xref: /freebsd/contrib/llvm-project/clang/utils/TableGen/NeonEmitter.cpp (revision 4e62c3cafa4c4e41efd6f87b7fe559cf819cf3e4)
1 //===- NeonEmitter.cpp - Generate arm_neon.h for use with clang -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This tablegen backend is responsible for emitting arm_neon.h, which includes
10 // a declaration and definition of each function specified by the ARM NEON
11 // compiler interface.  See ARM document DUI0348B.
12 //
13 // Each NEON instruction is implemented in terms of 1 or more functions which
14 // are suffixed with the element type of the input vectors.  Functions may be
15 // implemented in terms of generic vector operations such as +, *, -, etc. or
16 // by calling a __builtin_-prefixed function which will be handled by clang's
17 // CodeGen library.
18 //
19 // Additional validation code can be generated by this file when runHeader() is
20 // called, rather than the normal run() entry point.
21 //
22 // See also the documentation in include/clang/Basic/arm_neon.td.
23 //
24 //===----------------------------------------------------------------------===//
25 
26 #include "TableGenBackends.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/ADT/StringRef.h"
33 #include "llvm/Support/Casting.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/TableGen/Error.h"
37 #include "llvm/TableGen/Record.h"
38 #include "llvm/TableGen/SetTheory.h"
39 #include <algorithm>
40 #include <cassert>
41 #include <cctype>
42 #include <cstddef>
43 #include <cstdint>
44 #include <deque>
45 #include <map>
46 #include <optional>
47 #include <set>
48 #include <sstream>
49 #include <string>
50 #include <utility>
51 #include <vector>
52 
53 using namespace llvm;
54 
55 namespace {
56 
57 // While globals are generally bad, this one allows us to perform assertions
58 // liberally and somehow still trace them back to the def they indirectly
59 // came from.
60 static Record *CurrentRecord = nullptr;
61 static void assert_with_loc(bool Assertion, const std::string &Str) {
62   if (!Assertion) {
63     if (CurrentRecord)
64       PrintFatalError(CurrentRecord->getLoc(), Str);
65     else
66       PrintFatalError(Str);
67   }
68 }
69 
70 enum ClassKind {
71   ClassNone,
72   ClassI,     // generic integer instruction, e.g., "i8" suffix
73   ClassS,     // signed/unsigned/poly, e.g., "s8", "u8" or "p8" suffix
74   ClassW,     // width-specific instruction, e.g., "8" suffix
75   ClassB,     // bitcast arguments with enum argument to specify type
76   ClassL,     // Logical instructions which are op instructions
77               // but we need to not emit any suffix for in our
78               // tests.
79   ClassNoTest // Instructions which we do not test since they are
80               // not TRUE instructions.
81 };
82 
83 /// NeonTypeFlags - Flags to identify the types for overloaded Neon
84 /// builtins.  These must be kept in sync with the flags in
85 /// include/clang/Basic/TargetBuiltins.h.
86 namespace NeonTypeFlags {
87 
88 enum { EltTypeMask = 0xf, UnsignedFlag = 0x10, QuadFlag = 0x20 };
89 
90 enum EltType {
91   Int8,
92   Int16,
93   Int32,
94   Int64,
95   Poly8,
96   Poly16,
97   Poly64,
98   Poly128,
99   Float16,
100   Float32,
101   Float64,
102   BFloat16
103 };
104 
105 } // end namespace NeonTypeFlags
106 
107 class NeonEmitter;
108 
109 //===----------------------------------------------------------------------===//
110 // TypeSpec
111 //===----------------------------------------------------------------------===//
112 
113 /// A TypeSpec is just a simple wrapper around a string, but gets its own type
114 /// for strong typing purposes.
115 ///
116 /// A TypeSpec can be used to create a type.
117 class TypeSpec : public std::string {
118 public:
119   static std::vector<TypeSpec> fromTypeSpecs(StringRef Str) {
120     std::vector<TypeSpec> Ret;
121     TypeSpec Acc;
122     for (char I : Str.str()) {
123       if (islower(I)) {
124         Acc.push_back(I);
125         Ret.push_back(TypeSpec(Acc));
126         Acc.clear();
127       } else {
128         Acc.push_back(I);
129       }
130     }
131     return Ret;
132   }
133 };
134 
135 //===----------------------------------------------------------------------===//
136 // Type
137 //===----------------------------------------------------------------------===//
138 
139 /// A Type. Not much more to say here.
140 class Type {
141 private:
142   TypeSpec TS;
143 
144   enum TypeKind {
145     Void,
146     Float,
147     SInt,
148     UInt,
149     Poly,
150     BFloat16,
151   };
152   TypeKind Kind;
153   bool Immediate, Constant, Pointer;
154   // ScalarForMangling and NoManglingQ are really not suited to live here as
155   // they are not related to the type. But they live in the TypeSpec (not the
156   // prototype), so this is really the only place to store them.
157   bool ScalarForMangling, NoManglingQ;
158   unsigned Bitwidth, ElementBitwidth, NumVectors;
159 
160 public:
161   Type()
162       : Kind(Void), Immediate(false), Constant(false),
163         Pointer(false), ScalarForMangling(false), NoManglingQ(false),
164         Bitwidth(0), ElementBitwidth(0), NumVectors(0) {}
165 
166   Type(TypeSpec TS, StringRef CharMods)
167       : TS(std::move(TS)), Kind(Void), Immediate(false),
168         Constant(false), Pointer(false), ScalarForMangling(false),
169         NoManglingQ(false), Bitwidth(0), ElementBitwidth(0), NumVectors(0) {
170     applyModifiers(CharMods);
171   }
172 
173   /// Returns a type representing "void".
174   static Type getVoid() { return Type(); }
175 
176   bool operator==(const Type &Other) const { return str() == Other.str(); }
177   bool operator!=(const Type &Other) const { return !operator==(Other); }
178 
179   //
180   // Query functions
181   //
182   bool isScalarForMangling() const { return ScalarForMangling; }
183   bool noManglingQ() const { return NoManglingQ; }
184 
185   bool isPointer() const { return Pointer; }
186   bool isValue() const { return !isVoid() && !isPointer(); }
187   bool isScalar() const { return isValue() && NumVectors == 0; }
188   bool isVector() const { return isValue() && NumVectors > 0; }
189   bool isConstPointer() const { return Constant; }
190   bool isFloating() const { return Kind == Float; }
191   bool isInteger() const { return Kind == SInt || Kind == UInt; }
192   bool isPoly() const { return Kind == Poly; }
193   bool isSigned() const { return Kind == SInt; }
194   bool isImmediate() const { return Immediate; }
195   bool isFloat() const { return isFloating() && ElementBitwidth == 32; }
196   bool isDouble() const { return isFloating() && ElementBitwidth == 64; }
197   bool isHalf() const { return isFloating() && ElementBitwidth == 16; }
198   bool isChar() const { return ElementBitwidth == 8; }
199   bool isShort() const { return isInteger() && ElementBitwidth == 16; }
200   bool isInt() const { return isInteger() && ElementBitwidth == 32; }
201   bool isLong() const { return isInteger() && ElementBitwidth == 64; }
202   bool isVoid() const { return Kind == Void; }
203   bool isBFloat16() const { return Kind == BFloat16; }
204   unsigned getNumElements() const { return Bitwidth / ElementBitwidth; }
205   unsigned getSizeInBits() const { return Bitwidth; }
206   unsigned getElementSizeInBits() const { return ElementBitwidth; }
207   unsigned getNumVectors() const { return NumVectors; }
208 
209   //
210   // Mutator functions
211   //
212   void makeUnsigned() {
213     assert(!isVoid() && "not a potentially signed type");
214     Kind = UInt;
215   }
216   void makeSigned() {
217     assert(!isVoid() && "not a potentially signed type");
218     Kind = SInt;
219   }
220 
221   void makeInteger(unsigned ElemWidth, bool Sign) {
222     assert(!isVoid() && "converting void to int probably not useful");
223     Kind = Sign ? SInt : UInt;
224     Immediate = false;
225     ElementBitwidth = ElemWidth;
226   }
227 
228   void makeImmediate(unsigned ElemWidth) {
229     Kind = SInt;
230     Immediate = true;
231     ElementBitwidth = ElemWidth;
232   }
233 
234   void makeScalar() {
235     Bitwidth = ElementBitwidth;
236     NumVectors = 0;
237   }
238 
239   void makeOneVector() {
240     assert(isVector());
241     NumVectors = 1;
242   }
243 
244   void make32BitElement() {
245     assert_with_loc(Bitwidth > 32, "Not enough bits to make it 32!");
246     ElementBitwidth = 32;
247   }
248 
249   void doubleLanes() {
250     assert_with_loc(Bitwidth != 128, "Can't get bigger than 128!");
251     Bitwidth = 128;
252   }
253 
254   void halveLanes() {
255     assert_with_loc(Bitwidth != 64, "Can't get smaller than 64!");
256     Bitwidth = 64;
257   }
258 
259   /// Return the C string representation of a type, which is the typename
260   /// defined in stdint.h or arm_neon.h.
261   std::string str() const;
262 
263   /// Return the string representation of a type, which is an encoded
264   /// string for passing to the BUILTIN() macro in Builtins.def.
265   std::string builtin_str() const;
266 
267   /// Return the value in NeonTypeFlags for this type.
268   unsigned getNeonEnum() const;
269 
270   /// Parse a type from a stdint.h or arm_neon.h typedef name,
271   /// for example uint32x2_t or int64_t.
272   static Type fromTypedefName(StringRef Name);
273 
274 private:
275   /// Creates the type based on the typespec string in TS.
276   /// Sets "Quad" to true if the "Q" or "H" modifiers were
277   /// seen. This is needed by applyModifier as some modifiers
278   /// only take effect if the type size was changed by "Q" or "H".
279   void applyTypespec(bool &Quad);
280   /// Applies prototype modifiers to the type.
281   void applyModifiers(StringRef Mods);
282 };
283 
284 //===----------------------------------------------------------------------===//
285 // Variable
286 //===----------------------------------------------------------------------===//
287 
288 /// A variable is a simple class that just has a type and a name.
289 class Variable {
290   Type T;
291   std::string N;
292 
293 public:
294   Variable() : T(Type::getVoid()) {}
295   Variable(Type T, std::string N) : T(std::move(T)), N(std::move(N)) {}
296 
297   Type getType() const { return T; }
298   std::string getName() const { return "__" + N; }
299 };
300 
301 //===----------------------------------------------------------------------===//
302 // Intrinsic
303 //===----------------------------------------------------------------------===//
304 
305 /// The main grunt class. This represents an instantiation of an intrinsic with
306 /// a particular typespec and prototype.
307 class Intrinsic {
308   /// The Record this intrinsic was created from.
309   Record *R;
310   /// The unmangled name.
311   std::string Name;
312   /// The input and output typespecs. InTS == OutTS except when
313   /// CartesianProductWith is non-empty - this is the case for vreinterpret.
314   TypeSpec OutTS, InTS;
315   /// The base class kind. Most intrinsics use ClassS, which has full type
316   /// info for integers (s32/u32). Some use ClassI, which doesn't care about
317   /// signedness (i32), while some (ClassB) have no type at all, only a width
318   /// (32).
319   ClassKind CK;
320   /// The list of DAGs for the body. May be empty, in which case we should
321   /// emit a builtin call.
322   ListInit *Body;
323   /// The architectural ifdef guard.
324   std::string ArchGuard;
325   /// The architectural target() guard.
326   std::string TargetGuard;
327   /// Set if the Unavailable bit is 1. This means we don't generate a body,
328   /// just an "unavailable" attribute on a declaration.
329   bool IsUnavailable;
330   /// Is this intrinsic safe for big-endian? or does it need its arguments
331   /// reversing?
332   bool BigEndianSafe;
333 
334   /// The types of return value [0] and parameters [1..].
335   std::vector<Type> Types;
336   /// The index of the key type passed to CGBuiltin.cpp for polymorphic calls.
337   int PolymorphicKeyType;
338   /// The local variables defined.
339   std::map<std::string, Variable> Variables;
340   /// NeededEarly - set if any other intrinsic depends on this intrinsic.
341   bool NeededEarly;
342   /// UseMacro - set if we should implement using a macro or unset for a
343   ///            function.
344   bool UseMacro;
345   /// The set of intrinsics that this intrinsic uses/requires.
346   std::set<Intrinsic *> Dependencies;
347   /// The "base type", which is Type('d', OutTS). InBaseType is only
348   /// different if CartesianProductWith is non-empty (for vreinterpret).
349   Type BaseType, InBaseType;
350   /// The return variable.
351   Variable RetVar;
352   /// A postfix to apply to every variable. Defaults to "".
