168d75effSDimitry Andric //===-- asan_allocator.cpp ------------------------------------------------===//
268d75effSDimitry Andric //
368d75effSDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
468d75effSDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
568d75effSDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
668d75effSDimitry Andric //
768d75effSDimitry Andric //===----------------------------------------------------------------------===//
868d75effSDimitry Andric //
968d75effSDimitry Andric // This file is a part of AddressSanitizer, an address sanity checker.
1068d75effSDimitry Andric //
1168d75effSDimitry Andric // Implementation of ASan's memory allocator, 2-nd version.
1268d75effSDimitry Andric // This variant uses the allocator from sanitizer_common, i.e. the one shared
1368d75effSDimitry Andric // with ThreadSanitizer and MemorySanitizer.
1468d75effSDimitry Andric //
1568d75effSDimitry Andric //===----------------------------------------------------------------------===//
1668d75effSDimitry Andric
1768d75effSDimitry Andric #include "asan_allocator.h"
18e8d8bef9SDimitry Andric
1906c3fb27SDimitry Andric #include "asan_internal.h"
2068d75effSDimitry Andric #include "asan_mapping.h"
2168d75effSDimitry Andric #include "asan_poisoning.h"
2268d75effSDimitry Andric #include "asan_report.h"
2368d75effSDimitry Andric #include "asan_stack.h"
2468d75effSDimitry Andric #include "asan_thread.h"
25e8d8bef9SDimitry Andric #include "lsan/lsan_common.h"
2668d75effSDimitry Andric #include "sanitizer_common/sanitizer_allocator_checks.h"
2768d75effSDimitry Andric #include "sanitizer_common/sanitizer_allocator_interface.h"
2806c3fb27SDimitry Andric #include "sanitizer_common/sanitizer_common.h"
2968d75effSDimitry Andric #include "sanitizer_common/sanitizer_errno.h"
3068d75effSDimitry Andric #include "sanitizer_common/sanitizer_flags.h"
3168d75effSDimitry Andric #include "sanitizer_common/sanitizer_internal_defs.h"
3268d75effSDimitry Andric #include "sanitizer_common/sanitizer_list.h"
3368d75effSDimitry Andric #include "sanitizer_common/sanitizer_quarantine.h"
34e8d8bef9SDimitry Andric #include "sanitizer_common/sanitizer_stackdepot.h"
3568d75effSDimitry Andric
3668d75effSDimitry Andric namespace __asan {
3768d75effSDimitry Andric
3868d75effSDimitry Andric // Valid redzone sizes are 16, 32, 64, ... 2048, so we encode them in 3 bits.
3968d75effSDimitry Andric // We use adaptive redzones: for larger allocation larger redzones are used.
RZLog2Size(u32 rz_log)4068d75effSDimitry Andric static u32 RZLog2Size(u32 rz_log) {
4168d75effSDimitry Andric CHECK_LT(rz_log, 8);
4268d75effSDimitry Andric return 16 << rz_log;
4368d75effSDimitry Andric }
4468d75effSDimitry Andric
RZSize2Log(u32 rz_size)4568d75effSDimitry Andric static u32 RZSize2Log(u32 rz_size) {
4668d75effSDimitry Andric CHECK_GE(rz_size, 16);
4768d75effSDimitry Andric CHECK_LE(rz_size, 2048);
4868d75effSDimitry Andric CHECK(IsPowerOfTwo(rz_size));
4968d75effSDimitry Andric u32 res = Log2(rz_size) - 4;
5068d75effSDimitry Andric CHECK_EQ(rz_size, RZLog2Size(res));
5168d75effSDimitry Andric return res;
5268d75effSDimitry Andric }
5368d75effSDimitry Andric
5468d75effSDimitry Andric static AsanAllocator &get_allocator();
5568d75effSDimitry Andric
AtomicContextStore(volatile atomic_uint64_t * atomic_context,u32 tid,u32 stack)56e8d8bef9SDimitry Andric static void AtomicContextStore(volatile atomic_uint64_t *atomic_context,
57e8d8bef9SDimitry Andric u32 tid, u32 stack) {
58e8d8bef9SDimitry Andric u64 context = tid;
59e8d8bef9SDimitry Andric context <<= 32;
60e8d8bef9SDimitry Andric context += stack;
61e8d8bef9SDimitry Andric atomic_store(atomic_context, context, memory_order_relaxed);
62e8d8bef9SDimitry Andric }
63e8d8bef9SDimitry Andric
AtomicContextLoad(const volatile atomic_uint64_t * atomic_context,u32 & tid,u32 & stack)64e8d8bef9SDimitry Andric static void AtomicContextLoad(const volatile atomic_uint64_t *atomic_context,
65e8d8bef9SDimitry Andric u32 &tid, u32 &stack) {
66e8d8bef9SDimitry Andric u64 context = atomic_load(atomic_context, memory_order_relaxed);
67e8d8bef9SDimitry Andric stack = context;
68e8d8bef9SDimitry Andric context >>= 32;
69e8d8bef9SDimitry Andric tid = context;
70e8d8bef9SDimitry Andric }
71e8d8bef9SDimitry Andric
7268d75effSDimitry Andric // The memory chunk allocated from the underlying allocator looks like this:
7368d75effSDimitry Andric // L L L L L L H H U U U U U U R R
7468d75effSDimitry Andric // L -- left redzone words (0 or more bytes)
7568d75effSDimitry Andric // H -- ChunkHeader (16 bytes), which is also a part of the left redzone.
7668d75effSDimitry Andric // U -- user memory.
7768d75effSDimitry Andric // R -- right redzone (0 or more bytes)
7868d75effSDimitry Andric // ChunkBase consists of ChunkHeader and other bytes that overlap with user
7968d75effSDimitry Andric // memory.
8068d75effSDimitry Andric
8168d75effSDimitry Andric // If the left redzone is greater than the ChunkHeader size we store a magic
8268d75effSDimitry Andric // value in the first uptr word of the memory block and store the address of
8368d75effSDimitry Andric // ChunkBase in the next uptr.
8468d75effSDimitry Andric // M B L L L L L L L L L H H U U U U U U
8568d75effSDimitry Andric // | ^
8668d75effSDimitry Andric // ---------------------|
8768d75effSDimitry Andric // M -- magic value kAllocBegMagic
8868d75effSDimitry Andric // B -- address of ChunkHeader pointing to the first 'H'
8968d75effSDimitry Andric
90e8d8bef9SDimitry Andric class ChunkHeader {
91e8d8bef9SDimitry Andric public:
92e8d8bef9SDimitry Andric atomic_uint8_t chunk_state;
93e8d8bef9SDimitry Andric u8 alloc_type : 2;
94e8d8bef9SDimitry Andric u8 lsan_tag : 2;
9568d75effSDimitry Andric
9668d75effSDimitry Andric // align < 8 -> 0
9768d75effSDimitry Andric // else -> log2(min(align, 512)) - 2
98e8d8bef9SDimitry Andric u8 user_requested_alignment_log : 3;
99e8d8bef9SDimitry Andric
100e8d8bef9SDimitry Andric private:
101e8d8bef9SDimitry Andric u16 user_requested_size_hi;
102e8d8bef9SDimitry Andric u32 user_requested_size_lo;
103e8d8bef9SDimitry Andric atomic_uint64_t alloc_context_id;
104e8d8bef9SDimitry Andric
105e8d8bef9SDimitry Andric public:
UsedSize() const106e8d8bef9SDimitry Andric uptr UsedSize() const {
107349cc55cSDimitry Andric static_assert(sizeof(user_requested_size_lo) == 4,
108349cc55cSDimitry Andric "Expression below requires this");
109349cc55cSDimitry Andric return FIRST_32_SECOND_64(0, ((uptr)user_requested_size_hi << 32)) +
110349cc55cSDimitry Andric user_requested_size_lo;
111e8d8bef9SDimitry Andric }
112e8d8bef9SDimitry Andric
SetUsedSize(uptr size)113e8d8bef9SDimitry Andric void SetUsedSize(uptr size) {
114e8d8bef9SDimitry Andric user_requested_size_lo = size;
115349cc55cSDimitry Andric static_assert(sizeof(user_requested_size_lo) == 4,
116349cc55cSDimitry Andric "Expression below requires this");
117349cc55cSDimitry Andric user_requested_size_hi = FIRST_32_SECOND_64(0, size >> 32);
118349cc55cSDimitry Andric CHECK_EQ(UsedSize(), size);
119e8d8bef9SDimitry Andric }
120e8d8bef9SDimitry Andric
SetAllocContext(u32 tid,u32 stack)121e8d8bef9SDimitry Andric void SetAllocContext(u32 tid, u32 stack) {
122e8d8bef9SDimitry Andric AtomicContextStore(&alloc_context_id, tid, stack);
123e8d8bef9SDimitry Andric }
124e8d8bef9SDimitry Andric
GetAllocContext(u32 & tid,u32 & stack) const125e8d8bef9SDimitry Andric void GetAllocContext(u32 &tid, u32 &stack) const {
126e8d8bef9SDimitry Andric AtomicContextLoad(&alloc_context_id, tid, stack);
127e8d8bef9SDimitry Andric }
12868d75effSDimitry Andric };
12968d75effSDimitry Andric
130e8d8bef9SDimitry Andric class ChunkBase : public ChunkHeader {
131e8d8bef9SDimitry Andric atomic_uint64_t free_context_id;
132e8d8bef9SDimitry Andric
133e8d8bef9SDimitry Andric public:
SetFreeContext(u32 tid,u32 stack)134e8d8bef9SDimitry Andric void SetFreeContext(u32 tid, u32 stack) {
135e8d8bef9SDimitry Andric AtomicContextStore(&free_context_id, tid, stack);
136e8d8bef9SDimitry Andric }
137e8d8bef9SDimitry Andric
GetFreeContext(u32 & tid,u32 & stack) const138e8d8bef9SDimitry Andric void GetFreeContext(u32 &tid, u32 &stack) const {
139e8d8bef9SDimitry Andric AtomicContextLoad(&free_context_id, tid, stack);
140e8d8bef9SDimitry Andric }
14168d75effSDimitry Andric };
14268d75effSDimitry Andric
14368d75effSDimitry Andric static const uptr kChunkHeaderSize = sizeof(ChunkHeader);
14468d75effSDimitry Andric static const uptr kChunkHeader2Size = sizeof(ChunkBase) - kChunkHeaderSize;
14568d75effSDimitry Andric COMPILER_CHECK(kChunkHeaderSize == 16);
14668d75effSDimitry Andric COMPILER_CHECK(kChunkHeader2Size <= 16);
14768d75effSDimitry Andric
14868d75effSDimitry Andric enum {
149e8d8bef9SDimitry Andric // Either just allocated by underlying allocator, but AsanChunk is not yet
150e8d8bef9SDimitry Andric // ready, or almost returned to undelying allocator and AsanChunk is already
151e8d8bef9SDimitry Andric // meaningless.
152e8d8bef9SDimitry Andric CHUNK_INVALID = 0,
153e8d8bef9SDimitry Andric // The chunk is allocated and not yet freed.
15468d75effSDimitry Andric CHUNK_ALLOCATED = 2,
155e8d8bef9SDimitry Andric // The chunk was freed and put into quarantine zone.
