1 //===- NeonEmitter.cpp - Generate arm_neon.h for use with clang -*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This tablegen backend is responsible for emitting arm_neon.h, which includes 10 // a declaration and definition of each function specified by the ARM NEON 11 // compiler interface. See ARM document DUI0348B. 12 // 13 // Each NEON instruction is implemented in terms of 1 or more functions which 14 // are suffixed with the element type of the input vectors. Functions may be 15 // implemented in terms of generic vector operations such as +, *, -, etc. or 16 // by calling a __builtin_-prefixed function which will be handled by clang's 17 // CodeGen library. 18 // 19 // Additional validation code can be generated by this file when runHeader() is 20 // called, rather than the normal run() entry point. 21 // 22 // See also the documentation in include/clang/Basic/arm_neon.td. 23 // 24 //===----------------------------------------------------------------------===// 25 26 #include "TableGenBackends.h" 27 #include "llvm/ADT/ArrayRef.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/STLExtras.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/ADT/StringExtras.h" 32 #include "llvm/ADT/StringRef.h" 33 #include "llvm/Support/Casting.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/TableGen/Error.h" 37 #include "llvm/TableGen/Record.h" 38 #include "llvm/TableGen/SetTheory.h" 39 #include <algorithm> 40 #include <cassert> 41 #include <cctype> 42 #include <cstddef> 43 #include <cstdint> 44 #include <deque> 45 #include <map> 46 #include <optional> 47 #include <set> 48 #include <sstream> 49 #include <string> 50 #include <utility> 51 #include <vector> 52 53 using namespace llvm; 54 55 namespace { 56 57 // While globals are generally bad, this one allows us to perform assertions 58 // liberally and somehow still trace them back to the def they indirectly 59 // came from. 60 static Record *CurrentRecord = nullptr; 61 static void assert_with_loc(bool Assertion, const std::string &Str) { 62 if (!Assertion) { 63 if (CurrentRecord) 64 PrintFatalError(CurrentRecord->getLoc(), Str); 65 else 66 PrintFatalError(Str); 67 } 68 } 69 70 enum ClassKind { 71 ClassNone, 72 ClassI, // generic integer instruction, e.g., "i8" suffix 73 ClassS, // signed/unsigned/poly, e.g., "s8", "u8" or "p8" suffix 74 ClassW, // width-specific instruction, e.g., "8" suffix 75 ClassB, // bitcast arguments with enum argument to specify type 76 ClassL, // Logical instructions which are op instructions 77 // but we need to not emit any suffix for in our 78 // tests. 79 ClassNoTest // Instructions which we do not test since they are 80 // not TRUE instructions. 81 }; 82 83 /// NeonTypeFlags - Flags to identify the types for overloaded Neon 84 /// builtins. These must be kept in sync with the flags in 85 /// include/clang/Basic/TargetBuiltins.h. 86 namespace NeonTypeFlags { 87 88 enum { EltTypeMask = 0xf, UnsignedFlag = 0x10, QuadFlag = 0x20 }; 89 90 enum EltType { 91 Int8, 92 Int16, 93 Int32, 94 Int64, 95 Poly8, 96 Poly16, 97 Poly64, 98 Poly128, 99 Float16, 100 Float32, 101 Float64, 102 BFloat16 103 }; 104 105 } // end namespace NeonTypeFlags 106 107 class NeonEmitter; 108 109 //===----------------------------------------------------------------------===// 110 // TypeSpec 111 //===----------------------------------------------------------------------===// 112 113 /// A TypeSpec is just a simple wrapper around a string, but gets its own type 114 /// for strong typing purposes. 115 /// 116 /// A TypeSpec can be used to create a type. 117 class TypeSpec : public std::string { 118 public: 119 static std::vector<TypeSpec> fromTypeSpecs(StringRef Str) { 120 std::vector<TypeSpec> Ret; 121 TypeSpec Acc; 122 for (char I : Str.str()) { 123 if (islower(I)) { 124 Acc.push_back(I); 125 Ret.push_back(TypeSpec(Acc)); 126 Acc.clear(); 127 } else { 128 Acc.push_back(I); 129 } 130 } 131 return Ret; 132 } 133 }; 134 135 //===----------------------------------------------------------------------===// 136 // Type 137 //===----------------------------------------------------------------------===// 138 139 /// A Type. Not much more to say here. 140 class Type { 141 private: 142 TypeSpec TS; 143 144 enum TypeKind { 145 Void, 146 Float, 147 SInt, 148 UInt, 149 Poly, 150 BFloat16, 151 }; 152 TypeKind Kind; 153 bool Immediate, Constant, Pointer; 154 // ScalarForMangling and NoManglingQ are really not suited to live here as 155 // they are not related to the type. But they live in the TypeSpec (not the 156 // prototype), so this is really the only place to store them. 157 bool ScalarForMangling, NoManglingQ; 158 unsigned Bitwidth, ElementBitwidth, NumVectors; 159 160 public: 161 Type() 162 : Kind(Void), Immediate(false), Constant(false), 163 Pointer(false), ScalarForMangling(false), NoManglingQ(false), 164 Bitwidth(0), ElementBitwidth(0), NumVectors(0) {} 165 166 Type(TypeSpec TS, StringRef CharMods) 167 : TS(std::move(TS)), Kind(Void), Immediate(false), 168 Constant(false), Pointer(false), ScalarForMangling(false), 169 NoManglingQ(false), Bitwidth(0), ElementBitwidth(0), NumVectors(0) { 170 applyModifiers(CharMods); 171 } 172 173 /// Returns a type representing "void". 174 static Type getVoid() { return Type(); } 175 176 bool operator==(const Type &Other) const { return str() == Other.str(); } 177 bool operator!=(const Type &Other) const { return !operator==(Other); } 178 179 // 180 // Query functions 181 // 182 bool isScalarForMangling() const { return ScalarForMangling; } 183 bool noManglingQ() const { return NoManglingQ; } 184 185 bool isPointer() const { return Pointer; } 186 bool isValue() const { return !isVoid() && !isPointer(); } 187 bool isScalar() const { return isValue() && NumVectors == 0; } 188 bool isVector() const { return isValue() && NumVectors > 0; } 189 bool isConstPointer() const { return Constant; } 190 bool isFloating() const { return Kind == Float; } 191 bool isInteger() const { return Kind == SInt || Kind == UInt; } 192 bool isPoly() const { return Kind == Poly; } 193 bool isSigned() const { return Kind == SInt; } 194 bool isImmediate() const { return Immediate; } 195 bool isFloat() const { return isFloating() && ElementBitwidth == 32; } 196 bool isDouble() const { return isFloating() && ElementBitwidth == 64; } 197 bool isHalf() const { return isFloating() && ElementBitwidth == 16; } 198 bool isChar() const { return ElementBitwidth == 8; } 199 bool isShort() const { return isInteger() && ElementBitwidth == 16; } 200 bool isInt() const { return isInteger() && ElementBitwidth == 32; } 201 bool isLong() const { return isInteger() && ElementBitwidth == 64; } 202 bool isVoid() const { return Kind == Void; } 203 bool isBFloat16() const { return Kind == BFloat16; } 204 unsigned getNumElements() const { return Bitwidth / ElementBitwidth; } 205 unsigned getSizeInBits() const { return Bitwidth; } 206 unsigned getElementSizeInBits() const { return ElementBitwidth; } 207 unsigned getNumVectors() const { return NumVectors; } 208 209 // 210 // Mutator functions 211 // 212 void makeUnsigned() { 213 assert(!isVoid() && "not a potentially signed type"); 214 Kind = UInt; 215 } 216 void makeSigned() { 217 assert(!isVoid() && "not a potentially signed type"); 218 Kind = SInt; 219 } 220 221 void makeInteger(unsigned ElemWidth, bool Sign) { 222 assert(!isVoid() && "converting void to int probably not useful"); 223 Kind = Sign ? SInt : UInt; 224 Immediate = false; 225 ElementBitwidth = ElemWidth; 226 } 227 228 void makeImmediate(unsigned ElemWidth) { 229 Kind = SInt; 230 Immediate = true; 231 ElementBitwidth = ElemWidth; 232 } 233 234 void makeScalar() { 235 Bitwidth = ElementBitwidth; 236 NumVectors = 0; 237 } 238 239 void makeOneVector() { 240 assert(isVector()); 241 NumVectors = 1; 242 } 243 244 void make32BitElement() { 245 assert_with_loc(Bitwidth > 32, "Not enough bits to make it 32!"); 246 ElementBitwidth = 32; 247 } 248 249 void doubleLanes() { 250 assert_with_loc(Bitwidth != 128, "Can't get bigger than 128!"); 251 Bitwidth = 128; 252 } 253 254 void halveLanes() { 255 assert_with_loc(Bitwidth != 64, "Can't get smaller than 64!"); 256 Bitwidth = 64; 257 } 258 259 /// Return the C string representation of a type, which is the typename 260 /// defined in stdint.h or arm_neon.h. 261 std::string str() const; 262 263 /// Return the string representation of a type, which is an encoded 264 /// string for passing to the BUILTIN() macro in Builtins.def. 265 std::string builtin_str() const; 266 267 /// Return the value in NeonTypeFlags for this type. 268 unsigned getNeonEnum() const; 269 270 /// Parse a type from a stdint.h or arm_neon.h typedef name, 271 /// for example uint32x2_t or int64_t. 272 static Type fromTypedefName(StringRef Name); 273 274 private: 275 /// Creates the type based on the typespec string in TS. 276 /// Sets "Quad" to true if the "Q" or "H" modifiers were 277 /// seen. This is needed by applyModifier as some modifiers 278 /// only take effect if the type size was changed by "Q" or "H". 279 void applyTypespec(bool &Quad); 280 /// Applies prototype modifiers to the type. 281 void applyModifiers(StringRef Mods); 282 }; 283 284 //===----------------------------------------------------------------------===// 285 // Variable 286 //===----------------------------------------------------------------------===// 287 288 /// A variable is a simple class that just has a type and a name. 289 class Variable { 290 Type T; 291 std::string N; 292 293 public: 294 Variable() : T(Type::getVoid()) {} 295 Variable(Type T, std::string N) : T(std::move(T)), N(std::move(N)) {} 296 297 Type getType() const { return T; } 298 std::string getName() const { return "__" + N; } 299 }; 300 301 //===----------------------------------------------------------------------===// 302 // Intrinsic 303 //===----------------------------------------------------------------------===// 304 305 /// The main grunt class. This represents an instantiation of an intrinsic with 306 /// a particular typespec and prototype. 307 class Intrinsic { 308 /// The Record this intrinsic was created from. 309 Record *R; 310 /// The unmangled name. 311 std::string Name; 312 /// The input and output typespecs. InTS == OutTS except when 313 /// CartesianProductWith is non-empty - this is the case for vreinterpret. 314 TypeSpec OutTS, InTS; 315 /// The base class kind. Most intrinsics use ClassS, which has full type 316 /// info for integers (s32/u32). Some use ClassI, which doesn't care about 317 /// signedness (i32), while some (ClassB) have no type at all, only a width 318 /// (32). 319 ClassKind CK; 320 /// The list of DAGs for the body. May be empty, in which case we should 321 /// emit a builtin call. 322 ListInit *Body; 323 /// The architectural ifdef guard. 324 std::string ArchGuard; 325 /// The architectural target() guard. 