353   std::string VariablePostfix;
354 
355   NeonEmitter &Emitter;
356   std::stringstream OS;
357 
358   bool isBigEndianSafe() const {
359     if (BigEndianSafe)
360       return true;
361 
362     for (const auto &T : Types){
363       if (T.isVector() && T.getNumElements() > 1)
364         return false;
365     }
366     return true;
367   }
368 
369 public:
370   Intrinsic(Record *R, StringRef Name, StringRef Proto, TypeSpec OutTS,
371             TypeSpec InTS, ClassKind CK, ListInit *Body, NeonEmitter &Emitter,
372             StringRef ArchGuard, StringRef TargetGuard, bool IsUnavailable, bool BigEndianSafe)
373       : R(R), Name(Name.str()), OutTS(OutTS), InTS(InTS), CK(CK), Body(Body),
374         ArchGuard(ArchGuard.str()), TargetGuard(TargetGuard.str()), IsUnavailable(IsUnavailable),
375         BigEndianSafe(BigEndianSafe), PolymorphicKeyType(0), NeededEarly(false),
376         UseMacro(false), BaseType(OutTS, "."), InBaseType(InTS, "."),
377         Emitter(Emitter) {
378     // Modify the TypeSpec per-argument to get a concrete Type, and create
379     // known variables for each.
380     // Types[0] is the return value.
381     unsigned Pos = 0;
382     Types.emplace_back(OutTS, getNextModifiers(Proto, Pos));
383     StringRef Mods = getNextModifiers(Proto, Pos);
384     while (!Mods.empty()) {
385       Types.emplace_back(InTS, Mods);
386       if (Mods.contains('!'))
387         PolymorphicKeyType = Types.size() - 1;
388 
389       Mods = getNextModifiers(Proto, Pos);
390     }
391 
392     for (const auto &Type : Types) {
393       // If this builtin takes an immediate argument, we need to #define it rather
394       // than use a standard declaration, so that SemaChecking can range check
395       // the immediate passed by the user.
396 
397       // Pointer arguments need to use macros to avoid hiding aligned attributes
398       // from the pointer type.
399 
400       // It is not permitted to pass or return an __fp16 by value, so intrinsics
401       // taking a scalar float16_t must be implemented as macros.
402       if (Type.isImmediate() || Type.isPointer() ||
403           (Type.isScalar() && Type.isHalf()))
404         UseMacro = true;
405     }
406   }
407 
408   /// Get the Record that this intrinsic is based off.
409   Record *getRecord() const { return R; }
410   /// Get the set of Intrinsics that this intrinsic calls.
411   /// this is the set of immediate dependencies, NOT the
412   /// transitive closure.
413   const std::set<Intrinsic *> &getDependencies() const { return Dependencies; }
414   /// Get the architectural guard string (#ifdef).
415   std::string getArchGuard() const { return ArchGuard; }
416   std::string getTargetGuard() const { return TargetGuard; }
417   /// Get the non-mangled name.
418   std::string getName() const { return Name; }
419 
420   /// Return true if the intrinsic takes an immediate operand.
421   bool hasImmediate() const {
422     return llvm::any_of(Types, [](const Type &T) { return T.isImmediate(); });
423   }
424 
425   /// Return the parameter index of the immediate operand.
426   unsigned getImmediateIdx() const {
427     for (unsigned Idx = 0; Idx < Types.size(); ++Idx)
428       if (Types[Idx].isImmediate())
429         return Idx - 1;
430     llvm_unreachable("Intrinsic has no immediate");
431   }
432 
433 
434   unsigned getNumParams() const { return Types.size() - 1; }
435   Type getReturnType() const { return Types[0]; }
436   Type getParamType(unsigned I) const { return Types[I + 1]; }
437   Type getBaseType() const { return BaseType; }
438   Type getPolymorphicKeyType() const { return Types[PolymorphicKeyType]; }
439 
440   /// Return true if the prototype has a scalar argument.
441   bool protoHasScalar() const;
442 
443   /// Return the index that parameter PIndex will sit at
444   /// in a generated function call. This is often just PIndex,
445   /// but may not be as things such as multiple-vector operands
446   /// and sret parameters need to be taken into account.
447   unsigned getGeneratedParamIdx(unsigned PIndex) {
448     unsigned Idx = 0;
449     if (getReturnType().getNumVectors() > 1)
450       // Multiple vectors are passed as sret.
451       ++Idx;
452 
453     for (unsigned I = 0; I < PIndex; ++I)
454       Idx += std::max(1U, getParamType(I).getNumVectors());
455 
456     return Idx;
457   }
458 
459   bool hasBody() const { return Body && !Body->getValues().empty(); }
460 
461   void setNeededEarly() { NeededEarly = true; }
462 
463   bool operator<(const Intrinsic &Other) const {
464     // Sort lexicographically on a three-tuple (ArchGuard, TargetGuard, Name)
465     if (ArchGuard != Other.ArchGuard)
466       return ArchGuard < Other.ArchGuard;
467     if (TargetGuard != Other.TargetGuard)
468       return TargetGuard < Other.TargetGuard;
469     return Name < Other.Name;
470   }
471 
472   ClassKind getClassKind(bool UseClassBIfScalar = false) {
473     if (UseClassBIfScalar && !protoHasScalar())
474       return ClassB;
475     return CK;
476   }
477 
478   /// Return the name, mangled with type information.
479   /// If ForceClassS is true, use ClassS (u32/s32) instead
480   /// of the intrinsic's own type class.
481   std::string getMangledName(bool ForceClassS = false) const;
482   /// Return the type code for a builtin function call.
483   std::string getInstTypeCode(Type T, ClassKind CK) const;
484   /// Return the type string for a BUILTIN() macro in Builtins.def.
485   std::string getBuiltinTypeStr();
486 
487   /// Generate the intrinsic, returning code.
488   std::string generate();
489   /// Perform type checking and populate the dependency graph, but
490   /// don't generate code yet.
491   void indexBody();
492 
493 private:
494   StringRef getNextModifiers(StringRef Proto, unsigned &Pos) const;
495 
496   std::string mangleName(std::string Name, ClassKind CK) const;
497 
498   void initVariables();
499   std::string replaceParamsIn(std::string S);
500 
501   void emitBodyAsBuiltinCall();
502 
503   void generateImpl(bool ReverseArguments,
504                     StringRef NamePrefix, StringRef CallPrefix);
505   void emitReturn();
506   void emitBody(StringRef CallPrefix);
507   void emitShadowedArgs();
508   void emitArgumentReversal();
509   void emitReturnVarDecl();
510   void emitReturnReversal();
511   void emitReverseVariable(Variable &Dest, Variable &Src);
512   void emitNewLine();
513   void emitClosingBrace();
514   void emitOpeningBrace();
515   void emitPrototype(StringRef NamePrefix);
516 
517   class DagEmitter {
518     Intrinsic &Intr;
519     StringRef CallPrefix;
520 
521   public:
522     DagEmitter(Intrinsic &Intr, StringRef CallPrefix) :
523       Intr(Intr), CallPrefix(CallPrefix) {
524     }
525     std::pair<Type, std::string> emitDagArg(Init *Arg, std::string ArgName);
526     std::pair<Type, std::string> emitDagSaveTemp(DagInit *DI);
527     std::pair<Type, std::string> emitDagSplat(DagInit *DI);
528     std::pair<Type, std::string> emitDagDup(DagInit *DI);
529     std::pair<Type, std::string> emitDagDupTyped(DagInit *DI);
530     std::pair<Type, std::string> emitDagShuffle(DagInit *DI);
531     std::pair<Type, std::string> emitDagCast(DagInit *DI, bool IsBitCast);
532     std::pair<Type, std::string> emitDagCall(DagInit *DI,
533                                              bool MatchMangledName);
534     std::pair<Type, std::string> emitDagNameReplace(DagInit *DI);
535     std::pair<Type, std::string> emitDagLiteral(DagInit *DI);
536     std::pair<Type, std::string> emitDagOp(DagInit *DI);
537     std::pair<Type, std::string> emitDag(DagInit *DI);
538   };
539 };
540 
541 //===----------------------------------------------------------------------===//
542 // NeonEmitter
543 //===----------------------------------------------------------------------===//
544 
545 class NeonEmitter {
546   RecordKeeper &Records;
547   DenseMap<Record *, ClassKind> ClassMap;
548   std::map<std::string, std::deque<Intrinsic>> IntrinsicMap;
549   unsigned UniqueNumber;
550 
551   void createIntrinsic(Record *R, SmallVectorImpl<Intrinsic *> &Out);
552   void genBuiltinsDef(raw_ostream &OS, SmallVectorImpl<Intrinsic *> &Defs);
553   void genStreamingSVECompatibleList(raw_ostream &OS,
554                                      SmallVectorImpl<Intrinsic *> &Defs);
555   void genOverloadTypeCheckCode(raw_ostream &OS,
556                                 SmallVectorImpl<Intrinsic *> &Defs);
557   void genIntrinsicRangeCheckCode(raw_ostream &OS,
558                                   SmallVectorImpl<Intrinsic *> &Defs);
559 
560 public:
561   /// Called by Intrinsic - this attempts to get an intrinsic that takes
562   /// the given types as arguments.
563   Intrinsic &getIntrinsic(StringRef Name, ArrayRef<Type> Types,
564                           std::optional<std::string> MangledName);
565 
566   /// Called by Intrinsic - returns a globally-unique number.
567   unsigned getUniqueNumber() { return UniqueNumber++; }
568 
569   NeonEmitter(RecordKeeper &R) : Records(R), UniqueNumber(0) {
570     Record *SI = R.getClass("SInst");
571     Record *II = R.getClass("IInst");
572     Record *WI = R.getClass("WInst");
573     Record *SOpI = R.getClass("SOpInst");
574     Record *IOpI = R.getClass("IOpInst");
575     Record *WOpI = R.getClass("WOpInst");
576     Record *LOpI = R.getClass("LOpInst");
577     Record *NoTestOpI = R.getClass("NoTestOpInst");
578 
579     ClassMap[SI] = ClassS;
580     ClassMap[II] = ClassI;
581     ClassMap[WI] = ClassW;
582     ClassMap[SOpI] = ClassS;
583     ClassMap[IOpI] = ClassI;
584     ClassMap[WOpI] = ClassW;
585     ClassMap[LOpI] = ClassL;
586     ClassMap[NoTestOpI] = ClassNoTest;
587   }
588 
589   // Emit arm_neon.h.inc
590   void run(raw_ostream &o);
591 
592   // Emit arm_fp16.h.inc
593   void runFP16(raw_ostream &o);
594 
595   // Emit arm_bf16.h.inc
596   void runBF16(raw_ostream &o);
597 
598   void runVectorTypes(raw_ostream &o);
599 
600   // Emit all the __builtin prototypes used in arm_neon.h, arm_fp16.h and
601   // arm_bf16.h
602   void runHeader(raw_ostream &o);
603 };
604 
605 } // end anonymous namespace
606 
607 //===----------------------------------------------------------------------===//
608 // Type implementation
609 //===----------------------------------------------------------------------===//
610 
611 std::string Type::str() const {
612   if (isVoid())
613     return "void";
614   std::string S;
615 
616   if (isInteger() && !isSigned())
617     S += "u";
618 
619   if (isPoly())
620     S += "poly";
621   else if (isFloating())
622     S += "float";
623   else if (isBFloat16())
624     S += "bfloat";
625   else
626     S += "int";
627 
628   S += utostr(ElementBitwidth);
629   if (isVector())
630     S += "x" + utostr(getNumElements());
631   if (NumVectors > 1)
632     S += "x" + utostr(NumVectors);
633   S += "_t";
634 
635   if (Constant)
636     S += " const";
637   if (Pointer)
638     S += " *";
639 
640   return S;
641 }
642 
643 std::string Type::builtin_str() const {
644   std::string S;
645   if (isVoid())
646     return "v";
647 
648   if (isPointer()) {
649     // All pointers are void pointers.
650     S = "v";
651     if (isConstPointer())
652       S += "C";
653     S += "*";
654     return S;
655   } else if (isInteger())
656     switch (ElementBitwidth) {
657     case 8: S += "c"; break;
658     case 16: S += "s"; break;
659     case 32: S += "i"; break;
660     case 64: S += "Wi"; break;
661     case 128: S += "LLLi"; break;
662     default: llvm_unreachable("Unhandled case!");
663     }
664   else if (isBFloat16()) {
665     assert(ElementBitwidth == 16 && "BFloat16 can only be 16 bits");
666     S += "y";
667   } else
668     switch (ElementBitwidth) {
669     case 16: S += "h"; break;
670     case 32: S += "f"; break;
671     case 64: S += "d"; break;
672     default: llvm_unreachable("Unhandled case!");
673     }
674 
675   // FIXME: NECESSARY???????????????????????????????????????????????????????????????????????
676   if (isChar() && !isPointer() && isSigned())
677     // Make chars explicitly signed.
678     S = "S" + S;
679   else if (isInteger() && !isSigned())
680     S = "U" + S;
681 
682   // Constant indices are "int", but have the "constant expression" modifier.
