xref: /freebsd/contrib/llvm-project/clang/utils/TableGen/MveEmitter.cpp (revision 61898cde69374d5a9994e2074605bc4101aff72d)
1 //===- MveEmitter.cpp - Generate arm_mve.h for use with clang -*- C++ -*-=====//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This set of linked tablegen backends is responsible for emitting the bits
10 // and pieces that implement <arm_mve.h>, which is defined by the ACLE standard
11 // and provides a set of types and functions for (more or less) direct access
12 // to the MVE instruction set, including the scalar shifts as well as the
13 // vector instructions.
14 //
15 // MVE's standard intrinsic functions are unusual in that they have a system of
16 // polymorphism. For example, the function vaddq() can behave like vaddq_u16(),
17 // vaddq_f32(), vaddq_s8(), etc., depending on the types of the vector
18 // arguments you give it.
19 //
20 // This constrains the implementation strategies. The usual approach to making
21 // the user-facing functions polymorphic would be to either use
22 // __attribute__((overloadable)) to make a set of vaddq() functions that are
23 // all inline wrappers on the underlying clang builtins, or to define a single
24 // vaddq() macro which expands to an instance of _Generic.
25 //
26 // The inline-wrappers approach would work fine for most intrinsics, except for
27 // the ones that take an argument required to be a compile-time constant,
28 // because if you wrap an inline function around a call to a builtin, the
29 // constant nature of the argument is not passed through.
30 //
31 // The _Generic approach can be made to work with enough effort, but it takes a
32 // lot of machinery, because of the design feature of _Generic that even the
33 // untaken branches are required to pass all front-end validity checks such as
34 // type-correctness. You can work around that by nesting further _Generics all
35 // over the place to coerce things to the right type in untaken branches, but
36 // what you get out is complicated, hard to guarantee its correctness, and
37 // worst of all, gives _completely unreadable_ error messages if the user gets
38 // the types wrong for an intrinsic call.
39 //
40 // Therefore, my strategy is to introduce a new __attribute__ that allows a
41 // function to be mapped to a clang builtin even though it doesn't have the
42 // same name, and then declare all the user-facing MVE function names with that
43 // attribute, mapping each one directly to the clang builtin. And the
44 // polymorphic ones have __attribute__((overloadable)) as well. So once the
45 // compiler has resolved the overload, it knows the internal builtin ID of the
46 // selected function, and can check the immediate arguments against that; and
47 // if the user gets the types wrong in a call to a polymorphic intrinsic, they
48 // get a completely clear error message showing all the declarations of that
49 // function in the header file and explaining why each one doesn't fit their
50 // call.
51 //
52 // The downside of this is that if every clang builtin has to correspond
53 // exactly to a user-facing ACLE intrinsic, then you can't save work in the
54 // frontend by doing it in the header file: CGBuiltin.cpp has to do the entire
55 // job of converting an ACLE intrinsic call into LLVM IR. So the Tablegen
56 // description for an MVE intrinsic has to contain a full description of the
57 // sequence of IRBuilder calls that clang will need to make.
58 //
59 //===----------------------------------------------------------------------===//
60 
61 #include "llvm/ADT/APInt.h"
62 #include "llvm/ADT/StringRef.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include "llvm/TableGen/Error.h"
66 #include "llvm/TableGen/Record.h"
67 #include <cassert>
68 #include <cstddef>
69 #include <cstdint>
70 #include <list>
71 #include <map>
72 #include <memory>
73 #include <set>
74 #include <string>
75 #include <vector>
76 
77 using namespace llvm;
78 
79 namespace {
80 
81 class MveEmitter;
82 class Result;
83 
84 // -----------------------------------------------------------------------------
85 // A system of classes to represent all the types we'll need to deal with in
86 // the prototypes of intrinsics.
87 //
88 // Query methods include finding out the C name of a type; the "LLVM name" in
89 // the sense of a C++ code snippet that can be used in the codegen function;
90 // the suffix that represents the type in the ACLE intrinsic naming scheme
91 // (e.g. 's32' represents int32_t in intrinsics such as vaddq_s32); whether the
92 // type is floating-point related (hence should be under #ifdef in the MVE
93 // header so that it isn't included in integer-only MVE mode); and the type's
94 // size in bits. Not all subtypes support all these queries.
95 
96 class Type {
97 public:
98   enum class TypeKind {
99     // Void appears as a return type (for store intrinsics, which are pure
100     // side-effect). It's also used as the parameter type in the Tablegen
101     // when an intrinsic doesn't need to come in various suffixed forms like
102     // vfooq_s8,vfooq_u16,vfooq_f32.
103     Void,
104 
105     // Scalar is used for ordinary int and float types of all sizes.
106     Scalar,
107 
108     // Vector is used for anything that occupies exactly one MVE vector
109     // register, i.e. {uint,int,float}NxM_t.
110     Vector,
111 
112     // MultiVector is used for the {uint,int,float}NxMxK_t types used by the
113     // interleaving load/store intrinsics v{ld,st}{2,4}q.
114     MultiVector,
115 
116     // Predicate is used by all the predicated intrinsics. Its C
117     // representation is mve_pred16_t (which is just an alias for uint16_t).
118     // But we give more detail here, by indicating that a given predicate
119     // instruction is logically regarded as a vector of i1 containing the
120     // same number of lanes as the input vector type. So our Predicate type
121     // comes with a lane count, which we use to decide which kind of <n x i1>
122     // we'll invoke the pred_i2v IR intrinsic to translate it into.
123     Predicate,
124 
125     // Pointer is used for pointer types (obviously), and comes with a flag
126     // indicating whether it's a pointer to a const or mutable instance of
127     // the pointee type.
128     Pointer,
129   };
130 
131 private:
132   const TypeKind TKind;
133 
134 protected:
135   Type(TypeKind K) : TKind(K) {}
136 
137 public:
138   TypeKind typeKind() const { return TKind; }
139   virtual ~Type() = default;
140   virtual bool requiresFloat() const = 0;
141   virtual unsigned sizeInBits() const = 0;
142   virtual std::string cName() const = 0;
143   virtual std::string llvmName() const {
144     PrintFatalError("no LLVM type name available for type " + cName());
145   }
146   virtual std::string acleSuffix(std::string) const {
147     PrintFatalError("no ACLE suffix available for this type");
148   }
149 };
150 
151 enum class ScalarTypeKind { SignedInt, UnsignedInt, Float };
152 inline std::string toLetter(ScalarTypeKind kind) {
153   switch (kind) {
154   case ScalarTypeKind::SignedInt:
155     return "s";
156   case ScalarTypeKind::UnsignedInt:
157     return "u";
158   case ScalarTypeKind::Float:
159     return "f";
160   }
161   llvm_unreachable("Unhandled ScalarTypeKind enum");
162 }
163 inline std::string toCPrefix(ScalarTypeKind kind) {
164   switch (kind) {
165   case ScalarTypeKind::SignedInt:
166     return "int";
167   case ScalarTypeKind::UnsignedInt:
168     return "uint";
169   case ScalarTypeKind::Float:
170     return "float";
171   }
172   llvm_unreachable("Unhandled ScalarTypeKind enum");
173 }
174 
175 class VoidType : public Type {
176 public:
177   VoidType() : Type(TypeKind::Void) {}
178   unsigned sizeInBits() const override { return 0; }
179   bool requiresFloat() const override { return false; }
180   std::string cName() const override { return "void"; }
181 
182   static bool classof(const Type *T) { return T->typeKind() == TypeKind::Void; }
183   std::string acleSuffix(std::string) const override { return ""; }
184 };
185 
186 class PointerType : public Type {
187   const Type *Pointee;
188   bool Const;
189 
190 public:
191   PointerType(const Type *Pointee, bool Const)
192       : Type(TypeKind::Pointer), Pointee(Pointee), Const(Const) {}
193   unsigned sizeInBits() const override { return 32; }
194   bool requiresFloat() const override { return Pointee->requiresFloat(); }
195   std::string cName() const override {
196     std::string Name = Pointee->cName();
197 
198     // The syntax for a pointer in C is different when the pointee is
199     // itself a pointer. The MVE intrinsics don't contain any double
200     // pointers, so we don't need to worry about that wrinkle.
201     assert(!isa<PointerType>(Pointee) && "Pointer to pointer not supported");
202 
203     if (Const)
204       Name = "const " + Name;
205     return Name + " *";
206   }
207   std::string llvmName() const override {
208     return "llvm::PointerType::getUnqual(" + Pointee->llvmName() + ")";
209   }
210 
211   static bool classof(const Type *T) {
212     return T->typeKind() == TypeKind::Pointer;
213   }
214 };
215 
216 // Base class for all the types that have a name of the form
217 // [prefix][numbers]_t, like int32_t, uint16x8_t, float32x4x2_t.
218 //
219 // For this sub-hierarchy we invent a cNameBase() method which returns the
220 // whole name except for the trailing "_t", so that Vector and MultiVector can
221 // append an extra "x2" or whatever to their element type's cNameBase(). Then
222 // the main cName() query method puts "_t" on the end for the final type name.
