xref: /freebsd/contrib/llvm-project/clang/utils/TableGen/NeonEmitter.cpp (revision d56accc7c3dcc897489b6a07834763a03b9f3d68)
1 //===- NeonEmitter.cpp - Generate arm_neon.h for use with clang -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This tablegen backend is responsible for emitting arm_neon.h, which includes
10 // a declaration and definition of each function specified by the ARM NEON
11 // compiler interface.  See ARM document DUI0348B.
12 //
13 // Each NEON instruction is implemented in terms of 1 or more functions which
14 // are suffixed with the element type of the input vectors.  Functions may be
15 // implemented in terms of generic vector operations such as +, *, -, etc. or
16 // by calling a __builtin_-prefixed function which will be handled by clang's
17 // CodeGen library.
18 //
19 // Additional validation code can be generated by this file when runHeader() is
20 // called, rather than the normal run() entry point.
21 //
22 // See also the documentation in include/clang/Basic/arm_neon.td.
23 //
24 //===----------------------------------------------------------------------===//
25 
26 #include "TableGenBackends.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/None.h"
30 #include "llvm/ADT/Optional.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/StringExtras.h"
34 #include "llvm/ADT/StringRef.h"
35 #include "llvm/Support/Casting.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/TableGen/Error.h"
39 #include "llvm/TableGen/Record.h"
40 #include "llvm/TableGen/SetTheory.h"
41 #include <algorithm>
42 #include <cassert>
43 #include <cctype>
44 #include <cstddef>
45 #include <cstdint>
46 #include <deque>
47 #include <map>
48 #include <set>
49 #include <sstream>
50 #include <string>
51 #include <utility>
52 #include <vector>
53 
54 using namespace llvm;
55 
56 namespace {
57 
58 // While globals are generally bad, this one allows us to perform assertions
59 // liberally and somehow still trace them back to the def they indirectly
60 // came from.
61 static Record *CurrentRecord = nullptr;
62 static void assert_with_loc(bool Assertion, const std::string &Str) {
63   if (!Assertion) {
64     if (CurrentRecord)
65       PrintFatalError(CurrentRecord->getLoc(), Str);
66     else
67       PrintFatalError(Str);
68   }
69 }
70 
71 enum ClassKind {
72   ClassNone,
73   ClassI,     // generic integer instruction, e.g., "i8" suffix
74   ClassS,     // signed/unsigned/poly, e.g., "s8", "u8" or "p8" suffix
75   ClassW,     // width-specific instruction, e.g., "8" suffix
76   ClassB,     // bitcast arguments with enum argument to specify type
77   ClassL,     // Logical instructions which are op instructions
78               // but we need to not emit any suffix for in our
79               // tests.
80   ClassNoTest // Instructions which we do not test since they are
81               // not TRUE instructions.
82 };
83 
84 /// NeonTypeFlags - Flags to identify the types for overloaded Neon
85 /// builtins.  These must be kept in sync with the flags in
86 /// include/clang/Basic/TargetBuiltins.h.
87 namespace NeonTypeFlags {
88 
89 enum { EltTypeMask = 0xf, UnsignedFlag = 0x10, QuadFlag = 0x20 };
90 
91 enum EltType {
92   Int8,
93   Int16,
94   Int32,
95   Int64,
96   Poly8,
97   Poly16,
98   Poly64,
99   Poly128,
100   Float16,
101   Float32,
102   Float64,
103   BFloat16
104 };
105 
106 } // end namespace NeonTypeFlags
107 
108 class NeonEmitter;
109 
110 //===----------------------------------------------------------------------===//
111 // TypeSpec
112 //===----------------------------------------------------------------------===//
113 
114 /// A TypeSpec is just a simple wrapper around a string, but gets its own type
115 /// for strong typing purposes.
116 ///
117 /// A TypeSpec can be used to create a type.
118 class TypeSpec : public std::string {
119 public:
120   static std::vector<TypeSpec> fromTypeSpecs(StringRef Str) {
121     std::vector<TypeSpec> Ret;
122     TypeSpec Acc;
123     for (char I : Str.str()) {
124       if (islower(I)) {
125         Acc.push_back(I);
126         Ret.push_back(TypeSpec(Acc));
127         Acc.clear();
128       } else {
129         Acc.push_back(I);
130       }
131     }
132     return Ret;
133   }
134 };
135 
136 //===----------------------------------------------------------------------===//
137 // Type
138 //===----------------------------------------------------------------------===//
139 
140 /// A Type. Not much more to say here.
141 class Type {
142 private:
143   TypeSpec TS;
144 
145   enum TypeKind {
146     Void,
147     Float,
148     SInt,
149     UInt,
150     Poly,
151     BFloat16,
152   };
153   TypeKind Kind;
154   bool Immediate, Constant, Pointer;
155   // ScalarForMangling and NoManglingQ are really not suited to live here as
156   // they are not related to the type. But they live in the TypeSpec (not the
157   // prototype), so this is really the only place to store them.
158   bool ScalarForMangling, NoManglingQ;
159   unsigned Bitwidth, ElementBitwidth, NumVectors;
160 
161 public:
162   Type()
163       : Kind(Void), Immediate(false), Constant(false),
164         Pointer(false), ScalarForMangling(false), NoManglingQ(false),
165         Bitwidth(0), ElementBitwidth(0), NumVectors(0) {}
166 
167   Type(TypeSpec TS, StringRef CharMods)
168       : TS(std::move(TS)), Kind(Void), Immediate(false),
169         Constant(false), Pointer(false), ScalarForMangling(false),
170         NoManglingQ(false), Bitwidth(0), ElementBitwidth(0), NumVectors(0) {
171     applyModifiers(CharMods);
172   }
173 
174   /// Returns a type representing "void".
175   static Type getVoid() { return Type(); }
176 
177   bool operator==(const Type &Other) const { return str() == Other.str(); }
178   bool operator!=(const Type &Other) const { return !operator==(Other); }
179 
180   //
181   // Query functions
182   //
183   bool isScalarForMangling() const { return ScalarForMangling; }
184   bool noManglingQ() const { return NoManglingQ; }
185 
186   bool isPointer() const { return Pointer; }
187   bool isValue() const { return !isVoid() && !isPointer(); }
188   bool isScalar() const { return isValue() && NumVectors == 0; }
189   bool isVector() const { return isValue() && NumVectors > 0; }
190   bool isConstPointer() const { return Constant; }
191   bool isFloating() const { return Kind == Float; }
192   bool isInteger() const { return Kind == SInt || Kind == UInt; }
193   bool isPoly() const { return Kind == Poly; }
194   bool isSigned() const { return Kind == SInt; }
195   bool isImmediate() const { return Immediate; }
196   bool isFloat() const { return isFloating() && ElementBitwidth == 32; }
197   bool isDouble() const { return isFloating() && ElementBitwidth == 64; }
198   bool isHalf() const { return isFloating() && ElementBitwidth == 16; }
199   bool isChar() const { return ElementBitwidth == 8; }
200   bool isShort() const { return isInteger() && ElementBitwidth == 16; }
201   bool isInt() const { return isInteger() && ElementBitwidth == 32; }
202   bool isLong() const { return isInteger() && ElementBitwidth == 64; }
203   bool isVoid() const { return Kind == Void; }
204   bool isBFloat16() const { return Kind == BFloat16; }
205   unsigned getNumElements() const { return Bitwidth / ElementBitwidth; }
206   unsigned getSizeInBits() const { return Bitwidth; }
207   unsigned getElementSizeInBits() const { return ElementBitwidth; }
208   unsigned getNumVectors() const { return NumVectors; }
209 
210   //
211   // Mutator functions
212   //
213   void makeUnsigned() {
214     assert(!isVoid() && "not a potentially signed type");
215     Kind = UInt;
216   }
217   void makeSigned() {
218     assert(!isVoid() && "not a potentially signed type");
219     Kind = SInt;
220   }
221 
222   void makeInteger(unsigned ElemWidth, bool Sign) {
223     assert(!isVoid() && "converting void to int probably not useful");
224     Kind = Sign ? SInt : UInt;
225     Immediate = false;
226     ElementBitwidth = ElemWidth;
227   }
228 
229   void makeImmediate(unsigned ElemWidth) {
230     Kind = SInt;
231     Immediate = true;
232     ElementBitwidth = ElemWidth;
233   }
234 
235   void makeScalar() {
236     Bitwidth = ElementBitwidth;
237     NumVectors = 0;
238   }
239 
240   void makeOneVector() {
241     assert(isVector());
242     NumVectors = 1;
243   }
244 
245   void make32BitElement() {
246     assert_with_loc(Bitwidth > 32, "Not enough bits to make it 32!");
247     ElementBitwidth = 32;
248   }
249 
250   void doubleLanes() {
251     assert_with_loc(Bitwidth != 128, "Can't get bigger than 128!");
252     Bitwidth = 128;
253   }
254 
255   void halveLanes() {
256     assert_with_loc(Bitwidth != 64, "Can't get smaller than 64!");
257     Bitwidth = 64;
258   }
259 
260   /// Return the C string representation of a type, which is the typename
261   /// defined in stdint.h or arm_neon.h.
262   std::string str() const;
263 
264   /// Return the string representation of a type, which is an encoded
265   /// string for passing to the BUILTIN() macro in Builtins.def.
266   std::string builtin_str() const;
267 
268   /// Return the value in NeonTypeFlags for this type.
269   unsigned getNeonEnum() const;
270 
271   /// Parse a type from a stdint.h or arm_neon.h typedef name,
272   /// for example uint32x2_t or int64_t.
273   static Type fromTypedefName(StringRef Name);
274 
275 private:
276   /// Creates the type based on the typespec string in TS.
277   /// Sets "Quad" to true if the "Q" or "H" modifiers were
278   /// seen. This is needed by applyModifier as some modifiers
279   /// only take effect if the type size was changed by "Q" or "H".
280   void applyTypespec(bool &Quad);
281   /// Applies prototype modifiers to the type.
282   void applyModifiers(StringRef Mods);
283 };
284 
285 //===----------------------------------------------------------------------===//
286 // Variable
287 //===----------------------------------------------------------------------===//
288 
289 /// A variable is a simple class that just has a type and a name.
290 class Variable {
291   Type T;
292   std::string N;
293 
294 public:
295   Variable() : T(Type::getVoid()) {}
296   Variable(Type T, std::string N) : T(std::move(T)), N(std::move(N)) {}
297 
298   Type getType() const { return T; }
299   std::string getName() const { return "__" + N; }
300 };
301 
302 //===----------------------------------------------------------------------===//
303 // Intrinsic
304 //===----------------------------------------------------------------------===//
305 
306 /// The main grunt class. This represents an instantiation of an intrinsic with
307 /// a particular typespec and prototype.
308 class Intrinsic {
309   /// The Record this intrinsic was created from.
310   Record *R;
311   /// The unmangled name.
312   std::string Name;
313   /// The input and output typespecs. InTS == OutTS except when
314   /// CartesianProductWith is non-empty - this is the case for vreinterpret.
315   TypeSpec OutTS, InTS;
316   /// The base class kind. Most intrinsics use ClassS, which has full type
317   /// info for integers (s32/u32). Some use ClassI, which doesn't care about
318   /// signedness (i32), while some (ClassB) have no type at all, only a width
319   /// (32).
320   ClassKind CK;
321   /// The list of DAGs for the body. May be empty, in which case we should
322   /// emit a builtin call.
323   ListInit *Body;
324   /// The architectural #ifdef guard.
325   std::string Guard;
326   /// Set if the Unavailable bit is 1. This means we don't generate a body,
327   /// just an "unavailable" attribute on a declaration.
328   bool IsUnavailable;
329   /// Is this intrinsic safe for big-endian? or does it need its arguments
330   /// reversing?
331   bool BigEndianSafe;
332 
333   /// The types of return value [0] and parameters [1..].
334   std::vector<Type> Types;
335   /// The index of the key type passed to CGBuiltin.cpp for polymorphic calls.
336   int PolymorphicKeyType;
337   /// The local variables defined.
338   std::map<std::string, Variable> Variables;
339   /// NeededEarly - set if any other intrinsic depends on this intrinsic.
340   bool NeededEarly;
341   /// UseMacro - set if we should implement using a macro or unset for a
342   ///            function.
343   bool UseMacro;
344   /// The set of intrinsics that this intrinsic uses/requires.
345   std::set<Intrinsic *> Dependencies;
346   /// The "base type", which is Type('d', OutTS). InBaseType is only
347   /// different if CartesianProductWith is non-empty (for vreinterpret).
348   Type BaseType, InBaseType;
349   /// The return variable.