326 std::string TargetGuard; 327 /// Set if the Unavailable bit is 1. This means we don't generate a body, 328 /// just an "unavailable" attribute on a declaration. 329 bool IsUnavailable; 330 /// Is this intrinsic safe for big-endian? or does it need its arguments 331 /// reversing? 332 bool BigEndianSafe; 333 334 /// The types of return value [0] and parameters [1..]. 335 std::vector<Type> Types; 336 /// The index of the key type passed to CGBuiltin.cpp for polymorphic calls. 337 int PolymorphicKeyType; 338 /// The local variables defined. 339 std::map<std::string, Variable> Variables; 340 /// NeededEarly - set if any other intrinsic depends on this intrinsic. 341 bool NeededEarly; 342 /// UseMacro - set if we should implement using a macro or unset for a 343 /// function. 344 bool UseMacro; 345 /// The set of intrinsics that this intrinsic uses/requires. 346 std::set<Intrinsic *> Dependencies; 347 /// The "base type", which is Type('d', OutTS). InBaseType is only 348 /// different if CartesianProductWith is non-empty (for vreinterpret). 349 Type BaseType, InBaseType; 350 /// The return variable. 351 Variable RetVar; 352 /// A postfix to apply to every variable. Defaults to "". 353 std::string VariablePostfix; 354 355 NeonEmitter &Emitter; 356 std::stringstream OS; 357 358 bool isBigEndianSafe() const { 359 if (BigEndianSafe) 360 return true; 361 362 for (const auto &T : Types){ 363 if (T.isVector() && T.getNumElements() > 1) 364 return false; 365 } 366 return true; 367 } 368 369 public: 370 Intrinsic(Record *R, StringRef Name, StringRef Proto, TypeSpec OutTS, 371 TypeSpec InTS, ClassKind CK, ListInit *Body, NeonEmitter &Emitter, 372 StringRef ArchGuard, StringRef TargetGuard, bool IsUnavailable, bool BigEndianSafe) 373 : R(R), Name(Name.str()), OutTS(OutTS), InTS(InTS), CK(CK), Body(Body), 374 ArchGuard(ArchGuard.str()), TargetGuard(TargetGuard.str()), IsUnavailable(IsUnavailable), 375 BigEndianSafe(BigEndianSafe), PolymorphicKeyType(0), NeededEarly(false), 376 UseMacro(false), BaseType(OutTS, "."), InBaseType(InTS, "."), 377 Emitter(Emitter) { 378 // Modify the TypeSpec per-argument to get a concrete Type, and create 379 // known variables for each. 380 // Types[0] is the return value. 381 unsigned Pos = 0; 382 Types.emplace_back(OutTS, getNextModifiers(Proto, Pos)); 383 StringRef Mods = getNextModifiers(Proto, Pos); 384 while (!Mods.empty()) { 385 Types.emplace_back(InTS, Mods); 386 if (Mods.contains('!')) 387 PolymorphicKeyType = Types.size() - 1; 388 389 Mods = getNextModifiers(Proto, Pos); 390 } 391 392 for (const auto &Type : Types) { 393 // If this builtin takes an immediate argument, we need to #define it rather 394 // than use a standard declaration, so that SemaChecking can range check 395 // the immediate passed by the user. 396 397 // Pointer arguments need to use macros to avoid hiding aligned attributes 398 // from the pointer type. 399 400 // It is not permitted to pass or return an __fp16 by value, so intrinsics 401 // taking a scalar float16_t must be implemented as macros. 402 if (Type.isImmediate() || Type.isPointer() || 403 (Type.isScalar() && Type.isHalf())) 404 UseMacro = true; 405 } 406 } 407 408 /// Get the Record that this intrinsic is based off. 409 Record *getRecord() const { return R; } 410 /// Get the set of Intrinsics that this intrinsic calls. 411 /// this is the set of immediate dependencies, NOT the 412 /// transitive closure. 413 const std::set<Intrinsic *> &getDependencies() const { return Dependencies; } 414 /// Get the architectural guard string (#ifdef). 415 std::string getArchGuard() const { return ArchGuard; } 416 std::string getTargetGuard() const { return TargetGuard; } 417 /// Get the non-mangled name. 418 std::string getName() const { return Name; } 419 420 /// Return true if the intrinsic takes an immediate operand. 421 bool hasImmediate() const { 422 return llvm::any_of(Types, [](const Type &T) { return T.isImmediate(); }); 423 } 424 425 /// Return the parameter index of the immediate operand. 426 unsigned getImmediateIdx() const { 427 for (unsigned Idx = 0; Idx < Types.size(); ++Idx) 428 if (Types[Idx].isImmediate()) 429 return Idx - 1; 430 llvm_unreachable("Intrinsic has no immediate"); 431 } 432 433 434 unsigned getNumParams() const { return Types.size() - 1; } 435 Type getReturnType() const { return Types[0]; } 436 Type getParamType(unsigned I) const { return Types[I + 1]; } 437 Type getBaseType() const { return BaseType; } 438 Type getPolymorphicKeyType() const { return Types[PolymorphicKeyType]; } 439 440 /// Return true if the prototype has a scalar argument. 441 bool protoHasScalar() const; 442 443 /// Return the index that parameter PIndex will sit at 444 /// in a generated function call. This is often just PIndex, 445 /// but may not be as things such as multiple-vector operands 446 /// and sret parameters need to be taken into account. 447 unsigned getGeneratedParamIdx(unsigned PIndex) { 448 unsigned Idx = 0; 449 if (getReturnType().getNumVectors() > 1) 450 // Multiple vectors are passed as sret. 451 ++Idx; 452 453 for (unsigned I = 0; I < PIndex; ++I) 454 Idx += std::max(1U, getParamType(I).getNumVectors()); 455 456 return Idx; 457 } 458 459 bool hasBody() const { return Body && !Body->getValues().empty(); } 460 461 void setNeededEarly() { NeededEarly = true; } 462 463 bool operator<(const Intrinsic &Other) const { 464 // Sort lexicographically on a three-tuple (ArchGuard, TargetGuard, Name) 465 if (ArchGuard != Other.ArchGuard) 466 return ArchGuard < Other.ArchGuard; 467 if (TargetGuard != Other.TargetGuard) 468 return TargetGuard < Other.TargetGuard; 469 return Name < Other.Name; 470 } 471 472 ClassKind getClassKind(bool UseClassBIfScalar = false) { 473 if (UseClassBIfScalar && !protoHasScalar()) 474 return ClassB; 475 return CK; 476 } 477 478 /// Return the name, mangled with type information. 479 /// If ForceClassS is true, use ClassS (u32/s32) instead 480 /// of the intrinsic's own type class. 481 std::string getMangledName(bool ForceClassS = false) const; 482 /// Return the type code for a builtin function call. 483 std::string getInstTypeCode(Type T, ClassKind CK) const; 484 /// Return the type string for a BUILTIN() macro in Builtins.def. 485 std::string getBuiltinTypeStr(); 486 487 /// Generate the intrinsic, returning code. 488 std::string generate(); 489 /// Perform type checking and populate the dependency graph, but 490 /// don't generate code yet. 491 void indexBody(); 492 493 private: 494 StringRef getNextModifiers(StringRef Proto, unsigned &Pos) const; 495 496 std::string mangleName(std::string Name, ClassKind CK) const; 497 498 void initVariables(); 499 std::string replaceParamsIn(std::string S); 500 501 void emitBodyAsBuiltinCall(); 502 503 void generateImpl(bool ReverseArguments, 504 StringRef NamePrefix, StringRef CallPrefix); 505 void emitReturn(); 506 void emitBody(StringRef CallPrefix); 507 void emitShadowedArgs(); 508 void emitArgumentReversal(); 509 void emitReturnVarDecl(); 510 void emitReturnReversal(); 511 void emitReverseVariable(Variable &Dest, Variable &Src); 512 void emitNewLine(); 513 void emitClosingBrace(); 514 void emitOpeningBrace(); 515 void emitPrototype(StringRef NamePrefix); 516 517 class DagEmitter { 518 Intrinsic &Intr; 519 StringRef CallPrefix; 520 521 public: 522 DagEmitter(Intrinsic &Intr, StringRef CallPrefix) : 523 Intr(Intr), CallPrefix(CallPrefix) { 524 } 525 std::pair<Type, std::string> emitDagArg(Init *Arg, std::string ArgName); 526 std::pair<Type, std::string> emitDagSaveTemp(DagInit *DI); 527 std::pair<Type, std::string> emitDagSplat(DagInit *DI); 528 std::pair<Type, std::string> emitDagDup(DagInit *DI); 529 std::pair<Type, std::string> emitDagDupTyped(DagInit *DI); 530 std::pair<Type, std::string> emitDagShuffle(DagInit *DI); 531 std::pair<Type, std::string> emitDagCast(DagInit *DI, bool IsBitCast); 532 std::pair<Type, std::string> emitDagCall(DagInit *DI, 533 bool MatchMangledName); 534 std::pair<Type, std::string> emitDagNameReplace(DagInit *DI); 535 std::pair<Type, std::string> emitDagLiteral(DagInit *DI); 536 std::pair<Type, std::string> emitDagOp(DagInit *DI); 537 std::pair<Type, std::string> emitDag(DagInit *DI); 538 }; 539 }; 540 541 //===----------------------------------------------------------------------===// 542 // NeonEmitter 543 //===----------------------------------------------------------------------===// 544 545 class NeonEmitter { 546 RecordKeeper &Records; 547 DenseMap<Record *, ClassKind> ClassMap; 548 std::map<std::string, std::deque<Intrinsic>> IntrinsicMap; 549 unsigned UniqueNumber; 550 551 void createIntrinsic(Record *R, SmallVectorImpl<Intrinsic *> &Out); 552 void genBuiltinsDef(raw_ostream &OS, SmallVectorImpl<Intrinsic *> &Defs); 553 void genStreamingSVECompatibleList(raw_ostream &OS, 554 SmallVectorImpl<Intrinsic *> &Defs); 555 void genOverloadTypeCheckCode(raw_ostream &OS, 556 SmallVectorImpl<Intrinsic *> &Defs); 557 void genIntrinsicRangeCheckCode(raw_ostream &OS, 558 SmallVectorImpl<Intrinsic *> &Defs); 559 560 public: 561 /// Called by Intrinsic - this attempts to get an intrinsic that takes 562 /// the given types as arguments. 563 Intrinsic &getIntrinsic(StringRef Name, ArrayRef<Type> Types, 564 std::optional<std::string> MangledName); 565 566 /// Called by Intrinsic - returns a globally-unique number. 567 unsigned getUniqueNumber() { return UniqueNumber++; } 568 569 NeonEmitter(RecordKeeper &R) : Records(R), UniqueNumber(0) { 570 Record *SI = R.getClass("SInst"); 571 Record *II = R.getClass("IInst"); 572 Record *WI = R.getClass("WInst"); 573 Record *SOpI = R.getClass("SOpInst"); 574 Record *IOpI = R.getClass("IOpInst"); 575 Record *WOpI = R.getClass("WOpInst"); 576 Record *LOpI = R.getClass("LOpInst"); 577 Record *NoTestOpI = R.getClass("NoTestOpInst"); 578 579 ClassMap[SI] = ClassS; 580 ClassMap[II] = ClassI; 581 ClassMap[WI] = ClassW; 582 ClassMap[SOpI] = ClassS; 583 ClassMap[IOpI] = ClassI; 584 ClassMap[WOpI] = ClassW; 585 ClassMap[LOpI] = ClassL; 586 ClassMap[NoTestOpI] = ClassNoTest; 587 } 588 589 // Emit arm_neon.h.inc 590 void run(raw_ostream &o); 591 592 // Emit arm_fp16.h.inc 593 void runFP16(raw_ostream &o); 594 595 // Emit arm_bf16.h.inc 596 void runBF16(raw_ostream &o); 597 598 void runVectorTypes(raw_ostream &o); 599 600 // Emit all the __builtin prototypes used in arm_neon.h, arm_fp16.h and 601 // arm_bf16.h 602 void runHeader(raw_ostream &o); 603 }; 604 605 } // end anonymous namespace 606 607 //===----------------------------------------------------------------------===// 608 // Type implementation 609 //===----------------------------------------------------------------------===// 610 611 std::string Type::str() const { 612 if (isVoid()) 613 return "void"; 614 std::string S; 615 616 if (isInteger() && !isSigned()) 617 S += "u"; 618 619 if (isPoly()) 620 S += "poly"; 621 else if (isFloating()) 622 S += "float"; 623 else if (isBFloat16()) 624 S += "bfloat"; 625 else 626 S += "int"; 627 628 S += utostr(ElementBitwidth); 629 if (isVector()) 630 S += "x" + utostr(getNumElements()); 631 if (NumVectors > 1) 632 S += "x" + utostr(NumVectors); 633 S += "_t"; 634 635 if (Constant) 636 S += " const"; 637 if (Pointer) 638 S += " *"; 639 640 return S; 641 } 642 643 std::string Type::builtin_str() const { 644 std::string S; 645 if (isVoid()) 646 return "v"; 647 648 if (isPointer()) { 649 // All pointers are void pointers. 