156e8d8bef9SDimitry Andric CHUNK_QUARANTINE = 3,
15768d75effSDimitry Andric };
15868d75effSDimitry Andric
159e8d8bef9SDimitry Andric class AsanChunk : public ChunkBase {
160e8d8bef9SDimitry Andric public:
Beg()16168d75effSDimitry Andric uptr Beg() { return reinterpret_cast<uptr>(this) + kChunkHeaderSize; }
AddrIsInside(uptr addr)162e8d8bef9SDimitry Andric bool AddrIsInside(uptr addr) {
163e8d8bef9SDimitry Andric return (addr >= Beg()) && (addr < Beg() + UsedSize());
16468d75effSDimitry Andric }
165e8d8bef9SDimitry Andric };
166e8d8bef9SDimitry Andric
167e8d8bef9SDimitry Andric class LargeChunkHeader {
168e8d8bef9SDimitry Andric static constexpr uptr kAllocBegMagic =
169e8d8bef9SDimitry Andric FIRST_32_SECOND_64(0xCC6E96B9, 0xCC6E96B9CC6E96B9ULL);
170e8d8bef9SDimitry Andric atomic_uintptr_t magic;
171e8d8bef9SDimitry Andric AsanChunk *chunk_header;
172e8d8bef9SDimitry Andric
173e8d8bef9SDimitry Andric public:
Get() const174e8d8bef9SDimitry Andric AsanChunk *Get() const {
175e8d8bef9SDimitry Andric return atomic_load(&magic, memory_order_acquire) == kAllocBegMagic
176e8d8bef9SDimitry Andric ? chunk_header
177e8d8bef9SDimitry Andric : nullptr;
17868d75effSDimitry Andric }
179e8d8bef9SDimitry Andric
Set(AsanChunk * p)180e8d8bef9SDimitry Andric void Set(AsanChunk *p) {
181e8d8bef9SDimitry Andric if (p) {
182e8d8bef9SDimitry Andric chunk_header = p;
183e8d8bef9SDimitry Andric atomic_store(&magic, kAllocBegMagic, memory_order_release);
184e8d8bef9SDimitry Andric return;
18568d75effSDimitry Andric }
186e8d8bef9SDimitry Andric
187e8d8bef9SDimitry Andric uptr old = kAllocBegMagic;
188e8d8bef9SDimitry Andric if (!atomic_compare_exchange_strong(&magic, &old, 0,
189e8d8bef9SDimitry Andric memory_order_release)) {
190e8d8bef9SDimitry Andric CHECK_EQ(old, kAllocBegMagic);
191e8d8bef9SDimitry Andric }
19268d75effSDimitry Andric }
19368d75effSDimitry Andric };
19468d75effSDimitry Andric
FillChunk(AsanChunk * m)19506c3fb27SDimitry Andric static void FillChunk(AsanChunk *m) {
19606c3fb27SDimitry Andric // FIXME: Use ReleaseMemoryPagesToOS.
19706c3fb27SDimitry Andric Flags &fl = *flags();
19806c3fb27SDimitry Andric
19906c3fb27SDimitry Andric if (fl.max_free_fill_size > 0) {
20006c3fb27SDimitry Andric // We have to skip the chunk header, it contains free_context_id.
20106c3fb27SDimitry Andric uptr scribble_start = (uptr)m + kChunkHeaderSize + kChunkHeader2Size;
20206c3fb27SDimitry Andric if (m->UsedSize() >= kChunkHeader2Size) { // Skip Header2 in user area.
20306c3fb27SDimitry Andric uptr size_to_fill = m->UsedSize() - kChunkHeader2Size;
20406c3fb27SDimitry Andric size_to_fill = Min(size_to_fill, (uptr)fl.max_free_fill_size);
20506c3fb27SDimitry Andric REAL(memset)((void *)scribble_start, fl.free_fill_byte, size_to_fill);
20606c3fb27SDimitry Andric }
20706c3fb27SDimitry Andric }
20806c3fb27SDimitry Andric }
20906c3fb27SDimitry Andric
21068d75effSDimitry Andric struct QuarantineCallback {
QuarantineCallback__asan::QuarantineCallback21168d75effSDimitry Andric QuarantineCallback(AllocatorCache *cache, BufferedStackTrace *stack)
21268d75effSDimitry Andric : cache_(cache),
21368d75effSDimitry Andric stack_(stack) {
21468d75effSDimitry Andric }
21568d75effSDimitry Andric
PreQuarantine__asan::QuarantineCallback21606c3fb27SDimitry Andric void PreQuarantine(AsanChunk *m) const {
21706c3fb27SDimitry Andric FillChunk(m);
21806c3fb27SDimitry Andric // Poison the region.
21906c3fb27SDimitry Andric PoisonShadow(m->Beg(), RoundUpTo(m->UsedSize(), ASAN_SHADOW_GRANULARITY),
22006c3fb27SDimitry Andric kAsanHeapFreeMagic);
22106c3fb27SDimitry Andric }
22206c3fb27SDimitry Andric
Recycle__asan::QuarantineCallback22306c3fb27SDimitry Andric void Recycle(AsanChunk *m) const {
224e8d8bef9SDimitry Andric void *p = get_allocator().GetBlockBegin(m);
22506c3fb27SDimitry Andric
22606c3fb27SDimitry Andric // The secondary will immediately unpoison and unmap the memory, so this
22706c3fb27SDimitry Andric // branch is unnecessary.
22806c3fb27SDimitry Andric if (get_allocator().FromPrimary(p)) {
229e8d8bef9SDimitry Andric if (p != m) {
230e8d8bef9SDimitry Andric // Clear the magic value, as allocator internals may overwrite the
231e8d8bef9SDimitry Andric // contents of deallocated chunk, confusing GetAsanChunk lookup.
232e8d8bef9SDimitry Andric reinterpret_cast<LargeChunkHeader *>(p)->Set(nullptr);
233e8d8bef9SDimitry Andric }
234e8d8bef9SDimitry Andric
235e8d8bef9SDimitry Andric u8 old_chunk_state = CHUNK_QUARANTINE;
236e8d8bef9SDimitry Andric if (!atomic_compare_exchange_strong(&m->chunk_state, &old_chunk_state,
23706c3fb27SDimitry Andric CHUNK_INVALID,
23806c3fb27SDimitry Andric memory_order_acquire)) {
239e8d8bef9SDimitry Andric CHECK_EQ(old_chunk_state, CHUNK_QUARANTINE);
240e8d8bef9SDimitry Andric }
241e8d8bef9SDimitry Andric
2420eae32dcSDimitry Andric PoisonShadow(m->Beg(), RoundUpTo(m->UsedSize(), ASAN_SHADOW_GRANULARITY),
24368d75effSDimitry Andric kAsanHeapLeftRedzoneMagic);
24406c3fb27SDimitry Andric }
24568d75effSDimitry Andric
24668d75effSDimitry Andric // Statistics.
24768d75effSDimitry Andric AsanStats &thread_stats = GetCurrentThreadStats();
24868d75effSDimitry Andric thread_stats.real_frees++;
24968d75effSDimitry Andric thread_stats.really_freed += m->UsedSize();
25068d75effSDimitry Andric
25168d75effSDimitry Andric get_allocator().Deallocate(cache_, p);
25268d75effSDimitry Andric }
25368d75effSDimitry Andric
RecyclePassThrough__asan::QuarantineCallback25406c3fb27SDimitry Andric void RecyclePassThrough(AsanChunk *m) const {
25506c3fb27SDimitry Andric // Recycle for the secondary will immediately unpoison and unmap the
25606c3fb27SDimitry Andric // memory, so quarantine preparation is unnecessary.
25706c3fb27SDimitry Andric if (get_allocator().FromPrimary(m)) {
25806c3fb27SDimitry Andric // The primary allocation may need pattern fill if enabled.
25906c3fb27SDimitry Andric FillChunk(m);
26006c3fb27SDimitry Andric }
26106c3fb27SDimitry Andric Recycle(m);
26206c3fb27SDimitry Andric }
26306c3fb27SDimitry Andric
Allocate__asan::QuarantineCallback26406c3fb27SDimitry Andric void *Allocate(uptr size) const {
26568d75effSDimitry Andric void *res = get_allocator().Allocate(cache_, size, 1);
26668d75effSDimitry Andric // TODO(alekseys): Consider making quarantine OOM-friendly.
26768d75effSDimitry Andric if (UNLIKELY(!res))
26868d75effSDimitry Andric ReportOutOfMemory(size, stack_);
26968d75effSDimitry Andric return res;
27068d75effSDimitry Andric }
27168d75effSDimitry Andric
Deallocate__asan::QuarantineCallback27206c3fb27SDimitry Andric void Deallocate(void *p) const { get_allocator().Deallocate(cache_, p); }
27368d75effSDimitry Andric
27468d75effSDimitry Andric private:
27568d75effSDimitry Andric AllocatorCache* const cache_;
27668d75effSDimitry Andric BufferedStackTrace* const stack_;
27768d75effSDimitry Andric };
27868d75effSDimitry Andric
27968d75effSDimitry Andric typedef Quarantine<QuarantineCallback, AsanChunk> AsanQuarantine;
28068d75effSDimitry Andric typedef AsanQuarantine::Cache QuarantineCache;
28168d75effSDimitry Andric
OnMap(uptr p,uptr size) const28268d75effSDimitry Andric void AsanMapUnmapCallback::OnMap(uptr p, uptr size) const {
28368d75effSDimitry Andric PoisonShadow(p, size, kAsanHeapLeftRedzoneMagic);
28468d75effSDimitry Andric // Statistics.
28568d75effSDimitry Andric AsanStats &thread_stats = GetCurrentThreadStats();
28668d75effSDimitry Andric thread_stats.mmaps++;
28768d75effSDimitry Andric thread_stats.mmaped += size;
28868d75effSDimitry Andric }
28906c3fb27SDimitry Andric
OnMapSecondary(uptr p,uptr size,uptr user_begin,uptr user_size) const29006c3fb27SDimitry Andric void AsanMapUnmapCallback::OnMapSecondary(uptr p, uptr size, uptr user_begin,
29106c3fb27SDimitry Andric uptr user_size) const {
29206c3fb27SDimitry Andric uptr user_end = RoundDownTo(user_begin + user_size, ASAN_SHADOW_GRANULARITY);
29306c3fb27SDimitry Andric user_begin = RoundUpTo(user_begin, ASAN_SHADOW_GRANULARITY);
29406c3fb27SDimitry Andric // The secondary mapping will be immediately returned to user, no value
29506c3fb27SDimitry Andric // poisoning that with non-zero just before unpoisoning by Allocate(). So just
29606c3fb27SDimitry Andric // poison head/tail invisible to Allocate().
29706c3fb27SDimitry Andric PoisonShadow(p, user_begin - p, kAsanHeapLeftRedzoneMagic);
29806c3fb27SDimitry Andric PoisonShadow(user_end, size - (user_end - p), kAsanHeapLeftRedzoneMagic);
29906c3fb27SDimitry Andric // Statistics.
30006c3fb27SDimitry Andric AsanStats &thread_stats = GetCurrentThreadStats();
30106c3fb27SDimitry Andric thread_stats.mmaps++;
30206c3fb27SDimitry Andric thread_stats.mmaped += size;
30306c3fb27SDimitry Andric }
30406c3fb27SDimitry Andric
OnUnmap(uptr p,uptr size) const30568d75effSDimitry Andric void AsanMapUnmapCallback::OnUnmap(uptr p, uptr size) const {
30668d75effSDimitry Andric PoisonShadow(p, size, 0);
30768d75effSDimitry Andric // We are about to unmap a chunk of user memory.
30868d75effSDimitry Andric // Mark the corresponding shadow memory as not needed.
30968d75effSDimitry Andric FlushUnneededASanShadowMemory(p, size);
31068d75effSDimitry Andric // Statistics.
31168d75effSDimitry Andric AsanStats &thread_stats = GetCurrentThreadStats();
31268d75effSDimitry Andric thread_stats.munmaps++;
31368d75effSDimitry Andric thread_stats.munmaped += size;
31468d75effSDimitry Andric }
31568d75effSDimitry Andric
31668d75effSDimitry Andric // We can not use THREADLOCAL because it is not supported on some of the
31768d75effSDimitry Andric // platforms we care about (OSX 10.6, Android).
