xref: /freebsd/contrib/llvm-project/clang/utils/TableGen/NeonEmitter.cpp (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 //===- NeonEmitter.cpp - Generate arm_neon.h for use with clang -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This tablegen backend is responsible for emitting arm_neon.h, which includes
10 // a declaration and definition of each function specified by the ARM NEON
11 // compiler interface.  See ARM document DUI0348B.
12 //
13 // Each NEON instruction is implemented in terms of 1 or more functions which
14 // are suffixed with the element type of the input vectors.  Functions may be
15 // implemented in terms of generic vector operations such as +, *, -, etc. or
16 // by calling a __builtin_-prefixed function which will be handled by clang's
17 // CodeGen library.
18 //
19 // Additional validation code can be generated by this file when runHeader() is
20 // called, rather than the normal run() entry point.
21 //
22 // See also the documentation in include/clang/Basic/arm_neon.td.
23 //
24 //===----------------------------------------------------------------------===//
25 
26 #include "TableGenBackends.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/None.h"
30 #include "llvm/ADT/Optional.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/StringExtras.h"
34 #include "llvm/ADT/StringRef.h"
35 #include "llvm/Support/Casting.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/TableGen/Error.h"
39 #include "llvm/TableGen/Record.h"
40 #include "llvm/TableGen/SetTheory.h"
41 #include <algorithm>
42 #include <cassert>
43 #include <cctype>
44 #include <cstddef>
45 #include <cstdint>
46 #include <deque>
47 #include <map>
48 #include <set>
49 #include <sstream>
50 #include <string>
51 #include <utility>
52 #include <vector>
53 
54 using namespace llvm;
55 
56 namespace {
57 
58 // While globals are generally bad, this one allows us to perform assertions
59 // liberally and somehow still trace them back to the def they indirectly
60 // came from.
61 static Record *CurrentRecord = nullptr;
62 static void assert_with_loc(bool Assertion, const std::string &Str) {
63   if (!Assertion) {
64     if (CurrentRecord)
65       PrintFatalError(CurrentRecord->getLoc(), Str);
66     else
67       PrintFatalError(Str);
68   }
69 }
70 
71 enum ClassKind {
72   ClassNone,
73   ClassI,     // generic integer instruction, e.g., "i8" suffix
74   ClassS,     // signed/unsigned/poly, e.g., "s8", "u8" or "p8" suffix
75   ClassW,     // width-specific instruction, e.g., "8" suffix
76   ClassB,     // bitcast arguments with enum argument to specify type
77   ClassL,     // Logical instructions which are op instructions
78               // but we need to not emit any suffix for in our
79               // tests.
80   ClassNoTest // Instructions which we do not test since they are
81               // not TRUE instructions.
82 };
83 
84 /// NeonTypeFlags - Flags to identify the types for overloaded Neon
85 /// builtins.  These must be kept in sync with the flags in
86 /// include/clang/Basic/TargetBuiltins.h.
87 namespace NeonTypeFlags {
88 
89 enum { EltTypeMask = 0xf, UnsignedFlag = 0x10, QuadFlag = 0x20 };
90 
91 enum EltType {
92   Int8,
93   Int16,
94   Int32,
95   Int64,
96   Poly8,
97   Poly16,
98   Poly64,
99   Poly128,
100   Float16,
101   Float32,
102   Float64,
103   BFloat16
104 };
105 
106 } // end namespace NeonTypeFlags
107 
108 class NeonEmitter;
109 
110 //===----------------------------------------------------------------------===//
111 // TypeSpec
112 //===----------------------------------------------------------------------===//
113 
114 /// A TypeSpec is just a simple wrapper around a string, but gets its own type
115 /// for strong typing purposes.
116 ///
117 /// A TypeSpec can be used to create a type.
118 class TypeSpec : public std::string {
119 public:
120   static std::vector<TypeSpec> fromTypeSpecs(StringRef Str) {
121     std::vector<TypeSpec> Ret;
122     TypeSpec Acc;
123     for (char I : Str.str()) {
124       if (islower(I)) {
125         Acc.push_back(I);
126         Ret.push_back(TypeSpec(Acc));
127         Acc.clear();
128       } else {
129         Acc.push_back(I);
130       }
131     }
132     return Ret;
133   }
134 };
135 
136 //===----------------------------------------------------------------------===//
137 // Type
138 //===----------------------------------------------------------------------===//
139 
140 /// A Type. Not much more to say here.
141 class Type {
142 private:
143   TypeSpec TS;
144 
145   enum TypeKind {
146     Void,
147     Float,
148     SInt,
149     UInt,
150     Poly,
151     BFloat16,
152   };
153   TypeKind Kind;
154   bool Immediate, Constant, Pointer;
155   // ScalarForMangling and NoManglingQ are really not suited to live here as
156   // they are not related to the type. But they live in the TypeSpec (not the
157   // prototype), so this is really the only place to store them.
158   bool ScalarForMangling, NoManglingQ;
159   unsigned Bitwidth, ElementBitwidth, NumVectors;
160 
161 public:
162   Type()
163       : Kind(Void), Immediate(false), Constant(false),
164         Pointer(false), ScalarForMangling(false), NoManglingQ(false),
165         Bitwidth(0), ElementBitwidth(0), NumVectors(0) {}
166 
167   Type(TypeSpec TS, StringRef CharMods)
168       : TS(std::move(TS)), Kind(Void), Immediate(false),
169         Constant(false), Pointer(false), ScalarForMangling(false),
170         NoManglingQ(false), Bitwidth(0), ElementBitwidth(0), NumVectors(0) {
171     applyModifiers(CharMods);
172   }
173 
174   /// Returns a type representing "void".
175   static Type getVoid() { return Type(); }
176 
177   bool operator==(const Type &Other) const { return str() == Other.str(); }
178   bool operator!=(const Type &Other) const { return !operator==(Other); }
179 
180   //
181   // Query functions
182   //
183   bool isScalarForMangling() const { return ScalarForMangling; }
184   bool noManglingQ() const { return NoManglingQ; }
185 
186   bool isPointer() const { return Pointer; }
187   bool isValue() const { return !isVoid() && !isPointer(); }
188   bool isScalar() const { return isValue() && NumVectors == 0; }
189   bool isVector() const { return isValue() && NumVectors > 0; }
190   bool isConstPointer() const { return Constant; }
191   bool isFloating() const { return Kind == Float; }
192   bool isInteger() const { return Kind == SInt || Kind == UInt; }
193   bool isPoly() const { return Kind == Poly; }
194   bool isSigned() const { return Kind == SInt; }
195   bool isImmediate() const { return Immediate; }
196   bool isFloat() const { return isFloating() && ElementBitwidth == 32; }
197   bool isDouble() const { return isFloating() && ElementBitwidth == 64; }
198   bool isHalf() const { return isFloating() && ElementBitwidth == 16; }
199   bool isChar() const { return ElementBitwidth == 8; }
200   bool isShort() const { return isInteger() && ElementBitwidth == 16; }
201   bool isInt() const { return isInteger() && ElementBitwidth == 32; }
202   bool isLong() const { return isInteger() && ElementBitwidth == 64; }
203   bool isVoid() const { return Kind == Void; }
204   bool isBFloat16() const { return Kind == BFloat16; }
205   unsigned getNumElements() const { return Bitwidth / ElementBitwidth; }
206   unsigned getSizeInBits() const { return Bitwidth; }
207   unsigned getElementSizeInBits() const { return ElementBitwidth; }
208   unsigned getNumVectors() const { return NumVectors; }
209 
210   //
211   // Mutator functions
212   //
213   void makeUnsigned() {
214     assert(!isVoid() && "not a potentially signed type");
215     Kind = UInt;
216   }
217   void makeSigned() {
218     assert(!isVoid() && "not a potentially signed type");
219     Kind = SInt;
220   }
221 
222   void makeInteger(unsigned ElemWidth, bool Sign) {
223     assert(!isVoid() && "converting void to int probably not useful");
224     Kind = Sign ? SInt : UInt;
225     Immediate = false;
226     ElementBitwidth = ElemWidth;
227   }
228 
229   void makeImmediate(unsigned ElemWidth) {
230     Kind = SInt;
231     Immediate = true;
232     ElementBitwidth = ElemWidth;
233   }
234 
235   void makeScalar() {
236     Bitwidth = ElementBitwidth;
237     NumVectors = 0;
238   }
239 
240   void makeOneVector() {
241     assert(isVector());
242     NumVectors = 1;
243   }
244 
245   void make32BitElement() {
246     assert_with_loc(Bitwidth > 32, "Not enough bits to make it 32!");
247     ElementBitwidth = 32;
248   }
249 
250   void doubleLanes() {
251     assert_with_loc(Bitwidth != 128, "Can't get bigger than 128!");
252     Bitwidth = 128;
253   }
254 
255   void halveLanes() {
256     assert_with_loc(Bitwidth != 64, "Can't get smaller than 64!");
257     Bitwidth = 64;
258   }
259 
260   /// Return the C string representation of a type, which is the typename
261   /// defined in stdint.h or arm_neon.h.
262   std::string str() const;
263 
264   /// Return the string representation of a type, which is an encoded
265   /// string for passing to the BUILTIN() macro in Builtins.def.
266   std::string builtin_str() const;
267 
268   /// Return the value in NeonTypeFlags for this type.
269   unsigned getNeonEnum() const;
270 
271   /// Parse a type from a stdint.h or arm_neon.h typedef name,
272   /// for example uint32x2_t or int64_t.
273   static Type fromTypedefName(StringRef Name);
274 
275 private:
276   /// Creates the type based on the typespec string in TS.
277   /// Sets "Quad" to true if the "Q" or "H" modifiers were
278   /// seen. This is needed by applyModifier as some modifiers
279   /// only take effect if the type size was changed by "Q" or "H".
280   void applyTypespec(bool &Quad);
281   /// Applies prototype modifiers to the type.
282   void applyModifiers(StringRef Mods);
283 };
284 
285 //===----------------------------------------------------------------------===//
286 // Variable
287 //===----------------------------------------------------------------------===//
288 
289 /// A variable is a simple class that just has a type and a name.
290 class Variable {
291   Type T;
292   std::string N;
293 
294 public:
295   Variable() : T(Type::getVoid()), N("") {}
296   Variable(Type T, std::string N) : T(std::move(T)), N(std::move(N)) {}
297 
298   Type getType() const { return T; }
299   std::string getName() const { return "__" + N; }
300 };
301 
302 //===----------------------------------------------------------------------===//
303 // Intrinsic
304 //===----------------------------------------------------------------------===//
305 
306 /// The main grunt class. This represents an instantiation of an intrinsic with
307 /// a particular typespec and prototype.
308 class Intrinsic {
309   /// The Record this intrinsic was created from.
310   Record *R;
311   /// The unmangled name.
312   std::string Name;
313   /// The input and output typespecs. InTS == OutTS except when
314   /// CartesianProductWith is non-empty - this is the case for vreinterpret.
315   TypeSpec OutTS, InTS;
316   /// The base class kind. Most intrinsics use ClassS, which has full type
317   /// info for integers (s32/u32). Some use ClassI, which doesn't care about
318   /// signedness (i32), while some (ClassB) have no type at all, only a width
319   /// (32).
320   ClassKind CK;
321   /// The list of DAGs for the body. May be empty, in which case we should
322   /// emit a builtin call.
323   ListInit *Body;
324   /// The architectural #ifdef guard.
325   std::string Guard;
326   /// Set if the Unavailable bit is 1. This means we don't generate a body,
327   /// just an "unavailable" attribute on a declaration.
328   bool IsUnavailable;
329   /// Is this intrinsic safe for big-endian? or does it need its arguments
330   /// reversing?
331   bool BigEndianSafe;
332 
333   /// The types of return value [0] and parameters [1..].
334   std::vector<Type> Types;
335   /// The index of the key type passed to CGBuiltin.cpp for polymorphic calls.
336   int PolymorphicKeyType;
337   /// The local variables defined.
338   std::map<std::string, Variable> Variables;
339   /// NeededEarly - set if any other intrinsic depends on this intrinsic.
340   bool NeededEarly;
341   /// UseMacro - set if we should implement using a macro or unset for a
342   ///            function.
343   bool UseMacro;
344   /// The set of intrinsics that this intrinsic uses/requires.
345   std::set<Intrinsic *> Dependencies;
346   /// The "base type", which is Type('d', OutTS). InBaseType is only
347   /// different if CartesianProductWith is non-empty (for vreinterpret).
348   Type BaseType, InBaseType;
349   /// The return variable.
350   Variable RetVar;
351   /// A postfix to apply to every variable. Defaults to "".
