1 //===- ClangAttrEmitter.cpp - Generate Clang attribute handling =-*- C++ -*--=// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These tablegen backends emit Clang attribute processing code 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "TableGenBackends.h" 14 #include "ASTTableGen.h" 15 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/MapVector.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallString.h" 22 #include "llvm/ADT/StringExtras.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/StringSet.h" 25 #include "llvm/ADT/StringSwitch.h" 26 #include "llvm/ADT/iterator_range.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include "llvm/TableGen/Error.h" 30 #include "llvm/TableGen/Record.h" 31 #include "llvm/TableGen/StringMatcher.h" 32 #include "llvm/TableGen/TableGenBackend.h" 33 #include <algorithm> 34 #include <cassert> 35 #include <cctype> 36 #include <cstddef> 37 #include <cstdint> 38 #include <map> 39 #include <memory> 40 #include <set> 41 #include <sstream> 42 #include <string> 43 #include <utility> 44 #include <vector> 45 46 using namespace llvm; 47 48 namespace { 49 50 class FlattenedSpelling { 51 std::string V, N, NS; 52 bool K = false; 53 54 public: 55 FlattenedSpelling(const std::string &Variety, const std::string &Name, 56 const std::string &Namespace, bool KnownToGCC) : 57 V(Variety), N(Name), NS(Namespace), K(KnownToGCC) {} 58 explicit FlattenedSpelling(const Record &Spelling) 59 : V(std::string(Spelling.getValueAsString("Variety"))), 60 N(std::string(Spelling.getValueAsString("Name"))) { 61 assert(V != "GCC" && V != "Clang" && 62 "Given a GCC spelling, which means this hasn't been flattened!"); 63 if (V == "CXX11" || V == "C2x" || V == "Pragma") 64 NS = std::string(Spelling.getValueAsString("Namespace")); 65 } 66 67 const std::string &variety() const { return V; } 68 const std::string &name() const { return N; } 69 const std::string &nameSpace() const { return NS; } 70 bool knownToGCC() const { return K; } 71 }; 72 73 } // end anonymous namespace 74 75 static std::vector<FlattenedSpelling> 76 GetFlattenedSpellings(const Record &Attr) { 77 std::vector<Record *> Spellings = Attr.getValueAsListOfDefs("Spellings"); 78 std::vector<FlattenedSpelling> Ret; 79 80 for (const auto &Spelling : Spellings) { 81 StringRef Variety = Spelling->getValueAsString("Variety"); 82 StringRef Name = Spelling->getValueAsString("Name"); 83 if (Variety == "GCC") { 84 Ret.emplace_back("GNU", std::string(Name), "", true); 85 Ret.emplace_back("CXX11", std::string(Name), "gnu", true); 86 if (Spelling->getValueAsBit("AllowInC")) 87 Ret.emplace_back("C2x", std::string(Name), "gnu", true); 88 } else if (Variety == "Clang") { 89 Ret.emplace_back("GNU", std::string(Name), "", false); 90 Ret.emplace_back("CXX11", std::string(Name), "clang", false); 91 if (Spelling->getValueAsBit("AllowInC")) 92 Ret.emplace_back("C2x", std::string(Name), "clang", false); 93 } else 94 Ret.push_back(FlattenedSpelling(*Spelling)); 95 } 96 97 return Ret; 98 } 99 100 static std::string ReadPCHRecord(StringRef type) { 101 return StringSwitch<std::string>(type) 102 .EndsWith("Decl *", "Record.GetLocalDeclAs<" + 103 std::string(type.data(), 0, type.size() - 1) + 104 ">(Record.readInt())") 105 .Case("TypeSourceInfo *", "Record.readTypeSourceInfo()") 