1 //===- MveEmitter.cpp - Generate arm_mve.h for use with clang -*- C++ -*-=====// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This set of linked tablegen backends is responsible for emitting the bits 10 // and pieces that implement <arm_mve.h>, which is defined by the ACLE standard 11 // and provides a set of types and functions for (more or less) direct access 12 // to the MVE instruction set, including the scalar shifts as well as the 13 // vector instructions. 14 // 15 // MVE's standard intrinsic functions are unusual in that they have a system of 16 // polymorphism. For example, the function vaddq() can behave like vaddq_u16(), 17 // vaddq_f32(), vaddq_s8(), etc., depending on the types of the vector 18 // arguments you give it. 19 // 20 // This constrains the implementation strategies. The usual approach to making 21 // the user-facing functions polymorphic would be to either use 22 // __attribute__((overloadable)) to make a set of vaddq() functions that are 23 // all inline wrappers on the underlying clang builtins, or to define a single 24 // vaddq() macro which expands to an instance of _Generic. 25 // 26 // The inline-wrappers approach would work fine for most intrinsics, except for 27 // the ones that take an argument required to be a compile-time constant, 28 // because if you wrap an inline function around a call to a builtin, the 29 // constant nature of the argument is not passed through. 30 // 31 // The _Generic approach can be made to work with enough effort, but it takes a 32 // lot of machinery, because of the design feature of _Generic that even the 33 // untaken branches are required to pass all front-end validity checks such as 34 // type-correctness. You can work around that by nesting further _Generics all 35 // over the place to coerce things to the right type in untaken branches, but 36 // what you get out is complicated, hard to guarantee its correctness, and 37 // worst of all, gives _completely unreadable_ error messages if the user gets 38 // the types wrong for an intrinsic call. 39 // 40 // Therefore, my strategy is to introduce a new __attribute__ that allows a 41 // function to be mapped to a clang builtin even though it doesn't have the 42 // same name, and then declare all the user-facing MVE function names with that 43 // attribute, mapping each one directly to the clang builtin. And the 44 // polymorphic ones have __attribute__((overloadable)) as well. So once the 45 // compiler has resolved the overload, it knows the internal builtin ID of the 46 // selected function, and can check the immediate arguments against that; and 47 // if the user gets the types wrong in a call to a polymorphic intrinsic, they 48 // get a completely clear error message showing all the declarations of that 49 // function in the header file and explaining why each one doesn't fit their 50 // call. 51 // 52 // The downside of this is that if every clang builtin has to correspond 53 // exactly to a user-facing ACLE intrinsic, then you can't save work in the 54 // frontend by doing it in the header file: CGBuiltin.cpp has to do the entire 55 // job of converting an ACLE intrinsic call into LLVM IR. So the Tablegen 56 // description for an MVE intrinsic has to contain a full description of the 57 // sequence of IRBuilder calls that clang will need to make. 58 // 59 //===----------------------------------------------------------------------===// 60 61 #include "llvm/ADT/APInt.h" 62 #include "llvm/ADT/StringRef.h" 63 #include "llvm/ADT/StringSwitch.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/raw_ostream.h" 66 #include "llvm/TableGen/Error.h" 67 #include "llvm/TableGen/Record.h" 68 #include "llvm/TableGen/StringToOffsetTable.h" 69 #include <cassert> 70 #include <cstddef> 71 #include <cstdint> 72 #include <list> 73 #include <map> 74 #include <memory> 75 #include <set> 76 #include <string> 77 #include <vector> 78 79 using namespace llvm; 80 81 namespace { 82 83 class EmitterBase; 84 class Result; 85 86 // ----------------------------------------------------------------------------- 87 // A system of classes to represent all the types we'll need to deal with in 88 // the prototypes of intrinsics. 89 // 90 // Query methods include finding out the C name of a type; the "LLVM name" in 91 // the sense of a C++ code snippet that can be used in the codegen function; 92 // the suffix that represents the type in the ACLE intrinsic naming scheme 93 // (e.g. 's32' represents int32_t in intrinsics such as vaddq_s32); whether the 94 // type is floating-point related (hence should be under #ifdef in the MVE 95 // header so that it isn't included in integer-only MVE mode); and the type's 96 // size in bits. Not all subtypes support all these queries. 97 98 class Type { 99 public: 100 enum class TypeKind { 101 // Void appears as a return type (for store intrinsics, which are pure 102 // side-effect). It's also used as the parameter type in the Tablegen 103 // when an intrinsic doesn't need to come in various suffixed forms like 104 // vfooq_s8,vfooq_u16,vfooq_f32. 105 Void, 106 107 // Scalar is used for ordinary int and float types of all sizes. 108 Scalar, 109 110 // Vector is used for anything that occupies exactly one MVE vector 111 // register, i.e. {uint,int,float}NxM_t. 112 Vector, 113 114 // MultiVector is used for the {uint,int,float}NxMxK_t types used by the 115 // interleaving load/store intrinsics v{ld,st}{2,4}q. 116 MultiVector, 117 118 // Predicate is used by all the predicated intrinsics. Its C 119 // representation is mve_pred16_t (which is just an alias for uint16_t). 120 // But we give more detail here, by indicating that a given predicate 121 // instruction is logically regarded as a vector of i1 containing the 122 // same number of lanes as the input vector type. So our Predicate type 123 // comes with a lane count, which we use to decide which kind of <n x i1> 124 // we'll invoke the pred_i2v IR intrinsic to translate it into. 125 Predicate, 126 127 // Pointer is used for pointer types (obviously), and comes with a flag 128 // indicating whether it's a pointer to a const or mutable instance of 129 // the pointee type. 130 Pointer, 131 }; 132 133 private: 134 const TypeKind TKind; 135 136 protected: 137 Type(TypeKind K) : TKind(K) {} 138 139 public: 140 TypeKind typeKind() const { return TKind; } 141 virtual ~Type() = default; 142 virtual bool requiresFloat() const = 0; 143 virtual bool requiresMVE() const = 0; 144 virtual unsigned sizeInBits() const = 0; 145 virtual std::string cName() const = 0; 146 virtual std::string llvmName() const { 147 PrintFatalError("no LLVM type name available for type " + cName()); 148 } 149 virtual std::string acleSuffix(std::string) const { 150 PrintFatalError("no ACLE suffix available for this type"); 151 } 152 }; 153 154 enum class ScalarTypeKind { SignedInt, UnsignedInt, Float }; 155 inline std::string toLetter(ScalarTypeKind kind) { 156 switch (kind) { 157 case ScalarTypeKind::SignedInt: 158 return "s"; 159 case ScalarTypeKind::UnsignedInt: 160 return "u"; 161 case ScalarTypeKind::Float: 162 return "f"; 163 } 164 llvm_unreachable("Unhandled ScalarTypeKind enum"); 165 } 166 inline std::string toCPrefix(ScalarTypeKind kind) { 167 switch (kind) { 168 case ScalarTypeKind::SignedInt: 169 return "int"; 170 case ScalarTypeKind::UnsignedInt: 171 return "uint"; 172 case ScalarTypeKind::Float: 173 return "float"; 174 } 175 llvm_unreachable("Unhandled ScalarTypeKind enum"); 176 } 177 178 class VoidType : public Type { 179 public: 180 VoidType() : Type(TypeKind::Void) {} 181 unsigned sizeInBits() const override { return 0; } 182 bool requiresFloat() const override { return false; } 183 bool requiresMVE() const override { return false; } 184 std::string cName() const override { return "void"; } 185 186 static bool classof(const Type *T) { return T->typeKind() == TypeKind::Void; } 187 std::string acleSuffix(std::string) const override { return ""; } 188 }; 189 190 class PointerType : public Type { 191 const Type *Pointee; 192 bool Const; 193 194 public: 195 PointerType(const Type *Pointee, bool Const) 196 : Type(TypeKind::Pointer), Pointee(Pointee), Const(Const) {} 197 unsigned sizeInBits() const override { return 32; } 198 bool requiresFloat() const override { return Pointee->requiresFloat(); } 199 bool requiresMVE() const override { return Pointee->requiresMVE(); } 200 std::string cName() const override { 201 std::string Name = Pointee->cName(); 202 203 // The syntax for a pointer in C is different when the pointee is 204 // itself a pointer. The MVE intrinsics don't contain any double 205 // pointers, so we don't need to worry about that wrinkle. 206 assert(!isa<PointerType>(Pointee) && "Pointer to pointer not supported"); 207 208 if (Const) 209 Name = "const " + Name; 210 return Name + " *"; 211 } 212 std::string llvmName() const override { 213 return "llvm::PointerType::getUnqual(" + Pointee->llvmName() + ")"; 214 } 215 const Type *getPointeeType() const { return Pointee; } 216 217 static bool classof(const Type *T) { 218 return T->typeKind() == TypeKind::Pointer; 219 } 220 }; 221 222 // Base class for all the types that have a name of the form 223 // [prefix][numbers]_t, like int32_t, uint16x8_t, float32x4x2_t. 224 // 225 // For this sub-hierarchy we invent a cNameBase() method which returns the 226 // whole name except for the trailing "_t", so that Vector and MultiVector can 227 // append an extra "x2" or whatever to their element type's cNameBase(). Then 228 // the main cName() query method puts "_t" on the end for the final type name. 229 230 class CRegularNamedType : public Type { 231 using Type::Type; 232 virtual std::string cNameBase() const = 0; 233 234 public: 235 std::string cName() const override { return cNameBase() + "_t"; } 236 }; 237 238 class ScalarType : public CRegularNamedType { 239 ScalarTypeKind Kind; 240 unsigned Bits; 241 std::string NameOverride; 242 243 public: 244 ScalarType(const Record *Record) : CRegularNamedType(TypeKind::Scalar) { 245 Kind = StringSwitch<ScalarTypeKind>(Record->getValueAsString("kind")) 246 .Case("s", ScalarTypeKind::SignedInt) 247 .Case("u", ScalarTypeKind::UnsignedInt) 248 .Case("f", ScalarTypeKind::Float); 249 Bits = Record->getValueAsInt("size"); 250 NameOverride = std::string(Record->getValueAsString("nameOverride")); 251 } 252 unsigned sizeInBits() const override { return Bits; } 253 ScalarTypeKind kind() const { return Kind; } 254 std::string suffix() const { return toLetter(Kind) + utostr(Bits); } 255 std::string cNameBase() const override { 256 return toCPrefix(Kind) + utostr(Bits); 257 } 258 std::string cName() const override { 259 if (NameOverride.empty()) 260 return CRegularNamedType::cName(); 261 return NameOverride; 262 } 263 std::string llvmName() const override { 264 if (Kind == ScalarTypeKind::Float) { 265 if (Bits == 16) 266 return "HalfTy"; 267 if (Bits == 32) 268 