350   Variable RetVar;
351   /// A postfix to apply to every variable. Defaults to "".
352   std::string VariablePostfix;
353 
354   NeonEmitter &Emitter;
355   std::stringstream OS;
356 
357   bool isBigEndianSafe() const {
358     if (BigEndianSafe)
359       return true;
360 
361     for (const auto &T : Types){
362       if (T.isVector() && T.getNumElements() > 1)
363         return false;
364     }
365     return true;
366   }
367 
368 public:
369   Intrinsic(Record *R, StringRef Name, StringRef Proto, TypeSpec OutTS,
370             TypeSpec InTS, ClassKind CK, ListInit *Body, NeonEmitter &Emitter,
371             StringRef Guard, bool IsUnavailable, bool BigEndianSafe)
372       : R(R), Name(Name.str()), OutTS(OutTS), InTS(InTS), CK(CK), Body(Body),
373         Guard(Guard.str()), IsUnavailable(IsUnavailable),
374         BigEndianSafe(BigEndianSafe), PolymorphicKeyType(0), NeededEarly(false),
375         UseMacro(false), BaseType(OutTS, "."), InBaseType(InTS, "."),
376         Emitter(Emitter) {
377     // Modify the TypeSpec per-argument to get a concrete Type, and create
378     // known variables for each.
379     // Types[0] is the return value.
380     unsigned Pos = 0;
381     Types.emplace_back(OutTS, getNextModifiers(Proto, Pos));
382     StringRef Mods = getNextModifiers(Proto, Pos);
383     while (!Mods.empty()) {
384       Types.emplace_back(InTS, Mods);
385       if (Mods.contains('!'))
386         PolymorphicKeyType = Types.size() - 1;
387 
388       Mods = getNextModifiers(Proto, Pos);
389     }
390 
391     for (auto Type : Types) {
392       // If this builtin takes an immediate argument, we need to #define it rather
393       // than use a standard declaration, so that SemaChecking can range check
394       // the immediate passed by the user.
395 
396       // Pointer arguments need to use macros to avoid hiding aligned attributes
397       // from the pointer type.
398 
399       // It is not permitted to pass or return an __fp16 by value, so intrinsics
400       // taking a scalar float16_t must be implemented as macros.
401       if (Type.isImmediate() || Type.isPointer() ||
402           (Type.isScalar() && Type.isHalf()))
403         UseMacro = true;
404     }
405   }
406 
407   /// Get the Record that this intrinsic is based off.
408   Record *getRecord() const { return R; }
409   /// Get the set of Intrinsics that this intrinsic calls.
410   /// this is the set of immediate dependencies, NOT the
411   /// transitive closure.
412   const std::set<Intrinsic *> &getDependencies() const { return Dependencies; }
413   /// Get the architectural guard string (#ifdef).
414   std::string getGuard() const { return Guard; }
415   /// Get the non-mangled name.
416   std::string getName() const { return Name; }
417 
418   /// Return true if the intrinsic takes an immediate operand.
419   bool hasImmediate() const {
420     return llvm::any_of(Types, [](const Type &T) { return T.isImmediate(); });
421   }
422 
423   /// Return the parameter index of the immediate operand.
424   unsigned getImmediateIdx() const {
425     for (unsigned Idx = 0; Idx < Types.size(); ++Idx)
426       if (Types[Idx].isImmediate())
427         return Idx - 1;
428     llvm_unreachable("Intrinsic has no immediate");
429   }
430 
431 
432   unsigned getNumParams() const { return Types.size() - 1; }
433   Type getReturnType() const { return Types[0]; }
434   Type getParamType(unsigned I) const { return Types[I + 1]; }
435   Type getBaseType() const { return BaseType; }
436   Type getPolymorphicKeyType() const { return Types[PolymorphicKeyType]; }
437 
438   /// Return true if the prototype has a scalar argument.
439   bool protoHasScalar() const;
440 
441   /// Return the index that parameter PIndex will sit at
442   /// in a generated function call. This is often just PIndex,
443   /// but may not be as things such as multiple-vector operands
444   /// and sret parameters need to be taken into accont.
445   unsigned getGeneratedParamIdx(unsigned PIndex) {
446     unsigned Idx = 0;
447     if (getReturnType().getNumVectors() > 1)
448       // Multiple vectors are passed as sret.
449       ++Idx;
450 
451     for (unsigned I = 0; I < PIndex; ++I)
452       Idx += std::max(1U, getParamType(I).getNumVectors());
453 
454     return Idx;
455   }
456 
457   bool hasBody() const { return Body && !Body->getValues().empty(); }
458 
459   void setNeededEarly() { NeededEarly = true; }
460 
461   bool operator<(const Intrinsic &Other) const {
462     // Sort lexicographically on a two-tuple (Guard, Name)
463     if (Guard != Other.Guard)
464       return Guard < Other.Guard;
465     return Name < Other.Name;
466   }
467 
468   ClassKind getClassKind(bool UseClassBIfScalar = false) {
469     if (UseClassBIfScalar && !protoHasScalar())
470       return ClassB;
471     return CK;
472   }
473 
474   /// Return the name, mangled with type information.
475   /// If ForceClassS is true, use ClassS (u32/s32) instead
476   /// of the intrinsic's own type class.
477   std::string getMangledName(bool ForceClassS = false) const;
478   /// Return the type code for a builtin function call.
479   std::string getInstTypeCode(Type T, ClassKind CK) const;
480   /// Return the type string for a BUILTIN() macro in Builtins.def.
481   std::string getBuiltinTypeStr();
482 
483   /// Generate the intrinsic, returning code.
484   std::string generate();
485   /// Perform type checking and populate the dependency graph, but
486   /// don't generate code yet.
487   void indexBody();
488 
489 private:
490   StringRef getNextModifiers(StringRef Proto, unsigned &Pos) const;
491 
492   std::string mangleName(std::string Name, ClassKind CK) const;
493 
494   void initVariables();
495   std::string replaceParamsIn(std::string S);
496 
497   void emitBodyAsBuiltinCall();
498 
499   void generateImpl(bool ReverseArguments,
500                     StringRef NamePrefix, StringRef CallPrefix);
501   void emitReturn();
502   void emitBody(StringRef CallPrefix);
503   void emitShadowedArgs();
504   void emitArgumentReversal();
505   void emitReturnReversal();
506   void emitReverseVariable(Variable &Dest, Variable &Src);
507   void emitNewLine();
508   void emitClosingBrace();
509   void emitOpeningBrace();
510   void emitPrototype(StringRef NamePrefix);
511 
512   class DagEmitter {
513     Intrinsic &Intr;
514     StringRef CallPrefix;
515 
516   public:
517     DagEmitter(Intrinsic &Intr, StringRef CallPrefix) :
518       Intr(Intr), CallPrefix(CallPrefix) {
519     }
520     std::pair<Type, std::string> emitDagArg(Init *Arg, std::string ArgName);
521     std::pair<Type, std::string> emitDagSaveTemp(DagInit *DI);
522     std::pair<Type, std::string> emitDagSplat(DagInit *DI);
523     std::pair<Type, std::string> emitDagDup(DagInit *DI);
524     std::pair<Type, std::string> emitDagDupTyped(DagInit *DI);
525     std::pair<Type, std::string> emitDagShuffle(DagInit *DI);
526     std::pair<Type, std::string> emitDagCast(DagInit *DI, bool IsBitCast);
527     std::pair<Type, std::string> emitDagCall(DagInit *DI,
528                                              bool MatchMangledName);
529     std::pair<Type, std::string> emitDagNameReplace(DagInit *DI);
530     std::pair<Type, std::string> emitDagLiteral(DagInit *DI);
531     std::pair<Type, std::string> emitDagOp(DagInit *DI);
532     std::pair<Type, std::string> emitDag(DagInit *DI);
533   };
534 };
535 
536 //===----------------------------------------------------------------------===//
537 // NeonEmitter
538 //===----------------------------------------------------------------------===//
539 
540 class NeonEmitter {
541   RecordKeeper &Records;
542   DenseMap<Record *, ClassKind> ClassMap;
543   std::map<std::string, std::deque<Intrinsic>> IntrinsicMap;
544   unsigned UniqueNumber;
545 
546   void createIntrinsic(Record *R, SmallVectorImpl<Intrinsic *> &Out);
547   void genBuiltinsDef(raw_ostream &OS, SmallVectorImpl<Intrinsic *> &Defs);
548   void genOverloadTypeCheckCode(raw_ostream &OS,
549                                 SmallVectorImpl<Intrinsic *> &Defs);
550   void genIntrinsicRangeCheckCode(raw_ostream &OS,
551                                   SmallVectorImpl<Intrinsic *> &Defs);
552 
553 public:
554   /// Called by Intrinsic - this attempts to get an intrinsic that takes
555   /// the given types as arguments.
556   Intrinsic &getIntrinsic(StringRef Name, ArrayRef<Type> Types,
557                           Optional<std::string> MangledName);
558 
559   /// Called by Intrinsic - returns a globally-unique number.
560   unsigned getUniqueNumber() { return UniqueNumber++; }
561 
562   NeonEmitter(RecordKeeper &R) : Records(R), UniqueNumber(0) {
563     Record *SI = R.getClass("SInst");
564     Record *II = R.getClass("IInst");
565     Record *WI = R.getClass("WInst");
566     Record *SOpI = R.getClass("SOpInst");
567     Record *IOpI = R.getClass("IOpInst");
568     Record *WOpI = R.getClass("WOpInst");
569     Record *LOpI = R.getClass("LOpInst");
570     Record *NoTestOpI = R.getClass("NoTestOpInst");
571 
572     ClassMap[SI] = ClassS;
573     ClassMap[II] = ClassI;
574     ClassMap[WI] = ClassW;
575     ClassMap[SOpI] = ClassS;
576     ClassMap[IOpI] = ClassI;
577     ClassMap[WOpI] = ClassW;
578     ClassMap[LOpI] = ClassL;
579     ClassMap[NoTestOpI] = ClassNoTest;
580   }
581 
582   // Emit arm_neon.h.inc
583   void run(raw_ostream &o);
584 
585   // Emit arm_fp16.h.inc
586   void runFP16(raw_ostream &o);
587 
588   // Emit arm_bf16.h.inc
589   void runBF16(raw_ostream &o);
590 
591   // Emit all the __builtin prototypes used in arm_neon.h, arm_fp16.h and
592   // arm_bf16.h
593   void runHeader(raw_ostream &o);
594 };
595 
596 } // end anonymous namespace
597 
598 //===----------------------------------------------------------------------===//
599 // Type implementation
600 //===----------------------------------------------------------------------===//
601 
602 std::string Type::str() const {
603   if (isVoid())
604     return "void";
605   std::string S;
606 
607   if (isInteger() && !isSigned())
608     S += "u";
609 
610   if (isPoly())
611     S += "poly";
612   else if (isFloating())
613     S += "float";
614   else if (isBFloat16())
615     S += "bfloat";
616   else
617     S += "int";
618 
619   S += utostr(ElementBitwidth);
620   if (isVector())
621     S += "x" + utostr(getNumElements());
622   if (NumVectors > 1)
623     S += "x" + utostr(NumVectors);
624   S += "_t";
625 
626   if (Constant)
627     S += " const";
628   if (Pointer)
629     S += " *";
630 
631   return S;
632 }
633 
634 std::string Type::builtin_str() const {
635   std::string S;
636   if (isVoid())
637     return "v";
638 
639   if (isPointer()) {
640     // All pointers are void pointers.
641     S = "v";
642     if (isConstPointer())
643       S += "C";
644     S += "*";
645     return S;
646   } else if (isInteger())
647     switch (ElementBitwidth) {
648     case 8: S += "c"; break;
649     case 16: S += "s"; break;
650     case 32: S += "i"; break;
651     case 64: S += "Wi"; break;
652     case 128: S += "LLLi"; break;
653     default: llvm_unreachable("Unhandled case!");
654     }
655   else if (isBFloat16()) {
656     assert(ElementBitwidth == 16 && "BFloat16 can only be 16 bits");
657     S += "y";
658   } else
659     switch (ElementBitwidth) {
660     case 16: S += "h"; break;
661     case 32: S += "f"; break;
662     case 64: S += "d"; break;
663     default: llvm_unreachable("Unhandled case!");
664     }
665 
666   // FIXME: NECESSARY???????????????????????????????????????????????????????????????????????
667   if (isChar() && !isPointer() && isSigned())
668     // Make chars explicitly signed.
669     S = "S" + S;
670   else if (isInteger() && !isSigned())
671     S = "U" + S;
672 
673   // Constant indices are "int", but have the "constant expression" modifier.