352   std::string VariablePostfix;
353 
354   NeonEmitter &Emitter;
355   std::stringstream OS;
356 
357   bool isBigEndianSafe() const {
358     if (BigEndianSafe)
359       return true;
360 
361     for (const auto &T : Types){
362       if (T.isVector() && T.getNumElements() > 1)
363         return false;
364     }
365     return true;
366   }
367 
368 public:
369   Intrinsic(Record *R, StringRef Name, StringRef Proto, TypeSpec OutTS,
370             TypeSpec InTS, ClassKind CK, ListInit *Body, NeonEmitter &Emitter,
371             StringRef Guard, bool IsUnavailable, bool BigEndianSafe)
372       : R(R), Name(Name.str()), OutTS(OutTS), InTS(InTS), CK(CK), Body(Body),
373         Guard(Guard.str()), IsUnavailable(IsUnavailable),
374         BigEndianSafe(BigEndianSafe), PolymorphicKeyType(0), NeededEarly(false),
375         UseMacro(false), BaseType(OutTS, "."), InBaseType(InTS, "."),
376         Emitter(Emitter) {
377     // Modify the TypeSpec per-argument to get a concrete Type, and create
378     // known variables for each.
379     // Types[0] is the return value.
380     unsigned Pos = 0;
381     Types.emplace_back(OutTS, getNextModifiers(Proto, Pos));
382     StringRef Mods = getNextModifiers(Proto, Pos);
383     while (!Mods.empty()) {
384       Types.emplace_back(InTS, Mods);
385       if (Mods.find('!') != StringRef::npos)
386         PolymorphicKeyType = Types.size() - 1;
387 
388       Mods = getNextModifiers(Proto, Pos);
389     }
390 
391     for (auto Type : Types) {
392       // If this builtin takes an immediate argument, we need to #define it rather
393       // than use a standard declaration, so that SemaChecking can range check
394       // the immediate passed by the user.
395 
396       // Pointer arguments need to use macros to avoid hiding aligned attributes
397       // from the pointer type.
398 
399       // It is not permitted to pass or return an __fp16 by value, so intrinsics
400       // taking a scalar float16_t must be implemented as macros.
401       if (Type.isImmediate() || Type.isPointer() ||
402           (Type.isScalar() && Type.isHalf()))
403         UseMacro = true;
404     }
405   }
406 
407   /// Get the Record that this intrinsic is based off.
408   Record *getRecord() const { return R; }
409   /// Get the set of Intrinsics that this intrinsic calls.
410   /// this is the set of immediate dependencies, NOT the
411   /// transitive closure.
412   const std::set<Intrinsic *> &getDependencies() const { return Dependencies; }
413   /// Get the architectural guard string (#ifdef).
414   std::string getGuard() const { return Guard; }
415   /// Get the non-mangled name.
416   std::string getName() const { return Name; }
417 
418   /// Return true if the intrinsic takes an immediate operand.
419   bool hasImmediate() const {
420     return std::any_of(Types.begin(), Types.end(),
421                        [](const Type &T) { return T.isImmediate(); });
422   }
423 
424   /// Return the parameter index of the immediate operand.
425   unsigned getImmediateIdx() const {
426     for (unsigned Idx = 0; Idx < Types.size(); ++Idx)
427       if (Types[Idx].isImmediate())
428         return Idx - 1;
429     llvm_unreachable("Intrinsic has no immediate");
430   }
431 
432 
433   unsigned getNumParams() const { return Types.size() - 1; }
434   Type getReturnType() const { return Types[0]; }
435   Type getParamType(unsigned I) const { return Types[I + 1]; }
436   Type getBaseType() const { return BaseType; }
437   Type getPolymorphicKeyType() const { return Types[PolymorphicKeyType]; }
438 
439   /// Return true if the prototype has a scalar argument.
440   bool protoHasScalar() const;
441 
442   /// Return the index that parameter PIndex will sit at
443   /// in a generated function call. This is often just PIndex,
444   /// but may not be as things such as multiple-vector operands
445   /// and sret parameters need to be taken into accont.
446   unsigned getGeneratedParamIdx(unsigned PIndex) {
447     unsigned Idx = 0;
448     if (getReturnType().getNumVectors() > 1)
449       // Multiple vectors are passed as sret.
450       ++Idx;
451 
452     for (unsigned I = 0; I < PIndex; ++I)
453       Idx += std::max(1U, getParamType(I).getNumVectors());
454 
455     return Idx;
456   }
457 
458   bool hasBody() const { return Body && !Body->getValues().empty(); }
459 
460   void setNeededEarly() { NeededEarly = true; }
461 
462   bool operator<(const Intrinsic &Other) const {
463     // Sort lexicographically on a two-tuple (Guard, Name)
464     if (Guard != Other.Guard)
465       return Guard < Other.Guard;
466     return Name < Other.Name;
467   }
468 
469   ClassKind getClassKind(bool UseClassBIfScalar = false) {
470     if (UseClassBIfScalar && !protoHasScalar())
471       return ClassB;
472     return CK;
473   }
474 
475   /// Return the name, mangled with type information.
476   /// If ForceClassS is true, use ClassS (u32/s32) instead
477   /// of the intrinsic's own type class.
478   std::string getMangledName(bool ForceClassS = false) const;
479   /// Return the type code for a builtin function call.
480   std::string getInstTypeCode(Type T, ClassKind CK) const;
481   /// Return the type string for a BUILTIN() macro in Builtins.def.
482   std::string getBuiltinTypeStr();
483 
484   /// Generate the intrinsic, returning code.
485   std::string generate();
486   /// Perform type checking and populate the dependency graph, but
487   /// don't generate code yet.
488   void indexBody();
489 
490 private:
491   StringRef getNextModifiers(StringRef Proto, unsigned &Pos) const;
492 
493   std::string mangleName(std::string Name, ClassKind CK) const;
494 
495   void initVariables();
496   std::string replaceParamsIn(std::string S);
497 
498   void emitBodyAsBuiltinCall();
499 
500   void generateImpl(bool ReverseArguments,
501                     StringRef NamePrefix, StringRef CallPrefix);
502   void emitReturn();
503   void emitBody(StringRef CallPrefix);
504   void emitShadowedArgs();
505   void emitArgumentReversal();
506   void emitReturnReversal();
507   void emitReverseVariable(Variable &Dest, Variable &Src);
508   void emitNewLine();
509   void emitClosingBrace();
510   void emitOpeningBrace();
511   void emitPrototype(StringRef NamePrefix);
512 
513   class DagEmitter {
514     Intrinsic &Intr;
515     StringRef CallPrefix;
516 
517   public:
518     DagEmitter(Intrinsic &Intr, StringRef CallPrefix) :
519       Intr(Intr), CallPrefix(CallPrefix) {
520     }
521     std::pair<Type, std::string> emitDagArg(Init *Arg, std::string ArgName);
522     std::pair<Type, std::string> emitDagSaveTemp(DagInit *DI);
523     std::pair<Type, std::string> emitDagSplat(DagInit *DI);
524     std::pair<Type, std::string> emitDagDup(DagInit *DI);
525     std::pair<Type, std::string> emitDagDupTyped(DagInit *DI);
526     std::pair<Type, std::string> emitDagShuffle(DagInit *DI);
527     std::pair<Type, std::string> emitDagCast(DagInit *DI, bool IsBitCast);
528     std::pair<Type, std::string> emitDagCall(DagInit *DI,
529                                              bool MatchMangledName);
530     std::pair<Type, std::string> emitDagNameReplace(DagInit *DI);
531     std::pair<Type, std::string> emitDagLiteral(DagInit *DI);
532     std::pair<Type, std::string> emitDagOp(DagInit *DI);
533     std::pair<Type, std::string> emitDag(DagInit *DI);
534   };
535 };
536 
537 //===----------------------------------------------------------------------===//
538 // NeonEmitter
539 //===----------------------------------------------------------------------===//
540 
541 class NeonEmitter {
542   RecordKeeper &Records;
543   DenseMap<Record *, ClassKind> ClassMap;
544   std::map<std::string, std::deque<Intrinsic>> IntrinsicMap;
545   unsigned UniqueNumber;
546 
547   void createIntrinsic(Record *R, SmallVectorImpl<Intrinsic *> &Out);
548   void genBuiltinsDef(raw_ostream &OS, SmallVectorImpl<Intrinsic *> &Defs);
549   void genOverloadTypeCheckCode(raw_ostream &OS,
550                                 SmallVectorImpl<Intrinsic *> &Defs);
551   void genIntrinsicRangeCheckCode(raw_ostream &OS,
552                                   SmallVectorImpl<Intrinsic *> &Defs);
553 
554 public:
555   /// Called by Intrinsic - this attempts to get an intrinsic that takes
556   /// the given types as arguments.
557   Intrinsic &getIntrinsic(StringRef Name, ArrayRef<Type> Types,
558                           Optional<std::string> MangledName);
559 
560   /// Called by Intrinsic - returns a globally-unique number.
561   unsigned getUniqueNumber() { return UniqueNumber++; }
562 
563   NeonEmitter(RecordKeeper &R) : Records(R), UniqueNumber(0) {
564     Record *SI = R.getClass("SInst");
565     Record *II = R.getClass("IInst");
566     Record *WI = R.getClass("WInst");
567     Record *SOpI = R.getClass("SOpInst");
568     Record *IOpI = R.getClass("IOpInst");
569     Record *WOpI = R.getClass("WOpInst");
570     Record *LOpI = R.getClass("LOpInst");
571     Record *NoTestOpI = R.getClass("NoTestOpInst");
572 
573     ClassMap[SI] = ClassS;
574     ClassMap[II] = ClassI;
575     ClassMap[WI] = ClassW;
576     ClassMap[SOpI] = ClassS;
577     ClassMap[IOpI] = ClassI;
578     ClassMap[WOpI] = ClassW;
579     ClassMap[LOpI] = ClassL;
580     ClassMap[NoTestOpI] = ClassNoTest;
581   }
582 
583   // Emit arm_neon.h.inc
584   void run(raw_ostream &o);
585 
586   // Emit arm_fp16.h.inc
587   void runFP16(raw_ostream &o);
588 
589   // Emit arm_bf16.h.inc
590   void runBF16(raw_ostream &o);
591 
592   // Emit all the __builtin prototypes used in arm_neon.h, arm_fp16.h and
593   // arm_bf16.h
594   void runHeader(raw_ostream &o);
595 };
596 
597 } // end anonymous namespace
598 
599 //===----------------------------------------------------------------------===//
600 // Type implementation
601 //===----------------------------------------------------------------------===//
602 
603 std::string Type::str() const {
604   if (isVoid())
605     return "void";
606   std::string S;
607 
608   if (isInteger() && !isSigned())
609     S += "u";
610 
611   if (isPoly())
612     S += "poly";
613   else if (isFloating())
614     S += "float";
615   else if (isBFloat16())
616     S += "bfloat";
617   else
618     S += "int";
619 
620   S += utostr(ElementBitwidth);
621   if (isVector())
622     S += "x" + utostr(getNumElements());
623   if (NumVectors > 1)
624     S += "x" + utostr(NumVectors);
625   S += "_t";
626 
627   if (Constant)
628     S += " const";
629   if (Pointer)
630     S += " *";
631 
632   return S;
633 }
634 
635 std::string Type::builtin_str() const {
636   std::string S;
637   if (isVoid())
638     return "v";
639 
640   if (isPointer()) {
641     // All pointers are void pointers.
642     S = "v";
643     if (isConstPointer())
644       S += "C";
645     S += "*";
646     return S;
647   } else if (isInteger())
648     switch (ElementBitwidth) {
649     case 8: S += "c"; break;
650     case 16: S += "s"; break;
651     case 32: S += "i"; break;
652     case 64: S += "Wi"; break;
653     case 128: S += "LLLi"; break;
654     default: llvm_unreachable("Unhandled case!");
655     }
656   else if (isBFloat16()) {
657     assert(ElementBitwidth == 16 && "BFloat16 can only be 16 bits");
658     S += "y";
659   } else
660     switch (ElementBitwidth) {
661     case 16: S += "h"; break;
662     case 32: S += "f"; break;
663     case 64: S += "d"; break;
664     default: llvm_unreachable("Unhandled case!");
665     }
666 
667   // FIXME: NECESSARY???????????????????????????????????????????????????????????????????????
668   if (isChar() && !isPointer() && isSigned())
669     // Make chars explicitly signed.
670     S = "S" + S;
671   else if (isInteger() && !isSigned())
672     S = "U" + S;
673 
674   // Constant indices are "int", but have the "constant expression" modifier.