106 .Case("Expr *", "Record.readExpr()") 107 .Case("IdentifierInfo *", "Record.readIdentifier()") 108 .Case("StringRef", "Record.readString()") 109 .Case("ParamIdx", "ParamIdx::deserialize(Record.readInt())") 110 .Case("OMPTraitInfo *", "Record.readOMPTraitInfo()") 111 .Default("Record.readInt()"); 112 } 113 114 // Get a type that is suitable for storing an object of the specified type. 115 static StringRef getStorageType(StringRef type) { 116 return StringSwitch<StringRef>(type) 117 .Case("StringRef", "std::string") 118 .Default(type); 119 } 120 121 // Assumes that the way to get the value is SA->getname() 122 static std::string WritePCHRecord(StringRef type, StringRef name) { 123 return "Record." + 124 StringSwitch<std::string>(type) 125 .EndsWith("Decl *", "AddDeclRef(" + std::string(name) + ");\n") 126 .Case("TypeSourceInfo *", 127 "AddTypeSourceInfo(" + std::string(name) + ");\n") 128 .Case("Expr *", "AddStmt(" + std::string(name) + ");\n") 129 .Case("IdentifierInfo *", 130 "AddIdentifierRef(" + std::string(name) + ");\n") 131 .Case("StringRef", "AddString(" + std::string(name) + ");\n") 132 .Case("ParamIdx", 133 "push_back(" + std::string(name) + ".serialize());\n") 134 .Case("OMPTraitInfo *", 135 "writeOMPTraitInfo(" + std::string(name) + ");\n") 136 .Default("push_back(" + std::string(name) + ");\n"); 137 } 138 139 // Normalize attribute name by removing leading and trailing 140 // underscores. For example, __foo, foo__, __foo__ would 141 // become foo. 142 static StringRef NormalizeAttrName(StringRef AttrName) { 143 AttrName.consume_front("__"); 144 AttrName.consume_back("__"); 145 return AttrName; 146 } 147 148 // Normalize the name by removing any and all leading and trailing underscores. 149 // This is different from NormalizeAttrName in that it also handles names like 150 // _pascal and __pascal. 151 static StringRef NormalizeNameForSpellingComparison(StringRef Name) { 152 return Name.trim("_"); 153 } 154 155 // Normalize the spelling of a GNU attribute (i.e. "x" in "__attribute__((x))"), 156 // removing "__" if it appears at the beginning and end of the attribute's name. 157 static StringRef NormalizeGNUAttrSpelling(StringRef AttrSpelling) { 158 if (AttrSpelling.startswith("__") && AttrSpelling.endswith("__")) { 159 AttrSpelling = AttrSpelling.substr(2, AttrSpelling.size() - 4); 160 } 161 162 return AttrSpelling; 163 } 164 165 typedef std::vector<std::pair<std::string, const Record *>> ParsedAttrMap; 166 167 static ParsedAttrMap getParsedAttrList(const RecordKeeper &Records, 168 ParsedAttrMap *Dupes = nullptr) { 169 std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr"); 170 std::set<std::string> Seen; 171 ParsedAttrMap R; 172 for (const auto *Attr : Attrs) { 173 if (Attr->getValueAsBit("SemaHandler")) { 174 std::string AN; 175 if (Attr->isSubClassOf("TargetSpecificAttr") && 176 !Attr->isValueUnset("ParseKind")) { 177 AN = std::string(Attr->getValueAsString("ParseKind")); 178 179 // If this attribute has already been handled, it does not need to be 180 // handled again. 