31868d75effSDimitry Andric // static THREADLOCAL AllocatorCache cache;
GetAllocatorCache(AsanThreadLocalMallocStorage * ms)31968d75effSDimitry Andric AllocatorCache *GetAllocatorCache(AsanThreadLocalMallocStorage *ms) {
32068d75effSDimitry Andric CHECK(ms);
32168d75effSDimitry Andric return &ms->allocator_cache;
32268d75effSDimitry Andric }
32368d75effSDimitry Andric
GetQuarantineCache(AsanThreadLocalMallocStorage * ms)32468d75effSDimitry Andric QuarantineCache *GetQuarantineCache(AsanThreadLocalMallocStorage *ms) {
32568d75effSDimitry Andric CHECK(ms);
32668d75effSDimitry Andric CHECK_LE(sizeof(QuarantineCache), sizeof(ms->quarantine_cache));
32768d75effSDimitry Andric return reinterpret_cast<QuarantineCache *>(ms->quarantine_cache);
32868d75effSDimitry Andric }
32968d75effSDimitry Andric
SetFrom(const Flags * f,const CommonFlags * cf)33068d75effSDimitry Andric void AllocatorOptions::SetFrom(const Flags *f, const CommonFlags *cf) {
33168d75effSDimitry Andric quarantine_size_mb = f->quarantine_size_mb;
33268d75effSDimitry Andric thread_local_quarantine_size_kb = f->thread_local_quarantine_size_kb;
33368d75effSDimitry Andric min_redzone = f->redzone;
33468d75effSDimitry Andric max_redzone = f->max_redzone;
33568d75effSDimitry Andric may_return_null = cf->allocator_may_return_null;
33668d75effSDimitry Andric alloc_dealloc_mismatch = f->alloc_dealloc_mismatch;
33768d75effSDimitry Andric release_to_os_interval_ms = cf->allocator_release_to_os_interval_ms;
33868d75effSDimitry Andric }
33968d75effSDimitry Andric
CopyTo(Flags * f,CommonFlags * cf)34068d75effSDimitry Andric void AllocatorOptions::CopyTo(Flags *f, CommonFlags *cf) {
34168d75effSDimitry Andric f->quarantine_size_mb = quarantine_size_mb;
34268d75effSDimitry Andric f->thread_local_quarantine_size_kb = thread_local_quarantine_size_kb;
34368d75effSDimitry Andric f->redzone = min_redzone;
34468d75effSDimitry Andric f->max_redzone = max_redzone;
34568d75effSDimitry Andric cf->allocator_may_return_null = may_return_null;
34668d75effSDimitry Andric f->alloc_dealloc_mismatch = alloc_dealloc_mismatch;
34768d75effSDimitry Andric cf->allocator_release_to_os_interval_ms = release_to_os_interval_ms;
34868d75effSDimitry Andric }
34968d75effSDimitry Andric
35068d75effSDimitry Andric struct Allocator {
35168d75effSDimitry Andric static const uptr kMaxAllowedMallocSize =
35268d75effSDimitry Andric FIRST_32_SECOND_64(3UL << 30, 1ULL << 40);
35368d75effSDimitry Andric
35468d75effSDimitry Andric AsanAllocator allocator;
35568d75effSDimitry Andric AsanQuarantine quarantine;
35668d75effSDimitry Andric StaticSpinMutex fallback_mutex;
35768d75effSDimitry Andric AllocatorCache fallback_allocator_cache;
35868d75effSDimitry Andric QuarantineCache fallback_quarantine_cache;
35968d75effSDimitry Andric
360480093f4SDimitry Andric uptr max_user_defined_malloc_size;
36168d75effSDimitry Andric
36268d75effSDimitry Andric // ------------------- Options --------------------------
36368d75effSDimitry Andric atomic_uint16_t min_redzone;
36468d75effSDimitry Andric atomic_uint16_t max_redzone;
36568d75effSDimitry Andric atomic_uint8_t alloc_dealloc_mismatch;
36668d75effSDimitry Andric
36768d75effSDimitry Andric // ------------------- Initialization ------------------------
Allocator__asan::Allocator36868d75effSDimitry Andric explicit Allocator(LinkerInitialized)
36968d75effSDimitry Andric : quarantine(LINKER_INITIALIZED),
37068d75effSDimitry Andric fallback_quarantine_cache(LINKER_INITIALIZED) {}
37168d75effSDimitry Andric
CheckOptions__asan::Allocator37268d75effSDimitry Andric void CheckOptions(const AllocatorOptions &options) const {
37368d75effSDimitry Andric CHECK_GE(options.min_redzone, 16);
37468d75effSDimitry Andric CHECK_GE(options.max_redzone, options.min_redzone);
37568d75effSDimitry Andric CHECK_LE(options.max_redzone, 2048);
37668d75effSDimitry Andric CHECK(IsPowerOfTwo(options.min_redzone));
37768d75effSDimitry Andric CHECK(IsPowerOfTwo(options.max_redzone));
37868d75effSDimitry Andric }
37968d75effSDimitry Andric
SharedInitCode__asan::Allocator38068d75effSDimitry Andric void SharedInitCode(const AllocatorOptions &options) {
38168d75effSDimitry Andric CheckOptions(options);
38268d75effSDimitry Andric quarantine.Init((uptr)options.quarantine_size_mb << 20,
38368d75effSDimitry Andric (uptr)options.thread_local_quarantine_size_kb << 10);
38468d75effSDimitry Andric atomic_store(&alloc_dealloc_mismatch, options.alloc_dealloc_mismatch,
38568d75effSDimitry Andric memory_order_release);
38668d75effSDimitry Andric atomic_store(&min_redzone, options.min_redzone, memory_order_release);
38768d75effSDimitry Andric atomic_store(&max_redzone, options.max_redzone, memory_order_release);
38868d75effSDimitry Andric }
38968d75effSDimitry Andric
InitLinkerInitialized__asan::Allocator39068d75effSDimitry Andric void InitLinkerInitialized(const AllocatorOptions &options) {
39168d75effSDimitry Andric SetAllocatorMayReturnNull(options.may_return_null);
39268d75effSDimitry Andric allocator.InitLinkerInitialized(options.release_to_os_interval_ms);
39368d75effSDimitry Andric SharedInitCode(options);
394480093f4SDimitry Andric max_user_defined_malloc_size = common_flags()->max_allocation_size_mb
395480093f4SDimitry Andric ? common_flags()->max_allocation_size_mb
396480093f4SDimitry Andric << 20
397480093f4SDimitry Andric : kMaxAllowedMallocSize;
39868d75effSDimitry Andric }
39968d75effSDimitry Andric
RePoisonChunk__asan::Allocator40068d75effSDimitry Andric void RePoisonChunk(uptr chunk) {
40168d75effSDimitry Andric // This could be a user-facing chunk (with redzones), or some internal
40268d75effSDimitry Andric // housekeeping chunk, like TransferBatch. Start by assuming the former.
40368d75effSDimitry Andric AsanChunk *ac = GetAsanChunk((void *)chunk);
404e8d8bef9SDimitry Andric uptr allocated_size = allocator.GetActuallyAllocatedSize((void *)chunk);
405e8d8bef9SDimitry Andric if (ac && atomic_load(&ac->chunk_state, memory_order_acquire) ==
406e8d8bef9SDimitry Andric CHUNK_ALLOCATED) {
40768d75effSDimitry Andric uptr beg = ac->Beg();
408e8d8bef9SDimitry Andric uptr end = ac->Beg() + ac->UsedSize();
40968d75effSDimitry Andric uptr chunk_end = chunk + allocated_size;
410e8d8bef9SDimitry Andric if (chunk < beg && beg < end && end <= chunk_end) {
41168d75effSDimitry Andric // Looks like a valid AsanChunk in use, poison redzones only.
41268d75effSDimitry Andric PoisonShadow(chunk, beg - chunk, kAsanHeapLeftRedzoneMagic);
4130eae32dcSDimitry Andric uptr end_aligned_down = RoundDownTo(end, ASAN_SHADOW_GRANULARITY);
41468d75effSDimitry Andric FastPoisonShadowPartialRightRedzone(
41568d75effSDimitry Andric end_aligned_down, end - end_aligned_down,
41668d75effSDimitry Andric chunk_end - end_aligned_down, kAsanHeapLeftRedzoneMagic);
417e8d8bef9SDimitry Andric return;
418e8d8bef9SDimitry Andric }
419e8d8bef9SDimitry Andric }
420e8d8bef9SDimitry Andric
42168d75effSDimitry Andric // This is either not an AsanChunk or freed or quarantined AsanChunk.
42268d75effSDimitry Andric // In either case, poison everything.
42368d75effSDimitry Andric PoisonShadow(chunk, allocated_size, kAsanHeapLeftRedzoneMagic);
42468d75effSDimitry Andric }
42568d75effSDimitry Andric
ReInitialize__asan::Allocator42668d75effSDimitry Andric void ReInitialize(const AllocatorOptions &options) {
42768d75effSDimitry Andric SetAllocatorMayReturnNull(options.may_return_null);
42868d75effSDimitry Andric allocator.SetReleaseToOSIntervalMs(options.release_to_os_interval_ms);
42968d75effSDimitry Andric SharedInitCode(options);
43068d75effSDimitry Andric
43168d75effSDimitry Andric // Poison all existing allocation's redzones.
43268d75effSDimitry Andric if (CanPoisonMemory()) {
43368d75effSDimitry Andric allocator.ForceLock();
43468d75effSDimitry Andric allocator.ForEachChunk(
43568d75effSDimitry Andric [](uptr chunk, void *alloc) {
43668d75effSDimitry Andric ((Allocator *)alloc)->RePoisonChunk(chunk);
43768d75effSDimitry Andric },
43868d75effSDimitry Andric this);
43968d75effSDimitry Andric allocator.ForceUnlock();
44068d75effSDimitry Andric }
44168d75effSDimitry Andric }
44268d75effSDimitry Andric
GetOptions__asan::Allocator44368d75effSDimitry Andric void GetOptions(AllocatorOptions *options) const {
44406c3fb27SDimitry Andric options->quarantine_size_mb = quarantine.GetMaxSize() >> 20;
44506c3fb27SDimitry Andric options->thread_local_quarantine_size_kb =
44606c3fb27SDimitry Andric quarantine.GetMaxCacheSize() >> 10;
44768d75effSDimitry Andric options->min_redzone = atomic_load(&min_redzone, memory_order_acquire);
44868d75effSDimitry Andric options->max_redzone = atomic_load(&max_redzone, memory_order_acquire);
44968d75effSDimitry Andric options->may_return_null = AllocatorMayReturnNull();
45068d75effSDimitry Andric options->alloc_dealloc_mismatch =
45168d75effSDimitry Andric atomic_load(&alloc_dealloc_mismatch, memory_order_acquire);
45268d75effSDimitry Andric options->release_to_os_interval_ms = allocator.ReleaseToOSIntervalMs();
45368d75effSDimitry Andric }
45468d75effSDimitry Andric
45568d75effSDimitry Andric // -------------------- Helper methods. -------------------------
ComputeRZLog__asan::Allocator45668d75effSDimitry Andric uptr ComputeRZLog(uptr user_requested_size) {
457e8d8bef9SDimitry Andric u32 rz_log = user_requested_size <= 64 - 16 ? 0
458e8d8bef9SDimitry Andric : user_requested_size <= 128 - 32 ? 1
459e8d8bef9SDimitry Andric : user_requested_size <= 512 - 64 ? 2
460e8d8bef9SDimitry Andric : user_requested_size <= 4096 - 128 ? 3
461e8d8bef9SDimitry Andric : user_requested_size <= (1 << 14) - 256 ? 4
462e8d8bef9SDimitry Andric : user_requested_size <= (1 << 15) - 512 ? 5
463e8d8bef9SDimitry Andric : user_requested_size <= (1 << 16) - 1024 ? 6
464e8d8bef9SDimitry Andric : 7;
465e8d8bef9SDimitry Andric u32 hdr_log = RZSize2Log(RoundUpToPowerOfTwo(sizeof(ChunkHeader)));
466e8d8bef9SDimitry Andric u32 min_log = RZSize2Log(atomic_load(&min_redzone, memory_order_acquire));
467e8d8bef9SDimitry Andric u32 max_log = RZSize2Log(atomic_load(&max_redzone, memory_order_acquire));
468e8d8bef9SDimitry Andric return Min(Max(rz_log, Max(min_log, hdr_log)), Max(max_log, hdr_log));
46968d75effSDimitry Andric }
47068d75effSDimitry Andric
ComputeUserRequestedAlignmentLog__asan::Allocator47168d75effSDimitry Andric static uptr ComputeUserRequestedAlignmentLog(uptr user_requested_alignment) {
47268d75effSDimitry Andric if (user_requested_alignment < 8)
47368d75effSDimitry Andric return 0;
47468d75effSDimitry Andric if (user_requested_alignment > 512)
47568d75effSDimitry Andric user_requested_alignment = 512;
47668d75effSDimitry Andric return Log2(user_requested_alignment) - 2;
47768d75effSDimitry Andric }
47868d75effSDimitry Andric
ComputeUserAlignment__asan::Allocator47968d75effSDimitry Andric static uptr ComputeUserAlignment(uptr user_requested_alignment_log) {
48068d75effSDimitry Andric if (user_requested_alignment_log == 0)
48168d75effSDimitry Andric return 0;
48268d75effSDimitry Andric return 1LL << (user_requested_alignment_log + 2);
48368d75effSDimitry Andric }
48468d75effSDimitry Andric
48568d75effSDimitry Andric // We have an address between two chunks, and we want to report just one.
