1 //===- NeonEmitter.cpp - Generate arm_neon.h for use with clang -*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This tablegen backend is responsible for emitting arm_neon.h, which includes 10 // a declaration and definition of each function specified by the ARM NEON 11 // compiler interface. See ARM document DUI0348B. 12 // 13 // Each NEON instruction is implemented in terms of 1 or more functions which 14 // are suffixed with the element type of the input vectors. Functions may be 15 // implemented in terms of generic vector operations such as +, *, -, etc. or 16 // by calling a __builtin_-prefixed function which will be handled by clang's 17 // CodeGen library. 18 // 19 // Additional validation code can be generated by this file when runHeader() is 20 // called, rather than the normal run() entry point. 21 // 22 // See also the documentation in include/clang/Basic/arm_neon.td. 23 // 24 //===----------------------------------------------------------------------===// 25 26 #include "TableGenBackends.h" 27 #include "llvm/ADT/ArrayRef.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/STLExtras.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/ADT/StringExtras.h" 32 #include "llvm/ADT/StringRef.h" 33 #include "llvm/Support/Casting.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/TableGen/Error.h" 37 #include "llvm/TableGen/Record.h" 38 #include "llvm/TableGen/SetTheory.h" 39 #include <algorithm> 40 #include <cassert> 41 #include <cctype> 42 #include <cstddef> 43 #include <cstdint> 44 #include <deque> 45 #include <map> 46 #include <optional> 47 #include <set> 48 #include <sstream> 49 #include <string> 50 #include <utility> 51 #include <vector> 52 53 using namespace llvm; 54 55 namespace { 56 57 // While globals are generally bad, this one allows us to perform assertions 58 // liberally and somehow still trace them back to the def they indirectly 59 // came from. 60 static Record *CurrentRecord = nullptr; 61 static void assert_with_loc(bool Assertion, const std::string &Str) { 62 if (!Assertion) { 63 if (CurrentRecord) 64 PrintFatalError(CurrentRecord->getLoc(), Str); 65 else 66 PrintFatalError(Str); 67 } 68 } 69 70 enum ClassKind { 71 ClassNone, 72 ClassI, // generic integer instruction, e.g., "i8" suffix 73 ClassS, // signed/unsigned/poly, e.g., "s8", "u8" or "p8" suffix 74 ClassW, // width-specific instruction, e.g., "8" suffix 75 ClassB, // bitcast arguments with enum argument to specify type 76 ClassL, // Logical instructions which are op instructions 77 // but we need to not emit any suffix for in our 78 // tests. 79 ClassNoTest // Instructions which we do not test since they are 80 // not TRUE instructions. 81 }; 82 83 /// NeonTypeFlags - Flags to identify the types for overloaded Neon 84 /// builtins. These must be kept in sync with the flags in 85 /// include/clang/Basic/TargetBuiltins.h. 86 namespace NeonTypeFlags { 87 88 enum { EltTypeMask = 0xf, UnsignedFlag = 0x10, QuadFlag = 0x20 }; 89 90 enum EltType { 91 Int8, 92 Int16, 93 Int32, 94 Int64, 95 Poly8, 96 Poly16, 97 Poly64, 98 Poly128, 99 Float16, 100 Float32, 101 Float64, 102 BFloat16 103 }; 104 105 } // end namespace NeonTypeFlags 106 107 class NeonEmitter; 108 109 //===----------------------------------------------------------------------===// 110 // TypeSpec 111 //===----------------------------------------------------------------------===// 112 113 /// A TypeSpec is just a simple wrapper around a string, but gets its own type 114 /// for strong typing purposes. 115 /// 116 /// A TypeSpec can be used to create a type. 117 class TypeSpec : public std::string { 118 public: 119 static std::vector<TypeSpec> fromTypeSpecs(StringRef Str) { 120 std::vector<TypeSpec> Ret; 121 TypeSpec Acc; 122 for (char I : Str.str()) { 123 if (islower(I)) { 124 Acc.push_back(I); 125 Ret.push_back(TypeSpec(Acc)); 126 Acc.clear(); 127 } else { 128 Acc.push_back(I); 129 } 130 } 131 return Ret; 132 } 133 }; 134 135 //===----------------------------------------------------------------------===// 136 // Type 137 //===----------------------------------------------------------------------===// 138 139 /// A Type. Not much more to say here. 140 class Type { 141 private: 142 TypeSpec TS; 143 144 enum TypeKind { 145 Void, 146 Float, 147 SInt, 148 UInt, 149 Poly, 150 BFloat16, 151 }; 152 TypeKind Kind; 153 bool Immediate, Constant, Pointer; 154 // ScalarForMangling and NoManglingQ are really not suited to live here as 155 // they are not related to the type. But they live in the TypeSpec (not the 156 // prototype), so this is really the only place to store them. 157 bool ScalarForMangling, NoManglingQ; 158 unsigned Bitwidth, ElementBitwidth, NumVectors; 159 160 public: 161 Type() 162 : Kind(Void), Immediate(false), Constant(false), 163 Pointer(false), ScalarForMangling(false), NoManglingQ(false), 164 Bitwidth(0), ElementBitwidth(0), NumVectors(0) {} 165 166 Type(TypeSpec TS, StringRef CharMods) 167 : TS(std::move(TS)), Kind(Void), Immediate(false), 168 Constant(false), Pointer(false), ScalarForMangling(false), 169 NoManglingQ(false), Bitwidth(0), ElementBitwidth(0), NumVectors(0) { 170 applyModifiers(CharMods); 171 } 172 173 /// Returns a type representing "void". 174 static Type getVoid() { return Type(); } 175 176 bool operator==(const Type &Other) const { return str() == Other.str(); } 177 bool operator!=(const Type &Other) const { return !operator==(Other); } 178 179 // 180 // Query functions 181 // 182 bool isScalarForMangling() const { return ScalarForMangling; } 183 bool noManglingQ() const { return NoManglingQ; } 184 185 bool isPointer() const { return Pointer; } 186 bool isValue() const { return !isVoid() && !isPointer(); } 187 bool isScalar() const { return isValue() && NumVectors == 0; } 188 bool isVector() const { return isValue() && NumVectors > 0; } 189 bool isConstPointer() const { return Constant; } 190 bool isFloating() const { return Kind == Float; } 191 bool isInteger() const { return Kind == SInt || Kind == UInt; } 192 bool isPoly() const { return Kind == Poly; } 193 bool isSigned() const { return Kind == SInt; } 194 bool isImmediate() const { return Immediate; } 195 bool isFloat() const { return isFloating() && ElementBitwidth == 32; } 196 bool isDouble() const { return isFloating() && ElementBitwidth == 64; } 197 bool isHalf() const { return isFloating() && ElementBitwidth == 16; } 198 bool isChar() const { return ElementBitwidth == 8; } 199 bool isShort() const { return isInteger() && ElementBitwidth == 16; } 200 bool isInt() const { return isInteger() && ElementBitwidth == 32; } 201 bool isLong() const { return isInteger() && ElementBitwidth == 64; } 202 bool isVoid() const { return Kind == Void; } 203 bool isBFloat16() const { return Kind == BFloat16; } 204 unsigned getNumElements() const { return Bitwidth / ElementBitwidth; } 205 unsigned getSizeInBits() const { return Bitwidth; } 206 unsigned getElementSizeInBits() const { return ElementBitwidth; } 207 unsigned getNumVectors() const { return NumVectors; } 208 209 // 210 // Mutator functions 211 // 212 void makeUnsigned() { 213 assert(!isVoid() && "not a potentially signed type"); 214 Kind = UInt; 215 } 216 void makeSigned() { 217 assert(!isVoid() && "not a potentially signed type"); 218 Kind = SInt; 219 } 220 221 void makeInteger(unsigned ElemWidth, bool Sign) { 222 assert(!isVoid() && "converting void to int probably not useful"); 223 Kind = Sign ? SInt : UInt; 224 Immediate = false; 225 ElementBitwidth = ElemWidth; 226 } 227 228 void makeImmediate(unsigned ElemWidth) { 229 Kind = SInt; 230 Immediate = true; 231 ElementBitwidth = ElemWidth; 232 } 233 234 void makeScalar() { 235 Bitwidth = ElementBitwidth; 236 NumVectors = 0; 237 } 238 239 void makeOneVector() { 240 assert(isVector()); 241 NumVectors = 1; 242 } 243 244 void make32BitElement() { 245 assert_with_loc(Bitwidth > 32, "Not enough bits to make it 32!"); 246 ElementBitwidth = 32; 247 } 248 249 void doubleLanes() { 250 assert_with_loc(Bitwidth != 128, "Can't get bigger than 128!"); 251 Bitwidth = 128; 252 } 253 254 void halveLanes() { 255 assert_with_loc(Bitwidth != 64, "Can't get smaller than 64!"); 256 Bitwidth = 64; 257 } 258 259 /// Return the C string representation of a type, which is the typename 260 /// defined in stdint.h or arm_neon.h. 261 std::string str() const; 262 263 /// Return the string representation of a type, which is an encoded 264 /// string for passing to the BUILTIN() macro in Builtins.def. 265 std::string builtin_str() const; 266 267 /// Return the value in NeonTypeFlags for this type. 268 unsigned getNeonEnum() const; 269 270 /// Parse a type from a stdint.h or arm_neon.h typedef name, 271 /// for example uint32x2_t or int64_t. 272 static Type fromTypedefName(StringRef Name); 273 274 private: 275 /// Creates the type based on the typespec string in TS. 276 /// Sets "Quad" to true if the "Q" or "H" modifiers were 277 /// seen. This is needed by applyModifier as some modifiers 278 /// only take effect if the type size was changed by "Q" or "H". 279 void applyTypespec(bool &Quad); 280 /// Applies prototype modifiers to the type. 281 void applyModifiers(StringRef Mods); 282 }; 283 284 //===----------------------------------------------------------------------===// 285 // Variable 286 //===----------------------------------------------------------------------===// 287 288 /// A variable is a simple class that just has a type and a name. 289 class Variable { 290 Type T; 291 std::string N; 292 293 public: 294 Variable() : T(Type::getVoid()) {} 295 Variable(Type T, std::string N) : T(std::move(T)), N(std::move(N)) {} 296 297 Type getType() const { return T; } 298 std::string getName() const { return "__" + N; } 299 }; 300 301 //===----------------------------------------------------------------------===// 302 // Intrinsic 303 //===----------------------------------------------------------------------===// 304 305 /// The main grunt class. This represents an instantiation of an intrinsic with 306 /// a particular typespec and prototype. 307 class Intrinsic { 308 /// The Record this intrinsic was created from. 309 Record *R; 310 /// The unmangled name. 311 std::string Name; 312 /// The input and output typespecs. InTS == OutTS except when 313 /// CartesianProductWith is non-empty - this is the case for vreinterpret. 314 TypeSpec OutTS, InTS; 315 /// The base class kind. Most intrinsics use ClassS, which has full type 316 /// info for integers (s32/u32). Some use ClassI, which doesn't care about 317 /// signedness (i32), while some (ClassB) have no type at all, only a width 318 /// (32). 