK_LE(user_end, alloc_end); 565 uptr chunk_beg = user_beg - kChunkHeaderSize; 566 AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg); 567 m->alloc_type = alloc_type; 568 CHECK(size); 569 m->SetUsedSize(size); 570 m->user_requested_alignment_log = user_requested_alignment_log; 571 572 m->SetAllocContext(t ? t->tid() : kMainTid, StackDepotPut(*stack)); 573 574 uptr size_rounded_down_to_granularity = 575 RoundDownTo(size, SHADOW_GRANULARITY); 576 // Unpoison the bulk of the memory region. 577 if (size_rounded_down_to_granularity) 578 PoisonShadow(user_beg, size_rounded_down_to_granularity, 0); 579 // Deal with the end of the region if size is not aligned to granularity. 580 if (size != size_rounded_down_to_granularity && CanPoisonMemory()) { 581 u8 *shadow = 582 (u8 *)MemToShadow(user_beg + size_rounded_down_to_granularity); 583 *shadow = fl.poison_partial ? (size & (SHADOW_GRANULARITY - 1)) : 0; 584 } 585 586 AsanStats &thread_stats = GetCurrentThreadStats(); 587 thread_stats.mallocs++; 588 thread_stats.malloced += size; 589 thread_stats.malloced_redzones += needed_size - size; 590 if (needed_size > SizeClassMap::kMaxSize) 591 thread_stats.malloc_large++; 592 else 593 thread_stats.malloced_by_size[SizeClassMap::ClassID(needed_size)]++; 594 595 void *res = reinterpret_cast<void *>(user_beg); 596 if (can_fill && fl.max_malloc_fill_size) { 597 uptr fill_size = Min(size, (uptr)fl.max_malloc_fill_size); 598 REAL(memset)(res, fl.malloc_fill_byte, fill_size); 599 } 600 #if CAN_SANITIZE_LEAKS 601 m->lsan_tag = __lsan::DisabledInThisThread() ? __lsan::kIgnored 602 : __lsan::kDirectlyLeaked; 603 #endif 604 // Must be the last mutation of metadata in this function. 605 atomic_store(&m->chunk_state, CHUNK_ALLOCATED, memory_order_release); 606 if (alloc_beg != chunk_beg) { 607 CHECK_LE(alloc_beg + sizeof(LargeChunkHeader), chunk_beg); 608 reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Set(m); 609 } 610 ASAN_MALLOC_HOOK(res, size); 611 return res; 612 } 613 614 // Set quarantine flag if chunk is allocated, issue ASan error report on 615 // available and quarantined chunks. Return true on success, false otherwise. 616 bool AtomicallySetQuarantineFlagIfAllocated(AsanChunk *m, void *ptr, 617 BufferedStackTrace *stack) { 618 u8 old_chunk_state = CHUNK_ALLOCATED; 619 // Flip the chunk_state atomically to avoid race on double-free. 620 if (!atomic_compare_exchange_strong(&m->chunk_state, &old_chunk_state, 621 CHUNK_QUARANTINE, 622 memory_order_acquire)) { 623 ReportInvalidFree(ptr, old_chunk_state, stack); 624 // It's not safe to push a chunk in quarantine on invalid free. 625 return false; 626 } 627 CHECK_EQ(CHUNK_ALLOCATED, old_chunk_state); 628 // It was a user data. 629 m->SetFreeContext(kInvalidTid, 0); 630 return true; 631 } 632 633 // Expects the chunk to already be marked as quarantined by using 634 // AtomicallySetQuarantineFlagIfAllocated. 635 void QuarantineChunk(AsanChunk *m, void *ptr, BufferedStackTrace *stack) { 636 CHECK_EQ(atomic_load(&m->chunk_state, memory_order_relaxed), 637 CHUNK_QUARANTINE); 638 AsanThread *t = GetCurrentThread(); 639 m->SetFreeContext(t ? t->tid() : 0, StackDepotPut(*stack)); 640 641 Flags &fl = *flags(); 642 if (fl.max_free_fill_size > 0) { 643 // We have to skip the chunk header, it contains free_context_id. 644 uptr scribble_start = (uptr)m + kChunkHeaderSize + kChunkHeader2Size; 645 if (m->UsedSize() >= kChunkHeader2Size) { // Skip Header2 in user area. 646 uptr size_to_fill = m->UsedSize() - kChunkHeader2Size; 647 size_to_fill = Min(size_to_fill, (uptr)fl.max_free_fill_size); 648 REAL(memset)((void *)scribble_start, fl.free_fill_byte, size_to_fill); 649 } 650 } 651 652 // Poison the region. 