683   if (isImmediate()) {
684     assert(isInteger() && isSigned());
685     S = "I" + S;
686   }
687 
688   if (isScalar())
689     return S;
690 
691   std::string Ret;
692   for (unsigned I = 0; I < NumVectors; ++I)
693     Ret += "V" + utostr(getNumElements()) + S;
694 
695   return Ret;
696 }
697 
698 unsigned Type::getNeonEnum() const {
699   unsigned Addend;
700   switch (ElementBitwidth) {
701   case 8: Addend = 0; break;
702   case 16: Addend = 1; break;
703   case 32: Addend = 2; break;
704   case 64: Addend = 3; break;
705   case 128: Addend = 4; break;
706   default: llvm_unreachable("Unhandled element bitwidth!");
707   }
708 
709   unsigned Base = (unsigned)NeonTypeFlags::Int8 + Addend;
710   if (isPoly()) {
711     // Adjustment needed because Poly32 doesn't exist.
712     if (Addend >= 2)
713       --Addend;
714     Base = (unsigned)NeonTypeFlags::Poly8 + Addend;
715   }
716   if (isFloating()) {
717     assert(Addend != 0 && "Float8 doesn't exist!");
718     Base = (unsigned)NeonTypeFlags::Float16 + (Addend - 1);
719   }
720 
721   if (isBFloat16()) {
722     assert(Addend == 1 && "BFloat16 is only 16 bit");
723     Base = (unsigned)NeonTypeFlags::BFloat16;
724   }
725 
726   if (Bitwidth == 128)
727     Base |= (unsigned)NeonTypeFlags::QuadFlag;
728   if (isInteger() && !isSigned())
729     Base |= (unsigned)NeonTypeFlags::UnsignedFlag;
730 
731   return Base;
732 }
733 
734 Type Type::fromTypedefName(StringRef Name) {
735   Type T;
736   T.Kind = SInt;
737 
738   if (Name.consume_front("u"))
739     T.Kind = UInt;
740 
741   if (Name.consume_front("float")) {
742     T.Kind = Float;
743   } else if (Name.consume_front("poly")) {
744     T.Kind = Poly;
745   } else if (Name.consume_front("bfloat")) {
746     T.Kind = BFloat16;
747   } else {
748     assert(Name.starts_with("int"));
749     Name = Name.drop_front(3);
750   }
751 
752   unsigned I = 0;
753   for (I = 0; I < Name.size(); ++I) {
754     if (!isdigit(Name[I]))
755       break;
756   }
757   Name.substr(0, I).getAsInteger(10, T.ElementBitwidth);
758   Name = Name.drop_front(I);
759 
760   T.Bitwidth = T.ElementBitwidth;
761   T.NumVectors = 1;
762 
763   if (Name.consume_front("x")) {
764     unsigned I = 0;
765     for (I = 0; I < Name.size(); ++I) {
766       if (!isdigit(Name[I]))
767         break;
768     }
769     unsigned NumLanes;
770     Name.substr(0, I).getAsInteger(10, NumLanes);
771     Name = Name.drop_front(I);
772     T.Bitwidth = T.ElementBitwidth * NumLanes;
773   } else {
774     // Was scalar.
775     T.NumVectors = 0;
776   }
777   if (Name.consume_front("x")) {
778     unsigned I = 0;
779     for (I = 0; I < Name.size(); ++I) {
780       if (!isdigit(Name[I]))
781         break;
782     }
783     Name.substr(0, I).getAsInteger(10, T.NumVectors);
784     Name = Name.drop_front(I);
785   }
786 
787   assert(Name.starts_with("_t") && "Malformed typedef!");
788   return T;
789 }
790 
791 void Type::applyTypespec(bool &Quad) {
792   std::string S = TS;
793   ScalarForMangling = false;
794   Kind = SInt;
795   ElementBitwidth = ~0U;
796   NumVectors = 1;
797 
798   for (char I : S) {
799     switch (I) {
800     case 'S':
801       ScalarForMangling = true;
802       break;
803     case 'H':
804       NoManglingQ = true;
805       Quad = true;
806       break;
807     case 'Q':
808       Quad = true;
809       break;
810     case 'P':
811       Kind = Poly;
812       break;
813     case 'U':
814       Kind = UInt;
815       break;
816     case 'c':
817       ElementBitwidth = 8;
818       break;
819     case 'h':
820       Kind = Float;
821       [[fallthrough]];
822     case 's':
823       ElementBitwidth = 16;
824       break;
825     case 'f':
826       Kind = Float;
827       [[fallthrough]];
828     case 'i':
829       ElementBitwidth = 32;
830       break;
831     case 'd':
832       Kind = Float;
833       [[fallthrough]];
834     case 'l':
835       ElementBitwidth = 64;
836       break;
837     case 'k':
838       ElementBitwidth = 128;
839       // Poly doesn't have a 128x1 type.
840       if (isPoly())
841         NumVectors = 0;
842       break;
843     case 'b':
844       Kind = BFloat16;
845       ElementBitwidth = 16;
846       break;
847     default:
848       llvm_unreachable("Unhandled type code!");
849     }
850   }
851   assert(ElementBitwidth != ~0U && "Bad element bitwidth!");
852 
853   Bitwidth = Quad ? 128 : 64;
854 }
855 
856 void Type::applyModifiers(StringRef Mods) {
857   bool AppliedQuad = false;
858   applyTypespec(AppliedQuad);
859 
860   for (char Mod : Mods) {
861     switch (Mod) {
862     case '.':
863       break;
864     case 'v':
865       Kind = Void;
866       break;
867     case 'S':
868       Kind = SInt;
869       break;
870     case 'U':
871       Kind = UInt;
872       break;
873     case 'B':
874       Kind = BFloat16;
875       ElementBitwidth = 16;
876       break;
877     case 'F':
878       Kind = Float;
879       break;
880     case 'P':
881       Kind = Poly;
882       break;
883     case '>':
884       assert(ElementBitwidth < 128);
885       ElementBitwidth *= 2;
886       break;
887     case '<':
888       assert(ElementBitwidth > 8);
889       ElementBitwidth /= 2;
890       break;
891     case '1':
892       NumVectors = 0;
893       break;
894     case '2':
895       NumVectors = 2;
896       break;
897     case '3':
898       NumVectors = 3;
899       break;
900     case '4':
901       NumVectors = 4;
902       break;
903     case '*':
904       Pointer = true;
905       break;
906     case 'c':
907       Constant = true;
908       break;
909     case 'Q':
910       Bitwidth = 128;
911       break;
912     case 'q':
913       Bitwidth = 64;
914       break;
915     case 'I':
916       Kind = SInt;
917       ElementBitwidth = Bitwidth = 32;
918       NumVectors = 0;
919       Immediate = true;
920       break;
921     case 'p':
922       if (isPoly())
923         Kind = UInt;
924       break;
925     case '!':
926       // Key type, handled elsewhere.
927       break;
928     default:
929       llvm_unreachable("Unhandled character!");
930     }
931   }
932 }
933 
934 //===----------------------------------------------------------------------===//
935 // Intrinsic implementation
936 //===----------------------------------------------------------------------===//
937 
938 StringRef Intrinsic::getNextModifiers(StringRef Proto, unsigned &Pos) const {
939   if (Proto.size() == Pos)
940     return StringRef();
941   else if (Proto[Pos] != '(')
942     return Proto.substr(Pos++, 1);
943 
944   size_t Start = Pos + 1;
945   size_t End = Proto.find(')', Start);
946   assert_with_loc(End != StringRef::npos, "unmatched modifier group paren");
947   Pos = End + 1;
948   return Proto.slice(Start, End);
949 }
950 
951 std::string Intrinsic::getInstTypeCode(Type T, ClassKind CK) const {
952   char typeCode = '\0';
953   bool printNumber = true;
954 
955   if (CK == ClassB && TargetGuard == "neon")
956     return "";
957 
958   if (T.isBFloat16())
959     return "bf16";
960 
961   if (T.isPoly())
962     typeCode = 'p';
963   else if (T.isInteger())
964     typeCode = T.isSigned() ? 's' : 'u';
965   else
966     typeCode = 'f';
967 
968   if (CK == ClassI) {
969     switch (typeCode) {
970     default:
971       break;
972     case 's':
973     case 'u':
974     case 'p':
975       typeCode = 'i';
976       break;
977     }
978   }
979   if (CK == ClassB && TargetGuard == "neon") {
980     typeCode = '\0';
981   }
982 
983   std::string S;
984   if (typeCode != '\0')
985     S.push_back(typeCode);
986   if (printNumber)
987     S += utostr(T.getElementSizeInBits());
988 
989   return S;
990 }
991 
992 std::string Intrinsic::getBuiltinTypeStr() {
993   ClassKind LocalCK = getClassKind(true);
994   std::string S;
995 
996   Type RetT = getReturnType();
997   if ((LocalCK == ClassI || LocalCK == ClassW) && RetT.isScalar() &&
998       !RetT.isFloating() && !RetT.isBFloat16())
999     RetT.makeInteger(RetT.getElementSizeInBits(), false);
1000 
1001   // Since the return value must be one type, return a vector type of the
1002   // appropriate width which we will bitcast.  An exception is made for
1003   // returning structs of 2, 3, or 4 vectors which are returned in a sret-like
1004   // fashion, storing them to a pointer arg.
1005   if (RetT.getNumVectors() > 1) {
1006     S += "vv*"; // void result with void* first argument
1007   } else {
1008     if (RetT.isPoly())
1009       RetT.makeInteger(RetT.getElementSizeInBits(), false);
1010     if (!RetT.isScalar() && RetT.isInteger() && !RetT.isSigned())
1011       RetT.makeSigned();
1012 
1013     if (LocalCK == ClassB && RetT.isValue() && !RetT.isScalar())
1014       // Cast to vector of 8-bit elements.
1015       RetT.makeInteger(8, true);
1016 
1017     S += RetT.builtin_str();
1018   }
1019 
1020   for (unsigned I = 0; I < getNumParams(); ++I) {
1021     Type T = getParamType(I);
1022     if (T.isPoly())
1023       T.makeInteger(T.getElementSizeInBits(), false);
1024 
1025     if (LocalCK == ClassB && !T.isScalar())
1026       T.makeInteger(8, true);
1027     // Halves always get converted to 8-bit elements.
1028     if (T.isHalf() && T.isVector() && !T.isScalarForMangling())
1029       T.makeInteger(8, true);
1030 
1031     if (LocalCK == ClassI && T.isInteger())
1032       T.makeSigned();
1033 
1034     if (hasImmediate() && getImmediateIdx() == I)
1035       T.makeImmediate(32);
1036 
1037     S += T.builtin_str();
1038   }
1039 
1040   // Extra constant integer to hold type class enum for this function, e.g. s8
1041   if (LocalCK == ClassB)
1042     S += "i";
1043 
1044   return S;
1045 }
1046 
1047 std::string Intrinsic::getMangledName(bool ForceClassS) const {
1048   // Check if the prototype has a scalar operand with the type of the vector
1049   // elements.  If not, bitcasting the args will take care of arg checking.
1050   // The actual signedness etc. will be taken care of with special enums.
1051   ClassKind LocalCK = CK;
1052   if (!protoHasScalar())
1053     LocalCK = ClassB;
1054 
1055   return mangleName(Name, ForceClassS ? ClassS : LocalCK);
1056 }
1057 
1058 std::string Intrinsic::mangleName(std::string Name, ClassKind LocalCK) const {
1059   std::string typeCode = getInstTypeCode(BaseType, LocalCK);
1060   std::string S = Name;
1061 
1062   if (Name == "vcvt_f16_f32" || Name == "vcvt_f32_f16" ||
1063       Name == "vcvt_f32_f64" || Name == "vcvt_f64_f32" ||
1064       Name == "vcvt_f32_bf16")
1065     return Name;
1066 
1067   if (!typeCode.empty()) {
1068     // If the name ends with _xN (N = 2,3,4), insert the typeCode before _xN.
1069     if (Name.size() >= 3 && isdigit(Name.back()) &&
1070         Name[Name.length() - 2] == 'x' && Name[Name.length() - 3] == '_')
1071       S.insert(S.length() - 3, "_" + typeCode);
1072     else
1073       S += "_" + typeCode;
1074   }
1075 
1076   if (BaseType != InBaseType) {
1077     // A reinterpret - out the input base type at the end.
1078     S += "_" + getInstTypeCode(InBaseType, LocalCK);
1079   }
1080 
1081   if (LocalCK == ClassB && TargetGuard == "neon")
1082     S += "_v";
1083 
1084   // Insert a 'q' before the first '_' character so that it ends up before
1085   // _lane or _n on vector-scalar operations.