319 ClassKind CK; 320 /// The list of DAGs for the body. May be empty, in which case we should 321 /// emit a builtin call. 322 ListInit *Body; 323 /// The architectural ifdef guard. 324 std::string ArchGuard; 325 /// The architectural target() guard. 326 std::string TargetGuard; 327 /// Set if the Unavailable bit is 1. This means we don't generate a body, 328 /// just an "unavailable" attribute on a declaration. 329 bool IsUnavailable; 330 /// Is this intrinsic safe for big-endian? or does it need its arguments 331 /// reversing? 332 bool BigEndianSafe; 333 334 /// The types of return value [0] and parameters [1..]. 335 std::vector<Type> Types; 336 /// The index of the key type passed to CGBuiltin.cpp for polymorphic calls. 337 int PolymorphicKeyType; 338 /// The local variables defined. 339 std::map<std::string, Variable> Variables; 340 /// NeededEarly - set if any other intrinsic depends on this intrinsic. 341 bool NeededEarly; 342 /// UseMacro - set if we should implement using a macro or unset for a 343 /// function. 344 bool UseMacro; 345 /// The set of intrinsics that this intrinsic uses/requires. 346 std::set<Intrinsic *> Dependencies; 347 /// The "base type", which is Type('d', OutTS). InBaseType is only 348 /// different if CartesianProductWith is non-empty (for vreinterpret). 349 Type BaseType, InBaseType; 350 /// The return variable. 351 Variable RetVar; 352 /// A postfix to apply to every variable. Defaults to "". 353 std::string VariablePostfix; 354 355 NeonEmitter &Emitter; 356 std::stringstream OS; 357 358 bool isBigEndianSafe() const { 359 if (BigEndianSafe) 360 return true; 361 362 for (const auto &T : Types){ 363 if (T.isVector() && T.getNumElements() > 1) 364 return false; 365 } 366 return true; 367 } 368 369 public: 370 Intrinsic(Record *R, StringRef Name, StringRef Proto, TypeSpec OutTS, 371 TypeSpec InTS, ClassKind CK, ListInit *Body, NeonEmitter &Emitter, 372 StringRef ArchGuard, StringRef TargetGuard, bool IsUnavailable, bool BigEndianSafe) 373 : R(R), Name(Name.str()), OutTS(OutTS), InTS(InTS), CK(CK), Body(Body), 374 ArchGuard(ArchGuard.str()), TargetGuard(TargetGuard.str()), IsUnavailable(IsUnavailable), 375 BigEndianSafe(BigEndianSafe), PolymorphicKeyType(0), NeededEarly(false), 376 UseMacro(false), BaseType(OutTS, "."), InBaseType(InTS, "."), 377 Emitter(Emitter) { 378 // Modify the TypeSpec per-argument to get a concrete Type, and create 379 // known variables for each. 380 // Types[0] is the return value. 381 unsigned Pos = 0; 382 Types.emplace_back(OutTS, getNextModifiers(Proto, Pos)); 383 StringRef Mods = getNextModifiers(Proto, Pos); 384 while (!Mods.empty()) { 385 Types.emplace_back(InTS, Mods); 386 if (Mods.contains('!')) 387 PolymorphicKeyType = Types.size() - 1; 388 389 Mods = getNextModifiers(Proto, Pos); 390 } 391 392 for (const auto &Type : Types) { 393 // If this builtin takes an immediate argument, we need to #define it rather 394 // than use a standard declaration, so that SemaChecking can range check 395 // the immediate passed by the user. 396 397 // Pointer arguments need to use macros to avoid hiding aligned attributes 398 // from the pointer type. 399 400 // It is not permitted to pass or return an __fp16 by value, so intrinsics 401 // taking a scalar float16_t must be implemented as macros. 402 if (Type.isImmediate() || Type.isPointer() || 403 (Type.isScalar() && Type.isHalf())) 404 UseMacro = true; 405 } 406 } 407 408 /// Get the Record that this intrinsic is based off. 409 Record *getRecord() const { return R; } 410 /// Get the set of Intrinsics that this intrinsic calls. 411 /// this is the set of immediate dependencies, NOT the 412 /// transitive closure. 413 const std::set<Intrinsic *> &getDependencies() const { return Dependencies; } 414 /// Get the architectural guard string (#ifdef). 415 std::string getArchGuard() const { return ArchGuard; } 416 std::string getTargetGuard() const { return TargetGuard; } 417 /// Get the non-mangled name. 418 std::string getName() const { return Name; } 419 420 /// Return true if the intrinsic takes an immediate operand. 421 bool hasImmediate() const { 422 return llvm::any_of(Types, [](const Type &T) { return T.isImmediate(); }); 423 } 424 425 /// Return the parameter index of the immediate operand. 426 unsigned getImmediateIdx() const { 427 for (unsigned Idx = 0; Idx < Types.size(); ++Idx) 428 if (Types[Idx].isImmediate()) 429 return Idx - 1; 430 llvm_unreachable("Intrinsic has no immediate"); 431 } 432 433 434 unsigned getNumParams() const { return Types.size() - 1; } 435 Type getReturnType() const { return Types[0]; } 436 Type getParamType(unsigned I) const { return Types[I + 1]; } 437 Type getBaseType() const { return BaseType; } 438 Type getPolymorphicKeyType() const { return Types[PolymorphicKeyType]; } 439 440 /// Return true if the prototype has a scalar argument. 441 bool protoHasScalar() const; 442 443 /// Return the index that parameter PIndex will sit at 444 /// in a generated function call. This is often just PIndex, 445 /// but may not be as things such as multiple-vector operands 446 /// and sret parameters need to be taken into account. 447 unsigned getGeneratedParamIdx(unsigned PIndex) { 448 unsigned Idx = 0; 449 if (getReturnType().getNumVectors() > 1) 450 // Multiple vectors are passed as sret. 451 ++Idx; 452 453 for (unsigned I = 0; I < PIndex; ++I) 454 Idx += std::max(1U, getParamType(I).getNumVectors()); 455 456 return Idx; 457 } 458 459 bool hasBody() const { return Body && !Body->getValues().empty(); } 460 461 void setNeededEarly() { NeededEarly = true; } 462 463 bool operator<(const Intrinsic &Other) const { 464 // Sort lexicographically on a three-tuple (ArchGuard, TargetGuard, Name) 465 if (ArchGuard != Other.ArchGuard) 466 return ArchGuard < Other.ArchGuard; 467 if (TargetGuard != Other.TargetGuard) 468 return TargetGuard < Other.TargetGuard; 469 return Name < Other.Name; 470 } 471 472 ClassKind getClassKind(bool UseClassBIfScalar = false) { 473 if (UseClassBIfScalar && !protoHasScalar()) 474 return ClassB; 475 return CK; 476 } 477 478 /// Return the name, mangled with type information. 479 /// If ForceClassS is true, use ClassS (u32/s32) instead 480 /// of the intrinsic's own type class. 481 std::string getMangledName(bool ForceClassS = false) const; 482 /// Return the type code for a builtin function call. 483 std::string getInstTypeCode(Type T, ClassKind CK) const; 484 /// Return the type string for a BUILTIN() macro in Builtins.def. 485 std::string getBuiltinTypeStr(); 486 487 /// Generate the intrinsic, returning code. 488 std::string generate(); 489 /// Perform type checking and populate the dependency graph, but 490 /// don't generate code yet. 491 void indexBody(); 492 493 private: 494 StringRef getNextModifiers(StringRef Proto, unsigned &Pos) const; 495 496 std::string mangleName(std::string Name, ClassKind CK) const; 497 498 void initVariables(); 499 std::string replaceParamsIn(std::string S); 500 501 void emitBodyAsBuiltinCall(); 502 503 void generateImpl(bool ReverseArguments, 504 StringRef NamePrefix, StringRef CallPrefix); 505 void emitReturn(); 506 void emitBody(StringRef CallPrefix); 507 void emitShadowedArgs(); 508 void emitArgumentReversal(); 509 void emitReturnVarDecl(); 510 void emitReturnReversal(); 511 void emitReverseVariable(Variable &Dest, Variable &Src); 512 void emitNewLine(); 513 void emitClosingBrace(); 514 void emitOpeningBrace(); 515 void emitPrototype(StringRef NamePrefix); 516 517 class DagEmitter { 518 Intrinsic &Intr; 519 StringRef CallPrefix; 520 521 public: 522 DagEmitter(Intrinsic &Intr, StringRef CallPrefix) : 523 Intr(Intr), CallPrefix(CallPrefix) { 524 } 525 std::pair<Type, std::string> emitDagArg(Init *Arg, std::string ArgName); 526 std::pair<Type, std::string> emitDagSaveTemp(DagInit *DI); 527 std::pair<Type, std::string> emitDagSplat(DagInit *DI); 528 std::pair<Type, std::string> emitDagDup(DagInit *DI); 529 std::pair<Type, std::string> emitDagDupTyped(DagInit *DI); 530 std::pair<Type, std::string> emitDagShuffle(DagInit *DI); 531 std::pair<Type, std::string> emitDagCast(DagInit *DI, bool IsBitCast); 532 std::pair<Type, std::string> emitDagCall(DagInit *DI, 533 bool MatchMangledName); 534 std::pair<Type, std::string> emitDagNameReplace(DagInit *DI); 535 std::pair<Type, std::string> emitDagLiteral(DagInit *DI); 536 std::pair<Type, std::string> emitDagOp(DagInit *DI); 537 std::pair<Type, std::string> emitDag(DagInit *DI); 538 }; 539 }; 540 541 //===----------------------------------------------------------------------===// 542 // NeonEmitter 543 //===----------------------------------------------------------------------===// 544 545 class NeonEmitter { 546 RecordKeeper &Records; 547 DenseMap<Record *, ClassKind> ClassMap; 548 std::map<std::string, std::deque<Intrinsic>> IntrinsicMap; 549 unsigned UniqueNumber; 550 551 void createIntrinsic(Record *R, SmallVectorImpl<Intrinsic *> &Out); 552 void genBuiltinsDef(raw_ostream &OS, SmallVectorImpl<Intrinsic *> &Defs); 553 void genOverloadTypeCheckCode(raw_ostream &OS, 554 SmallVectorImpl<Intrinsic *> &Defs); 555 void genIntrinsicRangeCheckCode(raw_ostream &OS, 556 SmallVectorImpl<Intrinsic *> &Defs); 557 558 public: 559 /// Called by Intrinsic - this attempts to get an intrinsic that takes 560 /// the given types as arguments. 561 Intrinsic &getIntrinsic(StringRef Name, ArrayRef<Type> Types, 562 std::optional<std::string> MangledName); 563 564 /// Called by Intrinsic - returns a globally-unique number. 565 unsigned getUniqueNumber() { return UniqueNumber++; } 566 567 NeonEmitter(RecordKeeper &R) : Records(R), UniqueNumber(0) { 568 Record *SI = R.getClass("SInst"); 569 Record *II = R.getClass("IInst"); 570 Record *WI = R.getClass("WInst"); 571 Record *SOpI = R.getClass("SOpInst"); 572 Record *IOpI = R.getClass("IOpInst"); 573 Record *WOpI = R.getClass("WOpInst"); 574 Record *LOpI = R.getClass("LOpInst"); 575 Record *NoTestOpI = R.getClass("NoTestOpInst"); 576 577 ClassMap[SI] = ClassS; 578 ClassMap[II] = ClassI; 579 ClassMap[WI] = ClassW; 580 ClassMap[SOpI] = ClassS; 581 ClassMap[IOpI] = ClassI; 582 ClassMap[WOpI] = ClassW; 583 ClassMap[LOpI] = ClassL; 584 ClassMap[NoTestOpI] = ClassNoTest; 585 } 586 587 // Emit arm_neon.h.inc 588 void run(raw_ostream &o); 589 590 // Emit arm_fp16.h.inc 591 void runFP16(raw_ostream &o); 592 593 // Emit arm_bf16.h.inc 594 void runBF16(raw_ostream &o); 595 596 // Emit all the __builtin prototypes used in arm_neon.h, arm_fp16.h and 597 // arm_bf16.h 598 void runHeader(raw_ostream &o); 599 }; 600 601 } // end anonymous namespace 602 603 //===----------------------------------------------------------------------===// 604 // Type implementation 605 //===----------------------------------------------------------------------===// 606 607 std::string Type::str() const { 608 if (isVoid()) 609 return "void"; 610 std::string S; 611 612 if (isInteger() && !isSigned()) 613 S += "u"; 614 615 if (isPoly()) 616 S += "poly"; 617 else if (isFloating()) 618 S += "float"; 619 else if (isBFloat16()) 620 S += "bfloat"; 621 else 622 S += "int"; 623 624 S += utostr(ElementBitwidth); 625 if (isVector()) 626 S += "x" + utostr(getNumElements()); 627 if (NumVectors > 1) 628 S += "x" + utostr(NumVectors); 629 S += "_t"; 630 631 if (Constant) 632 S += " const"; 633 if (Pointer) 634 S += " *"; 635 636 return S; 637 } 638 639 std::string Type::builtin_str() const { 640 std::string S; 641 if (isVoid()) 642 return "v"; 643 644 if (isPointer()) { 645 // All pointers are void pointers. 