650 S = "v"; 651 if (isConstPointer()) 652 S += "C"; 653 S += "*"; 654 return S; 655 } else if (isInteger()) 656 switch (ElementBitwidth) { 657 case 8: S += "c"; break; 658 case 16: S += "s"; break; 659 case 32: S += "i"; break; 660 case 64: S += "Wi"; break; 661 case 128: S += "LLLi"; break; 662 default: llvm_unreachable("Unhandled case!"); 663 } 664 else if (isBFloat16()) { 665 assert(ElementBitwidth == 16 && "BFloat16 can only be 16 bits"); 666 S += "y"; 667 } else 668 switch (ElementBitwidth) { 669 case 16: S += "h"; break; 670 case 32: S += "f"; break; 671 case 64: S += "d"; break; 672 default: llvm_unreachable("Unhandled case!"); 673 } 674 675 // FIXME: NECESSARY??????????????????????????????????????????????????????????????????????? 676 if (isChar() && !isPointer() && isSigned()) 677 // Make chars explicitly signed. 678 S = "S" + S; 679 else if (isInteger() && !isSigned()) 680 S = "U" + S; 681 682 // Constant indices are "int", but have the "constant expression" modifier. 683 if (isImmediate()) { 684 assert(isInteger() && isSigned()); 685 S = "I" + S; 686 } 687 688 if (isScalar()) 689 return S; 690 691 std::string Ret; 692 for (unsigned I = 0; I < NumVectors; ++I) 693 Ret += "V" + utostr(getNumElements()) + S; 694 695 return Ret; 696 } 697 698 unsigned Type::getNeonEnum() const { 699 unsigned Addend; 700 switch (ElementBitwidth) { 701 case 8: Addend = 0; break; 702 case 16: Addend = 1; break; 703 case 32: Addend = 2; break; 704 case 64: Addend = 3; break; 705 case 128: Addend = 4; break; 706 default: llvm_unreachable("Unhandled element bitwidth!"); 707 } 708 709 unsigned Base = (unsigned)NeonTypeFlags::Int8 + Addend; 710 if (isPoly()) { 711 // Adjustment needed because Poly32 doesn't exist. 712 if (Addend >= 2) 713 --Addend; 714 Base = (unsigned)NeonTypeFlags::Poly8 + Addend; 715 } 716 if (isFloating()) { 717 assert(Addend != 0 && "Float8 doesn't exist!"); 718 Base = (unsigned)NeonTypeFlags::Float16 + (Addend - 1); 719 } 720 721 if (isBFloat16()) { 722 assert(Addend == 1 && "BFloat16 is only 16 bit"); 723 Base = (unsigned)NeonTypeFlags::BFloat16; 724 } 725 726 if (Bitwidth == 128) 727 Base |= (unsigned)NeonTypeFlags::QuadFlag; 728 if (isInteger() && !isSigned()) 729 Base |= (unsigned)NeonTypeFlags::UnsignedFlag; 730 731 return Base; 732 } 733 734 Type Type::fromTypedefName(StringRef Name) { 735 Type T; 736 T.Kind = SInt; 737 738 if (Name.consume_front("u")) 739 T.Kind = UInt; 740 741 if (Name.consume_front("float")) { 742 T.Kind = Float; 743 } else if (Name.consume_front("poly")) { 744 T.Kind = Poly; 745 } else if (Name.consume_front("bfloat")) { 746 T.Kind = BFloat16; 747 } else { 748 assert(Name.starts_with("int")); 749 Name = Name.drop_front(3); 750 } 751 752 unsigned I = 0; 753 for (I = 0; I < Name.size(); ++I) { 754 if (!isdigit(Name[I])) 755 break; 756 } 757 Name.substr(0, I).getAsInteger(10, T.ElementBitwidth); 758 Name = Name.drop_front(I); 759 760 T.Bitwidth = T.ElementBitwidth; 761 T.NumVectors = 1; 762 763 if (Name.consume_front("x")) { 764 unsigned I = 0; 765 for (I = 0; I < Name.size(); ++I) { 766 if (!isdigit(Name[I])) 767 break; 768 } 769 unsigned NumLanes; 770 Name.substr(0, I).getAsInteger(10, NumLanes); 771 Name = Name.drop_front(I); 772 T.Bitwidth = T.ElementBitwidth * NumLanes; 773 } else { 774 // Was scalar. 775 T.NumVectors = 0; 776 } 777 if (Name.consume_front("x")) { 778 unsigned I = 0; 779 for (I = 0; I < Name.size(); ++I) { 780 if (!isdigit(Name[I])) 781 break; 782 } 783 Name.substr(0, I).getAsInteger(10, T.NumVectors); 784 Name = Name.drop_front(I); 785 } 786 787 assert(Name.starts_with("_t") && "Malformed typedef!"); 788 return T; 789 } 790 791 void Type::applyTypespec(bool &Quad) { 792 std::string S = TS; 793 ScalarForMangling = false; 794 Kind = SInt; 795 ElementBitwidth = ~0U; 796 NumVectors = 1; 797 798 for (char I : S) { 799 switch (I) { 800 case 'S': 801 ScalarForMangling = true; 802 break; 803 case 'H': 804 NoManglingQ = true; 805 Quad = true; 806 break; 807 case 'Q': 808 Quad = true; 809 break; 810 case 'P': 811 Kind = Poly; 812 break; 813 case 'U': 814 Kind = UInt; 815 break; 816 case 'c': 817 ElementBitwidth = 8; 818 break; 819 case 'h': 820 Kind = Float; 821 [[fallthrough]]; 822 case 's': 823 ElementBitwidth = 16; 824 break; 825 case 'f': 826 Kind = Float; 827 [[fallthrough]]; 828 case 'i': 829 ElementBitwidth = 32; 830 break; 831 case 'd': 832 Kind = Float; 833 [[fallthrough]]; 834 case 'l': 835 ElementBitwidth = 64; 836 break; 837 case 'k': 838 ElementBitwidth = 128; 839 // Poly doesn't have a 128x1 type. 840 if (isPoly()) 841 NumVectors = 0; 842 break; 843 case 'b': 844 Kind = BFloat16; 845 ElementBitwidth = 16; 846 break; 847 default: 848 llvm_unreachable("Unhandled type code!"); 849 } 850 } 851 assert(ElementBitwidth != ~0U && "Bad element bitwidth!"); 852 853 Bitwidth = Quad ? 128 : 64; 854 } 855 856 void Type::applyModifiers(StringRef Mods) { 857 bool AppliedQuad = false; 858 applyTypespec(AppliedQuad); 859 860 for (char Mod : Mods) { 861 switch (Mod) { 862 case '.': 863 break; 864 case 'v': 865 Kind = Void; 866 break; 867 case 'S': 868 Kind = SInt; 869 break; 870 case 'U': 871 Kind = UInt; 872 break; 873 case 'B': 874 Kind = BFloat16; 875 ElementBitwidth = 16; 876 break; 877 case 'F': 878 Kind = Float; 879 break; 880 case 'P': 881 Kind = Poly; 882 break; 883 case '>': 884 assert(ElementBitwidth < 128); 885 ElementBitwidth *= 2; 886 break; 887 case '<': 888 assert(ElementBitwidth > 8); 889 ElementBitwidth /= 2; 890 break; 891 case '1': 892 NumVectors = 0; 893 break; 894 case '2': 895 NumVectors = 2; 896 break; 897 case '3': 898 NumVectors = 3; 899 break; 900 case '4': 901 NumVectors = 4; 902 break; 903 case '*': 904 Pointer = true; 905 break; 906 case 'c': 907 Constant = true; 908 break; 909 case 'Q': 910 Bitwidth = 128; 911 break; 912 case 'q': 913 Bitwidth = 64; 914 break; 915 case 'I': 916 Kind = SInt; 917 ElementBitwidth = Bitwidth = 32; 918 NumVectors = 0; 919 Immediate = true; 920 break; 921 case 'p': 922 if (isPoly()) 923 Kind = UInt; 924 break; 925 case '!': 926 // Key type, handled elsewhere. 927 break; 928 default: 929 llvm_unreachable("Unhandled character!"); 930 } 931 } 932 } 933 934 //===----------------------------------------------------------------------===// 935 // Intrinsic implementation 936 //===----------------------------------------------------------------------===// 937 938 StringRef Intrinsic::getNextModifiers(StringRef Proto, unsigned &Pos) const { 939 if (Proto.size() == Pos) 940 return StringRef(); 941 else if (Proto[Pos] != '(') 942 return Proto.substr(Pos++, 1); 943 944 size_t Start = Pos + 1; 945 size_t End = Proto.find(')', Start); 946 assert_with_loc(End != StringRef::npos, "unmatched modifier group paren"); 947 Pos = End + 1; 948 return Proto.slice(Start, End); 949 } 950 951 std::string Intrinsic::getInstTypeCode(Type T, ClassKind CK) const { 952 char typeCode = '\0'; 953 bool printNumber = true; 954 955 if (CK == ClassB && TargetGuard == "neon") 956 return ""; 957 958 if (T.isBFloat16()) 959 return "bf16"; 960 961 if (T.isPoly()) 962 typeCode = 'p'; 963 else if (T.isInteger()) 964 typeCode = T.isSigned() ? 's' : 'u'; 965 else 966 typeCode = 'f'; 967 968 if (CK == ClassI) { 969 switch (typeCode) { 970 default: 971 break; 972 case 's': 973 case 'u': 974 case 'p': 975 typeCode = 'i'; 976 break; 977 } 978 } 979 if (CK == ClassB && TargetGuard == "neon") { 980 typeCode = '\0'; 981 } 982 983 std::string S; 984 if (typeCode != '\0') 985 S.push_back(typeCode); 986 if (printNumber) 987 S += utostr(T.getElementSizeInBits()); 988 989 return S; 990 } 991 992 std::string Intrinsic::getBuiltinTypeStr() { 993 ClassKind LocalCK = getClassKind(true); 994 std::string S; 995 996 Type RetT = getReturnType(); 997 if ((LocalCK == ClassI || LocalCK == ClassW) && RetT.isScalar() && 998 !RetT.isFloating() && !RetT.isBFloat16()) 999 RetT.makeInteger(RetT.getElementSizeInBits(), false); 1000 1001 // Since the return value must be one type, return a vector type of the 1002 // appropriate width which we will bitcast. An exception is made for 1003 // returning structs of 2, 3, or 4 vectors which are returned in a sret-like 1004 // fashion, storing them to a pointer arg. 1005 if (RetT.getNumVectors() > 1) { 1006 S += "vv*"; // void result with void* first argument 1007 } else { 1008 if (RetT.isPoly()) 1009 RetT.makeInteger(RetT.getElementSizeInBits(), false); 1010 if (!RetT.isScalar() && RetT.isInteger() && !RetT.isSigned()) 1011 RetT.makeSigned(); 1012 1013 if (LocalCK == ClassB && RetT.isValue() && !RetT.isScalar()) 1014 // Cast to vector of 8-bit elements. 1015 RetT.makeInteger(8, true); 1016 1017 S += RetT.builtin_str(); 1018 } 1019 1020 for (unsigned I = 0; I < getNumParams(); ++I) { 1021 Type T = getParamType(I); 1022 if (T.isPoly()) 1023 T.makeInteger(T.getElementSizeInBits(), false); 1024 1025 if (LocalCK == ClassB && !T.isScalar()) 1026 T.makeInteger(8, true); 1027 // Halves always get converted to 8-bit elements. 1028 if (T.isHalf() && T.isVector() && !T.isScalarForMangling()) 1029 T.makeInteger(8, true); 1030 1031 if (LocalCK == ClassI && T.isInteger()) 1032 T.makeSigned(); 1033 1034 if (hasImmediate() && getImmediateIdx() == I) 1035 T.makeImmediate(32); 1036 1037 S += T.builtin_str(); 1038 } 1039 1040 // Extra constant integer to hold type class enum for this function, e.g. s8 1041 if (LocalCK == ClassB) 1042 S += "i"; 1043 1044 return S; 1045 } 1046 1047 std::string Intrinsic::getMangledName(bool ForceClassS) const { 1048 // Check if the prototype has a scalar operand with the type of the vector 1049 // elements. If not, bitcasting the args will take care of arg checking. 1050 // The actual signedness etc. will be taken care of with special enums. 