1 //===- MveEmitter.cpp - Generate arm_mve.h for use with clang -*- C++ -*-=====// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This set of linked tablegen backends is responsible for emitting the bits 10 // and pieces that implement <arm_mve.h>, which is defined by the ACLE standard 11 // and provides a set of types and functions for (more or less) direct access 12 // to the MVE instruction set, including the scalar shifts as well as the 13 // vector instructions. 14 // 15 // MVE's standard intrinsic functions are unusual in that they have a system of 16 // polymorphism. For example, the function vaddq() can behave like vaddq_u16(), 17 // vaddq_f32(), vaddq_s8(), etc., depending on the types of the vector 18 // arguments you give it. 19 // 20 // This constrains the implementation strategies. The usual approach to making 21 // the user-facing functions polymorphic would be to either use 22 // __attribute__((overloadable)) to make a set of vaddq() functions that are 23 // all inline wrappers on the underlying clang builtins, or to define a single 24 // vaddq() macro which expands to an instance of _Generic. 25 // 26 // The inline-wrappers approach would work fine for most intrinsics, except for 27 // the ones that take an argument required to be a compile-time constant, 28 // because if you wrap an inline function around a call to a builtin, the 29 // constant nature of the argument is not passed through. 30 // 31 // The _Generic approach can be made to work with enough effort, but it takes a 32 // lot of machinery, because of the design feature of _Generic that even the 33 // untaken branches are required to pass all front-end validity checks such as 34 // type-correctness. You can work around that by nesting further _Generics all 35 // over the place to coerce things to the right type in untaken branches, but 36 // what you get out is complicated, hard to guarantee its correctness, and 37 // worst of all, gives _completely unreadable_ error messages if the user gets 38 // the types wrong for an intrinsic call. 39 // 40 // Therefore, my strategy is to introduce a new __attribute__ that allows a 41 // function to be mapped to a clang builtin even though it doesn't have the 42 // same name, and then declare all the user-facing MVE function names with that 43 // attribute, mapping each one directly to the clang builtin. And the 44 // polymorphic ones have __attribute__((overloadable)) as well. So once the 45 // compiler has resolved the overload, it knows the internal builtin ID of the 46 // selected function, and can check the immediate arguments against that; and 47 // if the user gets the types wrong in a call to a polymorphic intrinsic, they 48 // get a completely clear error message showing all the declarations of that 49 // function in the header file and explaining why each one doesn't fit their 50 // call. 51 // 52 // The downside of this is that if every clang builtin has to correspond 53 // exactly to a user-facing ACLE intrinsic, then you can't save work in the 54 // frontend by doing it in the header file: CGBuiltin.cpp has to do the entire 55 // job of converting an ACLE intrinsic call into LLVM IR. So the Tablegen 56 // description for an MVE intrinsic has to contain a full description of the 57 // sequence of IRBuilder calls that clang will need to make. 58 // 59 //===----------------------------------------------------------------------===// 60 61 #include "llvm/ADT/APInt.h" 62 #include "llvm/ADT/StringRef.h" 63 #include "llvm/ADT/StringSwitch.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/raw_ostream.h" 66 #include "llvm/TableGen/Error.h" 67 #include "llvm/TableGen/Record.h" 68 #include "llvm/TableGen/StringToOffsetTable.h" 69 #include <cassert> 70 #include <cstddef> 71 #include <cstdint> 72 #include <list> 73 #include <map> 74 #include <memory> 75 #include <set> 76 #include <string> 77 #include <vector> 78 79 using namespace llvm; 80 81 namespace { 82 83 class EmitterBase; 84 class Result; 85 86 // ----------------------------------------------------------------------------- 87 // A system of classes to represent all the types we'll need to deal with in 88 // the prototypes of intrinsics. 89 // 90 // Query methods include finding out the C name of a type; the "LLVM name" in 91 // the sense of a C++ code snippet that can be used in the codegen function; 92 // the suffix that represents the type in the ACLE intrinsic naming scheme 93 // (e.g. 's32' represents int32_t in intrinsics such as vaddq_s32); whether the 94 // type is floating-point related (hence should be under #ifdef in the MVE 95 // header so that it isn't included in integer-only MVE mode); and the type's 96 // size in bits. Not all subtypes support all these queries. 97 98 class Type { 99 public: 100 enum class TypeKind { 101 // Void appears as a return type (for store intrinsics, which are pure 102 // side-effect). It's also used as the parameter type in the Tablegen 103 // when an intrinsic doesn't need to come in various suffixed forms like 104 // vfooq_s8,vfooq_u16,vfooq_f32. 105 Void, 106 107 // Scalar is used for ordinary int and float types of all sizes. 108 Scalar, 109 110 // Vector is used for anything that occupies exactly one MVE vector 111 // register, i.e. {uint,int,float}NxM_t. 112 Vector, 113 114 // MultiVector is used for the {uint,int,float}NxMxK_t types used by the 115 // interleaving load/store intrinsics v{ld,st}{2,4}q. 116 MultiVector, 117 118 // Predicate is used by all the predicated intrinsics. Its C 119 // representation is mve_pred16_t (which is just an alias for uint16_t). 120 // But we give more detail here, by indicating that a given predicate 121 // instruction is logically regarded as a vector of i1 containing the 122 // same number of lanes as the input vector type. So our Predicate type 123 // comes with a lane count, which we use to decide which kind of <n x i1> 124 // we'll invoke the pred_i2v IR intrinsic to translate it into. 125 Predicate, 126 127 // Pointer is used for pointer types (obviously), and comes with a flag 128 // indicating whether it's a pointer to a const or mutable instance of 129 // the pointee type. 130 Pointer, 131 }; 132 133 private: 134 const TypeKind TKind; 135 136 protected: 137 Type(TypeKind K) : TKind(K) {} 138 139 public: 140 TypeKind typeKind() const { return TKind; } 141 virtual ~Type() = default; 142 virtual bool requiresFloat() const = 0; 143 virtual bool requiresMVE() const = 0; 144 virtual unsigned sizeInBits() const = 0; 145 virtual std::string cName() const = 0; 146 virtual std::string llvmName() const { 147 PrintFatalError("no LLVM type name available for type " + cName()); 148 } 149 virtual std::string acleSuffix(std::string) const { 150 PrintFatalError("no ACLE suffix available for this type"); 151 } 152 }; 153 154 enum class ScalarTypeKind { SignedInt, UnsignedInt, Float }; 155 inline std::string toLetter(ScalarTypeKind kind) { 156 switch (kind) { 157 case ScalarTypeKind::SignedInt: 158 return "s"; 159 case ScalarTypeKind::UnsignedInt: 160 return "u"; 161 case ScalarTypeKind::Float: 162 return "f"; 163 } 164 llvm_unreachable("Unhandled ScalarTypeKind enum"); 165 } 166 inline std::string toCPrefix(ScalarTypeKind kind) { 167 switch (kind) { 168 case ScalarTypeKind::SignedInt: 169 return "int"; 170 case ScalarTypeKind::UnsignedInt: 171 return "uint"; 172 case ScalarTypeKind::Float: 173 return "float"; 174 } 175 llvm_unreachable("Unhandled ScalarTypeKind enum"); 176 } 177 178 class VoidType : public Type { 179 public: 180 VoidType() : Type(TypeKind::Void) {} 181 unsigned sizeInBits() const override { return 0; } 182 bool requiresFloat() const override { return false; } 183 bool requiresMVE() const override { return false; } 184 std::string cName() const override { return "void"; } 185 186 static bool classof(const Type *T) { return T->typeKind() == TypeKind::Void; } 187 std::string acleSuffix(std::string) const override { return ""; } 188 }; 189 190 class PointerType : public Type { 191 const Type *Pointee; 192 bool Const; 193 194 public: 195 PointerType(const Type *Pointee, bool Const) 196 : Type(TypeKind::Pointer), Pointee(Pointee), Const(Const) {} 197 unsigned sizeInBits() const override { return 32; } 198 bool requiresFloat() const override { return Pointee->requiresFloat(); } 199 bool requiresMVE() const override { return Pointee->requiresMVE(); } 200 std::string cName() const override { 201 std::string Name = Pointee->cName(); 202 203 // The syntax for a pointer in C is different when the pointee is 204 // itself a pointer. The MVE intrinsics don't contain any double 205 // pointers, so we don't need to worry about that wrinkle. 206 assert(!isa<PointerType>(Pointee) && "Pointer to pointer not supported"); 207 208 if (Const) 209 Name = "const " + Name; 210 return Name + " *"; 211 } 212 std::string llvmName() const override { 213 return "llvm::PointerType::getUnqual(" + Pointee->llvmName() + ")"; 214 } 215 const Type *getPointeeType() const { return Pointee; } 216 217 static bool classof(const Type *T) { 218 return T->typeKind() == TypeKind::Pointer; 219 } 220 }; 221 222 // Base class for all the types that have a name of the form 223 // [prefix][numbers]_t, like int32_t, uint16x8_t, float32x4x2_t. 224 // 225 // For this sub-hierarchy we invent a cNameBase() method which returns the 226 // whole name except for the trailing "_t", so that Vector and MultiVector can 227 // append an extra "x2" or whatever to their element type's cNameBase(). Then 228 // the main cName() query method puts "_t" on the end for the final type name. 229 230 class CRegularNamedType : public Type { 231 using Type::Type; 232 virtual std::string cNameBase() const = 0; 233 234 public: 235 std::string cName() const override { return cNameBase() + "_t"; } 236 }; 237 238 class ScalarType : public CRegularNamedType { 239 ScalarTypeKind Kind; 240 unsigned Bits; 241 std::string NameOverride; 242 243 public: 244 ScalarType(const Record *Record) : CRegularNamedType(TypeKind::Scalar) { 245 Kind = StringSwitch<ScalarTypeKind>(Record->getValueAsString("kind")) 246 .Case("s", ScalarTypeKind::SignedInt) 247 .Case("u", ScalarTypeKind::UnsignedInt) 248 .Case("f", ScalarTypeKind::Float); 249 Bits = Record->getValueAsInt("size"); 250 NameOverride = std::string(Record->getValueAsString("nameOverride")); 251 } 252 unsigned sizeInBits() const override { return Bits; } 253 ScalarTypeKind kind() const { return Kind; } 254 std::string suffix() const { return toLetter(Kind) + utostr(Bits); } 255 std::string cNameBase() const override { 256 return toCPrefix(Kind) + utostr(Bits); 257 } 258 std::string cName() const override { 259 if (NameOverride.empty()) 260 return CRegularNamedType::cName(); 261 return NameOverride; 262 } 263 std::string llvmName() const override { 264 if (Kind == ScalarTypeKind::Float) { 265 if (Bits == 16) 266 return "HalfTy"; 267 if (Bits == 