xref: /freebsd/contrib/llvm-project/clang/utils/TableGen/MveEmitter.cpp (revision b5a3a89c50671a1ad29e7c43fe15e7b16feac239)
1 //===- MveEmitter.cpp - Generate arm_mve.h for use with clang -*- C++ -*-=====//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This set of linked tablegen backends is responsible for emitting the bits
10 // and pieces that implement <arm_mve.h>, which is defined by the ACLE standard
11 // and provides a set of types and functions for (more or less) direct access
12 // to the MVE instruction set, including the scalar shifts as well as the
13 // vector instructions.
14 //
15 // MVE's standard intrinsic functions are unusual in that they have a system of
16 // polymorphism. For example, the function vaddq() can behave like vaddq_u16(),
17 // vaddq_f32(), vaddq_s8(), etc., depending on the types of the vector
18 // arguments you give it.
19 //
20 // This constrains the implementation strategies. The usual approach to making
21 // the user-facing functions polymorphic would be to either use
22 // __attribute__((overloadable)) to make a set of vaddq() functions that are
23 // all inline wrappers on the underlying clang builtins, or to define a single
24 // vaddq() macro which expands to an instance of _Generic.
25 //
26 // The inline-wrappers approach would work fine for most intrinsics, except for
27 // the ones that take an argument required to be a compile-time constant,
28 // because if you wrap an inline function around a call to a builtin, the
29 // constant nature of the argument is not passed through.
30 //
31 // The _Generic approach can be made to work with enough effort, but it takes a
32 // lot of machinery, because of the design feature of _Generic that even the
33 // untaken branches are required to pass all front-end validity checks such as
34 // type-correctness. You can work around that by nesting further _Generics all
35 // over the place to coerce things to the right type in untaken branches, but
36 // what you get out is complicated, hard to guarantee its correctness, and
37 // worst of all, gives _completely unreadable_ error messages if the user gets
38 // the types wrong for an intrinsic call.
39 //
40 // Therefore, my strategy is to introduce a new __attribute__ that allows a
41 // function to be mapped to a clang builtin even though it doesn't have the
42 // same name, and then declare all the user-facing MVE function names with that
43 // attribute, mapping each one directly to the clang builtin. And the
44 // polymorphic ones have __attribute__((overloadable)) as well. So once the
45 // compiler has resolved the overload, it knows the internal builtin ID of the
46 // selected function, and can check the immediate arguments against that; and
47 // if the user gets the types wrong in a call to a polymorphic intrinsic, they
48 // get a completely clear error message showing all the declarations of that
49 // function in the header file and explaining why each one doesn't fit their
50 // call.
51 //
52 // The downside of this is that if every clang builtin has to correspond
53 // exactly to a user-facing ACLE intrinsic, then you can't save work in the
54 // frontend by doing it in the header file: CGBuiltin.cpp has to do the entire
55 // job of converting an ACLE intrinsic call into LLVM IR. So the Tablegen
56 // description for an MVE intrinsic has to contain a full description of the
57 // sequence of IRBuilder calls that clang will need to make.
58 //
59 //===----------------------------------------------------------------------===//
60 
61 #include "llvm/ADT/APInt.h"
62 #include "llvm/ADT/StringRef.h"
63 #include "llvm/ADT/StringSwitch.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/raw_ostream.h"
66 #include "llvm/TableGen/Error.h"
67 #include "llvm/TableGen/Record.h"
68 #include "llvm/TableGen/StringToOffsetTable.h"
69 #include <cassert>
70 #include <cstddef>
71 #include <cstdint>
72 #include <list>
73 #include <map>
74 #include <memory>
75 #include <set>
76 #include <string>
77 #include <vector>
78 
79 using namespace llvm;
80 
81 namespace {
82 
83 class EmitterBase;
84 class Result;
85 
86 // -----------------------------------------------------------------------------
87 // A system of classes to represent all the types we'll need to deal with in
88 // the prototypes of intrinsics.
89 //
90 // Query methods include finding out the C name of a type; the "LLVM name" in
91 // the sense of a C++ code snippet that can be used in the codegen function;
92 // the suffix that represents the type in the ACLE intrinsic naming scheme
93 // (e.g. 's32' represents int32_t in intrinsics such as vaddq_s32); whether the
94 // type is floating-point related (hence should be under #ifdef in the MVE
95 // header so that it isn't included in integer-only MVE mode); and the type's
96 // size in bits. Not all subtypes support all these queries.
97 
98 class Type {
99 public:
100   enum class TypeKind {
101     // Void appears as a return type (for store intrinsics, which are pure
102     // side-effect). It's also used as the parameter type in the Tablegen
103     // when an intrinsic doesn't need to come in various suffixed forms like
104     // vfooq_s8,vfooq_u16,vfooq_f32.
105     Void,
106 
107     // Scalar is used for ordinary int and float types of all sizes.
108     Scalar,
109 
110     // Vector is used for anything that occupies exactly one MVE vector
111     // register, i.e. {uint,int,float}NxM_t.
112     Vector,
113 
114     // MultiVector is used for the {uint,int,float}NxMxK_t types used by the
115     // interleaving load/store intrinsics v{ld,st}{2,4}q.
116     MultiVector,
117 
118     // Predicate is used by all the predicated intrinsics. Its C
119     // representation is mve_pred16_t (which is just an alias for uint16_t).
120     // But we give more detail here, by indicating that a given predicate
121     // instruction is logically regarded as a vector of i1 containing the
122     // same number of lanes as the input vector type. So our Predicate type
123     // comes with a lane count, which we use to decide which kind of <n x i1>
124     // we'll invoke the pred_i2v IR intrinsic to translate it into.
125     Predicate,
126 
127     // Pointer is used for pointer types (obviously), and comes with a flag
128     // indicating whether it's a pointer to a const or mutable instance of
129     // the pointee type.
130     Pointer,
131   };
132 
133 private:
134   const TypeKind TKind;
135 
136 protected:
137   Type(TypeKind K) : TKind(K) {}
138 
139 public:
140   TypeKind typeKind() const { return TKind; }
141   virtual ~Type() = default;
142   virtual bool requiresFloat() const = 0;
143   virtual bool requiresMVE() const = 0;
144   virtual unsigned sizeInBits() const = 0;
145   virtual std::string cName() const = 0;
146   virtual std::string llvmName() const {
147     PrintFatalError("no LLVM type name available for type " + cName());
148   }
149   virtual std::string acleSuffix(std::string) const {
150     PrintFatalError("no ACLE suffix available for this type");
151   }
152 };
153 
154 enum class ScalarTypeKind { SignedInt, UnsignedInt, Float };
155 inline std::string toLetter(ScalarTypeKind kind) {
156   switch (kind) {
157   case ScalarTypeKind::SignedInt:
158     return "s";
159   case ScalarTypeKind::UnsignedInt:
160     return "u";
161   case ScalarTypeKind::Float:
162     return "f";
163   }
164   llvm_unreachable("Unhandled ScalarTypeKind enum");
165 }
166 inline std::string toCPrefix(ScalarTypeKind kind) {
167   switch (kind) {
168   case ScalarTypeKind::SignedInt:
169     return "int";
170   case ScalarTypeKind::UnsignedInt:
171     return "uint";
172   case ScalarTypeKind::Float:
173     return "float";
174   }
175   llvm_unreachable("Unhandled ScalarTypeKind enum");
176 }
177 
178 class VoidType : public Type {
179 public:
180   VoidType() : Type(TypeKind::Void) {}
181   unsigned sizeInBits() const override { return 0; }
182   bool requiresFloat() const override { return false; }
183   bool requiresMVE() const override { return false; }
184   std::string cName() const override { return "void"; }
185 
186   static bool classof(const Type *T) { return T->typeKind() == TypeKind::Void; }
187   std::string acleSuffix(std::string) const override { return ""; }
188 };
189 
190 class PointerType : public Type {
191   const Type *Pointee;
192   bool Const;
193 
194 public:
195   PointerType(const Type *Pointee, bool Const)
196       : Type(TypeKind::Pointer), Pointee(Pointee), Const(Const) {}
197   unsigned sizeInBits() const override { return 32; }
198   bool requiresFloat() const override { return Pointee->requiresFloat(); }
199   bool requiresMVE() const override { return Pointee->requiresMVE(); }
200   std::string cName() const override {
201     std::string Name = Pointee->cName();
202 
203     // The syntax for a pointer in C is different when the pointee is
204     // itself a pointer. The MVE intrinsics don't contain any double
205     // pointers, so we don't need to worry about that wrinkle.
206     assert(!isa<PointerType>(Pointee) && "Pointer to pointer not supported");
207 
208     if (Const)
209       Name = "const " + Name;
210     return Name + " *";
211   }
212   std::string llvmName() const override {
213     return "llvm::PointerType::getUnqual(" + Pointee->llvmName() + ")";
214   }
215   const Type *getPointeeType() const { return Pointee; }
216 
217   static bool classof(const Type *T) {
218     return T->typeKind() == TypeKind::Pointer;
219   }
220 };
221 
222 // Base class for all the types that have a name of the form
223 // [prefix][numbers]_t, like int32_t, uint16x8_t, float32x4x2_t.
224 //
225 // For this sub-hierarchy we invent a cNameBase() method which returns the
226 // whole name except for the trailing "_t", so that Vector and MultiVector can
227 // append an extra "x2" or whatever to their element type's cNameBase(). Then
228 // the main cName() query method puts "_t" on the end for the final type name.
229 
230 class CRegularNamedType : public Type {
231   using Type::Type;
232   virtual std::string cNameBase() const = 0;
233 
234 public:
235   std::string cName() const override { return cNameBase() + "_t"; }
236 };
237 
238 class ScalarType : public CRegularNamedType {
239   ScalarTypeKind Kind;
240   unsigned Bits;
241   std::string NameOverride;
242 
243 public:
244   ScalarType(const Record *Record) : CRegularNamedType(TypeKind::Scalar) {
245     Kind = StringSwitch<ScalarTypeKind>(Record->getValueAsString("kind"))
246                .Case("s", ScalarTypeKind::SignedInt)
247                .Case("u", ScalarTypeKind::UnsignedInt)
248                .Case("f", ScalarTypeKind::Float);
249     Bits = Record->getValueAsInt("size");
250     NameOverride = std::string(Record->getValueAsString("nameOverride"));
251   }
252   unsigned sizeInBits() const override { return Bits; }
253   ScalarTypeKind kind() const { return Kind; }
254   std::string suffix() const { return toLetter(Kind) + utostr(Bits); }
255   std::string cNameBase() const override {
256     return toCPrefix(Kind) + utostr(Bits);
257   }
258   std::string cName() const override {
259     if (NameOverride.empty())
260       return CRegularNamedType::cName();
261     return NameOverride;
262   }
263   std::string llvmName() const override {
264     if (Kind == ScalarTypeKind::Float) {
265       if (Bits == 16)
266         return "HalfTy";
267       if (Bits == 32)
268         return "FloatTy";
269       if (Bits == 64)
270         return "DoubleTy";
271       PrintFatalError("bad size for floating type");
272     }
273     return "Int" + utostr(Bits) + "Ty";
274   }
275   std::string acleSuffix(std::string overrideLetter) const override {
276     return "_" + (overrideLetter.size() ? overrideLetter : toLetter(Kind))
277                + utostr(Bits);
278   }
279   bool isInteger() const { return Kind != ScalarTypeKind::Float; }
280   bool requiresFloat() const override { return !isInteger(); }
281   bool requiresMVE() const override { return false; }
282   bool hasNonstandardName() const { return !NameOverride.empty(); }
283 
284   static bool classof(const Type *T) {
285     return T->typeKind() == TypeKind::Scalar;
286   }
287 };
288 
289 class VectorType : public CRegularNamedType {
290   const ScalarType *Element;
291   unsigned Lanes;
292 
293 public:
294   VectorType(const ScalarType *Element, unsigned Lanes)
295       : CRegularNamedType(TypeKind::Vector), Element(Element), Lanes(Lanes) {}
296   unsigned sizeInBits() const override { return Lanes * Element->sizeInBits(); }
297   unsigned lanes() const { return Lanes; }
298   bool requiresFloat() const override { return Element->requiresFloat(); }
299   bool requiresMVE() const override { return true; }
300   std::string cNameBase() const override {
301     return Element->cNameBase() + "x" + utostr(Lanes);
302   }
303   std::string llvmName() const override {
304     return "llvm::FixedVectorType::get(" + Element->llvmName() + ", " +
305            utostr(Lanes) + ")";
306   }
307 
308   static bool classof(const Type *T) {
309     return T->typeKind() == TypeKind::Vector;
310   }
311 };
312 
313 class MultiVectorType : public CRegularNamedType {
314   const VectorType *Element;
315   unsigned Registers;
316 
317 public:
318   MultiVectorType(unsigned Registers, const VectorType *Element)
319       : CRegularNamedType(TypeKind::MultiVector), Element(Element),
320         Registers(Registers) {}
321   unsigned sizeInBits() const override {
322     return Registers * Element->sizeInBits();
323   }
324   unsigned registers() const { return Registers; }
325   bool requiresFloat() const override { return Element->requiresFloat(); }
326   bool requiresMVE() const override { return true; }
327   std::string cNameBase() const override {
328     return Element->cNameBase() + "x" + utostr(Registers);
329   }
330 
331   // MultiVectorType doesn't override llvmName, because we don't expect to do
332   // automatic code generation for the MVE intrinsics that use it: the {vld2,
333   // vld4, vst2, vst4} family are the only ones that use these types, so it was
334   // easier to hand-write the codegen for dealing with these structs than to
335   // build in lots of extra automatic machinery that would only be used once.
