xref: /freebsd/contrib/llvm-project/clang/utils/TableGen/NeonEmitter.cpp (revision 9f23cbd6cae82fd77edfad7173432fa8dccd0a95)
1 //===- NeonEmitter.cpp - Generate arm_neon.h for use with clang -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This tablegen backend is responsible for emitting arm_neon.h, which includes
10 // a declaration and definition of each function specified by the ARM NEON
11 // compiler interface.  See ARM document DUI0348B.
12 //
13 // Each NEON instruction is implemented in terms of 1 or more functions which
14 // are suffixed with the element type of the input vectors.  Functions may be
15 // implemented in terms of generic vector operations such as +, *, -, etc. or
16 // by calling a __builtin_-prefixed function which will be handled by clang's
17 // CodeGen library.
18 //
19 // Additional validation code can be generated by this file when runHeader() is
20 // called, rather than the normal run() entry point.
21 //
22 // See also the documentation in include/clang/Basic/arm_neon.td.
23 //
24 //===----------------------------------------------------------------------===//
25 
26 #include "TableGenBackends.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/ADT/StringRef.h"
33 #include "llvm/Support/Casting.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/TableGen/Error.h"
37 #include "llvm/TableGen/Record.h"
38 #include "llvm/TableGen/SetTheory.h"
39 #include <algorithm>
40 #include <cassert>
41 #include <cctype>
42 #include <cstddef>
43 #include <cstdint>
44 #include <deque>
45 #include <map>
46 #include <optional>
47 #include <set>
48 #include <sstream>
49 #include <string>
50 #include <utility>
51 #include <vector>
52 
53 using namespace llvm;
54 
55 namespace {
56 
57 // While globals are generally bad, this one allows us to perform assertions
58 // liberally and somehow still trace them back to the def they indirectly
59 // came from.
60 static Record *CurrentRecord = nullptr;
61 static void assert_with_loc(bool Assertion, const std::string &Str) {
62   if (!Assertion) {
63     if (CurrentRecord)
64       PrintFatalError(CurrentRecord->getLoc(), Str);
65     else
66       PrintFatalError(Str);
67   }
68 }
69 
70 enum ClassKind {
71   ClassNone,
72   ClassI,     // generic integer instruction, e.g., "i8" suffix
73   ClassS,     // signed/unsigned/poly, e.g., "s8", "u8" or "p8" suffix
74   ClassW,     // width-specific instruction, e.g., "8" suffix
75   ClassB,     // bitcast arguments with enum argument to specify type
76   ClassL,     // Logical instructions which are op instructions
77               // but we need to not emit any suffix for in our
78               // tests.
79   ClassNoTest // Instructions which we do not test since they are
80               // not TRUE instructions.
81 };
82 
83 /// NeonTypeFlags - Flags to identify the types for overloaded Neon
84 /// builtins.  These must be kept in sync with the flags in
85 /// include/clang/Basic/TargetBuiltins.h.
86 namespace NeonTypeFlags {
87 
88 enum { EltTypeMask = 0xf, UnsignedFlag = 0x10, QuadFlag = 0x20 };
89 
90 enum EltType {
91   Int8,
92   Int16,
93   Int32,
94   Int64,
95   Poly8,
96   Poly16,
97   Poly64,
98   Poly128,
99   Float16,
100   Float32,
101   Float64,
102   BFloat16
103 };
104 
105 } // end namespace NeonTypeFlags
106 
107 class NeonEmitter;
108 
109 //===----------------------------------------------------------------------===//
110 // TypeSpec
111 //===----------------------------------------------------------------------===//
112 
113 /// A TypeSpec is just a simple wrapper around a string, but gets its own type
114 /// for strong typing purposes.
115 ///
116 /// A TypeSpec can be used to create a type.
117 class TypeSpec : public std::string {
118 public:
119   static std::vector<TypeSpec> fromTypeSpecs(StringRef Str) {
120     std::vector<TypeSpec> Ret;
121     TypeSpec Acc;
122     for (char I : Str.str()) {
123       if (islower(I)) {
124         Acc.push_back(I);
125         Ret.push_back(TypeSpec(Acc));
126         Acc.clear();
127       } else {
128         Acc.push_back(I);
129       }
130     }
131     return Ret;
132   }
133 };
134 
135 //===----------------------------------------------------------------------===//
136 // Type
137 //===----------------------------------------------------------------------===//
138 
139 /// A Type. Not much more to say here.
140 class Type {
141 private:
142   TypeSpec TS;
143 
144   enum TypeKind {
145     Void,
146     Float,
147     SInt,
148     UInt,
149     Poly,
150     BFloat16,
151   };
152   TypeKind Kind;
153   bool Immediate, Constant, Pointer;
154   // ScalarForMangling and NoManglingQ are really not suited to live here as
155   // they are not related to the type. But they live in the TypeSpec (not the
156   // prototype), so this is really the only place to store them.
157   bool ScalarForMangling, NoManglingQ;
158   unsigned Bitwidth, ElementBitwidth, NumVectors;
159 
160 public:
161   Type()
162       : Kind(Void), Immediate(false), Constant(false),
163         Pointer(false), ScalarForMangling(false), NoManglingQ(false),
164         Bitwidth(0), ElementBitwidth(0), NumVectors(0) {}
165 
166   Type(TypeSpec TS, StringRef CharMods)
167       : TS(std::move(TS)), Kind(Void), Immediate(false),
168         Constant(false), Pointer(false), ScalarForMangling(false),
169         NoManglingQ(false), Bitwidth(0), ElementBitwidth(0), NumVectors(0) {
170     applyModifiers(CharMods);
171   }
172 
173   /// Returns a type representing "void".
174   static Type getVoid() { return Type(); }
175 
176   bool operator==(const Type &Other) const { return str() == Other.str(); }
177   bool operator!=(const Type &Other) const { return !operator==(Other); }
178 
179   //
180   // Query functions
181   //
182   bool isScalarForMangling() const { return ScalarForMangling; }
183   bool noManglingQ() const { return NoManglingQ; }
184 
185   bool isPointer() const { return Pointer; }
186   bool isValue() const { return !isVoid() && !isPointer(); }
187   bool isScalar() const { return isValue() && NumVectors == 0; }
188   bool isVector() const { return isValue() && NumVectors > 0; }
189   bool isConstPointer() const { return Constant; }
190   bool isFloating() const { return Kind == Float; }
191   bool isInteger() const { return Kind == SInt || Kind == UInt; }
192   bool isPoly() const { return Kind == Poly; }
193   bool isSigned() const { return Kind == SInt; }
194   bool isImmediate() const { return Immediate; }
195   bool isFloat() const { return isFloating() && ElementBitwidth == 32; }
196   bool isDouble() const { return isFloating() && ElementBitwidth == 64; }
197   bool isHalf() const { return isFloating() && ElementBitwidth == 16; }
198   bool isChar() const { return ElementBitwidth == 8; }
199   bool isShort() const { return isInteger() && ElementBitwidth == 16; }
200   bool isInt() const { return isInteger() && ElementBitwidth == 32; }
201   bool isLong() const { return isInteger() && ElementBitwidth == 64; }
202   bool isVoid() const { return Kind == Void; }
203   bool isBFloat16() const { return Kind == BFloat16; }
204   unsigned getNumElements() const { return Bitwidth / ElementBitwidth; }
205   unsigned getSizeInBits() const { return Bitwidth; }
206   unsigned getElementSizeInBits() const { return ElementBitwidth; }
207   unsigned getNumVectors() const { return NumVectors; }
208 
209   //
210   // Mutator functions
211   //
212   void makeUnsigned() {
213     assert(!isVoid() && "not a potentially signed type");
214     Kind = UInt;
215   }
216   void makeSigned() {
217     assert(!isVoid() && "not a potentially signed type");
218     Kind = SInt;
219   }
220 
221   void makeInteger(unsigned ElemWidth, bool Sign) {
222     assert(!isVoid() && "converting void to int probably not useful");
223     Kind = Sign ? SInt : UInt;
224     Immediate = false;
225     ElementBitwidth = ElemWidth;
226   }
227 
228   void makeImmediate(unsigned ElemWidth) {
229     Kind = SInt;
230     Immediate = true;
231     ElementBitwidth = ElemWidth;
232   }
233 
234   void makeScalar() {
235     Bitwidth = ElementBitwidth;
236     NumVectors = 0;
237   }
238 
239   void makeOneVector() {
240     assert(isVector());
241     NumVectors = 1;
242   }
243 
244   void make32BitElement() {
245     assert_with_loc(Bitwidth > 32, "Not enough bits to make it 32!");
246     ElementBitwidth = 32;
247   }
248 
249   void doubleLanes() {
250     assert_with_loc(Bitwidth != 128, "Can't get bigger than 128!");
251     Bitwidth = 128;
252   }
253 
254   void halveLanes() {
255     assert_with_loc(Bitwidth != 64, "Can't get smaller than 64!");
256     Bitwidth = 64;
257   }
258 
259   /// Return the C string representation of a type, which is the typename
260   /// defined in stdint.h or arm_neon.h.
261   std::string str() const;
262 
263   /// Return the string representation of a type, which is an encoded
264   /// string for passing to the BUILTIN() macro in Builtins.def.
265   std::string builtin_str() const;
266 
267   /// Return the value in NeonTypeFlags for this type.
268   unsigned getNeonEnum() const;
269 
270   /// Parse a type from a stdint.h or arm_neon.h typedef name,
271   /// for example uint32x2_t or int64_t.
272   static Type fromTypedefName(StringRef Name);
273 
274 private:
275   /// Creates the type based on the typespec string in TS.
276   /// Sets "Quad" to true if the "Q" or "H" modifiers were
277   /// seen. This is needed by applyModifier as some modifiers
278   /// only take effect if the type size was changed by "Q" or "H".
279   void applyTypespec(bool &Quad);
280   /// Applies prototype modifiers to the type.
281   void applyModifiers(StringRef Mods);
282 };
283 
284 //===----------------------------------------------------------------------===//
285 // Variable
286 //===----------------------------------------------------------------------===//
287 
288 /// A variable is a simple class that just has a type and a name.
289 class Variable {
290   Type T;
291   std::string N;
292 
293 public:
294   Variable() : T(Type::getVoid()) {}
295   Variable(Type T, std::string N) : T(std::move(T)), N(std::move(N)) {}
296 
297   Type getType() const { return T; }
298   std::string getName() const { return "__" + N; }
299 };
300 
301 //===----------------------------------------------------------------------===//
302 // Intrinsic
303 //===----------------------------------------------------------------------===//
304 
305 /// The main grunt class. This represents an instantiation of an intrinsic with
306 /// a particular typespec and prototype.
307 class Intrinsic {
308   /// The Record this intrinsic was created from.
309   Record *R;
310   /// The unmangled name.
311   std::string Name;
312   /// The input and output typespecs. InTS == OutTS except when
313   /// CartesianProductWith is non-empty - this is the case for vreinterpret.
314   TypeSpec OutTS, InTS;
315   /// The base class kind. Most intrinsics use ClassS, which has full type
316   /// info for integers (s32/u32). Some use ClassI, which doesn't care about
317   /// signedness (i32), while some (ClassB) have no type at all, only a width
318   /// (32).
319   ClassKind CK;
320   /// The list of DAGs for the body. May be empty, in which case we should
321   /// emit a builtin call.
322   ListInit *Body;
323   /// The architectural ifdef guard.
324   std::string ArchGuard;
325   /// The architectural target() guard.
326   std::string TargetGuard;
327   /// Set if the Unavailable bit is 1. This means we don't generate a body,
328   /// just an "unavailable" attribute on a declaration.
329   bool IsUnavailable;
330   /// Is this intrinsic safe for big-endian? or does it need its arguments
331   /// reversing?
332   bool BigEndianSafe;
333 
334   /// The types of return value [0] and parameters [1..].
335   std::vector<Type> Types;
336   /// The index of the key type passed to CGBuiltin.cpp for polymorphic calls.
337   int PolymorphicKeyType;
338   /// The local variables defined.
339   std::map<std::string, Variable> Variables;
340   /// NeededEarly - set if any other intrinsic depends on this intrinsic.
341   bool NeededEarly;
342   /// UseMacro - set if we should implement using a macro or unset for a
343   ///            function.
344   bool UseMacro;
345   /// The set of intrinsics that this intrinsic uses/requires.
346   std::set<Intrinsic *> Dependencies;
347   /// The "base type", which is Type('d', OutTS). InBaseType is only
348   /// different if CartesianProductWith is non-empty (for vreinterpret).
349   Type BaseType, InBaseType;
350   /// The return variable.
351   Variable RetVar;
352   /// A postfix to apply to every variable. Defaults to "".