1051 ClassKind LocalCK = CK; 1052 if (!protoHasScalar()) 1053 LocalCK = ClassB; 1054 1055 return mangleName(Name, ForceClassS ? ClassS : LocalCK); 1056 } 1057 1058 std::string Intrinsic::mangleName(std::string Name, ClassKind LocalCK) const { 1059 std::string typeCode = getInstTypeCode(BaseType, LocalCK); 1060 std::string S = Name; 1061 1062 if (Name == "vcvt_f16_f32" || Name == "vcvt_f32_f16" || 1063 Name == "vcvt_f32_f64" || Name == "vcvt_f64_f32" || 1064 Name == "vcvt_f32_bf16") 1065 return Name; 1066 1067 if (!typeCode.empty()) { 1068 // If the name ends with _xN (N = 2,3,4), insert the typeCode before _xN. 1069 if (Name.size() >= 3 && isdigit(Name.back()) && 1070 Name[Name.length() - 2] == 'x' && Name[Name.length() - 3] == '_') 1071 S.insert(S.length() - 3, "_" + typeCode); 1072 else 1073 S += "_" + typeCode; 1074 } 1075 1076 if (BaseType != InBaseType) { 1077 // A reinterpret - out the input base type at the end. 1078 S += "_" + getInstTypeCode(InBaseType, LocalCK); 1079 } 1080 1081 if (LocalCK == ClassB && TargetGuard == "neon") 1082 S += "_v"; 1083 1084 // Insert a 'q' before the first '_' character so that it ends up before 1085 // _lane or _n on vector-scalar operations. 1086 if (BaseType.getSizeInBits() == 128 && !BaseType.noManglingQ()) { 1087 size_t Pos = S.find('_'); 1088 S.insert(Pos, "q"); 1089 } 1090 1091 char Suffix = '\0'; 1092 if (BaseType.isScalarForMangling()) { 1093 switch (BaseType.getElementSizeInBits()) { 1094 case 8: Suffix = 'b'; break; 1095 case 16: Suffix = 'h'; break; 1096 case 32: Suffix = 's'; break; 1097 case 64: Suffix = 'd'; break; 1098 default: llvm_unreachable("Bad suffix!"); 1099 } 1100 } 1101 if (Suffix != '\0') { 1102 size_t Pos = S.find('_'); 1103 S.insert(Pos, &Suffix, 1); 1104 } 1105 1106 return S; 1107 } 1108 1109 std::string Intrinsic::replaceParamsIn(std::string S) { 1110 while (S.find('$') != std::string::npos) { 1111 size_t Pos = S.find('$'); 1112 size_t End = Pos + 1; 1113 while (isalpha(S[End])) 1114 ++End; 1115 1116 std::string VarName = S.substr(Pos + 1, End - Pos - 1); 1117 assert_with_loc(Variables.find(VarName) != Variables.end(), 1118 "Variable not defined!"); 1119 S.replace(Pos, End - Pos, Variables.find(VarName)->second.getName()); 1120 } 1121 1122 return S; 1123 } 1124 1125 void Intrinsic::initVariables() { 1126 Variables.clear(); 1127 1128 // Modify the TypeSpec per-argument to get a concrete Type, and create 1129 // known variables for each. 1130 for (unsigned I = 1; I < Types.size(); ++I) { 1131 char NameC = '0' + (I - 1); 1132 std::string Name = "p"; 1133 Name.push_back(NameC); 1134 1135 Variables[Name] = Variable(Types[I], Name + VariablePostfix); 1136 } 1137 RetVar = Variable(Types[0], "ret" + VariablePostfix); 1138 } 1139 1140 void Intrinsic::emitPrototype(StringRef NamePrefix) { 1141 if (UseMacro) { 1142 OS << "#define "; 1143 } else { 1144 OS << "__ai "; 1145 if (TargetGuard != "") 1146 OS << "__attribute__((target(\"" << TargetGuard << "\"))) "; 1147 OS << Types[0].str() << " "; 1148 } 1149 1150 OS << NamePrefix.str() << mangleName(Name, ClassS) << "("; 1151 1152 for (unsigned I = 0; I < getNumParams(); ++I) { 1153 if (I != 0) 1154 OS << ", "; 1155 1156 char NameC = '0' + I; 1157 std::string Name = "p"; 1158 Name.push_back(NameC); 1159 assert(Variables.find(Name) != Variables.end()); 1160 Variable &V = Variables[Name]; 1161 1162 if (!UseMacro) 1163 OS << V.getType().str() << " "; 1164 OS << V.getName(); 1165 } 1166 1167 OS << ")"; 1168 } 1169 1170 void Intrinsic::emitOpeningBrace() { 1171 if (UseMacro) 1172 OS << " __extension__ ({"; 1173 else 1174 OS << " {"; 1175 emitNewLine(); 1176 } 1177 1178 void Intrinsic::emitClosingBrace() { 1179 if (UseMacro) 1180 OS << "})"; 1181 else 1182 OS << "}"; 1183 } 1184 1185 void Intrinsic::emitNewLine() { 1186 if (UseMacro) 1187 OS << " \\\n"; 1188 else 1189 OS << "\n"; 1190 } 1191 1192 void Intrinsic::emitReverseVariable(Variable &Dest, Variable &Src) { 1193 if (Dest.getType().getNumVectors() > 1) { 1194 emitNewLine(); 1195 1196 for (unsigned K = 0; K < Dest.getType().getNumVectors(); ++K) { 1197 OS << " " << Dest.getName() << ".val[" << K << "] = " 1198 << "__builtin_shufflevector(" 1199 << Src.getName() << ".val[" << K << "], " 1200 << Src.getName() << ".val[" << K << "]"; 1201 for (int J = Dest.getType().getNumElements() - 1; J >= 0; --J) 1202 OS << ", " << J; 1203 OS << ");"; 1204 emitNewLine(); 1205 } 1206 } else { 1207 OS << " " << Dest.getName() 1208 << " = __builtin_shufflevector(" << Src.getName() << ", " << Src.getName(); 1209 for (int J = Dest.getType().getNumElements() - 1; J >= 0; --J) 1210 OS << ", " << J; 1211 OS << ");"; 1212 emitNewLine(); 1213 } 1214 } 1215 1216 void Intrinsic::emitArgumentReversal() { 1217 if (isBigEndianSafe()) 1218 return; 1219 1220 // Reverse all vector arguments. 1221 for (unsigned I = 0; I < getNumParams(); ++I) { 1222 std::string Name = "p" + utostr(I); 1223 std::string NewName = "rev" + utostr(I); 1224 1225 Variable &V = Variables[Name]; 1226 Variable NewV(V.getType(), NewName + VariablePostfix); 1227 1228 if (!NewV.getType().isVector() || NewV.getType().getNumElements() == 1) 1229 continue; 1230 1231 OS << " " << NewV.getType().str() << " " << NewV.getName() << ";"; 1232 emitReverseVariable(NewV, V); 1233 V = NewV; 1234 } 1235 } 1236 1237 void Intrinsic::emitReturnVarDecl() { 1238 assert(RetVar.getType() == Types[0]); 1239 // Create a return variable, if we're not void. 1240 if (!RetVar.getType().isVoid()) { 1241 OS << " " << RetVar.getType().str() << " " << RetVar.getName() << ";"; 1242 emitNewLine(); 1243 } 1244 } 1245 1246 void Intrinsic::emitReturnReversal() { 1247 if (isBigEndianSafe()) 1248 return; 1249 if (!getReturnType().isVector() || getReturnType().isVoid() || 1250 getReturnType().getNumElements() == 1) 1251 return; 1252 emitReverseVariable(RetVar, RetVar); 1253 } 1254 1255 void Intrinsic::emitShadowedArgs() { 1256 // Macro arguments are not type-checked like inline function arguments, 1257 // so assign them to local temporaries to get the right type checking. 1258 if (!UseMacro) 1259 return; 1260 1261 for (unsigned I = 0; I < getNumParams(); ++I) { 1262 // Do not create a temporary for an immediate argument. 1263 // That would defeat the whole point of using a macro! 1264 if (getParamType(I).isImmediate()) 1265 continue; 1266 // Do not create a temporary for pointer arguments. The input 1267 // pointer may have an alignment hint. 1268 if (getParamType(I).isPointer()) 1269 continue; 1270 1271 std::string Name = "p" + utostr(I); 1272 1273 assert(Variables.find(Name) != Variables.end()); 1274 Variable &V = Variables[Name]; 1275 1276 std::string NewName = "s" + utostr(I); 1277 Variable V2(V.getType(), NewName + VariablePostfix); 1278 1279 OS << " " << V2.getType().str() << " " << V2.getName() << " = " 1280 << V.getName() << ";"; 1281 emitNewLine(); 1282 1283 V = V2; 1284 } 1285 } 1286 1287 bool Intrinsic::protoHasScalar() const { 1288 return llvm::any_of( 1289 Types, [](const Type &T) { return T.isScalar() && !T.isImmediate(); }); 1290 } 1291 1292 void Intrinsic::emitBodyAsBuiltinCall() { 1293 std::string S; 1294 1295 // If this builtin returns a struct 2, 3, or 4 vectors, pass it as an implicit 1296 // sret-like argument. 1297 bool SRet = getReturnType().getNumVectors() >= 2; 1298 1299 StringRef N = Name; 1300 ClassKind LocalCK = CK; 1301 if (!protoHasScalar()) 1302 LocalCK = ClassB; 1303 1304 if (!getReturnType().isVoid() && !SRet) 1305 S += "(" + RetVar.getType().str() + ") "; 1306 1307 S += "__builtin_neon_" + mangleName(std::string(N), LocalCK) + "("; 1308 1309 if (SRet) 1310 S += "&" + RetVar.getName() + ", "; 1311 1312 for (unsigned I = 0; I < getNumParams(); ++I) { 1313 Variable &V = Variables["p" + utostr(I)]; 1314 Type T = V.getType(); 1315 1316 // Handle multiple-vector values specially, emitting each subvector as an 1317 // argument to the builtin. 1318 if (T.getNumVectors() > 1) { 1319 // Check if an explicit cast is needed. 1320 std::string Cast; 1321 if (LocalCK == ClassB) { 1322 Type T2 = T; 1323 T2.makeOneVector(); 1324 T2.makeInteger(8, /*Sign=*/true); 1325 Cast = "(" + T2.str() + ")"; 1326 } 1327 1328 for (unsigned J = 0; J < T.getNumVectors(); ++J) 1329 S += Cast + V.getName() + ".val[" + utostr(J) + "], "; 1330 continue; 1331 } 1332 1333 std::string Arg = V.getName(); 1334 Type CastToType = T; 1335 1336 // Check if an explicit cast is needed. 1337 if (CastToType.isVector() && 1338 (LocalCK == ClassB || (T.isHalf() && !T.isScalarForMangling()))) { 1339 CastToType.makeInteger(8, true); 1340 Arg = "(" + CastToType.str() + ")" + Arg; 1341 } else if (CastToType.isVector() && LocalCK == ClassI) { 1342 if (CastToType.isInteger()) 1343 CastToType.makeSigned(); 1344 Arg = "(" + CastToType.str() + ")" + Arg; 1345 } 1346 1347 S += Arg + ", "; 1348 } 1349 1350 // Extra constant integer to hold type class enum for this function, e.g. s8 1351 if (getClassKind(true) == ClassB) { 1352 S += utostr(getPolymorphicKeyType().getNeonEnum()); 1353 } else { 1354 // Remove extraneous ", ". 1355 S.pop_back(); 1356 S.pop_back(); 1357 } 1358 S += ");"; 1359 1360 std::string RetExpr; 1361 if (!SRet && !RetVar.getType().isVoid()) 1362 RetExpr = RetVar.getName() + " = "; 1363 1364 OS << " " << RetExpr << S; 1365 emitNewLine(); 1366 } 1367 1368 void Intrinsic::emitBody(StringRef CallPrefix) { 1369 std::vector<std::string> Lines; 1370 1371 if (!Body || Body->getValues().empty()) { 1372 // Nothing specific to output - must output a builtin. 1373 emitBodyAsBuiltinCall(); 1374 return; 1375 } 1376 1377 // We have a list of "things to output". The last should be returned. 1378 for (auto *I : Body->getValues()) { 1379 if (StringInit *SI = dyn_cast<StringInit>(I)) { 1380 Lines.push_back(replaceParamsIn(SI->getAsString())); 1381 } else if (DagInit *DI = dyn_cast<DagInit>(I)) { 1382 DagEmitter DE(*this, CallPrefix); 1383 Lines.push_back(DE.emitDag(DI).second + ";"); 1384 } 1385 } 1386 1387 assert(!Lines.empty() && "Empty def?"); 1388 if (!RetVar.getType().isVoid()) 1389 Lines.back().insert(0, RetVar.getName() + " = "); 1390 1391 for (auto &L : Lines) { 1392 OS << " " << L; 1393 emitNewLine(); 1394 } 1395 } 1396 1397 void Intrinsic::emitReturn() { 1398 if (RetVar.getType().isVoid()) 1399 return; 1400 if (UseMacro) 1401 OS << " " << RetVar.getName() << ";"; 1402 else 1403 OS << " return " << RetVar.getName() << ";"; 1404 emitNewLine(); 1405 } 1406 1407 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDag(DagInit *DI) { 1408 // At this point we should only be seeing a def. 1409 DefInit *DefI = cast<DefInit>(DI->getOperator()); 1410 std::string Op = DefI->getAsString(); 1411 1412 if (Op == "cast" || Op == "bitcast") 1413 return emitDagCast(DI, Op == "bitcast"); 1414 if (Op == "shuffle") 1415 return emitDagShuffle(DI); 1416 if (Op == "dup") 1417 return emitDagDup(DI); 1418 if (Op == "dup_typed") 1419 return emitDagDupTyped(DI); 1420 if (Op == "splat") 1421 return emitDagSplat(DI); 1422 if (Op == "save_temp") 1423 return emitDagSaveTemp(DI); 1424 if (Op == "op") 1425 return emitDagOp(DI); 1426 if (Op == "call" || Op == "call_mangled") 1427 return emitDagCall(DI, Op == "call_mangled"); 1428 if (Op == "name_replace") 1429 return emitDagNameReplace(DI); 1430 if (Op == "literal") 1431 return emitDagLiteral(DI); 1432 assert_with_loc(false, "Unknown operation!"); 1433 return std::make_pair(Type::getVoid(), ""); 1434 } 1435 1436 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagOp(DagInit *DI) { 1437 std::string Op = cast<StringInit>(DI->getArg(0))->getAsUnquotedString(); 1438 if (DI->getNumArgs() == 2) { 1439 // Unary op. 1440 std::pair<Type, std::string> R = 1441 emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1))); 1442 return std::make_pair(R.first, Op + R.second); 1443 } else { 1444 assert(DI->getNumArgs() == 3 && "Can only handle unary and binary ops!"); 1445 std::pair<Type, std::string> R1 = 1446 emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1))); 1447 std::pair<Type, std::string> R2 = 1448 emitDagArg(DI->getArg(2), std::string(DI->getArgNameStr(2))); 1449 assert_with_loc(R1.first == R2.first, "Argument type mismatch!"); 1450 return std::make_pair(R1.first, R1.second + " " + Op + " " + R2.second); 1451 } 1452 } 1453 1454 std::pair<Type, std::string> 1455 Intrinsic::DagEmitter::emitDagCall(DagInit *DI, bool MatchMangledName) { 1456 std::vector<Type> Types; 1457 std::vector<std::string> Values; 1458 for (unsigned I = 0; I < DI->getNumArgs() - 1; ++I) { 1459 std::pair<Type, std::string> R = 1460 emitDagArg(DI->getArg(I + 1), std::string(DI->getArgNameStr(I + 1))); 1461 Types.push_back(R.first); 1462 Values.push_back(R.second); 1463 } 1464 1465 // Look up the called intrinsic. 