1086   if (BaseType.getSizeInBits() == 128 && !BaseType.noManglingQ()) {
1087     size_t Pos = S.find('_');
1088     S.insert(Pos, "q");
1089   }
1090 
1091   char Suffix = '\0';
1092   if (BaseType.isScalarForMangling()) {
1093     switch (BaseType.getElementSizeInBits()) {
1094     case 8: Suffix = 'b'; break;
1095     case 16: Suffix = 'h'; break;
1096     case 32: Suffix = 's'; break;
1097     case 64: Suffix = 'd'; break;
1098     default: llvm_unreachable("Bad suffix!");
1099     }
1100   }
1101   if (Suffix != '\0') {
1102     size_t Pos = S.find('_');
1103     S.insert(Pos, &Suffix, 1);
1104   }
1105 
1106   return S;
1107 }
1108 
1109 std::string Intrinsic::replaceParamsIn(std::string S) {
1110   while (S.find('$') != std::string::npos) {
1111     size_t Pos = S.find('$');
1112     size_t End = Pos + 1;
1113     while (isalpha(S[End]))
1114       ++End;
1115 
1116     std::string VarName = S.substr(Pos + 1, End - Pos - 1);
1117     assert_with_loc(Variables.find(VarName) != Variables.end(),
1118                     "Variable not defined!");
1119     S.replace(Pos, End - Pos, Variables.find(VarName)->second.getName());
1120   }
1121 
1122   return S;
1123 }
1124 
1125 void Intrinsic::initVariables() {
1126   Variables.clear();
1127 
1128   // Modify the TypeSpec per-argument to get a concrete Type, and create
1129   // known variables for each.
1130   for (unsigned I = 1; I < Types.size(); ++I) {
1131     char NameC = '0' + (I - 1);
1132     std::string Name = "p";
1133     Name.push_back(NameC);
1134 
1135     Variables[Name] = Variable(Types[I], Name + VariablePostfix);
1136   }
1137   RetVar = Variable(Types[0], "ret" + VariablePostfix);
1138 }
1139 
1140 void Intrinsic::emitPrototype(StringRef NamePrefix) {
1141   if (UseMacro) {
1142     OS << "#define ";
1143   } else {
1144     OS << "__ai ";
1145     if (TargetGuard != "")
1146       OS << "__attribute__((target(\"" << TargetGuard << "\"))) ";
1147     OS << Types[0].str() << " ";
1148   }
1149 
1150   OS << NamePrefix.str() << mangleName(Name, ClassS) << "(";
1151 
1152   for (unsigned I = 0; I < getNumParams(); ++I) {
1153     if (I != 0)
1154       OS << ", ";
1155 
1156     char NameC = '0' + I;
1157     std::string Name = "p";
1158     Name.push_back(NameC);
1159     assert(Variables.find(Name) != Variables.end());
1160     Variable &V = Variables[Name];
1161 
1162     if (!UseMacro)
1163       OS << V.getType().str() << " ";
1164     OS << V.getName();
1165   }
1166 
1167   OS << ")";
1168 }
1169 
1170 void Intrinsic::emitOpeningBrace() {
1171   if (UseMacro)
1172     OS << " __extension__ ({";
1173   else
1174     OS << " {";
1175   emitNewLine();
1176 }
1177 
1178 void Intrinsic::emitClosingBrace() {
1179   if (UseMacro)
1180     OS << "})";
1181   else
1182     OS << "}";
1183 }
1184 
1185 void Intrinsic::emitNewLine() {
1186   if (UseMacro)
1187     OS << " \\\n";
1188   else
1189     OS << "\n";
1190 }
1191 
1192 void Intrinsic::emitReverseVariable(Variable &Dest, Variable &Src) {
1193   if (Dest.getType().getNumVectors() > 1) {
1194     emitNewLine();
1195 
1196     for (unsigned K = 0; K < Dest.getType().getNumVectors(); ++K) {
1197       OS << "  " << Dest.getName() << ".val[" << K << "] = "
1198          << "__builtin_shufflevector("
1199          << Src.getName() << ".val[" << K << "], "
1200          << Src.getName() << ".val[" << K << "]";
1201       for (int J = Dest.getType().getNumElements() - 1; J >= 0; --J)
1202         OS << ", " << J;
1203       OS << ");";
1204       emitNewLine();
1205     }
1206   } else {
1207     OS << "  " << Dest.getName()
1208        << " = __builtin_shufflevector(" << Src.getName() << ", " << Src.getName();
1209     for (int J = Dest.getType().getNumElements() - 1; J >= 0; --J)
1210       OS << ", " << J;
1211     OS << ");";
1212     emitNewLine();
1213   }
1214 }
1215 
1216 void Intrinsic::emitArgumentReversal() {
1217   if (isBigEndianSafe())
1218     return;
1219 
1220   // Reverse all vector arguments.
1221   for (unsigned I = 0; I < getNumParams(); ++I) {
1222     std::string Name = "p" + utostr(I);
1223     std::string NewName = "rev" + utostr(I);
1224 
1225     Variable &V = Variables[Name];
1226     Variable NewV(V.getType(), NewName + VariablePostfix);
1227 
1228     if (!NewV.getType().isVector() || NewV.getType().getNumElements() == 1)
1229       continue;
1230 
1231     OS << "  " << NewV.getType().str() << " " << NewV.getName() << ";";
1232     emitReverseVariable(NewV, V);
1233     V = NewV;
1234   }
1235 }
1236 
1237 void Intrinsic::emitReturnVarDecl() {
1238   assert(RetVar.getType() == Types[0]);
1239   // Create a return variable, if we're not void.
1240   if (!RetVar.getType().isVoid()) {
1241     OS << "  " << RetVar.getType().str() << " " << RetVar.getName() << ";";
1242     emitNewLine();
1243   }
1244 }
1245 
1246 void Intrinsic::emitReturnReversal() {
1247   if (isBigEndianSafe())
1248     return;
1249   if (!getReturnType().isVector() || getReturnType().isVoid() ||
1250       getReturnType().getNumElements() == 1)
1251     return;
1252   emitReverseVariable(RetVar, RetVar);
1253 }
1254 
1255 void Intrinsic::emitShadowedArgs() {
1256   // Macro arguments are not type-checked like inline function arguments,
1257   // so assign them to local temporaries to get the right type checking.
1258   if (!UseMacro)
1259     return;
1260 
1261   for (unsigned I = 0; I < getNumParams(); ++I) {
1262     // Do not create a temporary for an immediate argument.
1263     // That would defeat the whole point of using a macro!
1264     if (getParamType(I).isImmediate())
1265       continue;
1266     // Do not create a temporary for pointer arguments. The input
1267     // pointer may have an alignment hint.
1268     if (getParamType(I).isPointer())
1269       continue;
1270 
1271     std::string Name = "p" + utostr(I);
1272 
1273     assert(Variables.find(Name) != Variables.end());
1274     Variable &V = Variables[Name];
1275 
1276     std::string NewName = "s" + utostr(I);
1277     Variable V2(V.getType(), NewName + VariablePostfix);
1278 
1279     OS << "  " << V2.getType().str() << " " << V2.getName() << " = "
1280        << V.getName() << ";";
1281     emitNewLine();
1282 
1283     V = V2;
1284   }
1285 }
1286 
1287 bool Intrinsic::protoHasScalar() const {
1288   return llvm::any_of(
1289       Types, [](const Type &T) { return T.isScalar() && !T.isImmediate(); });
1290 }
1291 
1292 void Intrinsic::emitBodyAsBuiltinCall() {
1293   std::string S;
1294 
1295   // If this builtin returns a struct 2, 3, or 4 vectors, pass it as an implicit
1296   // sret-like argument.
1297   bool SRet = getReturnType().getNumVectors() >= 2;
1298 
1299   StringRef N = Name;
1300   ClassKind LocalCK = CK;
1301   if (!protoHasScalar())
1302     LocalCK = ClassB;
1303 
1304   if (!getReturnType().isVoid() && !SRet)
1305     S += "(" + RetVar.getType().str() + ") ";
1306 
1307   S += "__builtin_neon_" + mangleName(std::string(N), LocalCK) + "(";
1308 
1309   if (SRet)
1310     S += "&" + RetVar.getName() + ", ";
1311 
1312   for (unsigned I = 0; I < getNumParams(); ++I) {
1313     Variable &V = Variables["p" + utostr(I)];
1314     Type T = V.getType();
1315 
1316     // Handle multiple-vector values specially, emitting each subvector as an
1317     // argument to the builtin.
1318     if (T.getNumVectors() > 1) {
1319       // Check if an explicit cast is needed.
1320       std::string Cast;
1321       if (LocalCK == ClassB) {
1322         Type T2 = T;
1323         T2.makeOneVector();
1324         T2.makeInteger(8, /*Sign=*/true);
1325         Cast = "(" + T2.str() + ")";
1326       }
1327 
1328       for (unsigned J = 0; J < T.getNumVectors(); ++J)
1329         S += Cast + V.getName() + ".val[" + utostr(J) + "], ";
1330       continue;
1331     }
1332 
1333     std::string Arg = V.getName();
1334     Type CastToType = T;
1335 
1336     // Check if an explicit cast is needed.
1337     if (CastToType.isVector() &&
1338         (LocalCK == ClassB || (T.isHalf() && !T.isScalarForMangling()))) {
1339       CastToType.makeInteger(8, true);
1340       Arg = "(" + CastToType.str() + ")" + Arg;
1341     } else if (CastToType.isVector() && LocalCK == ClassI) {
1342       if (CastToType.isInteger())
1343         CastToType.makeSigned();
1344       Arg = "(" + CastToType.str() + ")" + Arg;
1345     }
1346 
1347     S += Arg + ", ";
1348   }
1349 
1350   // Extra constant integer to hold type class enum for this function, e.g. s8
1351   if (getClassKind(true) == ClassB) {
1352     S += utostr(getPolymorphicKeyType().getNeonEnum());
1353   } else {
1354     // Remove extraneous ", ".
1355     S.pop_back();
1356     S.pop_back();
1357   }
1358   S += ");";
1359 
1360   std::string RetExpr;
1361   if (!SRet && !RetVar.getType().isVoid())
1362     RetExpr = RetVar.getName() + " = ";
1363 
1364   OS << "  " << RetExpr << S;
1365   emitNewLine();
1366 }
1367 
1368 void Intrinsic::emitBody(StringRef CallPrefix) {
1369   std::vector<std::string> Lines;
1370 
1371   if (!Body || Body->getValues().empty()) {
1372     // Nothing specific to output - must output a builtin.
1373     emitBodyAsBuiltinCall();
1374     return;
1375   }
1376 
1377   // We have a list of "things to output". The last should be returned.
1378   for (auto *I : Body->getValues()) {
1379     if (StringInit *SI = dyn_cast<StringInit>(I)) {
1380       Lines.push_back(replaceParamsIn(SI->getAsString()));
1381     } else if (DagInit *DI = dyn_cast<DagInit>(I)) {
1382       DagEmitter DE(*this, CallPrefix);
1383       Lines.push_back(DE.emitDag(DI).second + ";");
1384     }
1385   }
1386 
1387   assert(!Lines.empty() && "Empty def?");
1388   if (!RetVar.getType().isVoid())
1389     Lines.back().insert(0, RetVar.getName() + " = ");
1390 
1391   for (auto &L : Lines) {
1392     OS << "  " << L;
1393     emitNewLine();
1394   }
1395 }
1396 
1397 void Intrinsic::emitReturn() {
1398   if (RetVar.getType().isVoid())
1399     return;
1400   if (UseMacro)
1401     OS << "  " << RetVar.getName() << ";";
1402   else
1403     OS << "  return " << RetVar.getName() << ";";
1404   emitNewLine();
1405 }
1406 
1407 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDag(DagInit *DI) {
1408   // At this point we should only be seeing a def.
1409   DefInit *DefI = cast<DefInit>(DI->getOperator());
1410   std::string Op = DefI->getAsString();
1411 
1412   if (Op == "cast" || Op == "bitcast")
1413     return emitDagCast(DI, Op == "bitcast");
1414   if (Op == "shuffle")
1415     return emitDagShuffle(DI);
1416   if (Op == "dup")
1417     return emitDagDup(DI);
1418   if (Op == "dup_typed")
1419     return emitDagDupTyped(DI);
1420   if (Op == "splat")
1421     return emitDagSplat(DI);
1422   if (Op == "save_temp")
1423     return emitDagSaveTemp(DI);
1424   if (Op == "op")
1425     return emitDagOp(DI);
1426   if (Op == "call" || Op == "call_mangled")
1427     return emitDagCall(DI, Op == "call_mangled");
1428   if (Op == "name_replace")
1429     return emitDagNameReplace(DI);
1430   if (Op == "literal")
1431     return emitDagLiteral(DI);
1432   assert_with_loc(false, "Unknown operation!");
1433   return std::make_pair(Type::getVoid(), "");
1434 }
1435 
1436 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagOp(DagInit *DI) {
1437   std::string Op = cast<StringInit>(DI->getArg(0))->getAsUnquotedString();
1438   if (DI->getNumArgs() == 2) {
1439     // Unary op.