353   std::string VariablePostfix;
354 
355   NeonEmitter &Emitter;
356   std::stringstream OS;
357 
358   bool isBigEndianSafe() const {
359     if (BigEndianSafe)
360       return true;
361 
362     for (const auto &T : Types){
363       if (T.isVector() && T.getNumElements() > 1)
364         return false;
365     }
366     return true;
367   }
368 
369 public:
370   Intrinsic(Record *R, StringRef Name, StringRef Proto, TypeSpec OutTS,
371             TypeSpec InTS, ClassKind CK, ListInit *Body, NeonEmitter &Emitter,
372             StringRef ArchGuard, StringRef TargetGuard, bool IsUnavailable, bool BigEndianSafe)
373       : R(R), Name(Name.str()), OutTS(OutTS), InTS(InTS), CK(CK), Body(Body),
374         ArchGuard(ArchGuard.str()), TargetGuard(TargetGuard.str()), IsUnavailable(IsUnavailable),
375         BigEndianSafe(BigEndianSafe), PolymorphicKeyType(0), NeededEarly(false),
376         UseMacro(false), BaseType(OutTS, "."), InBaseType(InTS, "."),
377         Emitter(Emitter) {
378     // Modify the TypeSpec per-argument to get a concrete Type, and create
379     // known variables for each.
380     // Types[0] is the return value.
381     unsigned Pos = 0;
382     Types.emplace_back(OutTS, getNextModifiers(Proto, Pos));
383     StringRef Mods = getNextModifiers(Proto, Pos);
384     while (!Mods.empty()) {
385       Types.emplace_back(InTS, Mods);
386       if (Mods.contains('!'))
387         PolymorphicKeyType = Types.size() - 1;
388 
389       Mods = getNextModifiers(Proto, Pos);
390     }
391 
392     for (auto Type : Types) {
393       // If this builtin takes an immediate argument, we need to #define it rather
394       // than use a standard declaration, so that SemaChecking can range check
395       // the immediate passed by the user.
396 
397       // Pointer arguments need to use macros to avoid hiding aligned attributes
398       // from the pointer type.
399 
400       // It is not permitted to pass or return an __fp16 by value, so intrinsics
401       // taking a scalar float16_t must be implemented as macros.
402       if (Type.isImmediate() || Type.isPointer() ||
403           (Type.isScalar() && Type.isHalf()))
404         UseMacro = true;
405     }
406   }
407 
408   /// Get the Record that this intrinsic is based off.
409   Record *getRecord() const { return R; }
410   /// Get the set of Intrinsics that this intrinsic calls.
411   /// this is the set of immediate dependencies, NOT the
412   /// transitive closure.
413   const std::set<Intrinsic *> &getDependencies() const { return Dependencies; }
414   /// Get the architectural guard string (#ifdef).
415   std::string getArchGuard() const { return ArchGuard; }
416   std::string getTargetGuard() const { return TargetGuard; }
417   /// Get the non-mangled name.
418   std::string getName() const { return Name; }
419 
420   /// Return true if the intrinsic takes an immediate operand.
421   bool hasImmediate() const {
422     return llvm::any_of(Types, [](const Type &T) { return T.isImmediate(); });
423   }
424 
425   /// Return the parameter index of the immediate operand.
426   unsigned getImmediateIdx() const {
427     for (unsigned Idx = 0; Idx < Types.size(); ++Idx)
428       if (Types[Idx].isImmediate())
429         return Idx - 1;
430     llvm_unreachable("Intrinsic has no immediate");
431   }
432 
433 
434   unsigned getNumParams() const { return Types.size() - 1; }
435   Type getReturnType() const { return Types[0]; }
436   Type getParamType(unsigned I) const { return Types[I + 1]; }
437   Type getBaseType() const { return BaseType; }
438   Type getPolymorphicKeyType() const { return Types[PolymorphicKeyType]; }
439 
440   /// Return true if the prototype has a scalar argument.
441   bool protoHasScalar() const;
442 
443   /// Return the index that parameter PIndex will sit at
444   /// in a generated function call. This is often just PIndex,
445   /// but may not be as things such as multiple-vector operands
446   /// and sret parameters need to be taken into account.
447   unsigned getGeneratedParamIdx(unsigned PIndex) {
448     unsigned Idx = 0;
449     if (getReturnType().getNumVectors() > 1)
450       // Multiple vectors are passed as sret.
451       ++Idx;
452 
453     for (unsigned I = 0; I < PIndex; ++I)
454       Idx += std::max(1U, getParamType(I).getNumVectors());
455 
456     return Idx;
457   }
458 
459   bool hasBody() const { return Body && !Body->getValues().empty(); }
460 
461   void setNeededEarly() { NeededEarly = true; }
462 
463   bool operator<(const Intrinsic &Other) const {
464     // Sort lexicographically on a three-tuple (ArchGuard, TargetGuard, Name)
465     if (ArchGuard != Other.ArchGuard)
466       return ArchGuard < Other.ArchGuard;
467     if (TargetGuard != Other.TargetGuard)
468       return TargetGuard < Other.TargetGuard;
469     return Name < Other.Name;
470   }
471 
472   ClassKind getClassKind(bool UseClassBIfScalar = false) {
473     if (UseClassBIfScalar && !protoHasScalar())
474       return ClassB;
475     return CK;
476   }
477 
478   /// Return the name, mangled with type information.
479   /// If ForceClassS is true, use ClassS (u32/s32) instead
480   /// of the intrinsic's own type class.
481   std::string getMangledName(bool ForceClassS = false) const;
482   /// Return the type code for a builtin function call.
483   std::string getInstTypeCode(Type T, ClassKind CK) const;
484   /// Return the type string for a BUILTIN() macro in Builtins.def.
485   std::string getBuiltinTypeStr();
486 
487   /// Generate the intrinsic, returning code.
488   std::string generate();
489   /// Perform type checking and populate the dependency graph, but
490   /// don't generate code yet.
491   void indexBody();
492 
493 private:
494   StringRef getNextModifiers(StringRef Proto, unsigned &Pos) const;
495 
496   std::string mangleName(std::string Name, ClassKind CK) const;
497 
498   void initVariables();
499   std::string replaceParamsIn(std::string S);
500 
501   void emitBodyAsBuiltinCall();
502 
503   void generateImpl(bool ReverseArguments,
504                     StringRef NamePrefix, StringRef CallPrefix);
505   void emitReturn();
506   void emitBody(StringRef CallPrefix);
507   void emitShadowedArgs();
508   void emitArgumentReversal();
509   void emitReturnVarDecl();
510   void emitReturnReversal();
511   void emitReverseVariable(Variable &Dest, Variable &Src);
512   void emitNewLine();
513   void emitClosingBrace();
514   void emitOpeningBrace();
515   void emitPrototype(StringRef NamePrefix);
516 
517   class DagEmitter {
518     Intrinsic &Intr;
519     StringRef CallPrefix;
520 
521   public:
522     DagEmitter(Intrinsic &Intr, StringRef CallPrefix) :
523       Intr(Intr), CallPrefix(CallPrefix) {
524     }
525     std::pair<Type, std::string> emitDagArg(Init *Arg, std::string ArgName);
526     std::pair<Type, std::string> emitDagSaveTemp(DagInit *DI);
527     std::pair<Type, std::string> emitDagSplat(DagInit *DI);
528     std::pair<Type, std::string> emitDagDup(DagInit *DI);
529     std::pair<Type, std::string> emitDagDupTyped(DagInit *DI);
530     std::pair<Type, std::string> emitDagShuffle(DagInit *DI);
531     std::pair<Type, std::string> emitDagCast(DagInit *DI, bool IsBitCast);
532     std::pair<Type, std::string> emitDagCall(DagInit *DI,
533                                              bool MatchMangledName);
534     std::pair<Type, std::string> emitDagNameReplace(DagInit *DI);
535     std::pair<Type, std::string> emitDagLiteral(DagInit *DI);
536     std::pair<Type, std::string> emitDagOp(DagInit *DI);
537     std::pair<Type, std::string> emitDag(DagInit *DI);
538   };
539 };
540 
541 //===----------------------------------------------------------------------===//
542 // NeonEmitter
543 //===----------------------------------------------------------------------===//
544 
545 class NeonEmitter {
546   RecordKeeper &Records;
547   DenseMap<Record *, ClassKind> ClassMap;
548   std::map<std::string, std::deque<Intrinsic>> IntrinsicMap;
549   unsigned UniqueNumber;
550 
551   void createIntrinsic(Record *R, SmallVectorImpl<Intrinsic *> &Out);
552   void genBuiltinsDef(raw_ostream &OS, SmallVectorImpl<Intrinsic *> &Defs);
553   void genOverloadTypeCheckCode(raw_ostream &OS,
554                                 SmallVectorImpl<Intrinsic *> &Defs);
555   void genIntrinsicRangeCheckCode(raw_ostream &OS,
556                                   SmallVectorImpl<Intrinsic *> &Defs);
557 
558 public:
559   /// Called by Intrinsic - this attempts to get an intrinsic that takes
560   /// the given types as arguments.
561   Intrinsic &getIntrinsic(StringRef Name, ArrayRef<Type> Types,
562                           std::optional<std::string> MangledName);
563 
564   /// Called by Intrinsic - returns a globally-unique number.
565   unsigned getUniqueNumber() { return UniqueNumber++; }
566 
567   NeonEmitter(RecordKeeper &R) : Records(R), UniqueNumber(0) {
568     Record *SI = R.getClass("SInst");
569     Record *II = R.getClass("IInst");
570     Record *WI = R.getClass("WInst");
571     Record *SOpI = R.getClass("SOpInst");
572     Record *IOpI = R.getClass("IOpInst");
573     Record *WOpI = R.getClass("WOpInst");
574     Record *LOpI = R.getClass("LOpInst");
575     Record *NoTestOpI = R.getClass("NoTestOpInst");
576 
577     ClassMap[SI] = ClassS;
578     ClassMap[II] = ClassI;
579     ClassMap[WI] = ClassW;
580     ClassMap[SOpI] = ClassS;
581     ClassMap[IOpI] = ClassI;
582     ClassMap[WOpI] = ClassW;
583     ClassMap[LOpI] = ClassL;
584     ClassMap[NoTestOpI] = ClassNoTest;
585   }
586 
587   // Emit arm_neon.h.inc
588   void run(raw_ostream &o);
589 
590   // Emit arm_fp16.h.inc
591   void runFP16(raw_ostream &o);
592 
593   // Emit arm_bf16.h.inc
594   void runBF16(raw_ostream &o);
595 
596   // Emit all the __builtin prototypes used in arm_neon.h, arm_fp16.h and
597   // arm_bf16.h
598   void runHeader(raw_ostream &o);
599 };
600 
601 } // end anonymous namespace
602 
603 //===----------------------------------------------------------------------===//
604 // Type implementation
605 //===----------------------------------------------------------------------===//
606 
607 std::string Type::str() const {
608   if (isVoid())
609     return "void";
610   std::string S;
611 
612   if (isInteger() && !isSigned())
613     S += "u";
614 
615   if (isPoly())
616     S += "poly";
617   else if (isFloating())
618     S += "float";
619   else if (isBFloat16())
620     S += "bfloat";
621   else
622     S += "int";
623 
624   S += utostr(ElementBitwidth);
625   if (isVector())
626     S += "x" + utostr(getNumElements());
627   if (NumVectors > 1)
628     S += "x" + utostr(NumVectors);
629   S += "_t";
630 
631   if (Constant)
632     S += " const";
633   if (Pointer)
634     S += " *";
635 
636   return S;
637 }
638 
639 std::string Type::builtin_str() const {
640   std::string S;
641   if (isVoid())
642     return "v";
643 
644   if (isPointer()) {
645     // All pointers are void pointers.
646     S = "v";
647     if (isConstPointer())
648       S += "C";
649     S += "*";
650     return S;
651   } else if (isInteger())
652     switch (ElementBitwidth) {
653     case 8: S += "c"; break;
654     case 16: S += "s"; break;
655     case 32: S += "i"; break;
656     case 64: S += "Wi"; break;
657     case 128: S += "LLLi"; break;
658     default: llvm_unreachable("Unhandled case!");
659     }
660   else if (isBFloat16()) {
661     assert(ElementBitwidth == 16 && "BFloat16 can only be 16 bits");
662     S += "y";
663   } else
664     switch (ElementBitwidth) {
665     case 16: S += "h"; break;
666     case 32: S += "f"; break;
667     case 64: S += "d"; break;
668     default: llvm_unreachable("Unhandled case!");
669     }
670 
671   // FIXME: NECESSARY???????????????????????????????????????????????????????????????????????
672   if (isChar() && !isPointer() && isSigned())
673     // Make chars explicitly signed.
