xref: /freebsd/contrib/llvm-project/compiler-rt/include/fuzzer/FuzzedDataProvider.h (revision 06e20d1babecec1f45ffda513f55a8db5f1c0f56)
1 //===- FuzzedDataProvider.h - Utility header for fuzz targets ---*- C++ -* ===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 // A single header library providing an utility class to break up an array of
9 // bytes. Whenever run on the same input, provides the same output, as long as
10 // its methods are called in the same order, with the same arguments.
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_FUZZER_FUZZED_DATA_PROVIDER_H_
14 #define LLVM_FUZZER_FUZZED_DATA_PROVIDER_H_
15 
16 #include <algorithm>
17 #include <climits>
18 #include <cstddef>
19 #include <cstdint>
20 #include <cstring>
21 #include <initializer_list>
22 #include <string>
23 #include <type_traits>
24 #include <utility>
25 #include <vector>
26 
27 // In addition to the comments below, the API is also briefly documented at
28 // https://github.com/google/fuzzing/blob/master/docs/split-inputs.md#fuzzed-data-provider
29 class FuzzedDataProvider {
30  public:
31   // |data| is an array of length |size| that the FuzzedDataProvider wraps to
32   // provide more granular access. |data| must outlive the FuzzedDataProvider.
33   FuzzedDataProvider(const uint8_t *data, size_t size)
34       : data_ptr_(data), remaining_bytes_(size) {}
35   ~FuzzedDataProvider() = default;
36 
37   // See the implementation below (after the class definition) for more verbose
38   // comments for each of the methods.
39 
40   // Methods returning std::vector of bytes. These are the most popular choice
41   // when splitting fuzzing input into pieces, as every piece is put into a
42   // separate buffer (i.e. ASan would catch any under-/overflow) and the memory
43   // will be released automatically.
44   template <typename T> std::vector<T> ConsumeBytes(size_t num_bytes);
45   template <typename T>
46   std::vector<T> ConsumeBytesWithTerminator(size_t num_bytes, T terminator = 0);
47   template <typename T> std::vector<T> ConsumeRemainingBytes();
48 
49   // Methods returning strings. Use only when you need a std::string or a null
50   // terminated C-string. Otherwise, prefer the methods returning std::vector.
51   std::string ConsumeBytesAsString(size_t num_bytes);
52   std::string ConsumeRandomLengthString(size_t max_length);
53   std::string ConsumeRandomLengthString();
54   std::string ConsumeRemainingBytesAsString();
55 
56   // Methods returning integer values.
57   template <typename T> T ConsumeIntegral();
58   template <typename T> T ConsumeIntegralInRange(T min, T max);
59 
60   // Methods returning floating point values.
61   template <typename T> T ConsumeFloatingPoint();
62   template <typename T> T ConsumeFloatingPointInRange(T min, T max);
63 
64   // 0 <= return value <= 1.
65   template <typename T> T ConsumeProbability();
66 
67   bool ConsumeBool();
68 
69   // Returns a value chosen from the given enum.
70   template <typename T> T ConsumeEnum();
71 
72   // Returns a value from the given array.
73   template <typename T, size_t size> T PickValueInArray(const T (&array)[size]);
74   template <typename T> T PickValueInArray(std::initializer_list<const T> list);
75 
76   // Writes data to the given destination and returns number of bytes written.
77   size_t ConsumeData(void *destination, size_t num_bytes);
78 
79   // Reports the remaining bytes available for fuzzed input.
80   size_t remaining_bytes() { return remaining_bytes_; }
81 
82  private:
83   FuzzedDataProvider(const FuzzedDataProvider &) = delete;
84   FuzzedDataProvider &operator=(const FuzzedDataProvider &) = delete;
85 
86   void CopyAndAdvance(void *destination, size_t num_bytes);
87 
88   void Advance(size_t num_bytes);
89 
90   template <typename T>
91   std::vector<T> ConsumeBytes(size_t size, size_t num_bytes);
92 
93   template <typename TS, typename TU> TS ConvertUnsignedToSigned(TU value);
94 
95   const uint8_t *data_ptr_;
96   size_t remaining_bytes_;
97 };
98 
99 // Returns a std::vector containing |num_bytes| of input data. If fewer than
100 // |num_bytes| of data remain, returns a shorter std::vector containing all
101 // of the data that's left. Can be used with any byte sized type, such as
102 // char, unsigned char, uint8_t, etc.