653 PoisonShadow(m->Beg(), 654 RoundUpTo(m->UsedSize(), SHADOW_GRANULARITY), 655 kAsanHeapFreeMagic); 656 657 AsanStats &thread_stats = GetCurrentThreadStats(); 658 thread_stats.frees++; 659 thread_stats.freed += m->UsedSize(); 660 661 // Push into quarantine. 662 if (t) { 663 AsanThreadLocalMallocStorage *ms = &t->malloc_storage(); 664 AllocatorCache *ac = GetAllocatorCache(ms); 665 quarantine.Put(GetQuarantineCache(ms), QuarantineCallback(ac, stack), m, 666 m->UsedSize()); 667 } else { 668 SpinMutexLock l(&fallback_mutex); 669 AllocatorCache *ac = &fallback_allocator_cache; 670 quarantine.Put(&fallback_quarantine_cache, QuarantineCallback(ac, stack), 671 m, m->UsedSize()); 672 } 673 } 674 675 void Deallocate(void *ptr, uptr delete_size, uptr delete_alignment, 676 BufferedStackTrace *stack, AllocType alloc_type) { 677 uptr p = reinterpret_cast<uptr>(ptr); 678 if (p == 0) return; 679 680 uptr chunk_beg = p - kChunkHeaderSize; 681 AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg); 682 683 // On Windows, uninstrumented DLLs may allocate memory before ASan hooks 684 // malloc. Don't report an invalid free in this case. 685 if (SANITIZER_WINDOWS && 686 !get_allocator().PointerIsMine(ptr)) { 687 if (!IsSystemHeapAddress(p)) 688 ReportFreeNotMalloced(p, stack); 689 return; 690 } 691 692 ASAN_FREE_HOOK(ptr); 693 694 // Must mark the chunk as quarantined before any changes to its metadata. 695 // Do not quarantine given chunk if we failed to set CHUNK_QUARANTINE flag. 696 if (!AtomicallySetQuarantineFlagIfAllocated(m, ptr, stack)) return; 697 698 if (m->alloc_type != alloc_type) { 699 if (atomic_load(&alloc_dealloc_mismatch, memory_order_acquire)) { 700 ReportAllocTypeMismatch((uptr)ptr, stack, (AllocType)m->alloc_type, 701 (AllocType)alloc_type); 702 } 703 } else { 704 if (flags()->new_delete_type_mismatch && 705 (alloc_type == FROM_NEW || alloc_type == FROM_NEW_BR) && 706 ((delete_size && delete_size != m->UsedSize()) || 707 ComputeUserRequestedAlignmentLog(delete_alignment) != 708 m->user_requested_alignment_log)) { 709 ReportNewDeleteTypeMismatch(p, delete_size, delete_alignment, stack); 710 } 711 } 712 713 QuarantineChunk(m, ptr, stack); 714 } 715 716 void *Reallocate(void *old_ptr, uptr new_size, BufferedStackTrace *stack) { 717 CHECK(old_ptr && new_size); 718 uptr p = reinterpret_cast<uptr>(old_ptr); 719 uptr chunk_beg = p - kChunkHeaderSize; 720 AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg); 721 722 AsanStats &thread_stats = GetCurrentThreadStats(); 723 thread_stats.reallocs++; 724 thread_stats.realloced += new_size; 725 726 void *new_ptr = Allocate(new_size, 8, stack, FROM_MALLOC, true); 727 if (new_ptr) { 728 u8 chunk_state = atomic_load(&m->chunk_state, memory_order_acquire); 729 if (chunk_state != CHUNK_ALLOCATED) 730 ReportInvalidFree(old_ptr, chunk_state, stack); 731 CHECK_NE(REAL(memcpy), nullptr); 732 uptr memcpy_size = Min(new_size, m->UsedSize()); 733 // If realloc() races with free(), we may start copying freed memory. 734 // However, we will report racy double-free later anyway. 