674     S = "S" + S;
675   else if (isInteger() && !isSigned())
676     S = "U" + S;
677 
678   // Constant indices are "int", but have the "constant expression" modifier.
679   if (isImmediate()) {
680     assert(isInteger() && isSigned());
681     S = "I" + S;
682   }
683 
684   if (isScalar())
685     return S;
686 
687   std::string Ret;
688   for (unsigned I = 0; I < NumVectors; ++I)
689     Ret += "V" + utostr(getNumElements()) + S;
690 
691   return Ret;
692 }
693 
694 unsigned Type::getNeonEnum() const {
695   unsigned Addend;
696   switch (ElementBitwidth) {
697   case 8: Addend = 0; break;
698   case 16: Addend = 1; break;
699   case 32: Addend = 2; break;
700   case 64: Addend = 3; break;
701   case 128: Addend = 4; break;
702   default: llvm_unreachable("Unhandled element bitwidth!");
703   }
704 
705   unsigned Base = (unsigned)NeonTypeFlags::Int8 + Addend;
706   if (isPoly()) {
707     // Adjustment needed because Poly32 doesn't exist.
708     if (Addend >= 2)
709       --Addend;
710     Base = (unsigned)NeonTypeFlags::Poly8 + Addend;
711   }
712   if (isFloating()) {
713     assert(Addend != 0 && "Float8 doesn't exist!");
714     Base = (unsigned)NeonTypeFlags::Float16 + (Addend - 1);
715   }
716 
717   if (isBFloat16()) {
718     assert(Addend == 1 && "BFloat16 is only 16 bit");
719     Base = (unsigned)NeonTypeFlags::BFloat16;
720   }
721 
722   if (Bitwidth == 128)
723     Base |= (unsigned)NeonTypeFlags::QuadFlag;
724   if (isInteger() && !isSigned())
725     Base |= (unsigned)NeonTypeFlags::UnsignedFlag;
726 
727   return Base;
728 }
729 
730 Type Type::fromTypedefName(StringRef Name) {
731   Type T;
732   T.Kind = SInt;
733 
734   if (Name.front() == 'u') {
735     T.Kind = UInt;
736     Name = Name.drop_front();
737   }
738 
739   if (Name.startswith("float")) {
740     T.Kind = Float;
741     Name = Name.drop_front(5);
742   } else if (Name.startswith("poly")) {
743     T.Kind = Poly;
744     Name = Name.drop_front(4);
745   } else if (Name.startswith("bfloat")) {
746     T.Kind = BFloat16;
747     Name = Name.drop_front(6);
748   } else {
749     assert(Name.startswith("int"));
750     Name = Name.drop_front(3);
751   }
752 
753   unsigned I = 0;
754   for (I = 0; I < Name.size(); ++I) {
755     if (!isdigit(Name[I]))
756       break;
757   }
758   Name.substr(0, I).getAsInteger(10, T.ElementBitwidth);
759   Name = Name.drop_front(I);
760 
761   T.Bitwidth = T.ElementBitwidth;
762   T.NumVectors = 1;
763 
764   if (Name.front() == 'x') {
765     Name = Name.drop_front();
766     unsigned I = 0;
767     for (I = 0; I < Name.size(); ++I) {
768       if (!isdigit(Name[I]))
769         break;
770     }
771     unsigned NumLanes;
772     Name.substr(0, I).getAsInteger(10, NumLanes);
773     Name = Name.drop_front(I);
774     T.Bitwidth = T.ElementBitwidth * NumLanes;
775   } else {
776     // Was scalar.
777     T.NumVectors = 0;
778   }
779   if (Name.front() == 'x') {
780     Name = Name.drop_front();
781     unsigned I = 0;
782     for (I = 0; I < Name.size(); ++I) {
783       if (!isdigit(Name[I]))
784         break;
785     }
786     Name.substr(0, I).getAsInteger(10, T.NumVectors);
787     Name = Name.drop_front(I);
788   }
789 
790   assert(Name.startswith("_t") && "Malformed typedef!");
791   return T;
792 }
793 
794 void Type::applyTypespec(bool &Quad) {
795   std::string S = TS;
796   ScalarForMangling = false;
797   Kind = SInt;
798   ElementBitwidth = ~0U;
799   NumVectors = 1;
800 
801   for (char I : S) {
802     switch (I) {
803     case 'S':
804       ScalarForMangling = true;
805       break;
806     case 'H':
807       NoManglingQ = true;
808       Quad = true;
809       break;
810     case 'Q':
811       Quad = true;
812       break;
813     case 'P':
814       Kind = Poly;
815       break;
816     case 'U':
817       Kind = UInt;
818       break;
819     case 'c':
820       ElementBitwidth = 8;
821       break;
822     case 'h':
823       Kind = Float;
824       [[fallthrough]];
825     case 's':
826       ElementBitwidth = 16;
827       break;
828     case 'f':
829       Kind = Float;
830       [[fallthrough]];
831     case 'i':
832       ElementBitwidth = 32;
833       break;
834     case 'd':
835       Kind = Float;
836       [[fallthrough]];
837     case 'l':
838       ElementBitwidth = 64;
839       break;
840     case 'k':
841       ElementBitwidth = 128;
842       // Poly doesn't have a 128x1 type.
843       if (isPoly())
844         NumVectors = 0;
845       break;
846     case 'b':
847       Kind = BFloat16;
848       ElementBitwidth = 16;
849       break;
850     default:
851       llvm_unreachable("Unhandled type code!");
852     }
853   }
854   assert(ElementBitwidth != ~0U && "Bad element bitwidth!");
855 
856   Bitwidth = Quad ? 128 : 64;
857 }
858 
859 void Type::applyModifiers(StringRef Mods) {
860   bool AppliedQuad = false;
861   applyTypespec(AppliedQuad);
862 
863   for (char Mod : Mods) {
864     switch (Mod) {
865     case '.':
866       break;
867     case 'v':
868       Kind = Void;
869       break;
870     case 'S':
871       Kind = SInt;
872       break;
873     case 'U':
874       Kind = UInt;
875       break;
876     case 'B':
877       Kind = BFloat16;
878       ElementBitwidth = 16;
879       break;
880     case 'F':
881       Kind = Float;
882       break;
883     case 'P':
884       Kind = Poly;
885       break;
886     case '>':
887       assert(ElementBitwidth < 128);
888       ElementBitwidth *= 2;
889       break;
890     case '<':
891       assert(ElementBitwidth > 8);
892       ElementBitwidth /= 2;
893       break;
894     case '1':
895       NumVectors = 0;
896       break;
897     case '2':
898       NumVectors = 2;
899       break;
900     case '3':
901       NumVectors = 3;
902       break;
903     case '4':
904       NumVectors = 4;
905       break;
906     case '*':
907       Pointer = true;
908       break;
909     case 'c':
910       Constant = true;
911       break;
912     case 'Q':
913       Bitwidth = 128;
914       break;
915     case 'q':
916       Bitwidth = 64;
917       break;
918     case 'I':
919       Kind = SInt;
920       ElementBitwidth = Bitwidth = 32;
921       NumVectors = 0;
922       Immediate = true;
923       break;
924     case 'p':
925       if (isPoly())
926         Kind = UInt;
927       break;
928     case '!':
929       // Key type, handled elsewhere.
930       break;
931     default:
932       llvm_unreachable("Unhandled character!");
933     }
934   }
935 }
936 
937 //===----------------------------------------------------------------------===//
938 // Intrinsic implementation
939 //===----------------------------------------------------------------------===//
940 
941 StringRef Intrinsic::getNextModifiers(StringRef Proto, unsigned &Pos) const {
942   if (Proto.size() == Pos)
943     return StringRef();
944   else if (Proto[Pos] != '(')
945     return Proto.substr(Pos++, 1);
946 
947   size_t Start = Pos + 1;
948   size_t End = Proto.find(')', Start);
949   assert_with_loc(End != StringRef::npos, "unmatched modifier group paren");
950   Pos = End + 1;
951   return Proto.slice(Start, End);
952 }
953 
954 std::string Intrinsic::getInstTypeCode(Type T, ClassKind CK) const {
955   char typeCode = '\0';
956   bool printNumber = true;
957 
958   if (CK == ClassB && TargetGuard == "")
959     return "";
960 
961   if (T.isBFloat16())
962     return "bf16";
963 
964   if (T.isPoly())
965     typeCode = 'p';
966   else if (T.isInteger())
967     typeCode = T.isSigned() ? 's' : 'u';
968   else
969     typeCode = 'f';
970 
971   if (CK == ClassI) {
972     switch (typeCode) {
973     default:
974       break;
975     case 's':
976     case 'u':
977     case 'p':
978       typeCode = 'i';
979       break;
980     }
981   }
982   if (CK == ClassB && TargetGuard == "") {
983     typeCode = '\0';
984   }
985 
986   std::string S;
987   if (typeCode != '\0')
988     S.push_back(typeCode);
989   if (printNumber)
990     S += utostr(T.getElementSizeInBits());
991 
992   return S;
993 }
994 
995 std::string Intrinsic::getBuiltinTypeStr() {
996   ClassKind LocalCK = getClassKind(true);
997   std::string S;
998 
999   Type RetT = getReturnType();
1000   if ((LocalCK == ClassI || LocalCK == ClassW) && RetT.isScalar() &&
1001       !RetT.isFloating() && !RetT.isBFloat16())
1002     RetT.makeInteger(RetT.getElementSizeInBits(), false);
1003 
1004   // Since the return value must be one type, return a vector type of the
1005   // appropriate width which we will bitcast.  An exception is made for
1006   // returning structs of 2, 3, or 4 vectors which are returned in a sret-like
1007   // fashion, storing them to a pointer arg.
1008   if (RetT.getNumVectors() > 1) {
1009     S += "vv*"; // void result with void* first argument
1010   } else {
1011     if (RetT.isPoly())
1012       RetT.makeInteger(RetT.getElementSizeInBits(), false);
1013     if (!RetT.isScalar() && RetT.isInteger() && !RetT.isSigned())
1014       RetT.makeSigned();
1015 
1016     if (LocalCK == ClassB && RetT.isValue() && !RetT.isScalar())
1017       // Cast to vector of 8-bit elements.
1018       RetT.makeInteger(8, true);
1019 
1020     S += RetT.builtin_str();
1021   }
1022 
1023   for (unsigned I = 0; I < getNumParams(); ++I) {
1024     Type T = getParamType(I);
1025     if (T.isPoly())
1026       T.makeInteger(T.getElementSizeInBits(), false);
1027 
1028     if (LocalCK == ClassB && !T.isScalar())
1029       T.makeInteger(8, true);
1030     // Halves always get converted to 8-bit elements.
1031     if (T.isHalf() && T.isVector() && !T.isScalarForMangling())
1032       T.makeInteger(8, true);
1033 
1034     if (LocalCK == ClassI && T.isInteger())
1035       T.makeSigned();
1036 
1037     if (hasImmediate() && getImmediateIdx() == I)
1038       T.makeImmediate(32);
1039 
1040     S += T.builtin_str();
1041   }
1042 
1043   // Extra constant integer to hold type class enum for this function, e.g. s8
1044   if (LocalCK == ClassB)
1045     S += "i";
1046 
1047   return S;
1048 }
1049 
1050 std::string Intrinsic::getMangledName(bool ForceClassS) const {
1051   // Check if the prototype has a scalar operand with the type of the vector
1052   // elements.  If not, bitcasting the args will take care of arg checking.
1053   // The actual signedness etc. will be taken care of with special enums.
1054   ClassKind LocalCK = CK;
1055   if (!protoHasScalar())
1056     LocalCK = ClassB;
1057 
1058   return mangleName(Name, ForceClassS ? ClassS : LocalCK);
1059 }
1060 
1061 std::string Intrinsic::mangleName(std::string Name, ClassKind LocalCK) const {
1062   std::string typeCode = getInstTypeCode(BaseType, LocalCK);
1063   std::string S = Name;
1064 
1065   if (Name == "vcvt_f16_f32" || Name == "vcvt_f32_f16" ||
1066       Name == "vcvt_f32_f64" || Name == "vcvt_f64_f32" ||
1067       Name == "vcvt_f32_bf16")
1068     return Name;
1069 
1070   if (!typeCode.empty()) {
1071     // If the name ends with _xN (N = 2,3,4), insert the typeCode before _xN.
1072     if (Name.size() >= 3 && isdigit(Name.back()) &&
1073         Name[Name.length() - 2] == 'x' && Name[Name.length() - 3] == '_')
1074       S.insert(S.length() - 3, "_" + typeCode);
1075     else
1076       S += "_" + typeCode;
1077   }
1078 
1079   if (BaseType != InBaseType) {
1080     // A reinterpret - out the input base type at the end.