32) 268 return "FloatTy"; 269 if (Bits == 64) 270 return "DoubleTy"; 271 PrintFatalError("bad size for floating type"); 272 } 273 return "Int" + utostr(Bits) + "Ty"; 274 } 275 std::string acleSuffix(std::string overrideLetter) const override { 276 return "_" + (overrideLetter.size() ? overrideLetter : toLetter(Kind)) 277 + utostr(Bits); 278 } 279 bool isInteger() const { return Kind != ScalarTypeKind::Float; } 280 bool requiresFloat() const override { return !isInteger(); } 281 bool requiresMVE() const override { return false; } 282 bool hasNonstandardName() const { return !NameOverride.empty(); } 283 284 static bool classof(const Type *T) { 285 return T->typeKind() == TypeKind::Scalar; 286 } 287 }; 288 289 class VectorType : public CRegularNamedType { 290 const ScalarType *Element; 291 unsigned Lanes; 292 293 public: 294 VectorType(const ScalarType *Element, unsigned Lanes) 295 : CRegularNamedType(TypeKind::Vector), Element(Element), Lanes(Lanes) {} 296 unsigned sizeInBits() const override { return Lanes * Element->sizeInBits(); } 297 unsigned lanes() const { return Lanes; } 298 bool requiresFloat() const override { return Element->requiresFloat(); } 299 bool requiresMVE() const override { return true; } 300 std::string cNameBase() const override { 301 return Element->cNameBase() + "x" + utostr(Lanes); 302 } 303 std::string llvmName() const override { 304 return "llvm::FixedVectorType::get(" + Element->llvmName() + ", " + 305 utostr(Lanes) + ")"; 306 } 307 308 static bool classof(const Type *T) { 309 return T->typeKind() == TypeKind::Vector; 310 } 311 }; 312 313 class MultiVectorType : public CRegularNamedType { 314 const VectorType *Element; 315 unsigned Registers; 316 317 public: 318 MultiVectorType(unsigned Registers, const VectorType *Element) 319 : CRegularNamedType(TypeKind::MultiVector), Element(Element), 320 Registers(Registers) {} 321 unsigned sizeInBits() const override { 322 return Registers * Element->sizeInBits(); 323 } 324 unsigned registers() const { return Registers; } 325 bool requiresFloat() const override { return Element->requiresFloat(); } 326 bool requiresMVE() const override { return true; } 327 std::string cNameBase() const override { 328 return Element->cNameBase() + "x" + utostr(Registers); 329 } 330 331 // MultiVectorType doesn't override llvmName, because we don't expect to do 332 // automatic code generation for the MVE intrinsics that use it: the {vld2, 333 // vld4, vst2, vst4} family are the only ones that use these types, so it was 334 // easier to hand-write the codegen for dealing with these structs than to 335 // build in lots of extra automatic machinery that would only be used once. 336 337 static bool classof(const Type *T) { 338 return T->typeKind() == TypeKind::MultiVector; 339 } 340 }; 341 342 class PredicateType : public CRegularNamedType { 343 unsigned Lanes; 344 345 public: 346 PredicateType(unsigned Lanes) 347 : CRegularNamedType(TypeKind::Predicate), Lanes(Lanes) {} 348 unsigned sizeInBits() const override { return 16; } 349 std::string cNameBase() const override { return "mve_pred16"; } 350 bool requiresFloat() const override { return false; }; 351 bool requiresMVE() const override { return true; } 352 std::string llvmName() const override { 353 return "llvm::FixedVectorType::get(Builder.getInt1Ty(), " + utostr(Lanes) + 354 ")"; 355 } 356 357 static bool classof(const Type *T) { 358 return T->typeKind() == TypeKind::Predicate; 359 } 360 }; 361 362 // ----------------------------------------------------------------------------- 363 // Class to facilitate merging together the code generation for many intrinsics 364 // by means of varying a few constant or type parameters. 365 // 366 // Most obviously, the intrinsics in a single parametrised family will have 367 // code generation sequences that only differ in a type or two, e.g. vaddq_s8 368 // and vaddq_u16 will look the same apart from putting a different vector type 369 // in the call to CGM.getIntrinsic(). But also, completely different intrinsics 370 // will often code-generate in the same way, with only a different choice of 371 // _which_ IR intrinsic they lower to (e.g. vaddq_m_s8 and vmulq_m_s8), but 372 // marshalling the arguments and return values of the IR intrinsic in exactly 373 // the same way. And others might differ only in some other kind of constant, 374 // such as a lane index. 375 // 376 // So, when we generate the IR-building code for all these intrinsics, we keep 377 // track of every value that could possibly be pulled out of the code and 378 // stored ahead of time in a local variable. Then we group together intrinsics 379 // by textual equivalence of the code that would result if _all_ those 380 // parameters were stored in local variables. That gives us maximal sets that 381 // can be implemented by a single piece of IR-building code by changing 382 // parameter values ahead of time. 383 // 384 // After we've done that, we do a second pass in which we only allocate _some_ 385 // of the parameters into local variables, by tracking which ones have the same 386 // values as each other (so that a single variable can be reused) and which 387 // ones are the same across the whole set (so that no variable is needed at 388 // all). 389 // 390 // Hence the class below. Its allocParam method is invoked during code 391 // generation by every method of a Result subclass (see below) that wants to 392 // give it the opportunity to pull something out into a switchable parameter. 393 // It returns a variable name for the parameter, or (if it's being used in the 394 // second pass once we've decided that some parameters don't need to be stored 395 // in variables after all) it might just return the input expression unchanged. 396 397 struct CodeGenParamAllocator { 398 // Accumulated during code generation 399 std::vector<std::string> *ParamTypes = nullptr; 400 std::vector<std::string> *ParamValues = nullptr; 401 402 // Provided ahead of time in pass 2, to indicate which parameters are being 403 // assigned to what. This vector contains an entry for each call to 404 // allocParam expected during code gen (which we counted up in pass 1), and 405 // indicates the number of the parameter variable that should be returned, or 406 // -1 if this call shouldn't allocate a parameter variable at all. 407 // 408 // We rely on the recursive code generation working identically in passes 1 409 // and 2, so that the same list of calls to allocParam happen in the same 410 // order. That guarantees that the parameter numbers recorded in pass 1 will 411 // match the entries in this vector that store what EmitterBase::EmitBuiltinCG 412 // decided to do about each one in pass 2. 413 std::vector<int> *ParamNumberMap = nullptr; 414 415 // Internally track how many things we've allocated 416 unsigned nparams = 0; 417 418 std::string allocParam(StringRef Type, StringRef Value) { 419 unsigned ParamNumber; 420 421 if (!ParamNumberMap) { 422 // In pass 1, unconditionally assign a new parameter variable to every 423 // value we're asked to process. 424 ParamNumber = nparams++; 425 } else { 426 // In pass 2, consult the map provided by the caller to find out which 427 // variable we should be keeping things in. 428 int MapValue = (*ParamNumberMap)[nparams++]; 429 if (MapValue < 0) 430 return std::string(Value); 431 ParamNumber = MapValue; 432 } 433 434 // If we've allocated a new parameter variable for the first time, store 435 // its type and value to be retrieved after codegen. 436 if (ParamTypes && ParamTypes->size() == ParamNumber) 437 ParamTypes->push_back(std::string(Type)); 438 if (ParamValues && ParamValues->size() == ParamNumber) 439 ParamValues->push_back(std::string(Value)); 440 441 // Unimaginative naming scheme for parameter variables. 442 return "Param" + utostr(ParamNumber); 443 } 444 }; 445 446 // ----------------------------------------------------------------------------- 447 // System of classes that represent all the intermediate values used during 448 // code-generation for an intrinsic. 449 // 450 // The base class 'Result' can represent a value of the LLVM type 'Value', or 451 // sometimes 'Address' (for loads/stores, including an alignment requirement). 452 // 453 // In the case where the Tablegen provides a value in the codegen dag as a 454 // plain integer literal, the Result object we construct here will be one that 455 // returns true from hasIntegerConstantValue(). This allows the generated C++ 456 // code to use the constant directly in contexts which can take a literal 457 // integer, such as Builder.CreateExtractValue(thing, 1), without going to the 458 // effort of calling llvm::ConstantInt::get() and then pulling the constant 459 // back out of the resulting llvm:Value later. 460 461 class Result { 462 public: 463 // Convenient shorthand for the pointer type we'll be using everywhere. 464 using Ptr = std::shared_ptr<Result>; 465 466 private: 467 Ptr Predecessor; 468 std::string VarName; 469 bool VarNameUsed = false; 470 unsigned Visited = 0; 471 472 public: 473 virtual ~Result() = default; 474 using Scope = std::map<std::string, Ptr>; 475 virtual void genCode(raw_ostream &OS, CodeGenParamAllocator &) const = 0; 476 virtual bool hasIntegerConstantValue() const { return false; } 477 virtual uint32_t integerConstantValue() const { return 0; } 478 virtual bool hasIntegerValue() const { return false; } 479 virtual std::string getIntegerValue(const std::string &) { 480 llvm_unreachable("non-working Result::getIntegerValue called"); 481 } 482 virtual std::string typeName() const { return "Value *"; } 483 484 // Mostly, when a code-generation operation has a dependency on prior 485 // operations, it's because it uses the output values of those operations as 486 // inputs. But there's one exception, which is the use of 'seq' in Tablegen 487 // to indicate that operations have to be performed in sequence regardless of 488 // whether they use each others' output values. 489 // 490 // So, the actual generation of code is done by depth-first search, using the 491 // prerequisites() method to get a list of all the other Results that have to 492 // be computed before this one. That method divides into the 'predecessor', 493 // set by setPredecessor() while processing a 'seq' dag node, and the list 494 // returned by 'morePrerequisites', which each subclass implements to return 495 // a list of the Results it uses as input to whatever its own computation is 496 // doing. 497 498 virtual void morePrerequisites(std::vector<Ptr> &output) const {} 499 std::vector<Ptr> prerequisites() const { 500 std::vector<Ptr> ToRet; 501 if (Predecessor) 502 ToRet.push_back(Predecessor); 503 morePrerequisites(ToRet); 504 return ToRet; 505 } 506 507 void setPredecessor(Ptr p) { 508 // If the user has nested one 'seq' node inside another, and this 509 // method is called on the return value of the inner 'seq' (i.e. 510 // the final item inside it), then we can't link _this_ node to p, 511 // because it already has a predecessor. Instead, walk the chain 512 // until we find the first item in the inner seq, and link that to 513 // p, so that nesting seqs has the obvious effect of linking 514 // everything together into one long sequential chain. 