1440     std::pair<Type, std::string> R =
1441         emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1)));
1442     return std::make_pair(R.first, Op + R.second);
1443   } else {
1444     assert(DI->getNumArgs() == 3 && "Can only handle unary and binary ops!");
1445     std::pair<Type, std::string> R1 =
1446         emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1)));
1447     std::pair<Type, std::string> R2 =
1448         emitDagArg(DI->getArg(2), std::string(DI->getArgNameStr(2)));
1449     assert_with_loc(R1.first == R2.first, "Argument type mismatch!");
1450     return std::make_pair(R1.first, R1.second + " " + Op + " " + R2.second);
1451   }
1452 }
1453 
1454 std::pair<Type, std::string>
1455 Intrinsic::DagEmitter::emitDagCall(DagInit *DI, bool MatchMangledName) {
1456   std::vector<Type> Types;
1457   std::vector<std::string> Values;
1458   for (unsigned I = 0; I < DI->getNumArgs() - 1; ++I) {
1459     std::pair<Type, std::string> R =
1460         emitDagArg(DI->getArg(I + 1), std::string(DI->getArgNameStr(I + 1)));
1461     Types.push_back(R.first);
1462     Values.push_back(R.second);
1463   }
1464 
1465   // Look up the called intrinsic.
1466   std::string N;
1467   if (StringInit *SI = dyn_cast<StringInit>(DI->getArg(0)))
1468     N = SI->getAsUnquotedString();
1469   else
1470     N = emitDagArg(DI->getArg(0), "").second;
1471   std::optional<std::string> MangledName;
1472   if (MatchMangledName) {
1473     if (Intr.getRecord()->getValueAsBit("isLaneQ"))
1474       N += "q";
1475     MangledName = Intr.mangleName(N, ClassS);
1476   }
1477   Intrinsic &Callee = Intr.Emitter.getIntrinsic(N, Types, MangledName);
1478 
1479   // Make sure the callee is known as an early def.
1480   Callee.setNeededEarly();
1481   Intr.Dependencies.insert(&Callee);
1482 
1483   // Now create the call itself.
1484   std::string S;
1485   if (!Callee.isBigEndianSafe())
1486     S += CallPrefix.str();
1487   S += Callee.getMangledName(true) + "(";
1488   for (unsigned I = 0; I < DI->getNumArgs() - 1; ++I) {
1489     if (I != 0)
1490       S += ", ";
1491     S += Values[I];
1492   }
1493   S += ")";
1494 
1495   return std::make_pair(Callee.getReturnType(), S);
1496 }
1497 
1498 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagCast(DagInit *DI,
1499                                                                 bool IsBitCast){
1500   // (cast MOD* VAL) -> cast VAL to type given by MOD.
1501   std::pair<Type, std::string> R =
1502       emitDagArg(DI->getArg(DI->getNumArgs() - 1),
1503                  std::string(DI->getArgNameStr(DI->getNumArgs() - 1)));
1504   Type castToType = R.first;
1505   for (unsigned ArgIdx = 0; ArgIdx < DI->getNumArgs() - 1; ++ArgIdx) {
1506 
1507     // MOD can take several forms:
1508     //   1. $X - take the type of parameter / variable X.
1509     //   2. The value "R" - take the type of the return type.
1510     //   3. a type string
1511     //   4. The value "U" or "S" to switch the signedness.
1512     //   5. The value "H" or "D" to half or double the bitwidth.
1513     //   6. The value "8" to convert to 8-bit (signed) integer lanes.
1514     if (!DI->getArgNameStr(ArgIdx).empty()) {
1515       assert_with_loc(Intr.Variables.find(std::string(
1516                           DI->getArgNameStr(ArgIdx))) != Intr.Variables.end(),
1517                       "Variable not found");
1518       castToType =
1519           Intr.Variables[std::string(DI->getArgNameStr(ArgIdx))].getType();
1520     } else {
1521       StringInit *SI = dyn_cast<StringInit>(DI->getArg(ArgIdx));
1522       assert_with_loc(SI, "Expected string type or $Name for cast type");
1523 
1524       if (SI->getAsUnquotedString() == "R") {
1525         castToType = Intr.getReturnType();
1526       } else if (SI->getAsUnquotedString() == "U") {
1527         castToType.makeUnsigned();
1528       } else if (SI->getAsUnquotedString() == "S") {
1529         castToType.makeSigned();
1530       } else if (SI->getAsUnquotedString() == "H") {
1531         castToType.halveLanes();
1532       } else if (SI->getAsUnquotedString() == "D") {
1533         castToType.doubleLanes();
1534       } else if (SI->getAsUnquotedString() == "8") {
1535         castToType.makeInteger(8, true);
1536       } else if (SI->getAsUnquotedString() == "32") {
1537         castToType.make32BitElement();
1538       } else {
1539         castToType = Type::fromTypedefName(SI->getAsUnquotedString());
1540         assert_with_loc(!castToType.isVoid(), "Unknown typedef");
1541       }
1542     }
1543   }
1544 
1545   std::string S;
1546   if (IsBitCast) {
1547     // Emit a reinterpret cast. The second operand must be an lvalue, so create
1548     // a temporary.
1549     std::string N = "reint";
1550     unsigned I = 0;
1551     while (Intr.Variables.find(N) != Intr.Variables.end())
1552       N = "reint" + utostr(++I);
1553     Intr.Variables[N] = Variable(R.first, N + Intr.VariablePostfix);
1554 
1555     Intr.OS << R.first.str() << " " << Intr.Variables[N].getName() << " = "
1556             << R.second << ";";
1557     Intr.emitNewLine();
1558 
1559     S = "*(" + castToType.str() + " *) &" + Intr.Variables[N].getName() + "";
1560   } else {
1561     // Emit a normal (static) cast.
1562     S = "(" + castToType.str() + ")(" + R.second + ")";
1563   }
1564 
1565   return std::make_pair(castToType, S);
1566 }
1567 
1568 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagShuffle(DagInit *DI){
1569   // See the documentation in arm_neon.td for a description of these operators.
1570   class LowHalf : public SetTheory::Operator {
1571   public:
1572     void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
1573                ArrayRef<SMLoc> Loc) override {
1574       SetTheory::RecSet Elts2;
1575       ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts2, Loc);
1576       Elts.insert(Elts2.begin(), Elts2.begin() + (Elts2.size() / 2));
1577     }
1578   };
1579 
1580   class HighHalf : public SetTheory::Operator {
1581   public:
1582     void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
1583                ArrayRef<SMLoc> Loc) override {
1584       SetTheory::RecSet Elts2;
1585       ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts2, Loc);
1586       Elts.insert(Elts2.begin() + (Elts2.size() / 2), Elts2.end());
1587     }
1588   };
1589 
1590   class Rev : public SetTheory::Operator {
1591     unsigned ElementSize;
1592 
1593   public:
1594     Rev(unsigned ElementSize) : ElementSize(ElementSize) {}
1595 
1596     void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
1597                ArrayRef<SMLoc> Loc) override {
1598       SetTheory::RecSet Elts2;
1599       ST.evaluate(Expr->arg_begin() + 1, Expr->arg_end(), Elts2, Loc);
1600 
1601       int64_t VectorSize = cast<IntInit>(Expr->getArg(0))->getValue();
1602       VectorSize /= ElementSize;
1603 
1604       std::vector<Record *> Revved;
1605       for (unsigned VI = 0; VI < Elts2.size(); VI += VectorSize) {
1606         for (int LI = VectorSize - 1; LI >= 0; --LI) {
1607           Revved.push_back(Elts2[VI + LI]);
1608         }
1609       }
1610 
1611       Elts.insert(Revved.begin(), Revved.end());
1612     }
1613   };
1614 
1615   class MaskExpander : public SetTheory::Expander {
1616     unsigned N;
1617 
1618   public:
1619     MaskExpander(unsigned N) : N(N) {}
1620 
1621     void expand(SetTheory &ST, Record *R, SetTheory::RecSet &Elts) override {
1622       unsigned Addend = 0;
1623       if (R->getName() == "mask0")
1624         Addend = 0;
1625       else if (R->getName() == "mask1")
1626         Addend = N;
1627       else
1628         return;
1629       for (unsigned I = 0; I < N; ++I)
1630         Elts.insert(R->getRecords().getDef("sv" + utostr(I + Addend)));
1631     }
1632   };
1633 
1634   // (shuffle arg1, arg2, sequence)
1635   std::pair<Type, std::string> Arg1 =
1636       emitDagArg(DI->getArg(0), std::string(DI->getArgNameStr(0)));
1637   std::pair<Type, std::string> Arg2 =
1638       emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1)));
1639   assert_with_loc(Arg1.first == Arg2.first,
1640                   "Different types in arguments to shuffle!");
1641 
1642   SetTheory ST;
1643   SetTheory::RecSet Elts;
1644   ST.addOperator("lowhalf", std::make_unique<LowHalf>());
1645   ST.addOperator("highhalf", std::make_unique<HighHalf>());
1646   ST.addOperator("rev",
1647                  std::make_unique<Rev>(Arg1.first.getElementSizeInBits()));
1648   ST.addExpander("MaskExpand",
1649                  std::make_unique<MaskExpander>(Arg1.first.getNumElements()));
1650   ST.evaluate(DI->getArg(2), Elts, std::nullopt);
1651 
1652   std::string S = "__builtin_shufflevector(" + Arg1.second + ", " + Arg2.second;
1653   for (auto &E : Elts) {
1654     StringRef Name = E->getName();
1655     assert_with_loc(Name.starts_with("sv"),
1656                     "Incorrect element kind in shuffle mask!");
1657     S += ", " + Name.drop_front(2).str();
1658   }
1659   S += ")";
1660 
1661   // Recalculate the return type - the shuffle may have halved or doubled it.
1662   Type T(Arg1.first);
1663   if (Elts.size() > T.getNumElements()) {
1664     assert_with_loc(
1665         Elts.size() == T.getNumElements() * 2,
1666         "Can only double or half the number of elements in a shuffle!");
1667     T.doubleLanes();
1668   } else if (Elts.size() < T.getNumElements()) {
1669     assert_with_loc(
1670         Elts.size() == T.getNumElements() / 2,
1671         "Can only double or half the number of elements in a shuffle!");
1672     T.halveLanes();
1673   }
1674 
1675   return std::make_pair(T, S);
1676 }
1677 
1678 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagDup(DagInit *DI) {
1679   assert_with_loc(DI->getNumArgs() == 1, "dup() expects one argument");
1680   std::pair<Type, std::string> A =
1681       emitDagArg(DI->getArg(0), std::string(DI->getArgNameStr(0)));
1682   assert_with_loc(A.first.isScalar(), "dup() expects a scalar argument");
1683 
1684   Type T = Intr.getBaseType();
1685   assert_with_loc(T.isVector(), "dup() used but default type is scalar!");
1686   std::string S = "(" + T.str() + ") {";
1687   for (unsigned I = 0; I < T.getNumElements(); ++I) {
1688     if (I != 0)
1689       S += ", ";
1690     S += A.second;
1691   }
1692   S += "}";
1693 
1694   return std::make_pair(T, S);
1695 }
1696 
1697 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagDupTyped(DagInit *DI) {
1698   assert_with_loc(DI->getNumArgs() == 2, "dup_typed() expects two arguments");
1699   std::pair<Type, std::string> B =
1700       emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1)));
1701   assert_with_loc(B.first.isScalar(),
1702                   "dup_typed() requires a scalar as the second argument");
1703   Type T;
1704   // If the type argument is a constant string, construct the type directly.