336 
337   static bool classof(const Type *T) {
338     return T->typeKind() == TypeKind::MultiVector;
339   }
340 };
341 
342 class PredicateType : public CRegularNamedType {
343   unsigned Lanes;
344 
345 public:
346   PredicateType(unsigned Lanes)
347       : CRegularNamedType(TypeKind::Predicate), Lanes(Lanes) {}
348   unsigned sizeInBits() const override { return 16; }
349   std::string cNameBase() const override { return "mve_pred16"; }
350   bool requiresFloat() const override { return false; };
351   bool requiresMVE() const override { return true; }
352   std::string llvmName() const override {
353     return "llvm::FixedVectorType::get(Builder.getInt1Ty(), " + utostr(Lanes) +
354            ")";
355   }
356 
357   static bool classof(const Type *T) {
358     return T->typeKind() == TypeKind::Predicate;
359   }
360 };
361 
362 // -----------------------------------------------------------------------------
363 // Class to facilitate merging together the code generation for many intrinsics
364 // by means of varying a few constant or type parameters.
365 //
366 // Most obviously, the intrinsics in a single parametrised family will have
367 // code generation sequences that only differ in a type or two, e.g. vaddq_s8
368 // and vaddq_u16 will look the same apart from putting a different vector type
369 // in the call to CGM.getIntrinsic(). But also, completely different intrinsics
370 // will often code-generate in the same way, with only a different choice of
371 // _which_ IR intrinsic they lower to (e.g. vaddq_m_s8 and vmulq_m_s8), but
372 // marshalling the arguments and return values of the IR intrinsic in exactly
373 // the same way. And others might differ only in some other kind of constant,
374 // such as a lane index.
375 //
376 // So, when we generate the IR-building code for all these intrinsics, we keep
377 // track of every value that could possibly be pulled out of the code and
378 // stored ahead of time in a local variable. Then we group together intrinsics
379 // by textual equivalence of the code that would result if _all_ those
380 // parameters were stored in local variables. That gives us maximal sets that
381 // can be implemented by a single piece of IR-building code by changing
382 // parameter values ahead of time.
383 //
384 // After we've done that, we do a second pass in which we only allocate _some_
385 // of the parameters into local variables, by tracking which ones have the same
386 // values as each other (so that a single variable can be reused) and which
387 // ones are the same across the whole set (so that no variable is needed at
388 // all).
389 //
390 // Hence the class below. Its allocParam method is invoked during code
391 // generation by every method of a Result subclass (see below) that wants to
392 // give it the opportunity to pull something out into a switchable parameter.
393 // It returns a variable name for the parameter, or (if it's being used in the
394 // second pass once we've decided that some parameters don't need to be stored
395 // in variables after all) it might just return the input expression unchanged.
396 
397 struct CodeGenParamAllocator {
398   // Accumulated during code generation
399   std::vector<std::string> *ParamTypes = nullptr;
400   std::vector<std::string> *ParamValues = nullptr;
401 
402   // Provided ahead of time in pass 2, to indicate which parameters are being
403   // assigned to what. This vector contains an entry for each call to
404   // allocParam expected during code gen (which we counted up in pass 1), and
405   // indicates the number of the parameter variable that should be returned, or
406   // -1 if this call shouldn't allocate a parameter variable at all.
407   //
408   // We rely on the recursive code generation working identically in passes 1
409   // and 2, so that the same list of calls to allocParam happen in the same
410   // order. That guarantees that the parameter numbers recorded in pass 1 will
411   // match the entries in this vector that store what EmitterBase::EmitBuiltinCG
412   // decided to do about each one in pass 2.
413   std::vector<int> *ParamNumberMap = nullptr;
414 
415   // Internally track how many things we've allocated
416   unsigned nparams = 0;
417 
418   std::string allocParam(StringRef Type, StringRef Value) {
419     unsigned ParamNumber;
420 
421     if (!ParamNumberMap) {
422       // In pass 1, unconditionally assign a new parameter variable to every
423       // value we're asked to process.
424       ParamNumber = nparams++;
425     } else {
426       // In pass 2, consult the map provided by the caller to find out which
427       // variable we should be keeping things in.
428       int MapValue = (*ParamNumberMap)[nparams++];
429       if (MapValue < 0)
430         return std::string(Value);
431       ParamNumber = MapValue;
432     }
433 
434     // If we've allocated a new parameter variable for the first time, store
435     // its type and value to be retrieved after codegen.
436     if (ParamTypes && ParamTypes->size() == ParamNumber)
437       ParamTypes->push_back(std::string(Type));
438     if (ParamValues && ParamValues->size() == ParamNumber)
439       ParamValues->push_back(std::string(Value));
440 
441     // Unimaginative naming scheme for parameter variables.
442     return "Param" + utostr(ParamNumber);
443   }
444 };
445 
446 // -----------------------------------------------------------------------------
447 // System of classes that represent all the intermediate values used during
448 // code-generation for an intrinsic.
449 //
450 // The base class 'Result' can represent a value of the LLVM type 'Value', or
451 // sometimes 'Address' (for loads/stores, including an alignment requirement).
452 //
453 // In the case where the Tablegen provides a value in the codegen dag as a
454 // plain integer literal, the Result object we construct here will be one that
455 // returns true from hasIntegerConstantValue(). This allows the generated C++
456 // code to use the constant directly in contexts which can take a literal
457 // integer, such as Builder.CreateExtractValue(thing, 1), without going to the
458 // effort of calling llvm::ConstantInt::get() and then pulling the constant
459 // back out of the resulting llvm:Value later.
460 
461 class Result {
462 public:
463   // Convenient shorthand for the pointer type we'll be using everywhere.
464   using Ptr = std::shared_ptr<Result>;
465 
466 private:
467   Ptr Predecessor;
468   std::string VarName;
469   bool VarNameUsed = false;
470   unsigned Visited = 0;
471 
472 public:
473   virtual ~Result() = default;
474   using Scope = std::map<std::string, Ptr>;
475   virtual void genCode(raw_ostream &OS, CodeGenParamAllocator &) const = 0;
476   virtual bool hasIntegerConstantValue() const { return false; }
477   virtual uint32_t integerConstantValue() const { return 0; }
478   virtual bool hasIntegerValue() const { return false; }
479   virtual std::string getIntegerValue(const std::string &) {
480     llvm_unreachable("non-working Result::getIntegerValue called");
481   }
482   virtual std::string typeName() const { return "Value *"; }
483 
484   // Mostly, when a code-generation operation has a dependency on prior
485   // operations, it's because it uses the output values of those operations as
486   // inputs. But there's one exception, which is the use of 'seq' in Tablegen
487   // to indicate that operations have to be performed in sequence regardless of
488   // whether they use each others' output values.
489   //
490   // So, the actual generation of code is done by depth-first search, using the
491   // prerequisites() method to get a list of all the other Results that have to
492   // be computed before this one. That method divides into the 'predecessor',
493   // set by setPredecessor() while processing a 'seq' dag node, and the list
494   // returned by 'morePrerequisites', which each subclass implements to return
495   // a list of the Results it uses as input to whatever its own computation is
496   // doing.
497 
498   virtual void morePrerequisites(std::vector<Ptr> &output) const {}
499   std::vector<Ptr> prerequisites() const {
500     std::vector<Ptr> ToRet;
501     if (Predecessor)
502       ToRet.push_back(Predecessor);
503     morePrerequisites(ToRet);
504     return ToRet;
505   }
506 
507   void setPredecessor(Ptr p) {
508     // If the user has nested one 'seq' node inside another, and this
509     // method is called on the return value of the inner 'seq' (i.e.
510     // the final item inside it), then we can't link _this_ node to p,
511     // because it already has a predecessor. Instead, walk the chain
512     // until we find the first item in the inner seq, and link that to
513     // p, so that nesting seqs has the obvious effect of linking
514     // everything together into one long sequential chain.
515     Result *r = this;
516     while (r->Predecessor)
517       r = r->Predecessor.get();
518     r->Predecessor = p;
519   }
520 
521   // Each Result will be assigned a variable name in the output code, but not
522   // all those variable names will actually be used (e.g. the return value of
523   // Builder.CreateStore has void type, so nobody will want to refer to it). To
524   // prevent annoying compiler warnings, we track whether each Result's
525   // variable name was ever actually mentioned in subsequent statements, so
526   // that it can be left out of the final generated code.
527   std::string varname() {
528     VarNameUsed = true;
529     return VarName;
530   }
531   void setVarname(const StringRef s) { VarName = std::string(s); }
532   bool varnameUsed() const { return VarNameUsed; }
533 
534   // Emit code to generate this result as a Value *.
535   virtual std::string asValue() {
536     return varname();
537   }
538 
539   // Code generation happens in multiple passes. This method tracks whether a
540   // Result has yet been visited in a given pass, without the need for a
541   // tedious loop in between passes that goes through and resets a 'visited'
542   // flag back to false: you just set Pass=1 the first time round, and Pass=2
543   // the second time.
544   bool needsVisiting(unsigned Pass) {
545     bool ToRet = Visited < Pass;
546     Visited = Pass;
547     return ToRet;
548   }
549 };
550 
551 // Result subclass that retrieves one of the arguments to the clang builtin
552 // function. In cases where the argument has pointer type, we call
553 // EmitPointerWithAlignment and store the result in a variable of type Address,
554 // so that load and store IR nodes can know the right alignment. Otherwise, we
555 // call EmitScalarExpr.
556 //
557 // There are aggregate parameters in the MVE intrinsics API, but we don't deal
558 // with them in this Tablegen back end: they only arise in the vld2q/vld4q and
559 // vst2q/vst4q family, which is few enough that we just write the code by hand
560 // for those in CGBuiltin.cpp.
561 class BuiltinArgResult : public Result {
562 public:
563   unsigned ArgNum;
564   bool AddressType;
565   bool Immediate;
566   BuiltinArgResult(unsigned ArgNum, bool AddressType, bool Immediate)
567       : ArgNum(ArgNum), AddressType(AddressType), Immediate(Immediate) {}
568   void genCode(raw_ostream &OS, CodeGenParamAllocator &) const override {
569     OS << (AddressType ? "EmitPointerWithAlignment" : "EmitScalarExpr")
570        << "(E->getArg(" << ArgNum << "))";
571   }
572   std::string typeName() const override {
573     return AddressType ? "Address" : Result::typeName();
574   }
575   // Emit code to generate this result as a Value *.
576   std::string asValue() override {
577     if (AddressType)
578       return "(" + varname() + ".getPointer())";
579     return Result::asValue();
580   }
581   bool hasIntegerValue() const override { return Immediate; }
582   std::string getIntegerValue(const std::string &IntType) override {
583     return "GetIntegerConstantValue<" + IntType + ">(E->getArg(" +
584            utostr(ArgNum) + "), getContext())";
585   }
586 };
587 
588 // Result subclass for an integer literal appearing in Tablegen. This may need
589 // to be turned into an llvm::Result by means of llvm::ConstantInt::get(), or
590 // it may be used directly as an integer, depending on which IRBuilder method
591 // it's being passed to.