return "FloatTy"; 269 if (Bits == 64) 270 return "DoubleTy"; 271 PrintFatalError("bad size for floating type"); 272 } 273 return "Int" + utostr(Bits) + "Ty"; 274 } 275 std::string acleSuffix(std::string overrideLetter) const override { 276 return "_" + (overrideLetter.size() ? overrideLetter : toLetter(Kind)) 277 + utostr(Bits); 278 } 279 bool isInteger() const { return Kind != ScalarTypeKind::Float; } 280 bool requiresFloat() const override { return !isInteger(); } 281 bool requiresMVE() const override { return false; } 282 bool hasNonstandardName() const { return !NameOverride.empty(); } 283 284 static bool classof(const Type *T) { 285 return T->typeKind() == TypeKind::Scalar; 286 } 287 }; 288 289 class VectorType : public CRegularNamedType { 290 const ScalarType *Element; 291 unsigned Lanes; 292 293 public: 294 VectorType(const ScalarType *Element, unsigned Lanes) 295 : CRegularNamedType(TypeKind::Vector), Element(Element), Lanes(Lanes) {} 296 unsigned sizeInBits() const override { return Lanes * Element->sizeInBits(); } 297 unsigned lanes() const { return Lanes; } 298 bool requiresFloat() const override { return Element->requiresFloat(); } 299 bool requiresMVE() const override { return true; } 300 std::string cNameBase() const override { 301 return Element->cNameBase() + "x" + utostr(Lanes); 302 } 303 std::string llvmName() const override { 304 return "llvm::FixedVectorType::get(" + Element->llvmName() + ", " + 305 utostr(Lanes) + ")"; 306 } 307 308 static bool classof(const Type *T) { 309 return T->typeKind() == TypeKind::Vector; 310 } 311 }; 312 313 class MultiVectorType : public CRegularNamedType { 314 const VectorType *Element; 315 unsigned Registers; 316 317 public: 318 MultiVectorType(unsigned Registers, const VectorType *Element) 319 : CRegularNamedType(TypeKind::MultiVector), Element(Element), 320 Registers(Registers) {} 321 unsigned sizeInBits() const override { 322 return Registers * Element->sizeInBits(); 323 } 324 unsigned registers() const { return Registers; } 325 bool requiresFloat() const override { return Element->requiresFloat(); } 326 bool requiresMVE() const override { return true; } 327 std::string cNameBase() const override { 328 return Element->cNameBase() + "x" + utostr(Registers); 329 } 330 331 // MultiVectorType doesn't override llvmName, because we don't expect to do 332 // automatic code generation for the MVE intrinsics that use it: the {vld2, 333 // vld4, vst2, vst4} family are the only ones that use these types, so it was 334 // easier to hand-write the codegen for dealing with these structs than to 335 // build in lots of extra automatic machinery that would only be used once. 336 337 static bool classof(const Type *T) { 338 return T->typeKind() == TypeKind::MultiVector; 339 } 340 }; 341 342 class PredicateType : public CRegularNamedType { 343 unsigned Lanes; 344 345 public: 346 PredicateType(unsigned Lanes) 347 : CRegularNamedType(TypeKind::Predicate), Lanes(Lanes) {} 348 unsigned sizeInBits() const override { return 16; } 349 std::string cNameBase() const override { return "mve_pred16"; } 350 bool requiresFloat() const override { return false; }; 351 bool requiresMVE() const override { return true; } 352 std::string llvmName() const override { 353 return "llvm::FixedVectorType::get(Builder.getInt1Ty(), " + utostr(Lanes) + 354 ")"; 355 } 356 357 static bool classof(const Type *T) { 358 return T->typeKind() == TypeKind::Predicate; 359 } 360 }; 361 362 // ----------------------------------------------------------------------------- 363 // Class to facilitate merging together the code generation for many intrinsics 364 // by means of varying a few constant or type parameters. 365 // 366 // Most obviously, the intrinsics in a single parametrised family will have 367 // code generation sequences that only differ in a type or two, e.g. vaddq_s8 368 // and vaddq_u16 will look the same apart from putting a different vector type 369 // in the call to CGM.getIntrinsic(). But also, completely different intrinsics 370 // will often code-generate in the same way, with only a different choice of 371 // _which_ IR intrinsic they lower to (e.g. vaddq_m_s8 and vmulq_m_s8), but 372 // marshalling the arguments and return values of the IR intrinsic in exactly 373 // the same way. And others might differ only in some other kind of constant, 374 // such as a lane index. 375 // 376 // So, when we generate the IR-building code for all these intrinsics, we keep 377 // track of every value that could possibly be pulled out of the code and 378 // stored ahead of time in a local variable. Then we group together intrinsics 379 // by textual equivalence of the code that would result if _all_ those 380 // parameters were stored in local variables. That gives us maximal sets that 381 // can be implemented by a single piece of IR-building code by changing 382 // parameter values ahead of time. 383 // 384 // After we've done that, we do a second pass in which we only allocate _some_ 385 // of the parameters into local variables, by tracking which ones have the same 386 // values as each other (so that a single variable can be reused) and which 387 // ones are the same across the whole set (so that no variable is needed at 388 // all). 389 // 390 // Hence the class below. Its allocParam method is invoked during code 391 // generation by every method of a Result subclass (see below) that wants to 392 // give it the opportunity to pull something out into a switchable parameter. 393 // It returns a variable name for the parameter, or (if it's being used in the 394 // second pass once we've decided that some parameters don't need to be stored 395 // in variables after all) it might just return the input expression unchanged. 396 397 struct CodeGenParamAllocator { 398 // Accumulated during code generation 399 std::vector<std::string> *ParamTypes = nullptr; 400 std::vector<std::string> *ParamValues = nullptr; 401 402 // Provided ahead of time in pass 2, to indicate which parameters are being 403 // assigned to what. This vector contains an entry for each call to 404 // allocParam expected during code gen (which we counted up in pass 1), and 405 // indicates the number of the parameter variable that should be returned, or 406 // -1 if this call shouldn't allocate a parameter variable at all. 407 // 408 // We rely on the recursive code generation working identically in passes 1 409 // and 2, so that the same list of calls to allocParam happen in the same 410 // order. That guarantees that the parameter numbers recorded in pass 1 will 411 // match the entries in this vector that store what EmitterBase::EmitBuiltinCG 412 // decided to do about each one in pass 2. 413 std::vector<int> *ParamNumberMap = nullptr; 414 415 // Internally track how many things we've allocated 416 unsigned nparams = 0; 417 418 std::string allocParam(StringRef Type, StringRef Value) { 419 unsigned ParamNumber; 420 421 if (!ParamNumberMap) { 422 // In pass 1, unconditionally assign a new parameter variable to every 423 // value we're asked to process. 424 ParamNumber = nparams++; 425 } else { 426 // In pass 2, consult the map provided by the caller to find out which 427 // variable we should be keeping things in. 428 int MapValue = (*ParamNumberMap)[nparams++]; 429 if (MapValue < 0) 430 return std::string(Value); 431 ParamNumber = MapValue; 432 } 433 434 // If we've allocated a new parameter variable for the first time, store 435 // its type and value to be retrieved after codegen. 436 if (ParamTypes && ParamTypes->size() == ParamNumber) 437 ParamTypes->push_back(std::string(Type)); 438 if (ParamValues && ParamValues->size() == ParamNumber) 439 ParamValues->push_back(std::string(Value)); 440 441 // Unimaginative naming scheme for parameter variables. 442 return "Param" + utostr(ParamNumber); 443 } 444 }; 445 446 // ----------------------------------------------------------------------------- 447 // System of classes that represent all the intermediate values used during 448 // code-generation for an intrinsic. 449 // 450 // The base class 'Result' can represent a value of the LLVM type 'Value', or 451 // sometimes 'Address' (for loads/stores, including an alignment requirement). 452 // 453 // In the case where the Tablegen provides a value in the codegen dag as a 454 // plain integer literal, the Result object we construct here will be one that 455 // returns true from hasIntegerConstantValue(). This allows the generated C++ 456 // code to use the constant directly in contexts which can take a literal 457 // integer, such as Builder.CreateExtractValue(thing, 1), without going to the 458 // effort of calling llvm::ConstantInt::get() and then pulling the constant 459 // back out of the resulting llvm:Value later. 460 461 class Result { 462 public: 463 // Convenient shorthand for the pointer type we'll be using everywhere. 464 using Ptr = std::shared_ptr<Result>; 465 466 private: 467 Ptr Predecessor; 468 std::string VarName; 469 bool VarNameUsed = false; 470 unsigned Visited = 0; 471 472 public: 473 virtual ~Result() = default; 474 using Scope = std::map<std::string, Ptr>; 475 virtual void genCode(raw_ostream &OS, CodeGenParamAllocator &) const = 0; 476 virtual bool hasIntegerConstantValue() const { return false; } 477 virtual uint32_t integerConstantValue() const { return 0; } 478 virtual bool hasIntegerValue() const { return false; } 479 virtual std::string getIntegerValue(const std::string &) { 480 llvm_unreachable("non-working Result::getIntegerValue called"); 481 } 482 virtual std::string typeName() const { return "Value *"; } 483 484 // Mostly, when a code-generation operation has a dependency on prior 485 // operations, it's because it uses the output values of those operations as 486 // inputs. But there's one exception, which is the use of 'seq' in Tablegen 487 // to indicate that operations have to be performed in sequence regardless of 488 // whether they use each others' output values. 489 // 490 // So, the actual generation of code is done by depth-first search, using the 491 // prerequisites() method to get a list of all the other Results that have to 492 // be computed before this one. That method divides into the 'predecessor', 493 // set by setPredecessor() while processing a 'seq' dag node, and the list 494 // returned by 'morePrerequisites', which each subclass implements to return 495 // a list of the Results it uses as input to whatever its own computation is 496 // doing. 497 498 virtual void morePrerequisites(std::vector<Ptr> &output) const {} 499 std::vector<Ptr> prerequisites() const { 500 std::vector<Ptr> ToRet; 501 if (Predecessor) 502 ToRet.push_back(Predecessor); 503 morePrerequisites(ToRet); 504 return ToRet; 505 } 506 507 void setPredecessor(Ptr p) { 508 // If the user has nested one 'seq' node inside another, and this 509 // method is called on the return value of the inner 'seq' (i.e. 510 // the final item inside it), then we can't link _this_ node to p, 511 // because it already has a predecessor. Instead, walk the chain 512 // until we find the first item in the inner seq, and link that to 513 // p, so that nesting seqs has the obvious effect of linking 514 // everything together into one long sequential chain. 