735 REAL(memcpy)(new_ptr, old_ptr, memcpy_size); 736 Deallocate(old_ptr, 0, 0, stack, FROM_MALLOC); 737 } 738 return new_ptr; 739 } 740 741 void *Calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) { 742 if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) { 743 if (AllocatorMayReturnNull()) 744 return nullptr; 745 ReportCallocOverflow(nmemb, size, stack); 746 } 747 void *ptr = Allocate(nmemb * size, 8, stack, FROM_MALLOC, false); 748 // If the memory comes from the secondary allocator no need to clear it 749 // as it comes directly from mmap. 750 if (ptr && allocator.FromPrimary(ptr)) 751 REAL(memset)(ptr, 0, nmemb * size); 752 return ptr; 753 } 754 755 void ReportInvalidFree(void *ptr, u8 chunk_state, BufferedStackTrace *stack) { 756 if (chunk_state == CHUNK_QUARANTINE) 757 ReportDoubleFree((uptr)ptr, stack); 758 else 759 ReportFreeNotMalloced((uptr)ptr, stack); 760 } 761 762 void CommitBack(AsanThreadLocalMallocStorage *ms, BufferedStackTrace *stack) { 763 AllocatorCache *ac = GetAllocatorCache(ms); 764 quarantine.Drain(GetQuarantineCache(ms), QuarantineCallback(ac, stack)); 765 allocator.SwallowCache(ac); 766 } 767 768 // -------------------------- Chunk lookup ---------------------- 769 770 // Assumes alloc_beg == allocator.GetBlockBegin(alloc_beg). 771 // Returns nullptr if AsanChunk is not yet initialized just after 772 // get_allocator().Allocate(), or is being destroyed just before 773 // get_allocator().Deallocate(). 774 AsanChunk *GetAsanChunk(void *alloc_beg) { 775 if (!alloc_beg) 776 return nullptr; 777 AsanChunk *p = reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Get(); 778 if (!p) { 779 if (!allocator.FromPrimary(alloc_beg)) 780 return nullptr; 781 p = reinterpret_cast<AsanChunk *>(alloc_beg); 782 } 783 u8 state = atomic_load(&p->chunk_state, memory_order_relaxed); 784 // It does not guaranty that Chunk is initialized, but it's 785 // definitely not for any other value. 786 if (state == CHUNK_ALLOCATED || state == CHUNK_QUARANTINE) 787 return p; 788 return nullptr; 789 } 790 791 AsanChunk *GetAsanChunkByAddr(uptr p) { 792 void *alloc_beg = allocator.GetBlockBegin(reinterpret_cast<void *>(p)); 793 return GetAsanChunk(alloc_beg); 794 } 795 796 // Allocator must be locked when this function is called. 797 AsanChunk *GetAsanChunkByAddrFastLocked(uptr p) { 798 void *alloc_beg = 799 allocator.GetBlockBeginFastLocked(reinterpret_cast<void *>(p)); 800 return GetAsanChunk(alloc_beg); 801 } 802 803 uptr AllocationSize(uptr p) { 804 AsanChunk *m = GetAsanChunkByAddr(p); 805 if (!m) return 0; 806 if (atomic_load(&m->chunk_state, memory_order_acquire) != CHUNK_ALLOCATED) 807 return 0; 808 if (m->Beg() != p) return 0; 809 return m->UsedSize(); 810 } 811 812 AsanChunkView FindHeapChunkByAddress(uptr addr) { 813 AsanChunk *m1 = GetAsanChunkByAddr(addr); 814 sptr offset = 0; 815 if (!m1 || AsanChunkView(m1).AddrIsAtLeft(addr, 1, &offset)) { 816 // The address is in the chunk's left redzone, so maybe it is actually 817 // a right buffer overflow from the other chunk to the left. 818 // Search a bit to the left to see if there is another chunk. 819 AsanChunk *m2 = nullptr; 820 for (uptr l = 1; l < GetPageSizeCached(); l++) { 821 m2 = GetAsanChunkByAddr(addr - l); 822 if (m2 == m1) continue; // Still the same chunk. 