592 class IntLiteralResult : public Result {
593 public:
594   const ScalarType *IntegerType;
595   uint32_t IntegerValue;
596   IntLiteralResult(const ScalarType *IntegerType, uint32_t IntegerValue)
597       : IntegerType(IntegerType), IntegerValue(IntegerValue) {}
598   void genCode(raw_ostream &OS,
599                CodeGenParamAllocator &ParamAlloc) const override {
600     OS << "llvm::ConstantInt::get("
601        << ParamAlloc.allocParam("llvm::Type *", IntegerType->llvmName())
602        << ", ";
603     OS << ParamAlloc.allocParam(IntegerType->cName(), utostr(IntegerValue))
604        << ")";
605   }
606   bool hasIntegerConstantValue() const override { return true; }
607   uint32_t integerConstantValue() const override { return IntegerValue; }
608 };
609 
610 // Result subclass representing a cast between different integer types. We use
611 // our own ScalarType abstraction as the representation of the target type,
612 // which gives both size and signedness.
613 class IntCastResult : public Result {
614 public:
615   const ScalarType *IntegerType;
616   Ptr V;
617   IntCastResult(const ScalarType *IntegerType, Ptr V)
618       : IntegerType(IntegerType), V(V) {}
619   void genCode(raw_ostream &OS,
620                CodeGenParamAllocator &ParamAlloc) const override {
621     OS << "Builder.CreateIntCast(" << V->varname() << ", "
622        << ParamAlloc.allocParam("llvm::Type *", IntegerType->llvmName()) << ", "
623        << ParamAlloc.allocParam("bool",
624                                 IntegerType->kind() == ScalarTypeKind::SignedInt
625                                     ? "true"
626                                     : "false")
627        << ")";
628   }
629   void morePrerequisites(std::vector<Ptr> &output) const override {
630     output.push_back(V);
631   }
632 };
633 
634 // Result subclass representing a cast between different pointer types.
635 class PointerCastResult : public Result {
636 public:
637   const PointerType *PtrType;
638   Ptr V;
639   PointerCastResult(const PointerType *PtrType, Ptr V)
640       : PtrType(PtrType), V(V) {}
641   void genCode(raw_ostream &OS,
642                CodeGenParamAllocator &ParamAlloc) const override {
643     OS << "Builder.CreatePointerCast(" << V->asValue() << ", "
644        << ParamAlloc.allocParam("llvm::Type *", PtrType->llvmName()) << ")";
645   }
646   void morePrerequisites(std::vector<Ptr> &output) const override {
647     output.push_back(V);
648   }
649 };
650 
651 // Result subclass representing a call to an IRBuilder method. Each IRBuilder
652 // method we want to use will have a Tablegen record giving the method name and
653 // describing any important details of how to call it, such as whether a
654 // particular argument should be an integer constant instead of an llvm::Value.
655 class IRBuilderResult : public Result {
656 public:
657   StringRef CallPrefix;
658   std::vector<Ptr> Args;
659   std::set<unsigned> AddressArgs;
660   std::map<unsigned, std::string> IntegerArgs;
661   IRBuilderResult(StringRef CallPrefix, std::vector<Ptr> Args,
662                   std::set<unsigned> AddressArgs,
663                   std::map<unsigned, std::string> IntegerArgs)
664       : CallPrefix(CallPrefix), Args(Args), AddressArgs(AddressArgs),
665         IntegerArgs(IntegerArgs) {}
666   void genCode(raw_ostream &OS,
667                CodeGenParamAllocator &ParamAlloc) const override {
668     OS << CallPrefix;
669     const char *Sep = "";
670     for (unsigned i = 0, e = Args.size(); i < e; ++i) {
671       Ptr Arg = Args[i];
672       auto it = IntegerArgs.find(i);
673 
674       OS << Sep;
675       Sep = ", ";
676 
677       if (it != IntegerArgs.end()) {
678         if (Arg->hasIntegerConstantValue())
679           OS << "static_cast<" << it->second << ">("
680              << ParamAlloc.allocParam(it->second,
681                                       utostr(Arg->integerConstantValue()))
682              << ")";
683         else if (Arg->hasIntegerValue())
684           OS << ParamAlloc.allocParam(it->second,
685                                       Arg->getIntegerValue(it->second));
686       } else {
687         OS << Arg->varname();
688       }
689     }
690     OS << ")";
691   }
692   void morePrerequisites(std::vector<Ptr> &output) const override {
693     for (unsigned i = 0, e = Args.size(); i < e; ++i) {
694       Ptr Arg = Args[i];
695       if (IntegerArgs.find(i) != IntegerArgs.end())
696         continue;
697       output.push_back(Arg);
698     }
699   }
700 };
701 
702 // Result subclass representing making an Address out of a Value.
703 class AddressResult : public Result {
704 public:
705   Ptr Arg;
706   const Type *Ty;
707   unsigned Align;
708   AddressResult(Ptr Arg, const Type *Ty, unsigned Align)
709       : Arg(Arg), Ty(Ty), Align(Align) {}
710   void genCode(raw_ostream &OS,
711                CodeGenParamAllocator &ParamAlloc) const override {
712     OS << "Address(" << Arg->varname() << ", " << Ty->llvmName()
713        << ", CharUnits::fromQuantity(" << Align << "))";
714   }
715   std::string typeName() const override {
716     return "Address";
717   }
718   void morePrerequisites(std::vector<Ptr> &output) const override {
719     output.push_back(Arg);
720   }
721 };
722 
723 // Result subclass representing a call to an IR intrinsic, which we first have
724 // to look up using an Intrinsic::ID constant and an array of types.
725 class IRIntrinsicResult : public Result {
726 public:
727   std::string IntrinsicID;
728   std::vector<const Type *> ParamTypes;
729   std::vector<Ptr> Args;
730   IRIntrinsicResult(StringRef IntrinsicID, std::vector<const Type *> ParamTypes,
731                     std::vector<Ptr> Args)
732       : IntrinsicID(std::string(IntrinsicID)), ParamTypes(ParamTypes),
733         Args(Args) {}
734   void genCode(raw_ostream &OS,
735                CodeGenParamAllocator &ParamAlloc) const override {
736     std::string IntNo = ParamAlloc.allocParam(
737         "Intrinsic::ID", "Intrinsic::" + IntrinsicID);
738     OS << "Builder.CreateCall(CGM.getIntrinsic(" << IntNo;
739     if (!ParamTypes.empty()) {
740       OS << ", {";
741       const char *Sep = "";
742       for (auto T : ParamTypes) {
743         OS << Sep << ParamAlloc.allocParam("llvm::Type *", T->llvmName());
744         Sep = ", ";
745       }
746       OS << "}";
747     }
748     OS << "), {";
749     const char *Sep = "";
750     for (auto Arg : Args) {
751       OS << Sep << Arg->asValue();
752       Sep = ", ";
753     }
754     OS << "})";
755   }
756   void morePrerequisites(std::vector<Ptr> &output) const override {
757     output.insert(output.end(), Args.begin(), Args.end());
758   }
759 };
760 
761 // Result subclass that specifies a type, for use in IRBuilder operations such
762 // as CreateBitCast that take a type argument.
763 class TypeResult : public Result {
764 public:
765   const Type *T;
766   TypeResult(const Type *T) : T(T) {}
767   void genCode(raw_ostream &OS, CodeGenParamAllocator &) const override {
768     OS << T->llvmName();
769   }
770   std::string typeName() const override {
771     return "llvm::Type *";
772   }
773 };
774 
775 // -----------------------------------------------------------------------------
776 // Class that describes a single ACLE intrinsic.
777 //
778 // A Tablegen record will typically describe more than one ACLE intrinsic, by
779 // means of setting the 'list<Type> Params' field to a list of multiple
780 // parameter types, so as to define vaddq_{s8,u8,...,f16,f32} all in one go.
781 // We'll end up with one instance of ACLEIntrinsic for *each* parameter type,
782 // rather than a single one for all of them. Hence, the constructor takes both
783 // a Tablegen record and the current value of the parameter type.
784 
785 class ACLEIntrinsic {
786   // Structure documenting that one of the intrinsic's arguments is required to
787   // be a compile-time constant integer, and what constraints there are on its
788   // value. Used when generating Sema checking code.
789   struct ImmediateArg {
790     enum class BoundsType { ExplicitRange, UInt };
791     BoundsType boundsType;
792     int64_t i1, i2;
793     StringRef ExtraCheckType, ExtraCheckArgs;
794     const Type *ArgType;
795   };
796 
797   // For polymorphic intrinsics, FullName is the explicit name that uniquely
798   // identifies this variant of the intrinsic, and ShortName is the name it
799   // shares with at least one other intrinsic.
800   std::string ShortName, FullName;
801 
802   // Name of the architecture extension, used in the Clang builtin name
803   StringRef BuiltinExtension;
804 
805   // A very small number of intrinsics _only_ have a polymorphic
806   // variant (vuninitializedq taking an unevaluated argument).
807   bool PolymorphicOnly;
808 
809   // Another rarely-used flag indicating that the builtin doesn't
810   // evaluate its argument(s) at all.
811   bool NonEvaluating;
812 
813   // True if the intrinsic needs only the C header part (no codegen, semantic
814   // checks, etc). Used for redeclaring MVE intrinsics in the arm_cde.h header.
815   bool HeaderOnly;
816 
817   const Type *ReturnType;
818   std::vector<const Type *> ArgTypes;
819   std::map<unsigned, ImmediateArg> ImmediateArgs;
820   Result::Ptr Code;
821 
822   std::map<std::string, std::string> CustomCodeGenArgs;
823 
824   // Recursive function that does the internals of code generation.
825   void genCodeDfs(Result::Ptr V, std::list<Result::Ptr> &Used,
826                   unsigned Pass) const {
827     if (!V->needsVisiting(Pass))
828       return;
829 
830     for (Result::Ptr W : V->prerequisites())
831       genCodeDfs(W, Used, Pass);
832 
833     Used.push_back(V);
834   }
835 
836 public:
837   const std::string &shortName() const { return ShortName; }
838   const std::string &fullName() const { return FullName; }
839   StringRef builtinExtension() const { return BuiltinExtension; }
840   const Type *returnType() const { return ReturnType; }
841   const std::vector<const Type *> &argTypes() const { return ArgTypes; }
842   bool requiresFloat() const {
843     if (ReturnType->requiresFloat())
844       return true;
845     for (const Type *T : ArgTypes)
846       if (T->requiresFloat())
847         return true;
848     return false;
849   }
850   bool requiresMVE() const {
851     return ReturnType->requiresMVE() ||
852            any_of(ArgTypes, [](const Type *T) { return T->requiresMVE(); });
853   }
854   bool polymorphic() const { return ShortName != FullName; }
855   bool polymorphicOnly() const { return PolymorphicOnly; }
856   bool nonEvaluating() const { return NonEvaluating; }
857   bool headerOnly() const { return HeaderOnly; }
858 
859   // External entry point for code generation, called from EmitterBase.