675   if (isImmediate()) {
676     assert(isInteger() && isSigned());
677     S = "I" + S;
678   }
679 
680   if (isScalar())
681     return S;
682 
683   std::string Ret;
684   for (unsigned I = 0; I < NumVectors; ++I)
685     Ret += "V" + utostr(getNumElements()) + S;
686 
687   return Ret;
688 }
689 
690 unsigned Type::getNeonEnum() const {
691   unsigned Addend;
692   switch (ElementBitwidth) {
693   case 8: Addend = 0; break;
694   case 16: Addend = 1; break;
695   case 32: Addend = 2; break;
696   case 64: Addend = 3; break;
697   case 128: Addend = 4; break;
698   default: llvm_unreachable("Unhandled element bitwidth!");
699   }
700 
701   unsigned Base = (unsigned)NeonTypeFlags::Int8 + Addend;
702   if (isPoly()) {
703     // Adjustment needed because Poly32 doesn't exist.
704     if (Addend >= 2)
705       --Addend;
706     Base = (unsigned)NeonTypeFlags::Poly8 + Addend;
707   }
708   if (isFloating()) {
709     assert(Addend != 0 && "Float8 doesn't exist!");
710     Base = (unsigned)NeonTypeFlags::Float16 + (Addend - 1);
711   }
712 
713   if (isBFloat16()) {
714     assert(Addend == 1 && "BFloat16 is only 16 bit");
715     Base = (unsigned)NeonTypeFlags::BFloat16;
716   }
717 
718   if (Bitwidth == 128)
719     Base |= (unsigned)NeonTypeFlags::QuadFlag;
720   if (isInteger() && !isSigned())
721     Base |= (unsigned)NeonTypeFlags::UnsignedFlag;
722 
723   return Base;
724 }
725 
726 Type Type::fromTypedefName(StringRef Name) {
727   Type T;
728   T.Kind = SInt;
729 
730   if (Name.front() == 'u') {
731     T.Kind = UInt;
732     Name = Name.drop_front();
733   }
734 
735   if (Name.startswith("float")) {
736     T.Kind = Float;
737     Name = Name.drop_front(5);
738   } else if (Name.startswith("poly")) {
739     T.Kind = Poly;
740     Name = Name.drop_front(4);
741   } else if (Name.startswith("bfloat")) {
742     T.Kind = BFloat16;
743     Name = Name.drop_front(6);
744   } else {
745     assert(Name.startswith("int"));
746     Name = Name.drop_front(3);
747   }
748 
749   unsigned I = 0;
750   for (I = 0; I < Name.size(); ++I) {
751     if (!isdigit(Name[I]))
752       break;
753   }
754   Name.substr(0, I).getAsInteger(10, T.ElementBitwidth);
755   Name = Name.drop_front(I);
756 
757   T.Bitwidth = T.ElementBitwidth;
758   T.NumVectors = 1;
759 
760   if (Name.front() == 'x') {
761     Name = Name.drop_front();
762     unsigned I = 0;
763     for (I = 0; I < Name.size(); ++I) {
764       if (!isdigit(Name[I]))
765         break;
766     }
767     unsigned NumLanes;
768     Name.substr(0, I).getAsInteger(10, NumLanes);
769     Name = Name.drop_front(I);
770     T.Bitwidth = T.ElementBitwidth * NumLanes;
771   } else {
772     // Was scalar.
773     T.NumVectors = 0;
774   }
775   if (Name.front() == 'x') {
776     Name = Name.drop_front();
777     unsigned I = 0;
778     for (I = 0; I < Name.size(); ++I) {
779       if (!isdigit(Name[I]))
780         break;
781     }
782     Name.substr(0, I).getAsInteger(10, T.NumVectors);
783     Name = Name.drop_front(I);
784   }
785 
786   assert(Name.startswith("_t") && "Malformed typedef!");
787   return T;
788 }
789 
790 void Type::applyTypespec(bool &Quad) {
791   std::string S = TS;
792   ScalarForMangling = false;
793   Kind = SInt;
794   ElementBitwidth = ~0U;
795   NumVectors = 1;
796 
797   for (char I : S) {
798     switch (I) {
799     case 'S':
800       ScalarForMangling = true;
801       break;
802     case 'H':
803       NoManglingQ = true;
804       Quad = true;
805       break;
806     case 'Q':
807       Quad = true;
808       break;
809     case 'P':
810       Kind = Poly;
811       break;
812     case 'U':
813       Kind = UInt;
814       break;
815     case 'c':
816       ElementBitwidth = 8;
817       break;
818     case 'h':
819       Kind = Float;
820       LLVM_FALLTHROUGH;
821     case 's':
822       ElementBitwidth = 16;
823       break;
824     case 'f':
825       Kind = Float;
826       LLVM_FALLTHROUGH;
827     case 'i':
828       ElementBitwidth = 32;
829       break;
830     case 'd':
831       Kind = Float;
832       LLVM_FALLTHROUGH;
833     case 'l':
834       ElementBitwidth = 64;
835       break;
836     case 'k':
837       ElementBitwidth = 128;
838       // Poly doesn't have a 128x1 type.
839       if (isPoly())
840         NumVectors = 0;
841       break;
842     case 'b':
843       Kind = BFloat16;
844       ElementBitwidth = 16;
845       break;
846     default:
847       llvm_unreachable("Unhandled type code!");
848     }
849   }
850   assert(ElementBitwidth != ~0U && "Bad element bitwidth!");
851 
852   Bitwidth = Quad ? 128 : 64;
853 }
854 
855 void Type::applyModifiers(StringRef Mods) {
856   bool AppliedQuad = false;
857   applyTypespec(AppliedQuad);
858 
859   for (char Mod : Mods) {
860     switch (Mod) {
861     case '.':
862       break;
863     case 'v':
864       Kind = Void;
865       break;
866     case 'S':
867       Kind = SInt;
868       break;
869     case 'U':
870       Kind = UInt;
871       break;
872     case 'B':
873       Kind = BFloat16;
874       ElementBitwidth = 16;
875       break;
876     case 'F':
877       Kind = Float;
878       break;
879     case 'P':
880       Kind = Poly;
881       break;
882     case '>':
883       assert(ElementBitwidth < 128);
884       ElementBitwidth *= 2;
885       break;
886     case '<':
887       assert(ElementBitwidth > 8);
888       ElementBitwidth /= 2;
889       break;
890     case '1':
891       NumVectors = 0;
892       break;
893     case '2':
894       NumVectors = 2;
895       break;
896     case '3':
897       NumVectors = 3;
898       break;
899     case '4':
900       NumVectors = 4;
901       break;
902     case '*':
903       Pointer = true;
904       break;
905     case 'c':
906       Constant = true;
907       break;
908     case 'Q':
909       Bitwidth = 128;
910       break;
911     case 'q':
912       Bitwidth = 64;
913       break;
914     case 'I':
915       Kind = SInt;
916       ElementBitwidth = Bitwidth = 32;
917       NumVectors = 0;
918       Immediate = true;
919       break;
920     case 'p':
921       if (isPoly())
922         Kind = UInt;
923       break;
924     case '!':
925       // Key type, handled elsewhere.
926       break;
927     default:
928       llvm_unreachable("Unhandled character!");
929     }
930   }
931 }
932 
933 //===----------------------------------------------------------------------===//
934 // Intrinsic implementation
935 //===----------------------------------------------------------------------===//
936 
937 StringRef Intrinsic::getNextModifiers(StringRef Proto, unsigned &Pos) const {
938   if (Proto.size() == Pos)
939     return StringRef();
940   else if (Proto[Pos] != '(')
941     return Proto.substr(Pos++, 1);
942 
943   size_t Start = Pos + 1;
944   size_t End = Proto.find(')', Start);
945   assert_with_loc(End != StringRef::npos, "unmatched modifier group paren");
946   Pos = End + 1;
947   return Proto.slice(Start, End);
948 }
949 
950 std::string Intrinsic::getInstTypeCode(Type T, ClassKind CK) const {
951   char typeCode = '\0';
952   bool printNumber = true;
953 
954   if (CK == ClassB)
955     return "";
956 
957   if (T.isBFloat16())
958     return "bf16";
959 
960   if (T.isPoly())
961     typeCode = 'p';
962   else if (T.isInteger())
963     typeCode = T.isSigned() ? 's' : 'u';
964   else
965     typeCode = 'f';
966 
967   if (CK == ClassI) {
968     switch (typeCode) {
969     default:
970       break;
971     case 's':
972     case 'u':
973     case 'p':
974       typeCode = 'i';
975       break;
976     }
977   }
978   if (CK == ClassB) {
979     typeCode = '\0';
980   }
981 
982   std::string S;
983   if (typeCode != '\0')
984     S.push_back(typeCode);
985   if (printNumber)
986     S += utostr(T.getElementSizeInBits());
987 
988   return S;
989 }
990 
991 std::string Intrinsic::getBuiltinTypeStr() {
992   ClassKind LocalCK = getClassKind(true);
993   std::string S;
994 
995   Type RetT = getReturnType();
996   if ((LocalCK == ClassI || LocalCK == ClassW) && RetT.isScalar() &&
997       !RetT.isFloating() && !RetT.isBFloat16())
998     RetT.makeInteger(RetT.getElementSizeInBits(), false);
999 
1000   // Since the return value must be one type, return a vector type of the
1001   // appropriate width which we will bitcast.  An exception is made for
1002   // returning structs of 2, 3, or 4 vectors which are returned in a sret-like
1003   // fashion, storing them to a pointer arg.
1004   if (RetT.getNumVectors() > 1) {
1005     S += "vv*"; // void result with void* first argument
1006   } else {
1007     if (RetT.isPoly())
1008       RetT.makeInteger(RetT.getElementSizeInBits(), false);
1009     if (!RetT.isScalar() && RetT.isInteger() && !RetT.isSigned())
1010       RetT.makeSigned();
1011 
1012     if (LocalCK == ClassB && RetT.isValue() && !RetT.isScalar())
1013       // Cast to vector of 8-bit elements.
1014       RetT.makeInteger(8, true);
1015 
1016     S += RetT.builtin_str();
1017   }
1018 
1019   for (unsigned I = 0; I < getNumParams(); ++I) {
1020     Type T = getParamType(I);
1021     if (T.isPoly())
1022       T.makeInteger(T.getElementSizeInBits(), false);
1023 
1024     if (LocalCK == ClassB && !T.isScalar())
1025       T.makeInteger(8, true);
1026     // Halves always get converted to 8-bit elements.
1027     if (T.isHalf() && T.isVector() && !T.isScalarForMangling())
1028       T.makeInteger(8, true);
1029 
1030     if (LocalCK == ClassI && T.isInteger())
1031       T.makeSigned();
1032 
1033     if (hasImmediate() && getImmediateIdx() == I)
1034       T.makeImmediate(32);
1035 
1036     S += T.builtin_str();
1037   }
1038 
1039   // Extra constant integer to hold type class enum for this function, e.g. s8
1040   if (LocalCK == ClassB)
1041     S += "i";
1042 
1043   return S;
1044 }
1045 
1046 std::string Intrinsic::getMangledName(bool ForceClassS) const {
1047   // Check if the prototype has a scalar operand with the type of the vector
1048   // elements.  If not, bitcasting the args will take care of arg checking.
1049   // The actual signedness etc. will be taken care of with special enums.
1050   ClassKind LocalCK = CK;
1051   if (!protoHasScalar())
1052     LocalCK = ClassB;
1053 
1054   return mangleName(Name, ForceClassS ? ClassS : LocalCK);
1055 }
1056 
1057 std::string Intrinsic::mangleName(std::string Name, ClassKind LocalCK) const {
1058   std::string typeCode = getInstTypeCode(BaseType, LocalCK);
1059   std::string S = Name;
1060 
1061   if (Name == "vcvt_f16_f32" || Name == "vcvt_f32_f16" ||
1062       Name == "vcvt_f32_f64" || Name == "vcvt_f64_f32" ||
1063       Name == "vcvt_f32_bf16")
1064     return Name;
1065 
1066   if (!typeCode.empty()) {
1067     // If the name ends with _xN (N = 2,3,4), insert the typeCode before _xN.
1068     if (Name.size() >= 3 && isdigit(Name.back()) &&
1069         Name[Name.length() - 2] == 'x' && Name[Name.length() - 3] == '_')
1070       S.insert(S.length() - 3, "_" + typeCode);
1071     else
1072       S += "_" + typeCode;
1073   }
1074 
1075   if (BaseType != InBaseType) {
1076     // A reinterpret - out the input base type at the end.