ChooseChunk__asan::Allocator48668d75effSDimitry Andric AsanChunk *ChooseChunk(uptr addr, AsanChunk *left_chunk,
48768d75effSDimitry Andric AsanChunk *right_chunk) {
488e8d8bef9SDimitry Andric if (!left_chunk)
489e8d8bef9SDimitry Andric return right_chunk;
490e8d8bef9SDimitry Andric if (!right_chunk)
491e8d8bef9SDimitry Andric return left_chunk;
49268d75effSDimitry Andric // Prefer an allocated chunk over freed chunk and freed chunk
49368d75effSDimitry Andric // over available chunk.
494e8d8bef9SDimitry Andric u8 left_state = atomic_load(&left_chunk->chunk_state, memory_order_relaxed);
495e8d8bef9SDimitry Andric u8 right_state =
496e8d8bef9SDimitry Andric atomic_load(&right_chunk->chunk_state, memory_order_relaxed);
497e8d8bef9SDimitry Andric if (left_state != right_state) {
498e8d8bef9SDimitry Andric if (left_state == CHUNK_ALLOCATED)
49968d75effSDimitry Andric return left_chunk;
500e8d8bef9SDimitry Andric if (right_state == CHUNK_ALLOCATED)
50168d75effSDimitry Andric return right_chunk;
502e8d8bef9SDimitry Andric if (left_state == CHUNK_QUARANTINE)
50368d75effSDimitry Andric return left_chunk;
504e8d8bef9SDimitry Andric if (right_state == CHUNK_QUARANTINE)
50568d75effSDimitry Andric return right_chunk;
50668d75effSDimitry Andric }
50768d75effSDimitry Andric // Same chunk_state: choose based on offset.
50868d75effSDimitry Andric sptr l_offset = 0, r_offset = 0;
50968d75effSDimitry Andric CHECK(AsanChunkView(left_chunk).AddrIsAtRight(addr, 1, &l_offset));
51068d75effSDimitry Andric CHECK(AsanChunkView(right_chunk).AddrIsAtLeft(addr, 1, &r_offset));
51168d75effSDimitry Andric if (l_offset < r_offset)
51268d75effSDimitry Andric return left_chunk;
51368d75effSDimitry Andric return right_chunk;
51468d75effSDimitry Andric }
51568d75effSDimitry Andric
UpdateAllocationStack__asan::Allocator516480093f4SDimitry Andric bool UpdateAllocationStack(uptr addr, BufferedStackTrace *stack) {
517480093f4SDimitry Andric AsanChunk *m = GetAsanChunkByAddr(addr);
518480093f4SDimitry Andric if (!m) return false;
519e8d8bef9SDimitry Andric if (atomic_load(&m->chunk_state, memory_order_acquire) != CHUNK_ALLOCATED)
520e8d8bef9SDimitry Andric return false;
521480093f4SDimitry Andric if (m->Beg() != addr) return false;
522e8d8bef9SDimitry Andric AsanThread *t = GetCurrentThread();
523fe6060f1SDimitry Andric m->SetAllocContext(t ? t->tid() : kMainTid, StackDepotPut(*stack));
524480093f4SDimitry Andric return true;
525480093f4SDimitry Andric }
526480093f4SDimitry Andric
52768d75effSDimitry Andric // -------------------- Allocation/Deallocation routines ---------------
Allocate__asan::Allocator52868d75effSDimitry Andric void *Allocate(uptr size, uptr alignment, BufferedStackTrace *stack,
52968d75effSDimitry Andric AllocType alloc_type, bool can_fill) {
5305f757f3fSDimitry Andric if (UNLIKELY(!AsanInited()))
53168d75effSDimitry Andric AsanInitFromRtl();
5320eae32dcSDimitry Andric if (UNLIKELY(IsRssLimitExceeded())) {
53368d75effSDimitry Andric if (AllocatorMayReturnNull())
53468d75effSDimitry Andric return nullptr;
53568d75effSDimitry Andric ReportRssLimitExceeded(stack);
53668d75effSDimitry Andric }
53768d75effSDimitry Andric Flags &fl = *flags();
53868d75effSDimitry Andric CHECK(stack);
5390eae32dcSDimitry Andric const uptr min_alignment = ASAN_SHADOW_GRANULARITY;
54068d75effSDimitry Andric const uptr user_requested_alignment_log =
54168d75effSDimitry Andric ComputeUserRequestedAlignmentLog(alignment);
54268d75effSDimitry Andric if (alignment < min_alignment)
54368d75effSDimitry Andric alignment = min_alignment;
54468d75effSDimitry Andric if (size == 0) {
54568d75effSDimitry Andric // We'd be happy to avoid allocating memory for zero-size requests, but
54668d75effSDimitry Andric // some programs/tests depend on this behavior and assume that malloc
54768d75effSDimitry Andric // would not return NULL even for zero-size allocations. Moreover, it
54868d75effSDimitry Andric // looks like operator new should never return NULL, and results of
54968d75effSDimitry Andric // consecutive "new" calls must be different even if the allocated size
55068d75effSDimitry Andric // is zero.
55168d75effSDimitry Andric size = 1;
55268d75effSDimitry Andric }
55368d75effSDimitry Andric CHECK(IsPowerOfTwo(alignment));
55468d75effSDimitry Andric uptr rz_log = ComputeRZLog(size);
55568d75effSDimitry Andric uptr rz_size = RZLog2Size(rz_log);
55668d75effSDimitry Andric uptr rounded_size = RoundUpTo(Max(size, kChunkHeader2Size), alignment);
55768d75effSDimitry Andric uptr needed_size = rounded_size + rz_size;
55868d75effSDimitry Andric if (alignment > min_alignment)
55968d75effSDimitry Andric needed_size += alignment;
56006c3fb27SDimitry Andric bool from_primary = PrimaryAllocator::CanAllocate(needed_size, alignment);
56168d75effSDimitry Andric // If we are allocating from the secondary allocator, there will be no
56268d75effSDimitry Andric // automatic right redzone, so add the right redzone manually.
56306c3fb27SDimitry Andric if (!from_primary)
56468d75effSDimitry Andric needed_size += rz_size;
56568d75effSDimitry Andric CHECK(IsAligned(needed_size, min_alignment));
566480093f4SDimitry Andric if (size > kMaxAllowedMallocSize || needed_size > kMaxAllowedMallocSize ||
567480093f4SDimitry Andric size > max_user_defined_malloc_size) {
56868d75effSDimitry Andric if (AllocatorMayReturnNull()) {
56968d75effSDimitry Andric Report("WARNING: AddressSanitizer failed to allocate 0x%zx bytes\n",
570349cc55cSDimitry Andric size);
57168d75effSDimitry Andric return nullptr;
57268d75effSDimitry Andric }
573480093f4SDimitry Andric uptr malloc_limit =
574480093f4SDimitry Andric Min(kMaxAllowedMallocSize, max_user_defined_malloc_size);
575480093f4SDimitry Andric ReportAllocationSizeTooBig(size, needed_size, malloc_limit, stack);
57668d75effSDimitry Andric }
57768d75effSDimitry Andric
57868d75effSDimitry Andric AsanThread *t = GetCurrentThread();
57968d75effSDimitry Andric void *allocated;
58068d75effSDimitry Andric if (t) {
58168d75effSDimitry Andric AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
58268d75effSDimitry Andric allocated = allocator.Allocate(cache, needed_size, 8);
58368d75effSDimitry Andric } else {
58468d75effSDimitry Andric SpinMutexLock l(&fallback_mutex);
58568d75effSDimitry Andric AllocatorCache *cache = &fallback_allocator_cache;
58668d75effSDimitry Andric allocated = allocator.Allocate(cache, needed_size, 8);
58768d75effSDimitry Andric }
58868d75effSDimitry Andric if (UNLIKELY(!allocated)) {
58968d75effSDimitry Andric SetAllocatorOutOfMemory();
59068d75effSDimitry Andric if (AllocatorMayReturnNull())
59168d75effSDimitry Andric return nullptr;
59268d75effSDimitry Andric ReportOutOfMemory(size, stack);
59368d75effSDimitry Andric }
59468d75effSDimitry Andric
59568d75effSDimitry Andric uptr alloc_beg = reinterpret_cast<uptr>(allocated);
59668d75effSDimitry Andric uptr alloc_end = alloc_beg + needed_size;
597e8d8bef9SDimitry Andric uptr user_beg = alloc_beg + rz_size;
59868d75effSDimitry Andric if (!IsAligned(user_beg, alignment))
59968d75effSDimitry Andric user_beg = RoundUpTo(user_beg, alignment);
60068d75effSDimitry Andric uptr user_end = user_beg + size;
60168d75effSDimitry Andric CHECK_LE(user_end, alloc_end);
60268d75effSDimitry Andric uptr chunk_beg = user_beg - kChunkHeaderSize;
60368d75effSDimitry Andric AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
60468d75effSDimitry Andric m->alloc_type = alloc_type;
60568d75effSDimitry Andric CHECK(size);
606e8d8bef9SDimitry Andric m->SetUsedSize(size);
60768d75effSDimitry Andric m->user_requested_alignment_log = user_requested_alignment_log;
60868d75effSDimitry Andric
609fe6060f1SDimitry Andric m->SetAllocContext(t ? t->tid() : kMainTid, StackDepotPut(*stack));
61068d75effSDimitry Andric
61106c3fb27SDimitry Andric if (!from_primary || *(u8 *)MEM_TO_SHADOW((uptr)allocated) == 0) {
61206c3fb27SDimitry Andric // The allocator provides an unpoisoned chunk. This is possible for the
61306c3fb27SDimitry Andric // secondary allocator, or if CanPoisonMemory() was false for some time,
61406c3fb27SDimitry Andric // for example, due to flags()->start_disabled. Anyway, poison left and
61506c3fb27SDimitry Andric // right of the block before using it for anything else.
61606c3fb27SDimitry Andric uptr tail_beg = RoundUpTo(user_end, ASAN_SHADOW_GRANULARITY);
61706c3fb27SDimitry Andric uptr tail_end = alloc_beg + allocator.GetActuallyAllocatedSize(allocated);
61806c3fb27SDimitry Andric PoisonShadow(alloc_beg, user_beg - alloc_beg, kAsanHeapLeftRedzoneMagic);
61906c3fb27SDimitry Andric PoisonShadow(tail_beg, tail_end - tail_beg, kAsanHeapLeftRedzoneMagic);
62006c3fb27SDimitry Andric }
62106c3fb27SDimitry Andric
62268d75effSDimitry Andric uptr size_rounded_down_to_granularity =
6230eae32dcSDimitry Andric RoundDownTo(size, ASAN_SHADOW_GRANULARITY);
62468d75effSDimitry Andric // Unpoison the bulk of the memory region.
62568d75effSDimitry Andric if (size_rounded_down_to_granularity)
62668d75effSDimitry Andric PoisonShadow(user_beg, size_rounded_down_to_granularity, 0);
62768d75effSDimitry Andric // Deal with the end of the region if size is not aligned to granularity.