860   void genCode(raw_ostream &OS, CodeGenParamAllocator &ParamAlloc,
861                unsigned Pass) const {
862     assert(!headerOnly() && "Called genCode for header-only intrinsic");
863     if (!hasCode()) {
864       for (auto kv : CustomCodeGenArgs)
865         OS << "  " << kv.first << " = " << kv.second << ";\n";
866       OS << "  break; // custom code gen\n";
867       return;
868     }
869     std::list<Result::Ptr> Used;
870     genCodeDfs(Code, Used, Pass);
871 
872     unsigned varindex = 0;
873     for (Result::Ptr V : Used)
874       if (V->varnameUsed())
875         V->setVarname("Val" + utostr(varindex++));
876 
877     for (Result::Ptr V : Used) {
878       OS << "  ";
879       if (V == Used.back()) {
880         assert(!V->varnameUsed());
881         OS << "return "; // FIXME: what if the top-level thing is void?
882       } else if (V->varnameUsed()) {
883         std::string Type = V->typeName();
884         OS << V->typeName();
885         if (!StringRef(Type).endswith("*"))
886           OS << " ";
887         OS << V->varname() << " = ";
888       }
889       V->genCode(OS, ParamAlloc);
890       OS << ";\n";
891     }
892   }
893   bool hasCode() const { return Code != nullptr; }
894 
895   static std::string signedHexLiteral(const llvm::APInt &iOrig) {
896     llvm::APInt i = iOrig.trunc(64);
897     SmallString<40> s;
898     i.toString(s, 16, true, true);
899     return std::string(s.str());
900   }
901 
902   std::string genSema() const {
903     assert(!headerOnly() && "Called genSema for header-only intrinsic");
904     std::vector<std::string> SemaChecks;
905 
906     for (const auto &kv : ImmediateArgs) {
907       const ImmediateArg &IA = kv.second;
908 
909       llvm::APInt lo(128, 0), hi(128, 0);
910       switch (IA.boundsType) {
911       case ImmediateArg::BoundsType::ExplicitRange:
912         lo = IA.i1;
913         hi = IA.i2;
914         break;
915       case ImmediateArg::BoundsType::UInt:
916         lo = 0;
917         hi = llvm::APInt::getMaxValue(IA.i1).zext(128);
918         break;
919       }
920 
921       std::string Index = utostr(kv.first);
922 
923       // Emit a range check if the legal range of values for the
924       // immediate is smaller than the _possible_ range of values for
925       // its type.
926       unsigned ArgTypeBits = IA.ArgType->sizeInBits();
927       llvm::APInt ArgTypeRange = llvm::APInt::getMaxValue(ArgTypeBits).zext(128);
928       llvm::APInt ActualRange = (hi-lo).trunc(64).sext(128);
929       if (ActualRange.ult(ArgTypeRange))
930         SemaChecks.push_back("SemaBuiltinConstantArgRange(TheCall, " + Index +
931                              ", " + signedHexLiteral(lo) + ", " +
932                              signedHexLiteral(hi) + ")");
933 
934       if (!IA.ExtraCheckType.empty()) {
935         std::string Suffix;
936         if (!IA.ExtraCheckArgs.empty()) {
937           std::string tmp;
938           StringRef Arg = IA.ExtraCheckArgs;
939           if (Arg == "!lanesize") {
940             tmp = utostr(IA.ArgType->sizeInBits());
941             Arg = tmp;
942           }
943           Suffix = (Twine(", ") + Arg).str();
944         }
945         SemaChecks.push_back((Twine("SemaBuiltinConstantArg") +
946                               IA.ExtraCheckType + "(TheCall, " + Index +
947                               Suffix + ")")
948                                  .str());
949       }
950 
951       assert(!SemaChecks.empty());
952     }
953     if (SemaChecks.empty())
954       return "";
955     return join(std::begin(SemaChecks), std::end(SemaChecks),
956                 " ||\n         ") +
957            ";\n";
958   }
959 
960   ACLEIntrinsic(EmitterBase &ME, Record *R, const Type *Param);
961 };
962 
963 // -----------------------------------------------------------------------------
964 // The top-level class that holds all the state from analyzing the entire
965 // Tablegen input.
966 
967 class EmitterBase {
968 protected:
969   // EmitterBase holds a collection of all the types we've instantiated.
970   VoidType Void;
971   std::map<std::string, std::unique_ptr<ScalarType>> ScalarTypes;
972   std::map<std::tuple<ScalarTypeKind, unsigned, unsigned>,
973            std::unique_ptr<VectorType>>
974       VectorTypes;
975   std::map<std::pair<std::string, unsigned>, std::unique_ptr<MultiVectorType>>
976       MultiVectorTypes;
977   std::map<unsigned, std::unique_ptr<PredicateType>> PredicateTypes;
978   std::map<std::string, std::unique_ptr<PointerType>> PointerTypes;
979 
980   // And all the ACLEIntrinsic instances we've created.
981   std::map<std::string, std::unique_ptr<ACLEIntrinsic>> ACLEIntrinsics;
982 
983 public:
984   // Methods to create a Type object, or return the right existing one from the
985   // maps stored in this object.
986   const VoidType *getVoidType() { return &Void; }
987   const ScalarType *getScalarType(StringRef Name) {
988     return ScalarTypes[std::string(Name)].get();
989   }
990   const ScalarType *getScalarType(Record *R) {
991     return getScalarType(R->getName());
992   }
993   const VectorType *getVectorType(const ScalarType *ST, unsigned Lanes) {
994     std::tuple<ScalarTypeKind, unsigned, unsigned> key(ST->kind(),
995                                                        ST->sizeInBits(), Lanes);
996     if (VectorTypes.find(key) == VectorTypes.end())
997       VectorTypes[key] = std::make_unique<VectorType>(ST, Lanes);
998     return VectorTypes[key].get();
999   }
1000   const VectorType *getVectorType(const ScalarType *ST) {
1001     return getVectorType(ST, 128 / ST->sizeInBits());
1002   }
1003   const MultiVectorType *getMultiVectorType(unsigned Registers,
1004                                             const VectorType *VT) {
1005     std::pair<std::string, unsigned> key(VT->cNameBase(), Registers);
1006     if (MultiVectorTypes.find(key) == MultiVectorTypes.end())
1007       MultiVectorTypes[key] = std::make_unique<MultiVectorType>(Registers, VT);
1008     return MultiVectorTypes[key].get();
1009   }
1010   const PredicateType *getPredicateType(unsigned Lanes) {
1011     unsigned key = Lanes;
1012     if (PredicateTypes.find(key) == PredicateTypes.end())
1013       PredicateTypes[key] = std::make_unique<PredicateType>(Lanes);
1014     return PredicateTypes[key].get();
1015   }
1016   const PointerType *getPointerType(const Type *T, bool Const) {
1017     PointerType PT(T, Const);
1018     std::string key = PT.cName();
1019     if (PointerTypes.find(key) == PointerTypes.end())
1020       PointerTypes[key] = std::make_unique<PointerType>(PT);
1021     return PointerTypes[key].get();
1022   }
1023 
1024   // Methods to construct a type from various pieces of Tablegen. These are
1025   // always called in the context of setting up a particular ACLEIntrinsic, so
1026   // there's always an ambient parameter type (because we're iterating through
1027   // the Params list in the Tablegen record for the intrinsic), which is used
1028   // to expand Tablegen classes like 'Vector' which mean something different in
1029   // each member of a parametric family.
1030   const Type *getType(Record *R, const Type *Param);
1031   const Type *getType(DagInit *D, const Type *Param);
1032   const Type *getType(Init *I, const Type *Param);
1033 
1034   // Functions that translate the Tablegen representation of an intrinsic's
1035   // code generation into a collection of Value objects (which will then be
1036   // reprocessed to read out the actual C++ code included by CGBuiltin.cpp).
1037   Result::Ptr getCodeForDag(DagInit *D, const Result::Scope &Scope,
1038                             const Type *Param);
1039   Result::Ptr getCodeForDagArg(DagInit *D, unsigned ArgNum,
1040                                const Result::Scope &Scope, const Type *Param);
1041   Result::Ptr getCodeForArg(unsigned ArgNum, const Type *ArgType, bool Promote,
1042                             bool Immediate);
1043 
1044   void GroupSemaChecks(std::map<std::string, std::set<std::string>> &Checks);
1045 
1046   // Constructor and top-level functions.
1047 
1048   EmitterBase(RecordKeeper &Records);
1049   virtual ~EmitterBase() = default;
1050 
1051   virtual void EmitHeader(raw_ostream &OS) = 0;
1052   virtual void EmitBuiltinDef(raw_ostream &OS) = 0;
1053   virtual void EmitBuiltinSema(raw_ostream &OS) = 0;
1054   void EmitBuiltinCG(raw_ostream &OS);
1055   void EmitBuiltinAliases(raw_ostream &OS);
1056 };
1057 
1058 const Type *EmitterBase::getType(Init *I, const Type *Param) {
1059   if (auto Dag = dyn_cast<DagInit>(I))
1060     return getType(Dag, Param);
1061   if (auto Def = dyn_cast<DefInit>(I))
1062     return getType(Def->getDef(), Param);
1063 
1064   PrintFatalError("Could not convert this value into a type");
1065 }
1066 
1067 const Type *EmitterBase::getType(Record *R, const Type *Param) {
1068   // Pass to a subfield of any wrapper records. We don't expect more than one
1069   // of these: immediate operands are used as plain numbers rather than as
1070   // llvm::Value, so it's meaningless to promote their type anyway.
1071   if (R->isSubClassOf("Immediate"))
1072     R = R->getValueAsDef("type");
1073   else if (R->isSubClassOf("unpromoted"))
1074     R = R->getValueAsDef("underlying_type");
1075 
1076   if (R->getName() == "Void")
1077     return getVoidType();
1078   if (R->isSubClassOf("PrimitiveType"))
1079     return getScalarType(R);
1080   if (R->isSubClassOf("ComplexType"))
1081     return getType(R->getValueAsDag("spec"), Param);
1082 
1083   PrintFatalError(R->getLoc(), "Could not convert this record into a type");
1084 }
1085 
1086 const Type *EmitterBase::getType(DagInit *D, const Type *Param) {
1087   // The meat of the getType system: types in the Tablegen are represented by a
1088   // dag whose operators select sub-cases of this function.