823 break; 824 } 825 if (m2 && AsanChunkView(m2).AddrIsAtRight(addr, 1, &offset)) 826 m1 = ChooseChunk(addr, m2, m1); 827 } 828 return AsanChunkView(m1); 829 } 830 831 void Purge(BufferedStackTrace *stack) { 832 AsanThread *t = GetCurrentThread(); 833 if (t) { 834 AsanThreadLocalMallocStorage *ms = &t->malloc_storage(); 835 quarantine.DrainAndRecycle(GetQuarantineCache(ms), 836 QuarantineCallback(GetAllocatorCache(ms), 837 stack)); 838 } 839 { 840 SpinMutexLock l(&fallback_mutex); 841 quarantine.DrainAndRecycle(&fallback_quarantine_cache, 842 QuarantineCallback(&fallback_allocator_cache, 843 stack)); 844 } 845 846 allocator.ForceReleaseToOS(); 847 } 848 849 void PrintStats() { 850 allocator.PrintStats(); 851 quarantine.PrintStats(); 852 } 853 854 void ForceLock() ACQUIRE(fallback_mutex) { 855 allocator.ForceLock(); 856 fallback_mutex.Lock(); 857 } 858 859 void ForceUnlock() RELEASE(fallback_mutex) { 860 fallback_mutex.Unlock(); 861 allocator.ForceUnlock(); 862 } 863 }; 864 865 static Allocator instance(LINKER_INITIALIZED); 866 867 static AsanAllocator &get_allocator() { 868 return instance.allocator; 869 } 870 871 bool AsanChunkView::IsValid() const { 872 return chunk_ && atomic_load(&chunk_->chunk_state, memory_order_relaxed) != 873 CHUNK_INVALID; 874 } 875 bool AsanChunkView::IsAllocated() const { 876 return chunk_ && atomic_load(&chunk_->chunk_state, memory_order_relaxed) == 877 CHUNK_ALLOCATED; 878 } 879 bool AsanChunkView::IsQuarantined() const { 880 return chunk_ && atomic_load(&chunk_->chunk_state, memory_order_relaxed) == 881 CHUNK_QUARANTINE; 882 } 883 uptr AsanChunkView::Beg() const { return chunk_->Beg(); } 884 uptr AsanChunkView::End() const { return Beg() + UsedSize(); } 885 uptr AsanChunkView::UsedSize() const { return chunk_->UsedSize(); } 886 u32 AsanChunkView::UserRequestedAlignment() const { 887 return Allocator::ComputeUserAlignment(chunk_->user_requested_alignment_log); 888 } 889 890 uptr AsanChunkView::AllocTid() const { 891 u32 tid = 0; 892 u32 stack = 0; 893 chunk_->GetAllocContext(tid, stack); 894 return tid; 895 } 896 897 uptr AsanChunkView::FreeTid() const { 898 if (!IsQuarantined()) 899 return kInvalidTid; 900 u32 tid = 0; 901 u32 stack = 0; 902 chunk_->GetFreeContext(tid, stack); 903 return tid; 904 } 905 906 AllocType AsanChunkView::GetAllocType() const { 907 return (AllocType)chunk_->alloc_type; 908 } 909 910 u32 AsanChunkView::GetAllocStackId() const { 911 u32 tid = 0; 912 u32 stack = 0; 913 chunk_->GetAllocContext(tid, stack); 914 return stack; 915 } 916 917 u32 AsanChunkView::GetFreeStackId() const { 918 if (!IsQuarantined()) 919 return 0; 920 u32 tid = 0; 921 u32 stack = 0; 922 chunk_->GetFreeContext(tid, stack); 923 return stack; 924 } 925 926 void InitializeAllocator(const AllocatorOptions &options) { 927 instance.InitLinkerInitialized(options); 928 } 929 930 void ReInitializeAllocator(const AllocatorOptions &options) { 931 instance.ReInitialize(options); 932 } 933 934 void GetAllocatorOptions(AllocatorOptions *options) { 935 instance.GetOptions(options); 936 } 937 938 AsanChunkView FindHeapChunkByAddress(uptr addr) { 939 return instance.FindHeapChunkByAddress(addr); 940 } 941 AsanChunkView FindHeapChunkByAllocBeg(uptr addr) { 942 return AsanChunkView(instance.GetAsanChunk(reinterpret_cast<void*>(addr))); 943 } 944 945 void AsanThreadLocalMallocStorage::CommitBack() { 946 GET_STACK_TRACE_MALLOC; 947 instance.CommitBack(this, &stack); 948 } 949 950 