1081     S += "_" + getInstTypeCode(InBaseType, LocalCK);
1082   }
1083 
1084   if (LocalCK == ClassB && TargetGuard == "")
1085     S += "_v";
1086 
1087   // Insert a 'q' before the first '_' character so that it ends up before
1088   // _lane or _n on vector-scalar operations.
1089   if (BaseType.getSizeInBits() == 128 && !BaseType.noManglingQ()) {
1090     size_t Pos = S.find('_');
1091     S.insert(Pos, "q");
1092   }
1093 
1094   char Suffix = '\0';
1095   if (BaseType.isScalarForMangling()) {
1096     switch (BaseType.getElementSizeInBits()) {
1097     case 8: Suffix = 'b'; break;
1098     case 16: Suffix = 'h'; break;
1099     case 32: Suffix = 's'; break;
1100     case 64: Suffix = 'd'; break;
1101     default: llvm_unreachable("Bad suffix!");
1102     }
1103   }
1104   if (Suffix != '\0') {
1105     size_t Pos = S.find('_');
1106     S.insert(Pos, &Suffix, 1);
1107   }
1108 
1109   return S;
1110 }
1111 
1112 std::string Intrinsic::replaceParamsIn(std::string S) {
1113   while (S.find('$') != std::string::npos) {
1114     size_t Pos = S.find('$');
1115     size_t End = Pos + 1;
1116     while (isalpha(S[End]))
1117       ++End;
1118 
1119     std::string VarName = S.substr(Pos + 1, End - Pos - 1);
1120     assert_with_loc(Variables.find(VarName) != Variables.end(),
1121                     "Variable not defined!");
1122     S.replace(Pos, End - Pos, Variables.find(VarName)->second.getName());
1123   }
1124 
1125   return S;
1126 }
1127 
1128 void Intrinsic::initVariables() {
1129   Variables.clear();
1130 
1131   // Modify the TypeSpec per-argument to get a concrete Type, and create
1132   // known variables for each.
1133   for (unsigned I = 1; I < Types.size(); ++I) {
1134     char NameC = '0' + (I - 1);
1135     std::string Name = "p";
1136     Name.push_back(NameC);
1137 
1138     Variables[Name] = Variable(Types[I], Name + VariablePostfix);
1139   }
1140   RetVar = Variable(Types[0], "ret" + VariablePostfix);
1141 }
1142 
1143 void Intrinsic::emitPrototype(StringRef NamePrefix) {
1144   if (UseMacro) {
1145     OS << "#define ";
1146   } else {
1147     OS << "__ai ";
1148     if (TargetGuard != "")
1149       OS << "__attribute__((target(\"" << TargetGuard << "\"))) ";
1150     OS << Types[0].str() << " ";
1151   }
1152 
1153   OS << NamePrefix.str() << mangleName(Name, ClassS) << "(";
1154 
1155   for (unsigned I = 0; I < getNumParams(); ++I) {
1156     if (I != 0)
1157       OS << ", ";
1158 
1159     char NameC = '0' + I;
1160     std::string Name = "p";
1161     Name.push_back(NameC);
1162     assert(Variables.find(Name) != Variables.end());
1163     Variable &V = Variables[Name];
1164 
1165     if (!UseMacro)
1166       OS << V.getType().str() << " ";
1167     OS << V.getName();
1168   }
1169 
1170   OS << ")";
1171 }
1172 
1173 void Intrinsic::emitOpeningBrace() {
1174   if (UseMacro)
1175     OS << " __extension__ ({";
1176   else
1177     OS << " {";
1178   emitNewLine();
1179 }
1180 
1181 void Intrinsic::emitClosingBrace() {
1182   if (UseMacro)
1183     OS << "})";
1184   else
1185     OS << "}";
1186 }
1187 
1188 void Intrinsic::emitNewLine() {
1189   if (UseMacro)
1190     OS << " \\\n";
1191   else
1192     OS << "\n";
1193 }
1194 
1195 void Intrinsic::emitReverseVariable(Variable &Dest, Variable &Src) {
1196   if (Dest.getType().getNumVectors() > 1) {
1197     emitNewLine();
1198 
1199     for (unsigned K = 0; K < Dest.getType().getNumVectors(); ++K) {
1200       OS << "  " << Dest.getName() << ".val[" << K << "] = "
1201          << "__builtin_shufflevector("
1202          << Src.getName() << ".val[" << K << "], "
1203          << Src.getName() << ".val[" << K << "]";
1204       for (int J = Dest.getType().getNumElements() - 1; J >= 0; --J)
1205         OS << ", " << J;
1206       OS << ");";
1207       emitNewLine();
1208     }
1209   } else {
1210     OS << "  " << Dest.getName()
1211        << " = __builtin_shufflevector(" << Src.getName() << ", " << Src.getName();
1212     for (int J = Dest.getType().getNumElements() - 1; J >= 0; --J)
1213       OS << ", " << J;
1214     OS << ");";
1215     emitNewLine();
1216   }
1217 }
1218 
1219 void Intrinsic::emitArgumentReversal() {
1220   if (isBigEndianSafe())
1221     return;
1222 
1223   // Reverse all vector arguments.
1224   for (unsigned I = 0; I < getNumParams(); ++I) {
1225     std::string Name = "p" + utostr(I);
1226     std::string NewName = "rev" + utostr(I);
1227 
1228     Variable &V = Variables[Name];
1229     Variable NewV(V.getType(), NewName + VariablePostfix);
1230 
1231     if (!NewV.getType().isVector() || NewV.getType().getNumElements() == 1)
1232       continue;
1233 
1234     OS << "  " << NewV.getType().str() << " " << NewV.getName() << ";";
1235     emitReverseVariable(NewV, V);
1236     V = NewV;
1237   }
1238 }
1239 
1240 void Intrinsic::emitReturnVarDecl() {
1241   assert(RetVar.getType() == Types[0]);
1242   // Create a return variable, if we're not void.
1243   if (!RetVar.getType().isVoid()) {
1244     OS << "  " << RetVar.getType().str() << " " << RetVar.getName() << ";";
1245     emitNewLine();
1246   }
1247 }
1248 
1249 void Intrinsic::emitReturnReversal() {
1250   if (isBigEndianSafe())
1251     return;
1252   if (!getReturnType().isVector() || getReturnType().isVoid() ||
1253       getReturnType().getNumElements() == 1)
1254     return;
1255   emitReverseVariable(RetVar, RetVar);
1256 }
1257 
1258 void Intrinsic::emitShadowedArgs() {
1259   // Macro arguments are not type-checked like inline function arguments,
1260   // so assign them to local temporaries to get the right type checking.
1261   if (!UseMacro)
1262     return;
1263 
1264   for (unsigned I = 0; I < getNumParams(); ++I) {
1265     // Do not create a temporary for an immediate argument.
1266     // That would defeat the whole point of using a macro!
1267     if (getParamType(I).isImmediate())
1268       continue;
1269     // Do not create a temporary for pointer arguments. The input
1270     // pointer may have an alignment hint.
1271     if (getParamType(I).isPointer())
1272       continue;
1273 
1274     std::string Name = "p" + utostr(I);
1275 
1276     assert(Variables.find(Name) != Variables.end());
1277     Variable &V = Variables[Name];
1278 
1279     std::string NewName = "s" + utostr(I);
1280     Variable V2(V.getType(), NewName + VariablePostfix);
1281 
1282     OS << "  " << V2.getType().str() << " " << V2.getName() << " = "
1283        << V.getName() << ";";
1284     emitNewLine();
1285 
1286     V = V2;
1287   }
1288 }
1289 
1290 bool Intrinsic::protoHasScalar() const {
1291   return llvm::any_of(
1292       Types, [](const Type &T) { return T.isScalar() && !T.isImmediate(); });
1293 }
1294 
1295 void Intrinsic::emitBodyAsBuiltinCall() {
1296   std::string S;
1297 
1298   // If this builtin returns a struct 2, 3, or 4 vectors, pass it as an implicit
1299   // sret-like argument.
1300   bool SRet = getReturnType().getNumVectors() >= 2;
1301 
1302   StringRef N = Name;
1303   ClassKind LocalCK = CK;
1304   if (!protoHasScalar())
1305     LocalCK = ClassB;
1306 
1307   if (!getReturnType().isVoid() && !SRet)
1308     S += "(" + RetVar.getType().str() + ") ";
1309 
1310   S += "__builtin_neon_" + mangleName(std::string(N), LocalCK) + "(";
1311 
1312   if (SRet)
1313     S += "&" + RetVar.getName() + ", ";
1314 
1315   for (unsigned I = 0; I < getNumParams(); ++I) {
1316     Variable &V = Variables["p" + utostr(I)];
1317     Type T = V.getType();
1318 
1319     // Handle multiple-vector values specially, emitting each subvector as an
1320     // argument to the builtin.
1321     if (T.getNumVectors() > 1) {
1322       // Check if an explicit cast is needed.
1323       std::string Cast;
1324       if (LocalCK == ClassB) {
1325         Type T2 = T;
1326         T2.makeOneVector();
1327         T2.makeInteger(8, /*Sign=*/true);
1328         Cast = "(" + T2.str() + ")";
1329       }
1330 
1331       for (unsigned J = 0; J < T.getNumVectors(); ++J)
1332         S += Cast + V.getName() + ".val[" + utostr(J) + "], ";
1333       continue;
1334     }
1335 
1336     std::string Arg = V.getName();
1337     Type CastToType = T;
1338 
1339     // Check if an explicit cast is needed.
1340     if (CastToType.isVector() &&
1341         (LocalCK == ClassB || (T.isHalf() && !T.isScalarForMangling()))) {
1342       CastToType.makeInteger(8, true);
1343       Arg = "(" + CastToType.str() + ")" + Arg;
1344     } else if (CastToType.isVector() && LocalCK == ClassI) {
1345       if (CastToType.isInteger())
1346         CastToType.makeSigned();
1347       Arg = "(" + CastToType.str() + ")" + Arg;
1348     }
1349 
1350     S += Arg + ", ";
1351   }
1352 
1353   // Extra constant integer to hold type class enum for this function, e.g. s8
1354   if (getClassKind(true) == ClassB) {
1355     S += utostr(getPolymorphicKeyType().getNeonEnum());
1356   } else {
1357     // Remove extraneous ", ".
1358     S.pop_back();
1359     S.pop_back();
1360   }
1361   S += ");";
1362 
1363   std::string RetExpr;
1364   if (!SRet && !RetVar.getType().isVoid())
1365     RetExpr = RetVar.getName() + " = ";
1366 
1367   OS << "  " << RetExpr << S;
1368   emitNewLine();
1369 }
1370 
1371 void Intrinsic::emitBody(StringRef CallPrefix) {
1372   std::vector<std::string> Lines;
1373 
1374   if (!Body || Body->getValues().empty()) {
1375     // Nothing specific to output - must output a builtin.
1376     emitBodyAsBuiltinCall();
1377     return;
1378   }
1379 
1380   // We have a list of "things to output". The last should be returned.
1381   for (auto *I : Body->getValues()) {
1382     if (StringInit *SI = dyn_cast<StringInit>(I)) {
1383       Lines.push_back(replaceParamsIn(SI->getAsString()));
1384     } else if (DagInit *DI = dyn_cast<DagInit>(I)) {
1385       DagEmitter DE(*this, CallPrefix);
1386       Lines.push_back(DE.emitDag(DI).second + ";");
1387     }
1388   }
1389 
1390   assert(!Lines.empty() && "Empty def?");
1391   if (!RetVar.getType().isVoid())
1392     Lines.back().insert(0, RetVar.getName() + " = ");
1393 
1394   for (auto &L : Lines) {
1395     OS << "  " << L;
1396     emitNewLine();
1397   }
1398 }
1399 
1400 void Intrinsic::emitReturn() {
1401   if (RetVar.getType().isVoid())
1402     return;
1403   if (UseMacro)
1404     OS << "  " << RetVar.getName() << ";";
1405   else
1406     OS << "  return " << RetVar.getName() << ";";
1407   emitNewLine();
1408 }
1409 
1410 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDag(DagInit *DI) {
1411   // At this point we should only be seeing a def.