1089 
1090   Record *Op = cast<DefInit>(D->getOperator())->getDef();
1091   if (!Op->isSubClassOf("ComplexTypeOp"))
1092     PrintFatalError(
1093         "Expected ComplexTypeOp as dag operator in type expression");
1094 
1095   if (Op->getName() == "CTO_Parameter") {
1096     if (isa<VoidType>(Param))
1097       PrintFatalError("Parametric type in unparametrised context");
1098     return Param;
1099   }
1100 
1101   if (Op->getName() == "CTO_Vec") {
1102     const Type *Element = getType(D->getArg(0), Param);
1103     if (D->getNumArgs() == 1) {
1104       return getVectorType(cast<ScalarType>(Element));
1105     } else {
1106       const Type *ExistingVector = getType(D->getArg(1), Param);
1107       return getVectorType(cast<ScalarType>(Element),
1108                            cast<VectorType>(ExistingVector)->lanes());
1109     }
1110   }
1111 
1112   if (Op->getName() == "CTO_Pred") {
1113     const Type *Element = getType(D->getArg(0), Param);
1114     return getPredicateType(128 / Element->sizeInBits());
1115   }
1116 
1117   if (Op->isSubClassOf("CTO_Tuple")) {
1118     unsigned Registers = Op->getValueAsInt("n");
1119     const Type *Element = getType(D->getArg(0), Param);
1120     return getMultiVectorType(Registers, cast<VectorType>(Element));
1121   }
1122 
1123   if (Op->isSubClassOf("CTO_Pointer")) {
1124     const Type *Pointee = getType(D->getArg(0), Param);
1125     return getPointerType(Pointee, Op->getValueAsBit("const"));
1126   }
1127 
1128   if (Op->getName() == "CTO_CopyKind") {
1129     const ScalarType *STSize = cast<ScalarType>(getType(D->getArg(0), Param));
1130     const ScalarType *STKind = cast<ScalarType>(getType(D->getArg(1), Param));
1131     for (const auto &kv : ScalarTypes) {
1132       const ScalarType *RT = kv.second.get();
1133       if (RT->kind() == STKind->kind() && RT->sizeInBits() == STSize->sizeInBits())
1134         return RT;
1135     }
1136     PrintFatalError("Cannot find a type to satisfy CopyKind");
1137   }
1138 
1139   if (Op->isSubClassOf("CTO_ScaleSize")) {
1140     const ScalarType *STKind = cast<ScalarType>(getType(D->getArg(0), Param));
1141     int Num = Op->getValueAsInt("num"), Denom = Op->getValueAsInt("denom");
1142     unsigned DesiredSize = STKind->sizeInBits() * Num / Denom;
1143     for (const auto &kv : ScalarTypes) {
1144       const ScalarType *RT = kv.second.get();
1145       if (RT->kind() == STKind->kind() && RT->sizeInBits() == DesiredSize)
1146         return RT;
1147     }
1148     PrintFatalError("Cannot find a type to satisfy ScaleSize");
1149   }
1150 
1151   PrintFatalError("Bad operator in type dag expression");
1152 }
1153 
1154 Result::Ptr EmitterBase::getCodeForDag(DagInit *D, const Result::Scope &Scope,
1155                                        const Type *Param) {
1156   Record *Op = cast<DefInit>(D->getOperator())->getDef();
1157 
1158   if (Op->getName() == "seq") {
1159     Result::Scope SubScope = Scope;
1160     Result::Ptr PrevV = nullptr;
1161     for (unsigned i = 0, e = D->getNumArgs(); i < e; ++i) {
1162       // We don't use getCodeForDagArg here, because the argument name
1163       // has different semantics in a seq
1164       Result::Ptr V =
1165           getCodeForDag(cast<DagInit>(D->getArg(i)), SubScope, Param);
1166       StringRef ArgName = D->getArgNameStr(i);
1167       if (!ArgName.empty())
1168         SubScope[std::string(ArgName)] = V;
1169       if (PrevV)
1170         V->setPredecessor(PrevV);
1171       PrevV = V;
1172     }
1173     return PrevV;
1174   } else if (Op->isSubClassOf("Type")) {
1175     if (D->getNumArgs() != 1)
1176       PrintFatalError("Type casts should have exactly one argument");
1177     const Type *CastType = getType(Op, Param);
1178     Result::Ptr Arg = getCodeForDagArg(D, 0, Scope, Param);
1179     if (const auto *ST = dyn_cast<ScalarType>(CastType)) {
1180       if (!ST->requiresFloat()) {
1181         if (Arg->hasIntegerConstantValue())
1182           return std::make_shared<IntLiteralResult>(
1183               ST, Arg->integerConstantValue());
1184         else
1185           return std::make_shared<IntCastResult>(ST, Arg);
1186       }
1187     } else if (const auto *PT = dyn_cast<PointerType>(CastType)) {
1188       return std::make_shared<PointerCastResult>(PT, Arg);
1189     }
1190     PrintFatalError("Unsupported type cast");
1191   } else if (Op->getName() == "address") {
1192     if (D->getNumArgs() != 2)
1193       PrintFatalError("'address' should have two arguments");
1194     Result::Ptr Arg = getCodeForDagArg(D, 0, Scope, Param);
1195 
1196     const Type *Ty = nullptr;
1197     if (auto *DI = dyn_cast<DagInit>(D->getArg(0)))
1198       if (auto *PTy = dyn_cast<PointerType>(getType(DI->getOperator(), Param)))
1199         Ty = PTy->getPointeeType();
1200     if (!Ty)
1201       PrintFatalError("'address' pointer argument should be a pointer");
1202 
1203     unsigned Alignment;
1204     if (auto *II = dyn_cast<IntInit>(D->getArg(1))) {
1205       Alignment = II->getValue();
1206     } else {
1207       PrintFatalError("'address' alignment argument should be an integer");
1208     }
1209     return std::make_shared<AddressResult>(Arg, Ty, Alignment);
1210   } else if (Op->getName() == "unsignedflag") {
1211     if (D->getNumArgs() != 1)
1212       PrintFatalError("unsignedflag should have exactly one argument");
1213     Record *TypeRec = cast<DefInit>(D->getArg(0))->getDef();
1214     if (!TypeRec->isSubClassOf("Type"))
1215       PrintFatalError("unsignedflag's argument should be a type");
1216     if (const auto *ST = dyn_cast<ScalarType>(getType(TypeRec, Param))) {
1217       return std::make_shared<IntLiteralResult>(
1218         getScalarType("u32"), ST->kind() == ScalarTypeKind::UnsignedInt);
1219     } else {
1220       PrintFatalError("unsignedflag's argument should be a scalar type");
1221     }
1222   } else if (Op->getName() == "bitsize") {
1223     if (D->getNumArgs() != 1)
1224       PrintFatalError("bitsize should have exactly one argument");
1225     Record *TypeRec = cast<DefInit>(D->getArg(0))->getDef();
1226     if (!TypeRec->isSubClassOf("Type"))
1227       PrintFatalError("bitsize's argument should be a type");
1228     if (const auto *ST = dyn_cast<ScalarType>(getType(TypeRec, Param))) {
1229       return std::make_shared<IntLiteralResult>(getScalarType("u32"),
1230                                                 ST->sizeInBits());
1231     } else {
1232       PrintFatalError("bitsize's argument should be a scalar type");
1233     }
1234   } else {
1235     std::vector<Result::Ptr> Args;
1236     for (unsigned i = 0, e = D->getNumArgs(); i < e; ++i)
1237       Args.push_back(getCodeForDagArg(D, i, Scope, Param));
1238     if (Op->isSubClassOf("IRBuilderBase")) {
1239       std::set<unsigned> AddressArgs;
1240       std::map<unsigned, std::string> IntegerArgs;
1241       for (Record *sp : Op->getValueAsListOfDefs("special_params")) {
1242         unsigned Index = sp->getValueAsInt("index");
1243         if (sp->isSubClassOf("IRBuilderAddrParam")) {
1244           AddressArgs.insert(Index);
1245         } else if (sp->isSubClassOf("IRBuilderIntParam")) {
1246           IntegerArgs[Index] = std::string(sp->getValueAsString("type"));
1247         }
1248       }
1249       return std::make_shared<IRBuilderResult>(Op->getValueAsString("prefix"),
1250                                                Args, AddressArgs, IntegerArgs);
1251     } else if (Op->isSubClassOf("IRIntBase")) {
1252       std::vector<const Type *> ParamTypes;
1253       for (Record *RParam : Op->getValueAsListOfDefs("params"))
1254         ParamTypes.push_back(getType(RParam, Param));
1255       std::string IntName = std::string(Op->getValueAsString("intname"));
1256       if (Op->getValueAsBit("appendKind"))
1257         IntName += "_" + toLetter(cast<ScalarType>(Param)->kind());
1258       return std::make_shared<IRIntrinsicResult>(IntName, ParamTypes, Args);
1259     } else {
1260       PrintFatalError("Unsupported dag node " + Op->getName());
1261     }
1262   }
1263 }
1264 
1265 Result::Ptr EmitterBase::getCodeForDagArg(DagInit *D, unsigned ArgNum,
1266                                           const Result::Scope &Scope,
1267                                           const Type *Param) {
1268   Init *Arg = D->getArg(ArgNum);
1269   StringRef Name = D->getArgNameStr(ArgNum);
1270 
1271   if (!Name.empty()) {
1272     if (!isa<UnsetInit>(Arg))
1273       PrintFatalError(
1274           "dag operator argument should not have both a value and a name");
1275     auto it = Scope.find(std::string(Name));
1276     if (it == Scope.end())
1277       PrintFatalError("unrecognized variable name '" + Name + "'");
1278     return it->second;
1279   }
1280 
1281   // Sometimes the Arg is a bit. Prior to multiclass template argument
1282   // checking, integers would sneak through the bit declaration,
1283   // but now they really are bits.
1284   if (auto *BI = dyn_cast<BitInit>(Arg))
1285     return std::make_shared<IntLiteralResult>(getScalarType("u32"),
1286                                               BI->getValue());
1287 
1288   if (auto *II = dyn_cast<IntInit>(Arg))
1289     return std::make_shared<IntLiteralResult>(getScalarType("u32"),
1290                                               II->getValue());
1291 
1292   if (auto *DI = dyn_cast<DagInit>(Arg))
1293     return getCodeForDag(DI, Scope, Param);
1294 
1295   if (auto *DI = dyn_cast<DefInit>(Arg)) {
1296     Record *Rec = DI->getDef();
1297     if (Rec->isSubClassOf("Type")) {
1298       const Type *T = getType(Rec, Param);
1299       return std::make_shared<TypeResult>(T);
1300     }
1301   }
1302 
1303   PrintError("bad DAG argument type for code generation");
1304   PrintNote("DAG: " + D->getAsString());
1305   if (TypedInit *Typed = dyn_cast<TypedInit>(Arg))
1306     PrintNote("argument type: " + Typed->getType()->getAsString());
1307   PrintFatalNote("argument number " + Twine(ArgNum) + ": " + Arg->getAsString());
1308 }
1309 
1310 Result::Ptr EmitterBase::getCodeForArg(unsigned ArgNum, const Type *ArgType,
1311                                        bool Promote, bool Immediate) {
1312   Result::Ptr V = std::make_shared<BuiltinArgResult>(
1313       ArgNum, isa<PointerType>(ArgType), Immediate);
1314 
1315   if (Promote) {
1316     if (const auto *ST = dyn_cast<ScalarType>(ArgType)) {
1317       if (ST->isInteger() && ST->sizeInBits() < 32)
1318         V = std::make_shared<IntCastResult>(getScalarType("u32"), V);
1319     } else if (const auto *PT = dyn_cast<PredicateType>(ArgType)) {
1320       V = std::make_shared<IntCastResult>(getScalarType("u32"), V);
1321       V = std::make_shared<IRIntrinsicResult>("arm_mve_pred_i2v",
1322                                               std::vector<const Type *>{PT},
1323                                               std::vector<Result::Ptr>{V});
1324     }
1325   }
1326 
1327   return V;
1328 }
1329 
1330 ACLEIntrinsic::ACLEIntrinsic(EmitterBase &ME, Record *R, const Type *Param)
1331     : ReturnType(ME.getType(R->getValueAsDef("ret"), Param)) {
1332   // Derive the intrinsic's full name, by taking the name of the
1333   // Tablegen record (or override) and appending the suffix from its
1334   // parameter type. (If the intrinsic is unparametrised, its
1335   // parameter type will be given as Void, which returns the empty
1336   // string for acleSuffix.)
1337   StringRef BaseName =
1338       (R->isSubClassOf("NameOverride") ? R->getValueAsString("basename")
1339                                        : R->getName());
1340   StringRef overrideLetter = R->getValueAsString("overrideKindLetter");
1341   FullName =
1342       (Twine(BaseName) + Param->acleSuffix(std::string(overrideLetter))).str();
1343 
1344   // Derive the intrinsic's polymorphic name, by removing components from the
1345   // full name as specified by its 'pnt' member ('polymorphic name type'),
1346   // which indicates how many type suffixes to remove, and any other piece of
1347   // the name that should be removed.
1348   Record *PolymorphicNameType = R->getValueAsDef("pnt");
1349   SmallVector<StringRef, 8> NameParts;
1350   StringRef(FullName).split(NameParts, '_');
1351   for (unsigned i = 0, e = PolymorphicNameType->getValueAsInt(
1352                            "NumTypeSuffixesToDiscard");
1353        i < e; ++i)
1354     NameParts.pop_back();
1355   if (!PolymorphicNameType->isValueUnset("ExtraSuffixToDiscard")) {
1356     StringRef ExtraSuffix =
1357         PolymorphicNameType->getValueAsString("ExtraSuffixToDiscard");
1358     auto it = NameParts.end();
1359     while (it != NameParts.begin()) {
1360       --it;
1361       if (*it == ExtraSuffix) {
1362         NameParts.erase(it);
1363         break;
1364       }
1365     }
1366   }
1367   ShortName = join(std::begin(NameParts), std::end(NameParts), "_");
1368 
1369   BuiltinExtension = R->getValueAsString("builtinExtension");
1370 
1371   PolymorphicOnly = R->getValueAsBit("polymorphicOnly");
1372   NonEvaluating = R->getValueAsBit("nonEvaluating");
1373   HeaderOnly = R->getValueAsBit("headerOnly");
1374 
1375   // Process the intrinsic's argument list.
1376   DagInit *ArgsDag = R->getValueAsDag("args");
1377   Result::Scope Scope;
1378   for (unsigned i = 0, e = ArgsDag->getNumArgs(); i < e; ++i) {
1379     Init *TypeInit = ArgsDag->getArg(i);
1380 
1381     bool Promote = true;
1382     if (auto TypeDI = dyn_cast<DefInit>(TypeInit))
1383       if (TypeDI->getDef()->isSubClassOf("unpromoted"))
1384         Promote = false;
1385 
1386     // Work out the type of the argument, for use in the function prototype in
1387     // the header file.
1388     const Type *ArgType = ME.getType(TypeInit, Param);
1389     ArgTypes.push_back(ArgType);
1390 
1391     // If the argument is a subclass of Immediate, record the details about
1392     // what values it can take, for Sema checking.