1077     S += "_" + getInstTypeCode(InBaseType, LocalCK);
1078   }
1079 
1080   if (LocalCK == ClassB)
1081     S += "_v";
1082 
1083   // Insert a 'q' before the first '_' character so that it ends up before
1084   // _lane or _n on vector-scalar operations.
1085   if (BaseType.getSizeInBits() == 128 && !BaseType.noManglingQ()) {
1086     size_t Pos = S.find('_');
1087     S.insert(Pos, "q");
1088   }
1089 
1090   char Suffix = '\0';
1091   if (BaseType.isScalarForMangling()) {
1092     switch (BaseType.getElementSizeInBits()) {
1093     case 8: Suffix = 'b'; break;
1094     case 16: Suffix = 'h'; break;
1095     case 32: Suffix = 's'; break;
1096     case 64: Suffix = 'd'; break;
1097     default: llvm_unreachable("Bad suffix!");
1098     }
1099   }
1100   if (Suffix != '\0') {
1101     size_t Pos = S.find('_');
1102     S.insert(Pos, &Suffix, 1);
1103   }
1104 
1105   return S;
1106 }
1107 
1108 std::string Intrinsic::replaceParamsIn(std::string S) {
1109   while (S.find('$') != std::string::npos) {
1110     size_t Pos = S.find('$');
1111     size_t End = Pos + 1;
1112     while (isalpha(S[End]))
1113       ++End;
1114 
1115     std::string VarName = S.substr(Pos + 1, End - Pos - 1);
1116     assert_with_loc(Variables.find(VarName) != Variables.end(),
1117                     "Variable not defined!");
1118     S.replace(Pos, End - Pos, Variables.find(VarName)->second.getName());
1119   }
1120 
1121   return S;
1122 }
1123 
1124 void Intrinsic::initVariables() {
1125   Variables.clear();
1126 
1127   // Modify the TypeSpec per-argument to get a concrete Type, and create
1128   // known variables for each.
1129   for (unsigned I = 1; I < Types.size(); ++I) {
1130     char NameC = '0' + (I - 1);
1131     std::string Name = "p";
1132     Name.push_back(NameC);
1133 
1134     Variables[Name] = Variable(Types[I], Name + VariablePostfix);
1135   }
1136   RetVar = Variable(Types[0], "ret" + VariablePostfix);
1137 }
1138 
1139 void Intrinsic::emitPrototype(StringRef NamePrefix) {
1140   if (UseMacro)
1141     OS << "#define ";
1142   else
1143     OS << "__ai " << Types[0].str() << " ";
1144 
1145   OS << NamePrefix.str() << mangleName(Name, ClassS) << "(";
1146 
1147   for (unsigned I = 0; I < getNumParams(); ++I) {
1148     if (I != 0)
1149       OS << ", ";
1150 
1151     char NameC = '0' + I;
1152     std::string Name = "p";
1153     Name.push_back(NameC);
1154     assert(Variables.find(Name) != Variables.end());
1155     Variable &V = Variables[Name];
1156 
1157     if (!UseMacro)
1158       OS << V.getType().str() << " ";
1159     OS << V.getName();
1160   }
1161 
1162   OS << ")";
1163 }
1164 
1165 void Intrinsic::emitOpeningBrace() {
1166   if (UseMacro)
1167     OS << " __extension__ ({";
1168   else
1169     OS << " {";
1170   emitNewLine();
1171 }
1172 
1173 void Intrinsic::emitClosingBrace() {
1174   if (UseMacro)
1175     OS << "})";
1176   else
1177     OS << "}";
1178 }
1179 
1180 void Intrinsic::emitNewLine() {
1181   if (UseMacro)
1182     OS << " \\\n";
1183   else
1184     OS << "\n";
1185 }
1186 
1187 void Intrinsic::emitReverseVariable(Variable &Dest, Variable &Src) {
1188   if (Dest.getType().getNumVectors() > 1) {
1189     emitNewLine();
1190 
1191     for (unsigned K = 0; K < Dest.getType().getNumVectors(); ++K) {
1192       OS << "  " << Dest.getName() << ".val[" << K << "] = "
1193          << "__builtin_shufflevector("
1194          << Src.getName() << ".val[" << K << "], "
1195          << Src.getName() << ".val[" << K << "]";
1196       for (int J = Dest.getType().getNumElements() - 1; J >= 0; --J)
1197         OS << ", " << J;
1198       OS << ");";
1199       emitNewLine();
1200     }
1201   } else {
1202     OS << "  " << Dest.getName()
1203        << " = __builtin_shufflevector(" << Src.getName() << ", " << Src.getName();
1204     for (int J = Dest.getType().getNumElements() - 1; J >= 0; --J)
1205       OS << ", " << J;
1206     OS << ");";
1207     emitNewLine();
1208   }
1209 }
1210 
1211 void Intrinsic::emitArgumentReversal() {
1212   if (isBigEndianSafe())
1213     return;
1214 
1215   // Reverse all vector arguments.
1216   for (unsigned I = 0; I < getNumParams(); ++I) {
1217     std::string Name = "p" + utostr(I);
1218     std::string NewName = "rev" + utostr(I);
1219 
1220     Variable &V = Variables[Name];
1221     Variable NewV(V.getType(), NewName + VariablePostfix);
1222 
1223     if (!NewV.getType().isVector() || NewV.getType().getNumElements() == 1)
1224       continue;
1225 
1226     OS << "  " << NewV.getType().str() << " " << NewV.getName() << ";";
1227     emitReverseVariable(NewV, V);
1228     V = NewV;
1229   }
1230 }
1231 
1232 void Intrinsic::emitReturnReversal() {
1233   if (isBigEndianSafe())
1234     return;
1235   if (!getReturnType().isVector() || getReturnType().isVoid() ||
1236       getReturnType().getNumElements() == 1)
1237     return;
1238   emitReverseVariable(RetVar, RetVar);
1239 }
1240 
1241 void Intrinsic::emitShadowedArgs() {
1242   // Macro arguments are not type-checked like inline function arguments,
1243   // so assign them to local temporaries to get the right type checking.
1244   if (!UseMacro)
1245     return;
1246 
1247   for (unsigned I = 0; I < getNumParams(); ++I) {
1248     // Do not create a temporary for an immediate argument.
1249     // That would defeat the whole point of using a macro!
1250     if (getParamType(I).isImmediate())
1251       continue;
1252     // Do not create a temporary for pointer arguments. The input
1253     // pointer may have an alignment hint.
1254     if (getParamType(I).isPointer())
1255       continue;
1256 
1257     std::string Name = "p" + utostr(I);
1258 
1259     assert(Variables.find(Name) != Variables.end());
1260     Variable &V = Variables[Name];
1261 
1262     std::string NewName = "s" + utostr(I);
1263     Variable V2(V.getType(), NewName + VariablePostfix);
1264 
1265     OS << "  " << V2.getType().str() << " " << V2.getName() << " = "
1266        << V.getName() << ";";
1267     emitNewLine();
1268 
1269     V = V2;
1270   }
1271 }
1272 
1273 bool Intrinsic::protoHasScalar() const {
1274   return std::any_of(Types.begin(), Types.end(), [](const Type &T) {
1275     return T.isScalar() && !T.isImmediate();
1276   });
1277 }
1278 
1279 void Intrinsic::emitBodyAsBuiltinCall() {
1280   std::string S;
1281 
1282   // If this builtin returns a struct 2, 3, or 4 vectors, pass it as an implicit
1283   // sret-like argument.
1284   bool SRet = getReturnType().getNumVectors() >= 2;
1285 
1286   StringRef N = Name;
1287   ClassKind LocalCK = CK;
1288   if (!protoHasScalar())
1289     LocalCK = ClassB;
1290 
1291   if (!getReturnType().isVoid() && !SRet)
1292     S += "(" + RetVar.getType().str() + ") ";
1293 
1294   S += "__builtin_neon_" + mangleName(std::string(N), LocalCK) + "(";
1295 
1296   if (SRet)
1297     S += "&" + RetVar.getName() + ", ";
1298 
1299   for (unsigned I = 0; I < getNumParams(); ++I) {
1300     Variable &V = Variables["p" + utostr(I)];
1301     Type T = V.getType();
1302 
1303     // Handle multiple-vector values specially, emitting each subvector as an
1304     // argument to the builtin.
1305     if (T.getNumVectors() > 1) {
1306       // Check if an explicit cast is needed.
1307       std::string Cast;
1308       if (LocalCK == ClassB) {
1309         Type T2 = T;
1310         T2.makeOneVector();
1311         T2.makeInteger(8, /*Signed=*/true);
1312         Cast = "(" + T2.str() + ")";
1313       }
1314 
1315       for (unsigned J = 0; J < T.getNumVectors(); ++J)
1316         S += Cast + V.getName() + ".val[" + utostr(J) + "], ";
1317       continue;
1318     }
1319 
1320     std::string Arg = V.getName();
1321     Type CastToType = T;
1322 
1323     // Check if an explicit cast is needed.
1324     if (CastToType.isVector() &&
1325         (LocalCK == ClassB || (T.isHalf() && !T.isScalarForMangling()))) {
1326       CastToType.makeInteger(8, true);
1327       Arg = "(" + CastToType.str() + ")" + Arg;
1328     } else if (CastToType.isVector() && LocalCK == ClassI) {
1329       if (CastToType.isInteger())
1330         CastToType.makeSigned();
1331       Arg = "(" + CastToType.str() + ")" + Arg;
1332     }
1333 
1334     S += Arg + ", ";
1335   }
1336 
1337   // Extra constant integer to hold type class enum for this function, e.g. s8
1338   if (getClassKind(true) == ClassB) {
1339     S += utostr(getPolymorphicKeyType().getNeonEnum());
1340   } else {
1341     // Remove extraneous ", ".
1342     S.pop_back();
1343     S.pop_back();
1344   }
1345   S += ");";
1346 
1347   std::string RetExpr;
1348   if (!SRet && !RetVar.getType().isVoid())
1349     RetExpr = RetVar.getName() + " = ";
1350 
1351   OS << "  " << RetExpr << S;
1352   emitNewLine();
1353 }
1354 
1355 void Intrinsic::emitBody(StringRef CallPrefix) {
1356   std::vector<std::string> Lines;
1357 
1358   assert(RetVar.getType() == Types[0]);
1359   // Create a return variable, if we're not void.
1360   if (!RetVar.getType().isVoid()) {
1361     OS << "  " << RetVar.getType().str() << " " << RetVar.getName() << ";";
1362     emitNewLine();
1363   }
1364 
1365   if (!Body || Body->getValues().empty()) {
1366     // Nothing specific to output - must output a builtin.
1367     emitBodyAsBuiltinCall();
1368     return;
1369   }
1370 
1371   // We have a list of "things to output". The last should be returned.
1372   for (auto *I : Body->getValues()) {
1373     if (StringInit *SI = dyn_cast<StringInit>(I)) {
1374       Lines.push_back(replaceParamsIn(SI->getAsString()));
1375     } else if (DagInit *DI = dyn_cast<DagInit>(I)) {
1376       DagEmitter DE(*this, CallPrefix);
1377       Lines.push_back(DE.emitDag(DI).second + ";");
1378     }
1379   }
1380 
1381   assert(!Lines.empty() && "Empty def?");
1382   if (!RetVar.getType().isVoid())
1383     Lines.back().insert(0, RetVar.getName() + " = ");
1384 
1385   for (auto &L : Lines) {
1386     OS << "  " << L;
1387     emitNewLine();
1388   }
1389 }
1390 
1391 void Intrinsic::emitReturn() {
1392   if (RetVar.getType().isVoid())
1393     return;
1394   if (UseMacro)
1395     OS << "  " << RetVar.getName() << ";";
1396   else
1397     OS << "  return " << RetVar.getName() << ";";
1398   emitNewLine();
1399 }
1400 
1401 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDag(DagInit *DI) {
1402   // At this point we should only be seeing a def.
1403   DefInit *DefI = cast<DefInit>(DI->getOperator());
1404   std::string Op = DefI->getAsString();
1405 
1406   if (Op == "cast" || Op == "bitcast")
1407     return emitDagCast(DI, Op == "bitcast");
1408   if (Op == "shuffle")
1409     return emitDagShuffle(DI);
1410   if (Op == "dup")
1411     return emitDagDup(DI);
1412   if (Op == "dup_typed")
1413     return emitDagDupTyped(DI);
1414   if (Op == "splat")
1415     return emitDagSplat(DI);
1416   if (Op == "save_temp")
1417     return emitDagSaveTemp(DI);
1418   if (Op == "op")
1419     return emitDagOp(DI);
1420   if (Op == "call" || Op == "call_mangled")
1421     return emitDagCall(DI, Op == "call_mangled");
1422   if (Op == "name_replace")
1423     return emitDagNameReplace(DI);
1424   if (Op == "literal")
1425     return emitDagLiteral(DI);
1426   assert_with_loc(false, "Unknown operation!");
1427   return std::make_pair(Type::getVoid(), "");
1428 }
1429 
1430 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagOp(DagInit *DI) {
1431   std::string Op = cast<StringInit>(DI->getArg(0))->getAsUnquotedString();
1432   if (DI->getNumArgs() == 2) {
1433     // Unary op.