1412   DefInit *DefI = cast<DefInit>(DI->getOperator());
1413   std::string Op = DefI->getAsString();
1414 
1415   if (Op == "cast" || Op == "bitcast")
1416     return emitDagCast(DI, Op == "bitcast");
1417   if (Op == "shuffle")
1418     return emitDagShuffle(DI);
1419   if (Op == "dup")
1420     return emitDagDup(DI);
1421   if (Op == "dup_typed")
1422     return emitDagDupTyped(DI);
1423   if (Op == "splat")
1424     return emitDagSplat(DI);
1425   if (Op == "save_temp")
1426     return emitDagSaveTemp(DI);
1427   if (Op == "op")
1428     return emitDagOp(DI);
1429   if (Op == "call" || Op == "call_mangled")
1430     return emitDagCall(DI, Op == "call_mangled");
1431   if (Op == "name_replace")
1432     return emitDagNameReplace(DI);
1433   if (Op == "literal")
1434     return emitDagLiteral(DI);
1435   assert_with_loc(false, "Unknown operation!");
1436   return std::make_pair(Type::getVoid(), "");
1437 }
1438 
1439 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagOp(DagInit *DI) {
1440   std::string Op = cast<StringInit>(DI->getArg(0))->getAsUnquotedString();
1441   if (DI->getNumArgs() == 2) {
1442     // Unary op.
1443     std::pair<Type, std::string> R =
1444         emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1)));
1445     return std::make_pair(R.first, Op + R.second);
1446   } else {
1447     assert(DI->getNumArgs() == 3 && "Can only handle unary and binary ops!");
1448     std::pair<Type, std::string> R1 =
1449         emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1)));
1450     std::pair<Type, std::string> R2 =
1451         emitDagArg(DI->getArg(2), std::string(DI->getArgNameStr(2)));
1452     assert_with_loc(R1.first == R2.first, "Argument type mismatch!");
1453     return std::make_pair(R1.first, R1.second + " " + Op + " " + R2.second);
1454   }
1455 }
1456 
1457 std::pair<Type, std::string>
1458 Intrinsic::DagEmitter::emitDagCall(DagInit *DI, bool MatchMangledName) {
1459   std::vector<Type> Types;
1460   std::vector<std::string> Values;
1461   for (unsigned I = 0; I < DI->getNumArgs() - 1; ++I) {
1462     std::pair<Type, std::string> R =
1463         emitDagArg(DI->getArg(I + 1), std::string(DI->getArgNameStr(I + 1)));
1464     Types.push_back(R.first);
1465     Values.push_back(R.second);
1466   }
1467 
1468   // Look up the called intrinsic.
1469   std::string N;
1470   if (StringInit *SI = dyn_cast<StringInit>(DI->getArg(0)))
1471     N = SI->getAsUnquotedString();
1472   else
1473     N = emitDagArg(DI->getArg(0), "").second;
1474   std::optional<std::string> MangledName;
1475   if (MatchMangledName) {
1476     if (Intr.getRecord()->getValueAsBit("isLaneQ"))
1477       N += "q";
1478     MangledName = Intr.mangleName(N, ClassS);
1479   }
1480   Intrinsic &Callee = Intr.Emitter.getIntrinsic(N, Types, MangledName);
1481 
1482   // Make sure the callee is known as an early def.
1483   Callee.setNeededEarly();
1484   Intr.Dependencies.insert(&Callee);
1485 
1486   // Now create the call itself.
1487   std::string S;
1488   if (!Callee.isBigEndianSafe())
1489     S += CallPrefix.str();
1490   S += Callee.getMangledName(true) + "(";
1491   for (unsigned I = 0; I < DI->getNumArgs() - 1; ++I) {
1492     if (I != 0)
1493       S += ", ";
1494     S += Values[I];
1495   }
1496   S += ")";
1497 
1498   return std::make_pair(Callee.getReturnType(), S);
1499 }
1500 
1501 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagCast(DagInit *DI,
1502                                                                 bool IsBitCast){
1503   // (cast MOD* VAL) -> cast VAL to type given by MOD.
1504   std::pair<Type, std::string> R =
1505       emitDagArg(DI->getArg(DI->getNumArgs() - 1),
1506                  std::string(DI->getArgNameStr(DI->getNumArgs() - 1)));
1507   Type castToType = R.first;
1508   for (unsigned ArgIdx = 0; ArgIdx < DI->getNumArgs() - 1; ++ArgIdx) {
1509 
1510     // MOD can take several forms:
1511     //   1. $X - take the type of parameter / variable X.
1512     //   2. The value "R" - take the type of the return type.
1513     //   3. a type string
1514     //   4. The value "U" or "S" to switch the signedness.
1515     //   5. The value "H" or "D" to half or double the bitwidth.
1516     //   6. The value "8" to convert to 8-bit (signed) integer lanes.
1517     if (!DI->getArgNameStr(ArgIdx).empty()) {
1518       assert_with_loc(Intr.Variables.find(std::string(
1519                           DI->getArgNameStr(ArgIdx))) != Intr.Variables.end(),
1520                       "Variable not found");
1521       castToType =
1522           Intr.Variables[std::string(DI->getArgNameStr(ArgIdx))].getType();
1523     } else {
1524       StringInit *SI = dyn_cast<StringInit>(DI->getArg(ArgIdx));
1525       assert_with_loc(SI, "Expected string type or $Name for cast type");
1526 
1527       if (SI->getAsUnquotedString() == "R") {
1528         castToType = Intr.getReturnType();
1529       } else if (SI->getAsUnquotedString() == "U") {
1530         castToType.makeUnsigned();
1531       } else if (SI->getAsUnquotedString() == "S") {
1532         castToType.makeSigned();
1533       } else if (SI->getAsUnquotedString() == "H") {
1534         castToType.halveLanes();
1535       } else if (SI->getAsUnquotedString() == "D") {
1536         castToType.doubleLanes();
1537       } else if (SI->getAsUnquotedString() == "8") {
1538         castToType.makeInteger(8, true);
1539       } else if (SI->getAsUnquotedString() == "32") {
1540         castToType.make32BitElement();
1541       } else {
1542         castToType = Type::fromTypedefName(SI->getAsUnquotedString());
1543         assert_with_loc(!castToType.isVoid(), "Unknown typedef");
1544       }
1545     }
1546   }
1547 
1548   std::string S;
1549   if (IsBitCast) {
1550     // Emit a reinterpret cast. The second operand must be an lvalue, so create
1551     // a temporary.
1552     std::string N = "reint";
1553     unsigned I = 0;
1554     while (Intr.Variables.find(N) != Intr.Variables.end())
1555       N = "reint" + utostr(++I);
1556     Intr.Variables[N] = Variable(R.first, N + Intr.VariablePostfix);
1557 
1558     Intr.OS << R.first.str() << " " << Intr.Variables[N].getName() << " = "
1559             << R.second << ";";
1560     Intr.emitNewLine();
1561 
1562     S = "*(" + castToType.str() + " *) &" + Intr.Variables[N].getName() + "";
1563   } else {
1564     // Emit a normal (static) cast.
1565     S = "(" + castToType.str() + ")(" + R.second + ")";
1566   }
1567 
1568   return std::make_pair(castToType, S);
1569 }
1570 
1571 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagShuffle(DagInit *DI){
1572   // See the documentation in arm_neon.td for a description of these operators.
1573   class LowHalf : public SetTheory::Operator {
1574   public:
1575     void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
1576                ArrayRef<SMLoc> Loc) override {
1577       SetTheory::RecSet Elts2;
1578       ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts2, Loc);
1579       Elts.insert(Elts2.begin(), Elts2.begin() + (Elts2.size() / 2));
1580     }
1581   };
1582 
1583   class HighHalf : public SetTheory::Operator {
1584   public:
1585     void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
1586                ArrayRef<SMLoc> Loc) override {
1587       SetTheory::RecSet Elts2;
1588       ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts2, Loc);
1589       Elts.insert(Elts2.begin() + (Elts2.size() / 2), Elts2.end());
1590     }
1591   };
1592 
1593   class Rev : public SetTheory::Operator {
1594     unsigned ElementSize;
1595 
1596   public:
1597     Rev(unsigned ElementSize) : ElementSize(ElementSize) {}
1598 
1599     void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
1600                ArrayRef<SMLoc> Loc) override {
1601       SetTheory::RecSet Elts2;
1602       ST.evaluate(Expr->arg_begin() + 1, Expr->arg_end(), Elts2, Loc);
1603 
1604       int64_t VectorSize = cast<IntInit>(Expr->getArg(0))->getValue();
1605       VectorSize /= ElementSize;
1606 
1607       std::vector<Record *> Revved;
1608       for (unsigned VI = 0; VI < Elts2.size(); VI += VectorSize) {
1609         for (int LI = VectorSize - 1; LI >= 0; --LI) {
1610           Revved.push_back(Elts2[VI + LI]);
1611         }
1612       }
1613 
1614       Elts.insert(Revved.begin(), Revved.end());
1615     }
1616   };
1617 
1618   class MaskExpander : public SetTheory::Expander {
1619     unsigned N;
1620 
1621   public:
1622     MaskExpander(unsigned N) : N(N) {}
1623 
1624     void expand(SetTheory &ST, Record *R, SetTheory::RecSet &Elts) override {
1625       unsigned Addend = 0;
1626       if (R->getName() == "mask0")
1627         Addend = 0;
1628       else if (R->getName() == "mask1")
1629         Addend = N;
1630       else
1631         return;
1632       for (unsigned I = 0; I < N; ++I)
1633         Elts.insert(R->getRecords().getDef("sv" + utostr(I + Addend)));
1634     }
1635   };
1636 
1637   // (shuffle arg1, arg2, sequence)
1638   std::pair<Type, std::string> Arg1 =
1639       emitDagArg(DI->getArg(0), std::string(DI->getArgNameStr(0)));
1640   std::pair<Type, std::string> Arg2 =
1641       emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1)));
1642   assert_with_loc(Arg1.first == Arg2.first,
1643                   "Different types in arguments to shuffle!");
1644 
1645   SetTheory ST;
1646   SetTheory::RecSet Elts;
1647   ST.addOperator("lowhalf", std::make_unique<LowHalf>());
1648   ST.addOperator("highhalf", std::make_unique<HighHalf>());
1649   ST.addOperator("rev",
1650                  std::make_unique<Rev>(Arg1.first.getElementSizeInBits()));
1651   ST.addExpander("MaskExpand",
1652                  std::make_unique<MaskExpander>(Arg1.first.getNumElements()));
1653   ST.evaluate(DI->getArg(2), Elts, std::nullopt);
1654 
1655   std::string S = "__builtin_shufflevector(" + Arg1.second + ", " + Arg2.second;
1656   for (auto &E : Elts) {
1657     StringRef Name = E->getName();
1658     assert_with_loc(Name.startswith("sv"),
1659                     "Incorrect element kind in shuffle mask!");
1660     S += ", " + Name.drop_front(2).str();
1661   }
1662   S += ")";
1663 
1664   // Recalculate the return type - the shuffle may have halved or doubled it.
1665   Type T(Arg1.first);
1666   if (Elts.size() > T.getNumElements()) {
1667     assert_with_loc(
1668         Elts.size() == T.getNumElements() * 2,
1669         "Can only double or half the number of elements in a shuffle!");
1670     T.doubleLanes();
1671   } else if (Elts.size() < T.getNumElements()) {
1672     assert_with_loc(
1673         Elts.size() == T.getNumElements() / 2,
1674         "Can only double or half the number of elements in a shuffle!");
1675     T.halveLanes();
1676   }
1677 
1678   return std::make_pair(T, S);
1679 }
1680 
1681 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagDup(DagInit *DI) {
1682   assert_with_loc(DI->getNumArgs() == 1, "dup() expects one argument");
1683   std::pair<Type, std::string> A =
1684       emitDagArg(DI->getArg(0), std::string(DI->getArgNameStr(0)));
1685   assert_with_loc(A.first.isScalar(), "dup() expects a scalar argument");
1686 
1687   Type T = Intr.getBaseType();
1688   assert_with_loc(T.isVector(), "dup() used but default type is scalar!");
1689   std::string S = "(" + T.str() + ") {";
1690   for (unsigned I = 0; I < T.getNumElements(); ++I) {
1691     if (I != 0)
1692       S += ", ";
1693     S += A.second;
1694   }
1695   S += "}";
1696 
1697   return std::make_pair(T, S);
1698 }
1699 
1700 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagDupTyped(DagInit *DI) {
1701   assert_with_loc(DI->getNumArgs() == 2, "dup_typed() expects two arguments");
1702   std::pair<Type, std::string> B =
1703       emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1)));
1704   assert_with_loc(B.first.isScalar(),
1705                   "dup_typed() requires a scalar as the second argument");
1706   Type T;
1707   // If the type argument is a constant string, construct the type directly.