674   if (isImmediate()) {
675     assert(isInteger() && isSigned());
676     S = "I" + S;
677   }
678 
679   if (isScalar())
680     return S;
681 
682   std::string Ret;
683   for (unsigned I = 0; I < NumVectors; ++I)
684     Ret += "V" + utostr(getNumElements()) + S;
685 
686   return Ret;
687 }
688 
689 unsigned Type::getNeonEnum() const {
690   unsigned Addend;
691   switch (ElementBitwidth) {
692   case 8: Addend = 0; break;
693   case 16: Addend = 1; break;
694   case 32: Addend = 2; break;
695   case 64: Addend = 3; break;
696   case 128: Addend = 4; break;
697   default: llvm_unreachable("Unhandled element bitwidth!");
698   }
699 
700   unsigned Base = (unsigned)NeonTypeFlags::Int8 + Addend;
701   if (isPoly()) {
702     // Adjustment needed because Poly32 doesn't exist.
703     if (Addend >= 2)
704       --Addend;
705     Base = (unsigned)NeonTypeFlags::Poly8 + Addend;
706   }
707   if (isFloating()) {
708     assert(Addend != 0 && "Float8 doesn't exist!");
709     Base = (unsigned)NeonTypeFlags::Float16 + (Addend - 1);
710   }
711 
712   if (isBFloat16()) {
713     assert(Addend == 1 && "BFloat16 is only 16 bit");
714     Base = (unsigned)NeonTypeFlags::BFloat16;
715   }
716 
717   if (Bitwidth == 128)
718     Base |= (unsigned)NeonTypeFlags::QuadFlag;
719   if (isInteger() && !isSigned())
720     Base |= (unsigned)NeonTypeFlags::UnsignedFlag;
721 
722   return Base;
723 }
724 
725 Type Type::fromTypedefName(StringRef Name) {
726   Type T;
727   T.Kind = SInt;
728 
729   if (Name.front() == 'u') {
730     T.Kind = UInt;
731     Name = Name.drop_front();
732   }
733 
734   if (Name.startswith("float")) {
735     T.Kind = Float;
736     Name = Name.drop_front(5);
737   } else if (Name.startswith("poly")) {
738     T.Kind = Poly;
739     Name = Name.drop_front(4);
740   } else if (Name.startswith("bfloat")) {
741     T.Kind = BFloat16;
742     Name = Name.drop_front(6);
743   } else {
744     assert(Name.startswith("int"));
745     Name = Name.drop_front(3);
746   }
747 
748   unsigned I = 0;
749   for (I = 0; I < Name.size(); ++I) {
750     if (!isdigit(Name[I]))
751       break;
752   }
753   Name.substr(0, I).getAsInteger(10, T.ElementBitwidth);
754   Name = Name.drop_front(I);
755 
756   T.Bitwidth = T.ElementBitwidth;
757   T.NumVectors = 1;
758 
759   if (Name.front() == 'x') {
760     Name = Name.drop_front();
761     unsigned I = 0;
762     for (I = 0; I < Name.size(); ++I) {
763       if (!isdigit(Name[I]))
764         break;
765     }
766     unsigned NumLanes;
767     Name.substr(0, I).getAsInteger(10, NumLanes);
768     Name = Name.drop_front(I);
769     T.Bitwidth = T.ElementBitwidth * NumLanes;
770   } else {
771     // Was scalar.
772     T.NumVectors = 0;
773   }
774   if (Name.front() == 'x') {
775     Name = Name.drop_front();
776     unsigned I = 0;
777     for (I = 0; I < Name.size(); ++I) {
778       if (!isdigit(Name[I]))
779         break;
780     }
781     Name.substr(0, I).getAsInteger(10, T.NumVectors);
782     Name = Name.drop_front(I);
783   }
784 
785   assert(Name.startswith("_t") && "Malformed typedef!");
786   return T;
787 }
788 
789 void Type::applyTypespec(bool &Quad) {
790   std::string S = TS;
791   ScalarForMangling = false;
792   Kind = SInt;
793   ElementBitwidth = ~0U;
794   NumVectors = 1;
795 
796   for (char I : S) {
797     switch (I) {
798     case 'S':
799       ScalarForMangling = true;
800       break;
801     case 'H':
802       NoManglingQ = true;
803       Quad = true;
804       break;
805     case 'Q':
806       Quad = true;
807       break;
808     case 'P':
809       Kind = Poly;
810       break;
811     case 'U':
812       Kind = UInt;
813       break;
814     case 'c':
815       ElementBitwidth = 8;
816       break;
817     case 'h':
818       Kind = Float;
819       LLVM_FALLTHROUGH;
820     case 's':
821       ElementBitwidth = 16;
822       break;
823     case 'f':
824       Kind = Float;
825       LLVM_FALLTHROUGH;
826     case 'i':
827       ElementBitwidth = 32;
828       break;
829     case 'd':
830       Kind = Float;
831       LLVM_FALLTHROUGH;
832     case 'l':
833       ElementBitwidth = 64;
834       break;
835     case 'k':
836       ElementBitwidth = 128;
837       // Poly doesn't have a 128x1 type.
838       if (isPoly())
839         NumVectors = 0;
840       break;
841     case 'b':
842       Kind = BFloat16;
843       ElementBitwidth = 16;
844       break;
845     default:
846       llvm_unreachable("Unhandled type code!");
847     }
848   }
849   assert(ElementBitwidth != ~0U && "Bad element bitwidth!");
850 
851   Bitwidth = Quad ? 128 : 64;
852 }
853 
854 void Type::applyModifiers(StringRef Mods) {
855   bool AppliedQuad = false;
856   applyTypespec(AppliedQuad);
857 
858   for (char Mod : Mods) {
859     switch (Mod) {
860     case '.':
861       break;
862     case 'v':
863       Kind = Void;
864       break;
865     case 'S':
866       Kind = SInt;
867       break;
868     case 'U':
869       Kind = UInt;
870       break;
871     case 'B':
872       Kind = BFloat16;
873       ElementBitwidth = 16;
874       break;
875     case 'F':
876       Kind = Float;
877       break;
878     case 'P':
879       Kind = Poly;
880       break;
881     case '>':
882       assert(ElementBitwidth < 128);
883       ElementBitwidth *= 2;
884       break;
885     case '<':
886       assert(ElementBitwidth > 8);
887       ElementBitwidth /= 2;
888       break;
889     case '1':
890       NumVectors = 0;
891       break;
892     case '2':
893       NumVectors = 2;
894       break;
895     case '3':
896       NumVectors = 3;
897       break;
898     case '4':
899       NumVectors = 4;
900       break;
901     case '*':
902       Pointer = true;
903       break;
904     case 'c':
905       Constant = true;
906       break;
907     case 'Q':
908       Bitwidth = 128;
909       break;
910     case 'q':
911       Bitwidth = 64;
912       break;
913     case 'I':
914       Kind = SInt;
915       ElementBitwidth = Bitwidth = 32;
916       NumVectors = 0;
917       Immediate = true;
918       break;
919     case 'p':
920       if (isPoly())
921         Kind = UInt;
922       break;
923     case '!':
924       // Key type, handled elsewhere.
925       break;
926     default:
927       llvm_unreachable("Unhandled character!");
928     }
929   }
930 }
931 
932 //===----------------------------------------------------------------------===//
933 // Intrinsic implementation
934 //===----------------------------------------------------------------------===//
935 
936 StringRef Intrinsic::getNextModifiers(StringRef Proto, unsigned &Pos) const {
937   if (Proto.size() == Pos)
938     return StringRef();
939   else if (Proto[Pos] != '(')
940     return Proto.substr(Pos++, 1);
941 
942   size_t Start = Pos + 1;
943   size_t End = Proto.find(')', Start);
944   assert_with_loc(End != StringRef::npos, "unmatched modifier group paren");
945   Pos = End + 1;
946   return Proto.slice(Start, End);
947 }
948 
949 std::string Intrinsic::getInstTypeCode(Type T, ClassKind CK) const {
950   char typeCode = '\0';
951   bool printNumber = true;
952 
953   if (CK == ClassB)
954     return "";
955 
956   if (T.isBFloat16())
957     return "bf16";
958 
959   if (T.isPoly())
960     typeCode = 'p';
961   else if (T.isInteger())
962     typeCode = T.isSigned() ? 's' : 'u';
963   else
964     typeCode = 'f';
965 
966   if (CK == ClassI) {
967     switch (typeCode) {
968     default:
969       break;
970     case 's':
971     case 'u':
972     case 'p':
973       typeCode = 'i';
974       break;
975     }
976   }
977   if (CK == ClassB) {
978     typeCode = '\0';
979   }
980 
981   std::string S;
982   if (typeCode != '\0')
983     S.push_back(typeCode);
984   if (printNumber)
985     S += utostr(T.getElementSizeInBits());
986 
987   return S;
988 }
989 
990 std::string Intrinsic::getBuiltinTypeStr() {
991   ClassKind LocalCK = getClassKind(true);
992   std::string S;
993 
994   Type RetT = getReturnType();
995   if ((LocalCK == ClassI || LocalCK == ClassW) && RetT.isScalar() &&
996       !RetT.isFloating() && !RetT.isBFloat16())
997     RetT.makeInteger(RetT.getElementSizeInBits(), false);
998 
999   // Since the return value must be one type, return a vector type of the
1000   // appropriate width which we will bitcast.  An exception is made for
1001   // returning structs of 2, 3, or 4 vectors which are returned in a sret-like
1002   // fashion, storing them to a pointer arg.
1003   if (RetT.getNumVectors() > 1) {
1004     S += "vv*"; // void result with void* first argument
1005   } else {
1006     if (RetT.isPoly())
1007       RetT.makeInteger(RetT.getElementSizeInBits(), false);
1008     if (!RetT.isScalar() && RetT.isInteger() && !RetT.isSigned())
1009       RetT.makeSigned();
1010 
1011     if (LocalCK == ClassB && RetT.isValue() && !RetT.isScalar())
1012       // Cast to vector of 8-bit elements.
1013       RetT.makeInteger(8, true);
1014 
1015     S += RetT.builtin_str();
1016   }
1017 
1018   for (unsigned I = 0; I < getNumParams(); ++I) {
1019     Type T = getParamType(I);
1020     if (T.isPoly())
1021       T.makeInteger(T.getElementSizeInBits(), false);
1022 
1023     if (LocalCK == ClassB && !T.isScalar())
1024       T.makeInteger(8, true);
1025     // Halves always get converted to 8-bit elements.
1026     if (T.isHalf() && T.isVector() && !T.isScalarForMangling())
1027       T.makeInteger(8, true);
1028 
1029     if (LocalCK == ClassI && T.isInteger())
1030       T.makeSigned();
1031 
1032     if (hasImmediate() && getImmediateIdx() == I)
1033       T.makeImmediate(32);
1034 
1035     S += T.builtin_str();
1036   }
1037 
1038   // Extra constant integer to hold type class enum for this function, e.g. s8
1039   if (LocalCK == ClassB)
1040     S += "i";
1041 
1042   return S;
1043 }
1044 
1045 std::string Intrinsic::getMangledName(bool ForceClassS) const {
1046   // Check if the prototype has a scalar operand with the type of the vector
1047   // elements.  If not, bitcasting the args will take care of arg checking.
1048   // The actual signedness etc. will be taken care of with special enums.
1049   ClassKind LocalCK = CK;
1050   if (!protoHasScalar())
1051     LocalCK = ClassB;
1052 
1053   return mangleName(Name, ForceClassS ? ClassS : LocalCK);
1054 }
1055 
1056 std::string Intrinsic::mangleName(std::string Name, ClassKind LocalCK) const {
1057   std::string typeCode = getInstTypeCode(BaseType, LocalCK);
1058   std::string S = Name;
1059 
1060   if (Name == "vcvt_f16_f32" || Name == "vcvt_f32_f16" ||
1061       Name == "vcvt_f32_f64" || Name == "vcvt_f64_f32" ||
1062       Name == "vcvt_f32_bf16")
1063     return Name;
1064 
1065   if (!typeCode.empty()) {
1066     // If the name ends with _xN (N = 2,3,4), insert the typeCode before _xN.
1067     if (Name.size() >= 3 && isdigit(Name.back()) &&
1068         Name[Name.length() - 2] == 'x' && Name[Name.length() - 3] == '_')
1069       S.insert(S.length() - 3, "_" + typeCode);
1070     else
1071       S += "_" + typeCode;
1072   }
1073 
1074   if (BaseType != InBaseType) {
1075     // A reinterpret - out the input base type at the end.