1434     std::pair<Type, std::string> R =
1435         emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1)));
1436     return std::make_pair(R.first, Op + R.second);
1437   } else {
1438     assert(DI->getNumArgs() == 3 && "Can only handle unary and binary ops!");
1439     std::pair<Type, std::string> R1 =
1440         emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1)));
1441     std::pair<Type, std::string> R2 =
1442         emitDagArg(DI->getArg(2), std::string(DI->getArgNameStr(2)));
1443     assert_with_loc(R1.first == R2.first, "Argument type mismatch!");
1444     return std::make_pair(R1.first, R1.second + " " + Op + " " + R2.second);
1445   }
1446 }
1447 
1448 std::pair<Type, std::string>
1449 Intrinsic::DagEmitter::emitDagCall(DagInit *DI, bool MatchMangledName) {
1450   std::vector<Type> Types;
1451   std::vector<std::string> Values;
1452   for (unsigned I = 0; I < DI->getNumArgs() - 1; ++I) {
1453     std::pair<Type, std::string> R =
1454         emitDagArg(DI->getArg(I + 1), std::string(DI->getArgNameStr(I + 1)));
1455     Types.push_back(R.first);
1456     Values.push_back(R.second);
1457   }
1458 
1459   // Look up the called intrinsic.
1460   std::string N;
1461   if (StringInit *SI = dyn_cast<StringInit>(DI->getArg(0)))
1462     N = SI->getAsUnquotedString();
1463   else
1464     N = emitDagArg(DI->getArg(0), "").second;
1465   Optional<std::string> MangledName;
1466   if (MatchMangledName) {
1467     if (Intr.getRecord()->getValueAsBit("isLaneQ"))
1468       N += "q";
1469     MangledName = Intr.mangleName(N, ClassS);
1470   }
1471   Intrinsic &Callee = Intr.Emitter.getIntrinsic(N, Types, MangledName);
1472 
1473   // Make sure the callee is known as an early def.
1474   Callee.setNeededEarly();
1475   Intr.Dependencies.insert(&Callee);
1476 
1477   // Now create the call itself.
1478   std::string S = "";
1479   if (!Callee.isBigEndianSafe())
1480     S += CallPrefix.str();
1481   S += Callee.getMangledName(true) + "(";
1482   for (unsigned I = 0; I < DI->getNumArgs() - 1; ++I) {
1483     if (I != 0)
1484       S += ", ";
1485     S += Values[I];
1486   }
1487   S += ")";
1488 
1489   return std::make_pair(Callee.getReturnType(), S);
1490 }
1491 
1492 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagCast(DagInit *DI,
1493                                                                 bool IsBitCast){
1494   // (cast MOD* VAL) -> cast VAL to type given by MOD.
1495   std::pair<Type, std::string> R =
1496       emitDagArg(DI->getArg(DI->getNumArgs() - 1),
1497                  std::string(DI->getArgNameStr(DI->getNumArgs() - 1)));
1498   Type castToType = R.first;
1499   for (unsigned ArgIdx = 0; ArgIdx < DI->getNumArgs() - 1; ++ArgIdx) {
1500 
1501     // MOD can take several forms:
1502     //   1. $X - take the type of parameter / variable X.
1503     //   2. The value "R" - take the type of the return type.
1504     //   3. a type string
1505     //   4. The value "U" or "S" to switch the signedness.
1506     //   5. The value "H" or "D" to half or double the bitwidth.
1507     //   6. The value "8" to convert to 8-bit (signed) integer lanes.
1508     if (!DI->getArgNameStr(ArgIdx).empty()) {
1509       assert_with_loc(Intr.Variables.find(std::string(
1510                           DI->getArgNameStr(ArgIdx))) != Intr.Variables.end(),
1511                       "Variable not found");
1512       castToType =
1513           Intr.Variables[std::string(DI->getArgNameStr(ArgIdx))].getType();
1514     } else {
1515       StringInit *SI = dyn_cast<StringInit>(DI->getArg(ArgIdx));
1516       assert_with_loc(SI, "Expected string type or $Name for cast type");
1517 
1518       if (SI->getAsUnquotedString() == "R") {
1519         castToType = Intr.getReturnType();
1520       } else if (SI->getAsUnquotedString() == "U") {
1521         castToType.makeUnsigned();
1522       } else if (SI->getAsUnquotedString() == "S") {
1523         castToType.makeSigned();
1524       } else if (SI->getAsUnquotedString() == "H") {
1525         castToType.halveLanes();
1526       } else if (SI->getAsUnquotedString() == "D") {
1527         castToType.doubleLanes();
1528       } else if (SI->getAsUnquotedString() == "8") {
1529         castToType.makeInteger(8, true);
1530       } else if (SI->getAsUnquotedString() == "32") {
1531         castToType.make32BitElement();
1532       } else {
1533         castToType = Type::fromTypedefName(SI->getAsUnquotedString());
1534         assert_with_loc(!castToType.isVoid(), "Unknown typedef");
1535       }
1536     }
1537   }
1538 
1539   std::string S;
1540   if (IsBitCast) {
1541     // Emit a reinterpret cast. The second operand must be an lvalue, so create
1542     // a temporary.
1543     std::string N = "reint";
1544     unsigned I = 0;
1545     while (Intr.Variables.find(N) != Intr.Variables.end())
1546       N = "reint" + utostr(++I);
1547     Intr.Variables[N] = Variable(R.first, N + Intr.VariablePostfix);
1548 
1549     Intr.OS << R.first.str() << " " << Intr.Variables[N].getName() << " = "
1550             << R.second << ";";
1551     Intr.emitNewLine();
1552 
1553     S = "*(" + castToType.str() + " *) &" + Intr.Variables[N].getName() + "";
1554   } else {
1555     // Emit a normal (static) cast.
1556     S = "(" + castToType.str() + ")(" + R.second + ")";
1557   }
1558 
1559   return std::make_pair(castToType, S);
1560 }
1561 
1562 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagShuffle(DagInit *DI){
1563   // See the documentation in arm_neon.td for a description of these operators.
1564   class LowHalf : public SetTheory::Operator {
1565   public:
1566     void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
1567                ArrayRef<SMLoc> Loc) override {
1568       SetTheory::RecSet Elts2;
1569       ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts2, Loc);
1570       Elts.insert(Elts2.begin(), Elts2.begin() + (Elts2.size() / 2));
1571     }
1572   };
1573 
1574   class HighHalf : public SetTheory::Operator {
1575   public:
1576     void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
1577                ArrayRef<SMLoc> Loc) override {
1578       SetTheory::RecSet Elts2;
1579       ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts2, Loc);
1580       Elts.insert(Elts2.begin() + (Elts2.size() / 2), Elts2.end());
1581     }
1582   };
1583 
1584   class Rev : public SetTheory::Operator {
1585     unsigned ElementSize;
1586 
1587   public:
1588     Rev(unsigned ElementSize) : ElementSize(ElementSize) {}
1589 
1590     void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
1591                ArrayRef<SMLoc> Loc) override {
1592       SetTheory::RecSet Elts2;
1593       ST.evaluate(Expr->arg_begin() + 1, Expr->arg_end(), Elts2, Loc);
1594 
1595       int64_t VectorSize = cast<IntInit>(Expr->getArg(0))->getValue();
1596       VectorSize /= ElementSize;
1597 
1598       std::vector<Record *> Revved;
1599       for (unsigned VI = 0; VI < Elts2.size(); VI += VectorSize) {
1600         for (int LI = VectorSize - 1; LI >= 0; --LI) {
1601           Revved.push_back(Elts2[VI + LI]);
1602         }
1603       }
1604 
1605       Elts.insert(Revved.begin(), Revved.end());
1606     }
1607   };
1608 
1609   class MaskExpander : public SetTheory::Expander {
1610     unsigned N;
1611 
1612   public:
1613     MaskExpander(unsigned N) : N(N) {}
1614 
1615     void expand(SetTheory &ST, Record *R, SetTheory::RecSet &Elts) override {
1616       unsigned Addend = 0;
1617       if (R->getName() == "mask0")
1618         Addend = 0;
1619       else if (R->getName() == "mask1")
1620         Addend = N;
1621       else
1622         return;
1623       for (unsigned I = 0; I < N; ++I)
1624         Elts.insert(R->getRecords().getDef("sv" + utostr(I + Addend)));
1625     }
1626   };
1627 
1628   // (shuffle arg1, arg2, sequence)
1629   std::pair<Type, std::string> Arg1 =
1630       emitDagArg(DI->getArg(0), std::string(DI->getArgNameStr(0)));
1631   std::pair<Type, std::string> Arg2 =
1632       emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1)));
1633   assert_with_loc(Arg1.first == Arg2.first,
1634                   "Different types in arguments to shuffle!");
1635 
1636   SetTheory ST;
1637   SetTheory::RecSet Elts;
1638   ST.addOperator("lowhalf", std::make_unique<LowHalf>());
1639   ST.addOperator("highhalf", std::make_unique<HighHalf>());
1640   ST.addOperator("rev",
1641                  std::make_unique<Rev>(Arg1.first.getElementSizeInBits()));
1642   ST.addExpander("MaskExpand",
1643                  std::make_unique<MaskExpander>(Arg1.first.getNumElements()));
1644   ST.evaluate(DI->getArg(2), Elts, None);
1645 
1646   std::string S = "__builtin_shufflevector(" + Arg1.second + ", " + Arg2.second;
1647   for (auto &E : Elts) {
1648     StringRef Name = E->getName();
1649     assert_with_loc(Name.startswith("sv"),
1650                     "Incorrect element kind in shuffle mask!");
1651     S += ", " + Name.drop_front(2).str();
1652   }
1653   S += ")";
1654 
1655   // Recalculate the return type - the shuffle may have halved or doubled it.
1656   Type T(Arg1.first);
1657   if (Elts.size() > T.getNumElements()) {
1658     assert_with_loc(
1659         Elts.size() == T.getNumElements() * 2,
1660         "Can only double or half the number of elements in a shuffle!");
1661     T.doubleLanes();
1662   } else if (Elts.size() < T.getNumElements()) {
1663     assert_with_loc(
1664         Elts.size() == T.getNumElements() / 2,
1665         "Can only double or half the number of elements in a shuffle!");
1666     T.halveLanes();
1667   }
1668 
1669   return std::make_pair(T, S);
1670 }
1671 
1672 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagDup(DagInit *DI) {
1673   assert_with_loc(DI->getNumArgs() == 1, "dup() expects one argument");
1674   std::pair<Type, std::string> A =
1675       emitDagArg(DI->getArg(0), std::string(DI->getArgNameStr(0)));
1676   assert_with_loc(A.first.isScalar(), "dup() expects a scalar argument");
1677 
1678   Type T = Intr.getBaseType();
1679   assert_with_loc(T.isVector(), "dup() used but default type is scalar!");
1680   std::string S = "(" + T.str() + ") {";
1681   for (unsigned I = 0; I < T.getNumElements(); ++I) {
1682     if (I != 0)
1683       S += ", ";
1684     S += A.second;
1685   }
1686   S += "}";
1687 
1688   return std::make_pair(T, S);
1689 }
1690 
1691 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagDupTyped(DagInit *DI) {
1692   assert_with_loc(DI->getNumArgs() == 2, "dup_typed() expects two arguments");
1693   std::pair<Type, std::string> B =
1694       emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1)));
1695   assert_with_loc(B.first.isScalar(),
1696                   "dup_typed() requires a scalar as the second argument");
1697   Type T;
1698   // If the type argument is a constant string, construct the type directly.