1708   if (StringInit *SI = dyn_cast<StringInit>(DI->getArg(0))) {
1709     T = Type::fromTypedefName(SI->getAsUnquotedString());
1710     assert_with_loc(!T.isVoid(), "Unknown typedef");
1711   } else
1712     T = emitDagArg(DI->getArg(0), std::string(DI->getArgNameStr(0))).first;
1713 
1714   assert_with_loc(T.isVector(), "dup_typed() used but target type is scalar!");
1715   std::string S = "(" + T.str() + ") {";
1716   for (unsigned I = 0; I < T.getNumElements(); ++I) {
1717     if (I != 0)
1718       S += ", ";
1719     S += B.second;
1720   }
1721   S += "}";
1722 
1723   return std::make_pair(T, S);
1724 }
1725 
1726 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagSplat(DagInit *DI) {
1727   assert_with_loc(DI->getNumArgs() == 2, "splat() expects two arguments");
1728   std::pair<Type, std::string> A =
1729       emitDagArg(DI->getArg(0), std::string(DI->getArgNameStr(0)));
1730   std::pair<Type, std::string> B =
1731       emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1)));
1732 
1733   assert_with_loc(B.first.isScalar(),
1734                   "splat() requires a scalar int as the second argument");
1735 
1736   std::string S = "__builtin_shufflevector(" + A.second + ", " + A.second;
1737   for (unsigned I = 0; I < Intr.getBaseType().getNumElements(); ++I) {
1738     S += ", " + B.second;
1739   }
1740   S += ")";
1741 
1742   return std::make_pair(Intr.getBaseType(), S);
1743 }
1744 
1745 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagSaveTemp(DagInit *DI) {
1746   assert_with_loc(DI->getNumArgs() == 2, "save_temp() expects two arguments");
1747   std::pair<Type, std::string> A =
1748       emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1)));
1749 
1750   assert_with_loc(!A.first.isVoid(),
1751                   "Argument to save_temp() must have non-void type!");
1752 
1753   std::string N = std::string(DI->getArgNameStr(0));
1754   assert_with_loc(!N.empty(),
1755                   "save_temp() expects a name as the first argument");
1756 
1757   assert_with_loc(Intr.Variables.find(N) == Intr.Variables.end(),
1758                   "Variable already defined!");
1759   Intr.Variables[N] = Variable(A.first, N + Intr.VariablePostfix);
1760 
1761   std::string S =
1762       A.first.str() + " " + Intr.Variables[N].getName() + " = " + A.second;
1763 
1764   return std::make_pair(Type::getVoid(), S);
1765 }
1766 
1767 std::pair<Type, std::string>
1768 Intrinsic::DagEmitter::emitDagNameReplace(DagInit *DI) {
1769   std::string S = Intr.Name;
1770 
1771   assert_with_loc(DI->getNumArgs() == 2, "name_replace requires 2 arguments!");
1772   std::string ToReplace = cast<StringInit>(DI->getArg(0))->getAsUnquotedString();
1773   std::string ReplaceWith = cast<StringInit>(DI->getArg(1))->getAsUnquotedString();
1774 
1775   size_t Idx = S.find(ToReplace);
1776 
1777   assert_with_loc(Idx != std::string::npos, "name should contain '" + ToReplace + "'!");
1778   S.replace(Idx, ToReplace.size(), ReplaceWith);
1779 
1780   return std::make_pair(Type::getVoid(), S);
1781 }
1782 
1783 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagLiteral(DagInit *DI){
1784   std::string Ty = cast<StringInit>(DI->getArg(0))->getAsUnquotedString();
1785   std::string Value = cast<StringInit>(DI->getArg(1))->getAsUnquotedString();
1786   return std::make_pair(Type::fromTypedefName(Ty), Value);
1787 }
1788 
1789 std::pair<Type, std::string>
1790 Intrinsic::DagEmitter::emitDagArg(Init *Arg, std::string ArgName) {
1791   if (!ArgName.empty()) {
1792     assert_with_loc(!Arg->isComplete(),
1793                     "Arguments must either be DAGs or names, not both!");
1794     assert_with_loc(Intr.Variables.find(ArgName) != Intr.Variables.end(),
1795                     "Variable not defined!");
1796     Variable &V = Intr.Variables[ArgName];
1797     return std::make_pair(V.getType(), V.getName());
1798   }
1799 
1800   assert(Arg && "Neither ArgName nor Arg?!");
1801   DagInit *DI = dyn_cast<DagInit>(Arg);
1802   assert_with_loc(DI, "Arguments must either be DAGs or names!");
1803 
1804   return emitDag(DI);
1805 }
1806 
1807 std::string Intrinsic::generate() {
1808   // Avoid duplicated code for big and little endian
1809   if (isBigEndianSafe()) {
1810     generateImpl(false, "", "");
1811     return OS.str();
1812   }
1813   // Little endian intrinsics are simple and don't require any argument
1814   // swapping.
1815   OS << "#ifdef __LITTLE_ENDIAN__\n";
1816 
1817   generateImpl(false, "", "");
1818 
1819   OS << "#else\n";
1820 
1821   // Big endian intrinsics are more complex. The user intended these
1822   // intrinsics to operate on a vector "as-if" loaded by (V)LDR,
1823   // but we load as-if (V)LD1. So we should swap all arguments and
1824   // swap the return value too.
1825   //
1826   // If we call sub-intrinsics, we should call a version that does
1827   // not re-swap the arguments!
1828   generateImpl(true, "", "__noswap_");
1829 
1830   // If we're needed early, create a non-swapping variant for
1831   // big-endian.
1832   if (NeededEarly) {
1833     generateImpl(false, "__noswap_", "__noswap_");
1834   }
1835   OS << "#endif\n\n";
1836 
1837   return OS.str();
1838 }
1839 
1840 void Intrinsic::generateImpl(bool ReverseArguments,
1841                              StringRef NamePrefix, StringRef CallPrefix) {
1842   CurrentRecord = R;
1843 
1844   // If we call a macro, our local variables may be corrupted due to
1845   // lack of proper lexical scoping. So, add a globally unique postfix
1846   // to every variable.
1847   //
1848   // indexBody() should have set up the Dependencies set by now.
1849   for (auto *I : Dependencies)
1850     if (I->UseMacro) {
1851       VariablePostfix = "_" + utostr(Emitter.getUniqueNumber());
1852       break;
1853     }
1854 
1855   initVariables();
1856 
1857   emitPrototype(NamePrefix);
1858 
1859   if (IsUnavailable) {
1860     OS << " __attribute__((unavailable));";
1861   } else {
1862     emitOpeningBrace();
1863     // Emit return variable declaration first as to not trigger
1864     // -Wdeclaration-after-statement.
1865     emitReturnVarDecl();
1866     emitShadowedArgs();
1867     if (ReverseArguments)
1868       emitArgumentReversal();
1869     emitBody(CallPrefix);
1870     if (ReverseArguments)
1871       emitReturnReversal();
1872     emitReturn();
1873     emitClosingBrace();
1874   }
1875   OS << "\n";
1876 
1877   CurrentRecord = nullptr;
1878 }
1879 
1880 void Intrinsic::indexBody() {
1881   CurrentRecord = R;
1882 
1883   initVariables();
1884   // Emit return variable declaration first as to not trigger
1885   // -Wdeclaration-after-statement.
1886   emitReturnVarDecl();
1887   emitBody("");
1888   OS.str("");
1889 
1890   CurrentRecord = nullptr;
1891 }
1892 
1893 //===----------------------------------------------------------------------===//
1894 // NeonEmitter implementation
1895 //===----------------------------------------------------------------------===//
1896 
1897 Intrinsic &NeonEmitter::getIntrinsic(StringRef Name, ArrayRef<Type> Types,
1898                                      std::optional<std::string> MangledName) {
1899   // First, look up the name in the intrinsic map.
1900   assert_with_loc(IntrinsicMap.find(Name.str()) != IntrinsicMap.end(),
1901                   ("Intrinsic '" + Name + "' not found!").str());
1902   auto &V = IntrinsicMap.find(Name.str())->second;
1903   std::vector<Intrinsic *> GoodVec;
1904 
1905   // Create a string to print if we end up failing.
1906   std::string ErrMsg = "looking up intrinsic '" + Name.str() + "(";
1907   for (unsigned I = 0; I < Types.size(); ++I) {
1908     if (I != 0)
1909       ErrMsg += ", ";
1910     ErrMsg += Types[I].str();
1911   }
1912   ErrMsg += ")'\n";
1913   ErrMsg += "Available overloads:\n";
1914 
1915   // Now, look through each intrinsic implementation and see if the types are
1916   // compatible.
1917   for (auto &I : V) {
1918     ErrMsg += "  - " + I.getReturnType().str() + " " + I.getMangledName();
1919     ErrMsg += "(";
1920     for (unsigned A = 0; A < I.getNumParams(); ++A) {
1921       if (A != 0)
1922         ErrMsg += ", ";
1923       ErrMsg += I.getParamType(A).str();
1924     }
1925     ErrMsg += ")\n";
1926 
1927     if (MangledName && MangledName != I.getMangledName(true))
1928       continue;
1929 
1930     if (I.getNumParams() != Types.size())
1931       continue;
1932 
1933     unsigned ArgNum = 0;
1934     bool MatchingArgumentTypes = llvm::all_of(Types, [&](const auto &Type) {
1935       return Type == I.getParamType(ArgNum++);
1936     });
1937 
1938     if (MatchingArgumentTypes)
1939       GoodVec.push_back(&I);
1940   }
1941 
1942   assert_with_loc(!GoodVec.empty(),
1943                   "No compatible intrinsic found - " + ErrMsg);
1944   assert_with_loc(GoodVec.size() == 1, "Multiple overloads found - " + ErrMsg);
1945 
1946   return *GoodVec.front();
1947 }
1948 
1949 void NeonEmitter::createIntrinsic(Record *R,
1950                                   SmallVectorImpl<Intrinsic *> &Out) {
1951   std::string Name = std::string(R->getValueAsString("Name"));
1952   std::string Proto = std::string(R->getValueAsString("Prototype"));
1953   std::string Types = std::string(R->getValueAsString("Types"));
1954   Record *OperationRec = R->getValueAsDef("Operation");
1955   bool BigEndianSafe  = R->getValueAsBit("BigEndianSafe");
1956   std::string ArchGuard = std::string(R->getValueAsString("ArchGuard"));
1957   std::string TargetGuard = std::string(R->getValueAsString("TargetGuard"));
1958   bool IsUnavailable = OperationRec->getValueAsBit("Unavailable");
1959   std::string CartesianProductWith = std::string(R->getValueAsString("CartesianProductWith"));
1960 
1961   // Set the global current record. This allows assert_with_loc to produce
1962   // decent location information even when highly nested.
1963   CurrentRecord = R;
1964 
1965   ListInit *Body = OperationRec->getValueAsListInit("Ops");
1966 
1967   std::vector<TypeSpec> TypeSpecs = TypeSpec::fromTypeSpecs(Types);
1968 
1969   ClassKind CK = ClassNone;
1970   if (R->getSuperClasses().size() >= 2)
1971     CK = ClassMap[R->getSuperClasses()[1].first];
1972 
1973   std::vector<std::pair<TypeSpec, TypeSpec>> NewTypeSpecs;
1974   if (!CartesianProductWith.empty()) {
1975     std::vector<TypeSpec> ProductTypeSpecs = TypeSpec::fromTypeSpecs(CartesianProductWith);
1976     for (auto TS : TypeSpecs) {
1977       Type DefaultT(TS, ".");
1978       for (auto SrcTS : ProductTypeSpecs) {
1979         Type DefaultSrcT(SrcTS, ".");
1980         if (TS == SrcTS ||
1981             DefaultSrcT.getSizeInBits() != DefaultT.getSizeInBits())
1982           continue;
1983         NewTypeSpecs.push_back(std::make_pair(TS, SrcTS));
1984       }
1985     }
1986   } else {
1987     for (auto TS : TypeSpecs) {
1988       NewTypeSpecs.push_back(std::make_pair(TS, TS));
1989     }
1990   }
1991 
1992   llvm::sort(NewTypeSpecs);
1993   NewTypeSpecs.erase(std::unique(NewTypeSpecs.begin(), NewTypeSpecs.end()),
1994 		     NewTypeSpecs.end());
1995   auto &Entry = IntrinsicMap[Name];
1996 
1997   for (auto &I : NewTypeSpecs) {
1998     Entry.emplace_back(R, Name, Proto, I.first, I.second, CK, Body, *this,
1999                        ArchGuard, TargetGuard, IsUnavailable, BigEndianSafe);
2000     Out.push_back(&Entry.back());
2001   }
2002 
2003   CurrentRecord = nullptr;
2004 }
2005 
2006 /// genBuiltinsDef: Generate the BuiltinsARM.def and  BuiltinsAArch64.def
2007 /// declaration of builtins, checking for unique builtin declarations.
2008 void NeonEmitter::genBuiltinsDef(raw_ostream &OS,
2009                                  SmallVectorImpl<Intrinsic *> &Defs) {
2010   OS << "#ifdef GET_NEON_BUILTINS\n";
2011 
2012   // We only want to emit a builtin once, and we want to emit them in
2013   // alphabetical order, so use a std::set.