1705   if (StringInit *SI = dyn_cast<StringInit>(DI->getArg(0))) {
1706     T = Type::fromTypedefName(SI->getAsUnquotedString());
1707     assert_with_loc(!T.isVoid(), "Unknown typedef");
1708   } else
1709     T = emitDagArg(DI->getArg(0), std::string(DI->getArgNameStr(0))).first;
1710 
1711   assert_with_loc(T.isVector(), "dup_typed() used but target type is scalar!");
1712   std::string S = "(" + T.str() + ") {";
1713   for (unsigned I = 0; I < T.getNumElements(); ++I) {
1714     if (I != 0)
1715       S += ", ";
1716     S += B.second;
1717   }
1718   S += "}";
1719 
1720   return std::make_pair(T, S);
1721 }
1722 
1723 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagSplat(DagInit *DI) {
1724   assert_with_loc(DI->getNumArgs() == 2, "splat() expects two arguments");
1725   std::pair<Type, std::string> A =
1726       emitDagArg(DI->getArg(0), std::string(DI->getArgNameStr(0)));
1727   std::pair<Type, std::string> B =
1728       emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1)));
1729 
1730   assert_with_loc(B.first.isScalar(),
1731                   "splat() requires a scalar int as the second argument");
1732 
1733   std::string S = "__builtin_shufflevector(" + A.second + ", " + A.second;
1734   for (unsigned I = 0; I < Intr.getBaseType().getNumElements(); ++I) {
1735     S += ", " + B.second;
1736   }
1737   S += ")";
1738 
1739   return std::make_pair(Intr.getBaseType(), S);
1740 }
1741 
1742 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagSaveTemp(DagInit *DI) {
1743   assert_with_loc(DI->getNumArgs() == 2, "save_temp() expects two arguments");
1744   std::pair<Type, std::string> A =
1745       emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1)));
1746 
1747   assert_with_loc(!A.first.isVoid(),
1748                   "Argument to save_temp() must have non-void type!");
1749 
1750   std::string N = std::string(DI->getArgNameStr(0));
1751   assert_with_loc(!N.empty(),
1752                   "save_temp() expects a name as the first argument");
1753 
1754   assert_with_loc(Intr.Variables.find(N) == Intr.Variables.end(),
1755                   "Variable already defined!");
1756   Intr.Variables[N] = Variable(A.first, N + Intr.VariablePostfix);
1757 
1758   std::string S =
1759       A.first.str() + " " + Intr.Variables[N].getName() + " = " + A.second;
1760 
1761   return std::make_pair(Type::getVoid(), S);
1762 }
1763 
1764 std::pair<Type, std::string>
1765 Intrinsic::DagEmitter::emitDagNameReplace(DagInit *DI) {
1766   std::string S = Intr.Name;
1767 
1768   assert_with_loc(DI->getNumArgs() == 2, "name_replace requires 2 arguments!");
1769   std::string ToReplace = cast<StringInit>(DI->getArg(0))->getAsUnquotedString();
1770   std::string ReplaceWith = cast<StringInit>(DI->getArg(1))->getAsUnquotedString();
1771 
1772   size_t Idx = S.find(ToReplace);
1773 
1774   assert_with_loc(Idx != std::string::npos, "name should contain '" + ToReplace + "'!");
1775   S.replace(Idx, ToReplace.size(), ReplaceWith);
1776 
1777   return std::make_pair(Type::getVoid(), S);
1778 }
1779 
1780 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagLiteral(DagInit *DI){
1781   std::string Ty = cast<StringInit>(DI->getArg(0))->getAsUnquotedString();
1782   std::string Value = cast<StringInit>(DI->getArg(1))->getAsUnquotedString();
1783   return std::make_pair(Type::fromTypedefName(Ty), Value);
1784 }
1785 
1786 std::pair<Type, std::string>
1787 Intrinsic::DagEmitter::emitDagArg(Init *Arg, std::string ArgName) {
1788   if (!ArgName.empty()) {
1789     assert_with_loc(!Arg->isComplete(),
1790                     "Arguments must either be DAGs or names, not both!");
1791     assert_with_loc(Intr.Variables.find(ArgName) != Intr.Variables.end(),
1792                     "Variable not defined!");
1793     Variable &V = Intr.Variables[ArgName];
1794     return std::make_pair(V.getType(), V.getName());
1795   }
1796 
1797   assert(Arg && "Neither ArgName nor Arg?!");
1798   DagInit *DI = dyn_cast<DagInit>(Arg);
1799   assert_with_loc(DI, "Arguments must either be DAGs or names!");
1800 
1801   return emitDag(DI);
1802 }
1803 
1804 std::string Intrinsic::generate() {
1805   // Avoid duplicated code for big and little endian
1806   if (isBigEndianSafe()) {
1807     generateImpl(false, "", "");
1808     return OS.str();
1809   }
1810   // Little endian intrinsics are simple and don't require any argument
1811   // swapping.
1812   OS << "#ifdef __LITTLE_ENDIAN__\n";
1813 
1814   generateImpl(false, "", "");
1815 
1816   OS << "#else\n";
1817 
1818   // Big endian intrinsics are more complex. The user intended these
1819   // intrinsics to operate on a vector "as-if" loaded by (V)LDR,
1820   // but we load as-if (V)LD1. So we should swap all arguments and
1821   // swap the return value too.
1822   //
1823   // If we call sub-intrinsics, we should call a version that does
1824   // not re-swap the arguments!
1825   generateImpl(true, "", "__noswap_");
1826 
1827   // If we're needed early, create a non-swapping variant for
1828   // big-endian.
1829   if (NeededEarly) {
1830     generateImpl(false, "__noswap_", "__noswap_");
1831   }
1832   OS << "#endif\n\n";
1833 
1834   return OS.str();
1835 }
1836 
1837 void Intrinsic::generateImpl(bool ReverseArguments,
1838                              StringRef NamePrefix, StringRef CallPrefix) {
1839   CurrentRecord = R;
1840 
1841   // If we call a macro, our local variables may be corrupted due to
1842   // lack of proper lexical scoping. So, add a globally unique postfix
1843   // to every variable.
1844   //
1845   // indexBody() should have set up the Dependencies set by now.
1846   for (auto *I : Dependencies)
1847     if (I->UseMacro) {
1848       VariablePostfix = "_" + utostr(Emitter.getUniqueNumber());
1849       break;
1850     }
1851 
1852   initVariables();
1853 
1854   emitPrototype(NamePrefix);
1855 
1856   if (IsUnavailable) {
1857     OS << " __attribute__((unavailable));";
1858   } else {
1859     emitOpeningBrace();
1860     // Emit return variable declaration first as to not trigger
1861     // -Wdeclaration-after-statement.
1862     emitReturnVarDecl();
1863     emitShadowedArgs();
1864     if (ReverseArguments)
1865       emitArgumentReversal();
1866     emitBody(CallPrefix);
1867     if (ReverseArguments)
1868       emitReturnReversal();
1869     emitReturn();
1870     emitClosingBrace();
1871   }
1872   OS << "\n";
1873 
1874   CurrentRecord = nullptr;
1875 }
1876 
1877 void Intrinsic::indexBody() {
1878   CurrentRecord = R;
1879 
1880   initVariables();
1881   // Emit return variable declaration first as to not trigger
1882   // -Wdeclaration-after-statement.
1883   emitReturnVarDecl();
1884   emitBody("");
1885   OS.str("");
1886 
1887   CurrentRecord = nullptr;
1888 }
1889 
1890 //===----------------------------------------------------------------------===//
1891 // NeonEmitter implementation
1892 //===----------------------------------------------------------------------===//
1893 
1894 Intrinsic &NeonEmitter::getIntrinsic(StringRef Name, ArrayRef<Type> Types,
1895                                      std::optional<std::string> MangledName) {
1896   // First, look up the name in the intrinsic map.
1897   assert_with_loc(IntrinsicMap.find(Name.str()) != IntrinsicMap.end(),
1898                   ("Intrinsic '" + Name + "' not found!").str());
1899   auto &V = IntrinsicMap.find(Name.str())->second;
1900   std::vector<Intrinsic *> GoodVec;
1901 
1902   // Create a string to print if we end up failing.
1903   std::string ErrMsg = "looking up intrinsic '" + Name.str() + "(";
1904   for (unsigned I = 0; I < Types.size(); ++I) {
1905     if (I != 0)
1906       ErrMsg += ", ";
1907     ErrMsg += Types[I].str();
1908   }
1909   ErrMsg += ")'\n";
1910   ErrMsg += "Available overloads:\n";
1911 
1912   // Now, look through each intrinsic implementation and see if the types are
1913   // compatible.
1914   for (auto &I : V) {
1915     ErrMsg += "  - " + I.getReturnType().str() + " " + I.getMangledName();
1916     ErrMsg += "(";
1917     for (unsigned A = 0; A < I.getNumParams(); ++A) {
1918       if (A != 0)
1919         ErrMsg += ", ";
1920       ErrMsg += I.getParamType(A).str();
1921     }
1922     ErrMsg += ")\n";
1923 
1924     if (MangledName && MangledName != I.getMangledName(true))
1925       continue;
1926 
1927     if (I.getNumParams() != Types.size())
1928       continue;
1929 
1930     unsigned ArgNum = 0;
1931     bool MatchingArgumentTypes = llvm::all_of(Types, [&](const auto &Type) {
1932       return Type == I.getParamType(ArgNum++);
1933     });
1934 
1935     if (MatchingArgumentTypes)
1936       GoodVec.push_back(&I);
1937   }
1938 
1939   assert_with_loc(!GoodVec.empty(),
1940                   "No compatible intrinsic found - " + ErrMsg);
1941   assert_with_loc(GoodVec.size() == 1, "Multiple overloads found - " + ErrMsg);
1942 
1943   return *GoodVec.front();
1944 }
1945 
1946 void NeonEmitter::createIntrinsic(Record *R,
1947                                   SmallVectorImpl<Intrinsic *> &Out) {
1948   std::string Name = std::string(R->getValueAsString("Name"));
1949   std::string Proto = std::string(R->getValueAsString("Prototype"));
1950   std::string Types = std::string(R->getValueAsString("Types"));
1951   Record *OperationRec = R->getValueAsDef("Operation");
1952   bool BigEndianSafe  = R->getValueAsBit("BigEndianSafe");
1953   std::string ArchGuard = std::string(R->getValueAsString("ArchGuard"));
1954   std::string TargetGuard = std::string(R->getValueAsString("TargetGuard"));
1955   bool IsUnavailable = OperationRec->getValueAsBit("Unavailable");
1956   std::string CartesianProductWith = std::string(R->getValueAsString("CartesianProductWith"));
1957 
1958   // Set the global current record. This allows assert_with_loc to produce
1959   // decent location information even when highly nested.
1960   CurrentRecord = R;
1961 
1962   ListInit *Body = OperationRec->getValueAsListInit("Ops");
1963 
1964   std::vector<TypeSpec> TypeSpecs = TypeSpec::fromTypeSpecs(Types);
1965 
1966   ClassKind CK = ClassNone;
1967   if (R->getSuperClasses().size() >= 2)
1968     CK = ClassMap[R->getSuperClasses()[1].first];
1969 
1970   std::vector<std::pair<TypeSpec, TypeSpec>> NewTypeSpecs;
1971   if (!CartesianProductWith.empty()) {
1972     std::vector<TypeSpec> ProductTypeSpecs = TypeSpec::fromTypeSpecs(CartesianProductWith);
1973     for (auto TS : TypeSpecs) {
1974       Type DefaultT(TS, ".");
1975       for (auto SrcTS : ProductTypeSpecs) {
1976         Type DefaultSrcT(SrcTS, ".");
1977         if (TS == SrcTS ||
1978             DefaultSrcT.getSizeInBits() != DefaultT.getSizeInBits())
1979           continue;
1980         NewTypeSpecs.push_back(std::make_pair(TS, SrcTS));
1981       }
1982     }
1983   } else {
1984     for (auto TS : TypeSpecs) {
1985       NewTypeSpecs.push_back(std::make_pair(TS, TS));
1986     }
1987   }
1988 
1989   llvm::sort(NewTypeSpecs);
1990   NewTypeSpecs.erase(std::unique(NewTypeSpecs.begin(), NewTypeSpecs.end()),
1991 		     NewTypeSpecs.end());
1992   auto &Entry = IntrinsicMap[Name];
1993 
1994   for (auto &I : NewTypeSpecs) {
1995     Entry.emplace_back(R, Name, Proto, I.first, I.second, CK, Body, *this,
1996                        ArchGuard, TargetGuard, IsUnavailable, BigEndianSafe);
1997     Out.push_back(&Entry.back());
1998   }
1999 
2000   CurrentRecord = nullptr;
2001 }
2002 
2003 /// genBuiltinsDef: Generate the BuiltinsARM.def and  BuiltinsAArch64.def
2004 /// declaration of builtins, checking for unique builtin declarations.
2005 void NeonEmitter::genBuiltinsDef(raw_ostream &OS,
2006                                  SmallVectorImpl<Intrinsic *> &Defs) {
2007   OS << "#ifdef GET_NEON_BUILTINS\n";
2008 
2009   // We only want to emit a builtin once, and we want to emit them in
2010   // alphabetical order, so use a std::set.
2011   std::set<std::pair<std::string, std::string>> Builtins;
2012 
2013   for (auto *Def : Defs) {
2014     if (Def->hasBody())
2015       continue;
2016 
2017     std::string S = "__builtin_neon_" + Def->getMangledName() + ", \"";
2018     S += Def->getBuiltinTypeStr();
2019     S += "\", \"n\"";
2020 
2021     Builtins.emplace(S, Def->getTargetGuard());
2022   }
2023 
2024   for (auto &S : Builtins) {
2025     if (S.second == "")
2026       OS << "BUILTIN(";
2027     else
2028       OS << "TARGET_BUILTIN(";
2029     OS << S.first;
2030     if (S.second == "")
2031       OS << ")\n";
2032     else
2033       OS << ", \"" << S.second << "\")\n";
2034   }
2035 
2036   OS << "#endif\n\n";
2037 }
2038 
2039 void NeonEmitter::genStreamingSVECompatibleList(
2040     raw_ostream &OS, SmallVectorImpl<Intrinsic *> &Defs) {
2041   OS << "#ifdef GET_NEON_STREAMING_COMPAT_FLAG\n";
2042 
2043   std::set<std::string> Emitted;
2044   for (auto *Def : Defs) {
2045     // If the def has a body (that is, it has Operation DAGs), it won't call
2046     // __builtin_neon_* so we don't need to generate a definition for it.
2047     if (Def->hasBody())
2048       continue;
2049 
2050     std::string Name = Def->getMangledName();
2051     if (Emitted.find(Name) != Emitted.end())
2052       continue;
2053 
2054     // FIXME: We should make exceptions here for some NEON builtins that are
2055     // permitted in streaming mode.