646 S = "v"; 647 if (isConstPointer()) 648 S += "C"; 649 S += "*"; 650 return S; 651 } else if (isInteger()) 652 switch (ElementBitwidth) { 653 case 8: S += "c"; break; 654 case 16: S += "s"; break; 655 case 32: S += "i"; break; 656 case 64: S += "Wi"; break; 657 case 128: S += "LLLi"; break; 658 default: llvm_unreachable("Unhandled case!"); 659 } 660 else if (isBFloat16()) { 661 assert(ElementBitwidth == 16 && "BFloat16 can only be 16 bits"); 662 S += "y"; 663 } else 664 switch (ElementBitwidth) { 665 case 16: S += "h"; break; 666 case 32: S += "f"; break; 667 case 64: S += "d"; break; 668 default: llvm_unreachable("Unhandled case!"); 669 } 670 671 // FIXME: NECESSARY??????????????????????????????????????????????????????????????????????? 672 if (isChar() && !isPointer() && isSigned()) 673 // Make chars explicitly signed. 674 S = "S" + S; 675 else if (isInteger() && !isSigned()) 676 S = "U" + S; 677 678 // Constant indices are "int", but have the "constant expression" modifier. 679 if (isImmediate()) { 680 assert(isInteger() && isSigned()); 681 S = "I" + S; 682 } 683 684 if (isScalar()) 685 return S; 686 687 std::string Ret; 688 for (unsigned I = 0; I < NumVectors; ++I) 689 Ret += "V" + utostr(getNumElements()) + S; 690 691 return Ret; 692 } 693 694 unsigned Type::getNeonEnum() const { 695 unsigned Addend; 696 switch (ElementBitwidth) { 697 case 8: Addend = 0; break; 698 case 16: Addend = 1; break; 699 case 32: Addend = 2; break; 700 case 64: Addend = 3; break; 701 case 128: Addend = 4; break; 702 default: llvm_unreachable("Unhandled element bitwidth!"); 703 } 704 705 unsigned Base = (unsigned)NeonTypeFlags::Int8 + Addend; 706 if (isPoly()) { 707 // Adjustment needed because Poly32 doesn't exist. 708 if (Addend >= 2) 709 --Addend; 710 Base = (unsigned)NeonTypeFlags::Poly8 + Addend; 711 } 712 if (isFloating()) { 713 assert(Addend != 0 && "Float8 doesn't exist!"); 714 Base = (unsigned)NeonTypeFlags::Float16 + (Addend - 1); 715 } 716 717 if (isBFloat16()) { 718 assert(Addend == 1 && "BFloat16 is only 16 bit"); 719 Base = (unsigned)NeonTypeFlags::BFloat16; 720 } 721 722 if (Bitwidth == 128) 723 Base |= (unsigned)NeonTypeFlags::QuadFlag; 724 if (isInteger() && !isSigned()) 725 Base |= (unsigned)NeonTypeFlags::UnsignedFlag; 726 727 return Base; 728 } 729 730 Type Type::fromTypedefName(StringRef Name) { 731 Type T; 732 T.Kind = SInt; 733 734 if (Name.front() == 'u') { 735 T.Kind = UInt; 736 Name = Name.drop_front(); 737 } 738 739 if (Name.startswith("float")) { 740 T.Kind = Float; 741 Name = Name.drop_front(5); 742 } else if (Name.startswith("poly")) { 743 T.Kind = Poly; 744 Name = Name.drop_front(4); 745 } else if (Name.startswith("bfloat")) { 746 T.Kind = BFloat16; 747 Name = Name.drop_front(6); 748 } else { 749 assert(Name.startswith("int")); 750 Name = Name.drop_front(3); 751 } 752 753 unsigned I = 0; 754 for (I = 0; I < Name.size(); ++I) { 755 if (!isdigit(Name[I])) 756 break; 757 } 758 Name.substr(0, I).getAsInteger(10, T.ElementBitwidth); 759 Name = Name.drop_front(I); 760 761 T.Bitwidth = T.ElementBitwidth; 762 T.NumVectors = 1; 763 764 if (Name.front() == 'x') { 765 Name = Name.drop_front(); 766 unsigned I = 0; 767 for (I = 0; I < Name.size(); ++I) { 768 if (!isdigit(Name[I])) 769 break; 770 } 771 unsigned NumLanes; 772 Name.substr(0, I).getAsInteger(10, NumLanes); 773 Name = Name.drop_front(I); 774 T.Bitwidth = T.ElementBitwidth * NumLanes; 775 } else { 776 // Was scalar. 777 T.NumVectors = 0; 778 } 779 if (Name.front() == 'x') { 780 Name = Name.drop_front(); 781 unsigned I = 0; 782 for (I = 0; I < Name.size(); ++I) { 783 if (!isdigit(Name[I])) 784 break; 785 } 786 Name.substr(0, I).getAsInteger(10, T.NumVectors); 787 Name = Name.drop_front(I); 788 } 789 790 assert(Name.startswith("_t") && "Malformed typedef!"); 791 return T; 792 } 793 794 void Type::applyTypespec(bool &Quad) { 795 std::string S = TS; 796 ScalarForMangling = false; 797 Kind = SInt; 798 ElementBitwidth = ~0U; 799 NumVectors = 1; 800 801 for (char I : S) { 802 switch (I) { 803 case 'S': 804 ScalarForMangling = true; 805 break; 806 case 'H': 807 NoManglingQ = true; 808 Quad = true; 809 break; 810 case 'Q': 811 Quad = true; 812 break; 813 case 'P': 814 Kind = Poly; 815 break; 816 case 'U': 817 Kind = UInt; 818 break; 819 case 'c': 820 ElementBitwidth = 8; 821 break; 822 case 'h': 823 Kind = Float; 824 [[fallthrough]]; 825 case 's': 826 ElementBitwidth = 16; 827 break; 828 case 'f': 829 Kind = Float; 830 [[fallthrough]]; 831 case 'i': 832 ElementBitwidth = 32; 833 break; 834 case 'd': 835 Kind = Float; 836 [[fallthrough]]; 837 case 'l': 838 ElementBitwidth = 64; 839 break; 840 case 'k': 841 ElementBitwidth = 128; 842 // Poly doesn't have a 128x1 type. 843 if (isPoly()) 844 NumVectors = 0; 845 break; 846 case 'b': 847 Kind = BFloat16; 848 ElementBitwidth = 16; 849 break; 850 default: 851 llvm_unreachable("Unhandled type code!"); 852 } 853 } 854 assert(ElementBitwidth != ~0U && "Bad element bitwidth!"); 855 856 Bitwidth = Quad ? 128 : 64; 857 } 858 859 void Type::applyModifiers(StringRef Mods) { 860 bool AppliedQuad = false; 861 applyTypespec(AppliedQuad); 862 863 for (char Mod : Mods) { 864 switch (Mod) { 865 case '.': 866 break; 867 case 'v': 868 Kind = Void; 869 break; 870 case 'S': 871 Kind = SInt; 872 break; 873 case 'U': 874 Kind = UInt; 875 break; 876 case 'B': 877 Kind = BFloat16; 878 ElementBitwidth = 16; 879 break; 880 case 'F': 881 Kind = Float; 882 break; 883 case 'P': 884 Kind = Poly; 885 break; 886 case '>': 887 assert(ElementBitwidth < 128); 888 ElementBitwidth *= 2; 889 break; 890 case '<': 891 assert(ElementBitwidth > 8); 892 ElementBitwidth /= 2; 893 break; 894 case '1': 895 NumVectors = 0; 896 break; 897 case '2': 898 NumVectors = 2; 899 break; 900 case '3': 901 NumVectors = 3; 902 break; 903 case '4': 904 NumVectors = 4; 905 break; 906 case '*': 907 Pointer = true; 908 break; 909 case 'c': 910 Constant = true; 911 break; 912 case 'Q': 913 Bitwidth = 128; 914 break; 915 case 'q': 916 Bitwidth = 64; 917 break; 918 case 'I': 919 Kind = SInt; 920 ElementBitwidth = Bitwidth = 32; 921 NumVectors = 0; 922 Immediate = true; 923 break; 924 case 'p': 925 if (isPoly()) 926 Kind = UInt; 927 break; 928 case '!': 929 // Key type, handled elsewhere. 930 break; 931 default: 932 llvm_unreachable("Unhandled character!"); 933 } 934 } 935 } 936 937 //===----------------------------------------------------------------------===// 938 // Intrinsic implementation 939 //===----------------------------------------------------------------------===// 940 941 StringRef Intrinsic::getNextModifiers(StringRef Proto, unsigned &Pos) const { 942 if (Proto.size() == Pos) 943 return StringRef(); 944 else if (Proto[Pos] != '(') 945 return Proto.substr(Pos++, 1); 946 947 size_t Start = Pos + 1; 948 size_t End = Proto.find(')', Start); 949 assert_with_loc(End != StringRef::npos, "unmatched modifier group paren"); 950 Pos = End + 1; 951 return Proto.slice(Start, End); 952 } 953 954 std::string Intrinsic::getInstTypeCode(Type T, ClassKind CK) const { 955 char typeCode = '\0'; 956 bool printNumber = true; 957 958 if (CK == ClassB && TargetGuard == "") 959 return ""; 960 961 if (T.isBFloat16()) 962 return "bf16"; 963 964 if (T.isPoly()) 965 typeCode = 'p'; 966 else if (T.isInteger()) 967 typeCode = T.isSigned() ? 's' : 'u'; 968 else 969 typeCode = 'f'; 970 971 if (CK == ClassI) { 972 switch (typeCode) { 973 default: 974 break; 975 case 's': 976 case 'u': 977 case 'p': 978 typeCode = 'i'; 979 break; 980 } 981 } 982 if (CK == ClassB && TargetGuard == "") { 983 typeCode = '\0'; 984 } 985 986 std::string S; 987 if (typeCode != '\0') 988 S.push_back(typeCode); 989 if (printNumber) 990 S += utostr(T.getElementSizeInBits()); 991 992 return S; 993 } 994 995 std::string Intrinsic::getBuiltinTypeStr() { 996 ClassKind LocalCK = getClassKind(true); 997 std::string S; 998 999 Type RetT = getReturnType(); 1000 if ((LocalCK == ClassI || LocalCK == ClassW) && RetT.isScalar() && 1001 !RetT.isFloating() && !RetT.isBFloat16()) 1002 RetT.makeInteger(RetT.getElementSizeInBits(), false); 1003 1004 // Since the return value must be one type, return a vector type of the 1005 // appropriate width which we will bitcast. An exception is made for 1006 // returning structs of 2, 3, or 4 vectors which are returned in a sret-like 1007 // fashion, storing them to a pointer arg. 1008 if (RetT.getNumVectors() > 1) { 1009 S += "vv*"; // void result with void* first argument 1010 } else { 1011 if (RetT.isPoly()) 1012 RetT.makeInteger(RetT.getElementSizeInBits(), false); 1013 if (!RetT.isScalar() && RetT.isInteger() && !RetT.isSigned()) 1014 RetT.makeSigned(); 1015 1016 if (LocalCK == ClassB && RetT.isValue() && !RetT.isScalar()) 1017 // Cast to vector of 8-bit elements. 1018 RetT.makeInteger(8, true); 1019 1020 S += RetT.builtin_str(); 1021 } 1022 1023 for (unsigned I = 0; I < getNumParams(); ++I) { 1024 Type T = getParamType(I); 1025 if (T.isPoly()) 1026 T.makeInteger(T.getElementSizeInBits(), false); 1027 1028 if (LocalCK == ClassB && !T.isScalar()) 1029 T.makeInteger(8, true); 1030 // Halves always get converted to 8-bit elements. 1031 if (T.isHalf() && T.isVector() && !T.isScalarForMangling()) 1032 T.makeInteger(8, true); 1033 1034 if (LocalCK == ClassI && T.isInteger()) 1035 T.makeSigned(); 1036 1037 if (hasImmediate() && getImmediateIdx() == I) 1038 T.makeImmediate(32); 1039 1040 S += T.builtin_str(); 1041 } 1042 1043 // Extra constant integer to hold type class enum for this function, e.g. s8 1044 if (LocalCK == ClassB) 1045 S += "i"; 1046 1047 return S; 1048 } 1049 1050 std::string Intrinsic::getMangledName(bool ForceClassS) const { 1051 // Check if the prototype has a scalar operand with the type of the vector 1052 // elements. If not, bitcasting the args will take care of arg checking. 