2014   std::set<std::pair<std::string, std::string>> Builtins;
2015 
2016   for (auto *Def : Defs) {
2017     if (Def->hasBody())
2018       continue;
2019 
2020     std::string S = "__builtin_neon_" + Def->getMangledName() + ", \"";
2021     S += Def->getBuiltinTypeStr();
2022     S += "\", \"n\"";
2023 
2024     Builtins.emplace(S, Def->getTargetGuard());
2025   }
2026 
2027   for (auto &S : Builtins) {
2028     if (S.second == "")
2029       OS << "BUILTIN(";
2030     else
2031       OS << "TARGET_BUILTIN(";
2032     OS << S.first;
2033     if (S.second == "")
2034       OS << ")\n";
2035     else
2036       OS << ", \"" << S.second << "\")\n";
2037   }
2038 
2039   OS << "#endif\n\n";
2040 }
2041 
2042 /// Generate the ARM and AArch64 overloaded type checking code for
2043 /// SemaChecking.cpp, checking for unique builtin declarations.
2044 void NeonEmitter::genOverloadTypeCheckCode(raw_ostream &OS,
2045                                            SmallVectorImpl<Intrinsic *> &Defs) {
2046   OS << "#ifdef GET_NEON_OVERLOAD_CHECK\n";
2047 
2048   // We record each overload check line before emitting because subsequent Inst
2049   // definitions may extend the number of permitted types (i.e. augment the
2050   // Mask). Use std::map to avoid sorting the table by hash number.
2051   struct OverloadInfo {
2052     uint64_t Mask;
2053     int PtrArgNum;
2054     bool HasConstPtr;
2055     OverloadInfo() : Mask(0ULL), PtrArgNum(0), HasConstPtr(false) {}
2056   };
2057   std::map<std::string, OverloadInfo> OverloadMap;
2058 
2059   for (auto *Def : Defs) {
2060     // If the def has a body (that is, it has Operation DAGs), it won't call
2061     // __builtin_neon_* so we don't need to generate a definition for it.
2062     if (Def->hasBody())
2063       continue;
2064     // Functions which have a scalar argument cannot be overloaded, no need to
2065     // check them if we are emitting the type checking code.
2066     if (Def->protoHasScalar())
2067       continue;
2068 
2069     uint64_t Mask = 0ULL;
2070     Mask |= 1ULL << Def->getPolymorphicKeyType().getNeonEnum();
2071 
2072     // Check if the function has a pointer or const pointer argument.
2073     int PtrArgNum = -1;
2074     bool HasConstPtr = false;
2075     for (unsigned I = 0; I < Def->getNumParams(); ++I) {
2076       const auto &Type = Def->getParamType(I);
2077       if (Type.isPointer()) {
2078         PtrArgNum = I;
2079         HasConstPtr = Type.isConstPointer();
2080       }
2081     }
2082 
2083     // For sret builtins, adjust the pointer argument index.
2084     if (PtrArgNum >= 0 && Def->getReturnType().getNumVectors() > 1)
2085       PtrArgNum += 1;
2086 
2087     std::string Name = Def->getName();
2088     // Omit type checking for the pointer arguments of vld1_lane, vld1_dup,
2089     // and vst1_lane intrinsics.  Using a pointer to the vector element
2090     // type with one of those operations causes codegen to select an aligned
2091     // load/store instruction.  If you want an unaligned operation,
2092     // the pointer argument needs to have less alignment than element type,
2093     // so just accept any pointer type.
2094     if (Name == "vld1_lane" || Name == "vld1_dup" || Name == "vst1_lane") {
2095       PtrArgNum = -1;
2096       HasConstPtr = false;
2097     }
2098 
2099     if (Mask) {
2100       std::string Name = Def->getMangledName();
2101       OverloadMap.insert(std::make_pair(Name, OverloadInfo()));
2102       OverloadInfo &OI = OverloadMap[Name];
2103       OI.Mask |= Mask;
2104       OI.PtrArgNum |= PtrArgNum;
2105       OI.HasConstPtr = HasConstPtr;
2106     }
2107   }
2108 
2109   for (auto &I : OverloadMap) {
2110     OverloadInfo &OI = I.second;
2111 
2112     OS << "case NEON::BI__builtin_neon_" << I.first << ": ";
2113     OS << "mask = 0x" << Twine::utohexstr(OI.Mask) << "ULL";
2114     if (OI.PtrArgNum >= 0)
2115       OS << "; PtrArgNum = " << OI.PtrArgNum;
2116     if (OI.HasConstPtr)
2117       OS << "; HasConstPtr = true";
2118     OS << "; break;\n";
2119   }
2120   OS << "#endif\n\n";
2121 }
2122 
2123 void NeonEmitter::genIntrinsicRangeCheckCode(raw_ostream &OS,
2124                                         SmallVectorImpl<Intrinsic *> &Defs) {
2125   OS << "#ifdef GET_NEON_IMMEDIATE_CHECK\n";
2126 
2127   std::set<std::string> Emitted;
2128 
2129   for (auto *Def : Defs) {
2130     if (Def->hasBody())
2131       continue;
2132     // Functions which do not have an immediate do not need to have range
2133     // checking code emitted.
2134     if (!Def->hasImmediate())
2135       continue;
2136     if (Emitted.find(Def->getMangledName()) != Emitted.end())
2137       continue;
2138 
2139     std::string LowerBound, UpperBound;
2140 
2141     Record *R = Def->getRecord();
2142     if (R->getValueAsBit("isVXAR")) {
2143       //VXAR takes an immediate in the range [0, 63]
2144       LowerBound = "0";
2145       UpperBound = "63";
2146     } else if (R->getValueAsBit("isVCVT_N")) {
2147       // VCVT between floating- and fixed-point values takes an immediate
2148       // in the range [1, 32) for f32 or [1, 64) for f64 or [1, 16) for f16.
2149       LowerBound = "1";
2150 	  if (Def->getBaseType().getElementSizeInBits() == 16 ||
2151 		  Def->getName().find('h') != std::string::npos)
2152 		// VCVTh operating on FP16 intrinsics in range [1, 16)
2153 		UpperBound = "15";
2154 	  else if (Def->getBaseType().getElementSizeInBits() == 32)
2155         UpperBound = "31";
2156 	  else
2157         UpperBound = "63";
2158     } else if (R->getValueAsBit("isScalarShift")) {
2159       // Right shifts have an 'r' in the name, left shifts do not. Convert
2160       // instructions have the same bounds and right shifts.
2161       if (Def->getName().find('r') != std::string::npos ||
2162           Def->getName().find("cvt") != std::string::npos)
2163         LowerBound = "1";
2164 
2165       UpperBound = utostr(Def->getReturnType().getElementSizeInBits() - 1);
2166     } else if (R->getValueAsBit("isShift")) {
2167       // Builtins which are overloaded by type will need to have their upper
2168       // bound computed at Sema time based on the type constant.
2169 
2170       // Right shifts have an 'r' in the name, left shifts do not.
2171       if (Def->getName().find('r') != std::string::npos)
2172         LowerBound = "1";
2173       UpperBound = "RFT(TV, true)";
2174     } else if (Def->getClassKind(true) == ClassB) {
2175       // ClassB intrinsics have a type (and hence lane number) that is only
2176       // known at runtime.
2177       if (R->getValueAsBit("isLaneQ"))
2178         UpperBound = "RFT(TV, false, true)";
2179       else
2180         UpperBound = "RFT(TV, false, false)";
2181     } else {
2182       // The immediate generally refers to a lane in the preceding argument.
2183       assert(Def->getImmediateIdx() > 0);
2184       Type T = Def->getParamType(Def->getImmediateIdx() - 1);
2185       UpperBound = utostr(T.getNumElements() - 1);
2186     }
2187 
2188     // Calculate the index of the immediate that should be range checked.
2189     unsigned Idx = Def->getNumParams();
2190     if (Def->hasImmediate())
2191       Idx = Def->getGeneratedParamIdx(Def->getImmediateIdx());
2192 
2193     OS << "case NEON::BI__builtin_neon_" << Def->getMangledName() << ": "
2194        << "i = " << Idx << ";";
2195     if (!LowerBound.empty())
2196       OS << " l = " << LowerBound << ";";
2197     if (!UpperBound.empty())
2198       OS << " u = " << UpperBound << ";";
2199     OS << " break;\n";
2200 
2201     Emitted.insert(Def->getMangledName());
2202   }
2203 
2204   OS << "#endif\n\n";
2205 }
2206 
2207 /// runHeader - Emit a file with sections defining:
2208 /// 1. the NEON section of BuiltinsARM.def and BuiltinsAArch64.def.
2209 /// 2. the SemaChecking code for the type overload checking.
2210 /// 3. the SemaChecking code for validation of intrinsic immediate arguments.
2211 void NeonEmitter::runHeader(raw_ostream &OS) {
2212   std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
2213 
2214   SmallVector<Intrinsic *, 128> Defs;
2215   for (auto *R : RV)
2216     createIntrinsic(R, Defs);
2217 
2218   // Generate shared BuiltinsXXX.def
2219   genBuiltinsDef(OS, Defs);
2220 
2221   // Generate ARM overloaded type checking code for SemaChecking.cpp
2222   genOverloadTypeCheckCode(OS, Defs);
2223 
2224   // Generate ARM range checking code for shift/lane immediates.
2225   genIntrinsicRangeCheckCode(OS, Defs);
2226 }
2227 
2228 static void emitNeonTypeDefs(const std::string& types, raw_ostream &OS) {
2229   std::string TypedefTypes(types);
2230   std::vector<TypeSpec> TDTypeVec = TypeSpec::fromTypeSpecs(TypedefTypes);
2231 
2232   // Emit vector typedefs.
2233   bool InIfdef = false;
2234   for (auto &TS : TDTypeVec) {
2235     bool IsA64 = false;
2236     Type T(TS, ".");
2237     if (T.isDouble())
2238       IsA64 = true;
2239 
2240     if (InIfdef && !IsA64) {
2241       OS << "#endif\n";
2242       InIfdef = false;
2243     }
2244     if (!InIfdef && IsA64) {
2245       OS << "#ifdef __aarch64__\n";
2246       InIfdef = true;
2247     }
2248 
2249     if (T.isPoly())
2250       OS << "typedef __attribute__((neon_polyvector_type(";
2251     else
2252       OS << "typedef __attribute__((neon_vector_type(";
2253 
2254     Type T2 = T;
2255     T2.makeScalar();
2256     OS << T.getNumElements() << "))) ";
2257     OS << T2.str();
2258     OS << " " << T.str() << ";\n";
2259   }
2260   if (InIfdef)
2261     OS << "#endif\n";
2262   OS << "\n";
2263 
2264   // Emit struct typedefs.
2265   InIfdef = false;
2266   for (unsigned NumMembers = 2; NumMembers <= 4; ++NumMembers) {
2267     for (auto &TS : TDTypeVec) {
2268       bool IsA64 = false;
2269       Type T(TS, ".");
2270       if (T.isDouble())
2271         IsA64 = true;
2272 
2273       if (InIfdef && !IsA64) {
2274         OS << "#endif\n";
2275         InIfdef = false;
2276       }
2277       if (!InIfdef && IsA64) {
2278         OS << "#ifdef __aarch64__\n";
2279         InIfdef = true;
2280       }
2281 
2282       const char Mods[] = { static_cast<char>('2' + (NumMembers - 2)), 0};
2283       Type VT(TS, Mods);
2284       OS << "typedef struct " << VT.str() << " {\n";
2285       OS << "  " << T.str() << " val";
2286       OS << "[" << NumMembers << "]";
2287       OS << ";\n} ";
2288       OS << VT.str() << ";\n";
2289       OS << "\n";
2290     }
2291   }
2292   if (InIfdef)
2293     OS << "#endif\n";
2294 }
2295 
2296 /// run - Read the records in arm_neon.td and output arm_neon.h.  arm_neon.h
2297 /// is comprised of type definitions and function declarations.