223 
224 class CRegularNamedType : public Type {
225   using Type::Type;
226   virtual std::string cNameBase() const = 0;
227 
228 public:
229   std::string cName() const override { return cNameBase() + "_t"; }
230 };
231 
232 class ScalarType : public CRegularNamedType {
233   ScalarTypeKind Kind;
234   unsigned Bits;
235   std::string NameOverride;
236 
237 public:
238   ScalarType(const Record *Record) : CRegularNamedType(TypeKind::Scalar) {
239     Kind = StringSwitch<ScalarTypeKind>(Record->getValueAsString("kind"))
240                .Case("s", ScalarTypeKind::SignedInt)
241                .Case("u", ScalarTypeKind::UnsignedInt)
242                .Case("f", ScalarTypeKind::Float);
243     Bits = Record->getValueAsInt("size");
244     NameOverride = Record->getValueAsString("nameOverride");
245   }
246   unsigned sizeInBits() const override { return Bits; }
247   ScalarTypeKind kind() const { return Kind; }
248   std::string suffix() const { return toLetter(Kind) + utostr(Bits); }
249   std::string cNameBase() const override {
250     return toCPrefix(Kind) + utostr(Bits);
251   }
252   std::string cName() const override {
253     if (NameOverride.empty())
254       return CRegularNamedType::cName();
255     return NameOverride;
256   }
257   std::string llvmName() const override {
258     if (Kind == ScalarTypeKind::Float) {
259       if (Bits == 16)
260         return "HalfTy";
261       if (Bits == 32)
262         return "FloatTy";
263       if (Bits == 64)
264         return "DoubleTy";
265       PrintFatalError("bad size for floating type");
266     }
267     return "Int" + utostr(Bits) + "Ty";
268   }
269   std::string acleSuffix(std::string overrideLetter) const override {
270     return "_" + (overrideLetter.size() ? overrideLetter : toLetter(Kind))
271                + utostr(Bits);
272   }
273   bool isInteger() const { return Kind != ScalarTypeKind::Float; }
274   bool requiresFloat() const override { return !isInteger(); }
275   bool hasNonstandardName() const { return !NameOverride.empty(); }
276 
277   static bool classof(const Type *T) {
278     return T->typeKind() == TypeKind::Scalar;
279   }
280 };
281 
282 class VectorType : public CRegularNamedType {
283   const ScalarType *Element;
284   unsigned Lanes;
285 
286 public:
287   VectorType(const ScalarType *Element, unsigned Lanes)
288       : CRegularNamedType(TypeKind::Vector), Element(Element), Lanes(Lanes) {}
289   unsigned sizeInBits() const override { return Lanes * Element->sizeInBits(); }
290   unsigned lanes() const { return Lanes; }
291   bool requiresFloat() const override { return Element->requiresFloat(); }
292   std::string cNameBase() const override {
293     return Element->cNameBase() + "x" + utostr(Lanes);
294   }
295   std::string llvmName() const override {
296     return "llvm::VectorType::get(" + Element->llvmName() + ", " +
297            utostr(Lanes) + ")";
298   }
299 
300   static bool classof(const Type *T) {
301     return T->typeKind() == TypeKind::Vector;
302   }
303 };
304 
305 class MultiVectorType : public CRegularNamedType {
306   const VectorType *Element;
307   unsigned Registers;
308 
309 public:
310   MultiVectorType(unsigned Registers, const VectorType *Element)
311       : CRegularNamedType(TypeKind::MultiVector), Element(Element),
312         Registers(Registers) {}
313   unsigned sizeInBits() const override {
314     return Registers * Element->sizeInBits();
315   }
316   unsigned registers() const { return Registers; }
317   bool requiresFloat() const override { return Element->requiresFloat(); }
318   std::string cNameBase() const override {
319     return Element->cNameBase() + "x" + utostr(Registers);
320   }
321 
322   // MultiVectorType doesn't override llvmName, because we don't expect to do
323   // automatic code generation for the MVE intrinsics that use it: the {vld2,
324   // vld4, vst2, vst4} family are the only ones that use these types, so it was
325   // easier to hand-write the codegen for dealing with these structs than to
326   // build in lots of extra automatic machinery that would only be used once.
327 
328   static bool classof(const Type *T) {
329     return T->typeKind() == TypeKind::MultiVector;
330   }
331 };
332 
333 class PredicateType : public CRegularNamedType {
334   unsigned Lanes;
335 
336 public:
337   PredicateType(unsigned Lanes)
338       : CRegularNamedType(TypeKind::Predicate), Lanes(Lanes) {}
339   unsigned sizeInBits() const override { return 16; }
340   std::string cNameBase() const override { return "mve_pred16"; }
341   bool requiresFloat() const override { return false; };
342   std::string llvmName() const override {
343     // Use <4 x i1> instead of <2 x i1> for two-lane vector types. See
344     // the comment in llvm/lib/Target/ARM/ARMInstrMVE.td for further
345     // explanation.
346     unsigned ModifiedLanes = (Lanes == 2 ? 4 : Lanes);
347 
348     return "llvm::VectorType::get(Builder.getInt1Ty(), " +
349            utostr(ModifiedLanes) + ")";
350   }
351 
352   static bool classof(const Type *T) {
353     return T->typeKind() == TypeKind::Predicate;
354   }
355 };
356 
357 // -----------------------------------------------------------------------------
358 // Class to facilitate merging together the code generation for many intrinsics
359 // by means of varying a few constant or type parameters.
360 //
361 // Most obviously, the intrinsics in a single parametrised family will have
362 // code generation sequences that only differ in a type or two, e.g. vaddq_s8
363 // and vaddq_u16 will look the same apart from putting a different vector type
364 // in the call to CGM.getIntrinsic(). But also, completely different intrinsics
365 // will often code-generate in the same way, with only a different choice of
366 // _which_ IR intrinsic they lower to (e.g. vaddq_m_s8 and vmulq_m_s8), but
367 // marshalling the arguments and return values of the IR intrinsic in exactly
368 // the same way. And others might differ only in some other kind of constant,
369 // such as a lane index.
370 //
371 // So, when we generate the IR-building code for all these intrinsics, we keep
372 // track of every value that could possibly be pulled out of the code and
373 // stored ahead of time in a local variable. Then we group together intrinsics
374 // by textual equivalence of the code that would result if _all_ those
375 // parameters were stored in local variables. That gives us maximal sets that
376 // can be implemented by a single piece of IR-building code by changing
377 // parameter values ahead of time.
378 //
379 // After we've done that, we do a second pass in which we only allocate _some_
380 // of the parameters into local variables, by tracking which ones have the same
381 // values as each other (so that a single variable can be reused) and which
382 // ones are the same across the whole set (so that no variable is needed at
383 // all).
384 //
385 // Hence the class below. Its allocParam method is invoked during code
386 // generation by every method of a Result subclass (see below) that wants to
387 // give it the opportunity to pull something out into a switchable parameter.
388 // It returns a variable name for the parameter, or (if it's being used in the
389 // second pass once we've decided that some parameters don't need to be stored
390 // in variables after all) it might just return the input expression unchanged.
391 
392 struct CodeGenParamAllocator {
393   // Accumulated during code generation
394   std::vector<std::string> *ParamTypes = nullptr;
395   std::vector<std::string> *ParamValues = nullptr;
396 
397   // Provided ahead of time in pass 2, to indicate which parameters are being
398   // assigned to what. This vector contains an entry for each call to
399   // allocParam expected during code gen (which we counted up in pass 1), and
400   // indicates the number of the parameter variable that should be returned, or
401   // -1 if this call shouldn't allocate a parameter variable at all.
402   //
403   // We rely on the recursive code generation working identically in passes 1
404   // and 2, so that the same list of calls to allocParam happen in the same
405   // order. That guarantees that the parameter numbers recorded in pass 1 will
406   // match the entries in this vector that store what MveEmitter::EmitBuiltinCG
407   // decided to do about each one in pass 2.
408   std::vector<int> *ParamNumberMap = nullptr;
409 
410   // Internally track how many things we've allocated
411   unsigned nparams = 0;
412 
413   std::string allocParam(StringRef Type, StringRef Value) {
414     unsigned ParamNumber;
415 
416     if (!ParamNumberMap) {
417       // In pass 1, unconditionally assign a new parameter variable to every
418       // value we're asked to process.
419       ParamNumber = nparams++;
420     } else {
421       // In pass 2, consult the map provided by the caller to find out which
422       // variable we should be keeping things in.
423       int MapValue = (*ParamNumberMap)[nparams++];
424       if (MapValue < 0)
425         return Value;
426       ParamNumber = MapValue;
427     }
428 
429     // If we've allocated a new parameter variable for the first time, store
430     // its type and value to be retrieved after codegen.
431     if (ParamTypes && ParamTypes->size() == ParamNumber)
432       ParamTypes->push_back(Type);
433     if (ParamValues && ParamValues->size() == ParamNumber)
434       ParamValues->push_back(Value);
435 
436     // Unimaginative naming scheme for parameter variables.
437     return "Param" + utostr(ParamNumber);
438   }
439 };
440 
441 // -----------------------------------------------------------------------------
442 // System of classes that represent all the intermediate values used during
443 // code-generation for an intrinsic.
444 //
445 // The base class 'Result' can represent a value of the LLVM type 'Value', or
446 // sometimes 'Address' (for loads/stores, including an alignment requirement).
447 //
448 // In the case where the Tablegen provides a value in the codegen dag as a
449 // plain integer literal, the Result object we construct here will be one that
450 // returns true from hasIntegerConstantValue(). This allows the generated C++
451 // code to use the constant directly in contexts which can take a literal
452 // integer, such as Builder.CreateExtractValue(thing, 1), without going to the
453 // effort of calling llvm::ConstantInt::get() and then pulling the constant
454 // back out of the resulting llvm:Value later.
455 
456 class Result {
457 public:
458   // Convenient shorthand for the pointer type we'll be using everywhere.
459   using Ptr = std::shared_ptr<Result>;
460 
461 private:
462   Ptr Predecessor;
463   std::string VarName;
464   bool VarNameUsed = false;
465   unsigned Visited = 0;
466 
467 public:
468   virtual ~Result() = default;
469   using Scope = std::map<std::string, Ptr>;
470   virtual void genCode(raw_ostream &OS, CodeGenParamAllocator &) const = 0;
471   virtual bool hasIntegerConstantValue() const { return false; }
472   virtual uint32_t integerConstantValue() const { return 0; }
473   virtual bool hasIntegerValue() const { return false; }
474   virtual std::string getIntegerValue(const std::string &) {
475     llvm_unreachable("non-working Result::getIntegerValue called");
476   }
477   virtual std::string typeName() const { return "Value *"; }
478 
479   // Mostly, when a code-generation operation has a dependency on prior
480   // operations, it's because it uses the output values of those operations as
481   // inputs. But there's one exception, which is the use of 'seq' in Tablegen
482   // to indicate that operations have to be performed in sequence regardless of
483   // whether they use each others' output values.
484   //
485   // So, the actual generation of code is done by depth-first search, using the
486   // prerequisites() method to get a list of all the other Results that have to
487   // be computed before this one. That method divides into the 'predecessor',
488   // set by setPredecessor() while processing a 'seq' dag node, and the list
489   // returned by 'morePrerequisites', which each subclass implements to return
490   // a list of the Results it uses as input to whatever its own computation is
491   // doing.