1393     bool Immediate = false;
1394     if (auto TypeDI = dyn_cast<DefInit>(TypeInit)) {
1395       Record *TypeRec = TypeDI->getDef();
1396       if (TypeRec->isSubClassOf("Immediate")) {
1397         Immediate = true;
1398 
1399         Record *Bounds = TypeRec->getValueAsDef("bounds");
1400         ImmediateArg &IA = ImmediateArgs[i];
1401         if (Bounds->isSubClassOf("IB_ConstRange")) {
1402           IA.boundsType = ImmediateArg::BoundsType::ExplicitRange;
1403           IA.i1 = Bounds->getValueAsInt("lo");
1404           IA.i2 = Bounds->getValueAsInt("hi");
1405         } else if (Bounds->getName() == "IB_UEltValue") {
1406           IA.boundsType = ImmediateArg::BoundsType::UInt;
1407           IA.i1 = Param->sizeInBits();
1408         } else if (Bounds->getName() == "IB_LaneIndex") {
1409           IA.boundsType = ImmediateArg::BoundsType::ExplicitRange;
1410           IA.i1 = 0;
1411           IA.i2 = 128 / Param->sizeInBits() - 1;
1412         } else if (Bounds->isSubClassOf("IB_EltBit")) {
1413           IA.boundsType = ImmediateArg::BoundsType::ExplicitRange;
1414           IA.i1 = Bounds->getValueAsInt("base");
1415           const Type *T = ME.getType(Bounds->getValueAsDef("type"), Param);
1416           IA.i2 = IA.i1 + T->sizeInBits() - 1;
1417         } else {
1418           PrintFatalError("unrecognised ImmediateBounds subclass");
1419         }
1420 
1421         IA.ArgType = ArgType;
1422 
1423         if (!TypeRec->isValueUnset("extra")) {
1424           IA.ExtraCheckType = TypeRec->getValueAsString("extra");
1425           if (!TypeRec->isValueUnset("extraarg"))
1426             IA.ExtraCheckArgs = TypeRec->getValueAsString("extraarg");
1427         }
1428       }
1429     }
1430 
1431     // The argument will usually have a name in the arguments dag, which goes
1432     // into the variable-name scope that the code gen will refer to.
1433     StringRef ArgName = ArgsDag->getArgNameStr(i);
1434     if (!ArgName.empty())
1435       Scope[std::string(ArgName)] =
1436           ME.getCodeForArg(i, ArgType, Promote, Immediate);
1437   }
1438 
1439   // Finally, go through the codegen dag and translate it into a Result object
1440   // (with an arbitrary DAG of depended-on Results hanging off it).
1441   DagInit *CodeDag = R->getValueAsDag("codegen");
1442   Record *MainOp = cast<DefInit>(CodeDag->getOperator())->getDef();
1443   if (MainOp->isSubClassOf("CustomCodegen")) {
1444     // Or, if it's the special case of CustomCodegen, just accumulate
1445     // a list of parameters we're going to assign to variables before
1446     // breaking from the loop.
1447     CustomCodeGenArgs["CustomCodeGenType"] =
1448         (Twine("CustomCodeGen::") + MainOp->getValueAsString("type")).str();
1449     for (unsigned i = 0, e = CodeDag->getNumArgs(); i < e; ++i) {
1450       StringRef Name = CodeDag->getArgNameStr(i);
1451       if (Name.empty()) {
1452         PrintFatalError("Operands to CustomCodegen should have names");
1453       } else if (auto *II = dyn_cast<IntInit>(CodeDag->getArg(i))) {
1454         CustomCodeGenArgs[std::string(Name)] = itostr(II->getValue());
1455       } else if (auto *SI = dyn_cast<StringInit>(CodeDag->getArg(i))) {
1456         CustomCodeGenArgs[std::string(Name)] = std::string(SI->getValue());
1457       } else {
1458         PrintFatalError("Operands to CustomCodegen should be integers");
1459       }
1460     }
1461   } else {
1462     Code = ME.getCodeForDag(CodeDag, Scope, Param);
1463   }
1464 }
1465 
1466 EmitterBase::EmitterBase(RecordKeeper &Records) {
1467   // Construct the whole EmitterBase.
1468 
1469   // First, look up all the instances of PrimitiveType. This gives us the list
1470   // of vector typedefs we have to put in arm_mve.h, and also allows us to
1471   // collect all the useful ScalarType instances into a big list so that we can
1472   // use it for operations such as 'find the unsigned version of this signed
1473   // integer type'.
1474   for (Record *R : Records.getAllDerivedDefinitions("PrimitiveType"))
1475     ScalarTypes[std::string(R->getName())] = std::make_unique<ScalarType>(R);
1476 
1477   // Now go through the instances of Intrinsic, and for each one, iterate
1478   // through its list of type parameters making an ACLEIntrinsic for each one.
1479   for (Record *R : Records.getAllDerivedDefinitions("Intrinsic")) {
1480     for (Record *RParam : R->getValueAsListOfDefs("params")) {
1481       const Type *Param = getType(RParam, getVoidType());
1482       auto Intrinsic = std::make_unique<ACLEIntrinsic>(*this, R, Param);
1483       ACLEIntrinsics[Intrinsic->fullName()] = std::move(Intrinsic);
1484     }
1485   }
1486 }
1487 
1488 /// A wrapper on raw_string_ostream that contains its own buffer rather than
1489 /// having to point it at one elsewhere. (In other words, it works just like
1490 /// std::ostringstream; also, this makes it convenient to declare a whole array
1491 /// of them at once.)
1492 ///
1493 /// We have to set this up using multiple inheritance, to ensure that the
1494 /// string member has been constructed before raw_string_ostream's constructor
1495 /// is given a pointer to it.
1496 class string_holder {
1497 protected:
1498   std::string S;
1499 };
1500 class raw_self_contained_string_ostream : private string_holder,
1501                                           public raw_string_ostream {
1502 public:
1503   raw_self_contained_string_ostream() : raw_string_ostream(S) {}
1504 };
1505 
1506 const char LLVMLicenseHeader[] =
1507     " *\n"
1508     " *\n"
1509     " * Part of the LLVM Project, under the Apache License v2.0 with LLVM"
1510     " Exceptions.\n"
1511     " * See https://llvm.org/LICENSE.txt for license information.\n"
1512     " * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception\n"
1513     " *\n"
1514     " *===-----------------------------------------------------------------"
1515     "------===\n"
1516     " */\n"
1517     "\n";
1518 
1519 // Machinery for the grouping of intrinsics by similar codegen.
1520 //
1521 // The general setup is that 'MergeableGroup' stores the things that a set of
1522 // similarly shaped intrinsics have in common: the text of their code
1523 // generation, and the number and type of their parameter variables.
1524 // MergeableGroup is the key in a std::map whose value is a set of
1525 // OutputIntrinsic, which stores the ways in which a particular intrinsic
1526 // specializes the MergeableGroup's generic description: the function name and
1527 // the _values_ of the parameter variables.
1528 
1529 struct ComparableStringVector : std::vector<std::string> {
1530   // Infrastructure: a derived class of vector<string> which comes with an
1531   // ordering, so that it can be used as a key in maps and an element in sets.
1532   // There's no requirement on the ordering beyond being deterministic.
1533   bool operator<(const ComparableStringVector &rhs) const {
1534     if (size() != rhs.size())
1535       return size() < rhs.size();
1536     for (size_t i = 0, e = size(); i < e; ++i)
1537       if ((*this)[i] != rhs[i])
1538         return (*this)[i] < rhs[i];
1539     return false;
1540   }
1541 };
1542 
1543 struct OutputIntrinsic {
1544   const ACLEIntrinsic *Int;
1545   std::string Name;
1546   ComparableStringVector ParamValues;
1547   bool operator<(const OutputIntrinsic &rhs) const {
1548     if (Name != rhs.Name)
1549       return Name < rhs.Name;
1550     return ParamValues < rhs.ParamValues;
1551   }
1552 };
1553 struct MergeableGroup {
1554   std::string Code;
1555   ComparableStringVector ParamTypes;
1556   bool operator<(const MergeableGroup &rhs) const {
1557     if (Code != rhs.Code)
1558       return Code < rhs.Code;
1559     return ParamTypes < rhs.ParamTypes;
1560   }
1561 };
1562 
1563 void EmitterBase::EmitBuiltinCG(raw_ostream &OS) {
1564   // Pass 1: generate code for all the intrinsics as if every type or constant
1565   // that can possibly be abstracted out into a parameter variable will be.
1566   // This identifies the sets of intrinsics we'll group together into a single
1567   // piece of code generation.
1568 
1569   std::map<MergeableGroup, std::set<OutputIntrinsic>> MergeableGroupsPrelim;
1570 
1571   for (const auto &kv : ACLEIntrinsics) {
1572     const ACLEIntrinsic &Int = *kv.second;
1573     if (Int.headerOnly())
1574       continue;
1575 
1576     MergeableGroup MG;
1577     OutputIntrinsic OI;
1578 
1579     OI.Int = &Int;
1580     OI.Name = Int.fullName();
1581     CodeGenParamAllocator ParamAllocPrelim{&MG.ParamTypes, &OI.ParamValues};
1582     raw_string_ostream OS(MG.Code);
1583     Int.genCode(OS, ParamAllocPrelim, 1);
1584     OS.flush();
1585 
1586     MergeableGroupsPrelim[MG].insert(OI);
1587   }
1588 
1589   // Pass 2: for each of those groups, optimize the parameter variable set by
1590   // eliminating 'parameters' that are the same for all intrinsics in the
1591   // group, and merging together pairs of parameter variables that take the
1592   // same values as each other for all intrinsics in the group.
1593 
1594   std::map<MergeableGroup, std::set<OutputIntrinsic>> MergeableGroups;
1595 
1596   for (const auto &kv : MergeableGroupsPrelim) {
1597     const MergeableGroup &MG = kv.first;
1598     std::vector<int> ParamNumbers;
1599     std::map<ComparableStringVector, int> ParamNumberMap;
1600 
1601     // Loop over the parameters for this group.
1602     for (size_t i = 0, e = MG.ParamTypes.size(); i < e; ++i) {
1603       // Is this parameter the same for all intrinsics in the group?
1604       const OutputIntrinsic &OI_first = *kv.second.begin();
1605       bool Constant = all_of(kv.second, [&](const OutputIntrinsic &OI) {
1606         return OI.ParamValues[i] == OI_first.ParamValues[i];
1607       });
1608 
1609       // If so, record it as -1, meaning 'no parameter variable needed'. Then
1610       // the corresponding call to allocParam in pass 2 will not generate a
1611       // variable at all, and just use the value inline.
1612       if (Constant) {
1613         ParamNumbers.push_back(-1);
1614         continue;
1615       }
1616 
1617       // Otherwise, make a list of the values this parameter takes for each
1618       // intrinsic, and see if that value vector matches anything we already
1619       // have. We also record the parameter type, so that we don't accidentally
1620       // match up two parameter variables with different types. (Not that
1621       // there's much chance of them having textually equivalent values, but in
1622       // _principle_ it could happen.)
1623       ComparableStringVector key;
1624       key.push_back(MG.ParamTypes[i]);
1625       for (const auto &OI : kv.second)
1626         key.push_back(OI.ParamValues[i]);
1627 
1628       auto Found = ParamNumberMap.find(key);
1629       if (Found != ParamNumberMap.end()) {
1630         // Yes, an existing parameter variable can be reused for this.
1631         ParamNumbers.push_back(Found->second);
1632         continue;
1633       }
1634 
1635       // No, we need a new parameter variable.
1636       int ExistingIndex = ParamNumberMap.size();
1637       ParamNumberMap[key] = ExistingIndex;
1638       ParamNumbers.push_back(ExistingIndex);
1639     }
1640 
1641     // Now we're ready to do the pass 2 code generation, which will emit the
1642     // reduced set of parameter variables we've just worked out.