181 if (Seen.find(AN) != Seen.end()) { 182 if (Dupes) 183 Dupes->push_back(std::make_pair(AN, Attr)); 184 continue; 185 } 186 Seen.insert(AN); 187 } else 188 AN = NormalizeAttrName(Attr->getName()).str(); 189 190 R.push_back(std::make_pair(AN, Attr)); 191 } 192 } 193 return R; 194 } 195 196 namespace { 197 198 class Argument { 199 std::string lowerName, upperName; 200 StringRef attrName; 201 bool isOpt; 202 bool Fake; 203 204 public: 205 Argument(StringRef Arg, StringRef Attr) 206 : lowerName(std::string(Arg)), upperName(lowerName), attrName(Attr), 207 isOpt(false), Fake(false) { 208 if (!lowerName.empty()) { 209 lowerName[0] = std::tolower(lowerName[0]); 210 upperName[0] = std::toupper(upperName[0]); 211 } 212 // Work around MinGW's macro definition of 'interface' to 'struct'. We 213 // have an attribute argument called 'Interface', so only the lower case 214 // name conflicts with the macro definition. 215 if (lowerName == "interface") 216 lowerName = "interface_"; 217 } 218 Argument(const Record &Arg, StringRef Attr) 219 : Argument(Arg.getValueAsString("Name"), Attr) {} 220 virtual ~Argument() = default; 221 222 StringRef getLowerName() const { return lowerName; } 223 StringRef getUpperName() const { return upperName; } 224 StringRef getAttrName() const { return attrName; } 225 226 bool isOptional() const { return isOpt; } 227 void setOptional(bool set) { isOpt = set; } 228 229 bool isFake() const { return Fake; } 230 void setFake(bool fake) { Fake = fake; } 231 232 // These functions print the argument contents formatted in different ways. 233 virtual void writeAccessors(raw_ostream &OS) const = 0; 234 virtual void writeAccessorDefinitions(raw_ostream &OS) const {} 235 virtual void writeASTVisitorTraversal(raw_ostream &OS) const {} 236 virtual void writeCloneArgs(raw_ostream &OS) const = 0; 237 virtual void writeTemplateInstantiationArgs(raw_ostream &OS) const = 0; 238 virtual void writeTemplateInstantiation(raw_ostream &OS) const {} 239 virtual void writeCtorBody(raw_ostream &OS) const {} 240 virtual void writeCtorInitializers(raw_ostream &OS) const = 0; 241 virtual void writeCtorDefaultInitializers(raw_ostream &OS) const = 0; 242 virtual void writeCtorParameters(raw_ostream &OS) const = 0; 243 virtual void writeDeclarations(raw_ostream &OS) const = 0; 244 virtual void writePCHReadArgs(raw_ostream &OS) const = 0; 245 virtual void writePCHReadDecls(raw_ostream &OS) const = 0; 246 virtual void writePCHWrite(raw_ostream &OS) const = 0; 247 virtual std::string getIsOmitted() const { return "false"; } 248 virtual void writeValue(raw_ostream &OS) const = 0; 249 virtual void writeDump(raw_ostream &OS) const = 0; 250 virtual void writeDumpChildren(raw_ostream &OS) const {} 251 virtual void writeHasChildren(raw_ostream &OS) const { OS << "false"; } 252 253 virtual bool isEnumArg() const { return false; } 254 virtual bool isVariadicEnumArg() const { return false; } 255 virtual bool isVariadic() const { return false; } 256 257 virtual void writeImplicitCtorArgs(raw_ostream &OS) const { 258 OS << getUpperName(); 259 } 260 }; 261 262 class SimpleArgument : public Argument { 263 std::string type; 264 265 public: 266 SimpleArgument(const Record &Arg, StringRef Attr, std::string T) 267 : Argument(Arg, Attr), type(std::move(T)) {} 268 269 std::string getType() const { return type; } 270 271 void writeAccessors(raw_ostream &OS) const override { 272 OS << " " << type << " get" << getUpperName() << "() const {\n"; 273 OS << " return " << getLowerName() << ";\n"; 274 OS << " }"; 275 } 276 277 void writeCloneArgs(raw_ostream &OS) const override { 278 OS << getLowerName(); 279 } 280 281 void writeTemplateInstantiationArgs(raw_ostream &OS) const override { 282 OS << "A->get" << getUpperName() << "()"; 283 } 284 285 void writeCtorInitializers(raw_ostream &OS) const override { 286 OS << getLowerName() << "(" << getUpperName() << ")"; 287 } 288 289 void writeCtorDefaultInitializers(raw_ostream &OS) const override { 290 OS << getLowerName() << "()"; 291 } 292 293 void writeCtorParameters(raw_ostream &OS) const override { 294 OS << type << " " << getUpperName(); 295 } 296 297 void writeDeclarations(raw_ostream &OS) const override { 298 OS << type << " " << getLowerName() << ";"; 299 } 300 301 void writePCHReadDecls(raw_ostream &OS) const override { 302 std::string read = ReadPCHRecord(type); 303 OS << " " << type << " " << getLowerName() << " = " << read << ";\n"; 304 } 305 306 void writePCHReadArgs(raw_ostream &OS) const override { 307 OS << getLowerName(); 308 } 309 310 void writePCHWrite(raw_ostream &OS) const override { 311 OS << " " 312 << WritePCHRecord(type, 313 "SA->get" + std::string(getUpperName()) + "()"); 314 } 315 316 std::string getIsOmitted() const override { 317 if (type == "IdentifierInfo *") 318 return "!get" + getUpperName().str() + "()"; 319 if (type == "TypeSourceInfo *") 320 return "!get" + getUpperName().str() + "Loc()"; 321 if (type == "ParamIdx") 322 return "!get" + getUpperName().str() + "().isValid()"; 323 return "false"; 324 } 325 326 void writeValue(raw_ostream &OS) const override { 327 if (type == "FunctionDecl *") 328 OS << "\" << get" << getUpperName() 329 << "()->getNameInfo().getAsString() << \""; 330 else if (type == "IdentifierInfo *") 331 // Some non-optional (comma required) identifier arguments can be the 332 // empty string but are then recorded as a nullptr. 333 OS << "\" << (get" << getUpperName() << "() ? get" << getUpperName() 334 << "()->getName() : \"\") << \""; 335 else if (type == "VarDecl *") 336 OS << "\" << get" << getUpperName() << "()->getName() << \""; 337 else if (type == "TypeSourceInfo *") 338 OS << "\" << get" << getUpperName() << "().getAsString() << \""; 339 else if (type == "ParamIdx") 340 OS << "\" << get" << getUpperName() << "().getSourceIndex() << \""; 341 else 342 OS << "\" << get" << getUpperName() << "() << \""; 343 } 344 345 void writeDump(raw_ostream &OS) const override { 346 if (StringRef(type).endswith("Decl *")) { 347 OS << " OS << \" \";\n"; 348 OS << " dumpBareDeclRef(SA->get" << getUpperName() << "());\n"; 349 } else if (type == "IdentifierInfo *") { 350 // Some non-optional (comma required) identifier arguments can be the 351 // empty string but are then recorded as a nullptr. 352 OS << " if (SA->get" << getUpperName() << "())\n" 353 << " OS << \" \" << SA->get" << getUpperName() 354 << "()->getName();\n"; 355 } else if (type == "TypeSourceInfo *") { 356 if (isOptional()) 357 OS << " if (SA->get" << getUpperName() << "Loc())"; 358 OS << " OS << \" \" << SA->get" << getUpperName() 359 << "().getAsString();\n"; 360 } else if (type == "bool") { 361 OS << " if (SA->get" << getUpperName() << "()) OS << \" " 362 << getUpperName() << "\";\n"; 363 } else if (type == "int" || type == "unsigned") { 364 OS << " OS << \" \" << SA->get" << getUpperName() << "();\n"; 365 } else if (type == "ParamIdx") { 366 if (isOptional()) 367 OS << " if (SA->get" << getUpperName() << "().isValid())\n "; 368 OS << " OS << \" \" << SA->get" << getUpperName() 369 << "().getSourceIndex();\n"; 370 } else if (type == "OMPTraitInfo *") { 371 OS << " OS << \" \" << SA->get" << getUpperName() << "();\n"; 372 } else { 373 llvm_unreachable("Unknown SimpleArgument type!"); 374 } 375 } 376 }; 377 378 class DefaultSimpleArgument : public SimpleArgument { 379 int64_t Default; 380 381 public: 382 DefaultSimpleArgument(const Record &Arg, StringRef Attr, 383 std::string T, int64_t Default) 384 : SimpleArgument(Arg, Attr, T), Default(Default) {} 385 386 void writeAccessors(raw_ostream &OS) const override { 387 SimpleArgument::writeAccessors(OS); 388 389 OS << "\n\n static const " << getType() << " Default" << getUpperName() 390 << " = "; 391 if (getType() == "bool") 392 OS << (Default != 0 ? "true" : "false"); 393 else 394 OS << Default; 395 OS << ";"; 396 } 397 }; 398 399 class StringArgument : public Argument { 400 public: 401 StringArgument(const Record &Arg, StringRef Attr) 402 : Argument(Arg, Attr) 403 {} 404 405 void writeAccessors(raw_ostream &OS) const override { 406 OS << " llvm::StringRef get" << getUpperName() << "() const {\n"; 407 OS << " return llvm::StringRef(" << getLowerName() << ", " 408 << getLowerName() << "Length);\n"; 409 OS << " }\n"; 410 OS << " unsigned get" << getUpperName() << "Length() const {\n"; 411 OS << " return " << getLowerName() << "Length;\n"; 412 OS << " }\n"; 413 OS << " void set" << getUpperName() 414 << "(ASTContext &C, llvm::StringRef S) {\n"; 415 OS << " " << getLowerName() << "Length = S.size();\n"; 416 OS << " this->" << getLowerName() << " = new (C, 1) char [" 417 << getLowerName() << "Length];\n"; 418 OS << " if (!S.empty())\n"; 419 OS << " std::memcpy(this->" << getLowerName() << ", S.data(), " 420 << getLowerName() << "Length);\n"; 421 OS << " }"; 422 } 423 424 void writeCloneArgs(raw_ostream &OS) const override { 425 OS << "get" << getUpperName() << "()"; 426 } 427 428 void writeTemplateInstantiationArgs(raw_ostream &OS) const override { 429 OS << "A->get" << getUpperName() << "()"; 430 } 431 432 void writeCtorBody(raw_ostream &OS) const override { 433 OS << " if (!" << getUpperName() << ".empty())\n"; 434 OS << " std::memcpy(" << getLowerName() << ", " << getUpperName() 435 << ".data(), " << getLowerName() << "Length);\n"; 436 } 437 438 void writeCtorInitializers(raw_ostream &OS) const override { 439 OS << getLowerName() << "Length(" << getUpperName() << ".size())," 440 << getLowerName() << "(new (Ctx, 1) char[" << getLowerName() 441 << "Length])"; 442 } 443 444 void writeCtorDefaultInitializers(raw_ostream &OS) const override { 445 OS << getLowerName() << "Length(0)," << getLowerName() << "(nullptr)"; 446 } 447 448 void writeCtorParameters(raw_ostream &OS) const override { 449 OS << "llvm::StringRef " << getUpperName(); 450 } 451 452 void writeDeclarations(raw_ostream &OS) const override { 453 OS << "unsigned " << getLowerName() << "Length;\n"; 454 OS << "char *" << getLowerName() << ";"; 455 } 456 457 void writePCHReadDecls(raw_ostream &OS) const override { 458 OS << " std::string " << getLowerName() 459 << "= Record.readString();\n"; 460 } 