492 
493   virtual void morePrerequisites(std::vector<Ptr> &output) const {}
494   std::vector<Ptr> prerequisites() const {
495     std::vector<Ptr> ToRet;
496     if (Predecessor)
497       ToRet.push_back(Predecessor);
498     morePrerequisites(ToRet);
499     return ToRet;
500   }
501 
502   void setPredecessor(Ptr p) {
503     assert(!Predecessor);
504     Predecessor = p;
505   }
506 
507   // Each Result will be assigned a variable name in the output code, but not
508   // all those variable names will actually be used (e.g. the return value of
509   // Builder.CreateStore has void type, so nobody will want to refer to it). To
510   // prevent annoying compiler warnings, we track whether each Result's
511   // variable name was ever actually mentioned in subsequent statements, so
512   // that it can be left out of the final generated code.
513   std::string varname() {
514     VarNameUsed = true;
515     return VarName;
516   }
517   void setVarname(const StringRef s) { VarName = s; }
518   bool varnameUsed() const { return VarNameUsed; }
519 
520   // Emit code to generate this result as a Value *.
521   virtual std::string asValue() {
522     return varname();
523   }
524 
525   // Code generation happens in multiple passes. This method tracks whether a
526   // Result has yet been visited in a given pass, without the need for a
527   // tedious loop in between passes that goes through and resets a 'visited'
528   // flag back to false: you just set Pass=1 the first time round, and Pass=2
529   // the second time.
530   bool needsVisiting(unsigned Pass) {
531     bool ToRet = Visited < Pass;
532     Visited = Pass;
533     return ToRet;
534   }
535 };
536 
537 // Result subclass that retrieves one of the arguments to the clang builtin
538 // function. In cases where the argument has pointer type, we call
539 // EmitPointerWithAlignment and store the result in a variable of type Address,
540 // so that load and store IR nodes can know the right alignment. Otherwise, we
541 // call EmitScalarExpr.
542 //
543 // There are aggregate parameters in the MVE intrinsics API, but we don't deal
544 // with them in this Tablegen back end: they only arise in the vld2q/vld4q and
545 // vst2q/vst4q family, which is few enough that we just write the code by hand
546 // for those in CGBuiltin.cpp.
547 class BuiltinArgResult : public Result {
548 public:
549   unsigned ArgNum;
550   bool AddressType;
551   bool Immediate;
552   BuiltinArgResult(unsigned ArgNum, bool AddressType, bool Immediate)
553       : ArgNum(ArgNum), AddressType(AddressType), Immediate(Immediate) {}
554   void genCode(raw_ostream &OS, CodeGenParamAllocator &) const override {
555     OS << (AddressType ? "EmitPointerWithAlignment" : "EmitScalarExpr")
556        << "(E->getArg(" << ArgNum << "))";
557   }
558   std::string typeName() const override {
559     return AddressType ? "Address" : Result::typeName();
560   }
561   // Emit code to generate this result as a Value *.
562   std::string asValue() override {
563     if (AddressType)
564       return "(" + varname() + ".getPointer())";
565     return Result::asValue();
566   }
567   bool hasIntegerValue() const override { return Immediate; }
568   std::string getIntegerValue(const std::string &IntType) override {
569     return "GetIntegerConstantValue<" + IntType + ">(E->getArg(" +
570            utostr(ArgNum) + "), getContext())";
571   }
572 };
573 
574 // Result subclass for an integer literal appearing in Tablegen. This may need
575 // to be turned into an llvm::Result by means of llvm::ConstantInt::get(), or
576 // it may be used directly as an integer, depending on which IRBuilder method
577 // it's being passed to.
578 class IntLiteralResult : public Result {
579 public:
580   const ScalarType *IntegerType;
581   uint32_t IntegerValue;
582   IntLiteralResult(const ScalarType *IntegerType, uint32_t IntegerValue)
583       : IntegerType(IntegerType), IntegerValue(IntegerValue) {}
584   void genCode(raw_ostream &OS,
585                CodeGenParamAllocator &ParamAlloc) const override {
586     OS << "llvm::ConstantInt::get("
587        << ParamAlloc.allocParam("llvm::Type *", IntegerType->llvmName())
588        << ", ";
589     OS << ParamAlloc.allocParam(IntegerType->cName(), utostr(IntegerValue))
590        << ")";
591   }
592   bool hasIntegerConstantValue() const override { return true; }
593   uint32_t integerConstantValue() const override { return IntegerValue; }
594 };
595 
596 // Result subclass representing a cast between different integer types. We use
597 // our own ScalarType abstraction as the representation of the target type,
598 // which gives both size and signedness.
599 class IntCastResult : public Result {
600 public:
601   const ScalarType *IntegerType;
602   Ptr V;
603   IntCastResult(const ScalarType *IntegerType, Ptr V)
604       : IntegerType(IntegerType), V(V) {}
605   void genCode(raw_ostream &OS,
606                CodeGenParamAllocator &ParamAlloc) const override {
607     OS << "Builder.CreateIntCast(" << V->varname() << ", "
608        << ParamAlloc.allocParam("llvm::Type *", IntegerType->llvmName()) << ", "
609        << ParamAlloc.allocParam("bool",
610                                 IntegerType->kind() == ScalarTypeKind::SignedInt
611                                     ? "true"
612                                     : "false")
613        << ")";
614   }
615   void morePrerequisites(std::vector<Ptr> &output) const override {
616     output.push_back(V);
617   }
618 };
619 
620 // Result subclass representing a cast between different pointer types.
621 class PointerCastResult : public Result {
622 public:
623   const PointerType *PtrType;
624   Ptr V;
625   PointerCastResult(const PointerType *PtrType, Ptr V)
626       : PtrType(PtrType), V(V) {}
627   void genCode(raw_ostream &OS,
628                CodeGenParamAllocator &ParamAlloc) const override {
629     OS << "Builder.CreatePointerCast(" << V->asValue() << ", "
630        << ParamAlloc.allocParam("llvm::Type *", PtrType->llvmName()) << ")";
631   }
632   void morePrerequisites(std::vector<Ptr> &output) const override {
633     output.push_back(V);
634   }
635 };
636 
637 // Result subclass representing a call to an IRBuilder method. Each IRBuilder
638 // method we want to use will have a Tablegen record giving the method name and
639 // describing any important details of how to call it, such as whether a
640 // particular argument should be an integer constant instead of an llvm::Value.
641 class IRBuilderResult : public Result {
642 public:
643   StringRef CallPrefix;
644   std::vector<Ptr> Args;
645   std::set<unsigned> AddressArgs;
646   std::map<unsigned, std::string> IntegerArgs;
647   IRBuilderResult(StringRef CallPrefix, std::vector<Ptr> Args,
648                   std::set<unsigned> AddressArgs,
649                   std::map<unsigned, std::string> IntegerArgs)
650       : CallPrefix(CallPrefix), Args(Args), AddressArgs(AddressArgs),
651         IntegerArgs(IntegerArgs) {}
652   void genCode(raw_ostream &OS,
653                CodeGenParamAllocator &ParamAlloc) const override {
654     OS << CallPrefix;
655     const char *Sep = "";
656     for (unsigned i = 0, e = Args.size(); i < e; ++i) {
657       Ptr Arg = Args[i];
658       auto it = IntegerArgs.find(i);
659 
660       OS << Sep;
661       Sep = ", ";
662 
663       if (it != IntegerArgs.end()) {
664         if (Arg->hasIntegerConstantValue())
665           OS << "static_cast<" << it->second << ">("
666              << ParamAlloc.allocParam(it->second,
667                                       utostr(Arg->integerConstantValue()))
668              << ")";
669         else if (Arg->hasIntegerValue())
670           OS << ParamAlloc.allocParam(it->second,
671                                       Arg->getIntegerValue(it->second));
672       } else {
673         OS << Arg->varname();
674       }
675     }
676     OS << ")";
677   }
678   void morePrerequisites(std::vector<Ptr> &output) const override {
679     for (unsigned i = 0, e = Args.size(); i < e; ++i) {
680       Ptr Arg = Args[i];
681       if (IntegerArgs.find(i) != IntegerArgs.end())
682         continue;
683       output.push_back(Arg);
684     }
685   }
686 };
687 
688 // Result subclass representing making an Address out of a Value.
689 class AddressResult : public Result {
690 public:
691   Ptr Arg;
692   unsigned Align;
693   AddressResult(Ptr Arg, unsigned Align) : Arg(Arg), Align(Align) {}
694   void genCode(raw_ostream &OS,
695                CodeGenParamAllocator &ParamAlloc) const override {
696     OS << "Address(" << Arg->varname() << ", CharUnits::fromQuantity("
697        << Align << "))";
698   }
699   std::string typeName() const override {
700     return "Address";
701   }
702   void morePrerequisites(std::vector<Ptr> &output) const override {
703     output.push_back(Arg);
704   }
705 };
706 
707 // Result subclass representing a call to an IR intrinsic, which we first have
708 // to look up using an Intrinsic::ID constant and an array of types.
709 class IRIntrinsicResult : public Result {
710 public:
711   std::string IntrinsicID;
712   std::vector<const Type *> ParamTypes;
713   std::vector<Ptr> Args;
714   IRIntrinsicResult(StringRef IntrinsicID, std::vector<const Type *> ParamTypes,
715                     std::vector<Ptr> Args)
716       : IntrinsicID(IntrinsicID), ParamTypes(ParamTypes), Args(Args) {}
717   void genCode(raw_ostream &OS,
718                CodeGenParamAllocator &ParamAlloc) const override {
719     std::string IntNo = ParamAlloc.allocParam(
720         "Intrinsic::ID", "Intrinsic::" + IntrinsicID);
721     OS << "Builder.CreateCall(CGM.getIntrinsic(" << IntNo;
722     if (!ParamTypes.empty()) {
723       OS << ", llvm::SmallVector<llvm::Type *, " << ParamTypes.size() << "> {";
724       const char *Sep = "";
725       for (auto T : ParamTypes) {
726         OS << Sep << ParamAlloc.allocParam("llvm::Type *", T->llvmName());
727         Sep = ", ";
728       }
729       OS << "}";
730     }
731     OS << "), llvm::SmallVector<Value *, " << Args.size() << "> {";
732     const char *Sep = "";
733     for (auto Arg : Args) {
734       OS << Sep << Arg->asValue();
735       Sep = ", ";
736     }
737     OS << "})";
738   }
739   void morePrerequisites(std::vector<Ptr> &output) const override {
740     output.insert(output.end(), Args.begin(), Args.end());
741   }
742 };
743 
744 // Result subclass that specifies a type, for use in IRBuilder operations such
745 // as CreateBitCast that take a type argument.