void PrintInternalAllocatorStats() { 951 instance.PrintStats(); 952 } 953 954 void asan_free(void *ptr, BufferedStackTrace *stack, AllocType alloc_type) { 955 instance.Deallocate(ptr, 0, 0, stack, alloc_type); 956 } 957 958 void asan_delete(void *ptr, uptr size, uptr alignment, 959 BufferedStackTrace *stack, AllocType alloc_type) { 960 instance.Deallocate(ptr, size, alignment, stack, alloc_type); 961 } 962 963 void *asan_malloc(uptr size, BufferedStackTrace *stack) { 964 return SetErrnoOnNull(instance.Allocate(size, 8, stack, FROM_MALLOC, true)); 965 } 966 967 void *asan_calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) { 968 return SetErrnoOnNull(instance.Calloc(nmemb, size, stack)); 969 } 970 971 void *asan_reallocarray(void *p, uptr nmemb, uptr size, 972 BufferedStackTrace *stack) { 973 if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) { 974 errno = errno_ENOMEM; 975 if (AllocatorMayReturnNull()) 976 return nullptr; 977 ReportReallocArrayOverflow(nmemb, size, stack); 978 } 979 return asan_realloc(p, nmemb * size, stack); 980 } 981 982 void *asan_realloc(void *p, uptr size, BufferedStackTrace *stack) { 983 if (!p) 984 return SetErrnoOnNull(instance.Allocate(size, 8, stack, FROM_MALLOC, true)); 985 if (size == 0) { 986 if (flags()->allocator_frees_and_returns_null_on_realloc_zero) { 987 instance.Deallocate(p, 0, 0, stack, FROM_MALLOC); 988 return nullptr; 989 } 990 // Allocate a size of 1 if we shouldn't free() on Realloc to 0 991 size = 1; 992 } 993 return SetErrnoOnNull(instance.Reallocate(p, size, stack)); 994 } 995 996 void *asan_valloc(uptr size, BufferedStackTrace *stack) { 997 return SetErrnoOnNull( 998 instance.Allocate(size, GetPageSizeCached(), stack, FROM_MALLOC, true)); 999 } 1000 1001 void *asan_pvalloc(uptr size, BufferedStackTrace *stack) { 1002 uptr PageSize = GetPageSizeCached(); 1003 if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) { 1004 errno = errno_ENOMEM; 1005 if (AllocatorMayReturnNull()) 1006 return nullptr; 1007 ReportPvallocOverflow(size, stack); 1008 } 1009 // pvalloc(0) should allocate one page. 1010 size = size ? RoundUpTo(size, PageSize) : PageSize; 1011 return SetErrnoOnNull( 1012 instance.Allocate(size, PageSize, stack, FROM_MALLOC, true)); 1013 } 1014 1015 void *asan_memalign(uptr alignment, uptr size, BufferedStackTrace *stack, 1016 AllocType alloc_type) { 1017 if (UNLIKELY(!IsPowerOfTwo(alignment))) { 1018 errno = errno_EINVAL; 1019 if (AllocatorMayReturnNull()) 1020 return nullptr; 1021 ReportInvalidAllocationAlignment(alignment, stack); 1022 } 1023 return SetErrnoOnNull( 1024 instance.Allocate(size, alignment, stack, alloc_type, true)); 1025 } 1026 1027 void *asan_aligned_alloc(uptr alignment, uptr size, BufferedStackTrace *stack) { 1028 if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) { 1029 errno = errno_EINVAL; 1030 if (AllocatorMayReturnNull()) 1031 return nullptr; 1032 ReportInvalidAlignedAllocAlignment(size, alignment, stack); 1033 } 1034 return SetErrnoOnNull( 1035 instance.Allocate(size, alignment, stack, FROM_MALLOC, true)); 1036 } 1037 1038 int asan_posix_memalign(void **memptr, uptr alignment, uptr size, 1039 BufferedStackTrace *stack) { 1040 if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) { 1041 if (AllocatorMayReturnNull()) 1042 return errno_EINVAL; 1043 ReportInvalidPosixMemalignAlignment(alignment, stack); 1044 } 1045 void *ptr = instance.Allocate(size, alignment, stack, FROM_MALLOC, true); 1046 if (UNLIKELY(!ptr)) 1047 // OOM error is already taken care of by Allocate. 