1076     S += "_" + getInstTypeCode(InBaseType, LocalCK);
1077   }
1078 
1079   if (LocalCK == ClassB)
1080     S += "_v";
1081 
1082   // Insert a 'q' before the first '_' character so that it ends up before
1083   // _lane or _n on vector-scalar operations.
1084   if (BaseType.getSizeInBits() == 128 && !BaseType.noManglingQ()) {
1085     size_t Pos = S.find('_');
1086     S.insert(Pos, "q");
1087   }
1088 
1089   char Suffix = '\0';
1090   if (BaseType.isScalarForMangling()) {
1091     switch (BaseType.getElementSizeInBits()) {
1092     case 8: Suffix = 'b'; break;
1093     case 16: Suffix = 'h'; break;
1094     case 32: Suffix = 's'; break;
1095     case 64: Suffix = 'd'; break;
1096     default: llvm_unreachable("Bad suffix!");
1097     }
1098   }
1099   if (Suffix != '\0') {
1100     size_t Pos = S.find('_');
1101     S.insert(Pos, &Suffix, 1);
1102   }
1103 
1104   return S;
1105 }
1106 
1107 std::string Intrinsic::replaceParamsIn(std::string S) {
1108   while (S.find('$') != std::string::npos) {
1109     size_t Pos = S.find('$');
1110     size_t End = Pos + 1;
1111     while (isalpha(S[End]))
1112       ++End;
1113 
1114     std::string VarName = S.substr(Pos + 1, End - Pos - 1);
1115     assert_with_loc(Variables.find(VarName) != Variables.end(),
1116                     "Variable not defined!");
1117     S.replace(Pos, End - Pos, Variables.find(VarName)->second.getName());
1118   }
1119 
1120   return S;
1121 }
1122 
1123 void Intrinsic::initVariables() {
1124   Variables.clear();
1125 
1126   // Modify the TypeSpec per-argument to get a concrete Type, and create
1127   // known variables for each.
1128   for (unsigned I = 1; I < Types.size(); ++I) {
1129     char NameC = '0' + (I - 1);
1130     std::string Name = "p";
1131     Name.push_back(NameC);
1132 
1133     Variables[Name] = Variable(Types[I], Name + VariablePostfix);
1134   }
1135   RetVar = Variable(Types[0], "ret" + VariablePostfix);
1136 }
1137 
1138 void Intrinsic::emitPrototype(StringRef NamePrefix) {
1139   if (UseMacro)
1140     OS << "#define ";
1141   else
1142     OS << "__ai " << Types[0].str() << " ";
1143 
1144   OS << NamePrefix.str() << mangleName(Name, ClassS) << "(";
1145 
1146   for (unsigned I = 0; I < getNumParams(); ++I) {
1147     if (I != 0)
1148       OS << ", ";
1149 
1150     char NameC = '0' + I;
1151     std::string Name = "p";
1152     Name.push_back(NameC);
1153     assert(Variables.find(Name) != Variables.end());
1154     Variable &V = Variables[Name];
1155 
1156     if (!UseMacro)
1157       OS << V.getType().str() << " ";
1158     OS << V.getName();
1159   }
1160 
1161   OS << ")";
1162 }
1163 
1164 void Intrinsic::emitOpeningBrace() {
1165   if (UseMacro)
1166     OS << " __extension__ ({";
1167   else
1168     OS << " {";
1169   emitNewLine();
1170 }
1171 
1172 void Intrinsic::emitClosingBrace() {
1173   if (UseMacro)
1174     OS << "})";
1175   else
1176     OS << "}";
1177 }
1178 
1179 void Intrinsic::emitNewLine() {
1180   if (UseMacro)
1181     OS << " \\\n";
1182   else
1183     OS << "\n";
1184 }
1185 
1186 void Intrinsic::emitReverseVariable(Variable &Dest, Variable &Src) {
1187   if (Dest.getType().getNumVectors() > 1) {
1188     emitNewLine();
1189 
1190     for (unsigned K = 0; K < Dest.getType().getNumVectors(); ++K) {
1191       OS << "  " << Dest.getName() << ".val[" << K << "] = "
1192          << "__builtin_shufflevector("
1193          << Src.getName() << ".val[" << K << "], "
1194          << Src.getName() << ".val[" << K << "]";
1195       for (int J = Dest.getType().getNumElements() - 1; J >= 0; --J)
1196         OS << ", " << J;
1197       OS << ");";
1198       emitNewLine();
1199     }
1200   } else {
1201     OS << "  " << Dest.getName()
1202        << " = __builtin_shufflevector(" << Src.getName() << ", " << Src.getName();
1203     for (int J = Dest.getType().getNumElements() - 1; J >= 0; --J)
1204       OS << ", " << J;
1205     OS << ");";
1206     emitNewLine();
1207   }
1208 }
1209 
1210 void Intrinsic::emitArgumentReversal() {
1211   if (isBigEndianSafe())
1212     return;
1213 
1214   // Reverse all vector arguments.
1215   for (unsigned I = 0; I < getNumParams(); ++I) {
1216     std::string Name = "p" + utostr(I);
1217     std::string NewName = "rev" + utostr(I);
1218 
1219     Variable &V = Variables[Name];
1220     Variable NewV(V.getType(), NewName + VariablePostfix);
1221 
1222     if (!NewV.getType().isVector() || NewV.getType().getNumElements() == 1)
1223       continue;
1224 
1225     OS << "  " << NewV.getType().str() << " " << NewV.getName() << ";";
1226     emitReverseVariable(NewV, V);
1227     V = NewV;
1228   }
1229 }
1230 
1231 void Intrinsic::emitReturnReversal() {
1232   if (isBigEndianSafe())
1233     return;
1234   if (!getReturnType().isVector() || getReturnType().isVoid() ||
1235       getReturnType().getNumElements() == 1)
1236     return;
1237   emitReverseVariable(RetVar, RetVar);
1238 }
1239 
1240 void Intrinsic::emitShadowedArgs() {
1241   // Macro arguments are not type-checked like inline function arguments,
1242   // so assign them to local temporaries to get the right type checking.
1243   if (!UseMacro)
1244     return;
1245 
1246   for (unsigned I = 0; I < getNumParams(); ++I) {
1247     // Do not create a temporary for an immediate argument.
1248     // That would defeat the whole point of using a macro!
1249     if (getParamType(I).isImmediate())
1250       continue;
1251     // Do not create a temporary for pointer arguments. The input
1252     // pointer may have an alignment hint.
1253     if (getParamType(I).isPointer())
1254       continue;
1255 
1256     std::string Name = "p" + utostr(I);
1257 
1258     assert(Variables.find(Name) != Variables.end());
1259     Variable &V = Variables[Name];
1260 
1261     std::string NewName = "s" + utostr(I);
1262     Variable V2(V.getType(), NewName + VariablePostfix);
1263 
1264     OS << "  " << V2.getType().str() << " " << V2.getName() << " = "
1265        << V.getName() << ";";
1266     emitNewLine();
1267 
1268     V = V2;
1269   }
1270 }
1271 
1272 bool Intrinsic::protoHasScalar() const {
1273   return llvm::any_of(
1274       Types, [](const Type &T) { return T.isScalar() && !T.isImmediate(); });
1275 }
1276 
1277 void Intrinsic::emitBodyAsBuiltinCall() {
1278   std::string S;
1279 
1280   // If this builtin returns a struct 2, 3, or 4 vectors, pass it as an implicit
1281   // sret-like argument.
1282   bool SRet = getReturnType().getNumVectors() >= 2;
1283 
1284   StringRef N = Name;
1285   ClassKind LocalCK = CK;
1286   if (!protoHasScalar())
1287     LocalCK = ClassB;
1288 
1289   if (!getReturnType().isVoid() && !SRet)
1290     S += "(" + RetVar.getType().str() + ") ";
1291 
1292   S += "__builtin_neon_" + mangleName(std::string(N), LocalCK) + "(";
1293 
1294   if (SRet)
1295     S += "&" + RetVar.getName() + ", ";
1296 
1297   for (unsigned I = 0; I < getNumParams(); ++I) {
1298     Variable &V = Variables["p" + utostr(I)];
1299     Type T = V.getType();
1300 
1301     // Handle multiple-vector values specially, emitting each subvector as an
1302     // argument to the builtin.
1303     if (T.getNumVectors() > 1) {
1304       // Check if an explicit cast is needed.
1305       std::string Cast;
1306       if (LocalCK == ClassB) {
1307         Type T2 = T;
1308         T2.makeOneVector();
1309         T2.makeInteger(8, /*Sign=*/true);
1310         Cast = "(" + T2.str() + ")";
1311       }
1312 
1313       for (unsigned J = 0; J < T.getNumVectors(); ++J)
1314         S += Cast + V.getName() + ".val[" + utostr(J) + "], ";
1315       continue;
1316     }
1317 
1318     std::string Arg = V.getName();
1319     Type CastToType = T;
1320 
1321     // Check if an explicit cast is needed.
1322     if (CastToType.isVector() &&
1323         (LocalCK == ClassB || (T.isHalf() && !T.isScalarForMangling()))) {
1324       CastToType.makeInteger(8, true);
1325       Arg = "(" + CastToType.str() + ")" + Arg;
1326     } else if (CastToType.isVector() && LocalCK == ClassI) {
1327       if (CastToType.isInteger())
1328         CastToType.makeSigned();
1329       Arg = "(" + CastToType.str() + ")" + Arg;
1330     }
1331 
1332     S += Arg + ", ";
1333   }
1334 
1335   // Extra constant integer to hold type class enum for this function, e.g. s8
1336   if (getClassKind(true) == ClassB) {
1337     S += utostr(getPolymorphicKeyType().getNeonEnum());
1338   } else {
1339     // Remove extraneous ", ".
1340     S.pop_back();
1341     S.pop_back();
1342   }
1343   S += ");";
1344 
1345   std::string RetExpr;
1346   if (!SRet && !RetVar.getType().isVoid())
1347     RetExpr = RetVar.getName() + " = ";
1348 
1349   OS << "  " << RetExpr << S;
1350   emitNewLine();
1351 }
1352 
1353 void Intrinsic::emitBody(StringRef CallPrefix) {
1354   std::vector<std::string> Lines;
1355 
1356   assert(RetVar.getType() == Types[0]);
1357   // Create a return variable, if we're not void.
1358   if (!RetVar.getType().isVoid()) {
1359     OS << "  " << RetVar.getType().str() << " " << RetVar.getName() << ";";
1360     emitNewLine();
1361   }
1362 
1363   if (!Body || Body->getValues().empty()) {
1364     // Nothing specific to output - must output a builtin.
1365     emitBodyAsBuiltinCall();
1366     return;
1367   }
1368 
1369   // We have a list of "things to output". The last should be returned.
1370   for (auto *I : Body->getValues()) {
1371     if (StringInit *SI = dyn_cast<StringInit>(I)) {
1372       Lines.push_back(replaceParamsIn(SI->getAsString()));
1373     } else if (DagInit *DI = dyn_cast<DagInit>(I)) {
1374       DagEmitter DE(*this, CallPrefix);
1375       Lines.push_back(DE.emitDag(DI).second + ";");
1376     }
1377   }
1378 
1379   assert(!Lines.empty() && "Empty def?");
1380   if (!RetVar.getType().isVoid())
1381     Lines.back().insert(0, RetVar.getName() + " = ");
1382 
1383   for (auto &L : Lines) {
1384     OS << "  " << L;
1385     emitNewLine();
1386   }
1387 }
1388 
1389 void Intrinsic::emitReturn() {
1390   if (RetVar.getType().isVoid())
1391     return;
1392   if (UseMacro)
1393     OS << "  " << RetVar.getName() << ";";
1394   else
1395     OS << "  return " << RetVar.getName() << ";";
1396   emitNewLine();
1397 }
1398 
1399 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDag(DagInit *DI) {
1400   // At this point we should only be seeing a def.
1401   DefInit *DefI = cast<DefInit>(DI->getOperator());
1402   std::string Op = DefI->getAsString();
1403 
1404   if (Op == "cast" || Op == "bitcast")
1405     return emitDagCast(DI, Op == "bitcast");
1406   if (Op == "shuffle")
1407     return emitDagShuffle(DI);
1408   if (Op == "dup")
1409     return emitDagDup(DI);
1410   if (Op == "dup_typed")
1411     return emitDagDupTyped(DI);
1412   if (Op == "splat")
1413     return emitDagSplat(DI);
1414   if (Op == "save_temp")
1415     return emitDagSaveTemp(DI);
1416   if (Op == "op")
1417     return emitDagOp(DI);
1418   if (Op == "call" || Op == "call_mangled")
1419     return emitDagCall(DI, Op == "call_mangled");
1420   if (Op == "name_replace")
1421     return emitDagNameReplace(DI);
1422   if (Op == "literal")
1423     return emitDagLiteral(DI);
1424   assert_with_loc(false, "Unknown operation!");
1425   return std::make_pair(Type::getVoid(), "");
1426 }
1427 
1428 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagOp(DagInit *DI) {
1429   std::string Op = cast<StringInit>(DI->getArg(0))->getAsUnquotedString();
1430   if (DI->getNumArgs() == 2) {
1431     // Unary op.