746 class TypeResult : public Result {
747 public:
748   const Type *T;
749   TypeResult(const Type *T) : T(T) {}
750   void genCode(raw_ostream &OS, CodeGenParamAllocator &) const override {
751     OS << T->llvmName();
752   }
753   std::string typeName() const override {
754     return "llvm::Type *";
755   }
756 };
757 
758 // -----------------------------------------------------------------------------
759 // Class that describes a single ACLE intrinsic.
760 //
761 // A Tablegen record will typically describe more than one ACLE intrinsic, by
762 // means of setting the 'list<Type> Params' field to a list of multiple
763 // parameter types, so as to define vaddq_{s8,u8,...,f16,f32} all in one go.
764 // We'll end up with one instance of ACLEIntrinsic for *each* parameter type,
765 // rather than a single one for all of them. Hence, the constructor takes both
766 // a Tablegen record and the current value of the parameter type.
767 
768 class ACLEIntrinsic {
769   // Structure documenting that one of the intrinsic's arguments is required to
770   // be a compile-time constant integer, and what constraints there are on its
771   // value. Used when generating Sema checking code.
772   struct ImmediateArg {
773     enum class BoundsType { ExplicitRange, UInt };
774     BoundsType boundsType;
775     int64_t i1, i2;
776     StringRef ExtraCheckType, ExtraCheckArgs;
777     const Type *ArgType;
778   };
779 
780   // For polymorphic intrinsics, FullName is the explicit name that uniquely
781   // identifies this variant of the intrinsic, and ShortName is the name it
782   // shares with at least one other intrinsic.
783   std::string ShortName, FullName;
784 
785   // A very small number of intrinsics _only_ have a polymorphic
786   // variant (vuninitializedq taking an unevaluated argument).
787   bool PolymorphicOnly;
788 
789   // Another rarely-used flag indicating that the builtin doesn't
790   // evaluate its argument(s) at all.
791   bool NonEvaluating;
792 
793   const Type *ReturnType;
794   std::vector<const Type *> ArgTypes;
795   std::map<unsigned, ImmediateArg> ImmediateArgs;
796   Result::Ptr Code;
797 
798   std::map<std::string, std::string> CustomCodeGenArgs;
799 
800   // Recursive function that does the internals of code generation.
801   void genCodeDfs(Result::Ptr V, std::list<Result::Ptr> &Used,
802                   unsigned Pass) const {
803     if (!V->needsVisiting(Pass))
804       return;
805 
806     for (Result::Ptr W : V->prerequisites())
807       genCodeDfs(W, Used, Pass);
808 
809     Used.push_back(V);
810   }
811 
812 public:
813   const std::string &shortName() const { return ShortName; }
814   const std::string &fullName() const { return FullName; }
815   const Type *returnType() const { return ReturnType; }
816   const std::vector<const Type *> &argTypes() const { return ArgTypes; }
817   bool requiresFloat() const {
818     if (ReturnType->requiresFloat())
819       return true;
820     for (const Type *T : ArgTypes)
821       if (T->requiresFloat())
822         return true;
823     return false;
824   }
825   bool polymorphic() const { return ShortName != FullName; }
826   bool polymorphicOnly() const { return PolymorphicOnly; }
827   bool nonEvaluating() const { return NonEvaluating; }
828 
829   // External entry point for code generation, called from MveEmitter.
830   void genCode(raw_ostream &OS, CodeGenParamAllocator &ParamAlloc,
831                unsigned Pass) const {
832     if (!hasCode()) {
833       for (auto kv : CustomCodeGenArgs)
834         OS << "  " << kv.first << " = " << kv.second << ";\n";
835       OS << "  break; // custom code gen\n";
836       return;
837     }
838     std::list<Result::Ptr> Used;
839     genCodeDfs(Code, Used, Pass);
840 
841     unsigned varindex = 0;
842     for (Result::Ptr V : Used)
843       if (V->varnameUsed())
844         V->setVarname("Val" + utostr(varindex++));
845 
846     for (Result::Ptr V : Used) {
847       OS << "  ";
848       if (V == Used.back()) {
849         assert(!V->varnameUsed());
850         OS << "return "; // FIXME: what if the top-level thing is void?
851       } else if (V->varnameUsed()) {
852         std::string Type = V->typeName();
853         OS << V->typeName();
854         if (!StringRef(Type).endswith("*"))
855           OS << " ";
856         OS << V->varname() << " = ";
857       }
858       V->genCode(OS, ParamAlloc);
859       OS << ";\n";
860     }
861   }
862   bool hasCode() const { return Code != nullptr; }
863 
864   static std::string signedHexLiteral(const llvm::APInt &iOrig) {
865     llvm::APInt i = iOrig.trunc(64);
866     SmallString<40> s;
867     i.toString(s, 16, true, true);
868     return s.str();
869   }
870 
871   std::string genSema() const {
872     std::vector<std::string> SemaChecks;
873 
874     for (const auto &kv : ImmediateArgs) {
875       const ImmediateArg &IA = kv.second;
876 
877       llvm::APInt lo(128, 0), hi(128, 0);
878       switch (IA.boundsType) {
879       case ImmediateArg::BoundsType::ExplicitRange:
880         lo = IA.i1;
881         hi = IA.i2;
882         break;
883       case ImmediateArg::BoundsType::UInt:
884         lo = 0;
885         hi = IA.i1;
886         break;
887       }
888 
889       llvm::APInt typelo, typehi;
890       unsigned Bits = IA.ArgType->sizeInBits();
891       if (cast<ScalarType>(IA.ArgType)->kind() == ScalarTypeKind::SignedInt) {
892         typelo = llvm::APInt::getSignedMinValue(Bits).sext(128);
893         typehi = llvm::APInt::getSignedMaxValue(Bits).sext(128);
894       } else {
895         typelo = llvm::APInt::getMinValue(Bits).zext(128);
896         typehi = llvm::APInt::getMaxValue(Bits).zext(128);
897       }
898 
899       std::string Index = utostr(kv.first);
900 
901       if (lo.sle(typelo) && hi.sge(typehi))
902         SemaChecks.push_back("SemaBuiltinConstantArg(TheCall, " + Index + ")");
903       else
904         SemaChecks.push_back("SemaBuiltinConstantArgRange(TheCall, " + Index +
905                              ", " + signedHexLiteral(lo) + ", " +
906                              signedHexLiteral(hi) + ")");
907 
908       if (!IA.ExtraCheckType.empty()) {
909         std::string Suffix;
910         if (!IA.ExtraCheckArgs.empty())
911           Suffix = (Twine(", ") + IA.ExtraCheckArgs).str();
912         SemaChecks.push_back((Twine("SemaBuiltinConstantArg") +
913                               IA.ExtraCheckType + "(TheCall, " + Index +
914                               Suffix + ")")
915                                  .str());
916       }
917     }
918     if (SemaChecks.empty())
919       return "";
920     return (Twine("  return ") +
921             join(std::begin(SemaChecks), std::end(SemaChecks),
922                  " ||\n         ") +
923             ";\n")
924         .str();
925   }
926 
927   ACLEIntrinsic(MveEmitter &ME, Record *R, const Type *Param);
928 };
929 
930 // -----------------------------------------------------------------------------
931 // The top-level class that holds all the state from analyzing the entire
932 // Tablegen input.
933 
934 class MveEmitter {
935   // MveEmitter holds a collection of all the types we've instantiated.
936   VoidType Void;
937   std::map<std::string, std::unique_ptr<ScalarType>> ScalarTypes;
938   std::map<std::tuple<ScalarTypeKind, unsigned, unsigned>,
939            std::unique_ptr<VectorType>>
940       VectorTypes;
941   std::map<std::pair<std::string, unsigned>, std::unique_ptr<MultiVectorType>>
942       MultiVectorTypes;
943   std::map<unsigned, std::unique_ptr<PredicateType>> PredicateTypes;
944   std::map<std::string, std::unique_ptr<PointerType>> PointerTypes;
945 
946   // And all the ACLEIntrinsic instances we've created.
947   std::map<std::string, std::unique_ptr<ACLEIntrinsic>> ACLEIntrinsics;
948 
949 public:
950   // Methods to create a Type object, or return the right existing one from the
951   // maps stored in this object.
952   const VoidType *getVoidType() { return &Void; }
953   const ScalarType *getScalarType(StringRef Name) {
954     return ScalarTypes[Name].get();
955   }
956   const ScalarType *getScalarType(Record *R) {
957     return getScalarType(R->getName());
958   }
959   const VectorType *getVectorType(const ScalarType *ST, unsigned Lanes) {
960     std::tuple<ScalarTypeKind, unsigned, unsigned> key(ST->kind(),
961                                                        ST->sizeInBits(), Lanes);
962     if (VectorTypes.find(key) == VectorTypes.end())
963       VectorTypes[key] = std::make_unique<VectorType>(ST, Lanes);
964     return VectorTypes[key].get();
965   }
966   const VectorType *getVectorType(const ScalarType *ST) {
967     return getVectorType(ST, 128 / ST->sizeInBits());
968   }
969   const MultiVectorType *getMultiVectorType(unsigned Registers,
970                                             const VectorType *VT) {
971     std::pair<std::string, unsigned> key(VT->cNameBase(), Registers);
972     if (MultiVectorTypes.find(key) == MultiVectorTypes.end())
973       MultiVectorTypes[key] = std::make_unique<MultiVectorType>(Registers, VT);
974     return MultiVectorTypes[key].get();
975   }
976   const PredicateType *getPredicateType(unsigned Lanes) {
977     unsigned key = Lanes;
978     if (PredicateTypes.find(key) == PredicateTypes.end())
979       PredicateTypes[key] = std::make_unique<PredicateType>(Lanes);
980     return PredicateTypes[key].get();
981   }
982   const PointerType *getPointerType(const Type *T, bool Const) {
983     PointerType PT(T, Const);
984     std::string key = PT.cName();
985     if (PointerTypes.find(key) == PointerTypes.end())
986       PointerTypes[key] = std::make_unique<PointerType>(PT);
987     return PointerTypes[key].get();
988   }
989 
990   // Methods to construct a type from various pieces of Tablegen. These are
991   // always called in the context of setting up a particular ACLEIntrinsic, so
992   // there's always an ambient parameter type (because we're iterating through
993   // the Params list in the Tablegen record for the intrinsic), which is used
994   // to expand Tablegen classes like 'Vector' which mean something different in
995   // each member of a parametric family.