1699   if (StringInit *SI = dyn_cast<StringInit>(DI->getArg(0))) {
1700     T = Type::fromTypedefName(SI->getAsUnquotedString());
1701     assert_with_loc(!T.isVoid(), "Unknown typedef");
1702   } else
1703     T = emitDagArg(DI->getArg(0), std::string(DI->getArgNameStr(0))).first;
1704 
1705   assert_with_loc(T.isVector(), "dup_typed() used but target type is scalar!");
1706   std::string S = "(" + T.str() + ") {";
1707   for (unsigned I = 0; I < T.getNumElements(); ++I) {
1708     if (I != 0)
1709       S += ", ";
1710     S += B.second;
1711   }
1712   S += "}";
1713 
1714   return std::make_pair(T, S);
1715 }
1716 
1717 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagSplat(DagInit *DI) {
1718   assert_with_loc(DI->getNumArgs() == 2, "splat() expects two arguments");
1719   std::pair<Type, std::string> A =
1720       emitDagArg(DI->getArg(0), std::string(DI->getArgNameStr(0)));
1721   std::pair<Type, std::string> B =
1722       emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1)));
1723 
1724   assert_with_loc(B.first.isScalar(),
1725                   "splat() requires a scalar int as the second argument");
1726 
1727   std::string S = "__builtin_shufflevector(" + A.second + ", " + A.second;
1728   for (unsigned I = 0; I < Intr.getBaseType().getNumElements(); ++I) {
1729     S += ", " + B.second;
1730   }
1731   S += ")";
1732 
1733   return std::make_pair(Intr.getBaseType(), S);
1734 }
1735 
1736 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagSaveTemp(DagInit *DI) {
1737   assert_with_loc(DI->getNumArgs() == 2, "save_temp() expects two arguments");
1738   std::pair<Type, std::string> A =
1739       emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1)));
1740 
1741   assert_with_loc(!A.first.isVoid(),
1742                   "Argument to save_temp() must have non-void type!");
1743 
1744   std::string N = std::string(DI->getArgNameStr(0));
1745   assert_with_loc(!N.empty(),
1746                   "save_temp() expects a name as the first argument");
1747 
1748   assert_with_loc(Intr.Variables.find(N) == Intr.Variables.end(),
1749                   "Variable already defined!");
1750   Intr.Variables[N] = Variable(A.first, N + Intr.VariablePostfix);
1751 
1752   std::string S =
1753       A.first.str() + " " + Intr.Variables[N].getName() + " = " + A.second;
1754 
1755   return std::make_pair(Type::getVoid(), S);
1756 }
1757 
1758 std::pair<Type, std::string>
1759 Intrinsic::DagEmitter::emitDagNameReplace(DagInit *DI) {
1760   std::string S = Intr.Name;
1761 
1762   assert_with_loc(DI->getNumArgs() == 2, "name_replace requires 2 arguments!");
1763   std::string ToReplace = cast<StringInit>(DI->getArg(0))->getAsUnquotedString();
1764   std::string ReplaceWith = cast<StringInit>(DI->getArg(1))->getAsUnquotedString();
1765 
1766   size_t Idx = S.find(ToReplace);
1767 
1768   assert_with_loc(Idx != std::string::npos, "name should contain '" + ToReplace + "'!");
1769   S.replace(Idx, ToReplace.size(), ReplaceWith);
1770 
1771   return std::make_pair(Type::getVoid(), S);
1772 }
1773 
1774 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagLiteral(DagInit *DI){
1775   std::string Ty = cast<StringInit>(DI->getArg(0))->getAsUnquotedString();
1776   std::string Value = cast<StringInit>(DI->getArg(1))->getAsUnquotedString();
1777   return std::make_pair(Type::fromTypedefName(Ty), Value);
1778 }
1779 
1780 std::pair<Type, std::string>
1781 Intrinsic::DagEmitter::emitDagArg(Init *Arg, std::string ArgName) {
1782   if (!ArgName.empty()) {
1783     assert_with_loc(!Arg->isComplete(),
1784                     "Arguments must either be DAGs or names, not both!");
1785     assert_with_loc(Intr.Variables.find(ArgName) != Intr.Variables.end(),
1786                     "Variable not defined!");
1787     Variable &V = Intr.Variables[ArgName];
1788     return std::make_pair(V.getType(), V.getName());
1789   }
1790 
1791   assert(Arg && "Neither ArgName nor Arg?!");
1792   DagInit *DI = dyn_cast<DagInit>(Arg);
1793   assert_with_loc(DI, "Arguments must either be DAGs or names!");
1794 
1795   return emitDag(DI);
1796 }
1797 
1798 std::string Intrinsic::generate() {
1799   // Avoid duplicated code for big and little endian
1800   if (isBigEndianSafe()) {
1801     generateImpl(false, "", "");
1802     return OS.str();
1803   }
1804   // Little endian intrinsics are simple and don't require any argument
1805   // swapping.
1806   OS << "#ifdef __LITTLE_ENDIAN__\n";
1807 
1808   generateImpl(false, "", "");
1809 
1810   OS << "#else\n";
1811 
1812   // Big endian intrinsics are more complex. The user intended these
1813   // intrinsics to operate on a vector "as-if" loaded by (V)LDR,
1814   // but we load as-if (V)LD1. So we should swap all arguments and
1815   // swap the return value too.
1816   //
1817   // If we call sub-intrinsics, we should call a version that does
1818   // not re-swap the arguments!
1819   generateImpl(true, "", "__noswap_");
1820 
1821   // If we're needed early, create a non-swapping variant for
1822   // big-endian.
1823   if (NeededEarly) {
1824     generateImpl(false, "__noswap_", "__noswap_");
1825   }
1826   OS << "#endif\n\n";
1827 
1828   return OS.str();
1829 }
1830 
1831 void Intrinsic::generateImpl(bool ReverseArguments,
1832                              StringRef NamePrefix, StringRef CallPrefix) {
1833   CurrentRecord = R;
1834 
1835   // If we call a macro, our local variables may be corrupted due to
1836   // lack of proper lexical scoping. So, add a globally unique postfix
1837   // to every variable.
1838   //
1839   // indexBody() should have set up the Dependencies set by now.
1840   for (auto *I : Dependencies)
1841     if (I->UseMacro) {
1842       VariablePostfix = "_" + utostr(Emitter.getUniqueNumber());
1843       break;
1844     }
1845 
1846   initVariables();
1847 
1848   emitPrototype(NamePrefix);
1849 
1850   if (IsUnavailable) {
1851     OS << " __attribute__((unavailable));";
1852   } else {
1853     emitOpeningBrace();
1854     emitShadowedArgs();
1855     if (ReverseArguments)
1856       emitArgumentReversal();
1857     emitBody(CallPrefix);
1858     if (ReverseArguments)
1859       emitReturnReversal();
1860     emitReturn();
1861     emitClosingBrace();
1862   }
1863   OS << "\n";
1864 
1865   CurrentRecord = nullptr;
1866 }
1867 
1868 void Intrinsic::indexBody() {
1869   CurrentRecord = R;
1870 
1871   initVariables();
1872   emitBody("");
1873   OS.str("");
1874 
1875   CurrentRecord = nullptr;
1876 }
1877 
1878 //===----------------------------------------------------------------------===//
1879 // NeonEmitter implementation
1880 //===----------------------------------------------------------------------===//
1881 
1882 Intrinsic &NeonEmitter::getIntrinsic(StringRef Name, ArrayRef<Type> Types,
1883                                      Optional<std::string> MangledName) {
1884   // First, look up the name in the intrinsic map.
1885   assert_with_loc(IntrinsicMap.find(Name.str()) != IntrinsicMap.end(),
1886                   ("Intrinsic '" + Name + "' not found!").str());
1887   auto &V = IntrinsicMap.find(Name.str())->second;
1888   std::vector<Intrinsic *> GoodVec;
1889 
1890   // Create a string to print if we end up failing.
1891   std::string ErrMsg = "looking up intrinsic '" + Name.str() + "(";
1892   for (unsigned I = 0; I < Types.size(); ++I) {
1893     if (I != 0)
1894       ErrMsg += ", ";
1895     ErrMsg += Types[I].str();
1896   }
1897   ErrMsg += ")'\n";
1898   ErrMsg += "Available overloads:\n";
1899 
1900   // Now, look through each intrinsic implementation and see if the types are
1901   // compatible.
1902   for (auto &I : V) {
1903     ErrMsg += "  - " + I.getReturnType().str() + " " + I.getMangledName();
1904     ErrMsg += "(";
1905     for (unsigned A = 0; A < I.getNumParams(); ++A) {
1906       if (A != 0)
1907         ErrMsg += ", ";
1908       ErrMsg += I.getParamType(A).str();
1909     }
1910     ErrMsg += ")\n";
1911 
1912     if (MangledName && MangledName != I.getMangledName(true))
1913       continue;
1914 
1915     if (I.getNumParams() != Types.size())
1916       continue;
1917 
1918     unsigned ArgNum = 0;
1919     bool MatchingArgumentTypes =
1920         std::all_of(Types.begin(), Types.end(), [&](const auto &Type) {
1921           return Type == I.getParamType(ArgNum++);
1922         });
1923 
1924     if (MatchingArgumentTypes)
1925       GoodVec.push_back(&I);
1926   }
1927 
1928   assert_with_loc(!GoodVec.empty(),
1929                   "No compatible intrinsic found - " + ErrMsg);
1930   assert_with_loc(GoodVec.size() == 1, "Multiple overloads found - " + ErrMsg);
1931 
1932   return *GoodVec.front();
1933 }
1934 
1935 void NeonEmitter::createIntrinsic(Record *R,
1936                                   SmallVectorImpl<Intrinsic *> &Out) {
1937   std::string Name = std::string(R->getValueAsString("Name"));
1938   std::string Proto = std::string(R->getValueAsString("Prototype"));
1939   std::string Types = std::string(R->getValueAsString("Types"));
1940   Record *OperationRec = R->getValueAsDef("Operation");
1941   bool BigEndianSafe  = R->getValueAsBit("BigEndianSafe");
1942   std::string Guard = std::string(R->getValueAsString("ArchGuard"));
1943   bool IsUnavailable = OperationRec->getValueAsBit("Unavailable");
1944   std::string CartesianProductWith = std::string(R->getValueAsString("CartesianProductWith"));
1945 
1946   // Set the global current record. This allows assert_with_loc to produce
1947   // decent location information even when highly nested.
1948   CurrentRecord = R;
1949 
1950   ListInit *Body = OperationRec->getValueAsListInit("Ops");
1951 
1952   std::vector<TypeSpec> TypeSpecs = TypeSpec::fromTypeSpecs(Types);
1953 
1954   ClassKind CK = ClassNone;
1955   if (R->getSuperClasses().size() >= 2)
1956     CK = ClassMap[R->getSuperClasses()[1].first];
1957 
1958   std::vector<std::pair<TypeSpec, TypeSpec>> NewTypeSpecs;
1959   if (!CartesianProductWith.empty()) {
1960     std::vector<TypeSpec> ProductTypeSpecs = TypeSpec::fromTypeSpecs(CartesianProductWith);
1961     for (auto TS : TypeSpecs) {
1962       Type DefaultT(TS, ".");
1963       for (auto SrcTS : ProductTypeSpecs) {
1964         Type DefaultSrcT(SrcTS, ".");
1965         if (TS == SrcTS ||
1966             DefaultSrcT.getSizeInBits() != DefaultT.getSizeInBits())
1967           continue;
1968         NewTypeSpecs.push_back(std::make_pair(TS, SrcTS));
1969       }
1970     }
1971   } else {
1972     for (auto TS : TypeSpecs) {
1973       NewTypeSpecs.push_back(std::make_pair(TS, TS));
1974     }
1975   }
1976 
1977   llvm::sort(NewTypeSpecs);
1978   NewTypeSpecs.erase(std::unique(NewTypeSpecs.begin(), NewTypeSpecs.end()),
1979 		     NewTypeSpecs.end());
1980   auto &Entry = IntrinsicMap[Name];
1981 
1982   for (auto &I : NewTypeSpecs) {
1983     Entry.emplace_back(R, Name, Proto, I.first, I.second, CK, Body, *this,
1984                        Guard, IsUnavailable, BigEndianSafe);
1985     Out.push_back(&Entry.back());
1986   }
1987 
1988   CurrentRecord = nullptr;
1989 }
1990 
1991 /// genBuiltinsDef: Generate the BuiltinsARM.def and  BuiltinsAArch64.def
1992 /// declaration of builtins, checking for unique builtin declarations.
1993 void NeonEmitter::genBuiltinsDef(raw_ostream &OS,
1994                                  SmallVectorImpl<Intrinsic *> &Defs) {
1995   OS << "#ifdef GET_NEON_BUILTINS\n";
1996 
1997   // We only want to emit a builtin once, and we want to emit them in
1998   // alphabetical order, so use a std::set.