515 Result *r = this; 516 while (r->Predecessor) 517 r = r->Predecessor.get(); 518 r->Predecessor = p; 519 } 520 521 // Each Result will be assigned a variable name in the output code, but not 522 // all those variable names will actually be used (e.g. the return value of 523 // Builder.CreateStore has void type, so nobody will want to refer to it). To 524 // prevent annoying compiler warnings, we track whether each Result's 525 // variable name was ever actually mentioned in subsequent statements, so 526 // that it can be left out of the final generated code. 527 std::string varname() { 528 VarNameUsed = true; 529 return VarName; 530 } 531 void setVarname(const StringRef s) { VarName = std::string(s); } 532 bool varnameUsed() const { return VarNameUsed; } 533 534 // Emit code to generate this result as a Value *. 535 virtual std::string asValue() { 536 return varname(); 537 } 538 539 // Code generation happens in multiple passes. This method tracks whether a 540 // Result has yet been visited in a given pass, without the need for a 541 // tedious loop in between passes that goes through and resets a 'visited' 542 // flag back to false: you just set Pass=1 the first time round, and Pass=2 543 // the second time. 544 bool needsVisiting(unsigned Pass) { 545 bool ToRet = Visited < Pass; 546 Visited = Pass; 547 return ToRet; 548 } 549 }; 550 551 // Result subclass that retrieves one of the arguments to the clang builtin 552 // function. In cases where the argument has pointer type, we call 553 // EmitPointerWithAlignment and store the result in a variable of type Address, 554 // so that load and store IR nodes can know the right alignment. Otherwise, we 555 // call EmitScalarExpr. 556 // 557 // There are aggregate parameters in the MVE intrinsics API, but we don't deal 558 // with them in this Tablegen back end: they only arise in the vld2q/vld4q and 559 // vst2q/vst4q family, which is few enough that we just write the code by hand 560 // for those in CGBuiltin.cpp. 561 class BuiltinArgResult : public Result { 562 public: 563 unsigned ArgNum; 564 bool AddressType; 565 bool Immediate; 566 BuiltinArgResult(unsigned ArgNum, bool AddressType, bool Immediate) 567 : ArgNum(ArgNum), AddressType(AddressType), Immediate(Immediate) {} 568 void genCode(raw_ostream &OS, CodeGenParamAllocator &) const override { 569 OS << (AddressType ? "EmitPointerWithAlignment" : "EmitScalarExpr") 570 << "(E->getArg(" << ArgNum << "))"; 571 } 572 std::string typeName() const override { 573 return AddressType ? "Address" : Result::typeName(); 574 } 575 // Emit code to generate this result as a Value *. 576 std::string asValue() override { 577 if (AddressType) 578 return "(" + varname() + ".getPointer())"; 579 return Result::asValue(); 580 } 581 bool hasIntegerValue() const override { return Immediate; } 582 std::string getIntegerValue(const std::string &IntType) override { 583 return "GetIntegerConstantValue<" + IntType + ">(E->getArg(" + 584 utostr(ArgNum) + "), getContext())"; 585 } 586 }; 587 588 // Result subclass for an integer literal appearing in Tablegen. This may need 589 // to be turned into an llvm::Result by means of llvm::ConstantInt::get(), or 590 // it may be used directly as an integer, depending on which IRBuilder method 591 // it's being passed to. 592 class IntLiteralResult : public Result { 593 public: 594 const ScalarType *IntegerType; 595 uint32_t IntegerValue; 596 IntLiteralResult(const ScalarType *IntegerType, uint32_t IntegerValue) 597 : IntegerType(IntegerType), IntegerValue(IntegerValue) {} 598 void genCode(raw_ostream &OS, 599 CodeGenParamAllocator &ParamAlloc) const override { 600 OS << "llvm::ConstantInt::get(" 601 << ParamAlloc.allocParam("llvm::Type *", IntegerType->llvmName()) 602 << ", "; 603 OS << ParamAlloc.allocParam(IntegerType->cName(), utostr(IntegerValue)) 604 << ")"; 605 } 606 bool hasIntegerConstantValue() const override { return true; } 607 uint32_t integerConstantValue() const override { return IntegerValue; } 608 }; 609 610 // Result subclass representing a cast between different integer types. We use 611 // our own ScalarType abstraction as the representation of the target type, 612 // which gives both size and signedness. 613 class IntCastResult : public Result { 614 public: 615 const ScalarType *IntegerType; 616 Ptr V; 617 IntCastResult(const ScalarType *IntegerType, Ptr V) 618 : IntegerType(IntegerType), V(V) {} 619 void genCode(raw_ostream &OS, 620 CodeGenParamAllocator &ParamAlloc) const override { 621 OS << "Builder.CreateIntCast(" << V->varname() << ", " 622 << ParamAlloc.allocParam("llvm::Type *", IntegerType->llvmName()) << ", " 623 << ParamAlloc.allocParam("bool", 624 IntegerType->kind() == ScalarTypeKind::SignedInt 625 ? "true" 626 : "false") 627 << ")"; 628 } 629 void morePrerequisites(std::vector<Ptr> &output) const override { 630 output.push_back(V); 631 } 632 }; 633 634 // Result subclass representing a cast between different pointer types. 635 class PointerCastResult : public Result { 636 public: 637 const PointerType *PtrType; 638 Ptr V; 639 PointerCastResult(const PointerType *PtrType, Ptr V) 640 : PtrType(PtrType), V(V) {} 641 void genCode(raw_ostream &OS, 642 CodeGenParamAllocator &ParamAlloc) const override { 643 OS << "Builder.CreatePointerCast(" << V->asValue() << ", " 644 << ParamAlloc.allocParam("llvm::Type *", PtrType->llvmName()) << ")"; 645 } 646 void morePrerequisites(std::vector<Ptr> &output) const override { 647 output.push_back(V); 648 } 649 }; 650 651 // Result subclass representing a call to an IRBuilder method. Each IRBuilder 652 // method we want to use will have a Tablegen record giving the method name and 653 // describing any important details of how to call it, such as whether a 654 // particular argument should be an integer constant instead of an llvm::Value. 655 class IRBuilderResult : public Result { 656 public: 657 StringRef CallPrefix; 658 std::vector<Ptr> Args; 659 std::set<unsigned> AddressArgs; 660 std::map<unsigned, std::string> IntegerArgs; 661 IRBuilderResult(StringRef CallPrefix, std::vector<Ptr> Args, 662 std::set<unsigned> AddressArgs, 663 std::map<unsigned, std::string> IntegerArgs) 664 : CallPrefix(CallPrefix), Args(Args), AddressArgs(AddressArgs), 665 IntegerArgs(IntegerArgs) {} 666 void genCode(raw_ostream &OS, 667 CodeGenParamAllocator &ParamAlloc) const override { 668 OS << CallPrefix; 669 const char *Sep = ""; 670 for (unsigned i = 0, e = Args.size(); i < e; ++i) { 671 Ptr Arg = Args[i]; 672 auto it = IntegerArgs.find(i); 673 674 OS << Sep; 675 Sep = ", "; 676 677 if (it != IntegerArgs.end()) { 678 if (Arg->hasIntegerConstantValue()) 679 OS << "static_cast<" << it->second << ">(" 680 << ParamAlloc.allocParam(it->second, 681 utostr(Arg->integerConstantValue())) 682 << ")"; 683 else if (Arg->hasIntegerValue()) 684 OS << ParamAlloc.allocParam(it->second, 685 Arg->getIntegerValue(it->second)); 686 } else { 687 OS << Arg->varname(); 688 } 689 } 690 OS << ")"; 691 } 692 void morePrerequisites(std::vector<Ptr> &output) const override { 693 for (unsigned i = 0, e = Args.size(); i < e; ++i) { 694 Ptr Arg = Args[i]; 695 if (IntegerArgs.find(i) != IntegerArgs.end()) 696 continue; 697 output.push_back(Arg); 698 } 699 } 700 }; 701 702 // Result subclass representing making an Address out of a Value. 703 class AddressResult : public Result { 704 public: 705 Ptr Arg; 706 const Type *Ty; 707 unsigned Align; 708 AddressResult(Ptr Arg, const Type *Ty, unsigned Align) 709 : Arg(Arg), Ty(Ty), Align(Align) {} 710 void genCode(raw_ostream &OS, 711 CodeGenParamAllocator &ParamAlloc) const override { 712 OS << "Address(" << Arg->varname() << ", " << Ty->llvmName() 713 << ", CharUnits::fromQuantity(" << Align << "))"; 714 } 715 std::string typeName() const override { 716 return "Address"; 717 } 718 void morePrerequisites(std::vector<Ptr> &output) const override { 719 output.push_back(Arg); 720 } 721 }; 722 723 // Result subclass representing a call to an IR intrinsic, which we first have 724 // to look up using an Intrinsic::ID constant and an array of types. 725 class IRIntrinsicResult : public Result { 726 public: 727 std::string IntrinsicID; 728 std::vector<const Type *> ParamTypes; 729 std::vector<Ptr> Args; 730 IRIntrinsicResult(StringRef IntrinsicID, std::vector<const Type *> ParamTypes, 731 std::vector<Ptr> Args) 732 : IntrinsicID(std::string(IntrinsicID)), ParamTypes(ParamTypes), 733 Args(Args) {} 734 void genCode(raw_ostream &OS, 735 CodeGenParamAllocator &ParamAlloc) const override { 736 std::string IntNo = ParamAlloc.allocParam( 737 "Intrinsic::ID", "Intrinsic::" + IntrinsicID); 738 OS << "Builder.CreateCall(CGM.getIntrinsic(" << IntNo; 739 if (!ParamTypes.empty()) { 740 OS << ", {"; 741 const char *Sep = ""; 742 for (auto T : ParamTypes) { 743 OS << Sep << ParamAlloc.allocParam("llvm::Type *", T->llvmName()); 744 Sep = ", "; 745 } 746 OS << "}"; 747 } 748 OS << "), {"; 749 const char *Sep = ""; 750 for (auto Arg : Args) { 751 OS << Sep << Arg->asValue(); 752 Sep = ", "; 753 } 754 OS << "})"; 755 } 756 void morePrerequisites(std::vector<Ptr> &output) const override { 757 output.insert(output.end(), Args.begin(), Args.end()); 758 } 759 }; 760 761 // Result subclass that specifies a type, for use in IRBuilder operations such 762 // as CreateBitCast that take a type argument. 763 class TypeResult : public Result { 764 public: 765 const Type *T; 766 TypeResult(const Type *T) : T(T) {} 767 void genCode(raw_ostream &OS, CodeGenParamAllocator &) const override { 768 OS << T->llvmName(); 769 } 770 std::string typeName() const override { 771 return "llvm::Type *"; 772 } 773 }; 774 775 // ----------------------------------------------------------------------------- 776 // Class that describes a single ACLE intrinsic. 777 // 778 // A Tablegen record will typically describe more than one ACLE intrinsic, by 779 // means of setting the 'list<Type> Params' field to a list of multiple 780 // parameter types, so as to define vaddq_{s8,u8,...,f16,f32} all in one go. 781 // We'll end up with one instance of ACLEIntrinsic for *each* parameter type, 782 // rather than a single one for all of them. Hence, the constructor takes both 783 // a Tablegen record and the current value of the parameter type. 784 785 class ACLEIntrinsic { 786 // Structure documenting that one of the intrinsic's arguments is required to 787 // be a compile-time constant integer, and what constraints there are on its 788 // value. Used when generating Sema checking code. 789 struct ImmediateArg { 790 enum class BoundsType { ExplicitRange, UInt }; 791 BoundsType boundsType; 792 int64_t i1, i2; 793 StringRef ExtraCheckType, ExtraCheckArgs; 794 const Type *ArgType; 795 }; 796 797 // For polymorphic intrinsics, FullName is the explicit name that uniquely 798 // identifies this variant of the intrinsic, and ShortName is the name it 799 // shares with at least one other intrinsic. 