xref: /freebsd/contrib/llvm-project/compiler-rt/include/fuzzer/FuzzedDataProvider.h (revision cab6a39d7b343596a5823e65c0f7b426551ec22d)
1 //===- FuzzedDataProvider.h - Utility header for fuzz targets ---*- C++ -* ===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 // A single header library providing an utility class to break up an array of
9 // bytes. Whenever run on the same input, provides the same output, as long as
10 // its methods are called in the same order, with the same arguments.
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_FUZZER_FUZZED_DATA_PROVIDER_H_
14 #define LLVM_FUZZER_FUZZED_DATA_PROVIDER_H_
15 
16 #include <algorithm>
17 #include <array>
18 #include <climits>
19 #include <cstddef>
20 #include <cstdint>
21 #include <cstring>
22 #include <initializer_list>
23 #include <string>
24 #include <type_traits>
25 #include <utility>
26 #include <vector>
27 
28 // In addition to the comments below, the API is also briefly documented at
29 // https://github.com/google/fuzzing/blob/master/docs/split-inputs.md#fuzzed-data-provider
30 class FuzzedDataProvider {
31  public:
32   // |data| is an array of length |size| that the FuzzedDataProvider wraps to
33   // provide more granular access. |data| must outlive the FuzzedDataProvider.
34   FuzzedDataProvider(const uint8_t *data, size_t size)
35       : data_ptr_(data), remaining_bytes_(size) {}
36   ~FuzzedDataProvider() = default;
37 
38   // See the implementation below (after the class definition) for more verbose
39   // comments for each of the methods.
40 
41   // Methods returning std::vector of bytes. These are the most popular choice
42   // when splitting fuzzing input into pieces, as every piece is put into a
43   // separate buffer (i.e. ASan would catch any under-/overflow) and the memory
44   // will be released automatically.
45   template <typename T> std::vector<T> ConsumeBytes(size_t num_bytes);
46   template <typename T>
47   std::vector<T> ConsumeBytesWithTerminator(size_t num_bytes, T terminator = 0);
48   template <typename T> std::vector<T> ConsumeRemainingBytes();
49 
50   // Methods returning strings. Use only when you need a std::string or a null
51   // terminated C-string. Otherwise, prefer the methods returning std::vector.
52   std::string ConsumeBytesAsString(size_t num_bytes);
53   std::string ConsumeRandomLengthString(size_t max_length);
54   std::string ConsumeRandomLengthString();
55   std::string ConsumeRemainingBytesAsString();
56 
57   // Methods returning integer values.
58   template <typename T> T ConsumeIntegral();
59   template <typename T> T ConsumeIntegralInRange(T min, T max);
60 
61   // Methods returning floating point values.
62   template <typename T> T ConsumeFloatingPoint();
63   template <typename T> T ConsumeFloatingPointInRange(T min, T max);
64 
65   // 0 <= return value <= 1.
66   template <typename T> T ConsumeProbability();
67 
68   bool ConsumeBool();
69 
70   // Returns a value chosen from the given enum.
71   template <typename T> T ConsumeEnum();
72 
73   // Returns a value from the given array.
74   template <typename T, size_t size> T PickValueInArray(const T (&array)[size]);
75   template <typename T, size_t size>
76   T PickValueInArray(const std::array<T, size> &array);
77   template <typename T> T PickValueInArray(std::initializer_list<const T> list);
78 
79   // Writes data to the given destination and returns number of bytes written.
80   size_t ConsumeData(void *destination, size_t num_bytes);
81 
82   // Reports the remaining bytes available for fuzzed input.
83   size_t remaining_bytes() { return remaining_bytes_; }
84 
85  private:
86   FuzzedDataProvider(const FuzzedDataProvider &) = delete;
87   FuzzedDataProvider &operator=(const FuzzedDataProvider &) = delete;
88 
89   void CopyAndAdvance(void *destination, size_t num_bytes);
90 
91   void Advance(size_t num_bytes);
92 
93   template <typename T>
94   std::vector<T> ConsumeBytes(size_t size, size_t num_bytes);
95 
96   template <typename TS, typename TU> TS ConvertUnsignedToSigned(TU value);
97 
98   const uint8_t *data_ptr_;
99   size_t remaining_bytes_;
100 };
101 
102 // Returns a std::vector containing |num_bytes| of input data. If fewer than
103 // |num_bytes| of data remain, returns a shorter std::vector containing all
104 // of the data that's left. Can be used with any byte sized type, such as
105 // char, unsigned char, uint8_t, etc.