1999   std::set<std::string> Builtins;
2000 
2001   for (auto *Def : Defs) {
2002     if (Def->hasBody())
2003       continue;
2004 
2005     std::string S = "BUILTIN(__builtin_neon_" + Def->getMangledName() + ", \"";
2006 
2007     S += Def->getBuiltinTypeStr();
2008     S += "\", \"n\")";
2009 
2010     Builtins.insert(S);
2011   }
2012 
2013   for (auto &S : Builtins)
2014     OS << S << "\n";
2015   OS << "#endif\n\n";
2016 }
2017 
2018 /// Generate the ARM and AArch64 overloaded type checking code for
2019 /// SemaChecking.cpp, checking for unique builtin declarations.
2020 void NeonEmitter::genOverloadTypeCheckCode(raw_ostream &OS,
2021                                            SmallVectorImpl<Intrinsic *> &Defs) {
2022   OS << "#ifdef GET_NEON_OVERLOAD_CHECK\n";
2023 
2024   // We record each overload check line before emitting because subsequent Inst
2025   // definitions may extend the number of permitted types (i.e. augment the
2026   // Mask). Use std::map to avoid sorting the table by hash number.
2027   struct OverloadInfo {
2028     uint64_t Mask;
2029     int PtrArgNum;
2030     bool HasConstPtr;
2031     OverloadInfo() : Mask(0ULL), PtrArgNum(0), HasConstPtr(false) {}
2032   };
2033   std::map<std::string, OverloadInfo> OverloadMap;
2034 
2035   for (auto *Def : Defs) {
2036     // If the def has a body (that is, it has Operation DAGs), it won't call
2037     // __builtin_neon_* so we don't need to generate a definition for it.
2038     if (Def->hasBody())
2039       continue;
2040     // Functions which have a scalar argument cannot be overloaded, no need to
2041     // check them if we are emitting the type checking code.
2042     if (Def->protoHasScalar())
2043       continue;
2044 
2045     uint64_t Mask = 0ULL;
2046     Mask |= 1ULL << Def->getPolymorphicKeyType().getNeonEnum();
2047 
2048     // Check if the function has a pointer or const pointer argument.
2049     int PtrArgNum = -1;
2050     bool HasConstPtr = false;
2051     for (unsigned I = 0; I < Def->getNumParams(); ++I) {
2052       const auto &Type = Def->getParamType(I);
2053       if (Type.isPointer()) {
2054         PtrArgNum = I;
2055         HasConstPtr = Type.isConstPointer();
2056       }
2057     }
2058 
2059     // For sret builtins, adjust the pointer argument index.
2060     if (PtrArgNum >= 0 && Def->getReturnType().getNumVectors() > 1)
2061       PtrArgNum += 1;
2062 
2063     std::string Name = Def->getName();
2064     // Omit type checking for the pointer arguments of vld1_lane, vld1_dup,
2065     // and vst1_lane intrinsics.  Using a pointer to the vector element
2066     // type with one of those operations causes codegen to select an aligned
2067     // load/store instruction.  If you want an unaligned operation,
2068     // the pointer argument needs to have less alignment than element type,
2069     // so just accept any pointer type.
2070     if (Name == "vld1_lane" || Name == "vld1_dup" || Name == "vst1_lane") {
2071       PtrArgNum = -1;
2072       HasConstPtr = false;
2073     }
2074 
2075     if (Mask) {
2076       std::string Name = Def->getMangledName();
2077       OverloadMap.insert(std::make_pair(Name, OverloadInfo()));
2078       OverloadInfo &OI = OverloadMap[Name];
2079       OI.Mask |= Mask;
2080       OI.PtrArgNum |= PtrArgNum;
2081       OI.HasConstPtr = HasConstPtr;
2082     }
2083   }
2084 
2085   for (auto &I : OverloadMap) {
2086     OverloadInfo &OI = I.second;
2087 
2088     OS << "case NEON::BI__builtin_neon_" << I.first << ": ";
2089     OS << "mask = 0x" << Twine::utohexstr(OI.Mask) << "ULL";
2090     if (OI.PtrArgNum >= 0)
2091       OS << "; PtrArgNum = " << OI.PtrArgNum;
2092     if (OI.HasConstPtr)
2093       OS << "; HasConstPtr = true";
2094     OS << "; break;\n";
2095   }
2096   OS << "#endif\n\n";
2097 }
2098 
2099 void NeonEmitter::genIntrinsicRangeCheckCode(raw_ostream &OS,
2100                                         SmallVectorImpl<Intrinsic *> &Defs) {
2101   OS << "#ifdef GET_NEON_IMMEDIATE_CHECK\n";
2102 
2103   std::set<std::string> Emitted;
2104 
2105   for (auto *Def : Defs) {
2106     if (Def->hasBody())
2107       continue;
2108     // Functions which do not have an immediate do not need to have range
2109     // checking code emitted.
2110     if (!Def->hasImmediate())
2111       continue;
2112     if (Emitted.find(Def->getMangledName()) != Emitted.end())
2113       continue;
2114 
2115     std::string LowerBound, UpperBound;
2116 
2117     Record *R = Def->getRecord();
2118     if (R->getValueAsBit("isVXAR")) {
2119       //VXAR takes an immediate in the range [0, 63]
2120       LowerBound = "0";
2121       UpperBound = "63";
2122     } else if (R->getValueAsBit("isVCVT_N")) {
2123       // VCVT between floating- and fixed-point values takes an immediate
2124       // in the range [1, 32) for f32 or [1, 64) for f64 or [1, 16) for f16.
2125       LowerBound = "1";
2126 	  if (Def->getBaseType().getElementSizeInBits() == 16 ||
2127 		  Def->getName().find('h') != std::string::npos)
2128 		// VCVTh operating on FP16 intrinsics in range [1, 16)
2129 		UpperBound = "15";
2130 	  else if (Def->getBaseType().getElementSizeInBits() == 32)
2131         UpperBound = "31";
2132 	  else
2133         UpperBound = "63";
2134     } else if (R->getValueAsBit("isScalarShift")) {
2135       // Right shifts have an 'r' in the name, left shifts do not. Convert
2136       // instructions have the same bounds and right shifts.
2137       if (Def->getName().find('r') != std::string::npos ||
2138           Def->getName().find("cvt") != std::string::npos)
2139         LowerBound = "1";
2140 
2141       UpperBound = utostr(Def->getReturnType().getElementSizeInBits() - 1);
2142     } else if (R->getValueAsBit("isShift")) {
2143       // Builtins which are overloaded by type will need to have their upper
2144       // bound computed at Sema time based on the type constant.
2145 
2146       // Right shifts have an 'r' in the name, left shifts do not.
2147       if (Def->getName().find('r') != std::string::npos)
2148         LowerBound = "1";
2149       UpperBound = "RFT(TV, true)";
2150     } else if (Def->getClassKind(true) == ClassB) {
2151       // ClassB intrinsics have a type (and hence lane number) that is only
2152       // known at runtime.
2153       if (R->getValueAsBit("isLaneQ"))
2154         UpperBound = "RFT(TV, false, true)";
2155       else
2156         UpperBound = "RFT(TV, false, false)";
2157     } else {
2158       // The immediate generally refers to a lane in the preceding argument.
2159       assert(Def->getImmediateIdx() > 0);
2160       Type T = Def->getParamType(Def->getImmediateIdx() - 1);
2161       UpperBound = utostr(T.getNumElements() - 1);
2162     }
2163 
2164     // Calculate the index of the immediate that should be range checked.
2165     unsigned Idx = Def->getNumParams();
2166     if (Def->hasImmediate())
2167       Idx = Def->getGeneratedParamIdx(Def->getImmediateIdx());
2168 
2169     OS << "case NEON::BI__builtin_neon_" << Def->getMangledName() << ": "
2170        << "i = " << Idx << ";";
2171     if (!LowerBound.empty())
2172       OS << " l = " << LowerBound << ";";
2173     if (!UpperBound.empty())
2174       OS << " u = " << UpperBound << ";";
2175     OS << " break;\n";
2176 
2177     Emitted.insert(Def->getMangledName());
2178   }
2179 
2180   OS << "#endif\n\n";
2181 }
2182 
2183 /// runHeader - Emit a file with sections defining:
2184 /// 1. the NEON section of BuiltinsARM.def and BuiltinsAArch64.def.
2185 /// 2. the SemaChecking code for the type overload checking.
2186 /// 3. the SemaChecking code for validation of intrinsic immediate arguments.
2187 void NeonEmitter::runHeader(raw_ostream &OS) {
2188   std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
2189 
2190   SmallVector<Intrinsic *, 128> Defs;
2191   for (auto *R : RV)
2192     createIntrinsic(R, Defs);
2193 
2194   // Generate shared BuiltinsXXX.def
2195   genBuiltinsDef(OS, Defs);
2196 
2197   // Generate ARM overloaded type checking code for SemaChecking.cpp
2198   genOverloadTypeCheckCode(OS, Defs);
2199 
2200   // Generate ARM range checking code for shift/lane immediates.
2201   genIntrinsicRangeCheckCode(OS, Defs);
2202 }
2203 
2204 static void emitNeonTypeDefs(const std::string& types, raw_ostream &OS) {
2205   std::string TypedefTypes(types);
2206   std::vector<TypeSpec> TDTypeVec = TypeSpec::fromTypeSpecs(TypedefTypes);
2207 
2208   // Emit vector typedefs.
2209   bool InIfdef = false;
2210   for (auto &TS : TDTypeVec) {
2211     bool IsA64 = false;
2212     Type T(TS, ".");
2213     if (T.isDouble())
2214       IsA64 = true;
2215 
2216     if (InIfdef && !IsA64) {
2217       OS << "#endif\n";
2218       InIfdef = false;
2219     }
2220     if (!InIfdef && IsA64) {
2221       OS << "#ifdef __aarch64__\n";
2222       InIfdef = true;
2223     }
2224 
2225     if (T.isPoly())
2226       OS << "typedef __attribute__((neon_polyvector_type(";
2227     else
2228       OS << "typedef __attribute__((neon_vector_type(";
2229 
2230     Type T2 = T;
2231     T2.makeScalar();
2232     OS << T.getNumElements() << "))) ";
2233     OS << T2.str();
2234     OS << " " << T.str() << ";\n";
2235   }
2236   if (InIfdef)
2237     OS << "#endif\n";
2238   OS << "\n";
2239 
2240   // Emit struct typedefs.
2241   InIfdef = false;
2242   for (unsigned NumMembers = 2; NumMembers <= 4; ++NumMembers) {
2243     for (auto &TS : TDTypeVec) {
2244       bool IsA64 = false;
2245       Type T(TS, ".");
2246       if (T.isDouble())
2247         IsA64 = true;
2248 
2249       if (InIfdef && !IsA64) {
2250         OS << "#endif\n";
2251         InIfdef = false;
2252       }
2253       if (!InIfdef && IsA64) {
2254         OS << "#ifdef __aarch64__\n";
2255         InIfdef = true;
2256       }
2257 
2258       const char Mods[] = { static_cast<char>('2' + (NumMembers - 2)), 0};
2259       Type VT(TS, Mods);
2260       OS << "typedef struct " << VT.str() << " {\n";
2261       OS << "  " << T.str() << " val";
2262       OS << "[" << NumMembers << "]";
2263       OS << ";\n} ";
2264       OS << VT.str() << ";\n";
2265       OS << "\n";
2266     }
2267   }
2268   if (InIfdef)
2269     OS << "#endif\n";
2270 }
2271 
2272 /// run - Read the records in arm_neon.td and output arm_neon.h.  arm_neon.h
2273 /// is comprised of type definitions and function declarations.