515 Result *r = this; 516 while (r->Predecessor) 517 r = r->Predecessor.get(); 518 r->Predecessor = p; 519 } 520 521 // Each Result will be assigned a variable name in the output code, but not 522 // all those variable names will actually be used (e.g. the return value of 523 // Builder.CreateStore has void type, so nobody will want to refer to it). To 524 // prevent annoying compiler warnings, we track whether each Result's 525 // variable name was ever actually mentioned in subsequent statements, so 526 // that it can be left out of the final generated code. 527 std::string varname() { 528 VarNameUsed = true; 529 return VarName; 530 } 531 void setVarname(const StringRef s) { VarName = std::string(s); } 532 bool varnameUsed() const { return VarNameUsed; } 533 534 // Emit code to generate this result as a Value *. 535 virtual std::string asValue() { 536 return varname(); 537 } 538 539 // Code generation happens in multiple passes. This method tracks whether a 540 // Result has yet been visited in a given pass, without the need for a 541 // tedious loop in between passes that goes through and resets a 'visited' 542 // flag back to false: you just set Pass=1 the first time round, and Pass=2 543 // the second time. 544 bool needsVisiting(unsigned Pass) { 545 bool ToRet = Visited < Pass; 546 Visited = Pass; 547 return ToRet; 548 } 549 }; 550 551 // Result subclass that retrieves one of the arguments to the clang builtin 552 // function. In cases where the argument has pointer type, we call 553 // EmitPointerWithAlignment and store the result in a variable of type Address, 554 // so that load and store IR nodes can know the right alignment. Otherwise, we 555 // call EmitScalarExpr. 556 // 557 // There are aggregate parameters in the MVE intrinsics API, but we don't deal 558 // with them in this Tablegen back end: they only arise in the vld2q/vld4q and 559 // vst2q/vst4q family, which is few enough that we just write the code by hand 560 // for those in CGBuiltin.cpp. 561 class BuiltinArgResult : public Result { 562 public: 563 unsigned ArgNum; 564 bool AddressType; 565 bool Immediate; 566 BuiltinArgResult(unsigned ArgNum, bool AddressType, bool Immediate) 567 : ArgNum(ArgNum), AddressType(AddressType), Immediate(Immediate) {} 568 void genCode(raw_ostream &OS, CodeGenParamAllocator &) const override { 569 OS << (AddressType ? "EmitPointerWithAlignment" : "EmitScalarExpr") 570 << "(E->getArg(" << ArgNum << "))"; 571 } 572 std::string typeName() const override { 573 return AddressType ? "Address" : Result::typeName(); 574 } 575 // Emit code to generate this result as a Value *. 576 std::string asValue() override { 577 if (AddressType) 578 return "(" + varname() + ".emitRawPointer(*this))"; 579 return Result::asValue(); 580 } 581 bool hasIntegerValue() const override { return Immediate; } 582 std::string getIntegerValue(const std::string &IntType) override { 583 return "GetIntegerConstantValue<" + IntType + ">(E->getArg(" + 584 utostr(ArgNum) + "), getContext())"; 585 } 586 }; 587 588 // Result subclass for an integer literal appearing in Tablegen. This may need 589 // to be turned into an llvm::Result by means of llvm::ConstantInt::get(), or 590 // it may be used directly as an integer, depending on which IRBuilder method 591 // it's being passed to. 592 class IntLiteralResult : public Result { 593 public: 594 const ScalarType *IntegerType; 595 uint32_t IntegerValue; 596 IntLiteralResult(const ScalarType *IntegerType, uint32_t IntegerValue) 597 : IntegerType(IntegerType), IntegerValue(IntegerValue) {} 598 void genCode(raw_ostream &OS, 599 CodeGenParamAllocator &ParamAlloc) const override { 600 OS << "llvm::ConstantInt::get(" 601 << ParamAlloc.allocParam("llvm::Type *", IntegerType->llvmName()) 602 << ", "; 603 OS << ParamAlloc.allocParam(IntegerType->cName(), utostr(IntegerValue)) 604 << ")"; 605 } 606 bool hasIntegerConstantValue() const override { return true; } 607 uint32_t integerConstantValue() const override { return IntegerValue; } 608 }; 609 610 // Result subclass representing a cast between different integer types. We use 611 // our own ScalarType abstraction as the representation of the target type, 612 // which gives both size and signedness. 613 class IntCastResult : public Result { 614 public: 615 const ScalarType *IntegerType; 616 Ptr V; 617 IntCastResult(const ScalarType *IntegerType, Ptr V) 618 : IntegerType(IntegerType), V(V) {} 619 void genCode(raw_ostream &OS, 620 CodeGenParamAllocator &ParamAlloc) const override { 621 OS << "Builder.CreateIntCast(" << V->varname() << ", " 622 << ParamAlloc.allocParam("llvm::Type *", IntegerType->llvmName()) << ", " 623 << ParamAlloc.allocParam("bool", 624 IntegerType->kind() == ScalarTypeKind::SignedInt 625 ? "true" 626 : "false") 627 << ")"; 628 } 629 void morePrerequisites(std::vector<Ptr> &output) const override { 630 output.push_back(V); 631 } 632 }; 633 634 // Result subclass representing a cast between different pointer types. 635 class PointerCastResult : public Result { 636 public: 637 const PointerType *PtrType; 638 Ptr V; 639 PointerCastResult(const PointerType *PtrType, Ptr V) 640 : PtrType(PtrType), V(V) {} 641 void genCode(raw_ostream &OS, 642 CodeGenParamAllocator &ParamAlloc) const override { 643 OS << "Builder.CreatePointerCast(" << V->asValue() << ", " 644 << ParamAlloc.allocParam("llvm::Type *", PtrType->llvmName()) << ")"; 645 } 646 void morePrerequisites(std::vector<Ptr> &output) const override { 647 output.push_back(V); 648 } 649 }; 650 651 // Result subclass representing a call to an IRBuilder method. Each IRBuilder 652 // method we want to use will have a Tablegen record giving the method name and 653 // describing any important details of how to call it, such as whether a 654 // particular argument should be an integer constant instead of an llvm::Value. 655 class IRBuilderResult : public Result { 656 public: 657 StringRef CallPrefix; 658 std::vector<Ptr> Args; 659 std::set<unsigned> AddressArgs; 660 std::map<unsigned, std::string> IntegerArgs; 661 IRBuilderResult(StringRef CallPrefix, const std::vector<Ptr> &Args, 662 const std::set<unsigned> &AddressArgs, 663 const std::map<unsigned, std::string> &IntegerArgs) 664 : CallPrefix(CallPrefix), Args(Args), AddressArgs(AddressArgs), 665 IntegerArgs(IntegerArgs) {} 666 void genCode(raw_ostream &OS, 667 CodeGenParamAllocator &ParamAlloc) const override { 668 OS << CallPrefix; 669 const char *Sep = ""; 670 for (unsigned i = 0, e = Args.size(); i < e; ++i) { 671 Ptr Arg = Args[i]; 672 auto it = IntegerArgs.find(i); 673 674 OS << Sep; 675 Sep = ", "; 676 677 if (it != IntegerArgs.end()) { 678 if (Arg->hasIntegerConstantValue()) 679 OS << "static_cast<" << it->second << ">(" 680 << ParamAlloc.allocParam(it->second, 681 utostr(Arg->integerConstantValue())) 682 << ")"; 683 else if (Arg->hasIntegerValue()) 684 OS << ParamAlloc.allocParam(it->second, 685 Arg->getIntegerValue(it->second)); 686 } else { 687 OS << Arg->varname(); 688 } 689 } 690 OS << ")"; 691 } 692 void morePrerequisites(std::vector<Ptr> &output) const override { 693 for (unsigned i = 0, e = Args.size(); i < e; ++i) { 694 Ptr Arg = Args[i]; 695 if (IntegerArgs.find(i) != IntegerArgs.end()) 696 continue; 697 output.push_back(Arg); 698 } 699 } 700 }; 701 702 // Result subclass representing making an Address out of a Value. 703 class AddressResult : public Result { 704 public: 705 Ptr Arg; 706 const Type *Ty; 707 unsigned Align; 708 AddressResult(Ptr Arg, const Type *Ty, unsigned Align) 709 : Arg(Arg), Ty(Ty), Align(Align) {} 710 void genCode(raw_ostream &OS, 711 CodeGenParamAllocator &ParamAlloc) const override { 712 OS << "Address(" << Arg->varname() << ", " << Ty->llvmName() 713 << ", CharUnits::fromQuantity(" << Align << "))"; 714 } 715 std::string typeName() const override { 716 return "Address"; 717 } 718 void morePrerequisites(std::vector<Ptr> &output) const override { 719 output.push_back(Arg); 720 } 721 }; 722 723 // Result subclass representing a call to an IR intrinsic, which we first have 724 // to look up using an Intrinsic::ID constant and an array of types. 725 class IRIntrinsicResult : public Result { 726 public: 727 std::string IntrinsicID; 728 std::vector<const Type *> ParamTypes; 729 std::vector<Ptr> Args; 730 IRIntrinsicResult(StringRef IntrinsicID, 731 const std::vector<const Type *> &ParamTypes, 732 const std::vector<Ptr> &Args) 733 : IntrinsicID(std::string(IntrinsicID)), ParamTypes(ParamTypes), 734 Args(Args) {} 735 void genCode(raw_ostream &OS, 736 CodeGenParamAllocator &ParamAlloc) const override { 737 std::string IntNo = ParamAlloc.allocParam( 738 "Intrinsic::ID", "Intrinsic::" + IntrinsicID); 739 OS << "Builder.CreateCall(CGM.getIntrinsic(" << IntNo; 740 if (!ParamTypes.empty()) { 741 OS << ", {"; 742 const char *Sep = ""; 743 for (auto T : ParamTypes) { 744 OS << Sep << ParamAlloc.allocParam("llvm::Type *", T->llvmName()); 745 Sep = ", "; 746 } 747 OS << "}"; 748 } 749 OS << "), {"; 750 const char *Sep = ""; 751 for (auto Arg : Args) { 752 OS << Sep << Arg->asValue(); 753 Sep = ", "; 754 } 755 OS << "})"; 756 } 757 void morePrerequisites(std::vector<Ptr> &output) const override { 758 output.insert(output.end(), Args.begin(), Args.end()); 759 } 760 }; 761 762 // Result subclass that specifies a type, for use in IRBuilder operations such 763 // as CreateBitCast that take a type argument. 764 class TypeResult : public Result { 765 public: 766 const Type *T; 767 TypeResult(const Type *T) : T(T) {} 768 void genCode(raw_ostream &OS, CodeGenParamAllocator &) const override { 769 OS << T->llvmName(); 770 } 771 std::string typeName() const override { 772 return "llvm::Type *"; 773 } 774 }; 775 776 // ----------------------------------------------------------------------------- 777 // Class that describes a single ACLE intrinsic. 778 // 779 // A Tablegen record will typically describe more than one ACLE intrinsic, by 780 // means of setting the 'list<Type> Params' field to a list of multiple 781 // parameter types, so as to define vaddq_{s8,u8,...,f16,f32} all in one go. 782 // We'll end up with one instance of ACLEIntrinsic for *each* parameter type, 783 // rather than a single one for all of them. Hence, the constructor takes both 784 // a Tablegen record and the current value of the parameter type. 785 786 class ACLEIntrinsic { 787 // Structure documenting that one of the intrinsic's arguments is required to 788 // be a compile-time constant integer, and what constraints there are on its 789 // value. Used when generating Sema checking code. 790 struct ImmediateArg { 791 enum class BoundsType { ExplicitRange, UInt }; 792 BoundsType boundsType; 793 int64_t i1, i2; 794 StringRef ExtraCheckType, ExtraCheckArgs; 795 const Type *ArgType; 796 }; 797 798 // For polymorphic intrinsics, FullName is the explicit name that uniquely 799 // identifies this variant of the intrinsic, and ShortName is the name it 800 // shares with at least one other intrinsic. 