1643 
1644     for (const auto &OI_prelim : kv.second) {
1645       const ACLEIntrinsic *Int = OI_prelim.Int;
1646 
1647       MergeableGroup MG;
1648       OutputIntrinsic OI;
1649 
1650       OI.Int = OI_prelim.Int;
1651       OI.Name = OI_prelim.Name;
1652       CodeGenParamAllocator ParamAlloc{&MG.ParamTypes, &OI.ParamValues,
1653                                        &ParamNumbers};
1654       raw_string_ostream OS(MG.Code);
1655       Int->genCode(OS, ParamAlloc, 2);
1656       OS.flush();
1657 
1658       MergeableGroups[MG].insert(OI);
1659     }
1660   }
1661 
1662   // Output the actual C++ code.
1663 
1664   for (const auto &kv : MergeableGroups) {
1665     const MergeableGroup &MG = kv.first;
1666 
1667     // List of case statements in the main switch on BuiltinID, and an open
1668     // brace.
1669     const char *prefix = "";
1670     for (const auto &OI : kv.second) {
1671       OS << prefix << "case ARM::BI__builtin_arm_" << OI.Int->builtinExtension()
1672          << "_" << OI.Name << ":";
1673 
1674       prefix = "\n";
1675     }
1676     OS << " {\n";
1677 
1678     if (!MG.ParamTypes.empty()) {
1679       // If we've got some parameter variables, then emit their declarations...
1680       for (size_t i = 0, e = MG.ParamTypes.size(); i < e; ++i) {
1681         StringRef Type = MG.ParamTypes[i];
1682         OS << "  " << Type;
1683         if (!Type.endswith("*"))
1684           OS << " ";
1685         OS << " Param" << utostr(i) << ";\n";
1686       }
1687 
1688       // ... and an inner switch on BuiltinID that will fill them in with each
1689       // individual intrinsic's values.
1690       OS << "  switch (BuiltinID) {\n";
1691       for (const auto &OI : kv.second) {
1692         OS << "  case ARM::BI__builtin_arm_" << OI.Int->builtinExtension()
1693            << "_" << OI.Name << ":\n";
1694         for (size_t i = 0, e = MG.ParamTypes.size(); i < e; ++i)
1695           OS << "    Param" << utostr(i) << " = " << OI.ParamValues[i] << ";\n";
1696         OS << "    break;\n";
1697       }
1698       OS << "  }\n";
1699     }
1700 
1701     // And finally, output the code, and close the outer pair of braces. (The
1702     // code will always end with a 'return' statement, so we need not insert a
1703     // 'break' here.)
1704     OS << MG.Code << "}\n";
1705   }
1706 }
1707 
1708 void EmitterBase::EmitBuiltinAliases(raw_ostream &OS) {
1709   // Build a sorted table of:
1710   // - intrinsic id number
1711   // - full name
1712   // - polymorphic name or -1
1713   StringToOffsetTable StringTable;
1714   OS << "static const IntrinToName MapData[] = {\n";
1715   for (const auto &kv : ACLEIntrinsics) {
1716     const ACLEIntrinsic &Int = *kv.second;
1717     if (Int.headerOnly())
1718       continue;
1719     int32_t ShortNameOffset =
1720         Int.polymorphic() ? StringTable.GetOrAddStringOffset(Int.shortName())
1721                           : -1;
1722     OS << "  { ARM::BI__builtin_arm_" << Int.builtinExtension() << "_"
1723        << Int.fullName() << ", "
1724        << StringTable.GetOrAddStringOffset(Int.fullName()) << ", "
1725        << ShortNameOffset << "},\n";
1726   }
1727   OS << "};\n\n";
1728 
1729   OS << "ArrayRef<IntrinToName> Map(MapData);\n\n";
1730 
1731   OS << "static const char IntrinNames[] = {\n";
1732   StringTable.EmitString(OS);
1733   OS << "};\n\n";
1734 }
1735 
1736 void EmitterBase::GroupSemaChecks(
1737     std::map<std::string, std::set<std::string>> &Checks) {
1738   for (const auto &kv : ACLEIntrinsics) {
1739     const ACLEIntrinsic &Int = *kv.second;
1740     if (Int.headerOnly())
1741       continue;
1742     std::string Check = Int.genSema();
1743     if (!Check.empty())
1744       Checks[Check].insert(Int.fullName());
1745   }
1746 }
1747 
1748 // -----------------------------------------------------------------------------
1749 // The class used for generating arm_mve.h and related Clang bits
1750 //
1751 
1752 class MveEmitter : public EmitterBase {
1753 public:
1754   MveEmitter(RecordKeeper &Records) : EmitterBase(Records){};
1755   void EmitHeader(raw_ostream &OS) override;
1756   void EmitBuiltinDef(raw_ostream &OS) override;
1757   void EmitBuiltinSema(raw_ostream &OS) override;
1758 };
1759 
1760 void MveEmitter::EmitHeader(raw_ostream &OS) {
1761   // Accumulate pieces of the header file that will be enabled under various
1762   // different combinations of #ifdef. The index into parts[] is made up of
1763   // the following bit flags.
1764   constexpr unsigned Float = 1;
1765   constexpr unsigned UseUserNamespace = 2;
1766 
1767   constexpr unsigned NumParts = 4;
1768   raw_self_contained_string_ostream parts[NumParts];
1769 
1770   // Write typedefs for all the required vector types, and a few scalar
1771   // types that don't already have the name we want them to have.
1772 
1773   parts[0] << "typedef uint16_t mve_pred16_t;\n";
1774   parts[Float] << "typedef __fp16 float16_t;\n"
1775                   "typedef float float32_t;\n";
1776   for (const auto &kv : ScalarTypes) {
1777     const ScalarType *ST = kv.second.get();
1778     if (ST->hasNonstandardName())
1779       continue;
1780     raw_ostream &OS = parts[ST->requiresFloat() ? Float : 0];
1781     const VectorType *VT = getVectorType(ST);
1782 
1783     OS << "typedef __attribute__((__neon_vector_type__(" << VT->lanes()
1784        << "), __clang_arm_mve_strict_polymorphism)) " << ST->cName() << " "
1785        << VT->cName() << ";\n";
1786 
1787     // Every vector type also comes with a pair of multi-vector types for
1788     // the VLD2 and VLD4 instructions.
1789     for (unsigned n = 2; n <= 4; n += 2) {
1790       const MultiVectorType *MT = getMultiVectorType(n, VT);
1791       OS << "typedef struct { " << VT->cName() << " val[" << n << "]; } "
1792          << MT->cName() << ";\n";
1793     }
1794   }
1795   parts[0] << "\n";
1796   parts[Float] << "\n";
1797 
1798   // Write declarations for all the intrinsics.
1799 
1800   for (const auto &kv : ACLEIntrinsics) {
1801     const ACLEIntrinsic &Int = *kv.second;
1802 
1803     // We generate each intrinsic twice, under its full unambiguous
1804     // name and its shorter polymorphic name (if the latter exists).
1805     for (bool Polymorphic : {false, true}) {
1806       if (Polymorphic && !Int.polymorphic())
1807         continue;
1808       if (!Polymorphic && Int.polymorphicOnly())
1809         continue;
1810 
1811       // We also generate each intrinsic under a name like __arm_vfooq
1812       // (which is in C language implementation namespace, so it's
1813       // safe to define in any conforming user program) and a shorter
1814       // one like vfooq (which is in user namespace, so a user might
1815       // reasonably have used it for something already). If so, they
1816       // can #define __ARM_MVE_PRESERVE_USER_NAMESPACE before
1817       // including the header, which will suppress the shorter names
1818       // and leave only the implementation-namespace ones. Then they
1819       // have to write __arm_vfooq everywhere, of course.
1820 
1821       for (bool UserNamespace : {false, true}) {
1822         raw_ostream &OS = parts[(Int.requiresFloat() ? Float : 0) |
1823                                 (UserNamespace ? UseUserNamespace : 0)];
1824 
1825         // Make the name of the function in this declaration.
1826 
1827         std::string FunctionName =
1828             Polymorphic ? Int.shortName() : Int.fullName();
1829         if (!UserNamespace)
1830           FunctionName = "__arm_" + FunctionName;
1831 
1832         // Make strings for the types involved in the function's
1833         // prototype.
1834 
1835         std::string RetTypeName = Int.returnType()->cName();
1836         if (!StringRef(RetTypeName).endswith("*"))
1837           RetTypeName += " ";
1838 
1839         std::vector<std::string> ArgTypeNames;
1840         for (const Type *ArgTypePtr : Int.argTypes())
1841           ArgTypeNames.push_back(ArgTypePtr->cName());
1842         std::string ArgTypesString =
1843             join(std::begin(ArgTypeNames), std::end(ArgTypeNames), ", ");
1844 
1845         // Emit the actual declaration. All these functions are
1846         // declared 'static inline' without a body, which is fine
1847         // provided clang recognizes them as builtins, and has the
1848         // effect that this type signature is used in place of the one
1849         // that Builtins.def didn't provide. That's how we can get
1850         // structure types that weren't defined until this header was
1851         // included to be part of the type signature of a builtin that
1852         // was known to clang already.
1853         //
1854         // The declarations use __attribute__(__clang_arm_builtin_alias),
1855         // so that each function declared will be recognized as the
1856         // appropriate MVE builtin in spite of its user-facing name.
1857         //
1858         // (That's better than making them all wrapper functions,
1859         // partly because it avoids any compiler error message citing
1860         // the wrapper function definition instead of the user's code,
1861         // and mostly because some MVE intrinsics have arguments
1862         // required to be compile-time constants, and that property
1863         // can't be propagated through a wrapper function. It can be
1864         // propagated through a macro, but macros can't be overloaded
1865         // on argument types very easily - you have to use _Generic,
1866         // which makes error messages very confusing when the user
1867         // gets it wrong.)
1868         //
1869         // Finally, the polymorphic versions of the intrinsics are
1870         // also defined with __attribute__(overloadable), so that when
1871         // the same name is defined with several type signatures, the
1872         // right thing happens. Each one of the overloaded
1873         // declarations is given a different builtin id, which
1874         // has exactly the effect we want: first clang resolves the
1875         // overload to the right function, then it knows which builtin
1876         // it's referring to, and then the Sema checking for that
1877         // builtin can check further things like the constant
1878         // arguments.
1879         //
1880         // One more subtlety is the newline just before the return
1881         // type name. That's a cosmetic tweak to make the error
1882         // messages legible if the user gets the types wrong in a call
1883         // to a polymorphic function: this way, clang will print just
1884         // the _final_ line of each declaration in the header, to show
1885         // the type signatures that would have been legal. So all the
1886         // confusing machinery with __attribute__ is left out of the
1887         // error message, and the user sees something that's more or
1888         // less self-documenting: "here's a list of actually readable
1889         // type signatures for vfooq(), and here's why each one didn't
1890         // match your call".
1891 
1892         OS << "static __inline__ __attribute__(("
1893            << (Polymorphic ? "__overloadable__, " : "")
1894            << "__clang_arm_builtin_alias(__builtin_arm_mve_" << Int.fullName()
1895            << ")))\n"
1896            << RetTypeName << FunctionName << "(" << ArgTypesString << ");\n";
1897       }
1898     }
1899   }
1900   for (auto &part : parts)
1901     part << "\n";
1902 
1903   // Now we've finished accumulating bits and pieces into the parts[] array.
1904   // Put it all together to write the final output file.