1466 std::string N; 1467 if (StringInit *SI = dyn_cast<StringInit>(DI->getArg(0))) 1468 N = SI->getAsUnquotedString(); 1469 else 1470 N = emitDagArg(DI->getArg(0), "").second; 1471 std::optional<std::string> MangledName; 1472 if (MatchMangledName) { 1473 if (Intr.getRecord()->getValueAsBit("isLaneQ")) 1474 N += "q"; 1475 MangledName = Intr.mangleName(N, ClassS); 1476 } 1477 Intrinsic &Callee = Intr.Emitter.getIntrinsic(N, Types, MangledName); 1478 1479 // Make sure the callee is known as an early def. 1480 Callee.setNeededEarly(); 1481 Intr.Dependencies.insert(&Callee); 1482 1483 // Now create the call itself. 1484 std::string S; 1485 if (!Callee.isBigEndianSafe()) 1486 S += CallPrefix.str(); 1487 S += Callee.getMangledName(true) + "("; 1488 for (unsigned I = 0; I < DI->getNumArgs() - 1; ++I) { 1489 if (I != 0) 1490 S += ", "; 1491 S += Values[I]; 1492 } 1493 S += ")"; 1494 1495 return std::make_pair(Callee.getReturnType(), S); 1496 } 1497 1498 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagCast(DagInit *DI, 1499 bool IsBitCast){ 1500 // (cast MOD* VAL) -> cast VAL to type given by MOD. 1501 std::pair<Type, std::string> R = 1502 emitDagArg(DI->getArg(DI->getNumArgs() - 1), 1503 std::string(DI->getArgNameStr(DI->getNumArgs() - 1))); 1504 Type castToType = R.first; 1505 for (unsigned ArgIdx = 0; ArgIdx < DI->getNumArgs() - 1; ++ArgIdx) { 1506 1507 // MOD can take several forms: 1508 // 1. $X - take the type of parameter / variable X. 1509 // 2. The value "R" - take the type of the return type. 1510 // 3. a type string 1511 // 4. The value "U" or "S" to switch the signedness. 1512 // 5. The value "H" or "D" to half or double the bitwidth. 1513 // 6. The value "8" to convert to 8-bit (signed) integer lanes. 1514 if (!DI->getArgNameStr(ArgIdx).empty()) { 1515 assert_with_loc(Intr.Variables.find(std::string( 1516 DI->getArgNameStr(ArgIdx))) != Intr.Variables.end(), 1517 "Variable not found"); 1518 castToType = 1519 Intr.Variables[std::string(DI->getArgNameStr(ArgIdx))].getType(); 1520 } else { 1521 StringInit *SI = dyn_cast<StringInit>(DI->getArg(ArgIdx)); 1522 assert_with_loc(SI, "Expected string type or $Name for cast type"); 1523 1524 if (SI->getAsUnquotedString() == "R") { 1525 castToType = Intr.getReturnType(); 1526 } else if (SI->getAsUnquotedString() == "U") { 1527 castToType.makeUnsigned(); 1528 } else if (SI->getAsUnquotedString() == "S") { 1529 castToType.makeSigned(); 1530 } else if (SI->getAsUnquotedString() == "H") { 1531 castToType.halveLanes(); 1532 } else if (SI->getAsUnquotedString() == "D") { 1533 castToType.doubleLanes(); 1534 } else if (SI->getAsUnquotedString() == "8") { 1535 castToType.makeInteger(8, true); 1536 } else if (SI->getAsUnquotedString() == "32") { 1537 castToType.make32BitElement(); 1538 } else { 1539 castToType = Type::fromTypedefName(SI->getAsUnquotedString()); 1540 assert_with_loc(!castToType.isVoid(), "Unknown typedef"); 1541 } 1542 } 1543 } 1544 1545 std::string S; 1546 if (IsBitCast) { 1547 // Emit a reinterpret cast. The second operand must be an lvalue, so create 1548 // a temporary. 1549 std::string N = "reint"; 1550 unsigned I = 0; 1551 while (Intr.Variables.find(N) != Intr.Variables.end()) 1552 N = "reint" + utostr(++I); 1553 Intr.Variables[N] = Variable(R.first, N + Intr.VariablePostfix); 1554 1555 Intr.OS << R.first.str() << " " << Intr.Variables[N].getName() << " = " 1556 << R.second << ";"; 1557 Intr.emitNewLine(); 1558 1559 S = "*(" + castToType.str() + " *) &" + Intr.Variables[N].getName() + ""; 1560 } else { 1561 // Emit a normal (static) cast. 1562 S = "(" + castToType.str() + ")(" + R.second + ")"; 1563 } 1564 1565 return std::make_pair(castToType, S); 1566 } 1567 1568 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagShuffle(DagInit *DI){ 1569 // See the documentation in arm_neon.td for a description of these operators. 1570 class LowHalf : public SetTheory::Operator { 1571 public: 1572 void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts, 1573 ArrayRef<SMLoc> Loc) override { 1574 SetTheory::RecSet Elts2; 1575 ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts2, Loc); 1576 Elts.insert(Elts2.begin(), Elts2.begin() + (Elts2.size() / 2)); 1577 } 1578 }; 1579 1580 class HighHalf : public SetTheory::Operator { 1581 public: 1582 void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts, 1583 ArrayRef<SMLoc> Loc) override { 1584 SetTheory::RecSet Elts2; 1585 ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts2, Loc); 1586 Elts.insert(Elts2.begin() + (Elts2.size() / 2), Elts2.end()); 1587 } 1588 }; 1589 1590 class Rev : public SetTheory::Operator { 1591 unsigned ElementSize; 1592 1593 public: 1594 Rev(unsigned ElementSize) : ElementSize(ElementSize) {} 1595 1596 void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts, 1597 ArrayRef<SMLoc> Loc) override { 1598 SetTheory::RecSet Elts2; 1599 ST.evaluate(Expr->arg_begin() + 1, Expr->arg_end(), Elts2, Loc); 1600 1601 int64_t VectorSize = cast<IntInit>(Expr->getArg(0))->getValue(); 1602 VectorSize /= ElementSize; 1603 1604 std::vector<Record *> Revved; 1605 for (unsigned VI = 0; VI < Elts2.size(); VI += VectorSize) { 1606 for (int LI = VectorSize - 1; LI >= 0; --LI) { 1607 Revved.push_back(Elts2[VI + LI]); 1608 } 1609 } 1610 1611 Elts.insert(Revved.begin(), Revved.end()); 1612 } 1613 }; 1614 1615 class MaskExpander : public SetTheory::Expander { 1616 unsigned N; 1617 1618 public: 1619 MaskExpander(unsigned N) : N(N) {} 1620 1621 void expand(SetTheory &ST, Record *R, SetTheory::RecSet &Elts) override { 1622 unsigned Addend = 0; 1623 if (R->getName() == "mask0") 1624 Addend = 0; 1625 else if (R->getName() == "mask1") 1626 Addend = N; 1627 else 1628 return; 1629 for (unsigned I = 0; I < N; ++I) 1630 Elts.insert(R->getRecords().getDef("sv" + utostr(I + Addend))); 1631 } 1632 }; 1633 1634 // (shuffle arg1, arg2, sequence) 1635 std::pair<Type, std::string> Arg1 = 1636 emitDagArg(DI->getArg(0), std::string(DI->getArgNameStr(0))); 1637 std::pair<Type, std::string> Arg2 = 1638 emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1))); 1639 assert_with_loc(Arg1.first == Arg2.first, 1640 "Different types in arguments to shuffle!"); 1641 1642 SetTheory ST; 1643 SetTheory::RecSet Elts; 1644 ST.addOperator("lowhalf", std::make_unique<LowHalf>()); 1645 ST.addOperator("highhalf", std::make_unique<HighHalf>()); 1646 ST.addOperator("rev", 1647 std::make_unique<Rev>(Arg1.first.getElementSizeInBits())); 1648 ST.addExpander("MaskExpand", 1649 std::make_unique<MaskExpander>(Arg1.first.getNumElements())); 1650 ST.evaluate(DI->getArg(2), Elts, std::nullopt); 1651 1652 std::string S = "__builtin_shufflevector(" + Arg1.second + ", " + Arg2.second; 1653 for (auto &E : Elts) { 1654 StringRef Name = E->getName(); 1655 assert_with_loc(Name.starts_with("sv"), 1656 "Incorrect element kind in shuffle mask!"); 1657 S += ", " + Name.drop_front(2).str(); 1658 } 1659 S += ")"; 1660 1661 // Recalculate the return type - the shuffle may have halved or doubled it. 1662 Type T(Arg1.first); 1663 if (Elts.size() > T.getNumElements()) { 1664 assert_with_loc( 1665 Elts.size() == T.getNumElements() * 2, 1666 "Can only double or half the number of elements in a shuffle!"); 1667 T.doubleLanes(); 1668 } else if (Elts.size() < T.getNumElements()) { 1669 assert_with_loc( 1670 Elts.size() == T.getNumElements() / 2, 1671 "Can only double or half the number of elements in a shuffle!"); 1672 T.halveLanes(); 1673 } 1674 1675 return std::make_pair(T, S); 1676 } 1677 1678 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagDup(DagInit *DI) { 1679 assert_with_loc(DI->getNumArgs() == 1, "dup() expects one argument"); 1680 std::pair<Type, std::string> A = 1681 emitDagArg(DI->getArg(0), std::string(DI->getArgNameStr(0))); 1682 assert_with_loc(A.first.isScalar(), "dup() expects a scalar argument"); 1683 1684 Type T = Intr.getBaseType(); 1685 assert_with_loc(T.isVector(), "dup() used but default type is scalar!"); 1686 std::string S = "(" + T.str() + ") {"; 1687 for (unsigned I = 0; I < T.getNumElements(); ++I) { 1688 if (I != 0) 1689 S += ", "; 1690 S += A.second; 1691 } 1692 S += "}"; 1693 1694 return std::make_pair(T, S); 1695 } 1696 1697 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagDupTyped(DagInit *DI) { 1698 assert_with_loc(DI->getNumArgs() == 2, "dup_typed() expects two arguments"); 1699 std::pair<Type, std::string> B = 1700 emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1))); 1701 assert_with_loc(B.first.isScalar(), 1702 "dup_typed() requires a scalar as the second argument"); 1703 Type T; 1704 // If the type argument is a constant string, construct the type directly. 