801 std::string ShortName, FullName; 802 803 // Name of the architecture extension, used in the Clang builtin name 804 StringRef BuiltinExtension; 805 806 // A very small number of intrinsics _only_ have a polymorphic 807 // variant (vuninitializedq taking an unevaluated argument). 808 bool PolymorphicOnly; 809 810 // Another rarely-used flag indicating that the builtin doesn't 811 // evaluate its argument(s) at all. 812 bool NonEvaluating; 813 814 // True if the intrinsic needs only the C header part (no codegen, semantic 815 // checks, etc). Used for redeclaring MVE intrinsics in the arm_cde.h header. 816 bool HeaderOnly; 817 818 const Type *ReturnType; 819 std::vector<const Type *> ArgTypes; 820 std::map<unsigned, ImmediateArg> ImmediateArgs; 821 Result::Ptr Code; 822 823 std::map<std::string, std::string> CustomCodeGenArgs; 824 825 // Recursive function that does the internals of code generation. 826 void genCodeDfs(Result::Ptr V, std::list<Result::Ptr> &Used, 827 unsigned Pass) const { 828 if (!V->needsVisiting(Pass)) 829 return; 830 831 for (Result::Ptr W : V->prerequisites()) 832 genCodeDfs(W, Used, Pass); 833 834 Used.push_back(V); 835 } 836 837 public: 838 const std::string &shortName() const { return ShortName; } 839 const std::string &fullName() const { return FullName; } 840 StringRef builtinExtension() const { return BuiltinExtension; } 841 const Type *returnType() const { return ReturnType; } 842 const std::vector<const Type *> &argTypes() const { return ArgTypes; } 843 bool requiresFloat() const { 844 if (ReturnType->requiresFloat()) 845 return true; 846 for (const Type *T : ArgTypes) 847 if (T->requiresFloat()) 848 return true; 849 return false; 850 } 851 bool requiresMVE() const { 852 return ReturnType->requiresMVE() || 853 any_of(ArgTypes, [](const Type *T) { return T->requiresMVE(); }); 854 } 855 bool polymorphic() const { return ShortName != FullName; } 856 bool polymorphicOnly() const { return PolymorphicOnly; } 857 bool nonEvaluating() const { return NonEvaluating; } 858 bool headerOnly() const { return HeaderOnly; } 859 860 // External entry point for code generation, called from EmitterBase. 861 void genCode(raw_ostream &OS, CodeGenParamAllocator &ParamAlloc, 862 unsigned Pass) const { 863 assert(!headerOnly() && "Called genCode for header-only intrinsic"); 864 if (!hasCode()) { 865 for (auto kv : CustomCodeGenArgs) 866 OS << " " << kv.first << " = " << kv.second << ";\n"; 867 OS << " break; // custom code gen\n"; 868 return; 869 } 870 std::list<Result::Ptr> Used; 871 genCodeDfs(Code, Used, Pass); 872 873 unsigned varindex = 0; 874 for (Result::Ptr V : Used) 875 if (V->varnameUsed()) 876 V->setVarname("Val" + utostr(varindex++)); 877 878 for (Result::Ptr V : Used) { 879 OS << " "; 880 if (V == Used.back()) { 881 assert(!V->varnameUsed()); 882 OS << "return "; // FIXME: what if the top-level thing is void? 883 } else if (V->varnameUsed()) { 884 std::string Type = V->typeName(); 885 OS << V->typeName(); 886 if (!StringRef(Type).ends_with("*")) 887 OS << " "; 888 OS << V->varname() << " = "; 889 } 890 V->genCode(OS, ParamAlloc); 891 OS << ";\n"; 892 } 893 } 894 bool hasCode() const { return Code != nullptr; } 895 896 static std::string signedHexLiteral(const llvm::APInt &iOrig) { 897 llvm::APInt i = iOrig.trunc(64); 898 SmallString<40> s; 899 i.toString(s, 16, true, true); 900 return std::string(s); 901 } 902 903 std::string genSema() const { 904 assert(!headerOnly() && "Called genSema for header-only intrinsic"); 905 std::vector<std::string> SemaChecks; 906 907 for (const auto &kv : ImmediateArgs) { 908 const ImmediateArg &IA = kv.second; 909 910 llvm::APInt lo(128, 0), hi(128, 0); 911 switch (IA.boundsType) { 912 case ImmediateArg::BoundsType::ExplicitRange: 913 lo = IA.i1; 914 hi = IA.i2; 915 break; 916 case ImmediateArg::BoundsType::UInt: 917 lo = 0; 918 hi = llvm::APInt::getMaxValue(IA.i1).zext(128); 919 break; 920 } 921 922 std::string Index = utostr(kv.first); 923 924 // Emit a range check if the legal range of values for the 925 // immediate is smaller than the _possible_ range of values for 926 // its type. 927 unsigned ArgTypeBits = IA.ArgType->sizeInBits(); 928 llvm::APInt ArgTypeRange = llvm::APInt::getMaxValue(ArgTypeBits).zext(128); 929 llvm::APInt ActualRange = (hi-lo).trunc(64).sext(128); 930 if (ActualRange.ult(ArgTypeRange)) 931 SemaChecks.push_back("SemaRef.BuiltinConstantArgRange(TheCall, " + 932 Index + ", " + signedHexLiteral(lo) + ", " + 933 signedHexLiteral(hi) + ")"); 934 935 if (!IA.ExtraCheckType.empty()) { 936 std::string Suffix; 937 if (!IA.ExtraCheckArgs.empty()) { 938 std::string tmp; 939 StringRef Arg = IA.ExtraCheckArgs; 940 if (Arg == "!lanesize") { 941 tmp = utostr(IA.ArgType->sizeInBits()); 942 Arg = tmp; 943 } 944 Suffix = (Twine(", ") + Arg).str(); 945 } 946 SemaChecks.push_back((Twine("SemaRef.BuiltinConstantArg") + 947 IA.ExtraCheckType + "(TheCall, " + Index + 948 Suffix + ")") 949 .str()); 950 } 951 952 assert(!SemaChecks.empty()); 953 } 954 if (SemaChecks.empty()) 955 return ""; 956 return join(std::begin(SemaChecks), std::end(SemaChecks), 957 " ||\n ") + 958 ";\n"; 959 } 960 961 ACLEIntrinsic(EmitterBase &ME, Record *R, const Type *Param); 962 }; 963 964 // ----------------------------------------------------------------------------- 965 // The top-level class that holds all the state from analyzing the entire 966 // Tablegen input. 967 968 class EmitterBase { 969 protected: 970 // EmitterBase holds a collection of all the types we've instantiated. 971 VoidType Void; 972 std::map<std::string, std::unique_ptr<ScalarType>> ScalarTypes; 973 std::map<std::tuple<ScalarTypeKind, unsigned, unsigned>, 974 std::unique_ptr<VectorType>> 975 VectorTypes; 976 std::map<std::pair<std::string, unsigned>, std::unique_ptr<MultiVectorType>> 977 MultiVectorTypes; 978 std::map<unsigned, std::unique_ptr<PredicateType>> PredicateTypes; 979 std::map<std::string, std::unique_ptr<PointerType>> PointerTypes; 980 981 // And all the ACLEIntrinsic instances we've created. 982 std::map<std::string, std::unique_ptr<ACLEIntrinsic>> ACLEIntrinsics; 983 984 public: 985 // Methods to create a Type object, or return the right existing one from the 986 // maps stored in this object. 987 const VoidType *getVoidType() { return &Void; } 988 const ScalarType *getScalarType(StringRef Name) { 989 return ScalarTypes[std::string(Name)].get(); 990 } 991 const ScalarType *getScalarType(Record *R) { 992 return getScalarType(R->getName()); 993 } 994 const VectorType *getVectorType(const ScalarType *ST, unsigned Lanes) { 995 std::tuple<ScalarTypeKind, unsigned, unsigned> key(ST->kind(), 996 ST->sizeInBits(), Lanes); 997 if (VectorTypes.find(key) == VectorTypes.end()) 998 VectorTypes[key] = std::make_unique<VectorType>(ST, Lanes); 999 return VectorTypes[key].get(); 1000 } 1001 const VectorType *getVectorType(const ScalarType *ST) { 1002 return getVectorType(ST, 128 / ST->sizeInBits()); 1003 } 1004 const MultiVectorType *getMultiVectorType(unsigned Registers, 1005 const VectorType *VT) { 1006 std::pair<std::string, unsigned> key(VT->cNameBase(), Registers); 1007 if (MultiVectorTypes.find(key) == MultiVectorTypes.end()) 1008 MultiVectorTypes[key] = std::make_unique<MultiVectorType>(Registers, VT); 1009 return MultiVectorTypes[key].get(); 1010 } 1011 const PredicateType *getPredicateType(unsigned Lanes) { 1012 unsigned key = Lanes; 1013 if (PredicateTypes.find(key) == PredicateTypes.end()) 1014 PredicateTypes[key] = std::make_unique<PredicateType>(Lanes); 1015 return PredicateTypes[key].get(); 1016 } 1017 const PointerType *getPointerType(const Type *T, bool Const) { 1018 PointerType PT(T, Const); 1019 std::string key = PT.cName(); 1020 if (PointerTypes.find(key) == PointerTypes.end()) 1021 PointerTypes[key] = std::make_unique<PointerType>(PT); 1022 return PointerTypes[key].get(); 1023 } 1024 1025 // Methods to construct a type from various pieces of Tablegen. These are 1026 // always called in the context of setting up a particular ACLEIntrinsic, so 1027 // there's always an ambient parameter type (because we're iterating through 1028 // the Params list in the Tablegen record for the intrinsic), which is used 1029 // to expand Tablegen classes like 'Vector' which mean something different in 1030 // each member of a parametric family. 1031 const Type *getType(Record *R, const Type *Param); 1032 const Type *getType(DagInit *D, const Type *Param); 1033 const Type *getType(Init *I, const Type *Param); 1034 1035 // Functions that translate the Tablegen representation of an intrinsic's 1036 // code generation into a collection of Value objects (which will then be 1037 // reprocessed to read out the actual C++ code included by CGBuiltin.cpp). 1038 Result::Ptr getCodeForDag(DagInit *D, const Result::Scope &Scope, 1039 const Type *Param); 1040 Result::Ptr getCodeForDagArg(DagInit *D, unsigned ArgNum, 1041 const Result::Scope &Scope, const Type *Param); 1042 Result::Ptr getCodeForArg(unsigned ArgNum, const Type *ArgType, bool Promote, 1043 bool Immediate); 1044 1045 void GroupSemaChecks(std::map<std::string, std::set<std::string>> &Checks); 1046 1047 // Constructor and top-level functions. 1048 1049 EmitterBase(RecordKeeper &Records); 1050 virtual ~EmitterBase() = default; 1051 1052 virtual void EmitHeader(raw_ostream &OS) = 0; 1053 virtual void EmitBuiltinDef(raw_ostream &OS) = 0; 1054 virtual void EmitBuiltinSema(raw_ostream &OS) = 0; 1055 void EmitBuiltinCG(raw_ostream &OS); 1056 void EmitBuiltinAliases(raw_ostream &OS); 1057 }; 1058 1059 const Type *EmitterBase::getType(Init *I, const Type *Param) { 1060 if (auto Dag = dyn_cast<DagInit>(I)) 1061 return getType(Dag, Param); 1062 if (auto Def = dyn_cast<DefInit>(I)) 1063 return getType(Def->getDef(), Param); 1064 1065 PrintFatalError("Could not convert this value into a type"); 1066 } 1067 1068 const Type *EmitterBase::getType(Record *R, const Type *Param) { 1069 // Pass to a subfield of any wrapper records. We don't expect more than one 1070 // of these: immediate operands are used as plain numbers rather than as 1071 // llvm::Value, so it's meaningless to promote their type anyway. 1072 if (R->isSubClassOf("Immediate")) 1073 R = R->getValueAsDef("type"); 1074 else if (R->isSubClassOf("unpromoted")) 1075 R = R->getValueAsDef("underlying_type"); 1076 1077 if (R->getName() == "Void") 1078 return getVoidType(); 1079 if (R->isSubClassOf("PrimitiveType")) 1080 return getScalarType(R); 1081 if (R->isSubClassOf("ComplexType")) 1082 return getType(R->getValueAsDag("spec"), Param); 1083 1084 PrintFatalError(R->getLoc(), "Could not convert this record into a type"); 1085 } 1086 1087 const Type *EmitterBase::getType(DagInit *D, const Type *Param) { 1088 // The meat of the getType system: types in the Tablegen are represented by a 1089 // dag whose operators select sub-cases of this function. 