800 std::string ShortName, FullName; 801 802 // Name of the architecture extension, used in the Clang builtin name 803 StringRef BuiltinExtension; 804 805 // A very small number of intrinsics _only_ have a polymorphic 806 // variant (vuninitializedq taking an unevaluated argument). 807 bool PolymorphicOnly; 808 809 // Another rarely-used flag indicating that the builtin doesn't 810 // evaluate its argument(s) at all. 811 bool NonEvaluating; 812 813 // True if the intrinsic needs only the C header part (no codegen, semantic 814 // checks, etc). Used for redeclaring MVE intrinsics in the arm_cde.h header. 815 bool HeaderOnly; 816 817 const Type *ReturnType; 818 std::vector<const Type *> ArgTypes; 819 std::map<unsigned, ImmediateArg> ImmediateArgs; 820 Result::Ptr Code; 821 822 std::map<std::string, std::string> CustomCodeGenArgs; 823 824 // Recursive function that does the internals of code generation. 825 void genCodeDfs(Result::Ptr V, std::list<Result::Ptr> &Used, 826 unsigned Pass) const { 827 if (!V->needsVisiting(Pass)) 828 return; 829 830 for (Result::Ptr W : V->prerequisites()) 831 genCodeDfs(W, Used, Pass); 832 833 Used.push_back(V); 834 } 835 836 public: 837 const std::string &shortName() const { return ShortName; } 838 const std::string &fullName() const { return FullName; } 839 StringRef builtinExtension() const { return BuiltinExtension; } 840 const Type *returnType() const { return ReturnType; } 841 const std::vector<const Type *> &argTypes() const { return ArgTypes; } 842 bool requiresFloat() const { 843 if (ReturnType->requiresFloat()) 844 return true; 845 for (const Type *T : ArgTypes) 846 if (T->requiresFloat()) 847 return true; 848 return false; 849 } 850 bool requiresMVE() const { 851 return ReturnType->requiresMVE() || 852 any_of(ArgTypes, [](const Type *T) { return T->requiresMVE(); }); 853 } 854 bool polymorphic() const { return ShortName != FullName; } 855 bool polymorphicOnly() const { return PolymorphicOnly; } 856 bool nonEvaluating() const { return NonEvaluating; } 857 bool headerOnly() const { return HeaderOnly; } 858 859 // External entry point for code generation, called from EmitterBase. 860 void genCode(raw_ostream &OS, CodeGenParamAllocator &ParamAlloc, 861 unsigned Pass) const { 862 assert(!headerOnly() && "Called genCode for header-only intrinsic"); 863 if (!hasCode()) { 864 for (auto kv : CustomCodeGenArgs) 865 OS << " " << kv.first << " = " << kv.second << ";\n"; 866 OS << " break; // custom code gen\n"; 867 return; 868 } 869 std::list<Result::Ptr> Used; 870 genCodeDfs(Code, Used, Pass); 871 872 unsigned varindex = 0; 873 for (Result::Ptr V : Used) 874 if (V->varnameUsed()) 875 V->setVarname("Val" + utostr(varindex++)); 876 877 for (Result::Ptr V : Used) { 878 OS << " "; 879 if (V == Used.back()) { 880 assert(!V->varnameUsed()); 881 OS << "return "; // FIXME: what if the top-level thing is void? 882 } else if (V->varnameUsed()) { 883 std::string Type = V->typeName(); 884 OS << V->typeName(); 885 if (!StringRef(Type).endswith("*")) 886 OS << " "; 887 OS << V->varname() << " = "; 888 } 889 V->genCode(OS, ParamAlloc); 890 OS << ";\n"; 891 } 892 } 893 bool hasCode() const { return Code != nullptr; } 894 895 static std::string signedHexLiteral(const llvm::APInt &iOrig) { 896 llvm::APInt i = iOrig.trunc(64); 897 SmallString<40> s; 898 i.toString(s, 16, true, true); 899 return std::string(s.str()); 900 } 901 902 std::string genSema() const { 903 assert(!headerOnly() && "Called genSema for header-only intrinsic"); 904 std::vector<std::string> SemaChecks; 905 906 for (const auto &kv : ImmediateArgs) { 907 const ImmediateArg &IA = kv.second; 908 909 llvm::APInt lo(128, 0), hi(128, 0); 910 switch (IA.boundsType) { 911 case ImmediateArg::BoundsType::ExplicitRange: 912 lo = IA.i1; 913 hi = IA.i2; 914 break; 915 case ImmediateArg::BoundsType::UInt: 916 lo = 0; 917 hi = llvm::APInt::getMaxValue(IA.i1).zext(128); 918 break; 919 } 920 921 std::string Index = utostr(kv.first); 922 923 // Emit a range check if the legal range of values for the 924 // immediate is smaller than the _possible_ range of values for 925 // its type. 926 unsigned ArgTypeBits = IA.ArgType->sizeInBits(); 927 llvm::APInt ArgTypeRange = llvm::APInt::getMaxValue(ArgTypeBits).zext(128); 928 llvm::APInt ActualRange = (hi-lo).trunc(64).sext(128); 929 if (ActualRange.ult(ArgTypeRange)) 930 SemaChecks.push_back("SemaBuiltinConstantArgRange(TheCall, " + Index + 931 ", " + signedHexLiteral(lo) + ", " + 932 signedHexLiteral(hi) + ")"); 933 934 if (!IA.ExtraCheckType.empty()) { 935 std::string Suffix; 936 if (!IA.ExtraCheckArgs.empty()) { 937 std::string tmp; 938 StringRef Arg = IA.ExtraCheckArgs; 939 if (Arg == "!lanesize") { 940 tmp = utostr(IA.ArgType->sizeInBits()); 941 Arg = tmp; 942 } 943 Suffix = (Twine(", ") + Arg).str(); 944 } 945 SemaChecks.push_back((Twine("SemaBuiltinConstantArg") + 946 IA.ExtraCheckType + "(TheCall, " + Index + 947 Suffix + ")") 948 .str()); 949 } 950 951 assert(!SemaChecks.empty()); 952 } 953 if (SemaChecks.empty()) 954 return ""; 955 return join(std::begin(SemaChecks), std::end(SemaChecks), 956 " ||\n ") + 957 ";\n"; 958 } 959 960 ACLEIntrinsic(EmitterBase &ME, Record *R, const Type *Param); 961 }; 962 963 // ----------------------------------------------------------------------------- 964 // The top-level class that holds all the state from analyzing the entire 965 // Tablegen input. 966 967 class EmitterBase { 968 protected: 969 // EmitterBase holds a collection of all the types we've instantiated. 970 VoidType Void; 971 std::map<std::string, std::unique_ptr<ScalarType>> ScalarTypes; 972 std::map<std::tuple<ScalarTypeKind, unsigned, unsigned>, 973 std::unique_ptr<VectorType>> 974 VectorTypes; 975 std::map<std::pair<std::string, unsigned>, std::unique_ptr<MultiVectorType>> 976 MultiVectorTypes; 977 std::map<unsigned, std::unique_ptr<PredicateType>> PredicateTypes; 978 std::map<std::string, std::unique_ptr<PointerType>> PointerTypes; 979 980 // And all the ACLEIntrinsic instances we've created. 981 std::map<std::string, std::unique_ptr<ACLEIntrinsic>> ACLEIntrinsics; 982 983 public: 984 // Methods to create a Type object, or return the right existing one from the 985 // maps stored in this object. 986 const VoidType *getVoidType() { return &Void; } 987 const ScalarType *getScalarType(StringRef Name) { 988 return ScalarTypes[std::string(Name)].get(); 989 } 990 const ScalarType *getScalarType(Record *R) { 991 return getScalarType(R->getName()); 992 } 993 const VectorType *getVectorType(const ScalarType *ST, unsigned Lanes) { 994 std::tuple<ScalarTypeKind, unsigned, unsigned> key(ST->kind(), 995 ST->sizeInBits(), Lanes); 996 if (VectorTypes.find(key) == VectorTypes.end()) 997 VectorTypes[key] = std::make_unique<VectorType>(ST, Lanes); 998 return VectorTypes[key].get(); 999 } 1000 const VectorType *getVectorType(const ScalarType *ST) { 1001 return getVectorType(ST, 128 / ST->sizeInBits()); 1002 } 1003 const MultiVectorType *getMultiVectorType(unsigned Registers, 1004 const VectorType *VT) { 1005 std::pair<std::string, unsigned> key(VT->cNameBase(), Registers); 1006 if (MultiVectorTypes.find(key) == MultiVectorTypes.end()) 1007 MultiVectorTypes[key] = std::make_unique<MultiVectorType>(Registers, VT); 1008 return MultiVectorTypes[key].get(); 1009 } 1010 const PredicateType *getPredicateType(unsigned Lanes) { 1011 unsigned key = Lanes; 1012 if (PredicateTypes.find(key) == PredicateTypes.end()) 1013 PredicateTypes[key] = std::make_unique<PredicateType>(Lanes); 1014 return PredicateTypes[key].get(); 1015 } 1016 const PointerType *getPointerType(const Type *T, bool Const) { 1017 PointerType PT(T, Const); 1018 std::string key = PT.cName(); 1019 if (PointerTypes.find(key) == PointerTypes.end()) 1020 PointerTypes[key] = std::make_unique<PointerType>(PT); 1021 return PointerTypes[key].get(); 1022 } 1023 1024 // Methods to construct a type from various pieces of Tablegen. These are 1025 // always called in the context of setting up a particular ACLEIntrinsic, so 1026 // there's always an ambient parameter type (because we're iterating through 1027 // the Params list in the Tablegen record for the intrinsic), which is used 1028 // to expand Tablegen classes like 'Vector' which mean something different in 1029 // each member of a parametric family. 1030 const Type *getType(Record *R, const Type *Param); 1031 const Type *getType(DagInit *D, const Type *Param); 1032 const Type *getType(Init *I, const Type *Param); 1033 1034 // Functions that translate the Tablegen representation of an intrinsic's 1035 // code generation into a collection of Value objects (which will then be 1036 // reprocessed to read out the actual C++ code included by CGBuiltin.cpp). 1037 Result::Ptr getCodeForDag(DagInit *D, const Result::Scope &Scope, 1038 const Type *Param); 1039 Result::Ptr getCodeForDagArg(DagInit *D, unsigned ArgNum, 1040 const Result::Scope &Scope, const Type *Param); 1041 Result::Ptr getCodeForArg(unsigned ArgNum, const Type *ArgType, bool Promote, 1042 bool Immediate); 1043 1044 void GroupSemaChecks(std::map<std::string, std::set<std::string>> &Checks); 1045 1046 // Constructor and top-level functions. 1047 1048 EmitterBase(RecordKeeper &Records); 1049 virtual ~EmitterBase() = default; 1050 1051 virtual void EmitHeader(raw_ostream &OS) = 0; 1052 virtual void EmitBuiltinDef(raw_ostream &OS) = 0; 1053 virtual void EmitBuiltinSema(raw_ostream &OS) = 0; 1054 void EmitBuiltinCG(raw_ostream &OS); 1055 void EmitBuiltinAliases(raw_ostream &OS); 1056 }; 1057 1058 const Type *EmitterBase::getType(Init *I, const Type *Param) { 1059 if (auto Dag = dyn_cast<DagInit>(I)) 1060 return getType(Dag, Param); 1061 if (auto Def = dyn_cast<DefInit>(I)) 1062 return getType(Def->getDef(), Param); 1063 1064 PrintFatalError("Could not convert this value into a type"); 1065 } 1066 1067 const Type *EmitterBase::getType(Record *R, const Type *Param) { 1068 // Pass to a subfield of any wrapper records. We don't expect more than one 1069 // of these: immediate operands are used as plain numbers rather than as 1070 // llvm::Value, so it's meaningless to promote their type anyway. 1071 if (R->isSubClassOf("Immediate")) 1072 R = R->getValueAsDef("type"); 1073 else if (R->isSubClassOf("unpromoted")) 1074 R = R->getValueAsDef("underlying_type"); 1075 1076 if (R->getName() == "Void") 1077 return getVoidType(); 1078 if (R->isSubClassOf("PrimitiveType")) 1079 return getScalarType(R); 1080 if (R->isSubClassOf("ComplexType")) 1081 return getType(R->getValueAsDag("spec"), Param); 1082 1083 PrintFatalError(R->getLoc(), "Could not convert this record into a type"); 1084 } 1085 1086 const Type *EmitterBase::getType(DagInit *D, const Type *Param) { 1087 // The meat of the getType system: types in the Tablegen are represented by a 1088 // dag whose operators select sub-cases of this function. 