2056     OS << "case NEON::BI__builtin_neon_" << Name
2057        << ": BuiltinType = ArmNonStreaming; break;\n";
2058     Emitted.insert(Name);
2059   }
2060   OS << "#endif\n\n";
2061 }
2062 
2063 /// Generate the ARM and AArch64 overloaded type checking code for
2064 /// SemaChecking.cpp, checking for unique builtin declarations.
2065 void NeonEmitter::genOverloadTypeCheckCode(raw_ostream &OS,
2066                                            SmallVectorImpl<Intrinsic *> &Defs) {
2067   OS << "#ifdef GET_NEON_OVERLOAD_CHECK\n";
2068 
2069   // We record each overload check line before emitting because subsequent Inst
2070   // definitions may extend the number of permitted types (i.e. augment the
2071   // Mask). Use std::map to avoid sorting the table by hash number.
2072   struct OverloadInfo {
2073     uint64_t Mask = 0ULL;
2074     int PtrArgNum = 0;
2075     bool HasConstPtr = false;
2076     OverloadInfo() = default;
2077   };
2078   std::map<std::string, OverloadInfo> OverloadMap;
2079 
2080   for (auto *Def : Defs) {
2081     // If the def has a body (that is, it has Operation DAGs), it won't call
2082     // __builtin_neon_* so we don't need to generate a definition for it.
2083     if (Def->hasBody())
2084       continue;
2085     // Functions which have a scalar argument cannot be overloaded, no need to
2086     // check them if we are emitting the type checking code.
2087     if (Def->protoHasScalar())
2088       continue;
2089 
2090     uint64_t Mask = 0ULL;
2091     Mask |= 1ULL << Def->getPolymorphicKeyType().getNeonEnum();
2092 
2093     // Check if the function has a pointer or const pointer argument.
2094     int PtrArgNum = -1;
2095     bool HasConstPtr = false;
2096     for (unsigned I = 0; I < Def->getNumParams(); ++I) {
2097       const auto &Type = Def->getParamType(I);
2098       if (Type.isPointer()) {
2099         PtrArgNum = I;
2100         HasConstPtr = Type.isConstPointer();
2101       }
2102     }
2103 
2104     // For sret builtins, adjust the pointer argument index.
2105     if (PtrArgNum >= 0 && Def->getReturnType().getNumVectors() > 1)
2106       PtrArgNum += 1;
2107 
2108     std::string Name = Def->getName();
2109     // Omit type checking for the pointer arguments of vld1_lane, vld1_dup,
2110     // vst1_lane, vldap1_lane, and vstl1_lane intrinsics.  Using a pointer to
2111     // the vector element type with one of those operations causes codegen to
2112     // select an aligned load/store instruction.  If you want an unaligned
2113     // operation, the pointer argument needs to have less alignment than element
2114     // type, so just accept any pointer type.
2115     if (Name == "vld1_lane" || Name == "vld1_dup" || Name == "vst1_lane" ||
2116         Name == "vldap1_lane" || Name == "vstl1_lane") {
2117       PtrArgNum = -1;
2118       HasConstPtr = false;
2119     }
2120 
2121     if (Mask) {
2122       std::string Name = Def->getMangledName();
2123       OverloadMap.insert(std::make_pair(Name, OverloadInfo()));
2124       OverloadInfo &OI = OverloadMap[Name];
2125       OI.Mask |= Mask;
2126       OI.PtrArgNum |= PtrArgNum;
2127       OI.HasConstPtr = HasConstPtr;
2128     }
2129   }
2130 
2131   for (auto &I : OverloadMap) {
2132     OverloadInfo &OI = I.second;
2133 
2134     OS << "case NEON::BI__builtin_neon_" << I.first << ": ";
2135     OS << "mask = 0x" << Twine::utohexstr(OI.Mask) << "ULL";
2136     if (OI.PtrArgNum >= 0)
2137       OS << "; PtrArgNum = " << OI.PtrArgNum;
2138     if (OI.HasConstPtr)
2139       OS << "; HasConstPtr = true";
2140     OS << "; break;\n";
2141   }
2142   OS << "#endif\n\n";
2143 }
2144 
2145 void NeonEmitter::genIntrinsicRangeCheckCode(raw_ostream &OS,
2146                                         SmallVectorImpl<Intrinsic *> &Defs) {
2147   OS << "#ifdef GET_NEON_IMMEDIATE_CHECK\n";
2148 
2149   std::set<std::string> Emitted;
2150 
2151   for (auto *Def : Defs) {
2152     if (Def->hasBody())
2153       continue;
2154     // Functions which do not have an immediate do not need to have range
2155     // checking code emitted.
2156     if (!Def->hasImmediate())
2157       continue;
2158     if (Emitted.find(Def->getMangledName()) != Emitted.end())
2159       continue;
2160 
2161     std::string LowerBound, UpperBound;
2162 
2163     Record *R = Def->getRecord();
2164     if (R->getValueAsBit("isVXAR")) {
2165       //VXAR takes an immediate in the range [0, 63]
2166       LowerBound = "0";
2167       UpperBound = "63";
2168     } else if (R->getValueAsBit("isVCVT_N")) {
2169       // VCVT between floating- and fixed-point values takes an immediate
2170       // in the range [1, 32) for f32 or [1, 64) for f64 or [1, 16) for f16.
2171       LowerBound = "1";
2172 	  if (Def->getBaseType().getElementSizeInBits() == 16 ||
2173 		  Def->getName().find('h') != std::string::npos)
2174 		// VCVTh operating on FP16 intrinsics in range [1, 16)
2175 		UpperBound = "15";
2176 	  else if (Def->getBaseType().getElementSizeInBits() == 32)
2177         UpperBound = "31";
2178 	  else
2179         UpperBound = "63";
2180     } else if (R->getValueAsBit("isScalarShift")) {
2181       // Right shifts have an 'r' in the name, left shifts do not. Convert
2182       // instructions have the same bounds and right shifts.
2183       if (Def->getName().find('r') != std::string::npos ||
2184           Def->getName().find("cvt") != std::string::npos)
2185         LowerBound = "1";
2186 
2187       UpperBound = utostr(Def->getReturnType().getElementSizeInBits() - 1);
2188     } else if (R->getValueAsBit("isShift")) {
2189       // Builtins which are overloaded by type will need to have their upper
2190       // bound computed at Sema time based on the type constant.
2191 
2192       // Right shifts have an 'r' in the name, left shifts do not.
2193       if (Def->getName().find('r') != std::string::npos)
2194         LowerBound = "1";
2195       UpperBound = "RFT(TV, true)";
2196     } else if (Def->getClassKind(true) == ClassB) {
2197       // ClassB intrinsics have a type (and hence lane number) that is only
2198       // known at runtime.
2199       if (R->getValueAsBit("isLaneQ"))
2200         UpperBound = "RFT(TV, false, true)";
2201       else
2202         UpperBound = "RFT(TV, false, false)";
2203     } else {
2204       // The immediate generally refers to a lane in the preceding argument.
2205       assert(Def->getImmediateIdx() > 0);
2206       Type T = Def->getParamType(Def->getImmediateIdx() - 1);
2207       UpperBound = utostr(T.getNumElements() - 1);
2208     }
2209 
2210     // Calculate the index of the immediate that should be range checked.
2211     unsigned Idx = Def->getNumParams();
2212     if (Def->hasImmediate())
2213       Idx = Def->getGeneratedParamIdx(Def->getImmediateIdx());
2214 
2215     OS << "case NEON::BI__builtin_neon_" << Def->getMangledName() << ": "
2216        << "i = " << Idx << ";";
2217     if (!LowerBound.empty())
2218       OS << " l = " << LowerBound << ";";
2219     if (!UpperBound.empty())
2220       OS << " u = " << UpperBound << ";";
2221     OS << " break;\n";
2222 
2223     Emitted.insert(Def->getMangledName());
2224   }
2225 
2226   OS << "#endif\n\n";
2227 }
2228 
2229 /// runHeader - Emit a file with sections defining:
2230 /// 1. the NEON section of BuiltinsARM.def and BuiltinsAArch64.def.
2231 /// 2. the SemaChecking code for the type overload checking.
2232 /// 3. the SemaChecking code for validation of intrinsic immediate arguments.
2233 void NeonEmitter::runHeader(raw_ostream &OS) {
2234   std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
2235 
2236   SmallVector<Intrinsic *, 128> Defs;
2237   for (auto *R : RV)
2238     createIntrinsic(R, Defs);
2239 
2240   // Generate shared BuiltinsXXX.def
2241   genBuiltinsDef(OS, Defs);
2242 
2243   // Generate ARM overloaded type checking code for SemaChecking.cpp
2244   genOverloadTypeCheckCode(OS, Defs);
2245 
2246   genStreamingSVECompatibleList(OS, Defs);
2247 
2248   // Generate ARM range checking code for shift/lane immediates.
2249   genIntrinsicRangeCheckCode(OS, Defs);
2250 }
2251 
2252 static void emitNeonTypeDefs(const std::string& types, raw_ostream &OS) {
2253   std::string TypedefTypes(types);
2254   std::vector<TypeSpec> TDTypeVec = TypeSpec::fromTypeSpecs(TypedefTypes);
2255 
2256   // Emit vector typedefs.
2257   bool InIfdef = false;
2258   for (auto &TS : TDTypeVec) {
2259     bool IsA64 = false;
2260     Type T(TS, ".");
2261     if (T.isDouble())
2262       IsA64 = true;
2263 
2264     if (InIfdef && !IsA64) {
2265       OS << "#endif\n";
2266       InIfdef = false;
2267     }
2268     if (!InIfdef && IsA64) {
2269       OS << "#if defined(__aarch64__) || defined(__arm64ec__)\n";
2270       InIfdef = true;
2271     }
2272 
2273     if (T.isPoly())
2274       OS << "typedef __attribute__((neon_polyvector_type(";
2275     else
2276       OS << "typedef __attribute__((neon_vector_type(";
2277 
2278     Type T2 = T;
2279     T2.makeScalar();
2280     OS << T.getNumElements() << "))) ";
2281     OS << T2.str();
2282     OS << " " << T.str() << ";\n";
2283   }
2284   if (InIfdef)
2285     OS << "#endif\n";
2286   OS << "\n";
2287 
2288   // Emit struct typedefs.
2289   InIfdef = false;
2290   for (unsigned NumMembers = 2; NumMembers <= 4; ++NumMembers) {
2291     for (auto &TS : TDTypeVec) {
2292       bool IsA64 = false;
2293       Type T(TS, ".");
2294       if (T.isDouble())
2295         IsA64 = true;
2296 
2297       if (InIfdef && !IsA64) {
2298         OS << "#endif\n";
2299         InIfdef = false;
2300       }
2301       if (!InIfdef && IsA64) {
2302         OS << "#if defined(__aarch64__) || defined(__arm64ec__)\n";
2303         InIfdef = true;
2304       }
2305 
2306       const char Mods[] = { static_cast<char>('2' + (NumMembers - 2)), 0};
2307       Type VT(TS, Mods);
2308       OS << "typedef struct " << VT.str() << " {\n";
2309       OS << "  " << T.str() << " val";
2310       OS << "[" << NumMembers << "]";
2311       OS << ";\n} ";
2312       OS << VT.str() << ";\n";
2313       OS << "\n";
2314     }
2315   }
2316   if (InIfdef)
2317     OS << "#endif\n";
2318 }
2319 
2320 /// run - Read the records in arm_neon.td and output arm_neon.h.  arm_neon.h
2321 /// is comprised of type definitions and function declarations.