1090 1091 Record *Op = cast<DefInit>(D->getOperator())->getDef(); 1092 if (!Op->isSubClassOf("ComplexTypeOp")) 1093 PrintFatalError( 1094 "Expected ComplexTypeOp as dag operator in type expression"); 1095 1096 if (Op->getName() == "CTO_Parameter") { 1097 if (isa<VoidType>(Param)) 1098 PrintFatalError("Parametric type in unparametrised context"); 1099 return Param; 1100 } 1101 1102 if (Op->getName() == "CTO_Vec") { 1103 const Type *Element = getType(D->getArg(0), Param); 1104 if (D->getNumArgs() == 1) { 1105 return getVectorType(cast<ScalarType>(Element)); 1106 } else { 1107 const Type *ExistingVector = getType(D->getArg(1), Param); 1108 return getVectorType(cast<ScalarType>(Element), 1109 cast<VectorType>(ExistingVector)->lanes()); 1110 } 1111 } 1112 1113 if (Op->getName() == "CTO_Pred") { 1114 const Type *Element = getType(D->getArg(0), Param); 1115 return getPredicateType(128 / Element->sizeInBits()); 1116 } 1117 1118 if (Op->isSubClassOf("CTO_Tuple")) { 1119 unsigned Registers = Op->getValueAsInt("n"); 1120 const Type *Element = getType(D->getArg(0), Param); 1121 return getMultiVectorType(Registers, cast<VectorType>(Element)); 1122 } 1123 1124 if (Op->isSubClassOf("CTO_Pointer")) { 1125 const Type *Pointee = getType(D->getArg(0), Param); 1126 return getPointerType(Pointee, Op->getValueAsBit("const")); 1127 } 1128 1129 if (Op->getName() == "CTO_CopyKind") { 1130 const ScalarType *STSize = cast<ScalarType>(getType(D->getArg(0), Param)); 1131 const ScalarType *STKind = cast<ScalarType>(getType(D->getArg(1), Param)); 1132 for (const auto &kv : ScalarTypes) { 1133 const ScalarType *RT = kv.second.get(); 1134 if (RT->kind() == STKind->kind() && RT->sizeInBits() == STSize->sizeInBits()) 1135 return RT; 1136 } 1137 PrintFatalError("Cannot find a type to satisfy CopyKind"); 1138 } 1139 1140 if (Op->isSubClassOf("CTO_ScaleSize")) { 1141 const ScalarType *STKind = cast<ScalarType>(getType(D->getArg(0), Param)); 1142 int Num = Op->getValueAsInt("num"), Denom = Op->getValueAsInt("denom"); 1143 unsigned DesiredSize = STKind->sizeInBits() * Num / Denom; 1144 for (const auto &kv : ScalarTypes) { 1145 const ScalarType *RT = kv.second.get(); 1146 if (RT->kind() == STKind->kind() && RT->sizeInBits() == DesiredSize) 1147 return RT; 1148 } 1149 PrintFatalError("Cannot find a type to satisfy ScaleSize"); 1150 } 1151 1152 PrintFatalError("Bad operator in type dag expression"); 1153 } 1154 1155 Result::Ptr EmitterBase::getCodeForDag(DagInit *D, const Result::Scope &Scope, 1156 const Type *Param) { 1157 Record *Op = cast<DefInit>(D->getOperator())->getDef(); 1158 1159 if (Op->getName() == "seq") { 1160 Result::Scope SubScope = Scope; 1161 Result::Ptr PrevV = nullptr; 1162 for (unsigned i = 0, e = D->getNumArgs(); i < e; ++i) { 1163 // We don't use getCodeForDagArg here, because the argument name 1164 // has different semantics in a seq 1165 Result::Ptr V = 1166 getCodeForDag(cast<DagInit>(D->getArg(i)), SubScope, Param); 1167 StringRef ArgName = D->getArgNameStr(i); 1168 if (!ArgName.empty()) 1169 SubScope[std::string(ArgName)] = V; 1170 if (PrevV) 1171 V->setPredecessor(PrevV); 1172 PrevV = V; 1173 } 1174 return PrevV; 1175 } else if (Op->isSubClassOf("Type")) { 1176 if (D->getNumArgs() != 1) 1177 PrintFatalError("Type casts should have exactly one argument"); 1178 const Type *CastType = getType(Op, Param); 1179 Result::Ptr Arg = getCodeForDagArg(D, 0, Scope, Param); 1180 if (const auto *ST = dyn_cast<ScalarType>(CastType)) { 1181 if (!ST->requiresFloat()) { 1182 if (Arg->hasIntegerConstantValue()) 1183 return std::make_shared<IntLiteralResult>( 1184 ST, Arg->integerConstantValue()); 1185 else 1186 return std::make_shared<IntCastResult>(ST, Arg); 1187 } 1188 } else if (const auto *PT = dyn_cast<PointerType>(CastType)) { 1189 return std::make_shared<PointerCastResult>(PT, Arg); 1190 } 1191 PrintFatalError("Unsupported type cast"); 1192 } else if (Op->getName() == "address") { 1193 if (D->getNumArgs() != 2) 1194 PrintFatalError("'address' should have two arguments"); 1195 Result::Ptr Arg = getCodeForDagArg(D, 0, Scope, Param); 1196 1197 const Type *Ty = nullptr; 1198 if (auto *DI = dyn_cast<DagInit>(D->getArg(0))) 1199 if (auto *PTy = dyn_cast<PointerType>(getType(DI->getOperator(), Param))) 1200 Ty = PTy->getPointeeType(); 1201 if (!Ty) 1202 PrintFatalError("'address' pointer argument should be a pointer"); 1203 1204 unsigned Alignment; 1205 if (auto *II = dyn_cast<IntInit>(D->getArg(1))) { 1206 Alignment = II->getValue(); 1207 } else { 1208 PrintFatalError("'address' alignment argument should be an integer"); 1209 } 1210 return std::make_shared<AddressResult>(Arg, Ty, Alignment); 1211 } else if (Op->getName() == "unsignedflag") { 1212 if (D->getNumArgs() != 1) 1213 PrintFatalError("unsignedflag should have exactly one argument"); 1214 Record *TypeRec = cast<DefInit>(D->getArg(0))->getDef(); 1215 if (!TypeRec->isSubClassOf("Type")) 1216 PrintFatalError("unsignedflag's argument should be a type"); 1217 if (const auto *ST = dyn_cast<ScalarType>(getType(TypeRec, Param))) { 1218 return std::make_shared<IntLiteralResult>( 1219 getScalarType("u32"), ST->kind() == ScalarTypeKind::UnsignedInt); 1220 } else { 1221 PrintFatalError("unsignedflag's argument should be a scalar type"); 1222 } 1223 } else if (Op->getName() == "bitsize") { 1224 if (D->getNumArgs() != 1) 1225 PrintFatalError("bitsize should have exactly one argument"); 1226 Record *TypeRec = cast<DefInit>(D->getArg(0))->getDef(); 1227 if (!TypeRec->isSubClassOf("Type")) 1228 PrintFatalError("bitsize's argument should be a type"); 1229 if (const auto *ST = dyn_cast<ScalarType>(getType(TypeRec, Param))) { 1230 return std::make_shared<IntLiteralResult>(getScalarType("u32"), 1231 ST->sizeInBits()); 1232 } else { 1233 PrintFatalError("bitsize's argument should be a scalar type"); 1234 } 1235 } else { 1236 std::vector<Result::Ptr> Args; 1237 for (unsigned i = 0, e = D->getNumArgs(); i < e; ++i) 1238 Args.push_back(getCodeForDagArg(D, i, Scope, Param)); 1239 if (Op->isSubClassOf("IRBuilderBase")) { 1240 std::set<unsigned> AddressArgs; 1241 std::map<unsigned, std::string> IntegerArgs; 1242 for (Record *sp : Op->getValueAsListOfDefs("special_params")) { 1243 unsigned Index = sp->getValueAsInt("index"); 1244 if (sp->isSubClassOf("IRBuilderAddrParam")) { 1245 AddressArgs.insert(Index); 1246 } else if (sp->isSubClassOf("IRBuilderIntParam")) { 1247 IntegerArgs[Index] = std::string(sp->getValueAsString("type")); 1248 } 1249 } 1250 return std::make_shared<IRBuilderResult>(Op->getValueAsString("prefix"), 1251 Args, AddressArgs, IntegerArgs); 1252 } else if (Op->isSubClassOf("IRIntBase")) { 1253 std::vector<const Type *> ParamTypes; 1254 for (Record *RParam : Op->getValueAsListOfDefs("params")) 1255 ParamTypes.push_back(getType(RParam, Param)); 1256 std::string IntName = std::string(Op->getValueAsString("intname")); 1257 if (Op->getValueAsBit("appendKind")) 1258 IntName += "_" + toLetter(cast<ScalarType>(Param)->kind()); 1259 return std::make_shared<IRIntrinsicResult>(IntName, ParamTypes, Args); 1260 } else { 1261 PrintFatalError("Unsupported dag node " + Op->getName()); 1262 } 1263 } 1264 } 1265 1266 Result::Ptr EmitterBase::getCodeForDagArg(DagInit *D, unsigned ArgNum, 1267 const Result::Scope &Scope, 1268 const Type *Param) { 1269 Init *Arg = D->getArg(ArgNum); 1270 StringRef Name = D->getArgNameStr(ArgNum); 1271 1272 if (!Name.empty()) { 1273 if (!isa<UnsetInit>(Arg)) 1274 PrintFatalError( 1275 "dag operator argument should not have both a value and a name"); 1276 auto it = Scope.find(std::string(Name)); 1277 if (it == Scope.end()) 1278 PrintFatalError("unrecognized variable name '" + Name + "'"); 1279 return it->second; 1280 } 1281 1282 // Sometimes the Arg is a bit. Prior to multiclass template argument 1283 // checking, integers would sneak through the bit declaration, 1284 // but now they really are bits. 1285 if (auto *BI = dyn_cast<BitInit>(Arg)) 1286 return std::make_shared<IntLiteralResult>(getScalarType("u32"), 1287 BI->getValue()); 1288 1289 if (auto *II = dyn_cast<IntInit>(Arg)) 1290 return std::make_shared<IntLiteralResult>(getScalarType("u32"), 1291 II->getValue()); 1292 1293 if (auto *DI = dyn_cast<DagInit>(Arg)) 1294 return getCodeForDag(DI, Scope, Param); 1295 1296 if (auto *DI = dyn_cast<DefInit>(Arg)) { 1297 Record *Rec = DI->getDef(); 1298 if (Rec->isSubClassOf("Type")) { 1299 const Type *T = getType(Rec, Param); 1300 return std::make_shared<TypeResult>(T); 1301 } 1302 } 1303 1304 PrintError("bad DAG argument type for code generation"); 1305 PrintNote("DAG: " + D->getAsString()); 1306 if (TypedInit *Typed = dyn_cast<TypedInit>(Arg)) 1307 PrintNote("argument type: " + Typed->getType()->getAsString()); 1308 PrintFatalNote("argument number " + Twine(ArgNum) + ": " + Arg->getAsString()); 1309 } 1310 1311 Result::Ptr EmitterBase::getCodeForArg(unsigned ArgNum, const Type *ArgType, 1312 bool Promote, bool Immediate) { 1313 Result::Ptr V = std::make_shared<BuiltinArgResult>( 1314 ArgNum, isa<PointerType>(ArgType), Immediate); 1315 1316 if (Promote) { 1317 if (const auto *ST = dyn_cast<ScalarType>(ArgType)) { 1318 if (ST->isInteger() && ST->sizeInBits() < 32) 1319 V = std::make_shared<IntCastResult>(getScalarType("u32"), V); 1320 } else if (const auto *PT = dyn_cast<PredicateType>(ArgType)) { 1321 V = std::make_shared<IntCastResult>(getScalarType("u32"), V); 1322 V = std::make_shared<IRIntrinsicResult>("arm_mve_pred_i2v", 1323 std::vector<const Type *>{PT}, 1324 std::vector<Result::Ptr>{V}); 1325 } 1326 } 1327 1328 return V; 1329 } 1330 1331 ACLEIntrinsic::ACLEIntrinsic(EmitterBase &ME, Record *R, const Type *Param) 1332 : ReturnType(ME.getType(R->getValueAsDef("ret"), Param)) { 1333 // Derive the intrinsic's full name, by taking the name of the 1334 // Tablegen record (or override) and appending the suffix from its 1335 // parameter type. (If the intrinsic is unparametrised, its 1336 // parameter type will be given as Void, which returns the empty 1337 // string for acleSuffix.) 1338 StringRef BaseName = 1339 (R->isSubClassOf("NameOverride") ? R->getValueAsString("basename") 1340 : R->getName()); 1341 StringRef overrideLetter = R->getValueAsString("overrideKindLetter"); 1342 FullName = 1343 (Twine(BaseName) + Param->acleSuffix(std::string(overrideLetter))).str(); 1344 1345 // Derive the intrinsic's polymorphic name, by removing components from the 1346 // full name as specified by its 'pnt' member ('polymorphic name type'), 1347 // which indicates how many type suffixes to remove, and any other piece of 1348 // the name that should be removed. 