1432     std::pair<Type, std::string> R =
1433         emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1)));
1434     return std::make_pair(R.first, Op + R.second);
1435   } else {
1436     assert(DI->getNumArgs() == 3 && "Can only handle unary and binary ops!");
1437     std::pair<Type, std::string> R1 =
1438         emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1)));
1439     std::pair<Type, std::string> R2 =
1440         emitDagArg(DI->getArg(2), std::string(DI->getArgNameStr(2)));
1441     assert_with_loc(R1.first == R2.first, "Argument type mismatch!");
1442     return std::make_pair(R1.first, R1.second + " " + Op + " " + R2.second);
1443   }
1444 }
1445 
1446 std::pair<Type, std::string>
1447 Intrinsic::DagEmitter::emitDagCall(DagInit *DI, bool MatchMangledName) {
1448   std::vector<Type> Types;
1449   std::vector<std::string> Values;
1450   for (unsigned I = 0; I < DI->getNumArgs() - 1; ++I) {
1451     std::pair<Type, std::string> R =
1452         emitDagArg(DI->getArg(I + 1), std::string(DI->getArgNameStr(I + 1)));
1453     Types.push_back(R.first);
1454     Values.push_back(R.second);
1455   }
1456 
1457   // Look up the called intrinsic.
1458   std::string N;
1459   if (StringInit *SI = dyn_cast<StringInit>(DI->getArg(0)))
1460     N = SI->getAsUnquotedString();
1461   else
1462     N = emitDagArg(DI->getArg(0), "").second;
1463   Optional<std::string> MangledName;
1464   if (MatchMangledName) {
1465     if (Intr.getRecord()->getValueAsBit("isLaneQ"))
1466       N += "q";
1467     MangledName = Intr.mangleName(N, ClassS);
1468   }
1469   Intrinsic &Callee = Intr.Emitter.getIntrinsic(N, Types, MangledName);
1470 
1471   // Make sure the callee is known as an early def.
1472   Callee.setNeededEarly();
1473   Intr.Dependencies.insert(&Callee);
1474 
1475   // Now create the call itself.
1476   std::string S;
1477   if (!Callee.isBigEndianSafe())
1478     S += CallPrefix.str();
1479   S += Callee.getMangledName(true) + "(";
1480   for (unsigned I = 0; I < DI->getNumArgs() - 1; ++I) {
1481     if (I != 0)
1482       S += ", ";
1483     S += Values[I];
1484   }
1485   S += ")";
1486 
1487   return std::make_pair(Callee.getReturnType(), S);
1488 }
1489 
1490 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagCast(DagInit *DI,
1491                                                                 bool IsBitCast){
1492   // (cast MOD* VAL) -> cast VAL to type given by MOD.
1493   std::pair<Type, std::string> R =
1494       emitDagArg(DI->getArg(DI->getNumArgs() - 1),
1495                  std::string(DI->getArgNameStr(DI->getNumArgs() - 1)));
1496   Type castToType = R.first;
1497   for (unsigned ArgIdx = 0; ArgIdx < DI->getNumArgs() - 1; ++ArgIdx) {
1498 
1499     // MOD can take several forms:
1500     //   1. $X - take the type of parameter / variable X.
1501     //   2. The value "R" - take the type of the return type.
1502     //   3. a type string
1503     //   4. The value "U" or "S" to switch the signedness.
1504     //   5. The value "H" or "D" to half or double the bitwidth.
1505     //   6. The value "8" to convert to 8-bit (signed) integer lanes.
1506     if (!DI->getArgNameStr(ArgIdx).empty()) {
1507       assert_with_loc(Intr.Variables.find(std::string(
1508                           DI->getArgNameStr(ArgIdx))) != Intr.Variables.end(),
1509                       "Variable not found");
1510       castToType =
1511           Intr.Variables[std::string(DI->getArgNameStr(ArgIdx))].getType();
1512     } else {
1513       StringInit *SI = dyn_cast<StringInit>(DI->getArg(ArgIdx));
1514       assert_with_loc(SI, "Expected string type or $Name for cast type");
1515 
1516       if (SI->getAsUnquotedString() == "R") {
1517         castToType = Intr.getReturnType();
1518       } else if (SI->getAsUnquotedString() == "U") {
1519         castToType.makeUnsigned();
1520       } else if (SI->getAsUnquotedString() == "S") {
1521         castToType.makeSigned();
1522       } else if (SI->getAsUnquotedString() == "H") {
1523         castToType.halveLanes();
1524       } else if (SI->getAsUnquotedString() == "D") {
1525         castToType.doubleLanes();
1526       } else if (SI->getAsUnquotedString() == "8") {
1527         castToType.makeInteger(8, true);
1528       } else if (SI->getAsUnquotedString() == "32") {
1529         castToType.make32BitElement();
1530       } else {
1531         castToType = Type::fromTypedefName(SI->getAsUnquotedString());
1532         assert_with_loc(!castToType.isVoid(), "Unknown typedef");
1533       }
1534     }
1535   }
1536 
1537   std::string S;
1538   if (IsBitCast) {
1539     // Emit a reinterpret cast. The second operand must be an lvalue, so create
1540     // a temporary.
1541     std::string N = "reint";
1542     unsigned I = 0;
1543     while (Intr.Variables.find(N) != Intr.Variables.end())
1544       N = "reint" + utostr(++I);
1545     Intr.Variables[N] = Variable(R.first, N + Intr.VariablePostfix);
1546 
1547     Intr.OS << R.first.str() << " " << Intr.Variables[N].getName() << " = "
1548             << R.second << ";";
1549     Intr.emitNewLine();
1550 
1551     S = "*(" + castToType.str() + " *) &" + Intr.Variables[N].getName() + "";
1552   } else {
1553     // Emit a normal (static) cast.
1554     S = "(" + castToType.str() + ")(" + R.second + ")";
1555   }
1556 
1557   return std::make_pair(castToType, S);
1558 }
1559 
1560 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagShuffle(DagInit *DI){
1561   // See the documentation in arm_neon.td for a description of these operators.
1562   class LowHalf : public SetTheory::Operator {
1563   public:
1564     void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
1565                ArrayRef<SMLoc> Loc) override {
1566       SetTheory::RecSet Elts2;
1567       ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts2, Loc);
1568       Elts.insert(Elts2.begin(), Elts2.begin() + (Elts2.size() / 2));
1569     }
1570   };
1571 
1572   class HighHalf : public SetTheory::Operator {
1573   public:
1574     void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
1575                ArrayRef<SMLoc> Loc) override {
1576       SetTheory::RecSet Elts2;
1577       ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts2, Loc);
1578       Elts.insert(Elts2.begin() + (Elts2.size() / 2), Elts2.end());
1579     }
1580   };
1581 
1582   class Rev : public SetTheory::Operator {
1583     unsigned ElementSize;
1584 
1585   public:
1586     Rev(unsigned ElementSize) : ElementSize(ElementSize) {}
1587 
1588     void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
1589                ArrayRef<SMLoc> Loc) override {
1590       SetTheory::RecSet Elts2;
1591       ST.evaluate(Expr->arg_begin() + 1, Expr->arg_end(), Elts2, Loc);
1592 
1593       int64_t VectorSize = cast<IntInit>(Expr->getArg(0))->getValue();
1594       VectorSize /= ElementSize;
1595 
1596       std::vector<Record *> Revved;
1597       for (unsigned VI = 0; VI < Elts2.size(); VI += VectorSize) {
1598         for (int LI = VectorSize - 1; LI >= 0; --LI) {
1599           Revved.push_back(Elts2[VI + LI]);
1600         }
1601       }
1602 
1603       Elts.insert(Revved.begin(), Revved.end());
1604     }
1605   };
1606 
1607   class MaskExpander : public SetTheory::Expander {
1608     unsigned N;
1609 
1610   public:
1611     MaskExpander(unsigned N) : N(N) {}
1612 
1613     void expand(SetTheory &ST, Record *R, SetTheory::RecSet &Elts) override {
1614       unsigned Addend = 0;
1615       if (R->getName() == "mask0")
1616         Addend = 0;
1617       else if (R->getName() == "mask1")
1618         Addend = N;
1619       else
1620         return;
1621       for (unsigned I = 0; I < N; ++I)
1622         Elts.insert(R->getRecords().getDef("sv" + utostr(I + Addend)));
1623     }
1624   };
1625 
1626   // (shuffle arg1, arg2, sequence)
1627   std::pair<Type, std::string> Arg1 =
1628       emitDagArg(DI->getArg(0), std::string(DI->getArgNameStr(0)));
1629   std::pair<Type, std::string> Arg2 =
1630       emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1)));
1631   assert_with_loc(Arg1.first == Arg2.first,
1632                   "Different types in arguments to shuffle!");
1633 
1634   SetTheory ST;
1635   SetTheory::RecSet Elts;
1636   ST.addOperator("lowhalf", std::make_unique<LowHalf>());
1637   ST.addOperator("highhalf", std::make_unique<HighHalf>());
1638   ST.addOperator("rev",
1639                  std::make_unique<Rev>(Arg1.first.getElementSizeInBits()));
1640   ST.addExpander("MaskExpand",
1641                  std::make_unique<MaskExpander>(Arg1.first.getNumElements()));
1642   ST.evaluate(DI->getArg(2), Elts, None);
1643 
1644   std::string S = "__builtin_shufflevector(" + Arg1.second + ", " + Arg2.second;
1645   for (auto &E : Elts) {
1646     StringRef Name = E->getName();
1647     assert_with_loc(Name.startswith("sv"),
1648                     "Incorrect element kind in shuffle mask!");
1649     S += ", " + Name.drop_front(2).str();
1650   }
1651   S += ")";
1652 
1653   // Recalculate the return type - the shuffle may have halved or doubled it.
1654   Type T(Arg1.first);
1655   if (Elts.size() > T.getNumElements()) {
1656     assert_with_loc(
1657         Elts.size() == T.getNumElements() * 2,
1658         "Can only double or half the number of elements in a shuffle!");
1659     T.doubleLanes();
1660   } else if (Elts.size() < T.getNumElements()) {
1661     assert_with_loc(
1662         Elts.size() == T.getNumElements() / 2,
1663         "Can only double or half the number of elements in a shuffle!");
1664     T.halveLanes();
1665   }
1666 
1667   return std::make_pair(T, S);
1668 }
1669 
1670 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagDup(DagInit *DI) {
1671   assert_with_loc(DI->getNumArgs() == 1, "dup() expects one argument");
1672   std::pair<Type, std::string> A =
1673       emitDagArg(DI->getArg(0), std::string(DI->getArgNameStr(0)));
1674   assert_with_loc(A.first.isScalar(), "dup() expects a scalar argument");
1675 
1676   Type T = Intr.getBaseType();
1677   assert_with_loc(T.isVector(), "dup() used but default type is scalar!");
1678   std::string S = "(" + T.str() + ") {";
1679   for (unsigned I = 0; I < T.getNumElements(); ++I) {
1680     if (I != 0)
1681       S += ", ";
1682     S += A.second;
1683   }
1684   S += "}";
1685 
1686   return std::make_pair(T, S);
1687 }
1688 
1689 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagDupTyped(DagInit *DI) {
1690   assert_with_loc(DI->getNumArgs() == 2, "dup_typed() expects two arguments");
1691   std::pair<Type, std::string> B =
1692       emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1)));
1693   assert_with_loc(B.first.isScalar(),
1694                   "dup_typed() requires a scalar as the second argument");
1695   Type T;
1696   // If the type argument is a constant string, construct the type directly.