1089 1090 Record *Op = cast<DefInit>(D->getOperator())->getDef(); 1091 if (!Op->isSubClassOf("ComplexTypeOp")) 1092 PrintFatalError( 1093 "Expected ComplexTypeOp as dag operator in type expression"); 1094 1095 if (Op->getName() == "CTO_Parameter") { 1096 if (isa<VoidType>(Param)) 1097 PrintFatalError("Parametric type in unparametrised context"); 1098 return Param; 1099 } 1100 1101 if (Op->getName() == "CTO_Vec") { 1102 const Type *Element = getType(D->getArg(0), Param); 1103 if (D->getNumArgs() == 1) { 1104 return getVectorType(cast<ScalarType>(Element)); 1105 } else { 1106 const Type *ExistingVector = getType(D->getArg(1), Param); 1107 return getVectorType(cast<ScalarType>(Element), 1108 cast<VectorType>(ExistingVector)->lanes()); 1109 } 1110 } 1111 1112 if (Op->getName() == "CTO_Pred") { 1113 const Type *Element = getType(D->getArg(0), Param); 1114 return getPredicateType(128 / Element->sizeInBits()); 1115 } 1116 1117 if (Op->isSubClassOf("CTO_Tuple")) { 1118 unsigned Registers = Op->getValueAsInt("n"); 1119 const Type *Element = getType(D->getArg(0), Param); 1120 return getMultiVectorType(Registers, cast<VectorType>(Element)); 1121 } 1122 1123 if (Op->isSubClassOf("CTO_Pointer")) { 1124 const Type *Pointee = getType(D->getArg(0), Param); 1125 return getPointerType(Pointee, Op->getValueAsBit("const")); 1126 } 1127 1128 if (Op->getName() == "CTO_CopyKind") { 1129 const ScalarType *STSize = cast<ScalarType>(getType(D->getArg(0), Param)); 1130 const ScalarType *STKind = cast<ScalarType>(getType(D->getArg(1), Param)); 1131 for (const auto &kv : ScalarTypes) { 1132 const ScalarType *RT = kv.second.get(); 1133 if (RT->kind() == STKind->kind() && RT->sizeInBits() == STSize->sizeInBits()) 1134 return RT; 1135 } 1136 PrintFatalError("Cannot find a type to satisfy CopyKind"); 1137 } 1138 1139 if (Op->isSubClassOf("CTO_ScaleSize")) { 1140 const ScalarType *STKind = cast<ScalarType>(getType(D->getArg(0), Param)); 1141 int Num = Op->getValueAsInt("num"), Denom = Op->getValueAsInt("denom"); 1142 unsigned DesiredSize = STKind->sizeInBits() * Num / Denom; 1143 for (const auto &kv : ScalarTypes) { 1144 const ScalarType *RT = kv.second.get(); 1145 if (RT->kind() == STKind->kind() && RT->sizeInBits() == DesiredSize) 1146 return RT; 1147 } 1148 PrintFatalError("Cannot find a type to satisfy ScaleSize"); 1149 } 1150 1151 PrintFatalError("Bad operator in type dag expression"); 1152 } 1153 1154 Result::Ptr EmitterBase::getCodeForDag(DagInit *D, const Result::Scope &Scope, 1155 const Type *Param) { 1156 Record *Op = cast<DefInit>(D->getOperator())->getDef(); 1157 1158 if (Op->getName() == "seq") { 1159 Result::Scope SubScope = Scope; 1160 Result::Ptr PrevV = nullptr; 1161 for (unsigned i = 0, e = D->getNumArgs(); i < e; ++i) { 1162 // We don't use getCodeForDagArg here, because the argument name 1163 // has different semantics in a seq 1164 Result::Ptr V = 1165 getCodeForDag(cast<DagInit>(D->getArg(i)), SubScope, Param); 1166 StringRef ArgName = D->getArgNameStr(i); 1167 if (!ArgName.empty()) 1168 SubScope[std::string(ArgName)] = V; 1169 if (PrevV) 1170 V->setPredecessor(PrevV); 1171 PrevV = V; 1172 } 1173 return PrevV; 1174 } else if (Op->isSubClassOf("Type")) { 1175 if (D->getNumArgs() != 1) 1176 PrintFatalError("Type casts should have exactly one argument"); 1177 const Type *CastType = getType(Op, Param); 1178 Result::Ptr Arg = getCodeForDagArg(D, 0, Scope, Param); 1179 if (const auto *ST = dyn_cast<ScalarType>(CastType)) { 1180 if (!ST->requiresFloat()) { 1181 if (Arg->hasIntegerConstantValue()) 1182 return std::make_shared<IntLiteralResult>( 1183 ST, Arg->integerConstantValue()); 1184 else 1185 return std::make_shared<IntCastResult>(ST, Arg); 1186 } 1187 } else if (const auto *PT = dyn_cast<PointerType>(CastType)) { 1188 return std::make_shared<PointerCastResult>(PT, Arg); 1189 } 1190 PrintFatalError("Unsupported type cast"); 1191 } else if (Op->getName() == "address") { 1192 if (D->getNumArgs() != 2) 1193 PrintFatalError("'address' should have two arguments"); 1194 Result::Ptr Arg = getCodeForDagArg(D, 0, Scope, Param); 1195 1196 const Type *Ty = nullptr; 1197 if (auto *DI = dyn_cast<DagInit>(D->getArg(0))) 1198 if (auto *PTy = dyn_cast<PointerType>(getType(DI->getOperator(), Param))) 1199 Ty = PTy->getPointeeType(); 1200 if (!Ty) 1201 PrintFatalError("'address' pointer argument should be a pointer"); 1202 1203 unsigned Alignment; 1204 if (auto *II = dyn_cast<IntInit>(D->getArg(1))) { 1205 Alignment = II->getValue(); 1206 } else { 1207 PrintFatalError("'address' alignment argument should be an integer"); 1208 } 1209 return std::make_shared<AddressResult>(Arg, Ty, Alignment); 1210 } else if (Op->getName() == "unsignedflag") { 1211 if (D->getNumArgs() != 1) 1212 PrintFatalError("unsignedflag should have exactly one argument"); 1213 Record *TypeRec = cast<DefInit>(D->getArg(0))->getDef(); 1214 if (!TypeRec->isSubClassOf("Type")) 1215 PrintFatalError("unsignedflag's argument should be a type"); 1216 if (const auto *ST = dyn_cast<ScalarType>(getType(TypeRec, Param))) { 1217 return std::make_shared<IntLiteralResult>( 1218 getScalarType("u32"), ST->kind() == ScalarTypeKind::UnsignedInt); 1219 } else { 1220 PrintFatalError("unsignedflag's argument should be a scalar type"); 1221 } 1222 } else if (Op->getName() == "bitsize") { 1223 if (D->getNumArgs() != 1) 1224 PrintFatalError("bitsize should have exactly one argument"); 1225 Record *TypeRec = cast<DefInit>(D->getArg(0))->getDef(); 1226 if (!TypeRec->isSubClassOf("Type")) 1227 PrintFatalError("bitsize's argument should be a type"); 1228 if (const auto *ST = dyn_cast<ScalarType>(getType(TypeRec, Param))) { 1229 return std::make_shared<IntLiteralResult>(getScalarType("u32"), 1230 ST->sizeInBits()); 1231 } else { 1232 PrintFatalError("bitsize's argument should be a scalar type"); 1233 } 1234 } else { 1235 std::vector<Result::Ptr> Args; 1236 for (unsigned i = 0, e = D->getNumArgs(); i < e; ++i) 1237 Args.push_back(getCodeForDagArg(D, i, Scope, Param)); 1238 if (Op->isSubClassOf("IRBuilderBase")) { 1239 std::set<unsigned> AddressArgs; 1240 std::map<unsigned, std::string> IntegerArgs; 1241 for (Record *sp : Op->getValueAsListOfDefs("special_params")) { 1242 unsigned Index = sp->getValueAsInt("index"); 1243 if (sp->isSubClassOf("IRBuilderAddrParam")) { 1244 AddressArgs.insert(Index); 1245 } else if (sp->isSubClassOf("IRBuilderIntParam")) { 1246 IntegerArgs[Index] = std::string(sp->getValueAsString("type")); 1247 } 1248 } 1249 return std::make_shared<IRBuilderResult>(Op->getValueAsString("prefix"), 1250 Args, AddressArgs, IntegerArgs); 1251 } else if (Op->isSubClassOf("IRIntBase")) { 1252 std::vector<const Type *> ParamTypes; 1253 for (Record *RParam : Op->getValueAsListOfDefs("params")) 1254 ParamTypes.push_back(getType(RParam, Param)); 1255 std::string IntName = std::string(Op->getValueAsString("intname")); 1256 if (Op->getValueAsBit("appendKind")) 1257 IntName += "_" + toLetter(cast<ScalarType>(Param)->kind()); 1258 return std::make_shared<IRIntrinsicResult>(IntName, ParamTypes, Args); 1259 } else { 1260 PrintFatalError("Unsupported dag node " + Op->getName()); 1261 } 1262 } 1263 } 1264 1265 Result::Ptr EmitterBase::getCodeForDagArg(DagInit *D, unsigned ArgNum, 1266 const Result::Scope &Scope, 1267 const Type *Param) { 1268 Init *Arg = D->getArg(ArgNum); 1269 StringRef Name = D->getArgNameStr(ArgNum); 1270 1271 if (!Name.empty()) { 1272 if (!isa<UnsetInit>(Arg)) 1273 PrintFatalError( 1274 "dag operator argument should not have both a value and a name"); 1275 auto it = Scope.find(std::string(Name)); 1276 if (it == Scope.end()) 1277 PrintFatalError("unrecognized variable name '" + Name + "'"); 1278 return it->second; 1279 } 1280 1281 // Sometimes the Arg is a bit. Prior to multiclass template argument 1282 // checking, integers would sneak through the bit declaration, 1283 // but now they really are bits. 1284 if (auto *BI = dyn_cast<BitInit>(Arg)) 1285 return std::make_shared<IntLiteralResult>(getScalarType("u32"), 1286 BI->getValue()); 1287 1288 if (auto *II = dyn_cast<IntInit>(Arg)) 1289 return std::make_shared<IntLiteralResult>(getScalarType("u32"), 1290 II->getValue()); 1291 1292 if (auto *DI = dyn_cast<DagInit>(Arg)) 1293 return getCodeForDag(DI, Scope, Param); 1294 1295 if (auto *DI = dyn_cast<DefInit>(Arg)) { 1296 Record *Rec = DI->getDef(); 1297 if (Rec->isSubClassOf("Type")) { 1298 const Type *T = getType(Rec, Param); 1299 return std::make_shared<TypeResult>(T); 1300 } 1301 } 1302 1303 PrintError("bad DAG argument type for code generation"); 1304 PrintNote("DAG: " + D->getAsString()); 1305 if (TypedInit *Typed = dyn_cast<TypedInit>(Arg)) 1306 PrintNote("argument type: " + Typed->getType()->getAsString()); 1307 PrintFatalNote("argument number " + Twine(ArgNum) + ": " + Arg->getAsString()); 1308 } 1309 1310 Result::Ptr EmitterBase::getCodeForArg(unsigned ArgNum, const Type *ArgType, 1311 bool Promote, bool Immediate) { 1312 Result::Ptr V = std::make_shared<BuiltinArgResult>( 1313 ArgNum, isa<PointerType>(ArgType), Immediate); 1314 1315 if (Promote) { 1316 if (const auto *ST = dyn_cast<ScalarType>(ArgType)) { 1317 if (ST->isInteger() && ST->sizeInBits() < 32) 1318 V = std::make_shared<IntCastResult>(getScalarType("u32"), V); 1319 } else if (const auto *PT = dyn_cast<PredicateType>(ArgType)) { 1320 V = std::make_shared<IntCastResult>(getScalarType("u32"), V); 1321 V = std::make_shared<IRIntrinsicResult>("arm_mve_pred_i2v", 1322 std::vector<const Type *>{PT}, 1323 std::vector<Result::Ptr>{V}); 1324 } 1325 } 1326 1327 return V; 1328 } 1329 1330 ACLEIntrinsic::ACLEIntrinsic(EmitterBase &ME, Record *R, const Type *Param) 1331 : ReturnType(ME.getType(R->getValueAsDef("ret"), Param)) { 1332 // Derive the intrinsic's full name, by taking the name of the 1333 // Tablegen record (or override) and appending the suffix from its 1334 // parameter type. (If the intrinsic is unparametrised, its 1335 // parameter type will be given as Void, which returns the empty 1336 // string for acleSuffix.) 1337 StringRef BaseName = 1338 (R->isSubClassOf("NameOverride") ? R->getValueAsString("basename") 1339 : R->getName()); 1340 StringRef overrideLetter = R->getValueAsString("overrideKindLetter"); 1341 FullName = 1342 (Twine(BaseName) + Param->acleSuffix(std::string(overrideLetter))).str(); 1343 1344 // Derive the intrinsic's polymorphic name, by removing components from the 1345 // full name as specified by its 'pnt' member ('polymorphic name type'), 1346 // which indicates how many type suffixes to remove, and any other piece of 1347 // the name that should be removed. 