996   const Type *getType(Record *R, const Type *Param);
997   const Type *getType(DagInit *D, const Type *Param);
998   const Type *getType(Init *I, const Type *Param);
999 
1000   // Functions that translate the Tablegen representation of an intrinsic's
1001   // code generation into a collection of Value objects (which will then be
1002   // reprocessed to read out the actual C++ code included by CGBuiltin.cpp).
1003   Result::Ptr getCodeForDag(DagInit *D, const Result::Scope &Scope,
1004                             const Type *Param);
1005   Result::Ptr getCodeForDagArg(DagInit *D, unsigned ArgNum,
1006                                const Result::Scope &Scope, const Type *Param);
1007   Result::Ptr getCodeForArg(unsigned ArgNum, const Type *ArgType, bool Promote,
1008                             bool Immediate);
1009 
1010   // Constructor and top-level functions.
1011 
1012   MveEmitter(RecordKeeper &Records);
1013 
1014   void EmitHeader(raw_ostream &OS);
1015   void EmitBuiltinDef(raw_ostream &OS);
1016   void EmitBuiltinSema(raw_ostream &OS);
1017   void EmitBuiltinCG(raw_ostream &OS);
1018   void EmitBuiltinAliases(raw_ostream &OS);
1019 };
1020 
1021 const Type *MveEmitter::getType(Init *I, const Type *Param) {
1022   if (auto Dag = dyn_cast<DagInit>(I))
1023     return getType(Dag, Param);
1024   if (auto Def = dyn_cast<DefInit>(I))
1025     return getType(Def->getDef(), Param);
1026 
1027   PrintFatalError("Could not convert this value into a type");
1028 }
1029 
1030 const Type *MveEmitter::getType(Record *R, const Type *Param) {
1031   // Pass to a subfield of any wrapper records. We don't expect more than one
1032   // of these: immediate operands are used as plain numbers rather than as
1033   // llvm::Value, so it's meaningless to promote their type anyway.
1034   if (R->isSubClassOf("Immediate"))
1035     R = R->getValueAsDef("type");
1036   else if (R->isSubClassOf("unpromoted"))
1037     R = R->getValueAsDef("underlying_type");
1038 
1039   if (R->getName() == "Void")
1040     return getVoidType();
1041   if (R->isSubClassOf("PrimitiveType"))
1042     return getScalarType(R);
1043   if (R->isSubClassOf("ComplexType"))
1044     return getType(R->getValueAsDag("spec"), Param);
1045 
1046   PrintFatalError(R->getLoc(), "Could not convert this record into a type");
1047 }
1048 
1049 const Type *MveEmitter::getType(DagInit *D, const Type *Param) {
1050   // The meat of the getType system: types in the Tablegen are represented by a
1051   // dag whose operators select sub-cases of this function.
1052 
1053   Record *Op = cast<DefInit>(D->getOperator())->getDef();
1054   if (!Op->isSubClassOf("ComplexTypeOp"))
1055     PrintFatalError(
1056         "Expected ComplexTypeOp as dag operator in type expression");
1057 
1058   if (Op->getName() == "CTO_Parameter") {
1059     if (isa<VoidType>(Param))
1060       PrintFatalError("Parametric type in unparametrised context");
1061     return Param;
1062   }
1063 
1064   if (Op->getName() == "CTO_Vec") {
1065     const Type *Element = getType(D->getArg(0), Param);
1066     if (D->getNumArgs() == 1) {
1067       return getVectorType(cast<ScalarType>(Element));
1068     } else {
1069       const Type *ExistingVector = getType(D->getArg(1), Param);
1070       return getVectorType(cast<ScalarType>(Element),
1071                            cast<VectorType>(ExistingVector)->lanes());
1072     }
1073   }
1074 
1075   if (Op->getName() == "CTO_Pred") {
1076     const Type *Element = getType(D->getArg(0), Param);
1077     return getPredicateType(128 / Element->sizeInBits());
1078   }
1079 
1080   if (Op->isSubClassOf("CTO_Tuple")) {
1081     unsigned Registers = Op->getValueAsInt("n");
1082     const Type *Element = getType(D->getArg(0), Param);
1083     return getMultiVectorType(Registers, cast<VectorType>(Element));
1084   }
1085 
1086   if (Op->isSubClassOf("CTO_Pointer")) {
1087     const Type *Pointee = getType(D->getArg(0), Param);
1088     return getPointerType(Pointee, Op->getValueAsBit("const"));
1089   }
1090 
1091   if (Op->getName() == "CTO_CopyKind") {
1092     const ScalarType *STSize = cast<ScalarType>(getType(D->getArg(0), Param));
1093     const ScalarType *STKind = cast<ScalarType>(getType(D->getArg(1), Param));
1094     for (const auto &kv : ScalarTypes) {
1095       const ScalarType *RT = kv.second.get();
1096       if (RT->kind() == STKind->kind() && RT->sizeInBits() == STSize->sizeInBits())
1097         return RT;
1098     }
1099     PrintFatalError("Cannot find a type to satisfy CopyKind");
1100   }
1101 
1102   if (Op->isSubClassOf("CTO_ScaleSize")) {
1103     const ScalarType *STKind = cast<ScalarType>(getType(D->getArg(0), Param));
1104     int Num = Op->getValueAsInt("num"), Denom = Op->getValueAsInt("denom");
1105     unsigned DesiredSize = STKind->sizeInBits() * Num / Denom;
1106     for (const auto &kv : ScalarTypes) {
1107       const ScalarType *RT = kv.second.get();
1108       if (RT->kind() == STKind->kind() && RT->sizeInBits() == DesiredSize)
1109         return RT;
1110     }
1111     PrintFatalError("Cannot find a type to satisfy ScaleSize");
1112   }
1113 
1114   PrintFatalError("Bad operator in type dag expression");
1115 }
1116 
1117 Result::Ptr MveEmitter::getCodeForDag(DagInit *D, const Result::Scope &Scope,
1118                                       const Type *Param) {
1119   Record *Op = cast<DefInit>(D->getOperator())->getDef();
1120 
1121   if (Op->getName() == "seq") {
1122     Result::Scope SubScope = Scope;
1123     Result::Ptr PrevV = nullptr;
1124     for (unsigned i = 0, e = D->getNumArgs(); i < e; ++i) {
1125       // We don't use getCodeForDagArg here, because the argument name
1126       // has different semantics in a seq
1127       Result::Ptr V =
1128           getCodeForDag(cast<DagInit>(D->getArg(i)), SubScope, Param);
1129       StringRef ArgName = D->getArgNameStr(i);
1130       if (!ArgName.empty())
1131         SubScope[ArgName] = V;
1132       if (PrevV)
1133         V->setPredecessor(PrevV);
1134       PrevV = V;
1135     }
1136     return PrevV;
1137   } else if (Op->isSubClassOf("Type")) {
1138     if (D->getNumArgs() != 1)
1139       PrintFatalError("Type casts should have exactly one argument");
1140     const Type *CastType = getType(Op, Param);
1141     Result::Ptr Arg = getCodeForDagArg(D, 0, Scope, Param);
1142     if (const auto *ST = dyn_cast<ScalarType>(CastType)) {
1143       if (!ST->requiresFloat()) {
1144         if (Arg->hasIntegerConstantValue())
1145           return std::make_shared<IntLiteralResult>(
1146               ST, Arg->integerConstantValue());
1147         else
1148           return std::make_shared<IntCastResult>(ST, Arg);
1149       }
1150     } else if (const auto *PT = dyn_cast<PointerType>(CastType)) {
1151       return std::make_shared<PointerCastResult>(PT, Arg);
1152     }
1153     PrintFatalError("Unsupported type cast");
1154   } else if (Op->getName() == "address") {
1155     if (D->getNumArgs() != 2)
1156       PrintFatalError("'address' should have two arguments");
1157     Result::Ptr Arg = getCodeForDagArg(D, 0, Scope, Param);
1158     unsigned Alignment;
1159     if (auto *II = dyn_cast<IntInit>(D->getArg(1))) {
1160       Alignment = II->getValue();
1161     } else {
1162       PrintFatalError("'address' alignment argument should be an integer");
1163     }
1164     return std::make_shared<AddressResult>(Arg, Alignment);
1165   } else if (Op->getName() == "unsignedflag") {
1166     if (D->getNumArgs() != 1)
1167       PrintFatalError("unsignedflag should have exactly one argument");
1168     Record *TypeRec = cast<DefInit>(D->getArg(0))->getDef();
1169     if (!TypeRec->isSubClassOf("Type"))
1170       PrintFatalError("unsignedflag's argument should be a type");
1171     if (const auto *ST = dyn_cast<ScalarType>(getType(TypeRec, Param))) {
1172       return std::make_shared<IntLiteralResult>(
1173         getScalarType("u32"), ST->kind() == ScalarTypeKind::UnsignedInt);
1174     } else {
1175       PrintFatalError("unsignedflag's argument should be a scalar type");
1176     }
1177   } else {
1178     std::vector<Result::Ptr> Args;
1179     for (unsigned i = 0, e = D->getNumArgs(); i < e; ++i)
1180       Args.push_back(getCodeForDagArg(D, i, Scope, Param));
1181     if (Op->isSubClassOf("IRBuilderBase")) {
1182       std::set<unsigned> AddressArgs;
1183       std::map<unsigned, std::string> IntegerArgs;
1184       for (Record *sp : Op->getValueAsListOfDefs("special_params")) {
1185         unsigned Index = sp->getValueAsInt("index");
1186         if (sp->isSubClassOf("IRBuilderAddrParam")) {
1187           AddressArgs.insert(Index);
1188         } else if (sp->isSubClassOf("IRBuilderIntParam")) {
1189           IntegerArgs[Index] = sp->getValueAsString("type");
1190         }
1191       }
1192       return std::make_shared<IRBuilderResult>(Op->getValueAsString("prefix"),
1193                                                Args, AddressArgs, IntegerArgs);
1194     } else if (Op->isSubClassOf("IRIntBase")) {
1195       std::vector<const Type *> ParamTypes;
1196       for (Record *RParam : Op->getValueAsListOfDefs("params"))
1197         ParamTypes.push_back(getType(RParam, Param));
1198       std::string IntName = Op->getValueAsString("intname");
1199       if (Op->getValueAsBit("appendKind"))
1200         IntName += "_" + toLetter(cast<ScalarType>(Param)->kind());
1201       return std::make_shared<IRIntrinsicResult>(IntName, ParamTypes, Args);
1202     } else {
1203       PrintFatalError("Unsupported dag node " + Op->getName());
1204     }
1205   }
1206 }
1207 
1208 Result::Ptr MveEmitter::getCodeForDagArg(DagInit *D, unsigned ArgNum,
1209                                          const Result::Scope &Scope,
1210                                          const Type *Param) {
1211   Init *Arg = D->getArg(ArgNum);
1212   StringRef Name = D->getArgNameStr(ArgNum);
1213 
1214   if (!Name.empty()) {
1215     if (!isa<UnsetInit>(Arg))
1216       PrintFatalError(
1217           "dag operator argument should not have both a value and a name");
1218     auto it = Scope.find(Name);
1219     if (it == Scope.end())
1220       PrintFatalError("unrecognized variable name '" + Name + "'");
1221     return it->second;
1222   }
1223 
1224   if (auto *II = dyn_cast<IntInit>(Arg))
1225     return std::make_shared<IntLiteralResult>(getScalarType("u32"),
1226                                               II->getValue());
1227 
1228   if (auto *DI = dyn_cast<DagInit>(Arg))
1229     return getCodeForDag(DI, Scope, Param);
1230 
1231   if (auto *DI = dyn_cast<DefInit>(Arg)) {
1232     Record *Rec = DI->getDef();
1233     if (Rec->isSubClassOf("Type")) {
1234       const Type *T = getType(Rec, Param);
1235       return std::make_shared<TypeResult>(T);
1236     }
1237   }
1238 
1239   PrintFatalError("bad dag argument type for code generation");
1240 }
1241 
1242 Result::Ptr MveEmitter::getCodeForArg(unsigned ArgNum, const Type *ArgType,
1243                                       bool Promote, bool Immediate) {
1244   Result::Ptr V = std::make_shared<BuiltinArgResult>(
1245       ArgNum, isa<PointerType>(ArgType), Immediate);
1246 
1247   if (Promote) {
1248     if (const auto *ST = dyn_cast<ScalarType>(ArgType)) {
1249       if (ST->isInteger() && ST->sizeInBits() < 32)
1250         V = std::make_shared<IntCastResult>(getScalarType("u32"), V);
1251     } else if (const auto *PT = dyn_cast<PredicateType>(ArgType)) {
1252       V = std::make_shared<IntCastResult>(getScalarType("u32"), V);
1253       V = std::make_shared<IRIntrinsicResult>("arm_mve_pred_i2v",
1254                                               std::vector<const Type *>{PT},
1255                                               std::vector<Result::Ptr>{V});
1256     }
1257   }
1258 
1259   return V;
1260 }
1261 
1262 ACLEIntrinsic::ACLEIntrinsic(MveEmitter &ME, Record *R, const Type *Param)
1263     : ReturnType(ME.getType(R->getValueAsDef("ret"), Param)) {
1264   // Derive the intrinsic's full name, by taking the name of the
1265   // Tablegen record (or override) and appending the suffix from its
1266   // parameter type. (If the intrinsic is unparametrised, its
1267   // parameter type will be given as Void, which returns the empty
1268   // string for acleSuffix.)