2322 void NeonEmitter::run(raw_ostream &OS) {
2323   OS << "/*===---- arm_neon.h - ARM Neon intrinsics "
2324         "------------------------------"
2325         "---===\n"
2326         " *\n"
2327         " * Permission is hereby granted, free of charge, to any person "
2328         "obtaining "
2329         "a copy\n"
2330         " * of this software and associated documentation files (the "
2331         "\"Software\"),"
2332         " to deal\n"
2333         " * in the Software without restriction, including without limitation "
2334         "the "
2335         "rights\n"
2336         " * to use, copy, modify, merge, publish, distribute, sublicense, "
2337         "and/or sell\n"
2338         " * copies of the Software, and to permit persons to whom the Software "
2339         "is\n"
2340         " * furnished to do so, subject to the following conditions:\n"
2341         " *\n"
2342         " * The above copyright notice and this permission notice shall be "
2343         "included in\n"
2344         " * all copies or substantial portions of the Software.\n"
2345         " *\n"
2346         " * THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, "
2347         "EXPRESS OR\n"
2348         " * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF "
2349         "MERCHANTABILITY,\n"
2350         " * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT "
2351         "SHALL THE\n"
2352         " * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR "
2353         "OTHER\n"
2354         " * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, "
2355         "ARISING FROM,\n"
2356         " * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER "
2357         "DEALINGS IN\n"
2358         " * THE SOFTWARE.\n"
2359         " *\n"
2360         " *===-----------------------------------------------------------------"
2361         "---"
2362         "---===\n"
2363         " */\n\n";
2364 
2365   OS << "#ifndef __ARM_NEON_H\n";
2366   OS << "#define __ARM_NEON_H\n\n";
2367 
2368   OS << "#ifndef __ARM_FP\n";
2369   OS << "#error \"NEON intrinsics not available with the soft-float ABI. "
2370         "Please use -mfloat-abi=softfp or -mfloat-abi=hard\"\n";
2371   OS << "#else\n\n";
2372 
2373   OS << "#include <stdint.h>\n\n";
2374 
2375   OS << "#include <arm_bf16.h>\n";
2376 
2377   OS << "#include <arm_vector_types.h>\n";
2378 
2379   // For now, signedness of polynomial types depends on target
2380   OS << "#if defined(__aarch64__) || defined(__arm64ec__)\n";
2381   OS << "typedef uint8_t poly8_t;\n";
2382   OS << "typedef uint16_t poly16_t;\n";
2383   OS << "typedef uint64_t poly64_t;\n";
2384   OS << "typedef __uint128_t poly128_t;\n";
2385   OS << "#else\n";
2386   OS << "typedef int8_t poly8_t;\n";
2387   OS << "typedef int16_t poly16_t;\n";
2388   OS << "typedef int64_t poly64_t;\n";
2389   OS << "#endif\n";
2390   emitNeonTypeDefs("PcQPcPsQPsPlQPl", OS);
2391 
2392   OS << "#define __ai static __inline__ __attribute__((__always_inline__, "
2393         "__nodebug__))\n\n";
2394 
2395   SmallVector<Intrinsic *, 128> Defs;
2396   std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
2397   for (auto *R : RV)
2398     createIntrinsic(R, Defs);
2399 
2400   for (auto *I : Defs)
2401     I->indexBody();
2402 
2403   llvm::stable_sort(Defs, llvm::deref<std::less<>>());
2404 
2405   // Only emit a def when its requirements have been met.
2406   // FIXME: This loop could be made faster, but it's fast enough for now.
2407   bool MadeProgress = true;
2408   std::string InGuard;
2409   while (!Defs.empty() && MadeProgress) {
2410     MadeProgress = false;
2411 
2412     for (SmallVector<Intrinsic *, 128>::iterator I = Defs.begin();
2413          I != Defs.end(); /*No step*/) {
2414       bool DependenciesSatisfied = true;
2415       for (auto *II : (*I)->getDependencies()) {
2416         if (llvm::is_contained(Defs, II))
2417           DependenciesSatisfied = false;
2418       }
2419       if (!DependenciesSatisfied) {
2420         // Try the next one.
2421         ++I;
2422         continue;
2423       }
2424 
2425       // Emit #endif/#if pair if needed.
2426       if ((*I)->getArchGuard() != InGuard) {
2427         if (!InGuard.empty())
2428           OS << "#endif\n";
2429         InGuard = (*I)->getArchGuard();
2430         if (!InGuard.empty())
2431           OS << "#if " << InGuard << "\n";
2432       }
2433 
2434       // Actually generate the intrinsic code.
2435       OS << (*I)->generate();
2436 
2437       MadeProgress = true;
2438       I = Defs.erase(I);
2439     }
2440   }
2441   assert(Defs.empty() && "Some requirements were not satisfied!");
2442   if (!InGuard.empty())
2443     OS << "#endif\n";
2444 
2445   OS << "\n";
2446   OS << "#undef __ai\n\n";
2447   OS << "#endif /* if !defined(__ARM_NEON) */\n";
2448   OS << "#endif /* ifndef __ARM_FP */\n";
2449 }
2450 
2451 /// run - Read the records in arm_fp16.td and output arm_fp16.h.  arm_fp16.h
2452 /// is comprised of type definitions and function declarations.
2453 void NeonEmitter::runFP16(raw_ostream &OS) {
2454   OS << "/*===---- arm_fp16.h - ARM FP16 intrinsics "
2455         "------------------------------"
2456         "---===\n"
2457         " *\n"
2458         " * Permission is hereby granted, free of charge, to any person "
2459         "obtaining a copy\n"
2460         " * of this software and associated documentation files (the "
2461 				"\"Software\"), to deal\n"
2462         " * in the Software without restriction, including without limitation "
2463 				"the rights\n"
2464         " * to use, copy, modify, merge, publish, distribute, sublicense, "
2465 				"and/or sell\n"
2466         " * copies of the Software, and to permit persons to whom the Software "
2467 				"is\n"
2468         " * furnished to do so, subject to the following conditions:\n"
2469         " *\n"
2470         " * The above copyright notice and this permission notice shall be "
2471         "included in\n"
2472         " * all copies or substantial portions of the Software.\n"
2473         " *\n"
2474         " * THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, "
2475         "EXPRESS OR\n"
2476         " * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF "
2477         "MERCHANTABILITY,\n"
2478         " * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT "
2479         "SHALL THE\n"
2480         " * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR "
2481         "OTHER\n"
2482         " * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, "
2483         "ARISING FROM,\n"
2484         " * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER "
2485         "DEALINGS IN\n"
2486         " * THE SOFTWARE.\n"
2487         " *\n"
2488         " *===-----------------------------------------------------------------"
2489         "---"
2490         "---===\n"
2491         " */\n\n";
2492 
2493   OS << "#ifndef __ARM_FP16_H\n";
2494   OS << "#define __ARM_FP16_H\n\n";
2495 
2496   OS << "#include <stdint.h>\n\n";
2497 
2498   OS << "typedef __fp16 float16_t;\n";
2499 
2500   OS << "#define __ai static __inline__ __attribute__((__always_inline__, "
2501         "__nodebug__))\n\n";
2502 
2503   SmallVector<Intrinsic *, 128> Defs;
2504   std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
2505   for (auto *R : RV)
2506     createIntrinsic(R, Defs);
2507 
2508   for (auto *I : Defs)
2509     I->indexBody();
2510 
2511   llvm::stable_sort(Defs, llvm::deref<std::less<>>());
2512 
2513   // Only emit a def when its requirements have been met.
2514   // FIXME: This loop could be made faster, but it's fast enough for now.
2515   bool MadeProgress = true;
2516   std::string InGuard;
2517   while (!Defs.empty() && MadeProgress) {
2518     MadeProgress = false;
2519 
2520     for (SmallVector<Intrinsic *, 128>::iterator I = Defs.begin();
2521          I != Defs.end(); /*No step*/) {
2522       bool DependenciesSatisfied = true;
2523       for (auto *II : (*I)->getDependencies()) {
2524         if (llvm::is_contained(Defs, II))
2525           DependenciesSatisfied = false;
2526       }
2527       if (!DependenciesSatisfied) {
2528         // Try the next one.
2529         ++I;
2530         continue;
2531       }
2532 
2533       // Emit #endif/#if pair if needed.
2534       if ((*I)->getArchGuard() != InGuard) {
2535         if (!InGuard.empty())
2536           OS << "#endif\n";
2537         InGuard = (*I)->getArchGuard();
2538         if (!InGuard.empty())
2539           OS << "#if " << InGuard << "\n";
2540       }
2541 
2542       // Actually generate the intrinsic code.
2543       OS << (*I)->generate();
2544 
2545       MadeProgress = true;
2546       I = Defs.erase(I);
2547     }
2548   }
2549   assert(Defs.empty() && "Some requirements were not satisfied!");
2550   if (!InGuard.empty())
2551     OS << "#endif\n";
2552 
2553   OS << "\n";
2554   OS << "#undef __ai\n\n";
2555   OS << "#endif /* __ARM_FP16_H */\n";
2556 }
2557 
2558 void NeonEmitter::runVectorTypes(raw_ostream &OS) {
2559   OS << "/*===---- arm_vector_types - ARM vector type "
2560         "------===\n"
2561         " *\n"
2562         " *\n"
2563         " * Part of the LLVM Project, under the Apache License v2.0 with LLVM "
2564         "Exceptions.\n"
2565         " * See https://llvm.org/LICENSE.txt for license information.\n"
2566         " * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception\n"
2567         " *\n"
2568         " *===-----------------------------------------------------------------"
2569         "------===\n"
2570         " */\n\n";
2571   OS << "#if !defined(__ARM_NEON_H) && !defined(__ARM_SVE_H)\n";
2572   OS << "#error \"This file should not be used standalone. Please include"
2573         " arm_neon.h or arm_sve.h instead\"\n\n";
2574   OS << "#endif\n";
2575   OS << "#ifndef __ARM_NEON_TYPES_H\n";
2576   OS << "#define __ARM_NEON_TYPES_H\n";
2577   OS << "typedef float float32_t;\n";
2578   OS << "typedef __fp16 float16_t;\n";
2579 
2580   OS << "#if defined(__aarch64__) || defined(__arm64ec__)\n";
2581   OS << "typedef double float64_t;\n";
2582   OS << "#endif\n\n";
2583 
2584   emitNeonTypeDefs("cQcsQsiQilQlUcQUcUsQUsUiQUiUlQUlhQhfQfdQd", OS);
2585 
2586   emitNeonTypeDefs("bQb", OS);
2587   OS << "#endif // __ARM_NEON_TYPES_H\n";
2588 }
2589 
2590 void NeonEmitter::runBF16(raw_ostream &OS) {
2591   OS << "/*===---- arm_bf16.h - ARM BF16 intrinsics "
2592         "-----------------------------------===\n"
2593         " *\n"
2594         " *\n"
2595         " * Part of the LLVM Project, under the Apache License v2.0 with LLVM "
2596         "Exceptions.\n"
2597         " * See https://llvm.org/LICENSE.txt for license information.\n"
2598         " * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception\n"
2599         " *\n"
2600         " *===-----------------------------------------------------------------"
2601         "------===\n"
2602         " */\n\n";
2603 
2604   OS << "#ifndef __ARM_BF16_H\n";
2605   OS << "#define __ARM_BF16_H\n\n";
2606 
2607   OS << "typedef __bf16 bfloat16_t;\n";
2608 
2609   OS << "#define __ai static __inline__ __attribute__((__always_inline__, "
2610         "__nodebug__))\n\n";
2611 
2612   SmallVector<Intrinsic *, 128> Defs;
2613   std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
2614   for (auto *R : RV)
2615     createIntrinsic(R, Defs);
2616 
2617   for (auto *I : Defs)
2618     I->indexBody();
2619 
2620   llvm::stable_sort(Defs, llvm::deref<std::less<>>());
2621 
2622   // Only emit a def when its requirements have been met.
2623   // FIXME: This loop could be made faster, but it's fast enough for now.
2624   bool MadeProgress = true;
2625   std::string InGuard;
2626   while (!Defs.empty() && MadeProgress) {
2627     MadeProgress = false;
2628 
2629     for (SmallVector<Intrinsic *, 128>::iterator I = Defs.begin();
2630          I != Defs.end(); /*No step*/) {
2631       bool DependenciesSatisfied = true;
2632       for (auto *II : (*I)->getDependencies()) {
2633         if (llvm::is_contained(Defs, II))
2634           DependenciesSatisfied = false;
2635       }
2636       if (!DependenciesSatisfied) {
2637         // Try the next one.
2638         ++I;
2639         continue;
2640       }
2641 
2642       // Emit #endif/#if pair if needed.
2643       if ((*I)->getArchGuard() != InGuard) {
2644         if (!InGuard.empty())
2645           OS << "#endif\n";
2646         InGuard = (*I)->getArchGuard();
2647         if (!InGuard.empty())
2648           OS << "#if " << InGuard << "\n";
2649       }
2650 
2651       // Actually generate the intrinsic code.
2652       OS << (*I)->generate();
2653 
2654       MadeProgress = true;
2655       I = Defs.erase(I);
2656     }
2657   }
2658   assert(Defs.empty() && "Some requirements were not satisfied!");
2659   if (!InGuard.empty())
2660     OS << "#endif\n";
2661 
2662   OS << "\n";
2663   OS << "#undef __ai\n\n";
2664 
2665   OS << "#endif\n";
2666 }
2667 
2668 void clang::EmitNeon(RecordKeeper &Records, raw_ostream &OS) {
2669   NeonEmitter(Records).run(OS);
2670 }
2671 
2672 void clang::EmitFP16(RecordKeeper &Records, raw_ostream &OS) {
2673   NeonEmitter(Records).runFP16(OS);
2674 }
2675 
2676 void clang::EmitBF16(RecordKeeper &Records, raw_ostream &OS) {
2677   NeonEmitter(Records).runBF16(OS);
2678 }
2679 
2680 void clang::EmitNeonSema(RecordKeeper &Records, raw_ostream &OS) {
2681   NeonEmitter(Records).runHeader(OS);
2682 }
2683 
2684 void clang::EmitVectorTypes(RecordKeeper &Records, raw_ostream &OS) {
2685   NeonEmitter(Records).runVectorTypes(OS);
2686 }
2687 
2688 void clang::EmitNeonTest(RecordKeeper &Records, raw_ostream &OS) {
2689   llvm_unreachable("Neon test generation no longer implemented!");
2690 }
2691