1349 Record *PolymorphicNameType = R->getValueAsDef("pnt"); 1350 SmallVector<StringRef, 8> NameParts; 1351 StringRef(FullName).split(NameParts, '_'); 1352 for (unsigned i = 0, e = PolymorphicNameType->getValueAsInt( 1353 "NumTypeSuffixesToDiscard"); 1354 i < e; ++i) 1355 NameParts.pop_back(); 1356 if (!PolymorphicNameType->isValueUnset("ExtraSuffixToDiscard")) { 1357 StringRef ExtraSuffix = 1358 PolymorphicNameType->getValueAsString("ExtraSuffixToDiscard"); 1359 auto it = NameParts.end(); 1360 while (it != NameParts.begin()) { 1361 --it; 1362 if (*it == ExtraSuffix) { 1363 NameParts.erase(it); 1364 break; 1365 } 1366 } 1367 } 1368 ShortName = join(std::begin(NameParts), std::end(NameParts), "_"); 1369 1370 BuiltinExtension = R->getValueAsString("builtinExtension"); 1371 1372 PolymorphicOnly = R->getValueAsBit("polymorphicOnly"); 1373 NonEvaluating = R->getValueAsBit("nonEvaluating"); 1374 HeaderOnly = R->getValueAsBit("headerOnly"); 1375 1376 // Process the intrinsic's argument list. 1377 DagInit *ArgsDag = R->getValueAsDag("args"); 1378 Result::Scope Scope; 1379 for (unsigned i = 0, e = ArgsDag->getNumArgs(); i < e; ++i) { 1380 Init *TypeInit = ArgsDag->getArg(i); 1381 1382 bool Promote = true; 1383 if (auto TypeDI = dyn_cast<DefInit>(TypeInit)) 1384 if (TypeDI->getDef()->isSubClassOf("unpromoted")) 1385 Promote = false; 1386 1387 // Work out the type of the argument, for use in the function prototype in 1388 // the header file. 1389 const Type *ArgType = ME.getType(TypeInit, Param); 1390 ArgTypes.push_back(ArgType); 1391 1392 // If the argument is a subclass of Immediate, record the details about 1393 // what values it can take, for Sema checking. 1394 bool Immediate = false; 1395 if (auto TypeDI = dyn_cast<DefInit>(TypeInit)) { 1396 Record *TypeRec = TypeDI->getDef(); 1397 if (TypeRec->isSubClassOf("Immediate")) { 1398 Immediate = true; 1399 1400 Record *Bounds = TypeRec->getValueAsDef("bounds"); 1401 ImmediateArg &IA = ImmediateArgs[i]; 1402 if (Bounds->isSubClassOf("IB_ConstRange")) { 1403 IA.boundsType = ImmediateArg::BoundsType::ExplicitRange; 1404 IA.i1 = Bounds->getValueAsInt("lo"); 1405 IA.i2 = Bounds->getValueAsInt("hi"); 1406 } else if (Bounds->getName() == "IB_UEltValue") { 1407 IA.boundsType = ImmediateArg::BoundsType::UInt; 1408 IA.i1 = Param->sizeInBits(); 1409 } else if (Bounds->getName() == "IB_LaneIndex") { 1410 IA.boundsType = ImmediateArg::BoundsType::ExplicitRange; 1411 IA.i1 = 0; 1412 IA.i2 = 128 / Param->sizeInBits() - 1; 1413 } else if (Bounds->isSubClassOf("IB_EltBit")) { 1414 IA.boundsType = ImmediateArg::BoundsType::ExplicitRange; 1415 IA.i1 = Bounds->getValueAsInt("base"); 1416 const Type *T = ME.getType(Bounds->getValueAsDef("type"), Param); 1417 IA.i2 = IA.i1 + T->sizeInBits() - 1; 1418 } else { 1419 PrintFatalError("unrecognised ImmediateBounds subclass"); 1420 } 1421 1422 IA.ArgType = ArgType; 1423 1424 if (!TypeRec->isValueUnset("extra")) { 1425 IA.ExtraCheckType = TypeRec->getValueAsString("extra"); 1426 if (!TypeRec->isValueUnset("extraarg")) 1427 IA.ExtraCheckArgs = TypeRec->getValueAsString("extraarg"); 1428 } 1429 } 1430 } 1431 1432 // The argument will usually have a name in the arguments dag, which goes 1433 // into the variable-name scope that the code gen will refer to. 1434 StringRef ArgName = ArgsDag->getArgNameStr(i); 1435 if (!ArgName.empty()) 1436 Scope[std::string(ArgName)] = 1437 ME.getCodeForArg(i, ArgType, Promote, Immediate); 1438 } 1439 1440 // Finally, go through the codegen dag and translate it into a Result object 1441 // (with an arbitrary DAG of depended-on Results hanging off it). 1442 DagInit *CodeDag = R->getValueAsDag("codegen"); 1443 Record *MainOp = cast<DefInit>(CodeDag->getOperator())->getDef(); 1444 if (MainOp->isSubClassOf("CustomCodegen")) { 1445 // Or, if it's the special case of CustomCodegen, just accumulate 1446 // a list of parameters we're going to assign to variables before 1447 // breaking from the loop. 1448 CustomCodeGenArgs["CustomCodeGenType"] = 1449 (Twine("CustomCodeGen::") + MainOp->getValueAsString("type")).str(); 1450 for (unsigned i = 0, e = CodeDag->getNumArgs(); i < e; ++i) { 1451 StringRef Name = CodeDag->getArgNameStr(i); 1452 if (Name.empty()) { 1453 PrintFatalError("Operands to CustomCodegen should have names"); 1454 } else if (auto *II = dyn_cast<IntInit>(CodeDag->getArg(i))) { 1455 CustomCodeGenArgs[std::string(Name)] = itostr(II->getValue()); 1456 } else if (auto *SI = dyn_cast<StringInit>(CodeDag->getArg(i))) { 1457 CustomCodeGenArgs[std::string(Name)] = std::string(SI->getValue()); 1458 } else { 1459 PrintFatalError("Operands to CustomCodegen should be integers"); 1460 } 1461 } 1462 } else { 1463 Code = ME.getCodeForDag(CodeDag, Scope, Param); 1464 } 1465 } 1466 1467 EmitterBase::EmitterBase(RecordKeeper &Records) { 1468 // Construct the whole EmitterBase. 1469 1470 // First, look up all the instances of PrimitiveType. This gives us the list 1471 // of vector typedefs we have to put in arm_mve.h, and also allows us to 1472 // collect all the useful ScalarType instances into a big list so that we can 1473 // use it for operations such as 'find the unsigned version of this signed 1474 // integer type'. 1475 for (Record *R : Records.getAllDerivedDefinitions("PrimitiveType")) 1476 ScalarTypes[std::string(R->getName())] = std::make_unique<ScalarType>(R); 1477 1478 // Now go through the instances of Intrinsic, and for each one, iterate 1479 // through its list of type parameters making an ACLEIntrinsic for each one. 1480 for (Record *R : Records.getAllDerivedDefinitions("Intrinsic")) { 1481 for (Record *RParam : R->getValueAsListOfDefs("params")) { 1482 const Type *Param = getType(RParam, getVoidType()); 1483 auto Intrinsic = std::make_unique<ACLEIntrinsic>(*this, R, Param); 1484 ACLEIntrinsics[Intrinsic->fullName()] = std::move(Intrinsic); 1485 } 1486 } 1487 } 1488 1489 /// A wrapper on raw_string_ostream that contains its own buffer rather than 1490 /// having to point it at one elsewhere. (In other words, it works just like 1491 /// std::ostringstream; also, this makes it convenient to declare a whole array 1492 /// of them at once.) 1493 /// 1494 /// We have to set this up using multiple inheritance, to ensure that the 1495 /// string member has been constructed before raw_string_ostream's constructor 1496 /// is given a pointer to it. 1497 class string_holder { 1498 protected: 1499 std::string S; 1500 }; 1501 class raw_self_contained_string_ostream : private string_holder, 1502 public raw_string_ostream { 1503 public: 1504 raw_self_contained_string_ostream() : raw_string_ostream(S) {} 1505 }; 1506 1507 const char LLVMLicenseHeader[] = 1508 " *\n" 1509 " *\n" 1510 " * Part of the LLVM Project, under the Apache License v2.0 with LLVM" 1511 " Exceptions.\n" 1512 " * See https://llvm.org/LICENSE.txt for license information.\n" 1513 " * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception\n" 1514 " *\n" 1515 " *===-----------------------------------------------------------------" 1516 "------===\n" 1517 " */\n" 1518 "\n"; 1519 1520 // Machinery for the grouping of intrinsics by similar codegen. 1521 // 1522 // The general setup is that 'MergeableGroup' stores the things that a set of 1523 // similarly shaped intrinsics have in common: the text of their code 1524 // generation, and the number and type of their parameter variables. 1525 // MergeableGroup is the key in a std::map whose value is a set of 1526 // OutputIntrinsic, which stores the ways in which a particular intrinsic 1527 // specializes the MergeableGroup's generic description: the function name and 1528 // the _values_ of the parameter variables. 1529 1530 struct ComparableStringVector : std::vector<std::string> { 1531 // Infrastructure: a derived class of vector<string> which comes with an 1532 // ordering, so that it can be used as a key in maps and an element in sets. 1533 // There's no requirement on the ordering beyond being deterministic. 1534 bool operator<(const ComparableStringVector &rhs) const { 1535 if (size() != rhs.size()) 1536 return size() < rhs.size(); 1537 for (size_t i = 0, e = size(); i < e; ++i) 1538 if ((*this)[i] != rhs[i]) 1539 return (*this)[i] < rhs[i]; 1540 return false; 1541 } 1542 }; 1543 1544 struct OutputIntrinsic { 1545 const ACLEIntrinsic *Int; 1546 std::string Name; 1547 ComparableStringVector ParamValues; 1548 bool operator<(const OutputIntrinsic &rhs) const { 1549 if (Name != rhs.Name) 1550 return Name < rhs.Name; 1551 return ParamValues < rhs.ParamValues; 1552 } 1553 }; 1554 struct MergeableGroup { 1555 std::string Code; 1556 ComparableStringVector ParamTypes; 1557 bool operator<(const MergeableGroup &rhs) const { 1558 if (Code != rhs.Code) 1559 return Code < rhs.Code; 1560 return ParamTypes < rhs.ParamTypes; 1561 } 1562 }; 1563 1564 void EmitterBase::EmitBuiltinCG(raw_ostream &OS) { 1565 // Pass 1: generate code for all the intrinsics as if every type or constant 1566 // that can possibly be abstracted out into a parameter variable will be. 1567 // This identifies the sets of intrinsics we'll group together into a single 1568 // piece of code generation. 1569 1570 std::map<MergeableGroup, std::set<OutputIntrinsic>> MergeableGroupsPrelim; 1571 1572 for (const auto &kv : ACLEIntrinsics) { 1573 const ACLEIntrinsic &Int = *kv.second; 1574 if (Int.headerOnly()) 1575 continue; 1576 1577 MergeableGroup MG; 1578 OutputIntrinsic OI; 1579 1580 OI.Int = ∬ 1581 OI.Name = Int.fullName(); 1582 CodeGenParamAllocator ParamAllocPrelim{&MG.ParamTypes, &OI.ParamValues}; 1583 raw_string_ostream OS(MG.Code); 1584 Int.genCode(OS, ParamAllocPrelim, 1); 1585 OS.flush(); 1586 1587 MergeableGroupsPrelim[MG].insert(OI); 1588 } 1589 1590 // Pass 2: for each of those groups, optimize the parameter variable set by 1591 // eliminating 'parameters' that are the same for all intrinsics in the 1592 // group, and merging together pairs of parameter variables that take the 1593 // same values as each other for all intrinsics in the group. 1594 1595 std::map<MergeableGroup, std::set<OutputIntrinsic>> MergeableGroups; 1596 1597 for (const auto &kv : MergeableGroupsPrelim) { 1598 const MergeableGroup &MG = kv.first; 1599 std::vector<int> ParamNumbers; 1600 std::map<ComparableStringVector, int> ParamNumberMap; 1601 1602 // Loop over the parameters for this group. 1603 for (size_t i = 0, e = MG.ParamTypes.size(); i < e; ++i) { 1604 // Is this parameter the same for all intrinsics in the group? 1605 const OutputIntrinsic &OI_first = *kv.second.begin(); 1606 bool Constant = all_of(kv.second, [&](const OutputIntrinsic &OI) { 1607 return OI.ParamValues[i] == OI_first.ParamValues[i]; 1608 }); 1609 1610 // If so, record it as -1, meaning 'no parameter variable needed'. Then 1611 // the corresponding call to allocParam in pass 2 will not generate a 1612 // variable at all, and just use the value inline. 