461 462 void writePCHReadArgs(raw_ostream &OS) const override { 463 OS << getLowerName(); 464 } 465 466 void writePCHWrite(raw_ostream &OS) const override { 467 OS << " Record.AddString(SA->get" << getUpperName() << "());\n"; 468 } 469 470 void writeValue(raw_ostream &OS) const override { 471 OS << "\\\"\" << get" << getUpperName() << "() << \"\\\""; 472 } 473 474 void writeDump(raw_ostream &OS) const override { 475 OS << " OS << \" \\\"\" << SA->get" << getUpperName() 476 << "() << \"\\\"\";\n"; 477 } 478 }; 479 480 class AlignedArgument : public Argument { 481 public: 482 AlignedArgument(const Record &Arg, StringRef Attr) 483 : Argument(Arg, Attr) 484 {} 485 486 void writeAccessors(raw_ostream &OS) const override { 487 OS << " bool is" << getUpperName() << "Dependent() const;\n"; 488 OS << " bool is" << getUpperName() << "ErrorDependent() const;\n"; 489 490 OS << " unsigned get" << getUpperName() << "(ASTContext &Ctx) const;\n"; 491 492 OS << " bool is" << getUpperName() << "Expr() const {\n"; 493 OS << " return is" << getLowerName() << "Expr;\n"; 494 OS << " }\n"; 495 496 OS << " Expr *get" << getUpperName() << "Expr() const {\n"; 497 OS << " assert(is" << getLowerName() << "Expr);\n"; 498 OS << " return " << getLowerName() << "Expr;\n"; 499 OS << " }\n"; 500 501 OS << " TypeSourceInfo *get" << getUpperName() << "Type() const {\n"; 502 OS << " assert(!is" << getLowerName() << "Expr);\n"; 503 OS << " return " << getLowerName() << "Type;\n"; 504 OS << " }"; 505 } 506 507 void writeAccessorDefinitions(raw_ostream &OS) const override { 508 OS << "bool " << getAttrName() << "Attr::is" << getUpperName() 509 << "Dependent() const {\n"; 510 OS << " if (is" << getLowerName() << "Expr)\n"; 511 OS << " return " << getLowerName() << "Expr && (" << getLowerName() 512 << "Expr->isValueDependent() || " << getLowerName() 513 << "Expr->isTypeDependent());\n"; 514 OS << " else\n"; 515 OS << " return " << getLowerName() 516 << "Type->getType()->isDependentType();\n"; 517 OS << "}\n"; 518 519 OS << "bool " << getAttrName() << "Attr::is" << getUpperName() 520 << "ErrorDependent() const {\n"; 521 OS << " if (is" << getLowerName() << "Expr)\n"; 522 OS << " return " << getLowerName() << "Expr && " << getLowerName() 523 << "Expr->containsErrors();\n"; 524 OS << " return " << getLowerName() 525 << "Type->getType()->containsErrors();\n"; 526 OS << "}\n"; 527 528 // FIXME: Do not do the calculation here 529 // FIXME: Handle types correctly 530 // A null pointer means maximum alignment 531 OS << "unsigned " << getAttrName() << "Attr::get" << getUpperName() 532 << "(ASTContext &Ctx) const {\n"; 533 OS << " assert(!is" << getUpperName() << "Dependent());\n"; 534 OS << " if (is" << getLowerName() << "Expr)\n"; 535 OS << " return " << getLowerName() << "Expr ? " << getLowerName() 536 << "Expr->EvaluateKnownConstInt(Ctx).getZExtValue()" 537 << " * Ctx.getCharWidth() : " 538 << "Ctx.getTargetDefaultAlignForAttributeAligned();\n"; 539 OS << " else\n"; 540 OS << " return 0; // FIXME\n"; 541 OS << "}\n"; 542 } 543 544 void writeASTVisitorTraversal(raw_ostream &OS) const override { 545 StringRef Name = getUpperName(); 546 OS << " if (A->is" << Name << "Expr()) {\n" 547 << " if (!getDerived().TraverseStmt(A->get" << Name << "Expr()))\n" 548 << " return false;\n" 