1269   StringRef BaseName =
1270       (R->isSubClassOf("NameOverride") ? R->getValueAsString("basename")
1271                                        : R->getName());
1272   StringRef overrideLetter = R->getValueAsString("overrideKindLetter");
1273   FullName = (Twine(BaseName) + Param->acleSuffix(overrideLetter)).str();
1274 
1275   // Derive the intrinsic's polymorphic name, by removing components from the
1276   // full name as specified by its 'pnt' member ('polymorphic name type'),
1277   // which indicates how many type suffixes to remove, and any other piece of
1278   // the name that should be removed.
1279   Record *PolymorphicNameType = R->getValueAsDef("pnt");
1280   SmallVector<StringRef, 8> NameParts;
1281   StringRef(FullName).split(NameParts, '_');
1282   for (unsigned i = 0, e = PolymorphicNameType->getValueAsInt(
1283                            "NumTypeSuffixesToDiscard");
1284        i < e; ++i)
1285     NameParts.pop_back();
1286   if (!PolymorphicNameType->isValueUnset("ExtraSuffixToDiscard")) {
1287     StringRef ExtraSuffix =
1288         PolymorphicNameType->getValueAsString("ExtraSuffixToDiscard");
1289     auto it = NameParts.end();
1290     while (it != NameParts.begin()) {
1291       --it;
1292       if (*it == ExtraSuffix) {
1293         NameParts.erase(it);
1294         break;
1295       }
1296     }
1297   }
1298   ShortName = join(std::begin(NameParts), std::end(NameParts), "_");
1299 
1300   PolymorphicOnly = R->getValueAsBit("polymorphicOnly");
1301   NonEvaluating = R->getValueAsBit("nonEvaluating");
1302 
1303   // Process the intrinsic's argument list.
1304   DagInit *ArgsDag = R->getValueAsDag("args");
1305   Result::Scope Scope;
1306   for (unsigned i = 0, e = ArgsDag->getNumArgs(); i < e; ++i) {
1307     Init *TypeInit = ArgsDag->getArg(i);
1308 
1309     bool Promote = true;
1310     if (auto TypeDI = dyn_cast<DefInit>(TypeInit))
1311       if (TypeDI->getDef()->isSubClassOf("unpromoted"))
1312         Promote = false;
1313 
1314     // Work out the type of the argument, for use in the function prototype in
1315     // the header file.
1316     const Type *ArgType = ME.getType(TypeInit, Param);
1317     ArgTypes.push_back(ArgType);
1318 
1319     // If the argument is a subclass of Immediate, record the details about
1320     // what values it can take, for Sema checking.
1321     bool Immediate = false;
1322     if (auto TypeDI = dyn_cast<DefInit>(TypeInit)) {
1323       Record *TypeRec = TypeDI->getDef();
1324       if (TypeRec->isSubClassOf("Immediate")) {
1325         Immediate = true;
1326 
1327         Record *Bounds = TypeRec->getValueAsDef("bounds");
1328         ImmediateArg &IA = ImmediateArgs[i];
1329         if (Bounds->isSubClassOf("IB_ConstRange")) {
1330           IA.boundsType = ImmediateArg::BoundsType::ExplicitRange;
1331           IA.i1 = Bounds->getValueAsInt("lo");
1332           IA.i2 = Bounds->getValueAsInt("hi");
1333         } else if (Bounds->getName() == "IB_UEltValue") {
1334           IA.boundsType = ImmediateArg::BoundsType::UInt;
1335           IA.i1 = Param->sizeInBits();
1336         } else if (Bounds->getName() == "IB_LaneIndex") {
1337           IA.boundsType = ImmediateArg::BoundsType::ExplicitRange;
1338           IA.i1 = 0;
1339           IA.i2 = 128 / Param->sizeInBits() - 1;
1340         } else if (Bounds->isSubClassOf("IB_EltBit")) {
1341           IA.boundsType = ImmediateArg::BoundsType::ExplicitRange;
1342           IA.i1 = Bounds->getValueAsInt("base");
1343           const Type *T = ME.getType(Bounds->getValueAsDef("type"), Param);
1344           IA.i2 = IA.i1 + T->sizeInBits() - 1;
1345         } else {
1346           PrintFatalError("unrecognised ImmediateBounds subclass");
1347         }
1348 
1349         IA.ArgType = ArgType;
1350 
1351         if (!TypeRec->isValueUnset("extra")) {
1352           IA.ExtraCheckType = TypeRec->getValueAsString("extra");
1353           if (!TypeRec->isValueUnset("extraarg"))
1354             IA.ExtraCheckArgs = TypeRec->getValueAsString("extraarg");
1355         }
1356       }
1357     }
1358 
1359     // The argument will usually have a name in the arguments dag, which goes
1360     // into the variable-name scope that the code gen will refer to.
1361     StringRef ArgName = ArgsDag->getArgNameStr(i);
1362     if (!ArgName.empty())
1363       Scope[ArgName] = ME.getCodeForArg(i, ArgType, Promote, Immediate);
1364   }
1365 
1366   // Finally, go through the codegen dag and translate it into a Result object
1367   // (with an arbitrary DAG of depended-on Results hanging off it).
1368   DagInit *CodeDag = R->getValueAsDag("codegen");
1369   Record *MainOp = cast<DefInit>(CodeDag->getOperator())->getDef();
1370   if (MainOp->isSubClassOf("CustomCodegen")) {
1371     // Or, if it's the special case of CustomCodegen, just accumulate
1372     // a list of parameters we're going to assign to variables before
1373     // breaking from the loop.
1374     CustomCodeGenArgs["CustomCodeGenType"] =
1375         (Twine("CustomCodeGen::") + MainOp->getValueAsString("type")).str();
1376     for (unsigned i = 0, e = CodeDag->getNumArgs(); i < e; ++i) {
1377       StringRef Name = CodeDag->getArgNameStr(i);
1378       if (Name.empty()) {
1379         PrintFatalError("Operands to CustomCodegen should have names");
1380       } else if (auto *II = dyn_cast<IntInit>(CodeDag->getArg(i))) {
1381         CustomCodeGenArgs[Name] = itostr(II->getValue());
1382       } else if (auto *SI = dyn_cast<StringInit>(CodeDag->getArg(i))) {
1383         CustomCodeGenArgs[Name] = SI->getValue();
1384       } else {
1385         PrintFatalError("Operands to CustomCodegen should be integers");
1386       }
1387     }
1388   } else {
1389     Code = ME.getCodeForDag(CodeDag, Scope, Param);
1390   }
1391 }
1392 
1393 MveEmitter::MveEmitter(RecordKeeper &Records) {
1394   // Construct the whole MveEmitter.
1395 
1396   // First, look up all the instances of PrimitiveType. This gives us the list
1397   // of vector typedefs we have to put in arm_mve.h, and also allows us to
1398   // collect all the useful ScalarType instances into a big list so that we can
1399   // use it for operations such as 'find the unsigned version of this signed
1400   // integer type'.
1401   for (Record *R : Records.getAllDerivedDefinitions("PrimitiveType"))
1402     ScalarTypes[R->getName()] = std::make_unique<ScalarType>(R);
1403 
1404   // Now go through the instances of Intrinsic, and for each one, iterate
1405   // through its list of type parameters making an ACLEIntrinsic for each one.