1613 if (Constant) { 1614 ParamNumbers.push_back(-1); 1615 continue; 1616 } 1617 1618 // Otherwise, make a list of the values this parameter takes for each 1619 // intrinsic, and see if that value vector matches anything we already 1620 // have. We also record the parameter type, so that we don't accidentally 1621 // match up two parameter variables with different types. (Not that 1622 // there's much chance of them having textually equivalent values, but in 1623 // _principle_ it could happen.) 1624 ComparableStringVector key; 1625 key.push_back(MG.ParamTypes[i]); 1626 for (const auto &OI : kv.second) 1627 key.push_back(OI.ParamValues[i]); 1628 1629 auto Found = ParamNumberMap.find(key); 1630 if (Found != ParamNumberMap.end()) { 1631 // Yes, an existing parameter variable can be reused for this. 1632 ParamNumbers.push_back(Found->second); 1633 continue; 1634 } 1635 1636 // No, we need a new parameter variable. 1637 int ExistingIndex = ParamNumberMap.size(); 1638 ParamNumberMap[key] = ExistingIndex; 1639 ParamNumbers.push_back(ExistingIndex); 1640 } 1641 1642 // Now we're ready to do the pass 2 code generation, which will emit the 1643 // reduced set of parameter variables we've just worked out. 1644 1645 for (const auto &OI_prelim : kv.second) { 1646 const ACLEIntrinsic *Int = OI_prelim.Int; 1647 1648 MergeableGroup MG; 1649 OutputIntrinsic OI; 1650 1651 OI.Int = OI_prelim.Int; 1652 OI.Name = OI_prelim.Name; 1653 CodeGenParamAllocator ParamAlloc{&MG.ParamTypes, &OI.ParamValues, 1654 &ParamNumbers}; 1655 raw_string_ostream OS(MG.Code); 1656 Int->genCode(OS, ParamAlloc, 2); 1657 OS.flush(); 1658 1659 MergeableGroups[MG].insert(OI); 1660 } 1661 } 1662 1663 // Output the actual C++ code. 1664 1665 for (const auto &kv : MergeableGroups) { 1666 const MergeableGroup &MG = kv.first; 1667 1668 // List of case statements in the main switch on BuiltinID, and an open 1669 // brace. 1670 const char *prefix = ""; 1671 for (const auto &OI : kv.second) { 1672 OS << prefix << "case ARM::BI__builtin_arm_" << OI.Int->builtinExtension() 1673 << "_" << OI.Name << ":"; 1674 1675 prefix = "\n"; 1676 } 1677 OS << " {\n"; 1678 1679 if (!MG.ParamTypes.empty()) { 1680 // If we've got some parameter variables, then emit their declarations... 1681 for (size_t i = 0, e = MG.ParamTypes.size(); i < e; ++i) { 1682 StringRef Type = MG.ParamTypes[i]; 1683 OS << " " << Type; 1684 if (!Type.ends_with("*")) 1685 OS << " "; 1686 OS << " Param" << utostr(i) << ";\n"; 1687 } 1688 1689 // ... and an inner switch on BuiltinID that will fill them in with each 1690 // individual intrinsic's values. 1691 OS << " switch (BuiltinID) {\n"; 1692 for (const auto &OI : kv.second) { 1693 OS << " case ARM::BI__builtin_arm_" << OI.Int->builtinExtension() 1694 << "_" << OI.Name << ":\n"; 1695 for (size_t i = 0, e = MG.ParamTypes.size(); i < e; ++i) 1696 OS << " Param" << utostr(i) << " = " << OI.ParamValues[i] << ";\n"; 1697 OS << " break;\n"; 1698 } 1699 OS << " }\n"; 1700 } 1701 1702 // And finally, output the code, and close the outer pair of braces. (The 1703 // code will always end with a 'return' statement, so we need not insert a 1704 // 'break' here.) 1705 OS << MG.Code << "}\n"; 1706 } 1707 } 1708 1709 void EmitterBase::EmitBuiltinAliases(raw_ostream &OS) { 1710 // Build a sorted table of: 1711 // - intrinsic id number 1712 // - full name 1713 // - polymorphic name or -1 1714 StringToOffsetTable StringTable; 1715 OS << "static const IntrinToName MapData[] = {\n"; 1716 for (const auto &kv : ACLEIntrinsics) { 1717 const ACLEIntrinsic &Int = *kv.second; 1718 if (Int.headerOnly()) 1719 continue; 1720 int32_t ShortNameOffset = 1721 Int.polymorphic() ? StringTable.GetOrAddStringOffset(Int.shortName()) 1722 : -1; 1723 OS << " { ARM::BI__builtin_arm_" << Int.builtinExtension() << "_" 1724 << Int.fullName() << ", " 1725 << StringTable.GetOrAddStringOffset(Int.fullName()) << ", " 1726 << ShortNameOffset << "},\n"; 1727 } 1728 OS << "};\n\n"; 1729 1730 OS << "ArrayRef<IntrinToName> Map(MapData);\n\n"; 1731 1732 OS << "static const char IntrinNames[] = {\n"; 1733 StringTable.EmitString(OS); 1734 OS << "};\n\n"; 1735 } 1736 1737 void EmitterBase::GroupSemaChecks( 1738 std::map<std::string, std::set<std::string>> &Checks) { 1739 for (const auto &kv : ACLEIntrinsics) { 1740 const ACLEIntrinsic &Int = *kv.second; 1741 if (Int.headerOnly()) 1742 continue; 1743 std::string Check = Int.genSema(); 1744 if (!Check.empty()) 1745 Checks[Check].insert(Int.fullName()); 1746 } 1747 } 1748 1749 // ----------------------------------------------------------------------------- 1750 // The class used for generating arm_mve.h and related Clang bits 1751 // 1752 1753 class MveEmitter : public EmitterBase { 1754 public: 1755 MveEmitter(RecordKeeper &Records) : EmitterBase(Records){}; 1756 void EmitHeader(raw_ostream &OS) override; 1757 void EmitBuiltinDef(raw_ostream &OS) override; 1758 void EmitBuiltinSema(raw_ostream &OS) override; 1759 }; 1760 1761 void MveEmitter::EmitHeader(raw_ostream &OS) { 1762 // Accumulate pieces of the header file that will be enabled under various 1763 // different combinations of #ifdef. The index into parts[] is made up of 1764 // the following bit flags. 1765 constexpr unsigned Float = 1; 1766 constexpr unsigned UseUserNamespace = 2; 1767 1768 constexpr unsigned NumParts = 4; 1769 raw_self_contained_string_ostream parts[NumParts]; 1770 1771 // Write typedefs for all the required vector types, and a few scalar 1772 // types that don't already have the name we want them to have. 1773 1774 parts[0] << "typedef uint16_t mve_pred16_t;\n"; 1775 parts[Float] << "typedef __fp16 float16_t;\n" 1776 "typedef float float32_t;\n"; 1777 for (const auto &kv : ScalarTypes) { 1778 const ScalarType *ST = kv.second.get(); 1779 if (ST->hasNonstandardName()) 1780 continue; 1781 raw_ostream &OS = parts[ST->requiresFloat() ? Float : 0]; 1782 const VectorType *VT = getVectorType(ST); 1783 1784 OS << "typedef __attribute__((__neon_vector_type__(" << VT->lanes() 1785 << "), __clang_arm_mve_strict_polymorphism)) " << ST->cName() << " " 1786 << VT->cName() << ";\n"; 1787 1788 // Every vector type also comes with a pair of multi-vector types for 1789 // the VLD2 and VLD4 instructions. 1790 for (unsigned n = 2; n <= 4; n += 2) { 1791 const MultiVectorType *MT = getMultiVectorType(n, VT); 1792 OS << "typedef struct { " << VT->cName() << " val[" << n << "]; } " 1793 << MT->cName() << ";\n"; 1794 } 1795 } 1796 parts[0] << "\n"; 1797 parts[Float] << "\n"; 1798 1799 // Write declarations for all the intrinsics. 1800 1801 for (const auto &kv : ACLEIntrinsics) { 1802 const ACLEIntrinsic &Int = *kv.second; 1803 1804 // We generate each intrinsic twice, under its full unambiguous 1805 // name and its shorter polymorphic name (if the latter exists). 1806 for (bool Polymorphic : {false, true}) { 1807 if (Polymorphic && !Int.polymorphic()) 1808 continue; 1809 if (!Polymorphic && Int.polymorphicOnly()) 1810 continue; 1811 1812 // We also generate each intrinsic under a name like __arm_vfooq 1813 // (which is in C language implementation namespace, so it's 1814 // safe to define in any conforming user program) and a shorter 1815 // one like vfooq (which is in user namespace, so a user might 1816 // reasonably have used it for something already). If so, they 1817 // can #define __ARM_MVE_PRESERVE_USER_NAMESPACE before 1818 // including the header, which will suppress the shorter names 1819 // and leave only the implementation-namespace ones. Then they 1820 // have to write __arm_vfooq everywhere, of course. 1821 1822 for (bool UserNamespace : {false, true}) { 1823 raw_ostream &OS = parts[(Int.requiresFloat() ? Float : 0) | 1824 (UserNamespace ? UseUserNamespace : 0)]; 1825 1826 // Make the name of the function in this declaration. 1827 1828 std::string FunctionName = 1829 Polymorphic ? Int.shortName() : Int.fullName(); 1830 if (!UserNamespace) 1831 FunctionName = "__arm_" + FunctionName; 1832 1833 // Make strings for the types involved in the function's 1834 // prototype. 1835 1836 std::string RetTypeName = Int.returnType()->cName(); 1837 if (!StringRef(RetTypeName).ends_with("*")) 1838 RetTypeName += " "; 1839 1840 std::vector<std::string> ArgTypeNames; 1841 for (const Type *ArgTypePtr : Int.argTypes()) 1842 ArgTypeNames.push_back(ArgTypePtr->cName()); 1843 std::string ArgTypesString = 1844 join(std::begin(ArgTypeNames), std::end(ArgTypeNames), ", "); 1845 1846 // Emit the actual declaration. All these functions are 1847 // declared 'static inline' without a body, which is fine 1848 // provided clang recognizes them as builtins, and has the 1849 // effect that this type signature is used in place of the one 1850 // that Builtins.td didn't provide. That's how we can get 1851 // structure types that weren't defined until this header was 1852 // included to be part of the type signature of a builtin that 1853 // was known to clang already. 1854 // 1855 // The declarations use __attribute__(__clang_arm_builtin_alias), 1856 // so that each function declared will be recognized as the 1857 // appropriate MVE builtin in spite of its user-facing name. 1858 // 1859 // (That's better than making them all wrapper functions, 1860 // partly because it avoids any compiler error message citing 1861 // the wrapper function definition instead of the user's code, 1862 // and mostly because some MVE intrinsics have arguments 1863 // required to be compile-time constants, and that property 1864 // can't be propagated through a wrapper function. It can be 1865 // propagated through a macro, but macros can't be overloaded 1866 // on argument types very easily - you have to use _Generic, 1867 // which makes error messages very confusing when the user 1868 // gets it wrong.) 1869 // 1870 // Finally, the polymorphic versions of the intrinsics are 1871 // also defined with __attribute__(overloadable), so that when 1872 // the same name is defined with several type signatures, the 1873 // right thing happens. Each one of the overloaded 1874 // declarations is given a different builtin id, which 1875 // has exactly the effect we want: first clang resolves the 1876 // overload to the right function, then it knows which builtin 1877 // it's referring to, and then the Sema checking for that 1878 // builtin can check further things like the constant 1879 // arguments. 1880 // 1881 // One more subtlety is the newline just before the return 1882 // type name. That's a cosmetic tweak to make the error 1883 // messages legible if the user gets the types wrong in a call 1884 // to a polymorphic function: this way, clang will print just 1885 // the _final_ line of each declaration in the header, to show 1886 // the type signatures that would have been legal. So all the 1887 // confusing machinery with __attribute__ is left out of the 1888 // error message, and the user sees something that's more or 1889 // less self-documenting: "here's a list of actually readable 1890 // type signatures for vfooq(), and here's why each one didn't 1891 // match your call". 