103 template <typename T>
104 std::vector<T> FuzzedDataProvider::ConsumeBytes(size_t num_bytes) {
105   num_bytes = std::min(num_bytes, remaining_bytes_);
106   return ConsumeBytes<T>(num_bytes, num_bytes);
107 }
108 
109 // Similar to |ConsumeBytes|, but also appends the terminator value at the end
110 // of the resulting vector. Useful, when a mutable null-terminated C-string is
111 // needed, for example. But that is a rare case. Better avoid it, if possible,
112 // and prefer using |ConsumeBytes| or |ConsumeBytesAsString| methods.
113 template <typename T>
114 std::vector<T> FuzzedDataProvider::ConsumeBytesWithTerminator(size_t num_bytes,
115                                                               T terminator) {
116   num_bytes = std::min(num_bytes, remaining_bytes_);
117   std::vector<T> result = ConsumeBytes<T>(num_bytes + 1, num_bytes);
118   result.back() = terminator;
119   return result;
120 }
121 
122 // Returns a std::vector containing all remaining bytes of the input data.
123 template <typename T>
124 std::vector<T> FuzzedDataProvider::ConsumeRemainingBytes() {
125   return ConsumeBytes<T>(remaining_bytes_);
126 }
127 
128 // Returns a std::string containing |num_bytes| of input data. Using this and
129 // |.c_str()| on the resulting string is the best way to get an immutable
130 // null-terminated C string. If fewer than |num_bytes| of data remain, returns
131 // a shorter std::string containing all of the data that's left.
132 inline std::string FuzzedDataProvider::ConsumeBytesAsString(size_t num_bytes) {
133   static_assert(sizeof(std::string::value_type) == sizeof(uint8_t),
134                 "ConsumeBytesAsString cannot convert the data to a string.");
135 
136   num_bytes = std::min(num_bytes, remaining_bytes_);
137   std::string result(
138       reinterpret_cast<const std::string::value_type *>(data_ptr_), num_bytes);
139   Advance(num_bytes);
140   return result;
141 }
142 
143 // Returns a std::string of length from 0 to |max_length|. When it runs out of
144 // input data, returns what remains of the input. Designed to be more stable
145 // with respect to a fuzzer inserting characters than just picking a random
146 // length and then consuming that many bytes with |ConsumeBytes|.
147 inline std::string
148 FuzzedDataProvider::ConsumeRandomLengthString(size_t max_length) {
149   // Reads bytes from the start of |data_ptr_|. Maps "\\" to "\", and maps "\"
150   // followed by anything else to the end of the string. As a result of this
151   // logic, a fuzzer can insert characters into the string, and the string
152   // will be lengthened to include those new characters, resulting in a more
153   // stable fuzzer than picking the length of a string independently from
154   // picking its contents.
155   std::string result;
156 
157   // Reserve the anticipated capaticity to prevent several reallocations.
158   result.reserve(std::min(max_length, remaining_bytes_));
159   for (size_t i = 0; i < max_length && remaining_bytes_ != 0; ++i) {
160     char next = ConvertUnsignedToSigned<char>(data_ptr_[0]);
161     Advance(1);
162     if (next == '\\' && remaining_bytes_ != 0) {
163       next = ConvertUnsignedToSigned<char>(data_ptr_[0]);
164       Advance(1);
165       if (next != '\\')
166         break;
167     }
168     result += next;
169   }
170 
171   result.shrink_to_fit();
172   return result;
173 }
174 
175 // Returns a std::string of length from 0 to |remaining_bytes_|.
176 inline std::string FuzzedDataProvider::ConsumeRandomLengthString() {
177   return ConsumeRandomLengthString(remaining_bytes_);
178 }
179 
180 // Returns a std::string containing all remaining bytes of the input data.
181 // Prefer using |ConsumeRemainingBytes| unless you actually need a std::string
182 // object.
183 inline std::string FuzzedDataProvider::ConsumeRemainingBytesAsString() {
184   return ConsumeBytesAsString(remaining_bytes_);
185 }
186 
187 // Returns a number in the range [Type's min, Type's max]. The value might
188 // not be uniformly distributed in the given range. If there's no input data
189 // left, always returns |min|.