1406   for (Record *R : Records.getAllDerivedDefinitions("Intrinsic")) {
1407     for (Record *RParam : R->getValueAsListOfDefs("params")) {
1408       const Type *Param = getType(RParam, getVoidType());
1409       auto Intrinsic = std::make_unique<ACLEIntrinsic>(*this, R, Param);
1410       ACLEIntrinsics[Intrinsic->fullName()] = std::move(Intrinsic);
1411     }
1412   }
1413 }
1414 
1415 /// A wrapper on raw_string_ostream that contains its own buffer rather than
1416 /// having to point it at one elsewhere. (In other words, it works just like
1417 /// std::ostringstream; also, this makes it convenient to declare a whole array
1418 /// of them at once.)
1419 ///
1420 /// We have to set this up using multiple inheritance, to ensure that the
1421 /// string member has been constructed before raw_string_ostream's constructor
1422 /// is given a pointer to it.
1423 class string_holder {
1424 protected:
1425   std::string S;
1426 };
1427 class raw_self_contained_string_ostream : private string_holder,
1428                                           public raw_string_ostream {
1429 public:
1430   raw_self_contained_string_ostream()
1431       : string_holder(), raw_string_ostream(S) {}
1432 };
1433 
1434 void MveEmitter::EmitHeader(raw_ostream &OS) {
1435   // Accumulate pieces of the header file that will be enabled under various
1436   // different combinations of #ifdef. The index into parts[] is made up of
1437   // the following bit flags.
1438   constexpr unsigned Float = 1;
1439   constexpr unsigned UseUserNamespace = 2;
1440 
1441   constexpr unsigned NumParts = 4;
1442   raw_self_contained_string_ostream parts[NumParts];
1443 
1444   // Write typedefs for all the required vector types, and a few scalar
1445   // types that don't already have the name we want them to have.
1446 
1447   parts[0] << "typedef uint16_t mve_pred16_t;\n";
1448   parts[Float] << "typedef __fp16 float16_t;\n"
1449                   "typedef float float32_t;\n";
1450   for (const auto &kv : ScalarTypes) {
1451     const ScalarType *ST = kv.second.get();
1452     if (ST->hasNonstandardName())
1453       continue;
1454     raw_ostream &OS = parts[ST->requiresFloat() ? Float : 0];
1455     const VectorType *VT = getVectorType(ST);
1456 
1457     OS << "typedef __attribute__((neon_vector_type(" << VT->lanes() << "))) "
1458        << ST->cName() << " " << VT->cName() << ";\n";
1459 
1460     // Every vector type also comes with a pair of multi-vector types for
1461     // the VLD2 and VLD4 instructions.
1462     for (unsigned n = 2; n <= 4; n += 2) {
1463       const MultiVectorType *MT = getMultiVectorType(n, VT);
1464       OS << "typedef struct { " << VT->cName() << " val[" << n << "]; } "
1465          << MT->cName() << ";\n";
1466     }
1467   }
1468   parts[0] << "\n";
1469   parts[Float] << "\n";
1470 
1471   // Write declarations for all the intrinsics.
1472 
1473   for (const auto &kv : ACLEIntrinsics) {
1474     const ACLEIntrinsic &Int = *kv.second;
1475 
1476     // We generate each intrinsic twice, under its full unambiguous
1477     // name and its shorter polymorphic name (if the latter exists).
1478     for (bool Polymorphic : {false, true}) {
1479       if (Polymorphic && !Int.polymorphic())
1480         continue;
1481       if (!Polymorphic && Int.polymorphicOnly())
1482         continue;
1483 
1484       // We also generate each intrinsic under a name like __arm_vfooq
1485       // (which is in C language implementation namespace, so it's
1486       // safe to define in any conforming user program) and a shorter
1487       // one like vfooq (which is in user namespace, so a user might
1488       // reasonably have used it for something already). If so, they
1489       // can #define __ARM_MVE_PRESERVE_USER_NAMESPACE before
1490       // including the header, which will suppress the shorter names
1491       // and leave only the implementation-namespace ones. Then they
1492       // have to write __arm_vfooq everywhere, of course.
1493 
1494       for (bool UserNamespace : {false, true}) {
1495         raw_ostream &OS = parts[(Int.requiresFloat() ? Float : 0) |
1496                                 (UserNamespace ? UseUserNamespace : 0)];
1497 
1498         // Make the name of the function in this declaration.
1499 
1500         std::string FunctionName =
1501             Polymorphic ? Int.shortName() : Int.fullName();
1502         if (!UserNamespace)
1503           FunctionName = "__arm_" + FunctionName;
1504 
1505         // Make strings for the types involved in the function's
1506         // prototype.
1507 
1508         std::string RetTypeName = Int.returnType()->cName();
1509         if (!StringRef(RetTypeName).endswith("*"))
1510           RetTypeName += " ";
1511 
1512         std::vector<std::string> ArgTypeNames;
1513         for (const Type *ArgTypePtr : Int.argTypes())
1514           ArgTypeNames.push_back(ArgTypePtr->cName());
1515         std::string ArgTypesString =
1516             join(std::begin(ArgTypeNames), std::end(ArgTypeNames), ", ");
1517 
1518         // Emit the actual declaration. All these functions are
1519         // declared 'static inline' without a body, which is fine
1520         // provided clang recognizes them as builtins, and has the
1521         // effect that this type signature is used in place of the one
1522         // that Builtins.def didn't provide. That's how we can get
1523         // structure types that weren't defined until this header was
1524         // included to be part of the type signature of a builtin that
1525         // was known to clang already.
1526         //
1527         // The declarations use __attribute__(__clang_arm_mve_alias),
1528         // so that each function declared will be recognized as the
1529         // appropriate MVE builtin in spite of its user-facing name.
1530         //
1531         // (That's better than making them all wrapper functions,
1532         // partly because it avoids any compiler error message citing
1533         // the wrapper function definition instead of the user's code,
1534         // and mostly because some MVE intrinsics have arguments
1535         // required to be compile-time constants, and that property
1536         // can't be propagated through a wrapper function. It can be
1537         // propagated through a macro, but macros can't be overloaded
1538         // on argument types very easily - you have to use _Generic,
1539         // which makes error messages very confusing when the user
1540         // gets it wrong.)
1541         //
1542         // Finally, the polymorphic versions of the intrinsics are
1543         // also defined with __attribute__(overloadable), so that when
1544         // the same name is defined with several type signatures, the
1545         // right thing happens. Each one of the overloaded
1546         // declarations is given a different builtin id, which
1547         // has exactly the effect we want: first clang resolves the
1548         // overload to the right function, then it knows which builtin
1549         // it's referring to, and then the Sema checking for that
1550         // builtin can check further things like the constant
1551         // arguments.
1552         //
1553         // One more subtlety is the newline just before the return
1554         // type name. That's a cosmetic tweak to make the error
1555         // messages legible if the user gets the types wrong in a call
1556         // to a polymorphic function: this way, clang will print just
1557         // the _final_ line of each declaration in the header, to show
1558         // the type signatures that would have been legal. So all the
1559         // confusing machinery with __attribute__ is left out of the
1560         // error message, and the user sees something that's more or
1561         // less self-documenting: "here's a list of actually readable
1562         // type signatures for vfooq(), and here's why each one didn't
1563         // match your call".
1564 
1565         OS << "static __inline__ __attribute__(("
1566            << (Polymorphic ? "overloadable, " : "")
1567            << "__clang_arm_mve_alias(__builtin_arm_mve_" << Int.fullName()
1568            << ")))\n"
1569            << RetTypeName << FunctionName << "(" << ArgTypesString << ");\n";
1570       }
1571     }
1572   }
1573   for (auto &part : parts)
1574     part << "\n";
1575 
1576   // Now we've finished accumulating bits and pieces into the parts[] array.
1577   // Put it all together to write the final output file.
1578 
1579   OS << "/*===---- arm_mve.h - ARM MVE intrinsics "
1580         "-----------------------------------===\n"
1581         " *\n"
1582         " *\n"
1583         " * Part of the LLVM Project, under the Apache License v2.0 with LLVM "
1584         "Exceptions.\n"
1585         " * See https://llvm.org/LICENSE.txt for license information.\n"
1586         " * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception\n"
1587         " *\n"
1588         " *===-------------------------------------------------------------"
1589         "----"
1590         "------===\n"
1591         " */\n"
1592         "\n"
1593         "#ifndef __ARM_MVE_H\n"
1594         "#define __ARM_MVE_H\n"
1595         "\n"
1596         "#if !__ARM_FEATURE_MVE\n"
1597         "#error \"MVE support not enabled\"\n"
1598         "#endif\n"
1599         "\n"
1600         "#include <stdint.h>\n"
1601         "\n";
1602 
1603   for (size_t i = 0; i < NumParts; ++i) {
1604     std::vector<std::string> conditions;
1605     if (i & Float)
1606       conditions.push_back("(__ARM_FEATURE_MVE & 2)");
1607     if (i & UseUserNamespace)
1608       conditions.push_back("(!defined __ARM_MVE_PRESERVE_USER_NAMESPACE)");
1609 
1610     std::string condition =
1611         join(std::begin(conditions), std::end(conditions), " && ");
1612     if (!condition.empty())
1613       OS << "#if " << condition << "\n\n";
1614     OS << parts[i].str();
1615     if (!condition.empty())
1616       OS << "#endif /* " << condition << " */\n\n";
1617   }
1618 
1619   OS << "#endif /* __ARM_MVE_H */\n";
1620 }
1621 
1622 void MveEmitter::EmitBuiltinDef(raw_ostream &OS) {
1623   for (const auto &kv : ACLEIntrinsics) {
1624     const ACLEIntrinsic &Int = *kv.second;
1625     OS << "TARGET_HEADER_BUILTIN(__builtin_arm_mve_" << Int.fullName()
1626        << ", \"\", \"n\", \"arm_mve.h\", ALL_LANGUAGES, \"\")\n";
1627   }
1628 
1629   std::set<std::string> ShortNamesSeen;
1630 
1631   for (const auto &kv : ACLEIntrinsics) {
1632     const ACLEIntrinsic &Int = *kv.second;
1633     if (Int.polymorphic()) {
1634       StringRef Name = Int.shortName();
1635       if (ShortNamesSeen.find(Name) == ShortNamesSeen.end()) {
1636         OS << "BUILTIN(__builtin_arm_mve_" << Name << ", \"vi.\", \"nt";
1637         if (Int.nonEvaluating())
1638           OS << "u"; // indicate that this builtin doesn't evaluate its args
1639         OS << "\")\n";
1640         ShortNamesSeen.insert(Name);
1641       }
1642     }
1643   }
1644 }
1645 
1646 void MveEmitter::EmitBuiltinSema(raw_ostream &OS) {
1647   std::map<std::string, std::set<std::string>> Checks;
1648 
1649   for (const auto &kv : ACLEIntrinsics) {
1650     const ACLEIntrinsic &Int = *kv.second;
1651     std::string Check = Int.genSema();
1652     if (!Check.empty())
1653       Checks[Check].insert(Int.fullName());
1654   }
1655 
1656   for (const auto &kv : Checks) {
1657     for (StringRef Name : kv.second)
1658       OS << "case ARM::BI__builtin_arm_mve_" << Name << ":\n";
1659     OS << kv.first;
1660   }
1661 }
1662 
1663 // Machinery for the grouping of intrinsics by similar codegen.