1348 Record *PolymorphicNameType = R->getValueAsDef("pnt"); 1349 SmallVector<StringRef, 8> NameParts; 1350 StringRef(FullName).split(NameParts, '_'); 1351 for (unsigned i = 0, e = PolymorphicNameType->getValueAsInt( 1352 "NumTypeSuffixesToDiscard"); 1353 i < e; ++i) 1354 NameParts.pop_back(); 1355 if (!PolymorphicNameType->isValueUnset("ExtraSuffixToDiscard")) { 1356 StringRef ExtraSuffix = 1357 PolymorphicNameType->getValueAsString("ExtraSuffixToDiscard"); 1358 auto it = NameParts.end(); 1359 while (it != NameParts.begin()) { 1360 --it; 1361 if (*it == ExtraSuffix) { 1362 NameParts.erase(it); 1363 break; 1364 } 1365 } 1366 } 1367 ShortName = join(std::begin(NameParts), std::end(NameParts), "_"); 1368 1369 BuiltinExtension = R->getValueAsString("builtinExtension"); 1370 1371 PolymorphicOnly = R->getValueAsBit("polymorphicOnly"); 1372 NonEvaluating = R->getValueAsBit("nonEvaluating"); 1373 HeaderOnly = R->getValueAsBit("headerOnly"); 1374 1375 // Process the intrinsic's argument list. 1376 DagInit *ArgsDag = R->getValueAsDag("args"); 1377 Result::Scope Scope; 1378 for (unsigned i = 0, e = ArgsDag->getNumArgs(); i < e; ++i) { 1379 Init *TypeInit = ArgsDag->getArg(i); 1380 1381 bool Promote = true; 1382 if (auto TypeDI = dyn_cast<DefInit>(TypeInit)) 1383 if (TypeDI->getDef()->isSubClassOf("unpromoted")) 1384 Promote = false; 1385 1386 // Work out the type of the argument, for use in the function prototype in 1387 // the header file. 1388 const Type *ArgType = ME.getType(TypeInit, Param); 1389 ArgTypes.push_back(ArgType); 1390 1391 // If the argument is a subclass of Immediate, record the details about 1392 // what values it can take, for Sema checking. 1393 bool Immediate = false; 1394 if (auto TypeDI = dyn_cast<DefInit>(TypeInit)) { 1395 Record *TypeRec = TypeDI->getDef(); 1396 if (TypeRec->isSubClassOf("Immediate")) { 1397 Immediate = true; 1398 1399 Record *Bounds = TypeRec->getValueAsDef("bounds"); 1400 ImmediateArg &IA = ImmediateArgs[i]; 1401 if (Bounds->isSubClassOf("IB_ConstRange")) { 1402 IA.boundsType = ImmediateArg::BoundsType::ExplicitRange; 1403 IA.i1 = Bounds->getValueAsInt("lo"); 1404 IA.i2 = Bounds->getValueAsInt("hi"); 1405 } else if (Bounds->getName() == "IB_UEltValue") { 1406 IA.boundsType = ImmediateArg::BoundsType::UInt; 1407 IA.i1 = Param->sizeInBits(); 1408 } else if (Bounds->getName() == "IB_LaneIndex") { 1409 IA.boundsType = ImmediateArg::BoundsType::ExplicitRange; 1410 IA.i1 = 0; 1411 IA.i2 = 128 / Param->sizeInBits() - 1; 1412 } else if (Bounds->isSubClassOf("IB_EltBit")) { 1413 IA.boundsType = ImmediateArg::BoundsType::ExplicitRange; 1414 IA.i1 = Bounds->getValueAsInt("base"); 1415 const Type *T = ME.getType(Bounds->getValueAsDef("type"), Param); 1416 IA.i2 = IA.i1 + T->sizeInBits() - 1; 1417 } else { 1418 PrintFatalError("unrecognised ImmediateBounds subclass"); 1419 } 1420 1421 IA.ArgType = ArgType; 1422 1423 if (!TypeRec->isValueUnset("extra")) { 1424 IA.ExtraCheckType = TypeRec->getValueAsString("extra"); 1425 if (!TypeRec->isValueUnset("extraarg")) 1426 IA.ExtraCheckArgs = TypeRec->getValueAsString("extraarg"); 1427 } 1428 } 1429 } 1430 1431 // The argument will usually have a name in the arguments dag, which goes 1432 // into the variable-name scope that the code gen will refer to. 1433 StringRef ArgName = ArgsDag->getArgNameStr(i); 1434 if (!ArgName.empty()) 1435 Scope[std::string(ArgName)] = 1436 ME.getCodeForArg(i, ArgType, Promote, Immediate); 1437 } 1438 1439 // Finally, go through the codegen dag and translate it into a Result object 1440 // (with an arbitrary DAG of depended-on Results hanging off it). 1441 DagInit *CodeDag = R->getValueAsDag("codegen"); 1442 Record *MainOp = cast<DefInit>(CodeDag->getOperator())->getDef(); 1443 if (MainOp->isSubClassOf("CustomCodegen")) { 1444 // Or, if it's the special case of CustomCodegen, just accumulate 1445 // a list of parameters we're going to assign to variables before 1446 // breaking from the loop. 1447 CustomCodeGenArgs["CustomCodeGenType"] = 1448 (Twine("CustomCodeGen::") + MainOp->getValueAsString("type")).str(); 1449 for (unsigned i = 0, e = CodeDag->getNumArgs(); i < e; ++i) { 1450 StringRef Name = CodeDag->getArgNameStr(i); 1451 if (Name.empty()) { 1452 PrintFatalError("Operands to CustomCodegen should have names"); 1453 } else if (auto *II = dyn_cast<IntInit>(CodeDag->getArg(i))) { 1454 CustomCodeGenArgs[std::string(Name)] = itostr(II->getValue()); 1455 } else if (auto *SI = dyn_cast<StringInit>(CodeDag->getArg(i))) { 1456 CustomCodeGenArgs[std::string(Name)] = std::string(SI->getValue()); 1457 } else { 1458 PrintFatalError("Operands to CustomCodegen should be integers"); 1459 } 1460 } 1461 } else { 1462 Code = ME.getCodeForDag(CodeDag, Scope, Param); 1463 } 1464 } 1465 1466 EmitterBase::EmitterBase(RecordKeeper &Records) { 1467 // Construct the whole EmitterBase. 1468 1469 // First, look up all the instances of PrimitiveType. This gives us the list 1470 // of vector typedefs we have to put in arm_mve.h, and also allows us to 1471 // collect all the useful ScalarType instances into a big list so that we can 1472 // use it for operations such as 'find the unsigned version of this signed 1473 // integer type'. 1474 for (Record *R : Records.getAllDerivedDefinitions("PrimitiveType")) 1475 ScalarTypes[std::string(R->getName())] = std::make_unique<ScalarType>(R); 1476 1477 // Now go through the instances of Intrinsic, and for each one, iterate 1478 // through its list of type parameters making an ACLEIntrinsic for each one. 1479 for (Record *R : Records.getAllDerivedDefinitions("Intrinsic")) { 1480 for (Record *RParam : R->getValueAsListOfDefs("params")) { 1481 const Type *Param = getType(RParam, getVoidType()); 1482 auto Intrinsic = std::make_unique<ACLEIntrinsic>(*this, R, Param); 1483 ACLEIntrinsics[Intrinsic->fullName()] = std::move(Intrinsic); 1484 } 1485 } 1486 } 1487 1488 /// A wrapper on raw_string_ostream that contains its own buffer rather than 1489 /// having to point it at one elsewhere. (In other words, it works just like 1490 /// std::ostringstream; also, this makes it convenient to declare a whole array 1491 /// of them at once.) 1492 /// 1493 /// We have to set this up using multiple inheritance, to ensure that the 1494 /// string member has been constructed before raw_string_ostream's constructor 1495 /// is given a pointer to it. 1496 class string_holder { 1497 protected: 1498 std::string S; 1499 }; 1500 class raw_self_contained_string_ostream : private string_holder, 1501 public raw_string_ostream { 1502 public: 1503 raw_self_contained_string_ostream() : raw_string_ostream(S) {} 1504 }; 1505 1506 const char LLVMLicenseHeader[] = 1507 " *\n" 1508 " *\n" 1509 " * Part of the LLVM Project, under the Apache License v2.0 with LLVM" 1510 " Exceptions.\n" 1511 " * See https://llvm.org/LICENSE.txt for license information.\n" 1512 " * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception\n" 1513 " *\n" 1514 " *===-----------------------------------------------------------------" 1515 "------===\n" 1516 " */\n" 1517 "\n"; 1518 1519 // Machinery for the grouping of intrinsics by similar codegen. 1520 // 1521 // The general setup is that 'MergeableGroup' stores the things that a set of 1522 // similarly shaped intrinsics have in common: the text of their code 1523 // generation, and the number and type of their parameter variables. 1524 // MergeableGroup is the key in a std::map whose value is a set of 1525 // OutputIntrinsic, which stores the ways in which a particular intrinsic 1526 // specializes the MergeableGroup's generic description: the function name and 1527 // the _values_ of the parameter variables. 1528 1529 struct ComparableStringVector : std::vector<std::string> { 1530 // Infrastructure: a derived class of vector<string> which comes with an 1531 // ordering, so that it can be used as a key in maps and an element in sets. 1532 // There's no requirement on the ordering beyond being deterministic. 1533 bool operator<(const ComparableStringVector &rhs) const { 1534 if (size() != rhs.size()) 1535 return size() < rhs.size(); 1536 for (size_t i = 0, e = size(); i < e; ++i) 1537 if ((*this)[i] != rhs[i]) 1538 return (*this)[i] < rhs[i]; 1539 return false; 1540 } 1541 }; 1542 1543 struct OutputIntrinsic { 1544 const ACLEIntrinsic *Int; 1545 std::string Name; 1546 ComparableStringVector ParamValues; 1547 bool operator<(const OutputIntrinsic &rhs) const { 1548 if (Name != rhs.Name) 1549 return Name < rhs.Name; 1550 return ParamValues < rhs.ParamValues; 1551 } 1552 }; 1553 struct MergeableGroup { 1554 std::string Code; 1555 ComparableStringVector ParamTypes; 1556 bool operator<(const MergeableGroup &rhs) const { 1557 if (Code != rhs.Code) 1558 return Code < rhs.Code; 1559 return ParamTypes < rhs.ParamTypes; 1560 } 1561 }; 1562 1563 void EmitterBase::EmitBuiltinCG(raw_ostream &OS) { 1564 // Pass 1: generate code for all the intrinsics as if every type or constant 1565 // that can possibly be abstracted out into a parameter variable will be. 1566 // This identifies the sets of intrinsics we'll group together into a single 1567 // piece of code generation. 1568 1569 std::map<MergeableGroup, std::set<OutputIntrinsic>> MergeableGroupsPrelim; 1570 1571 for (const auto &kv : ACLEIntrinsics) { 1572 const ACLEIntrinsic &Int = *kv.second; 1573 if (Int.headerOnly()) 1574 continue; 1575 1576 MergeableGroup MG; 1577 OutputIntrinsic OI; 1578 1579 OI.Int = ∬ 1580 OI.Name = Int.fullName(); 1581 CodeGenParamAllocator ParamAllocPrelim{&MG.ParamTypes, &OI.ParamValues}; 1582 raw_string_ostream OS(MG.Code); 1583 Int.genCode(OS, ParamAllocPrelim, 1); 1584 OS.flush(); 1585 1586 MergeableGroupsPrelim[MG].insert(OI); 1587 } 1588 1589 // Pass 2: for each of those groups, optimize the parameter variable set by 1590 // eliminating 'parameters' that are the same for all intrinsics in the 1591 // group, and merging together pairs of parameter variables that take the 1592 // same values as each other for all intrinsics in the group. 1593 1594 std::map<MergeableGroup, std::set<OutputIntrinsic>> MergeableGroups; 1595 1596 for (const auto &kv : MergeableGroupsPrelim) { 1597 const MergeableGroup &MG = kv.first; 1598 std::vector<int> ParamNumbers; 1599 std::map<ComparableStringVector, int> ParamNumberMap; 1600 1601 // Loop over the parameters for this group. 1602 for (size_t i = 0, e = MG.ParamTypes.size(); i < e; ++i) { 1603 // Is this parameter the same for all intrinsics in the group? 1604 const OutputIntrinsic &OI_first = *kv.second.begin(); 1605 bool Constant = all_of(kv.second, [&](const OutputIntrinsic &OI) { 1606 return OI.ParamValues[i] == OI_first.ParamValues[i]; 1607 }); 1608 1609 // If so, record it as -1, meaning 'no parameter variable needed'. Then 1610 // the corresponding call to allocParam in pass 2 will not generate a 1611 // variable at all, and just use the value inline. 