2298 void NeonEmitter::run(raw_ostream &OS) {
2299   OS << "/*===---- arm_neon.h - ARM Neon intrinsics "
2300         "------------------------------"
2301         "---===\n"
2302         " *\n"
2303         " * Permission is hereby granted, free of charge, to any person "
2304         "obtaining "
2305         "a copy\n"
2306         " * of this software and associated documentation files (the "
2307         "\"Software\"),"
2308         " to deal\n"
2309         " * in the Software without restriction, including without limitation "
2310         "the "
2311         "rights\n"
2312         " * to use, copy, modify, merge, publish, distribute, sublicense, "
2313         "and/or sell\n"
2314         " * copies of the Software, and to permit persons to whom the Software "
2315         "is\n"
2316         " * furnished to do so, subject to the following conditions:\n"
2317         " *\n"
2318         " * The above copyright notice and this permission notice shall be "
2319         "included in\n"
2320         " * all copies or substantial portions of the Software.\n"
2321         " *\n"
2322         " * THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, "
2323         "EXPRESS OR\n"
2324         " * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF "
2325         "MERCHANTABILITY,\n"
2326         " * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT "
2327         "SHALL THE\n"
2328         " * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR "
2329         "OTHER\n"
2330         " * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, "
2331         "ARISING FROM,\n"
2332         " * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER "
2333         "DEALINGS IN\n"
2334         " * THE SOFTWARE.\n"
2335         " *\n"
2336         " *===-----------------------------------------------------------------"
2337         "---"
2338         "---===\n"
2339         " */\n\n";
2340 
2341   OS << "#ifndef __ARM_NEON_H\n";
2342   OS << "#define __ARM_NEON_H\n\n";
2343 
2344   OS << "#ifndef __ARM_FP\n";
2345   OS << "#error \"NEON intrinsics not available with the soft-float ABI. "
2346         "Please use -mfloat-abi=softfp or -mfloat-abi=hard\"\n";
2347   OS << "#else\n\n";
2348 
2349   OS << "#if !defined(__ARM_NEON)\n";
2350   OS << "#error \"NEON support not enabled\"\n";
2351   OS << "#else\n\n";
2352 
2353   OS << "#include <stdint.h>\n\n";
2354 
2355   OS << "#include <arm_bf16.h>\n";
2356 
2357   // Emit NEON-specific scalar typedefs.
2358   OS << "typedef float float32_t;\n";
2359   OS << "typedef __fp16 float16_t;\n";
2360 
2361   OS << "#ifdef __aarch64__\n";
2362   OS << "typedef double float64_t;\n";
2363   OS << "#endif\n\n";
2364 
2365   // For now, signedness of polynomial types depends on target
2366   OS << "#ifdef __aarch64__\n";
2367   OS << "typedef uint8_t poly8_t;\n";
2368   OS << "typedef uint16_t poly16_t;\n";
2369   OS << "typedef uint64_t poly64_t;\n";
2370   OS << "typedef __uint128_t poly128_t;\n";
2371   OS << "#else\n";
2372   OS << "typedef int8_t poly8_t;\n";
2373   OS << "typedef int16_t poly16_t;\n";
2374   OS << "typedef int64_t poly64_t;\n";
2375   OS << "#endif\n";
2376 
2377   emitNeonTypeDefs("cQcsQsiQilQlUcQUcUsQUsUiQUiUlQUlhQhfQfdQdPcQPcPsQPsPlQPl", OS);
2378 
2379   emitNeonTypeDefs("bQb", OS);
2380 
2381   OS << "#define __ai static __inline__ __attribute__((__always_inline__, "
2382         "__nodebug__))\n\n";
2383 
2384   SmallVector<Intrinsic *, 128> Defs;
2385   std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
2386   for (auto *R : RV)
2387     createIntrinsic(R, Defs);
2388 
2389   for (auto *I : Defs)
2390     I->indexBody();
2391 
2392   llvm::stable_sort(Defs, llvm::deref<std::less<>>());
2393 
2394   // Only emit a def when its requirements have been met.
2395   // FIXME: This loop could be made faster, but it's fast enough for now.
2396   bool MadeProgress = true;
2397   std::string InGuard;
2398   while (!Defs.empty() && MadeProgress) {
2399     MadeProgress = false;
2400 
2401     for (SmallVector<Intrinsic *, 128>::iterator I = Defs.begin();
2402          I != Defs.end(); /*No step*/) {
2403       bool DependenciesSatisfied = true;
2404       for (auto *II : (*I)->getDependencies()) {
2405         if (llvm::is_contained(Defs, II))
2406           DependenciesSatisfied = false;
2407       }
2408       if (!DependenciesSatisfied) {
2409         // Try the next one.
2410         ++I;
2411         continue;
2412       }
2413 
2414       // Emit #endif/#if pair if needed.
2415       if ((*I)->getArchGuard() != InGuard) {
2416         if (!InGuard.empty())
2417           OS << "#endif\n";
2418         InGuard = (*I)->getArchGuard();
2419         if (!InGuard.empty())
2420           OS << "#if " << InGuard << "\n";
2421       }
2422 
2423       // Actually generate the intrinsic code.
2424       OS << (*I)->generate();
2425 
2426       MadeProgress = true;
2427       I = Defs.erase(I);
2428     }
2429   }
2430   assert(Defs.empty() && "Some requirements were not satisfied!");
2431   if (!InGuard.empty())
2432     OS << "#endif\n";
2433 
2434   OS << "\n";
2435   OS << "#undef __ai\n\n";
2436   OS << "#endif /* if !defined(__ARM_NEON) */\n";
2437   OS << "#endif /* ifndef __ARM_FP */\n";
2438   OS << "#endif /* __ARM_NEON_H */\n";
2439 }
2440 
2441 /// run - Read the records in arm_fp16.td and output arm_fp16.h.  arm_fp16.h
2442 /// is comprised of type definitions and function declarations.
2443 void NeonEmitter::runFP16(raw_ostream &OS) {
2444   OS << "/*===---- arm_fp16.h - ARM FP16 intrinsics "
2445         "------------------------------"
2446         "---===\n"
2447         " *\n"
2448         " * Permission is hereby granted, free of charge, to any person "
2449         "obtaining a copy\n"
2450         " * of this software and associated documentation files (the "
2451 				"\"Software\"), to deal\n"
2452         " * in the Software without restriction, including without limitation "
2453 				"the rights\n"
2454         " * to use, copy, modify, merge, publish, distribute, sublicense, "
2455 				"and/or sell\n"
2456         " * copies of the Software, and to permit persons to whom the Software "
2457 				"is\n"
2458         " * furnished to do so, subject to the following conditions:\n"
2459         " *\n"
2460         " * The above copyright notice and this permission notice shall be "
2461         "included in\n"
2462         " * all copies or substantial portions of the Software.\n"
2463         " *\n"
2464         " * THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, "
2465         "EXPRESS OR\n"
2466         " * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF "
2467         "MERCHANTABILITY,\n"
2468         " * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT "
2469         "SHALL THE\n"
2470         " * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR "
2471         "OTHER\n"
2472         " * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, "
2473         "ARISING FROM,\n"
2474         " * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER "
2475         "DEALINGS IN\n"
2476         " * THE SOFTWARE.\n"
2477         " *\n"
2478         " *===-----------------------------------------------------------------"
2479         "---"
2480         "---===\n"
2481         " */\n\n";
2482 
2483   OS << "#ifndef __ARM_FP16_H\n";
2484   OS << "#define __ARM_FP16_H\n\n";
2485 
2486   OS << "#include <stdint.h>\n\n";
2487 
2488   OS << "typedef __fp16 float16_t;\n";
2489 
2490   OS << "#define __ai static __inline__ __attribute__((__always_inline__, "
2491         "__nodebug__))\n\n";
2492 
2493   SmallVector<Intrinsic *, 128> Defs;
2494   std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
2495   for (auto *R : RV)
2496     createIntrinsic(R, Defs);
2497 
2498   for (auto *I : Defs)
2499     I->indexBody();
2500 
2501   llvm::stable_sort(Defs, llvm::deref<std::less<>>());
2502 
2503   // Only emit a def when its requirements have been met.
2504   // FIXME: This loop could be made faster, but it's fast enough for now.
2505   bool MadeProgress = true;
2506   std::string InGuard;
2507   while (!Defs.empty() && MadeProgress) {
2508     MadeProgress = false;
2509 
2510     for (SmallVector<Intrinsic *, 128>::iterator I = Defs.begin();
2511          I != Defs.end(); /*No step*/) {
2512       bool DependenciesSatisfied = true;
2513       for (auto *II : (*I)->getDependencies()) {
2514         if (llvm::is_contained(Defs, II))
2515           DependenciesSatisfied = false;
2516       }
2517       if (!DependenciesSatisfied) {
2518         // Try the next one.
2519         ++I;
2520         continue;
2521       }
2522 
2523       // Emit #endif/#if pair if needed.
2524       if ((*I)->getArchGuard() != InGuard) {
2525         if (!InGuard.empty())
2526           OS << "#endif\n";
2527         InGuard = (*I)->getArchGuard();
2528         if (!InGuard.empty())
2529           OS << "#if " << InGuard << "\n";
2530       }
2531 
2532       // Actually generate the intrinsic code.
2533       OS << (*I)->generate();
2534 
2535       MadeProgress = true;
2536       I = Defs.erase(I);
2537     }
2538   }
2539   assert(Defs.empty() && "Some requirements were not satisfied!");
2540   if (!InGuard.empty())
2541     OS << "#endif\n";
2542 
2543   OS << "\n";
2544   OS << "#undef __ai\n\n";
2545   OS << "#endif /* __ARM_FP16_H */\n";
2546 }
2547 
2548 void NeonEmitter::runBF16(raw_ostream &OS) {
2549   OS << "/*===---- arm_bf16.h - ARM BF16 intrinsics "
2550         "-----------------------------------===\n"
2551         " *\n"
2552         " *\n"
2553         " * Part of the LLVM Project, under the Apache License v2.0 with LLVM "
2554         "Exceptions.\n"
2555         " * See https://llvm.org/LICENSE.txt for license information.\n"
2556         " * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception\n"
2557         " *\n"
2558         " *===-----------------------------------------------------------------"
2559         "------===\n"
2560         " */\n\n";
2561 
2562   OS << "#ifndef __ARM_BF16_H\n";
2563   OS << "#define __ARM_BF16_H\n\n";
2564 
2565   OS << "typedef __bf16 bfloat16_t;\n";
2566 
2567   OS << "#define __ai static __inline__ __attribute__((__always_inline__, "
2568         "__nodebug__))\n\n";
2569 
2570   SmallVector<Intrinsic *, 128> Defs;
2571   std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
2572   for (auto *R : RV)
2573     createIntrinsic(R, Defs);
2574 
2575   for (auto *I : Defs)
2576     I->indexBody();
2577 
2578   llvm::stable_sort(Defs, llvm::deref<std::less<>>());
2579 
2580   // Only emit a def when its requirements have been met.
2581   // FIXME: This loop could be made faster, but it's fast enough for now.
2582   bool MadeProgress = true;
2583   std::string InGuard;
2584   while (!Defs.empty() && MadeProgress) {
2585     MadeProgress = false;
2586 
2587     for (SmallVector<Intrinsic *, 128>::iterator I = Defs.begin();
2588          I != Defs.end(); /*No step*/) {
2589       bool DependenciesSatisfied = true;
2590       for (auto *II : (*I)->getDependencies()) {
2591         if (llvm::is_contained(Defs, II))
2592           DependenciesSatisfied = false;
2593       }
2594       if (!DependenciesSatisfied) {
2595         // Try the next one.
2596         ++I;
2597         continue;
2598       }
2599 
2600       // Emit #endif/#if pair if needed.
2601       if ((*I)->getArchGuard() != InGuard) {
2602         if (!InGuard.empty())
2603           OS << "#endif\n";
2604         InGuard = (*I)->getArchGuard();
2605         if (!InGuard.empty())
2606           OS << "#if " << InGuard << "\n";
2607       }
2608 
2609       // Actually generate the intrinsic code.
2610       OS << (*I)->generate();
2611 
2612       MadeProgress = true;
2613       I = Defs.erase(I);
2614     }
2615   }
2616   assert(Defs.empty() && "Some requirements were not satisfied!");
2617   if (!InGuard.empty())
2618     OS << "#endif\n";
2619 
2620   OS << "\n";
2621   OS << "#undef __ai\n\n";
2622 
2623   OS << "#endif\n";
2624 }
2625 
2626 void clang::EmitNeon(RecordKeeper &Records, raw_ostream &OS) {
2627   NeonEmitter(Records).run(OS);
2628 }
2629 
2630 void clang::EmitFP16(RecordKeeper &Records, raw_ostream &OS) {
2631   NeonEmitter(Records).runFP16(OS);
2632 }
2633 
2634 void clang::EmitBF16(RecordKeeper &Records, raw_ostream &OS) {
2635   NeonEmitter(Records).runBF16(OS);
2636 }
2637 
2638 void clang::EmitNeonSema(RecordKeeper &Records, raw_ostream &OS) {
2639   NeonEmitter(Records).runHeader(OS);
2640 }
2641 
2642 void clang::EmitNeonTest(RecordKeeper &Records, raw_ostream &OS) {
2643   llvm_unreachable("Neon test generation no longer implemented!");
2644 }
2645