1053 // The actual signedness etc. will be taken care of with special enums. 1054 ClassKind LocalCK = CK; 1055 if (!protoHasScalar()) 1056 LocalCK = ClassB; 1057 1058 return mangleName(Name, ForceClassS ? ClassS : LocalCK); 1059 } 1060 1061 std::string Intrinsic::mangleName(std::string Name, ClassKind LocalCK) const { 1062 std::string typeCode = getInstTypeCode(BaseType, LocalCK); 1063 std::string S = Name; 1064 1065 if (Name == "vcvt_f16_f32" || Name == "vcvt_f32_f16" || 1066 Name == "vcvt_f32_f64" || Name == "vcvt_f64_f32" || 1067 Name == "vcvt_f32_bf16") 1068 return Name; 1069 1070 if (!typeCode.empty()) { 1071 // If the name ends with _xN (N = 2,3,4), insert the typeCode before _xN. 1072 if (Name.size() >= 3 && isdigit(Name.back()) && 1073 Name[Name.length() - 2] == 'x' && Name[Name.length() - 3] == '_') 1074 S.insert(S.length() - 3, "_" + typeCode); 1075 else 1076 S += "_" + typeCode; 1077 } 1078 1079 if (BaseType != InBaseType) { 1080 // A reinterpret - out the input base type at the end. 1081 S += "_" + getInstTypeCode(InBaseType, LocalCK); 1082 } 1083 1084 if (LocalCK == ClassB && TargetGuard == "") 1085 S += "_v"; 1086 1087 // Insert a 'q' before the first '_' character so that it ends up before 1088 // _lane or _n on vector-scalar operations. 1089 if (BaseType.getSizeInBits() == 128 && !BaseType.noManglingQ()) { 1090 size_t Pos = S.find('_'); 1091 S.insert(Pos, "q"); 1092 } 1093 1094 char Suffix = '\0'; 1095 if (BaseType.isScalarForMangling()) { 1096 switch (BaseType.getElementSizeInBits()) { 1097 case 8: Suffix = 'b'; break; 1098 case 16: Suffix = 'h'; break; 1099 case 32: Suffix = 's'; break; 1100 case 64: Suffix = 'd'; break; 1101 default: llvm_unreachable("Bad suffix!"); 1102 } 1103 } 1104 if (Suffix != '\0') { 1105 size_t Pos = S.find('_'); 1106 S.insert(Pos, &Suffix, 1); 1107 } 1108 1109 return S; 1110 } 1111 1112 std::string Intrinsic::replaceParamsIn(std::string S) { 1113 while (S.find('$') != std::string::npos) { 1114 size_t Pos = S.find('$'); 1115 size_t End = Pos + 1; 1116 while (isalpha(S[End])) 1117 ++End; 1118 1119 std::string VarName = S.substr(Pos + 1, End - Pos - 1); 1120 assert_with_loc(Variables.find(VarName) != Variables.end(), 1121 "Variable not defined!"); 1122 S.replace(Pos, End - Pos, Variables.find(VarName)->second.getName()); 1123 } 1124 1125 return S; 1126 } 1127 1128 void Intrinsic::initVariables() { 1129 Variables.clear(); 1130 1131 // Modify the TypeSpec per-argument to get a concrete Type, and create 1132 // known variables for each. 1133 for (unsigned I = 1; I < Types.size(); ++I) { 1134 char NameC = '0' + (I - 1); 1135 std::string Name = "p"; 1136 Name.push_back(NameC); 1137 1138 Variables[Name] = Variable(Types[I], Name + VariablePostfix); 1139 } 1140 RetVar = Variable(Types[0], "ret" + VariablePostfix); 1141 } 1142 1143 void Intrinsic::emitPrototype(StringRef NamePrefix) { 1144 if (UseMacro) { 1145 OS << "#define "; 1146 } else { 1147 OS << "__ai "; 1148 if (TargetGuard != "") 1149 OS << "__attribute__((target(\"" << TargetGuard << "\"))) "; 1150 OS << Types[0].str() << " "; 1151 } 1152 1153 OS << NamePrefix.str() << mangleName(Name, ClassS) << "("; 1154 1155 for (unsigned I = 0; I < getNumParams(); ++I) { 1156 if (I != 0) 1157 OS << ", "; 1158 1159 char NameC = '0' + I; 1160 std::string Name = "p"; 1161 Name.push_back(NameC); 1162 assert(Variables.find(Name) != Variables.end()); 1163 Variable &V = Variables[Name]; 1164 1165 if (!UseMacro) 1166 OS << V.getType().str() << " "; 1167 OS << V.getName(); 1168 } 1169 1170 OS << ")"; 1171 } 1172 1173 void Intrinsic::emitOpeningBrace() { 1174 if (UseMacro) 1175 OS << " __extension__ ({"; 1176 else 1177 OS << " {"; 1178 emitNewLine(); 1179 } 1180 1181 void Intrinsic::emitClosingBrace() { 1182 if (UseMacro) 1183 OS << "})"; 1184 else 1185 OS << "}"; 1186 } 1187 1188 void Intrinsic::emitNewLine() { 1189 if (UseMacro) 1190 OS << " \\\n"; 1191 else 1192 OS << "\n"; 1193 } 1194 1195 void Intrinsic::emitReverseVariable(Variable &Dest, Variable &Src) { 1196 if (Dest.getType().getNumVectors() > 1) { 1197 emitNewLine(); 1198 1199 for (unsigned K = 0; K < Dest.getType().getNumVectors(); ++K) { 1200 OS << " " << Dest.getName() << ".val[" << K << "] = " 1201 << "__builtin_shufflevector(" 1202 << Src.getName() << ".val[" << K << "], " 1203 << Src.getName() << ".val[" << K << "]"; 1204 for (int J = Dest.getType().getNumElements() - 1; J >= 0; --J) 1205 OS << ", " << J; 1206 OS << ");"; 1207 emitNewLine(); 1208 } 1209 } else { 1210 OS << " " << Dest.getName() 1211 << " = __builtin_shufflevector(" << Src.getName() << ", " << Src.getName(); 1212 for (int J = Dest.getType().getNumElements() - 1; J >= 0; --J) 1213 OS << ", " << J; 1214 OS << ");"; 1215 emitNewLine(); 1216 } 1217 } 1218 1219 void Intrinsic::emitArgumentReversal() { 1220 if (isBigEndianSafe()) 1221 return; 1222 1223 // Reverse all vector arguments. 1224 for (unsigned I = 0; I < getNumParams(); ++I) { 1225 std::string Name = "p" + utostr(I); 1226 std::string NewName = "rev" + utostr(I); 1227 1228 Variable &V = Variables[Name]; 1229 Variable NewV(V.getType(), NewName + VariablePostfix); 1230 1231 if (!NewV.getType().isVector() || NewV.getType().getNumElements() == 1) 1232 continue; 1233 1234 OS << " " << NewV.getType().str() << " " << NewV.getName() << ";"; 1235 emitReverseVariable(NewV, V); 1236 V = NewV; 1237 } 1238 } 1239 1240 void Intrinsic::emitReturnVarDecl() { 1241 assert(RetVar.getType() == Types[0]); 1242 // Create a return variable, if we're not void. 1243 if (!RetVar.getType().isVoid()) { 1244 OS << " " << RetVar.getType().str() << " " << RetVar.getName() << ";"; 1245 emitNewLine(); 1246 } 1247 } 1248 1249 void Intrinsic::emitReturnReversal() { 1250 if (isBigEndianSafe()) 1251 return; 1252 if (!getReturnType().isVector() || getReturnType().isVoid() || 1253 getReturnType().getNumElements() == 1) 1254 return; 1255 emitReverseVariable(RetVar, RetVar); 1256 } 1257 1258 void Intrinsic::emitShadowedArgs() { 1259 // Macro arguments are not type-checked like inline function arguments, 1260 // so assign them to local temporaries to get the right type checking. 1261 if (!UseMacro) 1262 return; 1263 1264 for (unsigned I = 0; I < getNumParams(); ++I) { 1265 // Do not create a temporary for an immediate argument. 1266 // That would defeat the whole point of using a macro! 1267 if (getParamType(I).isImmediate()) 1268 continue; 1269 // Do not create a temporary for pointer arguments. The input 1270 // pointer may have an alignment hint. 1271 if (getParamType(I).isPointer()) 1272 continue; 1273 1274 std::string Name = "p" + utostr(I); 1275 1276 assert(Variables.find(Name) != Variables.end()); 1277 Variable &V = Variables[Name]; 1278 1279 std::string NewName = "s" + utostr(I); 1280 Variable V2(V.getType(), NewName + VariablePostfix); 1281 1282 OS << " " << V2.getType().str() << " " << V2.getName() << " = " 1283 << V.getName() << ";"; 1284 emitNewLine(); 1285 1286 V = V2; 1287 } 1288 } 1289 1290 bool Intrinsic::protoHasScalar() const { 1291 return llvm::any_of( 1292 Types, [](const Type &T) { return T.isScalar() && !T.isImmediate(); }); 1293 } 1294 1295 void Intrinsic::emitBodyAsBuiltinCall() { 1296 std::string S; 1297 1298 // If this builtin returns a struct 2, 3, or 4 vectors, pass it as an implicit 1299 // sret-like argument. 1300 bool SRet = getReturnType().getNumVectors() >= 2; 1301 1302 StringRef N = Name; 1303 ClassKind LocalCK = CK; 1304 if (!protoHasScalar()) 1305 LocalCK = ClassB; 1306 1307 if (!getReturnType().isVoid() && !SRet) 1308 S += "(" + RetVar.getType().str() + ") "; 1309 1310 S += "__builtin_neon_" + mangleName(std::string(N), LocalCK) + "("; 1311 1312 if (SRet) 1313 S += "&" + RetVar.getName() + ", "; 1314 1315 for (unsigned I = 0; I < getNumParams(); ++I) { 1316 Variable &V = Variables["p" + utostr(I)]; 1317 Type T = V.getType(); 1318 1319 // Handle multiple-vector values specially, emitting each subvector as an 1320 // argument to the builtin. 1321 if (T.getNumVectors() > 1) { 1322 // Check if an explicit cast is needed. 1323 std::string Cast; 1324 if (LocalCK == ClassB) { 1325 Type T2 = T; 1326 T2.makeOneVector(); 1327 T2.makeInteger(8, /*Sign=*/true); 1328 Cast = "(" + T2.str() + ")"; 1329 } 1330 1331 for (unsigned J = 0; J < T.getNumVectors(); ++J) 1332 S += Cast + V.getName() + ".val[" + utostr(J) + "], "; 1333 continue; 1334 } 1335 1336 std::string Arg = V.getName(); 1337 Type CastToType = T; 1338 1339 // Check if an explicit cast is needed. 1340 if (CastToType.isVector() && 1341 (LocalCK == ClassB || (T.isHalf() && !T.isScalarForMangling()))) { 1342 CastToType.makeInteger(8, true); 1343 Arg = "(" + CastToType.str() + ")" + Arg; 1344 } else if (CastToType.isVector() && LocalCK == ClassI) { 1345 if (CastToType.isInteger()) 1346 CastToType.makeSigned(); 1347 Arg = "(" + CastToType.str() + ")" + Arg; 1348 } 1349 1350 S += Arg + ", "; 1351 } 1352 1353 // Extra constant integer to hold type class enum for this function, e.g. s8 1354 if (getClassKind(true) == ClassB) { 1355 S += utostr(getPolymorphicKeyType().getNeonEnum()); 1356 } else { 1357 // Remove extraneous ", ". 1358 S.pop_back(); 1359 S.pop_back(); 1360 } 1361 S += ");"; 1362 1363 std::string RetExpr; 1364 if (!SRet && !RetVar.getType().isVoid()) 1365 RetExpr = RetVar.getName() + " = "; 1366 1367 OS << " " << RetExpr << S; 1368 emitNewLine(); 1369 } 1370 1371 void Intrinsic::emitBody(StringRef CallPrefix) { 1372 std::vector<std::string> Lines; 1373 1374 if (!Body || Body->getValues().empty()) { 1375 // Nothing specific to output - must output a builtin. 1376 emitBodyAsBuiltinCall(); 1377 return; 1378 } 1379 1380 // We have a list of "things to output". The last should be returned. 