1697   if (StringInit *SI = dyn_cast<StringInit>(DI->getArg(0))) {
1698     T = Type::fromTypedefName(SI->getAsUnquotedString());
1699     assert_with_loc(!T.isVoid(), "Unknown typedef");
1700   } else
1701     T = emitDagArg(DI->getArg(0), std::string(DI->getArgNameStr(0))).first;
1702 
1703   assert_with_loc(T.isVector(), "dup_typed() used but target type is scalar!");
1704   std::string S = "(" + T.str() + ") {";
1705   for (unsigned I = 0; I < T.getNumElements(); ++I) {
1706     if (I != 0)
1707       S += ", ";
1708     S += B.second;
1709   }
1710   S += "}";
1711 
1712   return std::make_pair(T, S);
1713 }
1714 
1715 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagSplat(DagInit *DI) {
1716   assert_with_loc(DI->getNumArgs() == 2, "splat() expects two arguments");
1717   std::pair<Type, std::string> A =
1718       emitDagArg(DI->getArg(0), std::string(DI->getArgNameStr(0)));
1719   std::pair<Type, std::string> B =
1720       emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1)));
1721 
1722   assert_with_loc(B.first.isScalar(),
1723                   "splat() requires a scalar int as the second argument");
1724 
1725   std::string S = "__builtin_shufflevector(" + A.second + ", " + A.second;
1726   for (unsigned I = 0; I < Intr.getBaseType().getNumElements(); ++I) {
1727     S += ", " + B.second;
1728   }
1729   S += ")";
1730 
1731   return std::make_pair(Intr.getBaseType(), S);
1732 }
1733 
1734 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagSaveTemp(DagInit *DI) {
1735   assert_with_loc(DI->getNumArgs() == 2, "save_temp() expects two arguments");
1736   std::pair<Type, std::string> A =
1737       emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1)));
1738 
1739   assert_with_loc(!A.first.isVoid(),
1740                   "Argument to save_temp() must have non-void type!");
1741 
1742   std::string N = std::string(DI->getArgNameStr(0));
1743   assert_with_loc(!N.empty(),
1744                   "save_temp() expects a name as the first argument");
1745 
1746   assert_with_loc(Intr.Variables.find(N) == Intr.Variables.end(),
1747                   "Variable already defined!");
1748   Intr.Variables[N] = Variable(A.first, N + Intr.VariablePostfix);
1749 
1750   std::string S =
1751       A.first.str() + " " + Intr.Variables[N].getName() + " = " + A.second;
1752 
1753   return std::make_pair(Type::getVoid(), S);
1754 }
1755 
1756 std::pair<Type, std::string>
1757 Intrinsic::DagEmitter::emitDagNameReplace(DagInit *DI) {
1758   std::string S = Intr.Name;
1759 
1760   assert_with_loc(DI->getNumArgs() == 2, "name_replace requires 2 arguments!");
1761   std::string ToReplace = cast<StringInit>(DI->getArg(0))->getAsUnquotedString();
1762   std::string ReplaceWith = cast<StringInit>(DI->getArg(1))->getAsUnquotedString();
1763 
1764   size_t Idx = S.find(ToReplace);
1765 
1766   assert_with_loc(Idx != std::string::npos, "name should contain '" + ToReplace + "'!");
1767   S.replace(Idx, ToReplace.size(), ReplaceWith);
1768 
1769   return std::make_pair(Type::getVoid(), S);
1770 }
1771 
1772 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagLiteral(DagInit *DI){
1773   std::string Ty = cast<StringInit>(DI->getArg(0))->getAsUnquotedString();
1774   std::string Value = cast<StringInit>(DI->getArg(1))->getAsUnquotedString();
1775   return std::make_pair(Type::fromTypedefName(Ty), Value);
1776 }
1777 
1778 std::pair<Type, std::string>
1779 Intrinsic::DagEmitter::emitDagArg(Init *Arg, std::string ArgName) {
1780   if (!ArgName.empty()) {
1781     assert_with_loc(!Arg->isComplete(),
1782                     "Arguments must either be DAGs or names, not both!");
1783     assert_with_loc(Intr.Variables.find(ArgName) != Intr.Variables.end(),
1784                     "Variable not defined!");
1785     Variable &V = Intr.Variables[ArgName];
1786     return std::make_pair(V.getType(), V.getName());
1787   }
1788 
1789   assert(Arg && "Neither ArgName nor Arg?!");
1790   DagInit *DI = dyn_cast<DagInit>(Arg);
1791   assert_with_loc(DI, "Arguments must either be DAGs or names!");
1792 
1793   return emitDag(DI);
1794 }
1795 
1796 std::string Intrinsic::generate() {
1797   // Avoid duplicated code for big and little endian
1798   if (isBigEndianSafe()) {
1799     generateImpl(false, "", "");
1800     return OS.str();
1801   }
1802   // Little endian intrinsics are simple and don't require any argument
1803   // swapping.
1804   OS << "#ifdef __LITTLE_ENDIAN__\n";
1805 
1806   generateImpl(false, "", "");
1807 
1808   OS << "#else\n";
1809 
1810   // Big endian intrinsics are more complex. The user intended these
1811   // intrinsics to operate on a vector "as-if" loaded by (V)LDR,
1812   // but we load as-if (V)LD1. So we should swap all arguments and
1813   // swap the return value too.
1814   //
1815   // If we call sub-intrinsics, we should call a version that does
1816   // not re-swap the arguments!
1817   generateImpl(true, "", "__noswap_");
1818 
1819   // If we're needed early, create a non-swapping variant for
1820   // big-endian.
1821   if (NeededEarly) {
1822     generateImpl(false, "__noswap_", "__noswap_");
1823   }
1824   OS << "#endif\n\n";
1825 
1826   return OS.str();
1827 }
1828 
1829 void Intrinsic::generateImpl(bool ReverseArguments,
1830                              StringRef NamePrefix, StringRef CallPrefix) {
1831   CurrentRecord = R;
1832 
1833   // If we call a macro, our local variables may be corrupted due to
1834   // lack of proper lexical scoping. So, add a globally unique postfix
1835   // to every variable.
1836   //
1837   // indexBody() should have set up the Dependencies set by now.
1838   for (auto *I : Dependencies)
1839     if (I->UseMacro) {
1840       VariablePostfix = "_" + utostr(Emitter.getUniqueNumber());
1841       break;
1842     }
1843 
1844   initVariables();
1845 
1846   emitPrototype(NamePrefix);
1847 
1848   if (IsUnavailable) {
1849     OS << " __attribute__((unavailable));";
1850   } else {
1851     emitOpeningBrace();
1852     emitShadowedArgs();
1853     if (ReverseArguments)
1854       emitArgumentReversal();
1855     emitBody(CallPrefix);
1856     if (ReverseArguments)
1857       emitReturnReversal();
1858     emitReturn();
1859     emitClosingBrace();
1860   }
1861   OS << "\n";
1862 
1863   CurrentRecord = nullptr;
1864 }
1865 
1866 void Intrinsic::indexBody() {
1867   CurrentRecord = R;
1868 
1869   initVariables();
1870   emitBody("");
1871   OS.str("");
1872 
1873   CurrentRecord = nullptr;
1874 }
1875 
1876 //===----------------------------------------------------------------------===//
1877 // NeonEmitter implementation
1878 //===----------------------------------------------------------------------===//
1879 
1880 Intrinsic &NeonEmitter::getIntrinsic(StringRef Name, ArrayRef<Type> Types,
1881                                      Optional<std::string> MangledName) {
1882   // First, look up the name in the intrinsic map.
1883   assert_with_loc(IntrinsicMap.find(Name.str()) != IntrinsicMap.end(),
1884                   ("Intrinsic '" + Name + "' not found!").str());
1885   auto &V = IntrinsicMap.find(Name.str())->second;
1886   std::vector<Intrinsic *> GoodVec;
1887 
1888   // Create a string to print if we end up failing.
1889   std::string ErrMsg = "looking up intrinsic '" + Name.str() + "(";
1890   for (unsigned I = 0; I < Types.size(); ++I) {
1891     if (I != 0)
1892       ErrMsg += ", ";
1893     ErrMsg += Types[I].str();
1894   }
1895   ErrMsg += ")'\n";
1896   ErrMsg += "Available overloads:\n";
1897 
1898   // Now, look through each intrinsic implementation and see if the types are
1899   // compatible.
1900   for (auto &I : V) {
1901     ErrMsg += "  - " + I.getReturnType().str() + " " + I.getMangledName();
1902     ErrMsg += "(";
1903     for (unsigned A = 0; A < I.getNumParams(); ++A) {
1904       if (A != 0)
1905         ErrMsg += ", ";
1906       ErrMsg += I.getParamType(A).str();
1907     }
1908     ErrMsg += ")\n";
1909 
1910     if (MangledName && MangledName != I.getMangledName(true))
1911       continue;
1912 
1913     if (I.getNumParams() != Types.size())
1914       continue;
1915 
1916     unsigned ArgNum = 0;
1917     bool MatchingArgumentTypes = llvm::all_of(Types, [&](const auto &Type) {
1918       return Type == I.getParamType(ArgNum++);
1919     });
1920 
1921     if (MatchingArgumentTypes)
1922       GoodVec.push_back(&I);
1923   }
1924 
1925   assert_with_loc(!GoodVec.empty(),
1926                   "No compatible intrinsic found - " + ErrMsg);
1927   assert_with_loc(GoodVec.size() == 1, "Multiple overloads found - " + ErrMsg);
1928 
1929   return *GoodVec.front();
1930 }
1931 
1932 void NeonEmitter::createIntrinsic(Record *R,
1933                                   SmallVectorImpl<Intrinsic *> &Out) {
1934   std::string Name = std::string(R->getValueAsString("Name"));
1935   std::string Proto = std::string(R->getValueAsString("Prototype"));
1936   std::string Types = std::string(R->getValueAsString("Types"));
1937   Record *OperationRec = R->getValueAsDef("Operation");
1938   bool BigEndianSafe  = R->getValueAsBit("BigEndianSafe");
1939   std::string Guard = std::string(R->getValueAsString("ArchGuard"));
1940   bool IsUnavailable = OperationRec->getValueAsBit("Unavailable");
1941   std::string CartesianProductWith = std::string(R->getValueAsString("CartesianProductWith"));
1942 
1943   // Set the global current record. This allows assert_with_loc to produce
1944   // decent location information even when highly nested.
1945   CurrentRecord = R;
1946 
1947   ListInit *Body = OperationRec->getValueAsListInit("Ops");
1948 
1949   std::vector<TypeSpec> TypeSpecs = TypeSpec::fromTypeSpecs(Types);
1950 
1951   ClassKind CK = ClassNone;
1952   if (R->getSuperClasses().size() >= 2)
1953     CK = ClassMap[R->getSuperClasses()[1].first];
1954 
1955   std::vector<std::pair<TypeSpec, TypeSpec>> NewTypeSpecs;
1956   if (!CartesianProductWith.empty()) {
1957     std::vector<TypeSpec> ProductTypeSpecs = TypeSpec::fromTypeSpecs(CartesianProductWith);
1958     for (auto TS : TypeSpecs) {
1959       Type DefaultT(TS, ".");
1960       for (auto SrcTS : ProductTypeSpecs) {
1961         Type DefaultSrcT(SrcTS, ".");
1962         if (TS == SrcTS ||
1963             DefaultSrcT.getSizeInBits() != DefaultT.getSizeInBits())
1964           continue;
1965         NewTypeSpecs.push_back(std::make_pair(TS, SrcTS));
1966       }
1967     }
1968   } else {
1969     for (auto TS : TypeSpecs) {
1970       NewTypeSpecs.push_back(std::make_pair(TS, TS));
1971     }
1972   }
1973 
1974   llvm::sort(NewTypeSpecs);
1975   NewTypeSpecs.erase(std::unique(NewTypeSpecs.begin(), NewTypeSpecs.end()),
1976 		     NewTypeSpecs.end());
1977   auto &Entry = IntrinsicMap[Name];
1978 
1979   for (auto &I : NewTypeSpecs) {
1980     Entry.emplace_back(R, Name, Proto, I.first, I.second, CK, Body, *this,
1981                        Guard, IsUnavailable, BigEndianSafe);
1982     Out.push_back(&Entry.back());
1983   }
1984 
1985   CurrentRecord = nullptr;
1986 }
1987 
1988 /// genBuiltinsDef: Generate the BuiltinsARM.def and  BuiltinsAArch64.def
1989 /// declaration of builtins, checking for unique builtin declarations.
1990 void NeonEmitter::genBuiltinsDef(raw_ostream &OS,
1991                                  SmallVectorImpl<Intrinsic *> &Defs) {
1992   OS << "#ifdef GET_NEON_BUILTINS\n";
1993 
1994   // We only want to emit a builtin once, and we want to emit them in
1995   // alphabetical order, so use a std::set.