1705 if (StringInit *SI = dyn_cast<StringInit>(DI->getArg(0))) { 1706 T = Type::fromTypedefName(SI->getAsUnquotedString()); 1707 assert_with_loc(!T.isVoid(), "Unknown typedef"); 1708 } else 1709 T = emitDagArg(DI->getArg(0), std::string(DI->getArgNameStr(0))).first; 1710 1711 assert_with_loc(T.isVector(), "dup_typed() used but target type is scalar!"); 1712 std::string S = "(" + T.str() + ") {"; 1713 for (unsigned I = 0; I < T.getNumElements(); ++I) { 1714 if (I != 0) 1715 S += ", "; 1716 S += B.second; 1717 } 1718 S += "}"; 1719 1720 return std::make_pair(T, S); 1721 } 1722 1723 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagSplat(DagInit *DI) { 1724 assert_with_loc(DI->getNumArgs() == 2, "splat() expects two arguments"); 1725 std::pair<Type, std::string> A = 1726 emitDagArg(DI->getArg(0), std::string(DI->getArgNameStr(0))); 1727 std::pair<Type, std::string> B = 1728 emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1))); 1729 1730 assert_with_loc(B.first.isScalar(), 1731 "splat() requires a scalar int as the second argument"); 1732 1733 std::string S = "__builtin_shufflevector(" + A.second + ", " + A.second; 1734 for (unsigned I = 0; I < Intr.getBaseType().getNumElements(); ++I) { 1735 S += ", " + B.second; 1736 } 1737 S += ")"; 1738 1739 return std::make_pair(Intr.getBaseType(), S); 1740 } 1741 1742 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagSaveTemp(DagInit *DI) { 1743 assert_with_loc(DI->getNumArgs() == 2, "save_temp() expects two arguments"); 1744 std::pair<Type, std::string> A = 1745 emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1))); 1746 1747 assert_with_loc(!A.first.isVoid(), 1748 "Argument to save_temp() must have non-void type!"); 1749 1750 std::string N = std::string(DI->getArgNameStr(0)); 1751 assert_with_loc(!N.empty(), 1752 "save_temp() expects a name as the first argument"); 1753 1754 assert_with_loc(Intr.Variables.find(N) == Intr.Variables.end(), 1755 "Variable already defined!"); 1756 Intr.Variables[N] = Variable(A.first, N + Intr.VariablePostfix); 1757 1758 std::string S = 1759 A.first.str() + " " + Intr.Variables[N].getName() + " = " + A.second; 1760 1761 return std::make_pair(Type::getVoid(), S); 1762 } 1763 1764 std::pair<Type, std::string> 1765 Intrinsic::DagEmitter::emitDagNameReplace(DagInit *DI) { 1766 std::string S = Intr.Name; 1767 1768 assert_with_loc(DI->getNumArgs() == 2, "name_replace requires 2 arguments!"); 1769 std::string ToReplace = cast<StringInit>(DI->getArg(0))->getAsUnquotedString(); 1770 std::string ReplaceWith = cast<StringInit>(DI->getArg(1))->getAsUnquotedString(); 1771 1772 size_t Idx = S.find(ToReplace); 1773 1774 assert_with_loc(Idx != std::string::npos, "name should contain '" + ToReplace + "'!"); 1775 S.replace(Idx, ToReplace.size(), ReplaceWith); 1776 1777 return std::make_pair(Type::getVoid(), S); 1778 } 1779 1780 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagLiteral(DagInit *DI){ 1781 std::string Ty = cast<StringInit>(DI->getArg(0))->getAsUnquotedString(); 1782 std::string Value = cast<StringInit>(DI->getArg(1))->getAsUnquotedString(); 1783 return std::make_pair(Type::fromTypedefName(Ty), Value); 1784 } 1785 1786 std::pair<Type, std::string> 1787 Intrinsic::DagEmitter::emitDagArg(Init *Arg, std::string ArgName) { 1788 if (!ArgName.empty()) { 1789 assert_with_loc(!Arg->isComplete(), 1790 "Arguments must either be DAGs or names, not both!"); 1791 assert_with_loc(Intr.Variables.find(ArgName) != Intr.Variables.end(), 1792 "Variable not defined!"); 1793 Variable &V = Intr.Variables[ArgName]; 1794 return std::make_pair(V.getType(), V.getName()); 1795 } 1796 1797 assert(Arg && "Neither ArgName nor Arg?!"); 1798 DagInit *DI = dyn_cast<DagInit>(Arg); 1799 assert_with_loc(DI, "Arguments must either be DAGs or names!"); 1800 1801 return emitDag(DI); 1802 } 1803 1804 std::string Intrinsic::generate() { 1805 // Avoid duplicated code for big and little endian 1806 if (isBigEndianSafe()) { 1807 generateImpl(false, "", ""); 1808 return OS.str(); 1809 } 1810 // Little endian intrinsics are simple and don't require any argument 1811 // swapping. 1812 OS << "#ifdef __LITTLE_ENDIAN__\n"; 1813 1814 generateImpl(false, "", ""); 1815 1816 OS << "#else\n"; 1817 1818 // Big endian intrinsics are more complex. The user intended these 1819 // intrinsics to operate on a vector "as-if" loaded by (V)LDR, 1820 // but we load as-if (V)LD1. So we should swap all arguments and 1821 // swap the return value too. 1822 // 1823 // If we call sub-intrinsics, we should call a version that does 1824 // not re-swap the arguments! 1825 generateImpl(true, "", "__noswap_"); 1826 1827 // If we're needed early, create a non-swapping variant for 1828 // big-endian. 1829 if (NeededEarly) { 1830 generateImpl(false, "__noswap_", "__noswap_"); 1831 } 1832 OS << "#endif\n\n"; 1833 1834 return OS.str(); 1835 } 1836 1837 void Intrinsic::generateImpl(bool ReverseArguments, 1838 StringRef NamePrefix, StringRef CallPrefix) { 1839 CurrentRecord = R; 1840 1841 // If we call a macro, our local variables may be corrupted due to 1842 // lack of proper lexical scoping. So, add a globally unique postfix 1843 // to every variable. 1844 // 1845 // indexBody() should have set up the Dependencies set by now. 1846 for (auto *I : Dependencies) 1847 if (I->UseMacro) { 1848 VariablePostfix = "_" + utostr(Emitter.getUniqueNumber()); 1849 break; 1850 } 1851 1852 initVariables(); 1853 1854 emitPrototype(NamePrefix); 1855 1856 if (IsUnavailable) { 1857 OS << " __attribute__((unavailable));"; 1858 } else { 1859 emitOpeningBrace(); 1860 // Emit return variable declaration first as to not trigger 1861 // -Wdeclaration-after-statement. 1862 emitReturnVarDecl(); 1863 emitShadowedArgs(); 1864 if (ReverseArguments) 1865 emitArgumentReversal(); 1866 emitBody(CallPrefix); 1867 if (ReverseArguments) 1868 emitReturnReversal(); 1869 emitReturn(); 1870 emitClosingBrace(); 1871 } 1872 OS << "\n"; 1873 1874 CurrentRecord = nullptr; 1875 } 1876 1877 void Intrinsic::indexBody() { 1878 CurrentRecord = R; 1879 1880 initVariables(); 1881 // Emit return variable declaration first as to not trigger 1882 // -Wdeclaration-after-statement. 1883 emitReturnVarDecl(); 1884 emitBody(""); 1885 OS.str(""); 1886 1887 CurrentRecord = nullptr; 1888 } 1889 1890 //===----------------------------------------------------------------------===// 1891 // NeonEmitter implementation 1892 //===----------------------------------------------------------------------===// 1893 1894 Intrinsic &NeonEmitter::getIntrinsic(StringRef Name, ArrayRef<Type> Types, 1895 std::optional<std::string> MangledName) { 1896 // First, look up the name in the intrinsic map. 1897 assert_with_loc(IntrinsicMap.find(Name.str()) != IntrinsicMap.end(), 1898 ("Intrinsic '" + Name + "' not found!").str()); 1899 auto &V = IntrinsicMap.find(Name.str())->second; 1900 std::vector<Intrinsic *> GoodVec; 1901 1902 // Create a string to print if we end up failing. 1903 std::string ErrMsg = "looking up intrinsic '" + Name.str() + "("; 1904 for (unsigned I = 0; I < Types.size(); ++I) { 1905 if (I != 0) 1906 ErrMsg += ", "; 1907 ErrMsg += Types[I].str(); 1908 } 1909 ErrMsg += ")'\n"; 1910 ErrMsg += "Available overloads:\n"; 1911 1912 // Now, look through each intrinsic implementation and see if the types are 1913 // compatible. 1914 for (auto &I : V) { 1915 ErrMsg += " - " + I.getReturnType().str() + " " + I.getMangledName(); 1916 ErrMsg += "("; 1917 for (unsigned A = 0; A < I.getNumParams(); ++A) { 1918 if (A != 0) 1919 ErrMsg += ", "; 1920 ErrMsg += I.getParamType(A).str(); 1921 } 1922 ErrMsg += ")\n"; 1923 1924 if (MangledName && MangledName != I.getMangledName(true)) 1925 continue; 1926 1927 if (I.getNumParams() != Types.size()) 1928 continue; 1929 1930 unsigned ArgNum = 0; 1931 bool MatchingArgumentTypes = llvm::all_of(Types, [&](const auto &Type) { 1932 return Type == I.getParamType(ArgNum++); 1933 }); 1934 1935 if (MatchingArgumentTypes) 1936 GoodVec.push_back(&I); 1937 } 1938 1939 assert_with_loc(!GoodVec.empty(), 1940 "No compatible intrinsic found - " + ErrMsg); 1941 assert_with_loc(GoodVec.size() == 1, "Multiple overloads found - " + ErrMsg); 1942 1943 return *GoodVec.front(); 1944 } 1945 1946 void NeonEmitter::createIntrinsic(Record *R, 1947 SmallVectorImpl<Intrinsic *> &Out) { 1948 std::string Name = std::string(R->getValueAsString("Name")); 1949 std::string Proto = std::string(R->getValueAsString("Prototype")); 1950 std::string Types = std::string(R->getValueAsString("Types")); 1951 Record *OperationRec = R->getValueAsDef("Operation"); 1952 bool BigEndianSafe = R->getValueAsBit("BigEndianSafe"); 1953 std::string ArchGuard = std::string(R->getValueAsString("ArchGuard")); 1954 std::string TargetGuard = std::string(R->getValueAsString("TargetGuard")); 1955 bool IsUnavailable = OperationRec->getValueAsBit("Unavailable"); 1956 std::string CartesianProductWith = std::string(R->getValueAsString("CartesianProductWith")); 1957 1958 // Set the global current record. This allows assert_with_loc to produce 1959 // decent location information even when highly nested. 1960 CurrentRecord = R; 1961 1962 ListInit *Body = OperationRec->getValueAsListInit("Ops"); 1963 1964 std::vector<TypeSpec> TypeSpecs = TypeSpec::fromTypeSpecs(Types); 1965 1966 ClassKind CK = ClassNone; 1967 if (R->getSuperClasses().size() >= 2) 1968 CK = ClassMap[R->getSuperClasses()[1].first]; 1969 1970 std::vector<std::pair<TypeSpec, TypeSpec>> NewTypeSpecs; 1971 if (!CartesianProductWith.empty()) { 1972 std::vector<TypeSpec> ProductTypeSpecs = TypeSpec::fromTypeSpecs(CartesianProductWith); 1973 for (auto TS : TypeSpecs) { 1974 Type DefaultT(TS, "."); 1975 for (auto SrcTS : ProductTypeSpecs) { 1976 Type DefaultSrcT(SrcTS, "."); 1977 if (TS == SrcTS || 1978 DefaultSrcT.getSizeInBits() != DefaultT.getSizeInBits()) 1979 continue; 1980 NewTypeSpecs.push_back(std::make_pair(TS, SrcTS)); 1981 } 1982 } 1983 } else { 1984 for (auto TS : TypeSpecs) { 1985 NewTypeSpecs.push_back(std::make_pair(TS, TS)); 1986 } 1987 } 1988 1989 llvm::sort(NewTypeSpecs); 1990 NewTypeSpecs.erase(std::unique(NewTypeSpecs.begin(), NewTypeSpecs.end()), 1991 NewTypeSpecs.end()); 1992 auto &Entry = IntrinsicMap[Name]; 1993 1994 for (auto &I : NewTypeSpecs) { 1995 Entry.emplace_back(R, Name, Proto, I.first, I.second, CK, Body, *this, 1996 ArchGuard, TargetGuard, IsUnavailable, BigEndianSafe); 1997 Out.push_back(&Entry.back()); 1998 } 1999 2000 CurrentRecord = nullptr; 2001 } 2002 2003 /// genBuiltinsDef: Generate the BuiltinsARM.def and BuiltinsAArch64.def 2004 /// declaration of builtins, checking for unique builtin declarations. 2005 void NeonEmitter::genBuiltinsDef(raw_ostream &OS, 2006 SmallVectorImpl<Intrinsic *> &Defs) { 2007 OS << "#ifdef GET_NEON_BUILTINS\n"; 2008 2009 // We only want to emit a builtin once, and we want to emit them in 2010 // alphabetical order, so use a std::set. 2011 std::set<std::pair<std::string, std::string>> Builtins; 2012 2013 for (auto *Def : Defs) { 2014 if (Def->hasBody()) 2015 continue; 2016 2017 std::string S = "__builtin_neon_" + Def->getMangledName() + ", \""; 2018 S += Def->getBuiltinTypeStr(); 2019 S += "\", \"n\""; 2020 2021 Builtins.emplace(S, Def->getTargetGuard()); 2022 } 2023 2024 for (auto &S : Builtins) { 2025 if (S.second == "") 2026 OS << "BUILTIN("; 2027 else 2028 OS << "TARGET_BUILTIN("; 2029 OS << S.first; 2030 if (S.second == "") 2031 OS << ")\n"; 2032 else 2033 OS << ", \"" << S.second << "\")\n"; 2034 } 2035 2036 OS << "#endif\n\n"; 2037 } 2038 2039 void NeonEmitter::genStreamingSVECompatibleList( 2040 raw_ostream &OS, SmallVectorImpl<Intrinsic *> &Defs) { 2041 OS << "#ifdef GET_NEON_STREAMING_COMPAT_FLAG\n"; 2042 2043 std::set<std::string> Emitted; 2044 for (auto *Def : Defs) { 2045 // If the def has a body (that is, it has Operation DAGs), it won't call 2046 // __builtin_neon_* so we don't need to generate a definition for it. 2047 if (Def->hasBody()) 2048 continue; 2049 2050 std::string Name = Def->getMangledName(); 2051 if (Emitted.find(Name) != Emitted.end()) 2052 continue; 2053 2054 // FIXME: We should make exceptions here for some NEON builtins that are 2055 // permitted in streaming mode. 2056 OS << "case NEON::BI__builtin_neon_" << Name 2057 << ": BuiltinType = ArmNonStreaming; break;\n"; 2058 Emitted.insert(Name); 2059 } 2060 OS << "#endif\n\n"; 2061 } 2062 2063 /// Generate the ARM and AArch64 overloaded type checking code for 2064 /// SemaChecking.cpp, checking for unique builtin declarations. 