106 template <typename T>
107 std::vector<T> FuzzedDataProvider::ConsumeBytes(size_t num_bytes) {
108   num_bytes = std::min(num_bytes, remaining_bytes_);
109   return ConsumeBytes<T>(num_bytes, num_bytes);
110 }
111 
112 // Similar to |ConsumeBytes|, but also appends the terminator value at the end
113 // of the resulting vector. Useful, when a mutable null-terminated C-string is
114 // needed, for example. But that is a rare case. Better avoid it, if possible,
115 // and prefer using |ConsumeBytes| or |ConsumeBytesAsString| methods.
116 template <typename T>
117 std::vector<T> FuzzedDataProvider::ConsumeBytesWithTerminator(size_t num_bytes,
118                                                               T terminator) {
119   num_bytes = std::min(num_bytes, remaining_bytes_);
120   std::vector<T> result = ConsumeBytes<T>(num_bytes + 1, num_bytes);
121   result.back() = terminator;
122   return result;
123 }
124 
125 // Returns a std::vector containing all remaining bytes of the input data.
126 template <typename T>
127 std::vector<T> FuzzedDataProvider::ConsumeRemainingBytes() {
128   return ConsumeBytes<T>(remaining_bytes_);
129 }
130 
131 // Returns a std::string containing |num_bytes| of input data. Using this and
132 // |.c_str()| on the resulting string is the best way to get an immutable
133 // null-terminated C string. If fewer than |num_bytes| of data remain, returns
134 // a shorter std::string containing all of the data that's left.
135 inline std::string FuzzedDataProvider::ConsumeBytesAsString(size_t num_bytes) {
136   static_assert(sizeof(std::string::value_type) == sizeof(uint8_t),
137                 "ConsumeBytesAsString cannot convert the data to a string.");
138 
139   num_bytes = std::min(num_bytes, remaining_bytes_);
140   std::string result(
141       reinterpret_cast<const std::string::value_type *>(data_ptr_), num_bytes);
142   Advance(num_bytes);
143   return result;
144 }
145 
146 // Returns a std::string of length from 0 to |max_length|. When it runs out of
147 // input data, returns what remains of the input. Designed to be more stable
148 // with respect to a fuzzer inserting characters than just picking a random
149 // length and then consuming that many bytes with |ConsumeBytes|.
150 inline std::string
151 FuzzedDataProvider::ConsumeRandomLengthString(size_t max_length) {
152   // Reads bytes from the start of |data_ptr_|. Maps "\\" to "\", and maps "\"
153   // followed by anything else to the end of the string. As a result of this
154   // logic, a fuzzer can insert characters into the string, and the string
155   // will be lengthened to include those new characters, resulting in a more
156   // stable fuzzer than picking the length of a string independently from
157   // picking its contents.
158   std::string result;
159 
160   // Reserve the anticipated capaticity to prevent several reallocations.
161   result.reserve(std::min(max_length, remaining_bytes_));
162   for (size_t i = 0; i < max_length && remaining_bytes_ != 0; ++i) {
163     char next = ConvertUnsignedToSigned<char>(data_ptr_[0]);
164     Advance(1);
165     if (next == '\\' && remaining_bytes_ != 0) {
166       next = ConvertUnsignedToSigned<char>(data_ptr_[0]);
167       Advance(1);
168       if (next != '\\')
169         break;
170     }
171     result += next;
172   }
173 
174   result.shrink_to_fit();
175   return result;
176 }
177 
178 // Returns a std::string of length from 0 to |remaining_bytes_|.
179 inline std::string FuzzedDataProvider::ConsumeRandomLengthString() {
180   return ConsumeRandomLengthString(remaining_bytes_);
181 }
182 
183 // Returns a std::string containing all remaining bytes of the input data.
184 // Prefer using |ConsumeRemainingBytes| unless you actually need a std::string
185 // object.
186 inline std::string FuzzedDataProvider::ConsumeRemainingBytesAsString() {
187   return ConsumeBytesAsString(remaining_bytes_);
188 }
189 
190 // Returns a number in the range [Type's min, Type's max]. The value might
191 // not be uniformly distributed in the given range. If there's no input data
192 // left, always returns |min|.