1892 1893 OS << "static __inline__ __attribute__((" 1894 << (Polymorphic ? "__overloadable__, " : "") 1895 << "__clang_arm_builtin_alias(__builtin_arm_mve_" << Int.fullName() 1896 << ")))\n" 1897 << RetTypeName << FunctionName << "(" << ArgTypesString << ");\n"; 1898 } 1899 } 1900 } 1901 for (auto &part : parts) 1902 part << "\n"; 1903 1904 // Now we've finished accumulating bits and pieces into the parts[] array. 1905 // Put it all together to write the final output file. 1906 1907 OS << "/*===---- arm_mve.h - ARM MVE intrinsics " 1908 "-----------------------------------===\n" 1909 << LLVMLicenseHeader 1910 << "#ifndef __ARM_MVE_H\n" 1911 "#define __ARM_MVE_H\n" 1912 "\n" 1913 "#if !__ARM_FEATURE_MVE\n" 1914 "#error \"MVE support not enabled\"\n" 1915 "#endif\n" 1916 "\n" 1917 "#include <stdint.h>\n" 1918 "\n" 1919 "#ifdef __cplusplus\n" 1920 "extern \"C\" {\n" 1921 "#endif\n" 1922 "\n"; 1923 1924 for (size_t i = 0; i < NumParts; ++i) { 1925 std::vector<std::string> conditions; 1926 if (i & Float) 1927 conditions.push_back("(__ARM_FEATURE_MVE & 2)"); 1928 if (i & UseUserNamespace) 1929 conditions.push_back("(!defined __ARM_MVE_PRESERVE_USER_NAMESPACE)"); 1930 1931 std::string condition = 1932 join(std::begin(conditions), std::end(conditions), " && "); 1933 if (!condition.empty()) 1934 OS << "#if " << condition << "\n\n"; 1935 OS << parts[i].str(); 1936 if (!condition.empty()) 1937 OS << "#endif /* " << condition << " */\n\n"; 1938 } 1939 1940 OS << "#ifdef __cplusplus\n" 1941 "} /* extern \"C\" */\n" 1942 "#endif\n" 1943 "\n" 1944 "#endif /* __ARM_MVE_H */\n"; 1945 } 1946 1947 void MveEmitter::EmitBuiltinDef(raw_ostream &OS) { 1948 for (const auto &kv : ACLEIntrinsics) { 1949 const ACLEIntrinsic &Int = *kv.second; 1950 OS << "BUILTIN(__builtin_arm_mve_" << Int.fullName() 1951 << ", \"\", \"n\")\n"; 1952 } 1953 1954 std::set<std::string> ShortNamesSeen; 1955 1956 for (const auto &kv : ACLEIntrinsics) { 1957 const ACLEIntrinsic &Int = *kv.second; 1958 if (Int.polymorphic()) { 1959 StringRef Name = Int.shortName(); 1960 if (ShortNamesSeen.find(std::string(Name)) == ShortNamesSeen.end()) { 1961 OS << "BUILTIN(__builtin_arm_mve_" << Name << ", \"vi.\", \"nt"; 1962 if (Int.nonEvaluating()) 1963 OS << "u"; // indicate that this builtin doesn't evaluate its args 1964 OS << "\")\n"; 1965 ShortNamesSeen.insert(std::string(Name)); 1966 } 1967 } 1968 } 1969 } 1970 1971 void MveEmitter::EmitBuiltinSema(raw_ostream &OS) { 1972 std::map<std::string, std::set<std::string>> Checks; 1973 GroupSemaChecks(Checks); 1974 1975 for (const auto &kv : Checks) { 1976 for (StringRef Name : kv.second) 1977 OS << "case ARM::BI__builtin_arm_mve_" << Name << ":\n"; 1978 OS << " return " << kv.first; 1979 } 1980 } 1981 1982 // ----------------------------------------------------------------------------- 1983 // Class that describes an ACLE intrinsic implemented as a macro. 1984 // 1985 // This class is used when the intrinsic is polymorphic in 2 or 3 types, but we 1986 // want to avoid a combinatorial explosion by reinterpreting the arguments to 1987 // fixed types. 1988 1989 class FunctionMacro { 1990 std::vector<StringRef> Params; 1991 StringRef Definition; 1992 1993 public: 1994 FunctionMacro(const Record &R); 1995 1996 const std::vector<StringRef> &getParams() const { return Params; } 1997 StringRef getDefinition() const { return Definition; } 1998 }; 1999 2000 FunctionMacro::FunctionMacro(const Record &R) { 2001 Params = R.getValueAsListOfStrings("params"); 2002 Definition = R.getValueAsString("definition"); 2003 } 2004 2005 // ----------------------------------------------------------------------------- 2006 // The class used for generating arm_cde.h and related Clang bits 2007 // 2008 2009 class CdeEmitter : public EmitterBase { 2010 std::map<StringRef, FunctionMacro> FunctionMacros; 2011 2012 public: 2013 CdeEmitter(RecordKeeper &Records); 2014 void EmitHeader(raw_ostream &OS) override; 2015 void EmitBuiltinDef(raw_ostream &OS) override; 2016 void EmitBuiltinSema(raw_ostream &OS) override; 2017 }; 2018 2019 CdeEmitter::CdeEmitter(RecordKeeper &Records) : EmitterBase(Records) { 2020 for (Record *R : Records.getAllDerivedDefinitions("FunctionMacro")) 2021 FunctionMacros.emplace(R->getName(), FunctionMacro(*R)); 2022 } 2023 2024 void CdeEmitter::EmitHeader(raw_ostream &OS) { 2025 // Accumulate pieces of the header file that will be enabled under various 2026 // different combinations of #ifdef. The index into parts[] is one of the 2027 // following: 2028 constexpr unsigned None = 0; 2029 constexpr unsigned MVE = 1; 2030 constexpr unsigned MVEFloat = 2; 2031 2032 constexpr unsigned NumParts = 3; 2033 raw_self_contained_string_ostream parts[NumParts]; 2034 2035 // Write typedefs for all the required vector types, and a few scalar 2036 // types that don't already have the name we want them to have. 2037 2038 parts[MVE] << "typedef uint16_t mve_pred16_t;\n"; 2039 parts[MVEFloat] << "typedef __fp16 float16_t;\n" 2040 "typedef float float32_t;\n"; 2041 for (const auto &kv : ScalarTypes) { 2042 const ScalarType *ST = kv.second.get(); 2043 if (ST->hasNonstandardName()) 2044 continue; 2045 // We don't have float64x2_t 2046 if (ST->kind() == ScalarTypeKind::Float && ST->sizeInBits() == 64) 2047 continue; 2048 raw_ostream &OS = parts[ST->requiresFloat() ? MVEFloat : MVE]; 2049 const VectorType *VT = getVectorType(ST); 2050 2051 OS << "typedef __attribute__((__neon_vector_type__(" << VT->lanes() 2052 << "), __clang_arm_mve_strict_polymorphism)) " << ST->cName() << " " 2053 << VT->cName() << ";\n"; 2054 } 2055 parts[MVE] << "\n"; 2056 parts[MVEFloat] << "\n"; 2057 2058 // Write declarations for all the intrinsics. 2059 2060 for (const auto &kv : ACLEIntrinsics) { 2061 const ACLEIntrinsic &Int = *kv.second; 2062 2063 // We generate each intrinsic twice, under its full unambiguous 2064 // name and its shorter polymorphic name (if the latter exists). 2065 for (bool Polymorphic : {false, true}) { 2066 if (Polymorphic && !Int.polymorphic()) 2067 continue; 2068 if (!Polymorphic && Int.polymorphicOnly()) 2069 continue; 2070 2071 raw_ostream &OS = 2072 parts[Int.requiresFloat() ? MVEFloat 2073 : Int.requiresMVE() ? MVE : None]; 2074 2075 // Make the name of the function in this declaration. 2076 std::string FunctionName = 2077 "__arm_" + (Polymorphic ? Int.shortName() : Int.fullName()); 2078 2079 // Make strings for the types involved in the function's 2080 // prototype. 2081 std::string RetTypeName = Int.returnType()->cName(); 2082 if (!StringRef(RetTypeName).ends_with("*")) 2083 RetTypeName += " "; 2084 2085 std::vector<std::string> ArgTypeNames; 2086 for (const Type *ArgTypePtr : Int.argTypes()) 2087 ArgTypeNames.push_back(ArgTypePtr->cName()); 2088 std::string ArgTypesString = 2089 join(std::begin(ArgTypeNames), std::end(ArgTypeNames), ", "); 2090 2091 // Emit the actual declaration. See MveEmitter::EmitHeader for detailed 2092 // comments 2093 OS << "static __inline__ __attribute__((" 2094 << (Polymorphic ? "__overloadable__, " : "") 2095 << "__clang_arm_builtin_alias(__builtin_arm_" << Int.builtinExtension() 2096 << "_" << Int.fullName() << ")))\n" 2097 << RetTypeName << FunctionName << "(" << ArgTypesString << ");\n"; 2098 } 2099 } 2100 2101 for (const auto &kv : FunctionMacros) { 2102 StringRef Name = kv.first; 2103 const FunctionMacro &FM = kv.second; 2104 2105 raw_ostream &OS = parts[MVE]; 2106 OS << "#define " 2107 << "__arm_" << Name << "(" << join(FM.getParams(), ", ") << ") " 2108 << FM.getDefinition() << "\n"; 2109 } 2110 2111 for (auto &part : parts) 2112 part << "\n"; 2113 2114 // Now we've finished accumulating bits and pieces into the parts[] array. 2115 // Put it all together to write the final output file. 2116 2117 OS << "/*===---- arm_cde.h - ARM CDE intrinsics " 2118 "-----------------------------------===\n" 2119 << LLVMLicenseHeader 2120 << "#ifndef __ARM_CDE_H\n" 2121 "#define __ARM_CDE_H\n" 2122 "\n" 2123 "#if !__ARM_FEATURE_CDE\n" 2124 "#error \"CDE support not enabled\"\n" 2125 "#endif\n" 2126 "\n" 2127 "#include <stdint.h>\n" 2128 "\n" 2129 "#ifdef __cplusplus\n" 2130 "extern \"C\" {\n" 2131 "#endif\n" 2132 "\n"; 2133 2134 for (size_t i = 0; i < NumParts; ++i) { 2135 std::string condition; 2136 if (i == MVEFloat) 2137 condition = "__ARM_FEATURE_MVE & 2"; 2138 else if (i == MVE) 2139 condition = "__ARM_FEATURE_MVE"; 2140 2141 if (!condition.empty()) 2142 OS << "#if " << condition << "\n\n"; 2143 OS << parts[i].str(); 2144 if (!condition.empty()) 2145 OS << "#endif /* " << condition << " */\n\n"; 2146 } 2147 2148 OS << "#ifdef __cplusplus\n" 2149 "} /* extern \"C\" */\n" 2150 "#endif\n" 2151 "\n" 2152 "#endif /* __ARM_CDE_H */\n"; 2153 } 2154 2155 void CdeEmitter::EmitBuiltinDef(raw_ostream &OS) { 2156 for (const auto &kv : ACLEIntrinsics) { 2157 if (kv.second->headerOnly()) 2158 continue; 2159 const ACLEIntrinsic &Int = *kv.second; 2160 OS << "BUILTIN(__builtin_arm_cde_" << Int.fullName() 2161 << ", \"\", \"ncU\")\n"; 2162 } 2163 } 2164 2165 void CdeEmitter::EmitBuiltinSema(raw_ostream &OS) { 2166 std::map<std::string, std::set<std::string>> Checks; 2167 GroupSemaChecks(Checks); 2168 2169 for (const auto &kv : Checks) { 2170 for (StringRef Name : kv.second) 2171 OS << "case ARM::BI__builtin_arm_cde_" << Name << ":\n"; 2172 OS << " Err = " << kv.first << " break;\n"; 2173 } 2174 } 2175 2176 } // namespace 2177 2178 namespace clang { 2179 2180 // MVE 2181 2182 void EmitMveHeader(RecordKeeper &Records, raw_ostream &OS) { 2183 MveEmitter(Records).EmitHeader(OS); 2184 } 2185 2186 void EmitMveBuiltinDef(RecordKeeper &Records, raw_ostream &OS) { 2187 MveEmitter(Records).EmitBuiltinDef(OS); 2188 } 2189 2190 void EmitMveBuiltinSema(RecordKeeper &Records, raw_ostream &OS) { 2191 MveEmitter(Records).EmitBuiltinSema(OS); 2192 } 2193 2194 void EmitMveBuiltinCG(RecordKeeper &Records, raw_ostream &OS) { 2195 MveEmitter(Records).EmitBuiltinCG(OS); 2196 } 2197 2198 void EmitMveBuiltinAliases(RecordKeeper &Records, raw_ostream &OS) { 2199 MveEmitter(Records).EmitBuiltinAliases(OS); 2200 } 2201 2202 // CDE 2203 2204 void EmitCdeHeader(RecordKeeper &Records, raw_ostream &OS) { 2205 CdeEmitter(Records).EmitHeader(OS); 2206 } 2207 2208 void EmitCdeBuiltinDef(RecordKeeper &Records, raw_ostream &OS) { 2209 CdeEmitter(Records).EmitBuiltinDef(OS); 2210 } 2211 2212 void EmitCdeBuiltinSema(RecordKeeper &Records, raw_ostream &OS) { 2213 CdeEmitter(Records).EmitBuiltinSema(OS); 2214 } 2215 2216 void EmitCdeBuiltinCG(RecordKeeper &Records, raw_ostream &OS) { 2217 CdeEmitter(Records).EmitBuiltinCG(OS); 2218 } 2219 2220 void EmitCdeBuiltinAliases(RecordKeeper &Records, raw_ostream &OS) { 2221 CdeEmitter(Records).EmitBuiltinAliases(OS); 2222 } 2223 2224 } // end namespace clang 2225