1996   std::set<std::string> Builtins;
1997 
1998   for (auto *Def : Defs) {
1999     if (Def->hasBody())
2000       continue;
2001 
2002     std::string S = "BUILTIN(__builtin_neon_" + Def->getMangledName() + ", \"";
2003 
2004     S += Def->getBuiltinTypeStr();
2005     S += "\", \"n\")";
2006 
2007     Builtins.insert(S);
2008   }
2009 
2010   for (auto &S : Builtins)
2011     OS << S << "\n";
2012   OS << "#endif\n\n";
2013 }
2014 
2015 /// Generate the ARM and AArch64 overloaded type checking code for
2016 /// SemaChecking.cpp, checking for unique builtin declarations.
2017 void NeonEmitter::genOverloadTypeCheckCode(raw_ostream &OS,
2018                                            SmallVectorImpl<Intrinsic *> &Defs) {
2019   OS << "#ifdef GET_NEON_OVERLOAD_CHECK\n";
2020 
2021   // We record each overload check line before emitting because subsequent Inst
2022   // definitions may extend the number of permitted types (i.e. augment the
2023   // Mask). Use std::map to avoid sorting the table by hash number.
2024   struct OverloadInfo {
2025     uint64_t Mask;
2026     int PtrArgNum;
2027     bool HasConstPtr;
2028     OverloadInfo() : Mask(0ULL), PtrArgNum(0), HasConstPtr(false) {}
2029   };
2030   std::map<std::string, OverloadInfo> OverloadMap;
2031 
2032   for (auto *Def : Defs) {
2033     // If the def has a body (that is, it has Operation DAGs), it won't call
2034     // __builtin_neon_* so we don't need to generate a definition for it.
2035     if (Def->hasBody())
2036       continue;
2037     // Functions which have a scalar argument cannot be overloaded, no need to
2038     // check them if we are emitting the type checking code.
2039     if (Def->protoHasScalar())
2040       continue;
2041 
2042     uint64_t Mask = 0ULL;
2043     Mask |= 1ULL << Def->getPolymorphicKeyType().getNeonEnum();
2044 
2045     // Check if the function has a pointer or const pointer argument.
2046     int PtrArgNum = -1;
2047     bool HasConstPtr = false;
2048     for (unsigned I = 0; I < Def->getNumParams(); ++I) {
2049       const auto &Type = Def->getParamType(I);
2050       if (Type.isPointer()) {
2051         PtrArgNum = I;
2052         HasConstPtr = Type.isConstPointer();
2053       }
2054     }
2055 
2056     // For sret builtins, adjust the pointer argument index.
2057     if (PtrArgNum >= 0 && Def->getReturnType().getNumVectors() > 1)
2058       PtrArgNum += 1;
2059 
2060     std::string Name = Def->getName();
2061     // Omit type checking for the pointer arguments of vld1_lane, vld1_dup,
2062     // and vst1_lane intrinsics.  Using a pointer to the vector element
2063     // type with one of those operations causes codegen to select an aligned
2064     // load/store instruction.  If you want an unaligned operation,
2065     // the pointer argument needs to have less alignment than element type,
2066     // so just accept any pointer type.
2067     if (Name == "vld1_lane" || Name == "vld1_dup" || Name == "vst1_lane") {
2068       PtrArgNum = -1;
2069       HasConstPtr = false;
2070     }
2071 
2072     if (Mask) {
2073       std::string Name = Def->getMangledName();
2074       OverloadMap.insert(std::make_pair(Name, OverloadInfo()));
2075       OverloadInfo &OI = OverloadMap[Name];
2076       OI.Mask |= Mask;
2077       OI.PtrArgNum |= PtrArgNum;
2078       OI.HasConstPtr = HasConstPtr;
2079     }
2080   }
2081 
2082   for (auto &I : OverloadMap) {
2083     OverloadInfo &OI = I.second;
2084 
2085     OS << "case NEON::BI__builtin_neon_" << I.first << ": ";
2086     OS << "mask = 0x" << Twine::utohexstr(OI.Mask) << "ULL";
2087     if (OI.PtrArgNum >= 0)
2088       OS << "; PtrArgNum = " << OI.PtrArgNum;
2089     if (OI.HasConstPtr)
2090       OS << "; HasConstPtr = true";
2091     OS << "; break;\n";
2092   }
2093   OS << "#endif\n\n";
2094 }
2095 
2096 void NeonEmitter::genIntrinsicRangeCheckCode(raw_ostream &OS,
2097                                         SmallVectorImpl<Intrinsic *> &Defs) {
2098   OS << "#ifdef GET_NEON_IMMEDIATE_CHECK\n";
2099 
2100   std::set<std::string> Emitted;
2101 
2102   for (auto *Def : Defs) {
2103     if (Def->hasBody())
2104       continue;
2105     // Functions which do not have an immediate do not need to have range
2106     // checking code emitted.
2107     if (!Def->hasImmediate())
2108       continue;
2109     if (Emitted.find(Def->getMangledName()) != Emitted.end())
2110       continue;
2111 
2112     std::string LowerBound, UpperBound;
2113 
2114     Record *R = Def->getRecord();
2115     if (R->getValueAsBit("isVXAR")) {
2116       //VXAR takes an immediate in the range [0, 63]
2117       LowerBound = "0";
2118       UpperBound = "63";
2119     } else if (R->getValueAsBit("isVCVT_N")) {
2120       // VCVT between floating- and fixed-point values takes an immediate
2121       // in the range [1, 32) for f32 or [1, 64) for f64 or [1, 16) for f16.
2122       LowerBound = "1";
2123 	  if (Def->getBaseType().getElementSizeInBits() == 16 ||
2124 		  Def->getName().find('h') != std::string::npos)
2125 		// VCVTh operating on FP16 intrinsics in range [1, 16)
2126 		UpperBound = "15";
2127 	  else if (Def->getBaseType().getElementSizeInBits() == 32)
2128         UpperBound = "31";
2129 	  else
2130         UpperBound = "63";
2131     } else if (R->getValueAsBit("isScalarShift")) {
2132       // Right shifts have an 'r' in the name, left shifts do not. Convert
2133       // instructions have the same bounds and right shifts.
2134       if (Def->getName().find('r') != std::string::npos ||
2135           Def->getName().find("cvt") != std::string::npos)
2136         LowerBound = "1";
2137 
2138       UpperBound = utostr(Def->getReturnType().getElementSizeInBits() - 1);
2139     } else if (R->getValueAsBit("isShift")) {
2140       // Builtins which are overloaded by type will need to have their upper
2141       // bound computed at Sema time based on the type constant.
2142 
2143       // Right shifts have an 'r' in the name, left shifts do not.
2144       if (Def->getName().find('r') != std::string::npos)
2145         LowerBound = "1";
2146       UpperBound = "RFT(TV, true)";
2147     } else if (Def->getClassKind(true) == ClassB) {
2148       // ClassB intrinsics have a type (and hence lane number) that is only
2149       // known at runtime.
2150       if (R->getValueAsBit("isLaneQ"))
2151         UpperBound = "RFT(TV, false, true)";
2152       else
2153         UpperBound = "RFT(TV, false, false)";
2154     } else {
2155       // The immediate generally refers to a lane in the preceding argument.
2156       assert(Def->getImmediateIdx() > 0);
2157       Type T = Def->getParamType(Def->getImmediateIdx() - 1);
2158       UpperBound = utostr(T.getNumElements() - 1);
2159     }
2160 
2161     // Calculate the index of the immediate that should be range checked.
2162     unsigned Idx = Def->getNumParams();
2163     if (Def->hasImmediate())
2164       Idx = Def->getGeneratedParamIdx(Def->getImmediateIdx());
2165 
2166     OS << "case NEON::BI__builtin_neon_" << Def->getMangledName() << ": "
2167        << "i = " << Idx << ";";
2168     if (!LowerBound.empty())
2169       OS << " l = " << LowerBound << ";";
2170     if (!UpperBound.empty())
2171       OS << " u = " << UpperBound << ";";
2172     OS << " break;\n";
2173 
2174     Emitted.insert(Def->getMangledName());
2175   }
2176 
2177   OS << "#endif\n\n";
2178 }
2179 
2180 /// runHeader - Emit a file with sections defining:
2181 /// 1. the NEON section of BuiltinsARM.def and BuiltinsAArch64.def.
2182 /// 2. the SemaChecking code for the type overload checking.
2183 /// 3. the SemaChecking code for validation of intrinsic immediate arguments.
2184 void NeonEmitter::runHeader(raw_ostream &OS) {
2185   std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
2186 
2187   SmallVector<Intrinsic *, 128> Defs;
2188   for (auto *R : RV)
2189     createIntrinsic(R, Defs);
2190 
2191   // Generate shared BuiltinsXXX.def
2192   genBuiltinsDef(OS, Defs);
2193 
2194   // Generate ARM overloaded type checking code for SemaChecking.cpp
2195   genOverloadTypeCheckCode(OS, Defs);
2196 
2197   // Generate ARM range checking code for shift/lane immediates.
2198   genIntrinsicRangeCheckCode(OS, Defs);
2199 }
2200 
2201 static void emitNeonTypeDefs(const std::string& types, raw_ostream &OS) {
2202   std::string TypedefTypes(types);
2203   std::vector<TypeSpec> TDTypeVec = TypeSpec::fromTypeSpecs(TypedefTypes);
2204 
2205   // Emit vector typedefs.
2206   bool InIfdef = false;
2207   for (auto &TS : TDTypeVec) {
2208     bool IsA64 = false;
2209     Type T(TS, ".");
2210     if (T.isDouble())
2211       IsA64 = true;
2212 
2213     if (InIfdef && !IsA64) {
2214       OS << "#endif\n";
2215       InIfdef = false;
2216     }
2217     if (!InIfdef && IsA64) {
2218       OS << "#ifdef __aarch64__\n";
2219       InIfdef = true;
2220     }
2221 
2222     if (T.isPoly())
2223       OS << "typedef __attribute__((neon_polyvector_type(";
2224     else
2225       OS << "typedef __attribute__((neon_vector_type(";
2226 
2227     Type T2 = T;
2228     T2.makeScalar();
2229     OS << T.getNumElements() << "))) ";
2230     OS << T2.str();
2231     OS << " " << T.str() << ";\n";
2232   }
2233   if (InIfdef)
2234     OS << "#endif\n";
2235   OS << "\n";
2236 
2237   // Emit struct typedefs.
2238   InIfdef = false;
2239   for (unsigned NumMembers = 2; NumMembers <= 4; ++NumMembers) {
2240     for (auto &TS : TDTypeVec) {
2241       bool IsA64 = false;
2242       Type T(TS, ".");
2243       if (T.isDouble())
2244         IsA64 = true;
2245 
2246       if (InIfdef && !IsA64) {
2247         OS << "#endif\n";
2248         InIfdef = false;
2249       }
2250       if (!InIfdef && IsA64) {
2251         OS << "#ifdef __aarch64__\n";
2252         InIfdef = true;
2253       }
2254 
2255       const char Mods[] = { static_cast<char>('2' + (NumMembers - 2)), 0};
2256       Type VT(TS, Mods);
2257       OS << "typedef struct " << VT.str() << " {\n";
2258       OS << "  " << T.str() << " val";
2259       OS << "[" << NumMembers << "]";
2260       OS << ";\n} ";
2261       OS << VT.str() << ";\n";
2262       OS << "\n";
2263     }
2264   }
2265   if (InIfdef)
2266     OS << "#endif\n";
2267 }
2268 
2269 /// run - Read the records in arm_neon.td and output arm_neon.h.  arm_neon.h
2270 /// is comprised of type definitions and function declarations.