190 template <typename T> T FuzzedDataProvider::ConsumeIntegral() {
191   return ConsumeIntegralInRange(std::numeric_limits<T>::min(),
192                                 std::numeric_limits<T>::max());
193 }
194 
195 // Returns a number in the range [min, max] by consuming bytes from the
196 // input data. The value might not be uniformly distributed in the given
197 // range. If there's no input data left, always returns |min|. |min| must
198 // be less than or equal to |max|.
199 template <typename T>
200 T FuzzedDataProvider::ConsumeIntegralInRange(T min, T max) {
201   static_assert(std::is_integral<T>::value, "An integral type is required.");
202   static_assert(sizeof(T) <= sizeof(uint64_t), "Unsupported integral type.");
203 
204   if (min > max)
205     abort();
206 
207   // Use the biggest type possible to hold the range and the result.
208   uint64_t range = static_cast<uint64_t>(max) - min;
209   uint64_t result = 0;
210   size_t offset = 0;
211 
212   while (offset < sizeof(T) * CHAR_BIT && (range >> offset) > 0 &&
213          remaining_bytes_ != 0) {
214     // Pull bytes off the end of the seed data. Experimentally, this seems to
215     // allow the fuzzer to more easily explore the input space. This makes
216     // sense, since it works by modifying inputs that caused new code to run,
217     // and this data is often used to encode length of data read by
218     // |ConsumeBytes|. Separating out read lengths makes it easier modify the
219     // contents of the data that is actually read.
220     --remaining_bytes_;
221     result = (result << CHAR_BIT) | data_ptr_[remaining_bytes_];
222     offset += CHAR_BIT;
223   }
224 
225   // Avoid division by 0, in case |range + 1| results in overflow.
226   if (range != std::numeric_limits<decltype(range)>::max())
227     result = result % (range + 1);
228 
229   return static_cast<T>(min + result);
230 }
231 
232 // Returns a floating point value in the range [Type's lowest, Type's max] by
233 // consuming bytes from the input data. If there's no input data left, always
234 // returns approximately 0.
235 template <typename T> T FuzzedDataProvider::ConsumeFloatingPoint() {
236   return ConsumeFloatingPointInRange<T>(std::numeric_limits<T>::lowest(),
237                                         std::numeric_limits<T>::max());
238 }
239 
240 // Returns a floating point value in the given range by consuming bytes from
241 // the input data. If there's no input data left, returns |min|. Note that
242 // |min| must be less than or equal to |max|.
243 template <typename T>
244 T FuzzedDataProvider::ConsumeFloatingPointInRange(T min, T max) {
245   if (min > max)
246     abort();
247 
248   T range = .0;
249   T result = min;
250   constexpr T zero(.0);
251   if (max > zero && min < zero && max > min + std::numeric_limits<T>::max()) {
252     // The diff |max - min| would overflow the given floating point type. Use
253     // the half of the diff as the range and consume a bool to decide whether
254     // the result is in the first of the second part of the diff.
255     range = (max / 2.0) - (min / 2.0);
256     if (ConsumeBool()) {
257       result += range;
258     }
259   } else {
260     range = max - min;
261   }
262 
263   return result + range * ConsumeProbability<T>();
264 }
265 
266 // Returns a floating point number in the range [0.0, 1.0]. If there's no
267 // input data left, always returns 0.
268 template <typename T> T FuzzedDataProvider::ConsumeProbability() {
269   static_assert(std::is_floating_point<T>::value,
270                 "A floating point type is required.");
271 
272   // Use different integral types for different floating point types in order
273   // to provide better density of the resulting values.
274   using IntegralType =
275       typename std::conditional<(sizeof(T) <= sizeof(uint32_t)), uint32_t,
276                                 uint64_t>::type;
277 
278   T result = static_cast<T>(ConsumeIntegral<IntegralType>());
279   result /= static_cast<T>(std::numeric_limits<IntegralType>::max());
280   return result;
281 }
282 
283 // Reads one byte and returns a bool, or false when no data remains.