1381 for (auto *I : Body->getValues()) { 1382 if (StringInit *SI = dyn_cast<StringInit>(I)) { 1383 Lines.push_back(replaceParamsIn(SI->getAsString())); 1384 } else if (DagInit *DI = dyn_cast<DagInit>(I)) { 1385 DagEmitter DE(*this, CallPrefix); 1386 Lines.push_back(DE.emitDag(DI).second + ";"); 1387 } 1388 } 1389 1390 assert(!Lines.empty() && "Empty def?"); 1391 if (!RetVar.getType().isVoid()) 1392 Lines.back().insert(0, RetVar.getName() + " = "); 1393 1394 for (auto &L : Lines) { 1395 OS << " " << L; 1396 emitNewLine(); 1397 } 1398 } 1399 1400 void Intrinsic::emitReturn() { 1401 if (RetVar.getType().isVoid()) 1402 return; 1403 if (UseMacro) 1404 OS << " " << RetVar.getName() << ";"; 1405 else 1406 OS << " return " << RetVar.getName() << ";"; 1407 emitNewLine(); 1408 } 1409 1410 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDag(DagInit *DI) { 1411 // At this point we should only be seeing a def. 1412 DefInit *DefI = cast<DefInit>(DI->getOperator()); 1413 std::string Op = DefI->getAsString(); 1414 1415 if (Op == "cast" || Op == "bitcast") 1416 return emitDagCast(DI, Op == "bitcast"); 1417 if (Op == "shuffle") 1418 return emitDagShuffle(DI); 1419 if (Op == "dup") 1420 return emitDagDup(DI); 1421 if (Op == "dup_typed") 1422 return emitDagDupTyped(DI); 1423 if (Op == "splat") 1424 return emitDagSplat(DI); 1425 if (Op == "save_temp") 1426 return emitDagSaveTemp(DI); 1427 if (Op == "op") 1428 return emitDagOp(DI); 1429 if (Op == "call" || Op == "call_mangled") 1430 return emitDagCall(DI, Op == "call_mangled"); 1431 if (Op == "name_replace") 1432 return emitDagNameReplace(DI); 1433 if (Op == "literal") 1434 return emitDagLiteral(DI); 1435 assert_with_loc(false, "Unknown operation!"); 1436 return std::make_pair(Type::getVoid(), ""); 1437 } 1438 1439 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagOp(DagInit *DI) { 1440 std::string Op = cast<StringInit>(DI->getArg(0))->getAsUnquotedString(); 1441 if (DI->getNumArgs() == 2) { 1442 // Unary op. 1443 std::pair<Type, std::string> R = 1444 emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1))); 1445 return std::make_pair(R.first, Op + R.second); 1446 } else { 1447 assert(DI->getNumArgs() == 3 && "Can only handle unary and binary ops!"); 1448 std::pair<Type, std::string> R1 = 1449 emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1))); 1450 std::pair<Type, std::string> R2 = 1451 emitDagArg(DI->getArg(2), std::string(DI->getArgNameStr(2))); 1452 assert_with_loc(R1.first == R2.first, "Argument type mismatch!"); 1453 return std::make_pair(R1.first, R1.second + " " + Op + " " + R2.second); 1454 } 1455 } 1456 1457 std::pair<Type, std::string> 1458 Intrinsic::DagEmitter::emitDagCall(DagInit *DI, bool MatchMangledName) { 1459 std::vector<Type> Types; 1460 std::vector<std::string> Values; 1461 for (unsigned I = 0; I < DI->getNumArgs() - 1; ++I) { 1462 std::pair<Type, std::string> R = 1463 emitDagArg(DI->getArg(I + 1), std::string(DI->getArgNameStr(I + 1))); 1464 Types.push_back(R.first); 1465 Values.push_back(R.second); 1466 } 1467 1468 // Look up the called intrinsic. 1469 std::string N; 1470 if (StringInit *SI = dyn_cast<StringInit>(DI->getArg(0))) 1471 N = SI->getAsUnquotedString(); 1472 else 1473 N = emitDagArg(DI->getArg(0), "").second; 1474 std::optional<std::string> MangledName; 1475 if (MatchMangledName) { 1476 if (Intr.getRecord()->getValueAsBit("isLaneQ")) 1477 N += "q"; 1478 MangledName = Intr.mangleName(N, ClassS); 1479 } 1480 Intrinsic &Callee = Intr.Emitter.getIntrinsic(N, Types, MangledName); 1481 1482 // Make sure the callee is known as an early def. 1483 Callee.setNeededEarly(); 1484 Intr.Dependencies.insert(&Callee); 1485 1486 // Now create the call itself. 1487 std::string S; 1488 if (!Callee.isBigEndianSafe()) 1489 S += CallPrefix.str(); 1490 S += Callee.getMangledName(true) + "("; 1491 for (unsigned I = 0; I < DI->getNumArgs() - 1; ++I) { 1492 if (I != 0) 1493 S += ", "; 1494 S += Values[I]; 1495 } 1496 S += ")"; 1497 1498 return std::make_pair(Callee.getReturnType(), S); 1499 } 1500 1501 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagCast(DagInit *DI, 1502 bool IsBitCast){ 1503 // (cast MOD* VAL) -> cast VAL to type given by MOD. 1504 std::pair<Type, std::string> R = 1505 emitDagArg(DI->getArg(DI->getNumArgs() - 1), 1506 std::string(DI->getArgNameStr(DI->getNumArgs() - 1))); 1507 Type castToType = R.first; 1508 for (unsigned ArgIdx = 0; ArgIdx < DI->getNumArgs() - 1; ++ArgIdx) { 1509 1510 // MOD can take several forms: 1511 // 1. $X - take the type of parameter / variable X. 1512 // 2. The value "R" - take the type of the return type. 1513 // 3. a type string 1514 // 4. The value "U" or "S" to switch the signedness. 1515 // 5. The value "H" or "D" to half or double the bitwidth. 1516 // 6. The value "8" to convert to 8-bit (signed) integer lanes. 1517 if (!DI->getArgNameStr(ArgIdx).empty()) { 1518 assert_with_loc(Intr.Variables.find(std::string( 1519 DI->getArgNameStr(ArgIdx))) != Intr.Variables.end(), 1520 "Variable not found"); 1521 castToType = 1522 Intr.Variables[std::string(DI->getArgNameStr(ArgIdx))].getType(); 1523 } else { 1524 StringInit *SI = dyn_cast<StringInit>(DI->getArg(ArgIdx)); 1525 assert_with_loc(SI, "Expected string type or $Name for cast type"); 1526 1527 if (SI->getAsUnquotedString() == "R") { 1528 castToType = Intr.getReturnType(); 1529 } else if (SI->getAsUnquotedString() == "U") { 1530 castToType.makeUnsigned(); 1531 } else if (SI->getAsUnquotedString() == "S") { 1532 castToType.makeSigned(); 1533 } else if (SI->getAsUnquotedString() == "H") { 1534 castToType.halveLanes(); 1535 } else if (SI->getAsUnquotedString() == "D") { 1536 castToType.doubleLanes(); 1537 } else if (SI->getAsUnquotedString() == "8") { 1538 castToType.makeInteger(8, true); 1539 } else if (SI->getAsUnquotedString() == "32") { 1540 castToType.make32BitElement(); 1541 } else { 1542 castToType = Type::fromTypedefName(SI->getAsUnquotedString()); 1543 assert_with_loc(!castToType.isVoid(), "Unknown typedef"); 1544 } 1545 } 1546 } 1547 1548 std::string S; 1549 if (IsBitCast) { 1550 // Emit a reinterpret cast. The second operand must be an lvalue, so create 1551 // a temporary. 1552 std::string N = "reint"; 1553 unsigned I = 0; 1554 while (Intr.Variables.find(N) != Intr.Variables.end()) 1555 N = "reint" + utostr(++I); 1556 Intr.Variables[N] = Variable(R.first, N + Intr.VariablePostfix); 1557 1558 Intr.OS << R.first.str() << " " << Intr.Variables[N].getName() << " = " 1559 << R.second << ";"; 1560 Intr.emitNewLine(); 1561 1562 S = "*(" + castToType.str() + " *) &" + Intr.Variables[N].getName() + ""; 1563 } else { 1564 // Emit a normal (static) cast. 1565 S = "(" + castToType.str() + ")(" + R.second + ")"; 1566 } 1567 1568 return std::make_pair(castToType, S); 1569 } 1570 1571 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagShuffle(DagInit *DI){ 1572 // See the documentation in arm_neon.td for a description of these operators. 1573 class LowHalf : public SetTheory::Operator { 1574 public: 1575 void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts, 1576 ArrayRef<SMLoc> Loc) override { 1577 SetTheory::RecSet Elts2; 1578 ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts2, Loc); 1579 Elts.insert(Elts2.begin(), Elts2.begin() + (Elts2.size() / 2)); 1580 } 1581 }; 1582 1583 class HighHalf : public SetTheory::Operator { 1584 public: 1585 void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts, 1586 ArrayRef<SMLoc> Loc) override { 1587 SetTheory::RecSet Elts2; 1588 ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts2, Loc); 1589 Elts.insert(Elts2.begin() + (Elts2.size() / 2), Elts2.end()); 1590 } 1591 }; 1592 1593 class Rev : public SetTheory::Operator { 1594 unsigned ElementSize; 1595 1596 public: 1597 Rev(unsigned ElementSize) : ElementSize(ElementSize) {} 1598 1599 void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts, 1600 ArrayRef<SMLoc> Loc) override { 1601 SetTheory::RecSet Elts2; 1602 ST.evaluate(Expr->arg_begin() + 1, Expr->arg_end(), Elts2, Loc); 1603 1604 int64_t VectorSize = cast<IntInit>(Expr->getArg(0))->getValue(); 1605 VectorSize /= ElementSize; 1606 1607 std::vector<Record *> Revved; 1608 for (unsigned VI = 0; VI < Elts2.size(); VI += VectorSize) { 1609 for (int LI = VectorSize - 1; LI >= 0; --LI) { 1610 Revved.push_back(Elts2[VI + LI]); 1611 } 1612 } 1613 1614 Elts.insert(Revved.begin(), Revved.end()); 1615 } 1616 }; 1617 1618 class MaskExpander : public SetTheory::Expander { 1619 unsigned N; 1620 1621 public: 1622 MaskExpander(unsigned N) : N(N) {} 1623 1624 void expand(SetTheory &ST, Record *R, SetTheory::RecSet &Elts) override { 1625 unsigned Addend = 0; 1626 if (R->getName() == "mask0") 1627 Addend = 0; 1628 else if (R->getName() == "mask1") 1629 Addend = N; 1630 else 1631 return; 1632 for (unsigned I = 0; I < N; ++I) 1633 Elts.insert(R->getRecords().getDef("sv" + utostr(I + Addend))); 1634 } 1635 }; 1636 1637 // (shuffle arg1, arg2, sequence) 1638 std::pair<Type, std::string> Arg1 = 1639 emitDagArg(DI->getArg(0), std::string(DI->getArgNameStr(0))); 1640 std::pair<Type, std::string> Arg2 = 1641 emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1))); 1642 assert_with_loc(Arg1.first == Arg2.first, 1643 "Different types in arguments to shuffle!"); 1644 1645 SetTheory ST; 1646 SetTheory::RecSet Elts; 1647 ST.addOperator("lowhalf", std::make_unique<LowHalf>()); 1648 ST.addOperator("highhalf", std::make_unique<HighHalf>()); 1649 ST.addOperator("rev", 1650 std::make_unique<Rev>(Arg1.first.getElementSizeInBits())); 1651 ST.addExpander("MaskExpand", 1652 std::make_unique<MaskExpander>(Arg1.first.getNumElements())); 1653 ST.evaluate(DI->getArg(2), Elts, std::nullopt); 1654 1655 std::string S = "__builtin_shufflevector(" + Arg1.second + ", " + Arg2.second; 1656 for (auto &E : Elts) { 1657 StringRef Name = E->getName(); 1658 assert_with_loc(Name.startswith("sv"), 1659 "Incorrect element kind in shuffle mask!"); 1660 S += ", " + Name.drop_front(2).str(); 1661 } 1662 S += ")"; 1663 1664 // Recalculate the return type - the shuffle may have halved or doubled it. 1665 Type T(Arg1.first); 1666 if (Elts.size() > T.getNumElements()) { 1667 assert_with_loc( 1668 Elts.size() == T.getNumElements() * 2, 1669 "Can only double or half the number of elements in a shuffle!"); 1670 T.doubleLanes(); 1671 } else if (Elts.size() < T.getNumElements()) { 1672 assert_with_loc( 1673 Elts.size() == T.getNumElements() / 2, 1674 "Can only double or half the number of elements in a shuffle!"); 1675 T.halveLanes(); 1676 } 1677 1678 return std::make_pair(T, S); 1679 } 1680 1681 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagDup(DagInit *DI) { 1682 assert_with_loc(DI->getNumArgs() == 1, "dup() expects one argument"); 1683 std::pair<Type, std::string> A = 1684 emitDagArg(DI->getArg(0), std::string(DI->getArgNameStr(0))); 1685 assert_with_loc(A.first.isScalar(), "dup() expects a scalar argument"); 1686 1687 Type T = Intr.getBaseType(); 1688 assert_with_loc(T.isVector(), "dup() used but default type is scalar!"); 1689 std::string S = "(" + T.str() + ") {"; 1690 for (unsigned I = 0; I < T.getNumElements(); ++I) { 1691 if (I != 0) 1692 S += ", "; 1693 S += A.second; 1694 } 1695 S += "}"; 1696 1697 return std::make_pair(T, S); 1698 } 1699 1700 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagDupTyped(DagInit *DI) { 1701 assert_with_loc(DI->getNumArgs() == 2, "dup_typed() expects two arguments"); 1702 std::pair<Type, std::string> B = 1703 emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1))); 1704 assert_with_loc(B.first.isScalar(), 1705 "dup_typed() requires a scalar as the second argument"); 1706 Type T; 1707 // If the type argument is a constant string, construct the type directly. 