2274 void NeonEmitter::run(raw_ostream &OS) {
2275   OS << "/*===---- arm_neon.h - ARM Neon intrinsics "
2276         "------------------------------"
2277         "---===\n"
2278         " *\n"
2279         " * Permission is hereby granted, free of charge, to any person "
2280         "obtaining "
2281         "a copy\n"
2282         " * of this software and associated documentation files (the "
2283         "\"Software\"),"
2284         " to deal\n"
2285         " * in the Software without restriction, including without limitation "
2286         "the "
2287         "rights\n"
2288         " * to use, copy, modify, merge, publish, distribute, sublicense, "
2289         "and/or sell\n"
2290         " * copies of the Software, and to permit persons to whom the Software "
2291         "is\n"
2292         " * furnished to do so, subject to the following conditions:\n"
2293         " *\n"
2294         " * The above copyright notice and this permission notice shall be "
2295         "included in\n"
2296         " * all copies or substantial portions of the Software.\n"
2297         " *\n"
2298         " * THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, "
2299         "EXPRESS OR\n"
2300         " * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF "
2301         "MERCHANTABILITY,\n"
2302         " * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT "
2303         "SHALL THE\n"
2304         " * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR "
2305         "OTHER\n"
2306         " * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, "
2307         "ARISING FROM,\n"
2308         " * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER "
2309         "DEALINGS IN\n"
2310         " * THE SOFTWARE.\n"
2311         " *\n"
2312         " *===-----------------------------------------------------------------"
2313         "---"
2314         "---===\n"
2315         " */\n\n";
2316 
2317   OS << "#ifndef __ARM_NEON_H\n";
2318   OS << "#define __ARM_NEON_H\n\n";
2319 
2320   OS << "#ifndef __ARM_FP\n";
2321   OS << "#error \"NEON intrinsics not available with the soft-float ABI. "
2322         "Please use -mfloat-abi=softfp or -mfloat-abi=hard\"\n";
2323   OS << "#else\n\n";
2324 
2325   OS << "#if !defined(__ARM_NEON)\n";
2326   OS << "#error \"NEON support not enabled\"\n";
2327   OS << "#else\n\n";
2328 
2329   OS << "#include <stdint.h>\n\n";
2330 
2331   OS << "#ifdef __ARM_FEATURE_BF16\n";
2332   OS << "#include <arm_bf16.h>\n";
2333   OS << "typedef __bf16 bfloat16_t;\n";
2334   OS << "#endif\n\n";
2335 
2336   // Emit NEON-specific scalar typedefs.
2337   OS << "typedef float float32_t;\n";
2338   OS << "typedef __fp16 float16_t;\n";
2339 
2340   OS << "#ifdef __aarch64__\n";
2341   OS << "typedef double float64_t;\n";
2342   OS << "#endif\n\n";
2343 
2344   // For now, signedness of polynomial types depends on target
2345   OS << "#ifdef __aarch64__\n";
2346   OS << "typedef uint8_t poly8_t;\n";
2347   OS << "typedef uint16_t poly16_t;\n";
2348   OS << "typedef uint64_t poly64_t;\n";
2349   OS << "typedef __uint128_t poly128_t;\n";
2350   OS << "#else\n";
2351   OS << "typedef int8_t poly8_t;\n";
2352   OS << "typedef int16_t poly16_t;\n";
2353   OS << "typedef int64_t poly64_t;\n";
2354   OS << "#endif\n";
2355 
2356   emitNeonTypeDefs("cQcsQsiQilQlUcQUcUsQUsUiQUiUlQUlhQhfQfdQdPcQPcPsQPsPlQPl", OS);
2357 
2358   OS << "#ifdef __ARM_FEATURE_BF16\n";
2359   emitNeonTypeDefs("bQb", OS);
2360   OS << "#endif\n\n";
2361 
2362   OS << "#define __ai static __inline__ __attribute__((__always_inline__, "
2363         "__nodebug__))\n\n";
2364 
2365   SmallVector<Intrinsic *, 128> Defs;
2366   std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
2367   for (auto *R : RV)
2368     createIntrinsic(R, Defs);
2369 
2370   for (auto *I : Defs)
2371     I->indexBody();
2372 
2373   llvm::stable_sort(Defs, llvm::deref<std::less<>>());
2374 
2375   // Only emit a def when its requirements have been met.
2376   // FIXME: This loop could be made faster, but it's fast enough for now.
2377   bool MadeProgress = true;
2378   std::string InGuard;
2379   while (!Defs.empty() && MadeProgress) {
2380     MadeProgress = false;
2381 
2382     for (SmallVector<Intrinsic *, 128>::iterator I = Defs.begin();
2383          I != Defs.end(); /*No step*/) {
2384       bool DependenciesSatisfied = true;
2385       for (auto *II : (*I)->getDependencies()) {
2386         if (llvm::is_contained(Defs, II))
2387           DependenciesSatisfied = false;
2388       }
2389       if (!DependenciesSatisfied) {
2390         // Try the next one.
2391         ++I;
2392         continue;
2393       }
2394 
2395       // Emit #endif/#if pair if needed.
2396       if ((*I)->getGuard() != InGuard) {
2397         if (!InGuard.empty())
2398           OS << "#endif\n";
2399         InGuard = (*I)->getGuard();
2400         if (!InGuard.empty())
2401           OS << "#if " << InGuard << "\n";
2402       }
2403 
2404       // Actually generate the intrinsic code.
2405       OS << (*I)->generate();
2406 
2407       MadeProgress = true;
2408       I = Defs.erase(I);
2409     }
2410   }
2411   assert(Defs.empty() && "Some requirements were not satisfied!");
2412   if (!InGuard.empty())
2413     OS << "#endif\n";
2414 
2415   OS << "\n";
2416   OS << "#undef __ai\n\n";
2417   OS << "#endif /* if !defined(__ARM_NEON) */\n";
2418   OS << "#endif /* ifndef __ARM_FP */\n";
2419   OS << "#endif /* __ARM_NEON_H */\n";
2420 }
2421 
2422 /// run - Read the records in arm_fp16.td and output arm_fp16.h.  arm_fp16.h
2423 /// is comprised of type definitions and function declarations.
2424 void NeonEmitter::runFP16(raw_ostream &OS) {
2425   OS << "/*===---- arm_fp16.h - ARM FP16 intrinsics "
2426         "------------------------------"
2427         "---===\n"
2428         " *\n"
2429         " * Permission is hereby granted, free of charge, to any person "
2430         "obtaining a copy\n"
2431         " * of this software and associated documentation files (the "
2432 				"\"Software\"), to deal\n"
2433         " * in the Software without restriction, including without limitation "
2434 				"the rights\n"
2435         " * to use, copy, modify, merge, publish, distribute, sublicense, "
2436 				"and/or sell\n"
2437         " * copies of the Software, and to permit persons to whom the Software "
2438 				"is\n"
2439         " * furnished to do so, subject to the following conditions:\n"
2440         " *\n"
2441         " * The above copyright notice and this permission notice shall be "
2442         "included in\n"
2443         " * all copies or substantial portions of the Software.\n"
2444         " *\n"
2445         " * THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, "
2446         "EXPRESS OR\n"
2447         " * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF "
2448         "MERCHANTABILITY,\n"
2449         " * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT "
2450         "SHALL THE\n"
2451         " * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR "
2452         "OTHER\n"
2453         " * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, "
2454         "ARISING FROM,\n"
2455         " * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER "
2456         "DEALINGS IN\n"
2457         " * THE SOFTWARE.\n"
2458         " *\n"
2459         " *===-----------------------------------------------------------------"
2460         "---"
2461         "---===\n"
2462         " */\n\n";
2463 
2464   OS << "#ifndef __ARM_FP16_H\n";
2465   OS << "#define __ARM_FP16_H\n\n";
2466 
2467   OS << "#include <stdint.h>\n\n";
2468 
2469   OS << "typedef __fp16 float16_t;\n";
2470 
2471   OS << "#define __ai static __inline__ __attribute__((__always_inline__, "
2472         "__nodebug__))\n\n";
2473 
2474   SmallVector<Intrinsic *, 128> Defs;
2475   std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
2476   for (auto *R : RV)
2477     createIntrinsic(R, Defs);
2478 
2479   for (auto *I : Defs)
2480     I->indexBody();
2481 
2482   llvm::stable_sort(Defs, llvm::deref<std::less<>>());
2483 
2484   // Only emit a def when its requirements have been met.
2485   // FIXME: This loop could be made faster, but it's fast enough for now.
2486   bool MadeProgress = true;
2487   std::string InGuard;
2488   while (!Defs.empty() && MadeProgress) {
2489     MadeProgress = false;
2490 
2491     for (SmallVector<Intrinsic *, 128>::iterator I = Defs.begin();
2492          I != Defs.end(); /*No step*/) {
2493       bool DependenciesSatisfied = true;
2494       for (auto *II : (*I)->getDependencies()) {
2495         if (llvm::is_contained(Defs, II))
2496           DependenciesSatisfied = false;
2497       }
2498       if (!DependenciesSatisfied) {
2499         // Try the next one.
2500         ++I;
2501         continue;
2502       }
2503 
2504       // Emit #endif/#if pair if needed.
2505       if ((*I)->getGuard() != InGuard) {
2506         if (!InGuard.empty())
2507           OS << "#endif\n";
2508         InGuard = (*I)->getGuard();
2509         if (!InGuard.empty())
2510           OS << "#if " << InGuard << "\n";
2511       }
2512 
2513       // Actually generate the intrinsic code.
2514       OS << (*I)->generate();
2515 
2516       MadeProgress = true;
2517       I = Defs.erase(I);
2518     }
2519   }
2520   assert(Defs.empty() && "Some requirements were not satisfied!");
2521   if (!InGuard.empty())
2522     OS << "#endif\n";
2523 
2524   OS << "\n";
2525   OS << "#undef __ai\n\n";
2526   OS << "#endif /* __ARM_FP16_H */\n";
2527 }
2528 
2529 void NeonEmitter::runBF16(raw_ostream &OS) {
2530   OS << "/*===---- arm_bf16.h - ARM BF16 intrinsics "
2531         "-----------------------------------===\n"
2532         " *\n"
2533         " *\n"
2534         " * Part of the LLVM Project, under the Apache License v2.0 with LLVM "
2535         "Exceptions.\n"
2536         " * See https://llvm.org/LICENSE.txt for license information.\n"
2537         " * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception\n"
2538         " *\n"
2539         " *===-----------------------------------------------------------------"
2540         "------===\n"
2541         " */\n\n";
2542 
2543   OS << "#ifndef __ARM_BF16_H\n";
2544   OS << "#define __ARM_BF16_H\n\n";
2545 
2546   OS << "typedef __bf16 bfloat16_t;\n";
2547 
2548   OS << "#define __ai static __inline__ __attribute__((__always_inline__, "
2549         "__nodebug__))\n\n";
2550 
2551   SmallVector<Intrinsic *, 128> Defs;
2552   std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
2553   for (auto *R : RV)
2554     createIntrinsic(R, Defs);
2555 
2556   for (auto *I : Defs)
2557     I->indexBody();
2558 
2559   llvm::stable_sort(Defs, llvm::deref<std::less<>>());
2560 
2561   // Only emit a def when its requirements have been met.
2562   // FIXME: This loop could be made faster, but it's fast enough for now.
2563   bool MadeProgress = true;
2564   std::string InGuard;
2565   while (!Defs.empty() && MadeProgress) {
2566     MadeProgress = false;
2567 
2568     for (SmallVector<Intrinsic *, 128>::iterator I = Defs.begin();
2569          I != Defs.end(); /*No step*/) {
2570       bool DependenciesSatisfied = true;
2571       for (auto *II : (*I)->getDependencies()) {
2572         if (llvm::is_contained(Defs, II))
2573           DependenciesSatisfied = false;
2574       }
2575       if (!DependenciesSatisfied) {
2576         // Try the next one.
2577         ++I;
2578         continue;
2579       }
2580 
2581       // Emit #endif/#if pair if needed.
2582       if ((*I)->getGuard() != InGuard) {
2583         if (!InGuard.empty())
2584           OS << "#endif\n";
2585         InGuard = (*I)->getGuard();
2586         if (!InGuard.empty())
2587           OS << "#if " << InGuard << "\n";
2588       }
2589 
2590       // Actually generate the intrinsic code.
2591       OS << (*I)->generate();
2592 
2593       MadeProgress = true;
2594       I = Defs.erase(I);
2595     }
2596   }
2597   assert(Defs.empty() && "Some requirements were not satisfied!");
2598   if (!InGuard.empty())
2599     OS << "#endif\n";
2600 
2601   OS << "\n";
2602   OS << "#undef __ai\n\n";
2603 
2604   OS << "#endif\n";
2605 }
2606 
2607 void clang::EmitNeon(RecordKeeper &Records, raw_ostream &OS) {
2608   NeonEmitter(Records).run(OS);
2609 }
2610 
2611 void clang::EmitFP16(RecordKeeper &Records, raw_ostream &OS) {
2612   NeonEmitter(Records).runFP16(OS);
2613 }
2614 
2615 void clang::EmitBF16(RecordKeeper &Records, raw_ostream &OS) {
2616   NeonEmitter(Records).runBF16(OS);
2617 }
2618 
2619 void clang::EmitNeonSema(RecordKeeper &Records, raw_ostream &OS) {
2620   NeonEmitter(Records).runHeader(OS);
2621 }
2622 
2623 void clang::EmitNeonTest(RecordKeeper &Records, raw_ostream &OS) {
2624   llvm_unreachable("Neon test generation no longer implemented!");
2625 }
2626