1612 if (Constant) { 1613 ParamNumbers.push_back(-1); 1614 continue; 1615 } 1616 1617 // Otherwise, make a list of the values this parameter takes for each 1618 // intrinsic, and see if that value vector matches anything we already 1619 // have. We also record the parameter type, so that we don't accidentally 1620 // match up two parameter variables with different types. (Not that 1621 // there's much chance of them having textually equivalent values, but in 1622 // _principle_ it could happen.) 1623 ComparableStringVector key; 1624 key.push_back(MG.ParamTypes[i]); 1625 for (const auto &OI : kv.second) 1626 key.push_back(OI.ParamValues[i]); 1627 1628 auto Found = ParamNumberMap.find(key); 1629 if (Found != ParamNumberMap.end()) { 1630 // Yes, an existing parameter variable can be reused for this. 1631 ParamNumbers.push_back(Found->second); 1632 continue; 1633 } 1634 1635 // No, we need a new parameter variable. 1636 int ExistingIndex = ParamNumberMap.size(); 1637 ParamNumberMap[key] = ExistingIndex; 1638 ParamNumbers.push_back(ExistingIndex); 1639 } 1640 1641 // Now we're ready to do the pass 2 code generation, which will emit the 1642 // reduced set of parameter variables we've just worked out. 1643 1644 for (const auto &OI_prelim : kv.second) { 1645 const ACLEIntrinsic *Int = OI_prelim.Int; 1646 1647 MergeableGroup MG; 1648 OutputIntrinsic OI; 1649 1650 OI.Int = OI_prelim.Int; 1651 OI.Name = OI_prelim.Name; 1652 CodeGenParamAllocator ParamAlloc{&MG.ParamTypes, &OI.ParamValues, 1653 &ParamNumbers}; 1654 raw_string_ostream OS(MG.Code); 1655 Int->genCode(OS, ParamAlloc, 2); 1656 OS.flush(); 1657 1658 MergeableGroups[MG].insert(OI); 1659 } 1660 } 1661 1662 // Output the actual C++ code. 1663 1664 for (const auto &kv : MergeableGroups) { 1665 const MergeableGroup &MG = kv.first; 1666 1667 // List of case statements in the main switch on BuiltinID, and an open 1668 // brace. 1669 const char *prefix = ""; 1670 for (const auto &OI : kv.second) { 1671 OS << prefix << "case ARM::BI__builtin_arm_" << OI.Int->builtinExtension() 1672 << "_" << OI.Name << ":"; 1673 1674 prefix = "\n"; 1675 } 1676 OS << " {\n"; 1677 1678 if (!MG.ParamTypes.empty()) { 1679 // If we've got some parameter variables, then emit their declarations... 1680 for (size_t i = 0, e = MG.ParamTypes.size(); i < e; ++i) { 1681 StringRef Type = MG.ParamTypes[i]; 1682 OS << " " << Type; 1683 if (!Type.endswith("*")) 1684 OS << " "; 1685 OS << " Param" << utostr(i) << ";\n"; 1686 } 1687 1688 // ... and an inner switch on BuiltinID that will fill them in with each 1689 // individual intrinsic's values. 1690 OS << " switch (BuiltinID) {\n"; 1691 for (const auto &OI : kv.second) { 1692 OS << " case ARM::BI__builtin_arm_" << OI.Int->builtinExtension() 1693 << "_" << OI.Name << ":\n"; 1694 for (size_t i = 0, e = MG.ParamTypes.size(); i < e; ++i) 1695 OS << " Param" << utostr(i) << " = " << OI.ParamValues[i] << ";\n"; 1696 OS << " break;\n"; 1697 } 1698 OS << " }\n"; 1699 } 1700 1701 // And finally, output the code, and close the outer pair of braces. (The 1702 // code will always end with a 'return' statement, so we need not insert a 1703 // 'break' here.) 1704 OS << MG.Code << "}\n"; 1705 } 1706 } 1707 1708 void EmitterBase::EmitBuiltinAliases(raw_ostream &OS) { 1709 // Build a sorted table of: 1710 // - intrinsic id number 1711 // - full name 1712 // - polymorphic name or -1 1713 StringToOffsetTable StringTable; 1714 OS << "static const IntrinToName MapData[] = {\n"; 1715 for (const auto &kv : ACLEIntrinsics) { 1716 const ACLEIntrinsic &Int = *kv.second; 1717 if (Int.headerOnly()) 1718 continue; 1719 int32_t ShortNameOffset = 1720 Int.polymorphic() ? StringTable.GetOrAddStringOffset(Int.shortName()) 1721 : -1; 1722 OS << " { ARM::BI__builtin_arm_" << Int.builtinExtension() << "_" 1723 << Int.fullName() << ", " 1724 << StringTable.GetOrAddStringOffset(Int.fullName()) << ", " 1725 << ShortNameOffset << "},\n"; 1726 } 1727 OS << "};\n\n"; 1728 1729 OS << "ArrayRef<IntrinToName> Map(MapData);\n\n"; 1730 1731 OS << "static const char IntrinNames[] = {\n"; 1732 StringTable.EmitString(OS); 1733 OS << "};\n\n"; 1734 } 1735 1736 void EmitterBase::GroupSemaChecks( 1737 std::map<std::string, std::set<std::string>> &Checks) { 1738 for (const auto &kv : ACLEIntrinsics) { 1739 const ACLEIntrinsic &Int = *kv.second; 1740 if (Int.headerOnly()) 1741 continue; 1742 std::string Check = Int.genSema(); 1743 if (!Check.empty()) 1744 Checks[Check].insert(Int.fullName()); 1745 } 1746 } 1747 1748 // ----------------------------------------------------------------------------- 1749 // The class used for generating arm_mve.h and related Clang bits 1750 // 1751 1752 class MveEmitter : public EmitterBase { 1753 public: 1754 MveEmitter(RecordKeeper &Records) : EmitterBase(Records){}; 1755 void EmitHeader(raw_ostream &OS) override; 1756 void EmitBuiltinDef(raw_ostream &OS) override; 1757 void EmitBuiltinSema(raw_ostream &OS) override; 1758 }; 1759 1760 void MveEmitter::EmitHeader(raw_ostream &OS) { 1761 // Accumulate pieces of the header file that will be enabled under various 1762 // different combinations of #ifdef. The index into parts[] is made up of 1763 // the following bit flags. 1764 constexpr unsigned Float = 1; 1765 constexpr unsigned UseUserNamespace = 2; 1766 1767 constexpr unsigned NumParts = 4; 1768 raw_self_contained_string_ostream parts[NumParts]; 1769 1770 // Write typedefs for all the required vector types, and a few scalar 1771 // types that don't already have the name we want them to have. 1772 1773 parts[0] << "typedef uint16_t mve_pred16_t;\n"; 1774 parts[Float] << "typedef __fp16 float16_t;\n" 1775 "typedef float float32_t;\n"; 1776 for (const auto &kv : ScalarTypes) { 1777 const ScalarType *ST = kv.second.get(); 1778 if (ST->hasNonstandardName()) 1779 continue; 1780 raw_ostream &OS = parts[ST->requiresFloat() ? Float : 0]; 1781 const VectorType *VT = getVectorType(ST); 1782 1783 OS << "typedef __attribute__((__neon_vector_type__(" << VT->lanes() 1784 << "), __clang_arm_mve_strict_polymorphism)) " << ST->cName() << " " 1785 << VT->cName() << ";\n"; 1786 1787 // Every vector type also comes with a pair of multi-vector types for 1788 // the VLD2 and VLD4 instructions. 1789 for (unsigned n = 2; n <= 4; n += 2) { 1790 const MultiVectorType *MT = getMultiVectorType(n, VT); 1791 OS << "typedef struct { " << VT->cName() << " val[" << n << "]; } " 1792 << MT->cName() << ";\n"; 1793 } 1794 } 1795 parts[0] << "\n"; 1796 parts[Float] << "\n"; 1797 1798 // Write declarations for all the intrinsics. 1799 1800 for (const auto &kv : ACLEIntrinsics) { 1801 const ACLEIntrinsic &Int = *kv.second; 1802 1803 // We generate each intrinsic twice, under its full unambiguous 1804 // name and its shorter polymorphic name (if the latter exists). 1805 for (bool Polymorphic : {false, true}) { 1806 if (Polymorphic && !Int.polymorphic()) 1807 continue; 1808 if (!Polymorphic && Int.polymorphicOnly()) 1809 continue; 1810 1811 // We also generate each intrinsic under a name like __arm_vfooq 1812 // (which is in C language implementation namespace, so it's 1813 // safe to define in any conforming user program) and a shorter 1814 // one like vfooq (which is in user namespace, so a user might 1815 // reasonably have used it for something already). If so, they 1816 // can #define __ARM_MVE_PRESERVE_USER_NAMESPACE before 1817 // including the header, which will suppress the shorter names 1818 // and leave only the implementation-namespace ones. Then they 1819 // have to write __arm_vfooq everywhere, of course. 1820 1821 for (bool UserNamespace : {false, true}) { 1822 raw_ostream &OS = parts[(Int.requiresFloat() ? Float : 0) | 1823 (UserNamespace ? UseUserNamespace : 0)]; 1824 1825 // Make the name of the function in this declaration. 1826 1827 std::string FunctionName = 1828 Polymorphic ? Int.shortName() : Int.fullName(); 1829 if (!UserNamespace) 1830 FunctionName = "__arm_" + FunctionName; 1831 1832 // Make strings for the types involved in the function's 1833 // prototype. 1834 1835 std::string RetTypeName = Int.returnType()->cName(); 1836 if (!StringRef(RetTypeName).endswith("*")) 1837 RetTypeName += " "; 1838 1839 std::vector<std::string> ArgTypeNames; 1840 for (const Type *ArgTypePtr : Int.argTypes()) 1841 ArgTypeNames.push_back(ArgTypePtr->cName()); 1842 std::string ArgTypesString = 1843 join(std::begin(ArgTypeNames), std::end(ArgTypeNames), ", "); 1844 1845 // Emit the actual declaration. All these functions are 1846 // declared 'static inline' without a body, which is fine 1847 // provided clang recognizes them as builtins, and has the 1848 // effect that this type signature is used in place of the one 1849 // that Builtins.def didn't provide. That's how we can get 1850 // structure types that weren't defined until this header was 1851 // included to be part of the type signature of a builtin that 1852 // was known to clang already. 1853 // 1854 // The declarations use __attribute__(__clang_arm_builtin_alias), 1855 // so that each function declared will be recognized as the 1856 // appropriate MVE builtin in spite of its user-facing name. 1857 // 1858 // (That's better than making them all wrapper functions, 1859 // partly because it avoids any compiler error message citing 1860 // the wrapper function definition instead of the user's code, 1861 // and mostly because some MVE intrinsics have arguments 1862 // required to be compile-time constants, and that property 1863 // can't be propagated through a wrapper function. It can be 1864 // propagated through a macro, but macros can't be overloaded 1865 // on argument types very easily - you have to use _Generic, 1866 // which makes error messages very confusing when the user 1867 // gets it wrong.) 1868 // 1869 // Finally, the polymorphic versions of the intrinsics are 1870 // also defined with __attribute__(overloadable), so that when 1871 // the same name is defined with several type signatures, the 1872 // right thing happens. Each one of the overloaded 1873 // declarations is given a different builtin id, which 1874 // has exactly the effect we want: first clang resolves the 1875 // overload to the right function, then it knows which builtin 1876 // it's referring to, and then the Sema checking for that 1877 // builtin can check further things like the constant 1878 // arguments. 1879 // 1880 // One more subtlety is the newline just before the return 1881 // type name. That's a cosmetic tweak to make the error 1882 // messages legible if the user gets the types wrong in a call 1883 // to a polymorphic function: this way, clang will print just 1884 // the _final_ line of each declaration in the header, to show 1885 // the type signatures that would have been legal. So all the 1886 // confusing machinery with __attribute__ is left out of the 1887 // error message, and the user sees something that's more or 1888 // less self-documenting: "here's a list of actually readable 1889 // type signatures for vfooq(), and here's why each one didn't 1890 // match your call". 