1708 if (StringInit *SI = dyn_cast<StringInit>(DI->getArg(0))) { 1709 T = Type::fromTypedefName(SI->getAsUnquotedString()); 1710 assert_with_loc(!T.isVoid(), "Unknown typedef"); 1711 } else 1712 T = emitDagArg(DI->getArg(0), std::string(DI->getArgNameStr(0))).first; 1713 1714 assert_with_loc(T.isVector(), "dup_typed() used but target type is scalar!"); 1715 std::string S = "(" + T.str() + ") {"; 1716 for (unsigned I = 0; I < T.getNumElements(); ++I) { 1717 if (I != 0) 1718 S += ", "; 1719 S += B.second; 1720 } 1721 S += "}"; 1722 1723 return std::make_pair(T, S); 1724 } 1725 1726 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagSplat(DagInit *DI) { 1727 assert_with_loc(DI->getNumArgs() == 2, "splat() expects two arguments"); 1728 std::pair<Type, std::string> A = 1729 emitDagArg(DI->getArg(0), std::string(DI->getArgNameStr(0))); 1730 std::pair<Type, std::string> B = 1731 emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1))); 1732 1733 assert_with_loc(B.first.isScalar(), 1734 "splat() requires a scalar int as the second argument"); 1735 1736 std::string S = "__builtin_shufflevector(" + A.second + ", " + A.second; 1737 for (unsigned I = 0; I < Intr.getBaseType().getNumElements(); ++I) { 1738 S += ", " + B.second; 1739 } 1740 S += ")"; 1741 1742 return std::make_pair(Intr.getBaseType(), S); 1743 } 1744 1745 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagSaveTemp(DagInit *DI) { 1746 assert_with_loc(DI->getNumArgs() == 2, "save_temp() expects two arguments"); 1747 std::pair<Type, std::string> A = 1748 emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1))); 1749 1750 assert_with_loc(!A.first.isVoid(), 1751 "Argument to save_temp() must have non-void type!"); 1752 1753 std::string N = std::string(DI->getArgNameStr(0)); 1754 assert_with_loc(!N.empty(), 1755 "save_temp() expects a name as the first argument"); 1756 1757 assert_with_loc(Intr.Variables.find(N) == Intr.Variables.end(), 1758 "Variable already defined!"); 1759 Intr.Variables[N] = Variable(A.first, N + Intr.VariablePostfix); 1760 1761 std::string S = 1762 A.first.str() + " " + Intr.Variables[N].getName() + " = " + A.second; 1763 1764 return std::make_pair(Type::getVoid(), S); 1765 } 1766 1767 std::pair<Type, std::string> 1768 Intrinsic::DagEmitter::emitDagNameReplace(DagInit *DI) { 1769 std::string S = Intr.Name; 1770 1771 assert_with_loc(DI->getNumArgs() == 2, "name_replace requires 2 arguments!"); 1772 std::string ToReplace = cast<StringInit>(DI->getArg(0))->getAsUnquotedString(); 1773 std::string ReplaceWith = cast<StringInit>(DI->getArg(1))->getAsUnquotedString(); 1774 1775 size_t Idx = S.find(ToReplace); 1776 1777 assert_with_loc(Idx != std::string::npos, "name should contain '" + ToReplace + "'!"); 1778 S.replace(Idx, ToReplace.size(), ReplaceWith); 1779 1780 return std::make_pair(Type::getVoid(), S); 1781 } 1782 1783 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagLiteral(DagInit *DI){ 1784 std::string Ty = cast<StringInit>(DI->getArg(0))->getAsUnquotedString(); 1785 std::string Value = cast<StringInit>(DI->getArg(1))->getAsUnquotedString(); 1786 return std::make_pair(Type::fromTypedefName(Ty), Value); 1787 } 1788 1789 std::pair<Type, std::string> 1790 Intrinsic::DagEmitter::emitDagArg(Init *Arg, std::string ArgName) { 1791 if (!ArgName.empty()) { 1792 assert_with_loc(!Arg->isComplete(), 1793 "Arguments must either be DAGs or names, not both!"); 1794 assert_with_loc(Intr.Variables.find(ArgName) != Intr.Variables.end(), 1795 "Variable not defined!"); 1796 Variable &V = Intr.Variables[ArgName]; 1797 return std::make_pair(V.getType(), V.getName()); 1798 } 1799 1800 assert(Arg && "Neither ArgName nor Arg?!"); 1801 DagInit *DI = dyn_cast<DagInit>(Arg); 1802 assert_with_loc(DI, "Arguments must either be DAGs or names!"); 1803 1804 return emitDag(DI); 1805 } 1806 1807 std::string Intrinsic::generate() { 1808 // Avoid duplicated code for big and little endian 1809 if (isBigEndianSafe()) { 1810 generateImpl(false, "", ""); 1811 return OS.str(); 1812 } 1813 // Little endian intrinsics are simple and don't require any argument 1814 // swapping. 1815 OS << "#ifdef __LITTLE_ENDIAN__\n"; 1816 1817 generateImpl(false, "", ""); 1818 1819 OS << "#else\n"; 1820 1821 // Big endian intrinsics are more complex. The user intended these 1822 // intrinsics to operate on a vector "as-if" loaded by (V)LDR, 1823 // but we load as-if (V)LD1. So we should swap all arguments and 1824 // swap the return value too. 1825 // 1826 // If we call sub-intrinsics, we should call a version that does 1827 // not re-swap the arguments! 1828 generateImpl(true, "", "__noswap_"); 1829 1830 // If we're needed early, create a non-swapping variant for 1831 // big-endian. 1832 if (NeededEarly) { 1833 generateImpl(false, "__noswap_", "__noswap_"); 1834 } 1835 OS << "#endif\n\n"; 1836 1837 return OS.str(); 1838 } 1839 1840 void Intrinsic::generateImpl(bool ReverseArguments, 1841 StringRef NamePrefix, StringRef CallPrefix) { 1842 CurrentRecord = R; 1843 1844 // If we call a macro, our local variables may be corrupted due to 1845 // lack of proper lexical scoping. So, add a globally unique postfix 1846 // to every variable. 1847 // 1848 // indexBody() should have set up the Dependencies set by now. 1849 for (auto *I : Dependencies) 1850 if (I->UseMacro) { 1851 VariablePostfix = "_" + utostr(Emitter.getUniqueNumber()); 1852 break; 1853 } 1854 1855 initVariables(); 1856 1857 emitPrototype(NamePrefix); 1858 1859 if (IsUnavailable) { 1860 OS << " __attribute__((unavailable));"; 1861 } else { 1862 emitOpeningBrace(); 1863 // Emit return variable declaration first as to not trigger 1864 // -Wdeclaration-after-statement. 1865 emitReturnVarDecl(); 1866 emitShadowedArgs(); 1867 if (ReverseArguments) 1868 emitArgumentReversal(); 1869 emitBody(CallPrefix); 1870 if (ReverseArguments) 1871 emitReturnReversal(); 1872 emitReturn(); 1873 emitClosingBrace(); 1874 } 1875 OS << "\n"; 1876 1877 CurrentRecord = nullptr; 1878 } 1879 1880 void Intrinsic::indexBody() { 1881 CurrentRecord = R; 1882 1883 initVariables(); 1884 // Emit return variable declaration first as to not trigger 1885 // -Wdeclaration-after-statement. 1886 emitReturnVarDecl(); 1887 emitBody(""); 1888 OS.str(""); 1889 1890 CurrentRecord = nullptr; 1891 } 1892 1893 //===----------------------------------------------------------------------===// 1894 // NeonEmitter implementation 1895 //===----------------------------------------------------------------------===// 1896 1897 Intrinsic &NeonEmitter::getIntrinsic(StringRef Name, ArrayRef<Type> Types, 1898 std::optional<std::string> MangledName) { 1899 // First, look up the name in the intrinsic map. 1900 assert_with_loc(IntrinsicMap.find(Name.str()) != IntrinsicMap.end(), 1901 ("Intrinsic '" + Name + "' not found!").str()); 1902 auto &V = IntrinsicMap.find(Name.str())->second; 1903 std::vector<Intrinsic *> GoodVec; 1904 1905 // Create a string to print if we end up failing. 1906 std::string ErrMsg = "looking up intrinsic '" + Name.str() + "("; 1907 for (unsigned I = 0; I < Types.size(); ++I) { 1908 if (I != 0) 1909 ErrMsg += ", "; 1910 ErrMsg += Types[I].str(); 1911 } 1912 ErrMsg += ")'\n"; 1913 ErrMsg += "Available overloads:\n"; 1914 1915 // Now, look through each intrinsic implementation and see if the types are 1916 // compatible. 1917 for (auto &I : V) { 1918 ErrMsg += " - " + I.getReturnType().str() + " " + I.getMangledName(); 1919 ErrMsg += "("; 1920 for (unsigned A = 0; A < I.getNumParams(); ++A) { 1921 if (A != 0) 1922 ErrMsg += ", "; 1923 ErrMsg += I.getParamType(A).str(); 1924 } 1925 ErrMsg += ")\n"; 1926 1927 if (MangledName && MangledName != I.getMangledName(true)) 1928 continue; 1929 1930 if (I.getNumParams() != Types.size()) 1931 continue; 1932 1933 unsigned ArgNum = 0; 1934 bool MatchingArgumentTypes = llvm::all_of(Types, [&](const auto &Type) { 1935 return Type == I.getParamType(ArgNum++); 1936 }); 1937 1938 if (MatchingArgumentTypes) 1939 GoodVec.push_back(&I); 1940 } 1941 1942 assert_with_loc(!GoodVec.empty(), 1943 "No compatible intrinsic found - " + ErrMsg); 1944 assert_with_loc(GoodVec.size() == 1, "Multiple overloads found - " + ErrMsg); 1945 1946 return *GoodVec.front(); 1947 } 1948 1949 void NeonEmitter::createIntrinsic(Record *R, 1950 SmallVectorImpl<Intrinsic *> &Out) { 1951 std::string Name = std::string(R->getValueAsString("Name")); 1952 std::string Proto = std::string(R->getValueAsString("Prototype")); 1953 std::string Types = std::string(R->getValueAsString("Types")); 1954 Record *OperationRec = R->getValueAsDef("Operation"); 1955 bool BigEndianSafe = R->getValueAsBit("BigEndianSafe"); 1956 std::string ArchGuard = std::string(R->getValueAsString("ArchGuard")); 1957 std::string TargetGuard = std::string(R->getValueAsString("TargetGuard")); 1958 bool IsUnavailable = OperationRec->getValueAsBit("Unavailable"); 1959 std::string CartesianProductWith = std::string(R->getValueAsString("CartesianProductWith")); 1960 1961 // Set the global current record. This allows assert_with_loc to produce 1962 // decent location information even when highly nested. 1963 CurrentRecord = R; 1964 1965 ListInit *Body = OperationRec->getValueAsListInit("Ops"); 1966 1967 std::vector<TypeSpec> TypeSpecs = TypeSpec::fromTypeSpecs(Types); 1968 1969 ClassKind CK = ClassNone; 1970 if (R->getSuperClasses().size() >= 2) 1971 CK = ClassMap[R->getSuperClasses()[1].first]; 1972 1973 std::vector<std::pair<TypeSpec, TypeSpec>> NewTypeSpecs; 1974 if (!CartesianProductWith.empty()) { 1975 std::vector<TypeSpec> ProductTypeSpecs = TypeSpec::fromTypeSpecs(CartesianProductWith); 1976 for (auto TS : TypeSpecs) { 1977 Type DefaultT(TS, "."); 1978 for (auto SrcTS : ProductTypeSpecs) { 1979 Type DefaultSrcT(SrcTS, "."); 1980 if (TS == SrcTS || 1981 DefaultSrcT.getSizeInBits() != DefaultT.getSizeInBits()) 1982 continue; 1983 NewTypeSpecs.push_back(std::make_pair(TS, SrcTS)); 1984 } 1985 } 1986 } else { 1987 for (auto TS : TypeSpecs) { 1988 NewTypeSpecs.push_back(std::make_pair(TS, TS)); 1989 } 1990 } 1991 1992 llvm::sort(NewTypeSpecs); 1993 NewTypeSpecs.erase(std::unique(NewTypeSpecs.begin(), NewTypeSpecs.end()), 1994 NewTypeSpecs.end()); 1995 auto &Entry = IntrinsicMap[Name]; 1996 1997 for (auto &I : NewTypeSpecs) { 1998 Entry.emplace_back(R, Name, Proto, I.first, I.second, CK, Body, *this, 1999 ArchGuard, TargetGuard, IsUnavailable, BigEndianSafe); 2000 Out.push_back(&Entry.back()); 2001 } 2002 2003 CurrentRecord = nullptr; 2004 } 2005 2006 /// genBuiltinsDef: Generate the BuiltinsARM.def and BuiltinsAArch64.def 2007 /// declaration of builtins, checking for unique builtin declarations. 