1664 //
1665 // The general setup is that 'MergeableGroup' stores the things that a set of
1666 // similarly shaped intrinsics have in common: the text of their code
1667 // generation, and the number and type of their parameter variables.
1668 // MergeableGroup is the key in a std::map whose value is a set of
1669 // OutputIntrinsic, which stores the ways in which a particular intrinsic
1670 // specializes the MergeableGroup's generic description: the function name and
1671 // the _values_ of the parameter variables.
1672 
1673 struct ComparableStringVector : std::vector<std::string> {
1674   // Infrastructure: a derived class of vector<string> which comes with an
1675   // ordering, so that it can be used as a key in maps and an element in sets.
1676   // There's no requirement on the ordering beyond being deterministic.
1677   bool operator<(const ComparableStringVector &rhs) const {
1678     if (size() != rhs.size())
1679       return size() < rhs.size();
1680     for (size_t i = 0, e = size(); i < e; ++i)
1681       if ((*this)[i] != rhs[i])
1682         return (*this)[i] < rhs[i];
1683     return false;
1684   }
1685 };
1686 
1687 struct OutputIntrinsic {
1688   const ACLEIntrinsic *Int;
1689   std::string Name;
1690   ComparableStringVector ParamValues;
1691   bool operator<(const OutputIntrinsic &rhs) const {
1692     if (Name != rhs.Name)
1693       return Name < rhs.Name;
1694     return ParamValues < rhs.ParamValues;
1695   }
1696 };
1697 struct MergeableGroup {
1698   std::string Code;
1699   ComparableStringVector ParamTypes;
1700   bool operator<(const MergeableGroup &rhs) const {
1701     if (Code != rhs.Code)
1702       return Code < rhs.Code;
1703     return ParamTypes < rhs.ParamTypes;
1704   }
1705 };
1706 
1707 void MveEmitter::EmitBuiltinCG(raw_ostream &OS) {
1708   // Pass 1: generate code for all the intrinsics as if every type or constant
1709   // that can possibly be abstracted out into a parameter variable will be.
1710   // This identifies the sets of intrinsics we'll group together into a single
1711   // piece of code generation.
1712 
1713   std::map<MergeableGroup, std::set<OutputIntrinsic>> MergeableGroupsPrelim;
1714 
1715   for (const auto &kv : ACLEIntrinsics) {
1716     const ACLEIntrinsic &Int = *kv.second;
1717 
1718     MergeableGroup MG;
1719     OutputIntrinsic OI;
1720 
1721     OI.Int = &Int;
1722     OI.Name = Int.fullName();
1723     CodeGenParamAllocator ParamAllocPrelim{&MG.ParamTypes, &OI.ParamValues};
1724     raw_string_ostream OS(MG.Code);
1725     Int.genCode(OS, ParamAllocPrelim, 1);
1726     OS.flush();
1727 
1728     MergeableGroupsPrelim[MG].insert(OI);
1729   }
1730 
1731   // Pass 2: for each of those groups, optimize the parameter variable set by
1732   // eliminating 'parameters' that are the same for all intrinsics in the
1733   // group, and merging together pairs of parameter variables that take the
1734   // same values as each other for all intrinsics in the group.
1735 
1736   std::map<MergeableGroup, std::set<OutputIntrinsic>> MergeableGroups;
1737 
1738   for (const auto &kv : MergeableGroupsPrelim) {
1739     const MergeableGroup &MG = kv.first;
1740     std::vector<int> ParamNumbers;
1741     std::map<ComparableStringVector, int> ParamNumberMap;
1742 
1743     // Loop over the parameters for this group.
1744     for (size_t i = 0, e = MG.ParamTypes.size(); i < e; ++i) {
1745       // Is this parameter the same for all intrinsics in the group?
1746       const OutputIntrinsic &OI_first = *kv.second.begin();
1747       bool Constant = all_of(kv.second, [&](const OutputIntrinsic &OI) {
1748         return OI.ParamValues[i] == OI_first.ParamValues[i];
1749       });
1750 
1751       // If so, record it as -1, meaning 'no parameter variable needed'. Then
1752       // the corresponding call to allocParam in pass 2 will not generate a
1753       // variable at all, and just use the value inline.
1754       if (Constant) {
1755         ParamNumbers.push_back(-1);
1756         continue;
1757       }
1758 
1759       // Otherwise, make a list of the values this parameter takes for each
1760       // intrinsic, and see if that value vector matches anything we already
1761       // have. We also record the parameter type, so that we don't accidentally
1762       // match up two parameter variables with different types. (Not that
1763       // there's much chance of them having textually equivalent values, but in
1764       // _principle_ it could happen.)
1765       ComparableStringVector key;
1766       key.push_back(MG.ParamTypes[i]);
1767       for (const auto &OI : kv.second)
1768         key.push_back(OI.ParamValues[i]);
1769 
1770       auto Found = ParamNumberMap.find(key);
1771       if (Found != ParamNumberMap.end()) {
1772         // Yes, an existing parameter variable can be reused for this.
1773         ParamNumbers.push_back(Found->second);
1774         continue;
1775       }
1776 
1777       // No, we need a new parameter variable.
1778       int ExistingIndex = ParamNumberMap.size();
1779       ParamNumberMap[key] = ExistingIndex;
1780       ParamNumbers.push_back(ExistingIndex);
1781     }
1782 
1783     // Now we're ready to do the pass 2 code generation, which will emit the
1784     // reduced set of parameter variables we've just worked out.
1785 
1786     for (const auto &OI_prelim : kv.second) {
1787       const ACLEIntrinsic *Int = OI_prelim.Int;
1788 
1789       MergeableGroup MG;
1790       OutputIntrinsic OI;
1791 
1792       OI.Int = OI_prelim.Int;
1793       OI.Name = OI_prelim.Name;
1794       CodeGenParamAllocator ParamAlloc{&MG.ParamTypes, &OI.ParamValues,
1795                                        &ParamNumbers};
1796       raw_string_ostream OS(MG.Code);
1797       Int->genCode(OS, ParamAlloc, 2);
1798       OS.flush();
1799 
1800       MergeableGroups[MG].insert(OI);
1801     }
1802   }
1803 
1804   // Output the actual C++ code.
1805 
1806   for (const auto &kv : MergeableGroups) {
1807     const MergeableGroup &MG = kv.first;
1808 
1809     // List of case statements in the main switch on BuiltinID, and an open
1810     // brace.
1811     const char *prefix = "";
1812     for (const auto &OI : kv.second) {
1813       OS << prefix << "case ARM::BI__builtin_arm_mve_" << OI.Name << ":";
1814       prefix = "\n";
1815     }
1816     OS << " {\n";
1817 
1818     if (!MG.ParamTypes.empty()) {
1819       // If we've got some parameter variables, then emit their declarations...
1820       for (size_t i = 0, e = MG.ParamTypes.size(); i < e; ++i) {
1821         StringRef Type = MG.ParamTypes[i];
1822         OS << "  " << Type;
1823         if (!Type.endswith("*"))
1824           OS << " ";
1825         OS << " Param" << utostr(i) << ";\n";
1826       }
1827 
1828       // ... and an inner switch on BuiltinID that will fill them in with each
1829       // individual intrinsic's values.
1830       OS << "  switch (BuiltinID) {\n";
1831       for (const auto &OI : kv.second) {
1832         OS << "  case ARM::BI__builtin_arm_mve_" << OI.Name << ":\n";
1833         for (size_t i = 0, e = MG.ParamTypes.size(); i < e; ++i)
1834           OS << "    Param" << utostr(i) << " = " << OI.ParamValues[i] << ";\n";
1835         OS << "    break;\n";
1836       }
1837       OS << "  }\n";
1838     }
1839 
1840     // And finally, output the code, and close the outer pair of braces. (The
1841     // code will always end with a 'return' statement, so we need not insert a
1842     // 'break' here.)
1843     OS << MG.Code << "}\n";
1844   }
1845 }
1846 
1847 void MveEmitter::EmitBuiltinAliases(raw_ostream &OS) {
1848   for (const auto &kv : ACLEIntrinsics) {
1849     const ACLEIntrinsic &Int = *kv.second;
1850     OS << "case ARM::BI__builtin_arm_mve_" << Int.fullName() << ":\n"
1851        << "  return AliasName == \"" << Int.fullName() << "\"";
1852     if (Int.polymorphic())
1853       OS << " || AliasName == \"" << Int.shortName() << "\"";
1854     OS << ";\n";
1855   }
1856 }
1857 
1858 } // namespace
1859 
1860 namespace clang {
1861 
1862 void EmitMveHeader(RecordKeeper &Records, raw_ostream &OS) {
1863   MveEmitter(Records).EmitHeader(OS);
1864 }
1865 
1866 void EmitMveBuiltinDef(RecordKeeper &Records, raw_ostream &OS) {
1867   MveEmitter(Records).EmitBuiltinDef(OS);
1868 }
1869 
1870 void EmitMveBuiltinSema(RecordKeeper &Records, raw_ostream &OS) {
1871   MveEmitter(Records).EmitBuiltinSema(OS);
1872 }
1873 
1874 void EmitMveBuiltinCG(RecordKeeper &Records, raw_ostream &OS) {
1875   MveEmitter(Records).EmitBuiltinCG(OS);
1876 }
1877 
1878 void EmitMveBuiltinAliases(RecordKeeper &Records, raw_ostream &OS) {
1879   MveEmitter(Records).EmitBuiltinAliases(OS);
1880 }
1881 
1882 } // end namespace clang
1883