1891 1892 OS << "static __inline__ __attribute__((" 1893 << (Polymorphic ? "__overloadable__, " : "") 1894 << "__clang_arm_builtin_alias(__builtin_arm_mve_" << Int.fullName() 1895 << ")))\n" 1896 << RetTypeName << FunctionName << "(" << ArgTypesString << ");\n"; 1897 } 1898 } 1899 } 1900 for (auto &part : parts) 1901 part << "\n"; 1902 1903 // Now we've finished accumulating bits and pieces into the parts[] array. 1904 // Put it all together to write the final output file. 1905 1906 OS << "/*===---- arm_mve.h - ARM MVE intrinsics " 1907 "-----------------------------------===\n" 1908 << LLVMLicenseHeader 1909 << "#ifndef __ARM_MVE_H\n" 1910 "#define __ARM_MVE_H\n" 1911 "\n" 1912 "#if !__ARM_FEATURE_MVE\n" 1913 "#error \"MVE support not enabled\"\n" 1914 "#endif\n" 1915 "\n" 1916 "#include <stdint.h>\n" 1917 "\n" 1918 "#ifdef __cplusplus\n" 1919 "extern \"C\" {\n" 1920 "#endif\n" 1921 "\n"; 1922 1923 for (size_t i = 0; i < NumParts; ++i) { 1924 std::vector<std::string> conditions; 1925 if (i & Float) 1926 conditions.push_back("(__ARM_FEATURE_MVE & 2)"); 1927 if (i & UseUserNamespace) 1928 conditions.push_back("(!defined __ARM_MVE_PRESERVE_USER_NAMESPACE)"); 1929 1930 std::string condition = 1931 join(std::begin(conditions), std::end(conditions), " && "); 1932 if (!condition.empty()) 1933 OS << "#if " << condition << "\n\n"; 1934 OS << parts[i].str(); 1935 if (!condition.empty()) 1936 OS << "#endif /* " << condition << " */\n\n"; 1937 } 1938 1939 OS << "#ifdef __cplusplus\n" 1940 "} /* extern \"C\" */\n" 1941 "#endif\n" 1942 "\n" 1943 "#endif /* __ARM_MVE_H */\n"; 1944 } 1945 1946 void MveEmitter::EmitBuiltinDef(raw_ostream &OS) { 1947 for (const auto &kv : ACLEIntrinsics) { 1948 const ACLEIntrinsic &Int = *kv.second; 1949 OS << "BUILTIN(__builtin_arm_mve_" << Int.fullName() 1950 << ", \"\", \"n\")\n"; 1951 } 1952 1953 std::set<std::string> ShortNamesSeen; 1954 1955 for (const auto &kv : ACLEIntrinsics) { 1956 const ACLEIntrinsic &Int = *kv.second; 1957 if (Int.polymorphic()) { 1958 StringRef Name = Int.shortName(); 1959 if (ShortNamesSeen.find(std::string(Name)) == ShortNamesSeen.end()) { 1960 OS << "BUILTIN(__builtin_arm_mve_" << Name << ", \"vi.\", \"nt"; 1961 if (Int.nonEvaluating()) 1962 OS << "u"; // indicate that this builtin doesn't evaluate its args 1963 OS << "\")\n"; 1964 ShortNamesSeen.insert(std::string(Name)); 1965 } 1966 } 1967 } 1968 } 1969 1970 void MveEmitter::EmitBuiltinSema(raw_ostream &OS) { 1971 std::map<std::string, std::set<std::string>> Checks; 1972 GroupSemaChecks(Checks); 1973 1974 for (const auto &kv : Checks) { 1975 for (StringRef Name : kv.second) 1976 OS << "case ARM::BI__builtin_arm_mve_" << Name << ":\n"; 1977 OS << " return " << kv.first; 1978 } 1979 } 1980 1981 // ----------------------------------------------------------------------------- 1982 // Class that describes an ACLE intrinsic implemented as a macro. 1983 // 1984 // This class is used when the intrinsic is polymorphic in 2 or 3 types, but we 1985 // want to avoid a combinatorial explosion by reinterpreting the arguments to 1986 // fixed types. 1987 1988 class FunctionMacro { 1989 std::vector<StringRef> Params; 1990 StringRef Definition; 1991 1992 public: 1993 FunctionMacro(const Record &R); 1994 1995 const std::vector<StringRef> &getParams() const { return Params; } 1996 StringRef getDefinition() const { return Definition; } 1997 }; 1998 1999 FunctionMacro::FunctionMacro(const Record &R) { 2000 Params = R.getValueAsListOfStrings("params"); 2001 Definition = R.getValueAsString("definition"); 2002 } 2003 2004 // ----------------------------------------------------------------------------- 2005 // The class used for generating arm_cde.h and related Clang bits 2006 // 2007 2008 class CdeEmitter : public EmitterBase { 2009 std::map<StringRef, FunctionMacro> FunctionMacros; 2010 2011 public: 2012 CdeEmitter(RecordKeeper &Records); 2013 void EmitHeader(raw_ostream &OS) override; 2014 void EmitBuiltinDef(raw_ostream &OS) override; 2015 void EmitBuiltinSema(raw_ostream &OS) override; 2016 }; 2017 2018 CdeEmitter::CdeEmitter(RecordKeeper &Records) : EmitterBase(Records) { 2019 for (Record *R : Records.getAllDerivedDefinitions("FunctionMacro")) 2020 FunctionMacros.emplace(R->getName(), FunctionMacro(*R)); 2021 } 2022 2023 void CdeEmitter::EmitHeader(raw_ostream &OS) { 2024 // Accumulate pieces of the header file that will be enabled under various 2025 // different combinations of #ifdef. The index into parts[] is one of the 2026 // following: 2027 constexpr unsigned None = 0; 2028 constexpr unsigned MVE = 1; 2029 constexpr unsigned MVEFloat = 2; 2030 2031 constexpr unsigned NumParts = 3; 2032 raw_self_contained_string_ostream parts[NumParts]; 2033 2034 // Write typedefs for all the required vector types, and a few scalar 2035 // types that don't already have the name we want them to have. 2036 2037 parts[MVE] << "typedef uint16_t mve_pred16_t;\n"; 2038 parts[MVEFloat] << "typedef __fp16 float16_t;\n" 2039 "typedef float float32_t;\n"; 2040 for (const auto &kv : ScalarTypes) { 2041 const ScalarType *ST = kv.second.get(); 2042 if (ST->hasNonstandardName()) 2043 continue; 2044 // We don't have float64x2_t 2045 if (ST->kind() == ScalarTypeKind::Float && ST->sizeInBits() == 64) 2046 continue; 2047 raw_ostream &OS = parts[ST->requiresFloat() ? MVEFloat : MVE]; 2048 const VectorType *VT = getVectorType(ST); 2049 2050 OS << "typedef __attribute__((__neon_vector_type__(" << VT->lanes() 2051 << "), __clang_arm_mve_strict_polymorphism)) " << ST->cName() << " " 2052 << VT->cName() << ";\n"; 2053 } 2054 parts[MVE] << "\n"; 2055 parts[MVEFloat] << "\n"; 2056 2057 // Write declarations for all the intrinsics. 2058 2059 for (const auto &kv : ACLEIntrinsics) { 2060 const ACLEIntrinsic &Int = *kv.second; 2061 2062 // We generate each intrinsic twice, under its full unambiguous 2063 // name and its shorter polymorphic name (if the latter exists). 2064 for (bool Polymorphic : {false, true}) { 2065 if (Polymorphic && !Int.polymorphic()) 2066 continue; 2067 if (!Polymorphic && Int.polymorphicOnly()) 2068 continue; 2069 2070 raw_ostream &OS = 2071 parts[Int.requiresFloat() ? MVEFloat 2072 : Int.requiresMVE() ? MVE : None]; 2073 2074 // Make the name of the function in this declaration. 2075 std::string FunctionName = 2076 "__arm_" + (Polymorphic ? Int.shortName() : Int.fullName()); 2077 2078 // Make strings for the types involved in the function's 2079 // prototype. 2080 std::string RetTypeName = Int.returnType()->cName(); 2081 if (!StringRef(RetTypeName).endswith("*")) 2082 RetTypeName += " "; 2083 2084 std::vector<std::string> ArgTypeNames; 2085 for (const Type *ArgTypePtr : Int.argTypes()) 2086 ArgTypeNames.push_back(ArgTypePtr->cName()); 2087 std::string ArgTypesString = 2088 join(std::begin(ArgTypeNames), std::end(ArgTypeNames), ", "); 2089 2090 // Emit the actual declaration. See MveEmitter::EmitHeader for detailed 2091 // comments 2092 OS << "static __inline__ __attribute__((" 2093 << (Polymorphic ? "__overloadable__, " : "") 2094 << "__clang_arm_builtin_alias(__builtin_arm_" << Int.builtinExtension() 2095 << "_" << Int.fullName() << ")))\n" 2096 << RetTypeName << FunctionName << "(" << ArgTypesString << ");\n"; 2097 } 2098 } 2099 2100 for (const auto &kv : FunctionMacros) { 2101 StringRef Name = kv.first; 2102 const FunctionMacro &FM = kv.second; 2103 2104 raw_ostream &OS = parts[MVE]; 2105 OS << "#define " 2106 << "__arm_" << Name << "(" << join(FM.getParams(), ", ") << ") " 2107 << FM.getDefinition() << "\n"; 2108 } 2109 2110 for (auto &part : parts) 2111 part << "\n"; 2112 2113 // Now we've finished accumulating bits and pieces into the parts[] array. 2114 // Put it all together to write the final output file. 2115 2116 OS << "/*===---- arm_cde.h - ARM CDE intrinsics " 2117 "-----------------------------------===\n" 2118 << LLVMLicenseHeader 2119 << "#ifndef __ARM_CDE_H\n" 2120 "#define __ARM_CDE_H\n" 2121 "\n" 2122 "#if !__ARM_FEATURE_CDE\n" 2123 "#error \"CDE support not enabled\"\n" 2124 "#endif\n" 2125 "\n" 2126 "#include <stdint.h>\n" 2127 "\n" 2128 "#ifdef __cplusplus\n" 2129 "extern \"C\" {\n" 2130 "#endif\n" 2131 "\n"; 2132 2133 for (size_t i = 0; i < NumParts; ++i) { 2134 std::string condition; 2135 if (i == MVEFloat) 2136 condition = "__ARM_FEATURE_MVE & 2"; 2137 else if (i == MVE) 2138 condition = "__ARM_FEATURE_MVE"; 2139 2140 if (!condition.empty()) 2141 OS << "#if " << condition << "\n\n"; 2142 OS << parts[i].str(); 2143 if (!condition.empty()) 2144 OS << "#endif /* " << condition << " */\n\n"; 2145 } 2146 2147 OS << "#ifdef __cplusplus\n" 2148 "} /* extern \"C\" */\n" 2149 "#endif\n" 2150 "\n" 2151 "#endif /* __ARM_CDE_H */\n"; 2152 } 2153 2154 void CdeEmitter::EmitBuiltinDef(raw_ostream &OS) { 2155 for (const auto &kv : ACLEIntrinsics) { 2156 if (kv.second->headerOnly()) 2157 continue; 2158 const ACLEIntrinsic &Int = *kv.second; 2159 OS << "BUILTIN(__builtin_arm_cde_" << Int.fullName() 2160 << ", \"\", \"ncU\")\n"; 2161 } 2162 } 2163 2164 void CdeEmitter::EmitBuiltinSema(raw_ostream &OS) { 2165 std::map<std::string, std::set<std::string>> Checks; 2166 GroupSemaChecks(Checks); 2167 2168 for (const auto &kv : Checks) { 2169 for (StringRef Name : kv.second) 2170 OS << "case ARM::BI__builtin_arm_cde_" << Name << ":\n"; 2171 OS << " Err = " << kv.first << " break;\n"; 2172 } 2173 } 2174 2175 } // namespace 2176 2177 namespace clang { 2178 2179 // MVE 2180 2181 void EmitMveHeader(RecordKeeper &Records, raw_ostream &OS) { 2182 MveEmitter(Records).EmitHeader(OS); 2183 } 2184 2185 void EmitMveBuiltinDef(RecordKeeper &Records, raw_ostream &OS) { 2186 MveEmitter(Records).EmitBuiltinDef(OS); 2187 } 2188 2189 void EmitMveBuiltinSema(RecordKeeper &Records, raw_ostream &OS) { 2190 MveEmitter(Records).EmitBuiltinSema(OS); 2191 } 2192 2193 void EmitMveBuiltinCG(RecordKeeper &Records, raw_ostream &OS) { 2194 MveEmitter(Records).EmitBuiltinCG(OS); 2195 } 2196 2197 void EmitMveBuiltinAliases(RecordKeeper &Records, raw_ostream &OS) { 2198 MveEmitter(Records).EmitBuiltinAliases(OS); 2199 } 2200 2201 // CDE 2202 2203 void EmitCdeHeader(RecordKeeper &Records, raw_ostream &OS) { 2204 CdeEmitter(Records).EmitHeader(OS); 2205 } 2206 2207 void EmitCdeBuiltinDef(RecordKeeper &Records, raw_ostream &OS) { 2208 CdeEmitter(Records).EmitBuiltinDef(OS); 2209 } 2210 2211 void EmitCdeBuiltinSema(RecordKeeper &Records, raw_ostream &OS) { 2212 CdeEmitter(Records).EmitBuiltinSema(OS); 2213 } 2214 2215 void EmitCdeBuiltinCG(RecordKeeper &Records, raw_ostream &OS) { 2216 CdeEmitter(Records).EmitBuiltinCG(OS); 2217 } 2218 2219 void EmitCdeBuiltinAliases(RecordKeeper &Records, raw_ostream &OS) { 2220 CdeEmitter(Records).EmitBuiltinAliases(OS); 2221 } 2222 2223 } // end namespace clang 2224