193 template <typename T> T FuzzedDataProvider::ConsumeIntegral() {
194   return ConsumeIntegralInRange(std::numeric_limits<T>::min(),
195                                 std::numeric_limits<T>::max());
196 }
197 
198 // Returns a number in the range [min, max] by consuming bytes from the
199 // input data. The value might not be uniformly distributed in the given
200 // range. If there's no input data left, always returns |min|. |min| must
201 // be less than or equal to |max|.
202 template <typename T>
203 T FuzzedDataProvider::ConsumeIntegralInRange(T min, T max) {
204   static_assert(std::is_integral<T>::value, "An integral type is required.");
205   static_assert(sizeof(T) <= sizeof(uint64_t), "Unsupported integral type.");
206 
207   if (min > max)
208     abort();
209 
210   // Use the biggest type possible to hold the range and the result.
211   uint64_t range = static_cast<uint64_t>(max) - min;
212   uint64_t result = 0;
213   size_t offset = 0;
214 
215   while (offset < sizeof(T) * CHAR_BIT && (range >> offset) > 0 &&
216          remaining_bytes_ != 0) {
217     // Pull bytes off the end of the seed data. Experimentally, this seems to
218     // allow the fuzzer to more easily explore the input space. This makes
219     // sense, since it works by modifying inputs that caused new code to run,
220     // and this data is often used to encode length of data read by
221     // |ConsumeBytes|. Separating out read lengths makes it easier modify the
222     // contents of the data that is actually read.
223     --remaining_bytes_;
224     result = (result << CHAR_BIT) | data_ptr_[remaining_bytes_];
225     offset += CHAR_BIT;
226   }
227 
228   // Avoid division by 0, in case |range + 1| results in overflow.
229   if (range != std::numeric_limits<decltype(range)>::max())
230     result = result % (range + 1);
231 
232   return static_cast<T>(min + result);
233 }
234 
235 // Returns a floating point value in the range [Type's lowest, Type's max] by
236 // consuming bytes from the input data. If there's no input data left, always
237 // returns approximately 0.
238 template <typename T> T FuzzedDataProvider::ConsumeFloatingPoint() {
239   return ConsumeFloatingPointInRange<T>(std::numeric_limits<T>::lowest(),
240                                         std::numeric_limits<T>::max());
241 }
242 
243 // Returns a floating point value in the given range by consuming bytes from
244 // the input data. If there's no input data left, returns |min|. Note that
245 // |min| must be less than or equal to |max|.
246 template <typename T>
247 T FuzzedDataProvider::ConsumeFloatingPointInRange(T min, T max) {
248   if (min > max)
249     abort();
250 
251   T range = .0;
252   T result = min;
253   constexpr T zero(.0);
254   if (max > zero && min < zero && max > min + std::numeric_limits<T>::max()) {
255     // The diff |max - min| would overflow the given floating point type. Use
256     // the half of the diff as the range and consume a bool to decide whether
257     // the result is in the first of the second part of the diff.
258     range = (max / 2.0) - (min / 2.0);
259     if (ConsumeBool()) {
260       result += range;
261     }
262   } else {
263     range = max - min;
264   }
265 
266   return result + range * ConsumeProbability<T>();
267 }
268 
269 // Returns a floating point number in the range [0.0, 1.0]. If there's no
270 // input data left, always returns 0.
271 template <typename T> T FuzzedDataProvider::ConsumeProbability() {
272   static_assert(std::is_floating_point<T>::value,
273                 "A floating point type is required.");
274 
275   // Use different integral types for different floating point types in order
276   // to provide better density of the resulting values.
277   using IntegralType =
278       typename std::conditional<(sizeof(T) <= sizeof(uint32_t)), uint32_t,
279                                 uint64_t>::type;
280 
281   T result = static_cast<T>(ConsumeIntegral<IntegralType>());
282   result /= static_cast<T>(std::numeric_limits<IntegralType>::max());
283   return result;
284 }
285 
286 // Reads one byte and returns a bool, or false when no data remains.
287 inline bool FuzzedDataProvider::ConsumeBool() {
288   return 1 & ConsumeIntegral<uint8_t>();
289 }
290 
291 // Returns an enum value. The enum must start at 0 and be contiguous. It must
292 // also contain |kMaxValue| aliased to its largest (inclusive) value. Such as:
293 // enum class Foo { SomeValue, OtherValue, kMaxValue = OtherValue };
294 template <typename T> T FuzzedDataProvider::ConsumeEnum() {
295   static_assert(std::is_enum<T>::value, "|T| must be an enum type.");
296   return static_cast<T>(
297       ConsumeIntegralInRange<uint32_t>(0, static_cast<uint32_t>(T::kMaxValue)));
298 }
299 
300 // Returns a copy of the value selected from the given fixed-size |array|.