1905 
1906   OS << "/*===---- arm_mve.h - ARM MVE intrinsics "
1907         "-----------------------------------===\n"
1908      << LLVMLicenseHeader
1909      << "#ifndef __ARM_MVE_H\n"
1910         "#define __ARM_MVE_H\n"
1911         "\n"
1912         "#if !__ARM_FEATURE_MVE\n"
1913         "#error \"MVE support not enabled\"\n"
1914         "#endif\n"
1915         "\n"
1916         "#include <stdint.h>\n"
1917         "\n"
1918         "#ifdef __cplusplus\n"
1919         "extern \"C\" {\n"
1920         "#endif\n"
1921         "\n";
1922 
1923   for (size_t i = 0; i < NumParts; ++i) {
1924     std::vector<std::string> conditions;
1925     if (i & Float)
1926       conditions.push_back("(__ARM_FEATURE_MVE & 2)");
1927     if (i & UseUserNamespace)
1928       conditions.push_back("(!defined __ARM_MVE_PRESERVE_USER_NAMESPACE)");
1929 
1930     std::string condition =
1931         join(std::begin(conditions), std::end(conditions), " && ");
1932     if (!condition.empty())
1933       OS << "#if " << condition << "\n\n";
1934     OS << parts[i].str();
1935     if (!condition.empty())
1936       OS << "#endif /* " << condition << " */\n\n";
1937   }
1938 
1939   OS << "#ifdef __cplusplus\n"
1940         "} /* extern \"C\" */\n"
1941         "#endif\n"
1942         "\n"
1943         "#endif /* __ARM_MVE_H */\n";
1944 }
1945 
1946 void MveEmitter::EmitBuiltinDef(raw_ostream &OS) {
1947   for (const auto &kv : ACLEIntrinsics) {
1948     const ACLEIntrinsic &Int = *kv.second;
1949     OS << "BUILTIN(__builtin_arm_mve_" << Int.fullName()
1950        << ", \"\", \"n\")\n";
1951   }
1952 
1953   std::set<std::string> ShortNamesSeen;
1954 
1955   for (const auto &kv : ACLEIntrinsics) {
1956     const ACLEIntrinsic &Int = *kv.second;
1957     if (Int.polymorphic()) {
1958       StringRef Name = Int.shortName();
1959       if (ShortNamesSeen.find(std::string(Name)) == ShortNamesSeen.end()) {
1960         OS << "BUILTIN(__builtin_arm_mve_" << Name << ", \"vi.\", \"nt";
1961         if (Int.nonEvaluating())
1962           OS << "u"; // indicate that this builtin doesn't evaluate its args
1963         OS << "\")\n";
1964         ShortNamesSeen.insert(std::string(Name));
1965       }
1966     }
1967   }
1968 }
1969 
1970 void MveEmitter::EmitBuiltinSema(raw_ostream &OS) {
1971   std::map<std::string, std::set<std::string>> Checks;
1972   GroupSemaChecks(Checks);
1973 
1974   for (const auto &kv : Checks) {
1975     for (StringRef Name : kv.second)
1976       OS << "case ARM::BI__builtin_arm_mve_" << Name << ":\n";
1977     OS << "  return " << kv.first;
1978   }
1979 }
1980 
1981 // -----------------------------------------------------------------------------
1982 // Class that describes an ACLE intrinsic implemented as a macro.
1983 //
1984 // This class is used when the intrinsic is polymorphic in 2 or 3 types, but we
1985 // want to avoid a combinatorial explosion by reinterpreting the arguments to
1986 // fixed types.
1987 
1988 class FunctionMacro {
1989   std::vector<StringRef> Params;
1990   StringRef Definition;
1991 
1992 public:
1993   FunctionMacro(const Record &R);
1994 
1995   const std::vector<StringRef> &getParams() const { return Params; }
1996   StringRef getDefinition() const { return Definition; }
1997 };
1998 
1999 FunctionMacro::FunctionMacro(const Record &R) {
2000   Params = R.getValueAsListOfStrings("params");
2001   Definition = R.getValueAsString("definition");
2002 }
2003 
2004 // -----------------------------------------------------------------------------
2005 // The class used for generating arm_cde.h and related Clang bits
2006 //
2007 
2008 class CdeEmitter : public EmitterBase {
2009   std::map<StringRef, FunctionMacro> FunctionMacros;
2010 
2011 public:
2012   CdeEmitter(RecordKeeper &Records);
2013   void EmitHeader(raw_ostream &OS) override;
2014   void EmitBuiltinDef(raw_ostream &OS) override;
2015   void EmitBuiltinSema(raw_ostream &OS) override;
2016 };
2017 
2018 CdeEmitter::CdeEmitter(RecordKeeper &Records) : EmitterBase(Records) {
2019   for (Record *R : Records.getAllDerivedDefinitions("FunctionMacro"))
2020     FunctionMacros.emplace(R->getName(), FunctionMacro(*R));
2021 }
2022 
2023 void CdeEmitter::EmitHeader(raw_ostream &OS) {
2024   // Accumulate pieces of the header file that will be enabled under various
2025   // different combinations of #ifdef. The index into parts[] is one of the
2026   // following:
2027   constexpr unsigned None = 0;
2028   constexpr unsigned MVE = 1;
2029   constexpr unsigned MVEFloat = 2;
2030 
2031   constexpr unsigned NumParts = 3;
2032   raw_self_contained_string_ostream parts[NumParts];
2033 
2034   // Write typedefs for all the required vector types, and a few scalar
2035   // types that don't already have the name we want them to have.
2036 
2037   parts[MVE] << "typedef uint16_t mve_pred16_t;\n";
2038   parts[MVEFloat] << "typedef __fp16 float16_t;\n"
2039                      "typedef float float32_t;\n";
2040   for (const auto &kv : ScalarTypes) {
2041     const ScalarType *ST = kv.second.get();
2042     if (ST->hasNonstandardName())
2043       continue;
2044     // We don't have float64x2_t
2045     if (ST->kind() == ScalarTypeKind::Float && ST->sizeInBits() == 64)
2046       continue;
2047     raw_ostream &OS = parts[ST->requiresFloat() ? MVEFloat : MVE];
2048     const VectorType *VT = getVectorType(ST);
2049 
2050     OS << "typedef __attribute__((__neon_vector_type__(" << VT->lanes()
2051        << "), __clang_arm_mve_strict_polymorphism)) " << ST->cName() << " "
2052        << VT->cName() << ";\n";
2053   }
2054   parts[MVE] << "\n";
2055   parts[MVEFloat] << "\n";
2056 
2057   // Write declarations for all the intrinsics.
2058 
2059   for (const auto &kv : ACLEIntrinsics) {
2060     const ACLEIntrinsic &Int = *kv.second;
2061 
2062     // We generate each intrinsic twice, under its full unambiguous
2063     // name and its shorter polymorphic name (if the latter exists).
2064     for (bool Polymorphic : {false, true}) {
2065       if (Polymorphic && !Int.polymorphic())
2066         continue;
2067       if (!Polymorphic && Int.polymorphicOnly())
2068         continue;
2069 
2070       raw_ostream &OS =
2071           parts[Int.requiresFloat() ? MVEFloat
2072                                     : Int.requiresMVE() ? MVE : None];
2073 
2074       // Make the name of the function in this declaration.
2075       std::string FunctionName =
2076           "__arm_" + (Polymorphic ? Int.shortName() : Int.fullName());
2077 
2078       // Make strings for the types involved in the function's
2079       // prototype.
2080       std::string RetTypeName = Int.returnType()->cName();
2081       if (!StringRef(RetTypeName).endswith("*"))
2082         RetTypeName += " ";
2083 
2084       std::vector<std::string> ArgTypeNames;
2085       for (const Type *ArgTypePtr : Int.argTypes())
2086         ArgTypeNames.push_back(ArgTypePtr->cName());
2087       std::string ArgTypesString =
2088           join(std::begin(ArgTypeNames), std::end(ArgTypeNames), ", ");
2089 
2090       // Emit the actual declaration. See MveEmitter::EmitHeader for detailed
2091       // comments
2092       OS << "static __inline__ __attribute__(("
2093          << (Polymorphic ? "__overloadable__, " : "")
2094          << "__clang_arm_builtin_alias(__builtin_arm_" << Int.builtinExtension()
2095          << "_" << Int.fullName() << ")))\n"
2096          << RetTypeName << FunctionName << "(" << ArgTypesString << ");\n";
2097     }
2098   }
2099 
2100   for (const auto &kv : FunctionMacros) {
2101     StringRef Name = kv.first;
2102     const FunctionMacro &FM = kv.second;
2103 
2104     raw_ostream &OS = parts[MVE];
2105     OS << "#define "
2106        << "__arm_" << Name << "(" << join(FM.getParams(), ", ") << ") "
2107        << FM.getDefinition() << "\n";
2108   }
2109 
2110   for (auto &part : parts)
2111     part << "\n";
2112 
2113   // Now we've finished accumulating bits and pieces into the parts[] array.
2114   // Put it all together to write the final output file.
2115 
2116   OS << "/*===---- arm_cde.h - ARM CDE intrinsics "
2117         "-----------------------------------===\n"
2118      << LLVMLicenseHeader
2119      << "#ifndef __ARM_CDE_H\n"
2120         "#define __ARM_CDE_H\n"
2121         "\n"
2122         "#if !__ARM_FEATURE_CDE\n"
2123         "#error \"CDE support not enabled\"\n"
2124         "#endif\n"
2125         "\n"
2126         "#include <stdint.h>\n"
2127         "\n"
2128         "#ifdef __cplusplus\n"
2129         "extern \"C\" {\n"
2130         "#endif\n"
2131         "\n";
2132 
2133   for (size_t i = 0; i < NumParts; ++i) {
2134     std::string condition;
2135     if (i == MVEFloat)
2136       condition = "__ARM_FEATURE_MVE & 2";
2137     else if (i == MVE)
2138       condition = "__ARM_FEATURE_MVE";
2139 
2140     if (!condition.empty())
2141       OS << "#if " << condition << "\n\n";
2142     OS << parts[i].str();
2143     if (!condition.empty())
2144       OS << "#endif /* " << condition << " */\n\n";
2145   }
2146 
2147   OS << "#ifdef __cplusplus\n"
2148         "} /* extern \"C\" */\n"
2149         "#endif\n"
2150         "\n"
2151         "#endif /* __ARM_CDE_H */\n";
2152 }
2153 
2154 void CdeEmitter::EmitBuiltinDef(raw_ostream &OS) {
2155   for (const auto &kv : ACLEIntrinsics) {
2156     if (kv.second->headerOnly())
2157       continue;
2158     const ACLEIntrinsic &Int = *kv.second;
2159     OS << "BUILTIN(__builtin_arm_cde_" << Int.fullName()
2160        << ", \"\", \"ncU\")\n";
2161   }
2162 }
2163 
2164 void CdeEmitter::EmitBuiltinSema(raw_ostream &OS) {
2165   std::map<std::string, std::set<std::string>> Checks;
2166   GroupSemaChecks(Checks);
2167 
2168   for (const auto &kv : Checks) {
2169     for (StringRef Name : kv.second)
2170       OS << "case ARM::BI__builtin_arm_cde_" << Name << ":\n";
2171     OS << "  Err = " << kv.first << "  break;\n";
2172   }
2173 }
2174 
2175 } // namespace
2176 
2177 namespace clang {
2178 
2179 // MVE
2180 
2181 void EmitMveHeader(RecordKeeper &Records, raw_ostream &OS) {
2182   MveEmitter(Records).EmitHeader(OS);
2183 }
2184 
2185 void EmitMveBuiltinDef(RecordKeeper &Records, raw_ostream &OS) {
2186   MveEmitter(Records).EmitBuiltinDef(OS);
2187 }
2188 
2189 void EmitMveBuiltinSema(RecordKeeper &Records, raw_ostream &OS) {
2190   MveEmitter(Records).EmitBuiltinSema(OS);
2191 }
2192 
2193 void EmitMveBuiltinCG(RecordKeeper &Records, raw_ostream &OS) {
2194   MveEmitter(Records).EmitBuiltinCG(OS);
2195 }
2196 
2197 void EmitMveBuiltinAliases(RecordKeeper &Records, raw_ostream &OS) {
2198   MveEmitter(Records).EmitBuiltinAliases(OS);
2199 }
2200 
2201 // CDE
2202 
2203 void EmitCdeHeader(RecordKeeper &Records, raw_ostream &OS) {
2204   CdeEmitter(Records).EmitHeader(OS);
2205 }
2206 
2207 void EmitCdeBuiltinDef(RecordKeeper &Records, raw_ostream &OS) {
2208   CdeEmitter(Records).EmitBuiltinDef(OS);
2209 }
2210 
2211 void EmitCdeBuiltinSema(RecordKeeper &Records, raw_ostream &OS) {
2212   CdeEmitter(Records).EmitBuiltinSema(OS);
2213 }
2214 
2215 void EmitCdeBuiltinCG(RecordKeeper &Records, raw_ostream &OS) {
2216   CdeEmitter(Records).EmitBuiltinCG(OS);
2217 }
2218 
2219 void EmitCdeBuiltinAliases(RecordKeeper &Records, raw_ostream &OS) {
2220   CdeEmitter(Records).EmitBuiltinAliases(OS);
2221 }
2222 
2223 } // end namespace clang
2224