62868d75effSDimitry Andric if (size != size_rounded_down_to_granularity && CanPoisonMemory()) {
62968d75effSDimitry Andric u8 *shadow =
63068d75effSDimitry Andric (u8 *)MemToShadow(user_beg + size_rounded_down_to_granularity);
6310eae32dcSDimitry Andric *shadow = fl.poison_partial ? (size & (ASAN_SHADOW_GRANULARITY - 1)) : 0;
63268d75effSDimitry Andric }
63368d75effSDimitry Andric
63468d75effSDimitry Andric AsanStats &thread_stats = GetCurrentThreadStats();
63568d75effSDimitry Andric thread_stats.mallocs++;
63668d75effSDimitry Andric thread_stats.malloced += size;
63768d75effSDimitry Andric thread_stats.malloced_redzones += needed_size - size;
63868d75effSDimitry Andric if (needed_size > SizeClassMap::kMaxSize)
63968d75effSDimitry Andric thread_stats.malloc_large++;
64068d75effSDimitry Andric else
64168d75effSDimitry Andric thread_stats.malloced_by_size[SizeClassMap::ClassID(needed_size)]++;
64268d75effSDimitry Andric
64368d75effSDimitry Andric void *res = reinterpret_cast<void *>(user_beg);
64468d75effSDimitry Andric if (can_fill && fl.max_malloc_fill_size) {
64568d75effSDimitry Andric uptr fill_size = Min(size, (uptr)fl.max_malloc_fill_size);
64668d75effSDimitry Andric REAL(memset)(res, fl.malloc_fill_byte, fill_size);
64768d75effSDimitry Andric }
64868d75effSDimitry Andric #if CAN_SANITIZE_LEAKS
64968d75effSDimitry Andric m->lsan_tag = __lsan::DisabledInThisThread() ? __lsan::kIgnored
65068d75effSDimitry Andric : __lsan::kDirectlyLeaked;
65168d75effSDimitry Andric #endif
65268d75effSDimitry Andric // Must be the last mutation of metadata in this function.
653e8d8bef9SDimitry Andric atomic_store(&m->chunk_state, CHUNK_ALLOCATED, memory_order_release);
654e8d8bef9SDimitry Andric if (alloc_beg != chunk_beg) {
655e8d8bef9SDimitry Andric CHECK_LE(alloc_beg + sizeof(LargeChunkHeader), chunk_beg);
656e8d8bef9SDimitry Andric reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Set(m);
657e8d8bef9SDimitry Andric }
65881ad6265SDimitry Andric RunMallocHooks(res, size);
65968d75effSDimitry Andric return res;
66068d75effSDimitry Andric }
66168d75effSDimitry Andric
66268d75effSDimitry Andric // Set quarantine flag if chunk is allocated, issue ASan error report on
66368d75effSDimitry Andric // available and quarantined chunks. Return true on success, false otherwise.
AtomicallySetQuarantineFlagIfAllocated__asan::Allocator66468d75effSDimitry Andric bool AtomicallySetQuarantineFlagIfAllocated(AsanChunk *m, void *ptr,
66568d75effSDimitry Andric BufferedStackTrace *stack) {
66668d75effSDimitry Andric u8 old_chunk_state = CHUNK_ALLOCATED;
66768d75effSDimitry Andric // Flip the chunk_state atomically to avoid race on double-free.
668e8d8bef9SDimitry Andric if (!atomic_compare_exchange_strong(&m->chunk_state, &old_chunk_state,
66968d75effSDimitry Andric CHUNK_QUARANTINE,
67068d75effSDimitry Andric memory_order_acquire)) {
67168d75effSDimitry Andric ReportInvalidFree(ptr, old_chunk_state, stack);
67268d75effSDimitry Andric // It's not safe to push a chunk in quarantine on invalid free.
67368d75effSDimitry Andric return false;
67468d75effSDimitry Andric }
67568d75effSDimitry Andric CHECK_EQ(CHUNK_ALLOCATED, old_chunk_state);
676e8d8bef9SDimitry Andric // It was a user data.
677e8d8bef9SDimitry Andric m->SetFreeContext(kInvalidTid, 0);
67868d75effSDimitry Andric return true;
67968d75effSDimitry Andric }
68068d75effSDimitry Andric
68168d75effSDimitry Andric // Expects the chunk to already be marked as quarantined by using
68268d75effSDimitry Andric // AtomicallySetQuarantineFlagIfAllocated.
QuarantineChunk__asan::Allocator68368d75effSDimitry Andric void QuarantineChunk(AsanChunk *m, void *ptr, BufferedStackTrace *stack) {
684e8d8bef9SDimitry Andric CHECK_EQ(atomic_load(&m->chunk_state, memory_order_relaxed),
685e8d8bef9SDimitry Andric CHUNK_QUARANTINE);
68668d75effSDimitry Andric AsanThread *t = GetCurrentThread();
687e8d8bef9SDimitry Andric m->SetFreeContext(t ? t->tid() : 0, StackDepotPut(*stack));
68868d75effSDimitry Andric
68968d75effSDimitry Andric // Push into quarantine.
69068d75effSDimitry Andric if (t) {
69168d75effSDimitry Andric AsanThreadLocalMallocStorage *ms = &t->malloc_storage();
69268d75effSDimitry Andric AllocatorCache *ac = GetAllocatorCache(ms);
69368d75effSDimitry Andric quarantine.Put(GetQuarantineCache(ms), QuarantineCallback(ac, stack), m,
69468d75effSDimitry Andric m->UsedSize());
69568d75effSDimitry Andric } else {
69668d75effSDimitry Andric SpinMutexLock l(&fallback_mutex);
69768d75effSDimitry Andric AllocatorCache *ac = &fallback_allocator_cache;
69868d75effSDimitry Andric quarantine.Put(&fallback_quarantine_cache, QuarantineCallback(ac, stack),
69968d75effSDimitry Andric m, m->UsedSize());
70068d75effSDimitry Andric }
70168d75effSDimitry Andric }
70268d75effSDimitry Andric
Deallocate__asan::Allocator70368d75effSDimitry Andric void Deallocate(void *ptr, uptr delete_size, uptr delete_alignment,
70468d75effSDimitry Andric BufferedStackTrace *stack, AllocType alloc_type) {
70568d75effSDimitry Andric uptr p = reinterpret_cast<uptr>(ptr);
70668d75effSDimitry Andric if (p == 0) return;
70768d75effSDimitry Andric
70868d75effSDimitry Andric uptr chunk_beg = p - kChunkHeaderSize;
70968d75effSDimitry Andric AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
71068d75effSDimitry Andric
71168d75effSDimitry Andric // On Windows, uninstrumented DLLs may allocate memory before ASan hooks
71268d75effSDimitry Andric // malloc. Don't report an invalid free in this case.
71368d75effSDimitry Andric if (SANITIZER_WINDOWS &&
71468d75effSDimitry Andric !get_allocator().PointerIsMine(ptr)) {
71568d75effSDimitry Andric if (!IsSystemHeapAddress(p))
71668d75effSDimitry Andric ReportFreeNotMalloced(p, stack);
71768d75effSDimitry Andric return;
71868d75effSDimitry Andric }
71968d75effSDimitry Andric
720*0fca6ea1SDimitry Andric if (RunFreeHooks(ptr)) {
721*0fca6ea1SDimitry Andric // Someone used __sanitizer_ignore_free_hook() and decided that they
722*0fca6ea1SDimitry Andric // didn't want the memory to __sanitizer_ignore_free_hook freed right now.
723*0fca6ea1SDimitry Andric // When they call free() on this pointer again at a later time, we should
724*0fca6ea1SDimitry Andric // ignore the alloc-type mismatch and allow them to deallocate the pointer
725*0fca6ea1SDimitry Andric // through free(), rather than the initial alloc type.
726*0fca6ea1SDimitry Andric m->alloc_type = FROM_MALLOC;
727*0fca6ea1SDimitry Andric return;
728*0fca6ea1SDimitry Andric }
72968d75effSDimitry Andric
73068d75effSDimitry Andric // Must mark the chunk as quarantined before any changes to its metadata.
73168d75effSDimitry Andric // Do not quarantine given chunk if we failed to set CHUNK_QUARANTINE flag.
73268d75effSDimitry Andric if (!AtomicallySetQuarantineFlagIfAllocated(m, ptr, stack)) return;
73368d75effSDimitry Andric
73468d75effSDimitry Andric if (m->alloc_type != alloc_type) {
73568d75effSDimitry Andric if (atomic_load(&alloc_dealloc_mismatch, memory_order_acquire)) {
73668d75effSDimitry Andric ReportAllocTypeMismatch((uptr)ptr, stack, (AllocType)m->alloc_type,
73768d75effSDimitry Andric (AllocType)alloc_type);
73868d75effSDimitry Andric }
73968d75effSDimitry Andric } else {
74068d75effSDimitry Andric if (flags()->new_delete_type_mismatch &&
74168d75effSDimitry Andric (alloc_type == FROM_NEW || alloc_type == FROM_NEW_BR) &&
74268d75effSDimitry Andric ((delete_size && delete_size != m->UsedSize()) ||
74368d75effSDimitry Andric ComputeUserRequestedAlignmentLog(delete_alignment) !=
74468d75effSDimitry Andric m->user_requested_alignment_log)) {
74568d75effSDimitry Andric ReportNewDeleteTypeMismatch(p, delete_size, delete_alignment, stack);
74668d75effSDimitry Andric }
74768d75effSDimitry Andric }
74868d75effSDimitry Andric
74906c3fb27SDimitry Andric AsanStats &thread_stats = GetCurrentThreadStats();
75006c3fb27SDimitry Andric thread_stats.frees++;
75106c3fb27SDimitry Andric thread_stats.freed += m->UsedSize();
75206c3fb27SDimitry Andric
75368d75effSDimitry Andric QuarantineChunk(m, ptr, stack);
75468d75effSDimitry Andric }
75568d75effSDimitry Andric
Reallocate__asan::Allocator75668d75effSDimitry Andric void *Reallocate(void *old_ptr, uptr new_size, BufferedStackTrace *stack) {
75768d75effSDimitry Andric CHECK(old_ptr && new_size);
75868d75effSDimitry Andric uptr p = reinterpret_cast<uptr>(old_ptr);
75968d75effSDimitry Andric uptr chunk_beg = p - kChunkHeaderSize;
76068d75effSDimitry Andric AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
76168d75effSDimitry Andric
76268d75effSDimitry Andric AsanStats &thread_stats = GetCurrentThreadStats();
76368d75effSDimitry Andric thread_stats.reallocs++;
76468d75effSDimitry Andric thread_stats.realloced += new_size;
76568d75effSDimitry Andric
76668d75effSDimitry Andric void *new_ptr = Allocate(new_size, 8, stack, FROM_MALLOC, true);
76768d75effSDimitry Andric if (new_ptr) {
768e8d8bef9SDimitry Andric u8 chunk_state = atomic_load(&m->chunk_state, memory_order_acquire);
76968d75effSDimitry Andric if (chunk_state != CHUNK_ALLOCATED)
77068d75effSDimitry Andric ReportInvalidFree(old_ptr, chunk_state, stack);
77168d75effSDimitry Andric CHECK_NE(REAL(memcpy), nullptr);
77268d75effSDimitry Andric uptr memcpy_size = Min(new_size, m->UsedSize());
77368d75effSDimitry Andric // If realloc() races with free(), we may start copying freed memory.
77468d75effSDimitry Andric // However, we will report racy double-free later anyway.
77568d75effSDimitry Andric REAL(memcpy)(new_ptr, old_ptr, memcpy_size);
77668d75effSDimitry Andric Deallocate(old_ptr, 0, 0, stack, FROM_MALLOC);
77768d75effSDimitry Andric }
77868d75effSDimitry Andric return new_ptr;
77968d75effSDimitry Andric }
78068d75effSDimitry Andric
Calloc__asan::Allocator78168d75effSDimitry Andric void *Calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) {
78268d75effSDimitry Andric if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
78368d75effSDimitry Andric if (AllocatorMayReturnNull())
78468d75effSDimitry Andric return nullptr;
78568d75effSDimitry Andric ReportCallocOverflow(nmemb, size, stack);
78668d75effSDimitry Andric }
78768d75effSDimitry Andric void *ptr = Allocate(nmemb * size, 8, stack, FROM_MALLOC, false);
78868d75effSDimitry Andric // If the memory comes from the secondary allocator no need to clear it
78968d75effSDimitry Andric // as it comes directly from mmap.