284 inline bool FuzzedDataProvider::ConsumeBool() {
285   return 1 & ConsumeIntegral<uint8_t>();
286 }
287 
288 // Returns an enum value. The enum must start at 0 and be contiguous. It must
289 // also contain |kMaxValue| aliased to its largest (inclusive) value. Such as:
290 // enum class Foo { SomeValue, OtherValue, kMaxValue = OtherValue };
291 template <typename T> T FuzzedDataProvider::ConsumeEnum() {
292   static_assert(std::is_enum<T>::value, "|T| must be an enum type.");
293   return static_cast<T>(
294       ConsumeIntegralInRange<uint32_t>(0, static_cast<uint32_t>(T::kMaxValue)));
295 }
296 
297 // Returns a copy of the value selected from the given fixed-size |array|.
298 template <typename T, size_t size>
299 T FuzzedDataProvider::PickValueInArray(const T (&array)[size]) {
300   static_assert(size > 0, "The array must be non empty.");
301   return array[ConsumeIntegralInRange<size_t>(0, size - 1)];
302 }
303 
304 template <typename T>
305 T FuzzedDataProvider::PickValueInArray(std::initializer_list<const T> list) {
306   // TODO(Dor1s): switch to static_assert once C++14 is allowed.
307   if (!list.size())
308     abort();
309 
310   return *(list.begin() + ConsumeIntegralInRange<size_t>(0, list.size() - 1));
311 }
312 
313 // Writes |num_bytes| of input data to the given destination pointer. If there
314 // is not enough data left, writes all remaining bytes. Return value is the
315 // number of bytes written.
316 // In general, it's better to avoid using this function, but it may be useful
317 // in cases when it's necessary to fill a certain buffer or object with
318 // fuzzing data.
319 inline size_t FuzzedDataProvider::ConsumeData(void *destination,
320                                               size_t num_bytes) {
321   num_bytes = std::min(num_bytes, remaining_bytes_);
322   CopyAndAdvance(destination, num_bytes);
323   return num_bytes;
324 }
325 
326 // Private methods.
327 inline void FuzzedDataProvider::CopyAndAdvance(void *destination,
328                                                size_t num_bytes) {
329   std::memcpy(destination, data_ptr_, num_bytes);
330   Advance(num_bytes);
331 }
332 
333 inline void FuzzedDataProvider::Advance(size_t num_bytes) {
334   if (num_bytes > remaining_bytes_)
335     abort();
336 
337   data_ptr_ += num_bytes;
338   remaining_bytes_ -= num_bytes;
339 }
340 
341 template <typename T>
342 std::vector<T> FuzzedDataProvider::ConsumeBytes(size_t size, size_t num_bytes) {
343   static_assert(sizeof(T) == sizeof(uint8_t), "Incompatible data type.");
344 
345   // The point of using the size-based constructor below is to increase the
346   // odds of having a vector object with capacity being equal to the length.
347   // That part is always implementation specific, but at least both libc++ and
348   // libstdc++ allocate the requested number of bytes in that constructor,
349   // which seems to be a natural choice for other implementations as well.
350   // To increase the odds even more, we also call |shrink_to_fit| below.
351   std::vector<T> result(size);
352   if (size == 0) {
353     if (num_bytes != 0)
354       abort();
355     return result;
356   }
357 
358   CopyAndAdvance(result.data(), num_bytes);
359 
360   // Even though |shrink_to_fit| is also implementation specific, we expect it
361   // to provide an additional assurance in case vector's constructor allocated
362   // a buffer which is larger than the actual amount of data we put inside it.
363   result.shrink_to_fit();
364   return result;
365 }
366 
367 template <typename TS, typename TU>
368 TS FuzzedDataProvider::ConvertUnsignedToSigned(TU value) {
369   static_assert(sizeof(TS) == sizeof(TU), "Incompatible data types.");
370   static_assert(!std::numeric_limits<TU>::is_signed,
371                 "Source type must be unsigned.");
372 
373   // TODO(Dor1s): change to `if constexpr` once C++17 becomes mainstream.
374   if (std::numeric_limits<TS>::is_modulo)
375     return static_cast<TS>(value);
376 
377   // Avoid using implementation-defined unsigned to signed conversions.
378   // To learn more, see https://stackoverflow.com/questions/13150449.
379   if (value <= std::numeric_limits<TS>::max()) {
380     return static_cast<TS>(value);
381   } else {
382     constexpr auto TS_min = std::numeric_limits<TS>::min();
383     return TS_min + static_cast<char>(value - TS_min);
384   }
385 }
386 
387 #endif // LLVM_FUZZER_FUZZED_DATA_PROVIDER_H_
388