2008 void NeonEmitter::genBuiltinsDef(raw_ostream &OS, 2009 SmallVectorImpl<Intrinsic *> &Defs) { 2010 OS << "#ifdef GET_NEON_BUILTINS\n"; 2011 2012 // We only want to emit a builtin once, and we want to emit them in 2013 // alphabetical order, so use a std::set. 2014 std::set<std::pair<std::string, std::string>> Builtins; 2015 2016 for (auto *Def : Defs) { 2017 if (Def->hasBody()) 2018 continue; 2019 2020 std::string S = "__builtin_neon_" + Def->getMangledName() + ", \""; 2021 S += Def->getBuiltinTypeStr(); 2022 S += "\", \"n\""; 2023 2024 Builtins.emplace(S, Def->getTargetGuard()); 2025 } 2026 2027 for (auto &S : Builtins) { 2028 if (S.second == "") 2029 OS << "BUILTIN("; 2030 else 2031 OS << "TARGET_BUILTIN("; 2032 OS << S.first; 2033 if (S.second == "") 2034 OS << ")\n"; 2035 else 2036 OS << ", \"" << S.second << "\")\n"; 2037 } 2038 2039 OS << "#endif\n\n"; 2040 } 2041 2042 /// Generate the ARM and AArch64 overloaded type checking code for 2043 /// SemaChecking.cpp, checking for unique builtin declarations. 2044 void NeonEmitter::genOverloadTypeCheckCode(raw_ostream &OS, 2045 SmallVectorImpl<Intrinsic *> &Defs) { 2046 OS << "#ifdef GET_NEON_OVERLOAD_CHECK\n"; 2047 2048 // We record each overload check line before emitting because subsequent Inst 2049 // definitions may extend the number of permitted types (i.e. augment the 2050 // Mask). Use std::map to avoid sorting the table by hash number. 2051 struct OverloadInfo { 2052 uint64_t Mask; 2053 int PtrArgNum; 2054 bool HasConstPtr; 2055 OverloadInfo() : Mask(0ULL), PtrArgNum(0), HasConstPtr(false) {} 2056 }; 2057 std::map<std::string, OverloadInfo> OverloadMap; 2058 2059 for (auto *Def : Defs) { 2060 // If the def has a body (that is, it has Operation DAGs), it won't call 2061 // __builtin_neon_* so we don't need to generate a definition for it. 2062 if (Def->hasBody()) 2063 continue; 2064 // Functions which have a scalar argument cannot be overloaded, no need to 2065 // check them if we are emitting the type checking code. 2066 if (Def->protoHasScalar()) 2067 continue; 2068 2069 uint64_t Mask = 0ULL; 2070 Mask |= 1ULL << Def->getPolymorphicKeyType().getNeonEnum(); 2071 2072 // Check if the function has a pointer or const pointer argument. 2073 int PtrArgNum = -1; 2074 bool HasConstPtr = false; 2075 for (unsigned I = 0; I < Def->getNumParams(); ++I) { 2076 const auto &Type = Def->getParamType(I); 2077 if (Type.isPointer()) { 2078 PtrArgNum = I; 2079 HasConstPtr = Type.isConstPointer(); 2080 } 2081 } 2082 2083 // For sret builtins, adjust the pointer argument index. 2084 if (PtrArgNum >= 0 && Def->getReturnType().getNumVectors() > 1) 2085 PtrArgNum += 1; 2086 2087 std::string Name = Def->getName(); 2088 // Omit type checking for the pointer arguments of vld1_lane, vld1_dup, 2089 // vst1_lane, vldap1_lane, and vstl1_lane intrinsics. Using a pointer to 2090 // the vector element type with one of those operations causes codegen to 2091 // select an aligned load/store instruction. If you want an unaligned 2092 // operation, the pointer argument needs to have less alignment than element 2093 // type, so just accept any pointer type. 2094 if (Name == "vld1_lane" || Name == "vld1_dup" || Name == "vst1_lane" || 2095 Name == "vldap1_lane" || Name == "vstl1_lane") { 2096 PtrArgNum = -1; 2097 HasConstPtr = false; 2098 } 2099 2100 if (Mask) { 2101 std::string Name = Def->getMangledName(); 2102 OverloadMap.insert(std::make_pair(Name, OverloadInfo())); 2103 OverloadInfo &OI = OverloadMap[Name]; 2104 OI.Mask |= Mask; 2105 OI.PtrArgNum |= PtrArgNum; 2106 OI.HasConstPtr = HasConstPtr; 2107 } 2108 } 2109 2110 for (auto &I : OverloadMap) { 2111 OverloadInfo &OI = I.second; 2112 2113 OS << "case NEON::BI__builtin_neon_" << I.first << ": "; 2114 OS << "mask = 0x" << Twine::utohexstr(OI.Mask) << "ULL"; 2115 if (OI.PtrArgNum >= 0) 2116 OS << "; PtrArgNum = " << OI.PtrArgNum; 2117 if (OI.HasConstPtr) 2118 OS << "; HasConstPtr = true"; 2119 OS << "; break;\n"; 2120 } 2121 OS << "#endif\n\n"; 2122 } 2123 2124 void NeonEmitter::genIntrinsicRangeCheckCode(raw_ostream &OS, 2125 SmallVectorImpl<Intrinsic *> &Defs) { 2126 OS << "#ifdef GET_NEON_IMMEDIATE_CHECK\n"; 2127 2128 std::set<std::string> Emitted; 2129 2130 for (auto *Def : Defs) { 2131 if (Def->hasBody()) 2132 continue; 2133 // Functions which do not have an immediate do not need to have range 2134 // checking code emitted. 2135 if (!Def->hasImmediate()) 2136 continue; 2137 if (Emitted.find(Def->getMangledName()) != Emitted.end()) 2138 continue; 2139 2140 std::string LowerBound, UpperBound; 2141 2142 Record *R = Def->getRecord(); 2143 if (R->getValueAsBit("isVXAR")) { 2144 //VXAR takes an immediate in the range [0, 63] 2145 LowerBound = "0"; 2146 UpperBound = "63"; 2147 } else if (R->getValueAsBit("isVCVT_N")) { 2148 // VCVT between floating- and fixed-point values takes an immediate 2149 // in the range [1, 32) for f32 or [1, 64) for f64 or [1, 16) for f16. 2150 LowerBound = "1"; 2151 if (Def->getBaseType().getElementSizeInBits() == 16 || 2152 Def->getName().find('h') != std::string::npos) 2153 // VCVTh operating on FP16 intrinsics in range [1, 16) 2154 UpperBound = "15"; 2155 else if (Def->getBaseType().getElementSizeInBits() == 32) 2156 UpperBound = "31"; 2157 else 2158 UpperBound = "63"; 2159 } else if (R->getValueAsBit("isScalarShift")) { 2160 // Right shifts have an 'r' in the name, left shifts do not. Convert 2161 // instructions have the same bounds and right shifts. 2162 if (Def->getName().find('r') != std::string::npos || 2163 Def->getName().find("cvt") != std::string::npos) 2164 LowerBound = "1"; 2165 2166 UpperBound = utostr(Def->getReturnType().getElementSizeInBits() - 1); 2167 } else if (R->getValueAsBit("isShift")) { 2168 // Builtins which are overloaded by type will need to have their upper 2169 // bound computed at Sema time based on the type constant. 2170 2171 // Right shifts have an 'r' in the name, left shifts do not. 2172 if (Def->getName().find('r') != std::string::npos) 2173 LowerBound = "1"; 2174 UpperBound = "RFT(TV, true)"; 2175 } else if (Def->getClassKind(true) == ClassB) { 2176 // ClassB intrinsics have a type (and hence lane number) that is only 2177 // known at runtime. 2178 if (R->getValueAsBit("isLaneQ")) 2179 UpperBound = "RFT(TV, false, true)"; 2180 else 2181 UpperBound = "RFT(TV, false, false)"; 2182 } else { 2183 // The immediate generally refers to a lane in the preceding argument. 2184 assert(Def->getImmediateIdx() > 0); 2185 Type T = Def->getParamType(Def->getImmediateIdx() - 1); 2186 UpperBound = utostr(T.getNumElements() - 1); 2187 } 2188 2189 // Calculate the index of the immediate that should be range checked. 2190 unsigned Idx = Def->getNumParams(); 2191 if (Def->hasImmediate()) 2192 Idx = Def->getGeneratedParamIdx(Def->getImmediateIdx()); 2193 2194 OS << "case NEON::BI__builtin_neon_" << Def->getMangledName() << ": " 2195 << "i = " << Idx << ";"; 2196 if (!LowerBound.empty()) 2197 OS << " l = " << LowerBound << ";"; 2198 if (!UpperBound.empty()) 2199 OS << " u = " << UpperBound << ";"; 2200 OS << " break;\n"; 2201 2202 Emitted.insert(Def->getMangledName()); 2203 } 2204 2205 OS << "#endif\n\n"; 2206 } 2207 2208 /// runHeader - Emit a file with sections defining: 2209 /// 1. the NEON section of BuiltinsARM.def and BuiltinsAArch64.def. 2210 /// 2. the SemaChecking code for the type overload checking. 2211 /// 3. the SemaChecking code for validation of intrinsic immediate arguments. 2212 void NeonEmitter::runHeader(raw_ostream &OS) { 2213 std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst"); 2214 2215 SmallVector<Intrinsic *, 128> Defs; 2216 for (auto *R : RV) 2217 createIntrinsic(R, Defs); 2218 2219 // Generate shared BuiltinsXXX.def 2220 genBuiltinsDef(OS, Defs); 2221 2222 // Generate ARM overloaded type checking code for SemaChecking.cpp 2223 genOverloadTypeCheckCode(OS, Defs); 2224 2225 // Generate ARM range checking code for shift/lane immediates. 2226 genIntrinsicRangeCheckCode(OS, Defs); 2227 } 2228 2229 static void emitNeonTypeDefs(const std::string& types, raw_ostream &OS) { 2230 std::string TypedefTypes(types); 2231 std::vector<TypeSpec> TDTypeVec = TypeSpec::fromTypeSpecs(TypedefTypes); 2232 2233 // Emit vector typedefs. 2234 bool InIfdef = false; 2235 for (auto &TS : TDTypeVec) { 2236 bool IsA64 = false; 2237 Type T(TS, "."); 2238 if (T.isDouble()) 2239 IsA64 = true; 2240 2241 if (InIfdef && !IsA64) { 2242 OS << "#endif\n"; 2243 InIfdef = false; 2244 } 2245 if (!InIfdef && IsA64) { 2246 OS << "#ifdef __aarch64__\n"; 2247 InIfdef = true; 2248 } 2249 2250 if (T.isPoly()) 2251 OS << "typedef __attribute__((neon_polyvector_type("; 2252 else 2253 OS << "typedef __attribute__((neon_vector_type("; 2254 2255 Type T2 = T; 2256 T2.makeScalar(); 2257 OS << T.getNumElements() << "))) "; 2258 OS << T2.str(); 2259 OS << " " << T.str() << ";\n"; 2260 } 2261 if (InIfdef) 2262 OS << "#endif\n"; 2263 OS << "\n"; 2264 2265 // Emit struct typedefs. 2266 InIfdef = false; 2267 for (unsigned NumMembers = 2; NumMembers <= 4; ++NumMembers) { 2268 for (auto &TS : TDTypeVec) { 2269 bool IsA64 = false; 2270 Type T(TS, "."); 2271 if (T.isDouble()) 2272 IsA64 = true; 2273 2274 if (InIfdef && !IsA64) { 2275 OS << "#endif\n"; 2276 InIfdef = false; 2277 } 2278 if (!InIfdef && IsA64) { 2279 OS << "#ifdef __aarch64__\n"; 2280 InIfdef = true; 2281 } 2282 2283 const char Mods[] = { static_cast<char>('2' + (NumMembers - 2)), 0}; 2284 Type VT(TS, Mods); 2285 OS << "typedef struct " << VT.str() << " {\n"; 2286 OS << " " << T.str() << " val"; 2287 OS << "[" << NumMembers << "]"; 2288 OS << ";\n} "; 2289 OS << VT.str() << ";\n"; 2290 OS << "\n"; 2291 } 2292 } 2293 if (InIfdef) 2294 OS << "#endif\n"; 2295 } 2296 2297 /// run - Read the records in arm_neon.td and output arm_neon.h. arm_neon.h 2298 /// is comprised of type definitions and function declarations. 2299 void NeonEmitter::run(raw_ostream &OS) { 2300 OS << "/*===---- arm_neon.h - ARM Neon intrinsics " 2301 "------------------------------" 2302 "---===\n" 2303 " *\n" 2304 " * Permission is hereby granted, free of charge, to any person " 2305 "obtaining " 2306 "a copy\n" 2307 " * of this software and associated documentation files (the " 2308 "\"Software\")," 2309 " to deal\n" 2310 " * in the Software without restriction, including without limitation " 2311 "the " 2312 "rights\n" 2313 " * to use, copy, modify, merge, publish, distribute, sublicense, " 2314 "and/or sell\n" 2315 " * copies of the Software, and to permit persons to whom the Software " 2316 "is\n" 2317 " * furnished to do so, subject to the following conditions:\n" 2318 " *\n" 2319 " * The above copyright notice and this permission notice shall be " 2320 "included in\n" 2321 " * all copies or substantial portions of the Software.