2271 void NeonEmitter::run(raw_ostream &OS) {
2272   OS << "/*===---- arm_neon.h - ARM Neon intrinsics "
2273         "------------------------------"
2274         "---===\n"
2275         " *\n"
2276         " * Permission is hereby granted, free of charge, to any person "
2277         "obtaining "
2278         "a copy\n"
2279         " * of this software and associated documentation files (the "
2280         "\"Software\"),"
2281         " to deal\n"
2282         " * in the Software without restriction, including without limitation "
2283         "the "
2284         "rights\n"
2285         " * to use, copy, modify, merge, publish, distribute, sublicense, "
2286         "and/or sell\n"
2287         " * copies of the Software, and to permit persons to whom the Software "
2288         "is\n"
2289         " * furnished to do so, subject to the following conditions:\n"
2290         " *\n"
2291         " * The above copyright notice and this permission notice shall be "
2292         "included in\n"
2293         " * all copies or substantial portions of the Software.\n"
2294         " *\n"
2295         " * THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, "
2296         "EXPRESS OR\n"
2297         " * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF "
2298         "MERCHANTABILITY,\n"
2299         " * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT "
2300         "SHALL THE\n"
2301         " * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR "
2302         "OTHER\n"
2303         " * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, "
2304         "ARISING FROM,\n"
2305         " * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER "
2306         "DEALINGS IN\n"
2307         " * THE SOFTWARE.\n"
2308         " *\n"
2309         " *===-----------------------------------------------------------------"
2310         "---"
2311         "---===\n"
2312         " */\n\n";
2313 
2314   OS << "#ifndef __ARM_NEON_H\n";
2315   OS << "#define __ARM_NEON_H\n\n";
2316 
2317   OS << "#ifndef __ARM_FP\n";
2318   OS << "#error \"NEON intrinsics not available with the soft-float ABI. "
2319         "Please use -mfloat-abi=softfp or -mfloat-abi=hard\"\n";
2320   OS << "#else\n\n";
2321 
2322   OS << "#if !defined(__ARM_NEON)\n";
2323   OS << "#error \"NEON support not enabled\"\n";
2324   OS << "#else\n\n";
2325 
2326   OS << "#include <stdint.h>\n\n";
2327 
2328   OS << "#ifdef __ARM_FEATURE_BF16\n";
2329   OS << "#include <arm_bf16.h>\n";
2330   OS << "typedef __bf16 bfloat16_t;\n";
2331   OS << "#endif\n\n";
2332 
2333   // Emit NEON-specific scalar typedefs.
2334   OS << "typedef float float32_t;\n";
2335   OS << "typedef __fp16 float16_t;\n";
2336 
2337   OS << "#ifdef __aarch64__\n";
2338   OS << "typedef double float64_t;\n";
2339   OS << "#endif\n\n";
2340 
2341   // For now, signedness of polynomial types depends on target
2342   OS << "#ifdef __aarch64__\n";
2343   OS << "typedef uint8_t poly8_t;\n";
2344   OS << "typedef uint16_t poly16_t;\n";
2345   OS << "typedef uint64_t poly64_t;\n";
2346   OS << "typedef __uint128_t poly128_t;\n";
2347   OS << "#else\n";
2348   OS << "typedef int8_t poly8_t;\n";
2349   OS << "typedef int16_t poly16_t;\n";
2350   OS << "typedef int64_t poly64_t;\n";
2351   OS << "#endif\n";
2352 
2353   emitNeonTypeDefs("cQcsQsiQilQlUcQUcUsQUsUiQUiUlQUlhQhfQfdQdPcQPcPsQPsPlQPl", OS);
2354 
2355   OS << "#ifdef __ARM_FEATURE_BF16\n";
2356   emitNeonTypeDefs("bQb", OS);
2357   OS << "#endif\n\n";
2358 
2359   OS << "#define __ai static __inline__ __attribute__((__always_inline__, "
2360         "__nodebug__))\n\n";
2361 
2362   SmallVector<Intrinsic *, 128> Defs;
2363   std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
2364   for (auto *R : RV)
2365     createIntrinsic(R, Defs);
2366 
2367   for (auto *I : Defs)
2368     I->indexBody();
2369 
2370   llvm::stable_sort(Defs, llvm::deref<std::less<>>());
2371 
2372   // Only emit a def when its requirements have been met.
2373   // FIXME: This loop could be made faster, but it's fast enough for now.
2374   bool MadeProgress = true;
2375   std::string InGuard;
2376   while (!Defs.empty() && MadeProgress) {
2377     MadeProgress = false;
2378 
2379     for (SmallVector<Intrinsic *, 128>::iterator I = Defs.begin();
2380          I != Defs.end(); /*No step*/) {
2381       bool DependenciesSatisfied = true;
2382       for (auto *II : (*I)->getDependencies()) {
2383         if (llvm::is_contained(Defs, II))
2384           DependenciesSatisfied = false;
2385       }
2386       if (!DependenciesSatisfied) {
2387         // Try the next one.
2388         ++I;
2389         continue;
2390       }
2391 
2392       // Emit #endif/#if pair if needed.
2393       if ((*I)->getGuard() != InGuard) {
2394         if (!InGuard.empty())
2395           OS << "#endif\n";
2396         InGuard = (*I)->getGuard();
2397         if (!InGuard.empty())
2398           OS << "#if " << InGuard << "\n";
2399       }
2400 
2401       // Actually generate the intrinsic code.
2402       OS << (*I)->generate();
2403 
2404       MadeProgress = true;
2405       I = Defs.erase(I);
2406     }
2407   }
2408   assert(Defs.empty() && "Some requirements were not satisfied!");
2409   if (!InGuard.empty())
2410     OS << "#endif\n";
2411 
2412   OS << "\n";
2413   OS << "#undef __ai\n\n";
2414   OS << "#endif /* if !defined(__ARM_NEON) */\n";
2415   OS << "#endif /* ifndef __ARM_FP */\n";
2416   OS << "#endif /* __ARM_NEON_H */\n";
2417 }
2418 
2419 /// run - Read the records in arm_fp16.td and output arm_fp16.h.  arm_fp16.h
2420 /// is comprised of type definitions and function declarations.
2421 void NeonEmitter::runFP16(raw_ostream &OS) {
2422   OS << "/*===---- arm_fp16.h - ARM FP16 intrinsics "
2423         "------------------------------"
2424         "---===\n"
2425         " *\n"
2426         " * Permission is hereby granted, free of charge, to any person "
2427         "obtaining a copy\n"
2428         " * of this software and associated documentation files (the "
2429 				"\"Software\"), to deal\n"
2430         " * in the Software without restriction, including without limitation "
2431 				"the rights\n"
2432         " * to use, copy, modify, merge, publish, distribute, sublicense, "
2433 				"and/or sell\n"
2434         " * copies of the Software, and to permit persons to whom the Software "
2435 				"is\n"
2436         " * furnished to do so, subject to the following conditions:\n"
2437         " *\n"
2438         " * The above copyright notice and this permission notice shall be "
2439         "included in\n"
2440         " * all copies or substantial portions of the Software.\n"
2441         " *\n"
2442         " * THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, "
2443         "EXPRESS OR\n"
2444         " * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF "
2445         "MERCHANTABILITY,\n"
2446         " * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT "
2447         "SHALL THE\n"
2448         " * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR "
2449         "OTHER\n"
2450         " * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, "
2451         "ARISING FROM,\n"
2452         " * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER "
2453         "DEALINGS IN\n"
2454         " * THE SOFTWARE.\n"
2455         " *\n"
2456         " *===-----------------------------------------------------------------"
2457         "---"
2458         "---===\n"
2459         " */\n\n";
2460 
2461   OS << "#ifndef __ARM_FP16_H\n";
2462   OS << "#define __ARM_FP16_H\n\n";
2463 
2464   OS << "#include <stdint.h>\n\n";
2465 
2466   OS << "typedef __fp16 float16_t;\n";
2467 
2468   OS << "#define __ai static __inline__ __attribute__((__always_inline__, "
2469         "__nodebug__))\n\n";
2470 
2471   SmallVector<Intrinsic *, 128> Defs;
2472   std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
2473   for (auto *R : RV)
2474     createIntrinsic(R, Defs);
2475 
2476   for (auto *I : Defs)
2477     I->indexBody();
2478 
2479   llvm::stable_sort(Defs, llvm::deref<std::less<>>());
2480 
2481   // Only emit a def when its requirements have been met.
2482   // FIXME: This loop could be made faster, but it's fast enough for now.
2483   bool MadeProgress = true;
2484   std::string InGuard;
2485   while (!Defs.empty() && MadeProgress) {
2486     MadeProgress = false;
2487 
2488     for (SmallVector<Intrinsic *, 128>::iterator I = Defs.begin();
2489          I != Defs.end(); /*No step*/) {
2490       bool DependenciesSatisfied = true;
2491       for (auto *II : (*I)->getDependencies()) {
2492         if (llvm::is_contained(Defs, II))
2493           DependenciesSatisfied = false;
2494       }
2495       if (!DependenciesSatisfied) {
2496         // Try the next one.
2497         ++I;
2498         continue;
2499       }
2500 
2501       // Emit #endif/#if pair if needed.
2502       if ((*I)->getGuard() != InGuard) {
2503         if (!InGuard.empty())
2504           OS << "#endif\n";
2505         InGuard = (*I)->getGuard();
2506         if (!InGuard.empty())
2507           OS << "#if " << InGuard << "\n";
2508       }
2509 
2510       // Actually generate the intrinsic code.
2511       OS << (*I)->generate();
2512 
2513       MadeProgress = true;
2514       I = Defs.erase(I);
2515     }
2516   }
2517   assert(Defs.empty() && "Some requirements were not satisfied!");
2518   if (!InGuard.empty())
2519     OS << "#endif\n";
2520 
2521   OS << "\n";
2522   OS << "#undef __ai\n\n";
2523   OS << "#endif /* __ARM_FP16_H */\n";
2524 }
2525 
2526 void NeonEmitter::runBF16(raw_ostream &OS) {
2527   OS << "/*===---- arm_bf16.h - ARM BF16 intrinsics "
2528         "-----------------------------------===\n"
2529         " *\n"
2530         " *\n"
2531         " * Part of the LLVM Project, under the Apache License v2.0 with LLVM "
2532         "Exceptions.\n"
2533         " * See https://llvm.org/LICENSE.txt for license information.\n"
2534         " * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception\n"
2535         " *\n"
2536         " *===-----------------------------------------------------------------"
2537         "------===\n"
2538         " */\n\n";
2539 
2540   OS << "#ifndef __ARM_BF16_H\n";
2541   OS << "#define __ARM_BF16_H\n\n";
2542 
2543   OS << "typedef __bf16 bfloat16_t;\n";
2544 
2545   OS << "#define __ai static __inline__ __attribute__((__always_inline__, "
2546         "__nodebug__))\n\n";
2547 
2548   SmallVector<Intrinsic *, 128> Defs;
2549   std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
2550   for (auto *R : RV)
2551     createIntrinsic(R, Defs);
2552 
2553   for (auto *I : Defs)
2554     I->indexBody();
2555 
2556   llvm::stable_sort(Defs, llvm::deref<std::less<>>());
2557 
2558   // Only emit a def when its requirements have been met.
2559   // FIXME: This loop could be made faster, but it's fast enough for now.
2560   bool MadeProgress = true;
2561   std::string InGuard;
2562   while (!Defs.empty() && MadeProgress) {
2563     MadeProgress = false;
2564 
2565     for (SmallVector<Intrinsic *, 128>::iterator I = Defs.begin();
2566          I != Defs.end(); /*No step*/) {
2567       bool DependenciesSatisfied = true;
2568       for (auto *II : (*I)->getDependencies()) {
2569         if (llvm::is_contained(Defs, II))
2570           DependenciesSatisfied = false;
2571       }
2572       if (!DependenciesSatisfied) {
2573         // Try the next one.
2574         ++I;
2575         continue;
2576       }
2577 
2578       // Emit #endif/#if pair if needed.
2579       if ((*I)->getGuard() != InGuard) {
2580         if (!InGuard.empty())
2581           OS << "#endif\n";
2582         InGuard = (*I)->getGuard();
2583         if (!InGuard.empty())
2584           OS << "#if " << InGuard << "\n";
2585       }
2586 
2587       // Actually generate the intrinsic code.
2588       OS << (*I)->generate();
2589 
2590       MadeProgress = true;
2591       I = Defs.erase(I);
2592     }
2593   }
2594   assert(Defs.empty() && "Some requirements were not satisfied!");
2595   if (!InGuard.empty())
2596     OS << "#endif\n";
2597 
2598   OS << "\n";
2599   OS << "#undef __ai\n\n";
2600 
2601   OS << "#endif\n";
2602 }
2603 
2604 void clang::EmitNeon(RecordKeeper &Records, raw_ostream &OS) {
2605   NeonEmitter(Records).run(OS);
2606 }
2607 
2608 void clang::EmitFP16(RecordKeeper &Records, raw_ostream &OS) {
2609   NeonEmitter(Records).runFP16(OS);
2610 }
2611 
2612 void clang::EmitBF16(RecordKeeper &Records, raw_ostream &OS) {
2613   NeonEmitter(Records).runBF16(OS);
2614 }
2615 
2616 void clang::EmitNeonSema(RecordKeeper &Records, raw_ostream &OS) {
2617   NeonEmitter(Records).runHeader(OS);
2618 }
2619 
2620 void clang::EmitNeonTest(RecordKeeper &Records, raw_ostream &OS) {
2621   llvm_unreachable("Neon test generation no longer implemented!");
2622 }
2623