1048 return errno_ENOMEM; 1049 CHECK(IsAligned((uptr)ptr, alignment)); 1050 *memptr = ptr; 1051 return 0; 1052 } 1053 1054 uptr asan_malloc_usable_size(const void *ptr, uptr pc, uptr bp) { 1055 if (!ptr) return 0; 1056 uptr usable_size = instance.AllocationSize(reinterpret_cast<uptr>(ptr)); 1057 if (flags()->check_malloc_usable_size && (usable_size == 0)) { 1058 GET_STACK_TRACE_FATAL(pc, bp); 1059 ReportMallocUsableSizeNotOwned((uptr)ptr, &stack); 1060 } 1061 return usable_size; 1062 } 1063 1064 uptr asan_mz_size(const void *ptr) { 1065 return instance.AllocationSize(reinterpret_cast<uptr>(ptr)); 1066 } 1067 1068 void asan_mz_force_lock() NO_THREAD_SAFETY_ANALYSIS { instance.ForceLock(); } 1069 1070 void asan_mz_force_unlock() NO_THREAD_SAFETY_ANALYSIS { 1071 instance.ForceUnlock(); 1072 } 1073 1074 void AsanSoftRssLimitExceededCallback(bool limit_exceeded) { 1075 instance.SetRssLimitExceeded(limit_exceeded); 1076 } 1077 1078 } // namespace __asan 1079 1080 // --- Implementation of LSan-specific functions --- {{{1 1081 namespace __lsan { 1082 void LockAllocator() { 1083 __asan::get_allocator().ForceLock(); 1084 } 1085 1086 void UnlockAllocator() { 1087 __asan::get_allocator().ForceUnlock(); 1088 } 1089 1090 void GetAllocatorGlobalRange(uptr *begin, uptr *end) { 1091 *begin = (uptr)&__asan::get_allocator(); 1092 *end = *begin + sizeof(__asan::get_allocator()); 1093 } 1094 1095 uptr PointsIntoChunk(void *p) { 1096 uptr addr = reinterpret_cast<uptr>(p); 1097 __asan::AsanChunk *m = __asan::instance.GetAsanChunkByAddrFastLocked(addr); 1098 if (!m || atomic_load(&m->chunk_state, memory_order_acquire) != 1099 __asan::CHUNK_ALLOCATED) 1100 return 0; 1101 uptr chunk = m->Beg(); 1102 if (m->AddrIsInside(addr)) 1103 return chunk; 1104 if (IsSpecialCaseOfOperatorNew0(chunk, m->UsedSize(), addr)) 1105 return chunk; 1106 return 0; 1107 } 1108 1109 uptr GetUserBegin(uptr chunk) { 1110 __asan::AsanChunk *m = __asan::instance.GetAsanChunkByAddrFastLocked(chunk); 1111 return m ? m->Beg() : 0; 1112 } 1113 1114 LsanMetadata::LsanMetadata(uptr chunk) { 1115 metadata_ = chunk ? reinterpret_cast<void *>(chunk - __asan::kChunkHeaderSize) 1116 : nullptr; 1117 } 1118 1119 bool LsanMetadata::allocated() const { 1120 if (!metadata_) 1121 return false; 1122 __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_); 1123 return atomic_load(&m->chunk_state, memory_order_relaxed) == 1124 __asan::CHUNK_ALLOCATED; 1125 } 1126 1127 ChunkTag LsanMetadata::tag() const { 1128 __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_); 1129 return static_cast<ChunkTag>(m->lsan_tag); 1130 } 1131 1132 void LsanMetadata::set_tag(ChunkTag value) { 1133 __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_); 1134 m->lsan_tag = value; 1135 } 1136 1137 uptr LsanMetadata::requested_size() const { 1138 __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_); 1139 return m->UsedSize(); 1140 } 1141 1142 u32 LsanMetadata::stack_trace_id() const { 1143 __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_); 1144 u32 tid = 0; 1145 u32 stack = 0; 1146 m->GetAllocContext(tid, stack); 1147 return stack; 1148 } 1149 1150 void ForEachChunk(ForEachChunkCallback callback, void *arg) { 1151 __asan::get_allocator().ForEachChunk(callback, arg); 1152 } 1153 1154 IgnoreObjectResult IgnoreObjectLocked(const void *p) { 1155 uptr addr = reinterpret_cast<uptr>(p); 1156 __asan::AsanChunk *m = __asan::instance.GetAsanChunkByAddr(addr); 1157 if (!m || 1158 (atomic_load(&m->chunk_state, memory_order_acquire) != 1159 __asan::CHUNK_ALLOCATED) || 1160 !m->AddrIsInside(addr)) { 1161 return kIgnoreObjectInvalid; 1162 } 1163 if (m->lsan_tag == kIgnored) 1164 return kIgnoreObjectAlreadyIgnored; 1165 m->lsan_tag = __lsan::kIgnored; 1166 return kIgnoreObjectSuccess; 1167 } 1168 1169 void GetAdditionalThreadContextPtrs(ThreadContextBase *tctx, void *ptrs) { 1170 // Look for the arg pointer of threads that have been created or are running. 1171 // This is necessary to prevent false positive leaks due to the AsanThread 1172 // holding the only live reference to a heap object. This can happen because 1173 // the `pthread_create()` interceptor doesn't wait for the child thread to 1174 // start before returning and thus loosing the the only live reference to the 1175 // heap object on the stack. 1176 1177 __asan::AsanThreadContext *atctx = 1178 reinterpret_cast<__asan::AsanThreadContext *>(tctx); 1179 __asan::AsanThread *asan_thread = atctx->thread; 1180 1181 // Note ThreadStatusRunning is required because there is a small window where 1182 // the thread status switches to `ThreadStatusRunning` but the `arg` pointer 1183 // still isn't on the stack yet. 1184 if (atctx->status != ThreadStatusCreated && 1185 atctx->status != ThreadStatusRunning) 1186 return; 1187 1188 uptr thread_arg = reinterpret_cast<uptr>(asan_thread->get_arg()); 1189 if (!thread_arg) 1190 return; 1191 1192 auto ptrsVec = reinterpret_cast<InternalMmapVector<uptr> *>(ptrs); 1193 ptrsVec->push_back(thread_arg); 1194 } 1195 1196 } // namespace __lsan 1197 1198 // ---------------------- Interface ---------------- {{{1 1199 using namespace __asan; 1200 1201 // ASan allocator doesn't reserve extra bytes, so normally we would 1202 // just return "size". We don't want to expose our redzone sizes, etc here. 1203 uptr __sanitizer_get_estimated_allocated_size(uptr size) { 1204 return size; 1205 } 1206 1207 int __sanitizer_get_ownership(const void *p) { 1208 uptr ptr = reinterpret_cast<uptr>(p); 1209 return instance.AllocationSize(ptr) > 0; 1210 } 1211 1212 uptr __sanitizer_get_allocated_size(const void *p) { 1213 if (!p) return 0; 1214 uptr ptr = reinterpret_cast<uptr>(p); 1215 uptr allocated_size = instance.AllocationSize(ptr); 1216 // Die if p is not malloced or if it is already freed. 1217 if (allocated_size == 0) { 1218 GET_STACK_TRACE_FATAL_HERE; 1219 ReportSanitizerGetAllocatedSizeNotOwned(ptr, &stack); 1220 } 1221 return allocated_size; 1222 } 1223 1224 void __sanitizer_purge_allocator() { 1225 GET_STACK_TRACE_MALLOC; 1226 instance.Purge(&stack); 1227 } 1228 1229 int __asan_update_allocation_context(void* addr) { 1230 GET_STACK_TRACE_MALLOC; 1231 return instance.UpdateAllocationStack((uptr)addr, &stack); 1232 } 1233 1234 #if !SANITIZER_SUPPORTS_WEAK_HOOKS 1235 // Provide default (no-op) implementation of malloc hooks. 1236 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_malloc_hook, 1237 void *ptr, uptr size) { 1238 (void)ptr; 1239 (void)size; 1240 } 1241 1242 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_free_hook, void *ptr) { 1243 (void)ptr; 1244 } 1245 #endif 1246