79068d75effSDimitry Andric if (ptr && allocator.FromPrimary(ptr))
79168d75effSDimitry Andric REAL(memset)(ptr, 0, nmemb * size);
79268d75effSDimitry Andric return ptr;
79368d75effSDimitry Andric }
79468d75effSDimitry Andric
ReportInvalidFree__asan::Allocator79568d75effSDimitry Andric void ReportInvalidFree(void *ptr, u8 chunk_state, BufferedStackTrace *stack) {
79668d75effSDimitry Andric if (chunk_state == CHUNK_QUARANTINE)
79768d75effSDimitry Andric ReportDoubleFree((uptr)ptr, stack);
79868d75effSDimitry Andric else
79968d75effSDimitry Andric ReportFreeNotMalloced((uptr)ptr, stack);
80068d75effSDimitry Andric }
80168d75effSDimitry Andric
CommitBack__asan::Allocator80268d75effSDimitry Andric void CommitBack(AsanThreadLocalMallocStorage *ms, BufferedStackTrace *stack) {
80368d75effSDimitry Andric AllocatorCache *ac = GetAllocatorCache(ms);
80468d75effSDimitry Andric quarantine.Drain(GetQuarantineCache(ms), QuarantineCallback(ac, stack));
80568d75effSDimitry Andric allocator.SwallowCache(ac);
80668d75effSDimitry Andric }
80768d75effSDimitry Andric
80868d75effSDimitry Andric // -------------------------- Chunk lookup ----------------------
80968d75effSDimitry Andric
81068d75effSDimitry Andric // Assumes alloc_beg == allocator.GetBlockBegin(alloc_beg).
811e8d8bef9SDimitry Andric // Returns nullptr if AsanChunk is not yet initialized just after
812e8d8bef9SDimitry Andric // get_allocator().Allocate(), or is being destroyed just before
813e8d8bef9SDimitry Andric // get_allocator().Deallocate().
GetAsanChunk__asan::Allocator81468d75effSDimitry Andric AsanChunk *GetAsanChunk(void *alloc_beg) {
815e8d8bef9SDimitry Andric if (!alloc_beg)
816e8d8bef9SDimitry Andric return nullptr;
817e8d8bef9SDimitry Andric AsanChunk *p = reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Get();
818e8d8bef9SDimitry Andric if (!p) {
819e8d8bef9SDimitry Andric if (!allocator.FromPrimary(alloc_beg))
820e8d8bef9SDimitry Andric return nullptr;
821e8d8bef9SDimitry Andric p = reinterpret_cast<AsanChunk *>(alloc_beg);
82268d75effSDimitry Andric }
823e8d8bef9SDimitry Andric u8 state = atomic_load(&p->chunk_state, memory_order_relaxed);
824e8d8bef9SDimitry Andric // It does not guaranty that Chunk is initialized, but it's
825e8d8bef9SDimitry Andric // definitely not for any other value.
826e8d8bef9SDimitry Andric if (state == CHUNK_ALLOCATED || state == CHUNK_QUARANTINE)
827e8d8bef9SDimitry Andric return p;
828e8d8bef9SDimitry Andric return nullptr;
82968d75effSDimitry Andric }
83068d75effSDimitry Andric
GetAsanChunkByAddr__asan::Allocator83168d75effSDimitry Andric AsanChunk *GetAsanChunkByAddr(uptr p) {
83268d75effSDimitry Andric void *alloc_beg = allocator.GetBlockBegin(reinterpret_cast<void *>(p));
83368d75effSDimitry Andric return GetAsanChunk(alloc_beg);
83468d75effSDimitry Andric }
83568d75effSDimitry Andric
83668d75effSDimitry Andric // Allocator must be locked when this function is called.
GetAsanChunkByAddrFastLocked__asan::Allocator83768d75effSDimitry Andric AsanChunk *GetAsanChunkByAddrFastLocked(uptr p) {
83868d75effSDimitry Andric void *alloc_beg =
83968d75effSDimitry Andric allocator.GetBlockBeginFastLocked(reinterpret_cast<void *>(p));
84068d75effSDimitry Andric return GetAsanChunk(alloc_beg);
84168d75effSDimitry Andric }
84268d75effSDimitry Andric
AllocationSize__asan::Allocator84368d75effSDimitry Andric uptr AllocationSize(uptr p) {
84468d75effSDimitry Andric AsanChunk *m = GetAsanChunkByAddr(p);
84568d75effSDimitry Andric if (!m) return 0;
846e8d8bef9SDimitry Andric if (atomic_load(&m->chunk_state, memory_order_acquire) != CHUNK_ALLOCATED)
847e8d8bef9SDimitry Andric return 0;
84868d75effSDimitry Andric if (m->Beg() != p) return 0;
84968d75effSDimitry Andric return m->UsedSize();
85068d75effSDimitry Andric }
85168d75effSDimitry Andric
AllocationSizeFast__asan::Allocator85206c3fb27SDimitry Andric uptr AllocationSizeFast(uptr p) {
85306c3fb27SDimitry Andric return reinterpret_cast<AsanChunk *>(p - kChunkHeaderSize)->UsedSize();
85406c3fb27SDimitry Andric }
85506c3fb27SDimitry Andric
FindHeapChunkByAddress__asan::Allocator85668d75effSDimitry Andric AsanChunkView FindHeapChunkByAddress(uptr addr) {
85768d75effSDimitry Andric AsanChunk *m1 = GetAsanChunkByAddr(addr);
85868d75effSDimitry Andric sptr offset = 0;
859e8d8bef9SDimitry Andric if (!m1 || AsanChunkView(m1).AddrIsAtLeft(addr, 1, &offset)) {
86068d75effSDimitry Andric // The address is in the chunk's left redzone, so maybe it is actually
861bdd1243dSDimitry Andric // a right buffer overflow from the other chunk before.
862bdd1243dSDimitry Andric // Search a bit before to see if there is another chunk.
86368d75effSDimitry Andric AsanChunk *m2 = nullptr;
86468d75effSDimitry Andric for (uptr l = 1; l < GetPageSizeCached(); l++) {
86568d75effSDimitry Andric m2 = GetAsanChunkByAddr(addr - l);
86668d75effSDimitry Andric if (m2 == m1) continue; // Still the same chunk.
86768d75effSDimitry Andric break;
86868d75effSDimitry Andric }
86968d75effSDimitry Andric if (m2 && AsanChunkView(m2).AddrIsAtRight(addr, 1, &offset))
87068d75effSDimitry Andric m1 = ChooseChunk(addr, m2, m1);
87168d75effSDimitry Andric }
87268d75effSDimitry Andric return AsanChunkView(m1);
87368d75effSDimitry Andric }
87468d75effSDimitry Andric
Purge__asan::Allocator87568d75effSDimitry Andric void Purge(BufferedStackTrace *stack) {
87668d75effSDimitry Andric AsanThread *t = GetCurrentThread();
87768d75effSDimitry Andric if (t) {
87868d75effSDimitry Andric AsanThreadLocalMallocStorage *ms = &t->malloc_storage();
87968d75effSDimitry Andric quarantine.DrainAndRecycle(GetQuarantineCache(ms),
88068d75effSDimitry Andric QuarantineCallback(GetAllocatorCache(ms),
88168d75effSDimitry Andric stack));
88268d75effSDimitry Andric }
88368d75effSDimitry Andric {
88468d75effSDimitry Andric SpinMutexLock l(&fallback_mutex);
88568d75effSDimitry Andric quarantine.DrainAndRecycle(&fallback_quarantine_cache,
88668d75effSDimitry Andric QuarantineCallback(&fallback_allocator_cache,
88768d75effSDimitry Andric stack));
88868d75effSDimitry Andric }
88968d75effSDimitry Andric
89068d75effSDimitry Andric allocator.ForceReleaseToOS();
89168d75effSDimitry Andric }
89268d75effSDimitry Andric
PrintStats__asan::Allocator89368d75effSDimitry Andric void PrintStats() {
89468d75effSDimitry Andric allocator.PrintStats();
89568d75effSDimitry Andric quarantine.PrintStats();
89668d75effSDimitry Andric }
89768d75effSDimitry Andric
ForceLock__asan::Allocator89804eeddc0SDimitry Andric void ForceLock() SANITIZER_ACQUIRE(fallback_mutex) {
89968d75effSDimitry Andric allocator.ForceLock();
90068d75effSDimitry Andric fallback_mutex.Lock();
90168d75effSDimitry Andric }
90268d75effSDimitry Andric
ForceUnlock__asan::Allocator90304eeddc0SDimitry Andric void ForceUnlock() SANITIZER_RELEASE(fallback_mutex) {
90468d75effSDimitry Andric fallback_mutex.Unlock();
90568d75effSDimitry Andric allocator.ForceUnlock();
90668d75effSDimitry Andric }
90768d75effSDimitry Andric };
90868d75effSDimitry Andric
90968d75effSDimitry Andric static Allocator instance(LINKER_INITIALIZED);
91068d75effSDimitry Andric
get_allocator()91168d75effSDimitry Andric static AsanAllocator &get_allocator() {
91268d75effSDimitry Andric return instance.allocator;
91368d75effSDimitry Andric }
91468d75effSDimitry Andric
IsValid() const91568d75effSDimitry Andric bool AsanChunkView::IsValid() const {
916e8d8bef9SDimitry Andric return chunk_ && atomic_load(&chunk_->chunk_state, memory_order_relaxed) !=
917e8d8bef9SDimitry Andric CHUNK_INVALID;
91868d75effSDimitry Andric }
IsAllocated() const91968d75effSDimitry Andric bool AsanChunkView::IsAllocated() const {
920e8d8bef9SDimitry Andric return chunk_ && atomic_load(&chunk_->chunk_state, memory_order_relaxed) ==
921e8d8bef9SDimitry Andric CHUNK_ALLOCATED;
92268d75effSDimitry Andric }
IsQuarantined() const92368d75effSDimitry Andric bool AsanChunkView::IsQuarantined() const {
924e8d8bef9SDimitry Andric return chunk_ && atomic_load(&chunk_->chunk_state, memory_order_relaxed) ==
925e8d8bef9SDimitry Andric CHUNK_QUARANTINE;
92668d75effSDimitry Andric }
Beg() const92768d75effSDimitry Andric uptr AsanChunkView::Beg() const { return chunk_->Beg(); }
End() const92868d75effSDimitry Andric uptr AsanChunkView::End() const { return Beg() + UsedSize(); }
UsedSize() const92968d75effSDimitry Andric uptr AsanChunkView::UsedSize() const { return chunk_->UsedSize(); }
UserRequestedAlignment() const93068d75effSDimitry Andric u32 AsanChunkView::UserRequestedAlignment() const {
93168d75effSDimitry Andric return Allocator::ComputeUserAlignment(chunk_->user_requested_alignment_log);
93268d75effSDimitry Andric }
933e8d8bef9SDimitry Andric
AllocTid() const934e8d8bef9SDimitry Andric uptr AsanChunkView::AllocTid() const {
935e8d8bef9SDimitry Andric u32 tid = 0;
936e8d8bef9SDimitry Andric u32 stack = 0;
937e8d8bef9SDimitry Andric chunk_->GetAllocContext(tid, stack);
938e8d8bef9SDimitry Andric return tid;
939e8d8bef9SDimitry Andric }
940e8d8bef9SDimitry Andric
FreeTid() const941e8d8bef9SDimitry Andric uptr AsanChunkView::FreeTid() const {
942e8d8bef9SDimitry Andric if (!IsQuarantined())
943e8d8bef9SDimitry Andric return kInvalidTid;
944e8d8bef9SDimitry Andric u32 tid = 0;
945e8d8bef9SDimitry Andric u32 stack = 0;