2065 void NeonEmitter::genOverloadTypeCheckCode(raw_ostream &OS, 2066 SmallVectorImpl<Intrinsic *> &Defs) { 2067 OS << "#ifdef GET_NEON_OVERLOAD_CHECK\n"; 2068 2069 // We record each overload check line before emitting because subsequent Inst 2070 // definitions may extend the number of permitted types (i.e. augment the 2071 // Mask). Use std::map to avoid sorting the table by hash number. 2072 struct OverloadInfo { 2073 uint64_t Mask = 0ULL; 2074 int PtrArgNum = 0; 2075 bool HasConstPtr = false; 2076 OverloadInfo() = default; 2077 }; 2078 std::map<std::string, OverloadInfo> OverloadMap; 2079 2080 for (auto *Def : Defs) { 2081 // If the def has a body (that is, it has Operation DAGs), it won't call 2082 // __builtin_neon_* so we don't need to generate a definition for it. 2083 if (Def->hasBody()) 2084 continue; 2085 // Functions which have a scalar argument cannot be overloaded, no need to 2086 // check them if we are emitting the type checking code. 2087 if (Def->protoHasScalar()) 2088 continue; 2089 2090 uint64_t Mask = 0ULL; 2091 Mask |= 1ULL << Def->getPolymorphicKeyType().getNeonEnum(); 2092 2093 // Check if the function has a pointer or const pointer argument. 2094 int PtrArgNum = -1; 2095 bool HasConstPtr = false; 2096 for (unsigned I = 0; I < Def->getNumParams(); ++I) { 2097 const auto &Type = Def->getParamType(I); 2098 if (Type.isPointer()) { 2099 PtrArgNum = I; 2100 HasConstPtr = Type.isConstPointer(); 2101 } 2102 } 2103 2104 // For sret builtins, adjust the pointer argument index. 2105 if (PtrArgNum >= 0 && Def->getReturnType().getNumVectors() > 1) 2106 PtrArgNum += 1; 2107 2108 std::string Name = Def->getName(); 2109 // Omit type checking for the pointer arguments of vld1_lane, vld1_dup, 2110 // vst1_lane, vldap1_lane, and vstl1_lane intrinsics. Using a pointer to 2111 // the vector element type with one of those operations causes codegen to 2112 // select an aligned load/store instruction. If you want an unaligned 2113 // operation, the pointer argument needs to have less alignment than element 2114 // type, so just accept any pointer type. 2115 if (Name == "vld1_lane" || Name == "vld1_dup" || Name == "vst1_lane" || 2116 Name == "vldap1_lane" || Name == "vstl1_lane") { 2117 PtrArgNum = -1; 2118 HasConstPtr = false; 2119 } 2120 2121 if (Mask) { 2122 std::string Name = Def->getMangledName(); 2123 OverloadMap.insert(std::make_pair(Name, OverloadInfo())); 2124 OverloadInfo &OI = OverloadMap[Name]; 2125 OI.Mask |= Mask; 2126 OI.PtrArgNum |= PtrArgNum; 2127 OI.HasConstPtr = HasConstPtr; 2128 } 2129 } 2130 2131 for (auto &I : OverloadMap) { 2132 OverloadInfo &OI = I.second; 2133 2134 OS << "case NEON::BI__builtin_neon_" << I.first << ": "; 2135 OS << "mask = 0x" << Twine::utohexstr(OI.Mask) << "ULL"; 2136 if (OI.PtrArgNum >= 0) 2137 OS << "; PtrArgNum = " << OI.PtrArgNum; 2138 if (OI.HasConstPtr) 2139 OS << "; HasConstPtr = true"; 2140 OS << "; break;\n"; 2141 } 2142 OS << "#endif\n\n"; 2143 } 2144 2145 void NeonEmitter::genIntrinsicRangeCheckCode(raw_ostream &OS, 2146 SmallVectorImpl<Intrinsic *> &Defs) { 2147 OS << "#ifdef GET_NEON_IMMEDIATE_CHECK\n"; 2148 2149 std::set<std::string> Emitted; 2150 2151 for (auto *Def : Defs) { 2152 if (Def->hasBody()) 2153 continue; 2154 // Functions which do not have an immediate do not need to have range 2155 // checking code emitted. 2156 if (!Def->hasImmediate()) 2157 continue; 2158 if (Emitted.find(Def->getMangledName()) != Emitted.end()) 2159 continue; 2160 2161 std::string LowerBound, UpperBound; 2162 2163 Record *R = Def->getRecord(); 2164 if (R->getValueAsBit("isVXAR")) { 2165 //VXAR takes an immediate in the range [0, 63] 2166 LowerBound = "0"; 2167 UpperBound = "63"; 2168 } else if (R->getValueAsBit("isVCVT_N")) { 2169 // VCVT between floating- and fixed-point values takes an immediate 2170 // in the range [1, 32) for f32 or [1, 64) for f64 or [1, 16) for f16. 2171 LowerBound = "1"; 2172 if (Def->getBaseType().getElementSizeInBits() == 16 || 2173 Def->getName().find('h') != std::string::npos) 2174 // VCVTh operating on FP16 intrinsics in range [1, 16) 2175 UpperBound = "15"; 2176 else if (Def->getBaseType().getElementSizeInBits() == 32) 2177 UpperBound = "31"; 2178 else 2179 UpperBound = "63"; 2180 } else if (R->getValueAsBit("isScalarShift")) { 2181 // Right shifts have an 'r' in the name, left shifts do not. Convert 2182 // instructions have the same bounds and right shifts. 2183 if (Def->getName().find('r') != std::string::npos || 2184 Def->getName().find("cvt") != std::string::npos) 2185 LowerBound = "1"; 2186 2187 UpperBound = utostr(Def->getReturnType().getElementSizeInBits() - 1); 2188 } else if (R->getValueAsBit("isShift")) { 2189 // Builtins which are overloaded by type will need to have their upper 2190 // bound computed at Sema time based on the type constant. 2191 2192 // Right shifts have an 'r' in the name, left shifts do not. 2193 if (Def->getName().find('r') != std::string::npos) 2194 LowerBound = "1"; 2195 UpperBound = "RFT(TV, true)"; 2196 } else if (Def->getClassKind(true) == ClassB) { 2197 // ClassB intrinsics have a type (and hence lane number) that is only 2198 // known at runtime. 2199 if (R->getValueAsBit("isLaneQ")) 2200 UpperBound = "RFT(TV, false, true)"; 2201 else 2202 UpperBound = "RFT(TV, false, false)"; 2203 } else { 2204 // The immediate generally refers to a lane in the preceding argument. 2205 assert(Def->getImmediateIdx() > 0); 2206 Type T = Def->getParamType(Def->getImmediateIdx() - 1); 2207 UpperBound = utostr(T.getNumElements() - 1); 2208 } 2209 2210 // Calculate the index of the immediate that should be range checked. 2211 unsigned Idx = Def->getNumParams(); 2212 if (Def->hasImmediate()) 2213 Idx = Def->getGeneratedParamIdx(Def->getImmediateIdx()); 2214 2215 OS << "case NEON::BI__builtin_neon_" << Def->getMangledName() << ": " 2216 << "i = " << Idx << ";"; 2217 if (!LowerBound.empty()) 2218 OS << " l = " << LowerBound << ";"; 2219 if (!UpperBound.empty()) 2220 OS << " u = " << UpperBound << ";"; 2221 OS << " break;\n"; 2222 2223 Emitted.insert(Def->getMangledName()); 2224 } 2225 2226 OS << "#endif\n\n"; 2227 } 2228 2229 /// runHeader - Emit a file with sections defining: 2230 /// 1. the NEON section of BuiltinsARM.def and BuiltinsAArch64.def. 2231 /// 2. the SemaChecking code for the type overload checking. 2232 /// 3. the SemaChecking code for validation of intrinsic immediate arguments. 2233 void NeonEmitter::runHeader(raw_ostream &OS) { 2234 std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst"); 2235 2236 SmallVector<Intrinsic *, 128> Defs; 2237 for (auto *R : RV) 2238 createIntrinsic(R, Defs); 2239 2240 // Generate shared BuiltinsXXX.def 2241 genBuiltinsDef(OS, Defs); 2242 2243 // Generate ARM overloaded type checking code for SemaChecking.cpp 2244 genOverloadTypeCheckCode(OS, Defs); 2245 2246 genStreamingSVECompatibleList(OS, Defs); 2247 2248 // Generate ARM range checking code for shift/lane immediates. 2249 genIntrinsicRangeCheckCode(OS, Defs); 2250 } 2251 2252 static void emitNeonTypeDefs(const std::string& types, raw_ostream &OS) { 2253 std::string TypedefTypes(types); 2254 std::vector<TypeSpec> TDTypeVec = TypeSpec::fromTypeSpecs(TypedefTypes); 2255 2256 // Emit vector typedefs. 2257 bool InIfdef = false; 2258 for (auto &TS : TDTypeVec) { 2259 bool IsA64 = false; 2260 Type T(TS, "."); 2261 if (T.isDouble()) 2262 IsA64 = true; 2263 2264 if (InIfdef && !IsA64) { 2265 OS << "#endif\n"; 2266 InIfdef = false; 2267 } 2268 if (!InIfdef && IsA64) { 2269 OS << "#if defined(__aarch64__) || defined(__arm64ec__)\n"; 2270 InIfdef = true; 2271 } 2272 2273 if (T.isPoly()) 2274 OS << "typedef __attribute__((neon_polyvector_type("; 2275 else 2276 OS << "typedef __attribute__((neon_vector_type("; 2277 2278 Type T2 = T; 2279 T2.makeScalar(); 2280 OS << T.getNumElements() << "))) "; 2281 OS << T2.str(); 2282 OS << " " << T.str() << ";\n"; 2283 } 2284 if (InIfdef) 2285 OS << "#endif\n"; 2286 OS << "\n"; 2287 2288 // Emit struct typedefs. 2289 InIfdef = false; 2290 for (unsigned NumMembers = 2; NumMembers <= 4; ++NumMembers) { 2291 for (auto &TS : TDTypeVec) { 2292 bool IsA64 = false; 2293 Type T(TS, "."); 2294 if (T.isDouble()) 2295 IsA64 = true; 2296 2297 if (InIfdef && !IsA64) { 2298 OS << "#endif\n"; 2299 InIfdef = false; 2300 } 2301 if (!InIfdef && IsA64) { 2302 OS << "#if defined(__aarch64__) || defined(__arm64ec__)\n"; 2303 InIfdef = true; 2304 } 2305 2306 const char Mods[] = { static_cast<char>('2' + (NumMembers - 2)), 0}; 2307 Type VT(TS, Mods); 2308 OS << "typedef struct " << VT.str() << " {\n"; 2309 OS << " " << T.str() << " val"; 2310 OS << "[" << NumMembers << "]"; 2311 OS << ";\n} "; 2312 OS << VT.str() << ";\n"; 2313 OS << "\n"; 2314 } 2315 } 2316 if (InIfdef) 2317 OS << "#endif\n"; 2318 } 2319 2320 /// run - Read the records in arm_neon.td and output arm_neon.h. arm_neon.h 2321 /// is comprised of type definitions and function declarations. 2322 void NeonEmitter::run(raw_ostream &OS) { 2323 OS << "/*===---- arm_neon.h - ARM Neon intrinsics " 2324 "------------------------------" 2325 "---===\n" 2326 " *\n" 2327 " * Permission is hereby granted, free of charge, to any person " 2328 "obtaining " 2329 "a copy\n" 2330 " * of this software and associated documentation files (the " 2331 "\"Software\")," 2332 " to deal\n" 2333 " * in the Software without restriction, including without limitation " 2334 "the " 2335 "rights\n" 2336 " * to use, copy, modify, merge, publish, distribute, sublicense, " 2337 "and/or sell\n" 2338 " * copies of the Software, and to permit persons to whom the Software " 2339 "is\n" 2340 " * furnished to do so, subject to the following conditions:\n" 2341 " *\n" 2342 " * The above copyright notice and this permission notice shall be " 2343 "included in\n" 2344 " * all copies or substantial portions of the Software.\n" 2345 " *\n" 2346 " * THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, " 2347 "EXPRESS OR\n" 2348 " * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF " 2349 "MERCHANTABILITY,\n" 2350 " * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT " 2351 "SHALL THE\n" 2352 " * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR " 2353 "OTHER\n" 2354 " * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, " 2355 "ARISING FROM,\n" 2356 " * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER " 2357 "DEALINGS IN\n" 2358 " * THE SOFTWARE.