301 template <typename T, size_t size>
302 T FuzzedDataProvider::PickValueInArray(const T (&array)[size]) {
303   static_assert(size > 0, "The array must be non empty.");
304   return array[ConsumeIntegralInRange<size_t>(0, size - 1)];
305 }
306 
307 template <typename T, size_t size>
308 T FuzzedDataProvider::PickValueInArray(const std::array<T, size> &array) {
309   static_assert(size > 0, "The array must be non empty.");
310   return array[ConsumeIntegralInRange<size_t>(0, size - 1)];
311 }
312 
313 template <typename T>
314 T FuzzedDataProvider::PickValueInArray(std::initializer_list<const T> list) {
315   // TODO(Dor1s): switch to static_assert once C++14 is allowed.
316   if (!list.size())
317     abort();
318 
319   return *(list.begin() + ConsumeIntegralInRange<size_t>(0, list.size() - 1));
320 }
321 
322 // Writes |num_bytes| of input data to the given destination pointer. If there
323 // is not enough data left, writes all remaining bytes. Return value is the
324 // number of bytes written.
325 // In general, it's better to avoid using this function, but it may be useful
326 // in cases when it's necessary to fill a certain buffer or object with
327 // fuzzing data.
328 inline size_t FuzzedDataProvider::ConsumeData(void *destination,
329                                               size_t num_bytes) {
330   num_bytes = std::min(num_bytes, remaining_bytes_);
331   CopyAndAdvance(destination, num_bytes);
332   return num_bytes;
333 }
334 
335 // Private methods.
336 inline void FuzzedDataProvider::CopyAndAdvance(void *destination,
337                                                size_t num_bytes) {
338   std::memcpy(destination, data_ptr_, num_bytes);
339   Advance(num_bytes);
340 }
341 
342 inline void FuzzedDataProvider::Advance(size_t num_bytes) {
343   if (num_bytes > remaining_bytes_)
344     abort();
345 
346   data_ptr_ += num_bytes;
347   remaining_bytes_ -= num_bytes;
348 }
349 
350 template <typename T>
351 std::vector<T> FuzzedDataProvider::ConsumeBytes(size_t size, size_t num_bytes) {
352   static_assert(sizeof(T) == sizeof(uint8_t), "Incompatible data type.");
353 
354   // The point of using the size-based constructor below is to increase the
355   // odds of having a vector object with capacity being equal to the length.
356   // That part is always implementation specific, but at least both libc++ and
357   // libstdc++ allocate the requested number of bytes in that constructor,
358   // which seems to be a natural choice for other implementations as well.
359   // To increase the odds even more, we also call |shrink_to_fit| below.
360   std::vector<T> result(size);
361   if (size == 0) {
362     if (num_bytes != 0)
363       abort();
364     return result;
365   }
366 
367   CopyAndAdvance(result.data(), num_bytes);
368 
369   // Even though |shrink_to_fit| is also implementation specific, we expect it
370   // to provide an additional assurance in case vector's constructor allocated
371   // a buffer which is larger than the actual amount of data we put inside it.
372   result.shrink_to_fit();
373   return result;
374 }
375 
376 template <typename TS, typename TU>
377 TS FuzzedDataProvider::ConvertUnsignedToSigned(TU value) {
378   static_assert(sizeof(TS) == sizeof(TU), "Incompatible data types.");
379   static_assert(!std::numeric_limits<TU>::is_signed,
380                 "Source type must be unsigned.");
381 
382   // TODO(Dor1s): change to `if constexpr` once C++17 becomes mainstream.
383   if (std::numeric_limits<TS>::is_modulo)
384     return static_cast<TS>(value);
385 
386   // Avoid using implementation-defined unsigned to signed conversions.
387   // To learn more, see https://stackoverflow.com/questions/13150449.
388   if (value <= std::numeric_limits<TS>::max()) {
389     return static_cast<TS>(value);
390   } else {
391     constexpr auto TS_min = std::numeric_limits<TS>::min();
392     return TS_min + static_cast<char>(value - TS_min);
393   }
394 }
395 
396 #endif // LLVM_FUZZER_FUZZED_DATA_PROVIDER_H_
397