946e8d8bef9SDimitry Andric chunk_->GetFreeContext(tid, stack);
947e8d8bef9SDimitry Andric return tid;
948e8d8bef9SDimitry Andric }
949e8d8bef9SDimitry Andric
GetAllocType() const95068d75effSDimitry Andric AllocType AsanChunkView::GetAllocType() const {
95168d75effSDimitry Andric return (AllocType)chunk_->alloc_type;
95268d75effSDimitry Andric }
95368d75effSDimitry Andric
GetAllocStackId() const954e8d8bef9SDimitry Andric u32 AsanChunkView::GetAllocStackId() const {
955e8d8bef9SDimitry Andric u32 tid = 0;
956e8d8bef9SDimitry Andric u32 stack = 0;
957e8d8bef9SDimitry Andric chunk_->GetAllocContext(tid, stack);
958e8d8bef9SDimitry Andric return stack;
959e8d8bef9SDimitry Andric }
960e8d8bef9SDimitry Andric
GetFreeStackId() const961e8d8bef9SDimitry Andric u32 AsanChunkView::GetFreeStackId() const {
962e8d8bef9SDimitry Andric if (!IsQuarantined())
963e8d8bef9SDimitry Andric return 0;
964e8d8bef9SDimitry Andric u32 tid = 0;
965e8d8bef9SDimitry Andric u32 stack = 0;
966e8d8bef9SDimitry Andric chunk_->GetFreeContext(tid, stack);
967e8d8bef9SDimitry Andric return stack;
968e8d8bef9SDimitry Andric }
96968d75effSDimitry Andric
InitializeAllocator(const AllocatorOptions & options)97068d75effSDimitry Andric void InitializeAllocator(const AllocatorOptions &options) {
97168d75effSDimitry Andric instance.InitLinkerInitialized(options);
97268d75effSDimitry Andric }
97368d75effSDimitry Andric
ReInitializeAllocator(const AllocatorOptions & options)97468d75effSDimitry Andric void ReInitializeAllocator(const AllocatorOptions &options) {
97568d75effSDimitry Andric instance.ReInitialize(options);
97668d75effSDimitry Andric }
97768d75effSDimitry Andric
GetAllocatorOptions(AllocatorOptions * options)97868d75effSDimitry Andric void GetAllocatorOptions(AllocatorOptions *options) {
97968d75effSDimitry Andric instance.GetOptions(options);
98068d75effSDimitry Andric }
98168d75effSDimitry Andric
FindHeapChunkByAddress(uptr addr)98268d75effSDimitry Andric AsanChunkView FindHeapChunkByAddress(uptr addr) {
98368d75effSDimitry Andric return instance.FindHeapChunkByAddress(addr);
98468d75effSDimitry Andric }
FindHeapChunkByAllocBeg(uptr addr)98568d75effSDimitry Andric AsanChunkView FindHeapChunkByAllocBeg(uptr addr) {
98668d75effSDimitry Andric return AsanChunkView(instance.GetAsanChunk(reinterpret_cast<void*>(addr)));
98768d75effSDimitry Andric }
98868d75effSDimitry Andric
CommitBack()98968d75effSDimitry Andric void AsanThreadLocalMallocStorage::CommitBack() {
99068d75effSDimitry Andric GET_STACK_TRACE_MALLOC;
99168d75effSDimitry Andric instance.CommitBack(this, &stack);
99268d75effSDimitry Andric }
99368d75effSDimitry Andric
PrintInternalAllocatorStats()99468d75effSDimitry Andric void PrintInternalAllocatorStats() {
99568d75effSDimitry Andric instance.PrintStats();
99668d75effSDimitry Andric }
99768d75effSDimitry Andric
asan_free(void * ptr,BufferedStackTrace * stack,AllocType alloc_type)99868d75effSDimitry Andric void asan_free(void *ptr, BufferedStackTrace *stack, AllocType alloc_type) {
99968d75effSDimitry Andric instance.Deallocate(ptr, 0, 0, stack, alloc_type);
100068d75effSDimitry Andric }
100168d75effSDimitry Andric
asan_delete(void * ptr,uptr size,uptr alignment,BufferedStackTrace * stack,AllocType alloc_type)100268d75effSDimitry Andric void asan_delete(void *ptr, uptr size, uptr alignment,
100368d75effSDimitry Andric BufferedStackTrace *stack, AllocType alloc_type) {
100468d75effSDimitry Andric instance.Deallocate(ptr, size, alignment, stack, alloc_type);
100568d75effSDimitry Andric }
100668d75effSDimitry Andric
asan_malloc(uptr size,BufferedStackTrace * stack)100768d75effSDimitry Andric void *asan_malloc(uptr size, BufferedStackTrace *stack) {
100868d75effSDimitry Andric return SetErrnoOnNull(instance.Allocate(size, 8, stack, FROM_MALLOC, true));
100968d75effSDimitry Andric }
101068d75effSDimitry Andric
asan_calloc(uptr nmemb,uptr size,BufferedStackTrace * stack)101168d75effSDimitry Andric void *asan_calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) {
101268d75effSDimitry Andric return SetErrnoOnNull(instance.Calloc(nmemb, size, stack));
101368d75effSDimitry Andric }
101468d75effSDimitry Andric
asan_reallocarray(void * p,uptr nmemb,uptr size,BufferedStackTrace * stack)101568d75effSDimitry Andric void *asan_reallocarray(void *p, uptr nmemb, uptr size,
101668d75effSDimitry Andric BufferedStackTrace *stack) {
101768d75effSDimitry Andric if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
101868d75effSDimitry Andric errno = errno_ENOMEM;
101968d75effSDimitry Andric if (AllocatorMayReturnNull())
102068d75effSDimitry Andric return nullptr;
102168d75effSDimitry Andric ReportReallocArrayOverflow(nmemb, size, stack);
102268d75effSDimitry Andric }
102368d75effSDimitry Andric return asan_realloc(p, nmemb * size, stack);
102468d75effSDimitry Andric }
102568d75effSDimitry Andric
asan_realloc(void * p,uptr size,BufferedStackTrace * stack)102668d75effSDimitry Andric void *asan_realloc(void *p, uptr size, BufferedStackTrace *stack) {
102768d75effSDimitry Andric if (!p)
102868d75effSDimitry Andric return SetErrnoOnNull(instance.Allocate(size, 8, stack, FROM_MALLOC, true));
102968d75effSDimitry Andric if (size == 0) {
103068d75effSDimitry Andric if (flags()->allocator_frees_and_returns_null_on_realloc_zero) {
103168d75effSDimitry Andric instance.Deallocate(p, 0, 0, stack, FROM_MALLOC);
103268d75effSDimitry Andric return nullptr;
103368d75effSDimitry Andric }
103468d75effSDimitry Andric // Allocate a size of 1 if we shouldn't free() on Realloc to 0
103568d75effSDimitry Andric size = 1;
103668d75effSDimitry Andric }
103768d75effSDimitry Andric return SetErrnoOnNull(instance.Reallocate(p, size, stack));
103868d75effSDimitry Andric }
103968d75effSDimitry Andric
asan_valloc(uptr size,BufferedStackTrace * stack)104068d75effSDimitry Andric void *asan_valloc(uptr size, BufferedStackTrace *stack) {
104168d75effSDimitry Andric return SetErrnoOnNull(
104268d75effSDimitry Andric instance.Allocate(size, GetPageSizeCached(), stack, FROM_MALLOC, true));
104368d75effSDimitry Andric }
104468d75effSDimitry Andric
asan_pvalloc(uptr size,BufferedStackTrace * stack)104568d75effSDimitry Andric void *asan_pvalloc(uptr size, BufferedStackTrace *stack) {
104668d75effSDimitry Andric uptr PageSize = GetPageSizeCached();
104768d75effSDimitry Andric if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) {
104868d75effSDimitry Andric errno = errno_ENOMEM;
104968d75effSDimitry Andric if (AllocatorMayReturnNull())
105068d75effSDimitry Andric return nullptr;
105168d75effSDimitry Andric ReportPvallocOverflow(size, stack);
105268d75effSDimitry Andric }
105368d75effSDimitry Andric // pvalloc(0) should allocate one page.
105468d75effSDimitry Andric size = size ? RoundUpTo(size, PageSize) : PageSize;
105568d75effSDimitry Andric return SetErrnoOnNull(
105668d75effSDimitry Andric instance.Allocate(size, PageSize, stack, FROM_MALLOC, true));
105768d75effSDimitry Andric }
105868d75effSDimitry Andric
asan_memalign(uptr alignment,uptr size,BufferedStackTrace * stack,AllocType alloc_type)105968d75effSDimitry Andric void *asan_memalign(uptr alignment, uptr size, BufferedStackTrace *stack,
106068d75effSDimitry Andric AllocType alloc_type) {
106168d75effSDimitry Andric if (UNLIKELY(!IsPowerOfTwo(alignment))) {
106268d75effSDimitry Andric errno = errno_EINVAL;
106368d75effSDimitry Andric if (AllocatorMayReturnNull())
106468d75effSDimitry Andric return nullptr;
106568d75effSDimitry Andric ReportInvalidAllocationAlignment(alignment, stack);
106668d75effSDimitry Andric }
106768d75effSDimitry Andric return SetErrnoOnNull(
106868d75effSDimitry Andric instance.Allocate(size, alignment, stack, alloc_type, true));
106968d75effSDimitry Andric }
107068d75effSDimitry Andric
asan_aligned_alloc(uptr alignment,uptr size,BufferedStackTrace * stack)107168d75effSDimitry Andric void *asan_aligned_alloc(uptr alignment, uptr size, BufferedStackTrace *stack) {
107268d75effSDimitry Andric if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) {
107368d75effSDimitry Andric errno = errno_EINVAL;
107468d75effSDimitry Andric if (AllocatorMayReturnNull())
107568d75effSDimitry Andric return nullptr;
107668d75effSDimitry Andric ReportInvalidAlignedAllocAlignment(size, alignment, stack);
107768d75effSDimitry Andric }
107868d75effSDimitry Andric return SetErrnoOnNull(
107968d75effSDimitry Andric instance.Allocate(size, alignment, stack, FROM_MALLOC, true));
108068d75effSDimitry Andric }
108168d75effSDimitry Andric
asan_posix_memalign(void ** memptr,uptr alignment,uptr size,BufferedStackTrace * stack)108268d75effSDimitry Andric int asan_posix_memalign(void **memptr, uptr alignment, uptr size,
108368d75effSDimitry Andric BufferedStackTrace *stack) {
108468d75effSDimitry Andric if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) {
108568d75effSDimitry Andric if (AllocatorMayReturnNull())
108668d75effSDimitry Andric return errno_EINVAL;
108768d75effSDimitry Andric ReportInvalidPosixMemalignAlignment(alignment, stack);
108868d75effSDimitry Andric }
108968d75effSDimitry Andric void *ptr = instance.Allocate(size, alignment, stack, FROM_MALLOC, true);
109068d75effSDimitry Andric if (UNLIKELY(!ptr))
109168d75effSDimitry Andric // OOM error is already taken care of by Allocate.