\n" 2359 " *\n" 2360 " *===-----------------------------------------------------------------" 2361 "---" 2362 "---===\n" 2363 " */\n\n"; 2364 2365 OS << "#ifndef __ARM_NEON_H\n"; 2366 OS << "#define __ARM_NEON_H\n\n"; 2367 2368 OS << "#ifndef __ARM_FP\n"; 2369 OS << "#error \"NEON intrinsics not available with the soft-float ABI. " 2370 "Please use -mfloat-abi=softfp or -mfloat-abi=hard\"\n"; 2371 OS << "#else\n\n"; 2372 2373 OS << "#include <stdint.h>\n\n"; 2374 2375 OS << "#include <arm_bf16.h>\n"; 2376 2377 OS << "#include <arm_vector_types.h>\n"; 2378 2379 // For now, signedness of polynomial types depends on target 2380 OS << "#if defined(__aarch64__) || defined(__arm64ec__)\n"; 2381 OS << "typedef uint8_t poly8_t;\n"; 2382 OS << "typedef uint16_t poly16_t;\n"; 2383 OS << "typedef uint64_t poly64_t;\n"; 2384 OS << "typedef __uint128_t poly128_t;\n"; 2385 OS << "#else\n"; 2386 OS << "typedef int8_t poly8_t;\n"; 2387 OS << "typedef int16_t poly16_t;\n"; 2388 OS << "typedef int64_t poly64_t;\n"; 2389 OS << "#endif\n"; 2390 emitNeonTypeDefs("PcQPcPsQPsPlQPl", OS); 2391 2392 OS << "#define __ai static __inline__ __attribute__((__always_inline__, " 2393 "__nodebug__))\n\n"; 2394 2395 SmallVector<Intrinsic *, 128> Defs; 2396 std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst"); 2397 for (auto *R : RV) 2398 createIntrinsic(R, Defs); 2399 2400 for (auto *I : Defs) 2401 I->indexBody(); 2402 2403 llvm::stable_sort(Defs, llvm::deref<std::less<>>()); 2404 2405 // Only emit a def when its requirements have been met. 2406 // FIXME: This loop could be made faster, but it's fast enough for now. 2407 bool MadeProgress = true; 2408 std::string InGuard; 2409 while (!Defs.empty() && MadeProgress) { 2410 MadeProgress = false; 2411 2412 for (SmallVector<Intrinsic *, 128>::iterator I = Defs.begin(); 2413 I != Defs.end(); /*No step*/) { 2414 bool DependenciesSatisfied = true; 2415 for (auto *II : (*I)->getDependencies()) { 2416 if (llvm::is_contained(Defs, II)) 2417 DependenciesSatisfied = false; 2418 } 2419 if (!DependenciesSatisfied) { 2420 // Try the next one. 2421 ++I; 2422 continue; 2423 } 2424 2425 // Emit #endif/#if pair if needed. 2426 if ((*I)->getArchGuard() != InGuard) { 2427 if (!InGuard.empty()) 2428 OS << "#endif\n"; 2429 InGuard = (*I)->getArchGuard(); 2430 if (!InGuard.empty()) 2431 OS << "#if " << InGuard << "\n"; 2432 } 2433 2434 // Actually generate the intrinsic code. 2435 OS << (*I)->generate(); 2436 2437 MadeProgress = true; 2438 I = Defs.erase(I); 2439 } 2440 } 2441 assert(Defs.empty() && "Some requirements were not satisfied!"); 2442 if (!InGuard.empty()) 2443 OS << "#endif\n"; 2444 2445 OS << "\n"; 2446 OS << "#undef __ai\n\n"; 2447 OS << "#endif /* if !defined(__ARM_NEON) */\n"; 2448 OS << "#endif /* ifndef __ARM_FP */\n"; 2449 } 2450 2451 /// run - Read the records in arm_fp16.td and output arm_fp16.h. arm_fp16.h 2452 /// is comprised of type definitions and function declarations. 2453 void NeonEmitter::runFP16(raw_ostream &OS) { 2454 OS << "/*===---- arm_fp16.h - ARM FP16 intrinsics " 2455 "------------------------------" 2456 "---===\n" 2457 " *\n" 2458 " * Permission is hereby granted, free of charge, to any person " 2459 "obtaining a copy\n" 2460 " * of this software and associated documentation files (the " 2461 "\"Software\"), to deal\n" 2462 " * in the Software without restriction, including without limitation " 2463 "the rights\n" 2464 " * to use, copy, modify, merge, publish, distribute, sublicense, " 2465 "and/or sell\n" 2466 " * copies of the Software, and to permit persons to whom the Software " 2467 "is\n" 2468 " * furnished to do so, subject to the following conditions:\n" 2469 " *\n" 2470 " * The above copyright notice and this permission notice shall be " 2471 "included in\n" 2472 " * all copies or substantial portions of the Software.\n" 2473 " *\n" 2474 " * THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, " 2475 "EXPRESS OR\n" 2476 " * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF " 2477 "MERCHANTABILITY,\n" 2478 " * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT " 2479 "SHALL THE\n" 2480 " * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR " 2481 "OTHER\n" 2482 " * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, " 2483 "ARISING FROM,\n" 2484 " * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER " 2485 "DEALINGS IN\n" 2486 " * THE SOFTWARE.\n" 2487 " *\n" 2488 " *===-----------------------------------------------------------------" 2489 "---" 2490 "---===\n" 2491 " */\n\n"; 2492 2493 OS << "#ifndef __ARM_FP16_H\n"; 2494 OS << "#define __ARM_FP16_H\n\n"; 2495 2496 OS << "#include <stdint.h>\n\n"; 2497 2498 OS << "typedef __fp16 float16_t;\n"; 2499 2500 OS << "#define __ai static __inline__ __attribute__((__always_inline__, " 2501 "__nodebug__))\n\n"; 2502 2503 SmallVector<Intrinsic *, 128> Defs; 2504 std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst"); 2505 for (auto *R : RV) 2506 createIntrinsic(R, Defs); 2507 2508 for (auto *I : Defs) 2509 I->indexBody(); 2510 2511 llvm::stable_sort(Defs, llvm::deref<std::less<>>()); 2512 2513 // Only emit a def when its requirements have been met. 2514 // FIXME: This loop could be made faster, but it's fast enough for now. 2515 bool MadeProgress = true; 2516 std::string InGuard; 2517 while (!Defs.empty() && MadeProgress) { 2518 MadeProgress = false; 2519 2520 for (SmallVector<Intrinsic *, 128>::iterator I = Defs.begin(); 2521 I != Defs.end(); /*No step*/) { 2522 bool DependenciesSatisfied = true; 2523 for (auto *II : (*I)->getDependencies()) { 2524 if (llvm::is_contained(Defs, II)) 2525 DependenciesSatisfied = false; 2526 } 2527 if (!DependenciesSatisfied) { 2528 // Try the next one. 2529 ++I; 2530 continue; 2531 } 2532 2533 // Emit #endif/#if pair if needed. 2534 if ((*I)->getArchGuard() != InGuard) { 2535 if (!InGuard.empty()) 2536 OS << "#endif\n"; 2537 InGuard = (*I)->getArchGuard(); 2538 if (!InGuard.empty()) 2539 OS << "#if " << InGuard << "\n"; 2540 } 2541 2542 // Actually generate the intrinsic code. 2543 OS << (*I)->generate(); 2544 2545 MadeProgress = true; 2546 I = Defs.erase(I); 2547 } 2548 } 2549 assert(Defs.empty() && "Some requirements were not satisfied!"); 2550 if (!InGuard.empty()) 2551 OS << "#endif\n"; 2552 2553 OS << "\n"; 2554 OS << "#undef __ai\n\n"; 2555 OS << "#endif /* __ARM_FP16_H */\n"; 2556 } 2557 2558 void NeonEmitter::runVectorTypes(raw_ostream &OS) { 2559 OS << "/*===---- arm_vector_types - ARM vector type " 2560 "------===\n" 2561 " *\n" 2562 " *\n" 2563 " * Part of the LLVM Project, under the Apache License v2.0 with LLVM " 2564 "Exceptions.\n" 2565 " * See https://llvm.org/LICENSE.txt for license information.\n" 2566 " * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception\n" 2567 " *\n" 2568 " *===-----------------------------------------------------------------" 2569 "------===\n" 2570 " */\n\n"; 2571 OS << "#if !defined(__ARM_NEON_H) && !defined(__ARM_SVE_H)\n"; 2572 OS << "#error \"This file should not be used standalone. Please include" 2573 " arm_neon.h or arm_sve.h instead\"\n\n"; 2574 OS << "#endif\n"; 2575 OS << "#ifndef __ARM_NEON_TYPES_H\n"; 2576 OS << "#define __ARM_NEON_TYPES_H\n"; 2577 OS << "typedef float float32_t;\n"; 2578 OS << "typedef __fp16 float16_t;\n"; 2579 2580 OS << "#if defined(__aarch64__) || defined(__arm64ec__)\n"; 2581 OS << "typedef double float64_t;\n"; 2582 OS << "#endif\n\n"; 2583 2584 emitNeonTypeDefs("cQcsQsiQilQlUcQUcUsQUsUiQUiUlQUlhQhfQfdQd", OS); 2585 2586 emitNeonTypeDefs("bQb", OS); 2587 OS << "#endif // __ARM_NEON_TYPES_H\n"; 2588 } 2589 2590 void NeonEmitter::runBF16(raw_ostream &OS) { 2591 OS << "/*===---- arm_bf16.h - ARM BF16 intrinsics " 2592 "-----------------------------------===\n" 2593 " *\n" 2594 " *\n" 2595 " * Part of the LLVM Project, under the Apache License v2.0 with LLVM " 2596 "Exceptions.\n" 2597 " * See https://llvm.org/LICENSE.txt for license information.\n" 2598 " * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception\n" 2599 " *\n" 2600 " *===-----------------------------------------------------------------" 2601 "------===\n" 2602 " */\n\n"; 2603 2604 OS << "#ifndef __ARM_BF16_H\n"; 2605 OS << "#define __ARM_BF16_H\n\n"; 2606 2607 OS << "typedef __bf16 bfloat16_t;\n"; 2608 2609 OS << "#define __ai static __inline__ __attribute__((__always_inline__, " 2610 "__nodebug__))\n\n"; 2611 2612 SmallVector<Intrinsic *, 128> Defs; 2613 std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst"); 2614 for (auto *R : RV) 2615 createIntrinsic(R, Defs); 2616 2617 for (auto *I : Defs) 2618 I->indexBody(); 2619 2620 llvm::stable_sort(Defs, llvm::deref<std::less<>>()); 2621 2622 // Only emit a def when its requirements have been met. 2623 // FIXME: This loop could be made faster, but it's fast enough for now. 2624 bool MadeProgress = true; 2625 std::string InGuard; 2626 while (!Defs.empty() && MadeProgress) { 2627 MadeProgress = false; 2628 2629 for (SmallVector<Intrinsic *, 128>::iterator I = Defs.begin(); 2630 I != Defs.end(); /*No step*/) { 2631 bool DependenciesSatisfied = true; 2632 for (auto *II : (*I)->getDependencies()) { 2633 if (llvm::is_contained(Defs, II)) 2634 DependenciesSatisfied = false; 2635 } 2636 if (!DependenciesSatisfied) { 2637 // Try the next one. 2638 ++I; 2639 continue; 2640 } 2641 2642 // Emit #endif/#if pair if needed. 2643 if ((*I)->getArchGuard() != InGuard) { 2644 if (!InGuard.empty()) 2645 OS << "#endif\n"; 2646 InGuard = (*I)->getArchGuard(); 2647 if (!InGuard.empty()) 2648 OS << "#if " << InGuard << "\n"; 2649 } 2650 2651 // Actually generate the intrinsic code. 2652 OS << (*I)->generate(); 2653 2654 MadeProgress = true; 2655 I = Defs.erase(I); 2656 } 2657 } 2658 assert(Defs.empty() && "Some requirements were not satisfied!"); 2659 if (!InGuard.empty()) 2660 OS << "#endif\n"; 2661 2662 OS << "\n"; 2663 OS << "#undef __ai\n\n"; 2664 2665 OS << "#endif\n"; 2666 } 2667 2668 void clang::EmitNeon(RecordKeeper &Records, raw_ostream &OS) { 2669 NeonEmitter(Records).run(OS); 2670 } 2671 2672 void clang::EmitFP16(RecordKeeper &Records, raw_ostream &OS) { 2673 NeonEmitter(Records).runFP16(OS); 2674 } 2675 2676 void clang::EmitBF16(RecordKeeper &Records, raw_ostream &OS) { 2677 NeonEmitter(Records).runBF16(OS); 2678 } 2679 2680 void clang::EmitNeonSema(RecordKeeper &Records, raw_ostream &OS) { 2681 NeonEmitter(Records).runHeader(OS); 2682 } 2683 2684 void clang::EmitVectorTypes(RecordKeeper &Records, raw_ostream &OS) { 2685 NeonEmitter(Records).runVectorTypes(OS); 2686 } 2687 2688 void clang::EmitNeonTest(RecordKeeper &Records, raw_ostream &OS) { 2689 llvm_unreachable("Neon test generation no longer implemented!"); 2690 } 2691