\n" 2322 " *\n" 2323 " * THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, " 2324 "EXPRESS OR\n" 2325 " * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF " 2326 "MERCHANTABILITY,\n" 2327 " * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT " 2328 "SHALL THE\n" 2329 " * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR " 2330 "OTHER\n" 2331 " * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, " 2332 "ARISING FROM,\n" 2333 " * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER " 2334 "DEALINGS IN\n" 2335 " * THE SOFTWARE.\n" 2336 " *\n" 2337 " *===-----------------------------------------------------------------" 2338 "---" 2339 "---===\n" 2340 " */\n\n"; 2341 2342 OS << "#ifndef __ARM_NEON_H\n"; 2343 OS << "#define __ARM_NEON_H\n\n"; 2344 2345 OS << "#ifndef __ARM_FP\n"; 2346 OS << "#error \"NEON intrinsics not available with the soft-float ABI. " 2347 "Please use -mfloat-abi=softfp or -mfloat-abi=hard\"\n"; 2348 OS << "#else\n\n"; 2349 2350 OS << "#if !defined(__ARM_NEON)\n"; 2351 OS << "#error \"NEON support not enabled\"\n"; 2352 OS << "#else\n\n"; 2353 2354 OS << "#include <stdint.h>\n\n"; 2355 2356 OS << "#include <arm_bf16.h>\n"; 2357 2358 // Emit NEON-specific scalar typedefs. 2359 OS << "typedef float float32_t;\n"; 2360 OS << "typedef __fp16 float16_t;\n"; 2361 2362 OS << "#ifdef __aarch64__\n"; 2363 OS << "typedef double float64_t;\n"; 2364 OS << "#endif\n\n"; 2365 2366 // For now, signedness of polynomial types depends on target 2367 OS << "#ifdef __aarch64__\n"; 2368 OS << "typedef uint8_t poly8_t;\n"; 2369 OS << "typedef uint16_t poly16_t;\n"; 2370 OS << "typedef uint64_t poly64_t;\n"; 2371 OS << "typedef __uint128_t poly128_t;\n"; 2372 OS << "#else\n"; 2373 OS << "typedef int8_t poly8_t;\n"; 2374 OS << "typedef int16_t poly16_t;\n"; 2375 OS << "typedef int64_t poly64_t;\n"; 2376 OS << "#endif\n"; 2377 2378 emitNeonTypeDefs("cQcsQsiQilQlUcQUcUsQUsUiQUiUlQUlhQhfQfdQdPcQPcPsQPsPlQPl", OS); 2379 2380 emitNeonTypeDefs("bQb", OS); 2381 2382 OS << "#define __ai static __inline__ __attribute__((__always_inline__, " 2383 "__nodebug__))\n\n"; 2384 2385 SmallVector<Intrinsic *, 128> Defs; 2386 std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst"); 2387 for (auto *R : RV) 2388 createIntrinsic(R, Defs); 2389 2390 for (auto *I : Defs) 2391 I->indexBody(); 2392 2393 llvm::stable_sort(Defs, llvm::deref<std::less<>>()); 2394 2395 // Only emit a def when its requirements have been met. 2396 // FIXME: This loop could be made faster, but it's fast enough for now. 2397 bool MadeProgress = true; 2398 std::string InGuard; 2399 while (!Defs.empty() && MadeProgress) { 2400 MadeProgress = false; 2401 2402 for (SmallVector<Intrinsic *, 128>::iterator I = Defs.begin(); 2403 I != Defs.end(); /*No step*/) { 2404 bool DependenciesSatisfied = true; 2405 for (auto *II : (*I)->getDependencies()) { 2406 if (llvm::is_contained(Defs, II)) 2407 DependenciesSatisfied = false; 2408 } 2409 if (!DependenciesSatisfied) { 2410 // Try the next one. 2411 ++I; 2412 continue; 2413 } 2414 2415 // Emit #endif/#if pair if needed. 2416 if ((*I)->getArchGuard() != InGuard) { 2417 if (!InGuard.empty()) 2418 OS << "#endif\n"; 2419 InGuard = (*I)->getArchGuard(); 2420 if (!InGuard.empty()) 2421 OS << "#if " << InGuard << "\n"; 2422 } 2423 2424 // Actually generate the intrinsic code. 2425 OS << (*I)->generate(); 2426 2427 MadeProgress = true; 2428 I = Defs.erase(I); 2429 } 2430 } 2431 assert(Defs.empty() && "Some requirements were not satisfied!"); 2432 if (!InGuard.empty()) 2433 OS << "#endif\n"; 2434 2435 OS << "\n"; 2436 OS << "#undef __ai\n\n"; 2437 OS << "#endif /* if !defined(__ARM_NEON) */\n"; 2438 OS << "#endif /* ifndef __ARM_FP */\n"; 2439 OS << "#endif /* __ARM_NEON_H */\n"; 2440 } 2441 2442 /// run - Read the records in arm_fp16.td and output arm_fp16.h. arm_fp16.h 2443 /// is comprised of type definitions and function declarations. 2444 void NeonEmitter::runFP16(raw_ostream &OS) { 2445 OS << "/*===---- arm_fp16.h - ARM FP16 intrinsics " 2446 "------------------------------" 2447 "---===\n" 2448 " *\n" 2449 " * Permission is hereby granted, free of charge, to any person " 2450 "obtaining a copy\n" 2451 " * of this software and associated documentation files (the " 2452 "\"Software\"), to deal\n" 2453 " * in the Software without restriction, including without limitation " 2454 "the rights\n" 2455 " * to use, copy, modify, merge, publish, distribute, sublicense, " 2456 "and/or sell\n" 2457 " * copies of the Software, and to permit persons to whom the Software " 2458 "is\n" 2459 " * furnished to do so, subject to the following conditions:\n" 2460 " *\n" 2461 " * The above copyright notice and this permission notice shall be " 2462 "included in\n" 2463 " * all copies or substantial portions of the Software.\n" 2464 " *\n" 2465 " * THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, " 2466 "EXPRESS OR\n" 2467 " * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF " 2468 "MERCHANTABILITY,\n" 2469 " * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT " 2470 "SHALL THE\n" 2471 " * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR " 2472 "OTHER\n" 2473 " * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, " 2474 "ARISING FROM,\n" 2475 " * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER " 2476 "DEALINGS IN\n" 2477 " * THE SOFTWARE.\n" 2478 " *\n" 2479 " *===-----------------------------------------------------------------" 2480 "---" 2481 "---===\n" 2482 " */\n\n"; 2483 2484 OS << "#ifndef __ARM_FP16_H\n"; 2485 OS << "#define __ARM_FP16_H\n\n"; 2486 2487 OS << "#include <stdint.h>\n\n"; 2488 2489 OS << "typedef __fp16 float16_t;\n"; 2490 2491 OS << "#define __ai static __inline__ __attribute__((__always_inline__, " 2492 "__nodebug__))\n\n"; 2493 2494 SmallVector<Intrinsic *, 128> Defs; 2495 std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst"); 2496 for (auto *R : RV) 2497 createIntrinsic(R, Defs); 2498 2499 for (auto *I : Defs) 2500 I->indexBody(); 2501 2502 llvm::stable_sort(Defs, llvm::deref<std::less<>>()); 2503 2504 // Only emit a def when its requirements have been met. 2505 // FIXME: This loop could be made faster, but it's fast enough for now. 2506 bool MadeProgress = true; 2507 std::string InGuard; 2508 while (!Defs.empty() && MadeProgress) { 2509 MadeProgress = false; 2510 2511 for (SmallVector<Intrinsic *, 128>::iterator I = Defs.begin(); 2512 I != Defs.end(); /*No step*/) { 2513 bool DependenciesSatisfied = true; 2514 for (auto *II : (*I)->getDependencies()) { 2515 if (llvm::is_contained(Defs, II)) 2516 DependenciesSatisfied = false; 2517 } 2518 if (!DependenciesSatisfied) { 2519 // Try the next one. 2520 ++I; 2521 continue; 2522 } 2523 2524 // Emit #endif/#if pair if needed. 2525 if ((*I)->getArchGuard() != InGuard) { 2526 if (!InGuard.empty()) 2527 OS << "#endif\n"; 2528 InGuard = (*I)->getArchGuard(); 2529 if (!InGuard.empty()) 2530 OS << "#if " << InGuard << "\n"; 2531 } 2532 2533 // Actually generate the intrinsic code. 2534 OS << (*I)->generate(); 2535 2536 MadeProgress = true; 2537 I = Defs.erase(I); 2538 } 2539 } 2540 assert(Defs.empty() && "Some requirements were not satisfied!"); 2541 if (!InGuard.empty()) 2542 OS << "#endif\n"; 2543 2544 OS << "\n"; 2545 OS << "#undef __ai\n\n"; 2546 OS << "#endif /* __ARM_FP16_H */\n"; 2547 } 2548 2549 void NeonEmitter::runBF16(raw_ostream &OS) { 2550 OS << "/*===---- arm_bf16.h - ARM BF16 intrinsics " 2551 "-----------------------------------===\n" 2552 " *\n" 2553 " *\n" 2554 " * Part of the LLVM Project, under the Apache License v2.0 with LLVM " 2555 "Exceptions.\n" 2556 " * See https://llvm.org/LICENSE.txt for license information.\n" 2557 " * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception\n" 2558 " *\n" 2559 " *===-----------------------------------------------------------------" 2560 "------===\n" 2561 " */\n\n"; 2562 2563 OS << "#ifndef __ARM_BF16_H\n"; 2564 OS << "#define __ARM_BF16_H\n\n"; 2565 2566 OS << "typedef __bf16 bfloat16_t;\n"; 2567 2568 OS << "#define __ai static __inline__ __attribute__((__always_inline__, " 2569 "__nodebug__))\n\n"; 2570 2571 SmallVector<Intrinsic *, 128> Defs; 2572 std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst"); 2573 for (auto *R : RV) 2574 createIntrinsic(R, Defs); 2575 2576 for (auto *I : Defs) 2577 I->indexBody(); 2578 2579 llvm::stable_sort(Defs, llvm::deref<std::less<>>()); 2580 2581 // Only emit a def when its requirements have been met. 2582 // FIXME: This loop could be made faster, but it's fast enough for now. 2583 bool MadeProgress = true; 2584 std::string InGuard; 2585 while (!Defs.empty() && MadeProgress) { 2586 MadeProgress = false; 2587 2588 for (SmallVector<Intrinsic *, 128>::iterator I = Defs.begin(); 2589 I != Defs.end(); /*No step*/) { 2590 bool DependenciesSatisfied = true; 2591 for (auto *II : (*I)->getDependencies()) { 2592 if (llvm::is_contained(Defs, II)) 2593 DependenciesSatisfied = false; 2594 } 2595 if (!DependenciesSatisfied) { 2596 // Try the next one. 2597 ++I; 2598 continue; 2599 } 2600 2601 // Emit #endif/#if pair if needed. 2602 if ((*I)->getArchGuard() != InGuard) { 2603 if (!InGuard.empty()) 2604 OS << "#endif\n"; 2605 InGuard = (*I)->getArchGuard(); 2606 if (!InGuard.empty()) 2607 OS << "#if " << InGuard << "\n"; 2608 } 2609 2610 // Actually generate the intrinsic code. 2611 OS << (*I)->generate(); 2612 2613 MadeProgress = true; 2614 I = Defs.erase(I); 2615 } 2616 } 2617 assert(Defs.empty() && "Some requirements were not satisfied!"); 2618 if (!InGuard.empty()) 2619 OS << "#endif\n"; 2620 2621 OS << "\n"; 2622 OS << "#undef __ai\n\n"; 2623 2624 OS << "#endif\n"; 2625 } 2626 2627 void clang::EmitNeon(RecordKeeper &Records, raw_ostream &OS) { 2628 NeonEmitter(Records).run(OS); 2629 } 2630 2631 void clang::EmitFP16(RecordKeeper &Records, raw_ostream &OS) { 2632 NeonEmitter(Records).runFP16(OS); 2633 } 2634 2635 void clang::EmitBF16(RecordKeeper &Records, raw_ostream &OS) { 2636 NeonEmitter(Records).runBF16(OS); 2637 } 2638 2639 void clang::EmitNeonSema(RecordKeeper &Records, raw_ostream &OS) { 2640 NeonEmitter(Records).runHeader(OS); 2641 } 2642 2643 void clang::EmitNeonTest(RecordKeeper &Records, raw_ostream &OS) { 2644 llvm_unreachable("Neon test generation no longer implemented!"); 2645 } 2646