109268d75effSDimitry Andric return errno_ENOMEM;
109368d75effSDimitry Andric CHECK(IsAligned((uptr)ptr, alignment));
109468d75effSDimitry Andric *memptr = ptr;
109568d75effSDimitry Andric return 0;
109668d75effSDimitry Andric }
109768d75effSDimitry Andric
asan_malloc_usable_size(const void * ptr,uptr pc,uptr bp)109868d75effSDimitry Andric uptr asan_malloc_usable_size(const void *ptr, uptr pc, uptr bp) {
109968d75effSDimitry Andric if (!ptr) return 0;
110068d75effSDimitry Andric uptr usable_size = instance.AllocationSize(reinterpret_cast<uptr>(ptr));
110168d75effSDimitry Andric if (flags()->check_malloc_usable_size && (usable_size == 0)) {
110268d75effSDimitry Andric GET_STACK_TRACE_FATAL(pc, bp);
110368d75effSDimitry Andric ReportMallocUsableSizeNotOwned((uptr)ptr, &stack);
110468d75effSDimitry Andric }
110568d75effSDimitry Andric return usable_size;
110668d75effSDimitry Andric }
110768d75effSDimitry Andric
asan_mz_size(const void * ptr)110868d75effSDimitry Andric uptr asan_mz_size(const void *ptr) {
110968d75effSDimitry Andric return instance.AllocationSize(reinterpret_cast<uptr>(ptr));
111068d75effSDimitry Andric }
111168d75effSDimitry Andric
asan_mz_force_lock()111204eeddc0SDimitry Andric void asan_mz_force_lock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
111304eeddc0SDimitry Andric instance.ForceLock();
111404eeddc0SDimitry Andric }
111568d75effSDimitry Andric
asan_mz_force_unlock()111604eeddc0SDimitry Andric void asan_mz_force_unlock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
111768d75effSDimitry Andric instance.ForceUnlock();
111868d75effSDimitry Andric }
111968d75effSDimitry Andric
112068d75effSDimitry Andric } // namespace __asan
112168d75effSDimitry Andric
112268d75effSDimitry Andric // --- Implementation of LSan-specific functions --- {{{1
112368d75effSDimitry Andric namespace __lsan {
LockAllocator()112468d75effSDimitry Andric void LockAllocator() {
112568d75effSDimitry Andric __asan::get_allocator().ForceLock();
112668d75effSDimitry Andric }
112768d75effSDimitry Andric
UnlockAllocator()112868d75effSDimitry Andric void UnlockAllocator() {
112968d75effSDimitry Andric __asan::get_allocator().ForceUnlock();
113068d75effSDimitry Andric }
113168d75effSDimitry Andric
GetAllocatorGlobalRange(uptr * begin,uptr * end)113268d75effSDimitry Andric void GetAllocatorGlobalRange(uptr *begin, uptr *end) {
113368d75effSDimitry Andric *begin = (uptr)&__asan::get_allocator();
113468d75effSDimitry Andric *end = *begin + sizeof(__asan::get_allocator());
113568d75effSDimitry Andric }
113668d75effSDimitry Andric
PointsIntoChunk(void * p)113768d75effSDimitry Andric uptr PointsIntoChunk(void *p) {
113868d75effSDimitry Andric uptr addr = reinterpret_cast<uptr>(p);
113968d75effSDimitry Andric __asan::AsanChunk *m = __asan::instance.GetAsanChunkByAddrFastLocked(addr);
1140e8d8bef9SDimitry Andric if (!m || atomic_load(&m->chunk_state, memory_order_acquire) !=
1141e8d8bef9SDimitry Andric __asan::CHUNK_ALLOCATED)
114268d75effSDimitry Andric return 0;
1143e8d8bef9SDimitry Andric uptr chunk = m->Beg();
1144e8d8bef9SDimitry Andric if (m->AddrIsInside(addr))
114568d75effSDimitry Andric return chunk;
1146e8d8bef9SDimitry Andric if (IsSpecialCaseOfOperatorNew0(chunk, m->UsedSize(), addr))
114768d75effSDimitry Andric return chunk;
114868d75effSDimitry Andric return 0;
114968d75effSDimitry Andric }
115068d75effSDimitry Andric
GetUserBegin(uptr chunk)115168d75effSDimitry Andric uptr GetUserBegin(uptr chunk) {
1152bdd1243dSDimitry Andric // FIXME: All usecases provide chunk address, GetAsanChunkByAddrFastLocked is
1153bdd1243dSDimitry Andric // not needed.
115468d75effSDimitry Andric __asan::AsanChunk *m = __asan::instance.GetAsanChunkByAddrFastLocked(chunk);
1155e8d8bef9SDimitry Andric return m ? m->Beg() : 0;
115668d75effSDimitry Andric }
115768d75effSDimitry Andric
GetUserAddr(uptr chunk)115806c3fb27SDimitry Andric uptr GetUserAddr(uptr chunk) {
115906c3fb27SDimitry Andric return chunk;
116006c3fb27SDimitry Andric }
116106c3fb27SDimitry Andric
LsanMetadata(uptr chunk)116268d75effSDimitry Andric LsanMetadata::LsanMetadata(uptr chunk) {
1163e8d8bef9SDimitry Andric metadata_ = chunk ? reinterpret_cast<void *>(chunk - __asan::kChunkHeaderSize)
1164e8d8bef9SDimitry Andric : nullptr;
116568d75effSDimitry Andric }
116668d75effSDimitry Andric
allocated() const116768d75effSDimitry Andric bool LsanMetadata::allocated() const {
1168e8d8bef9SDimitry Andric if (!metadata_)
1169e8d8bef9SDimitry Andric return false;
117068d75effSDimitry Andric __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
1171e8d8bef9SDimitry Andric return atomic_load(&m->chunk_state, memory_order_relaxed) ==
1172e8d8bef9SDimitry Andric __asan::CHUNK_ALLOCATED;
117368d75effSDimitry Andric }
117468d75effSDimitry Andric
tag() const117568d75effSDimitry Andric ChunkTag LsanMetadata::tag() const {
117668d75effSDimitry Andric __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
117768d75effSDimitry Andric return static_cast<ChunkTag>(m->lsan_tag);
117868d75effSDimitry Andric }
117968d75effSDimitry Andric
set_tag(ChunkTag value)118068d75effSDimitry Andric void LsanMetadata::set_tag(ChunkTag value) {
118168d75effSDimitry Andric __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
118268d75effSDimitry Andric m->lsan_tag = value;
118368d75effSDimitry Andric }
118468d75effSDimitry Andric
requested_size() const118568d75effSDimitry Andric uptr LsanMetadata::requested_size() const {
118668d75effSDimitry Andric __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
1187e8d8bef9SDimitry Andric return m->UsedSize();
118868d75effSDimitry Andric }
118968d75effSDimitry Andric
stack_trace_id() const119068d75effSDimitry Andric u32 LsanMetadata::stack_trace_id() const {
119168d75effSDimitry Andric __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
1192e8d8bef9SDimitry Andric u32 tid = 0;
1193e8d8bef9SDimitry Andric u32 stack = 0;
1194e8d8bef9SDimitry Andric m->GetAllocContext(tid, stack);
1195e8d8bef9SDimitry Andric return stack;
119668d75effSDimitry Andric }
119768d75effSDimitry Andric
ForEachChunk(ForEachChunkCallback callback,void * arg)119868d75effSDimitry Andric void ForEachChunk(ForEachChunkCallback callback, void *arg) {
119968d75effSDimitry Andric __asan::get_allocator().ForEachChunk(callback, arg);
120068d75effSDimitry Andric }
120168d75effSDimitry Andric
IgnoreObject(const void * p)120206c3fb27SDimitry Andric IgnoreObjectResult IgnoreObject(const void *p) {
120368d75effSDimitry Andric uptr addr = reinterpret_cast<uptr>(p);
120468d75effSDimitry Andric __asan::AsanChunk *m = __asan::instance.GetAsanChunkByAddr(addr);
1205e8d8bef9SDimitry Andric if (!m ||
1206e8d8bef9SDimitry Andric (atomic_load(&m->chunk_state, memory_order_acquire) !=
1207e8d8bef9SDimitry Andric __asan::CHUNK_ALLOCATED) ||
1208e8d8bef9SDimitry Andric !m->AddrIsInside(addr)) {
1209e8d8bef9SDimitry Andric return kIgnoreObjectInvalid;
1210e8d8bef9SDimitry Andric }
121168d75effSDimitry Andric if (m->lsan_tag == kIgnored)
121268d75effSDimitry Andric return kIgnoreObjectAlreadyIgnored;
121368d75effSDimitry Andric m->lsan_tag = __lsan::kIgnored;
121468d75effSDimitry Andric return kIgnoreObjectSuccess;
121568d75effSDimitry Andric }
1216e8d8bef9SDimitry Andric
121768d75effSDimitry Andric } // namespace __lsan
121868d75effSDimitry Andric
121968d75effSDimitry Andric // ---------------------- Interface ---------------- {{{1
122068d75effSDimitry Andric using namespace __asan;
122168d75effSDimitry Andric
AllocationBegin(const void * p)122206c3fb27SDimitry Andric static const void *AllocationBegin(const void *p) {
122306c3fb27SDimitry Andric AsanChunk *m = __asan::instance.GetAsanChunkByAddr((uptr)p);
122406c3fb27SDimitry Andric if (!m)
122506c3fb27SDimitry Andric return nullptr;
122606c3fb27SDimitry Andric if (atomic_load(&m->chunk_state, memory_order_acquire) != CHUNK_ALLOCATED)
122706c3fb27SDimitry Andric return nullptr;
122806c3fb27SDimitry Andric if (m->UsedSize() == 0)
122906c3fb27SDimitry Andric return nullptr;
123006c3fb27SDimitry Andric return (const void *)(m->Beg());
123106c3fb27SDimitry Andric }
123206c3fb27SDimitry Andric
123368d75effSDimitry Andric // ASan allocator doesn't reserve extra bytes, so normally we would
123468d75effSDimitry Andric // just return "size". We don't want to expose our redzone sizes, etc here.
__sanitizer_get_estimated_allocated_size(uptr size)123568d75effSDimitry Andric uptr __sanitizer_get_estimated_allocated_size(uptr size) {
123668d75effSDimitry Andric return size;
123768d75effSDimitry Andric }
123868d75effSDimitry Andric
__sanitizer_get_ownership(const void * p)123968d75effSDimitry Andric int __sanitizer_get_ownership(const void *p) {
124068d75effSDimitry Andric uptr ptr = reinterpret_cast<uptr>(p);
124168d75effSDimitry Andric return instance.AllocationSize(ptr) > 0;
124268d75effSDimitry Andric }
124368d75effSDimitry Andric
__sanitizer_get_allocated_size(const void * p)124468d75effSDimitry Andric uptr __sanitizer_get_allocated_size(const void *p) {
124568d75effSDimitry Andric if (!p) return 0;
124668d75effSDimitry Andric uptr ptr = reinterpret_cast<uptr>(p);
124768d75effSDimitry Andric uptr allocated_size = instance.AllocationSize(ptr);
124868d75effSDimitry Andric // Die if p is not malloced or if it is already freed.
124968d75effSDimitry Andric if (allocated_size == 0) {
125068d75effSDimitry Andric GET_STACK_TRACE_FATAL_HERE;
125168d75effSDimitry Andric ReportSanitizerGetAllocatedSizeNotOwned(ptr, &stack);
125268d75effSDimitry Andric }
125368d75effSDimitry Andric return allocated_size;
125468d75effSDimitry Andric }
125568d75effSDimitry Andric
__sanitizer_get_allocated_size_fast(const void * p)125606c3fb27SDimitry Andric uptr __sanitizer_get_allocated_size_fast(const void *p) {
125706c3fb27SDimitry Andric DCHECK_EQ(p, __sanitizer_get_allocated_begin(p));
125806c3fb27SDimitry Andric uptr ret = instance.AllocationSizeFast(reinterpret_cast<uptr>(p));
125906c3fb27SDimitry Andric DCHECK_EQ(ret, __sanitizer_get_allocated_size(p));
126006c3fb27SDimitry Andric return ret;
126106c3fb27SDimitry Andric }
126206c3fb27SDimitry Andric
__sanitizer_get_allocated_begin(const void * p)126306c3fb27SDimitry Andric const void *__sanitizer_get_allocated_begin(const void *p) {
126406c3fb27SDimitry Andric return AllocationBegin(p);
126506c3fb27SDimitry Andric }
126606c3fb27SDimitry Andric
__sanitizer_purge_allocator()126768d75effSDimitry Andric void __sanitizer_purge_allocator() {
126868d75effSDimitry Andric GET_STACK_TRACE_MALLOC;
126968d75effSDimitry Andric instance.Purge(&stack);
127068d75effSDimitry Andric }
127168d75effSDimitry Andric
__asan_update_allocation_context(void * addr)1272480093f4SDimitry Andric int __asan_update_allocation_context(void* addr) {
1273480093f4SDimitry Andric GET_STACK_TRACE_MALLOC;
1274480093f4SDimitry Andric return instance.UpdateAllocationStack((uptr)addr, &stack);
1275480093f4SDimitry Andric }
1276