549 << " } else if (auto *TSI = A->get" << Name << "Type()) {\n" 550 << " if (!getDerived().TraverseTypeLoc(TSI->getTypeLoc()))\n" 551 << " return false;\n" 552 << " }\n"; 553 } 554 555 void writeCloneArgs(raw_ostream &OS) const override { 556 OS << "is" << getLowerName() << "Expr, is" << getLowerName() 557 << "Expr ? static_cast<void*>(" << getLowerName() 558 << "Expr) : " << getLowerName() 559 << "Type"; 560 } 561 562 void writeTemplateInstantiationArgs(raw_ostream &OS) const override { 563 // FIXME: move the definition in Sema::InstantiateAttrs to here. 564 // In the meantime, aligned attributes are cloned. 565 } 566 567 void writeCtorBody(raw_ostream &OS) const override { 568 OS << " if (is" << getLowerName() << "Expr)\n"; 569 OS << " " << getLowerName() << "Expr = reinterpret_cast<Expr *>(" 570 << getUpperName() << ");\n"; 571 OS << " else\n"; 572 OS << " " << getLowerName() 573 << "Type = reinterpret_cast<TypeSourceInfo *>(" << getUpperName() 574 << ");\n"; 575 } 576 577 void writeCtorInitializers(raw_ostream &OS) const override { 578 OS << "is" << getLowerName() << "Expr(Is" << getUpperName() << "Expr)"; 579 } 580 581 void writeCtorDefaultInitializers(raw_ostream &OS) const override { 582 OS << "is" << getLowerName() << "Expr(false)"; 583 } 584 585 void writeCtorParameters(raw_ostream &OS) const override { 586 OS << "bool Is" << getUpperName() << "Expr, void *" << getUpperName(); 587 } 588 589 void writeImplicitCtorArgs(raw_ostream &OS) const override { 590 OS << "Is" << getUpperName() << "Expr, " << getUpperName(); 591 } 592 593 void writeDeclarations(raw_ostream &OS) const override { 594 OS << "bool is" << getLowerName() << "Expr;\n"; 595 OS << "union {\n"; 596 OS << "Expr *" << getLowerName() << "Expr;\n"; 597 OS << "TypeSourceInfo *" << getLowerName() << "Type;\n"; 598 OS << "};"; 599 } 600 601 void writePCHReadArgs(raw_ostream &OS) const override { 602 OS << "is" << getLowerName() << "Expr, " << getLowerName() << "Ptr"; 603 } 604 605 void writePCHReadDecls(raw_ostream &OS) const override { 606 OS << " bool is" << getLowerName() << "Expr = Record.readInt();\n"; 607 OS << " void *" << getLowerName() << "Ptr;\n"; 608 OS << " if (is" << getLowerName() << "Expr)\n"; 609 OS << " " << getLowerName() << "Ptr = Record.readExpr();\n"; 610 OS << " else\n"; 611 OS << " " << getLowerName() 612 << "Ptr = Record.readTypeSourceInfo();\n"; 613 } 614 615 void writePCHWrite(raw_ostream &OS) const override { 616 OS << " Record.push_back(SA->is" << getUpperName() << "Expr());\n"; 617 OS << " if (SA->is" << getUpperName() << "Expr())\n"; 618 OS << " Record.AddStmt(SA->get" << getUpperName() << "Expr());\n"; 619 OS << " else\n"; 620 OS << " Record.AddTypeSourceInfo(SA->get" << getUpperName() 621 << "Type());\n"; 622 } 623 624 std::string getIsOmitted() const override { 625 return "!is" + getLowerName().str() + "Expr || !" + getLowerName().str() 626 + "Expr"; 627 } 628 629 void writeValue(raw_ostream &OS) const override { 630 OS << "\";\n"; 631 OS << " " << getLowerName() 632 << "Expr->printPretty(OS, nullptr, Policy);\n"; 633 OS << " OS << \""; 634 } 635 636 void writeDump(raw_ostream &OS) const override { 637 OS << " if (!SA->is" << getUpperName() << "Expr())\n"; 638 OS << " dumpType(SA->get" << getUpperName() 639 << "Type()->getType());\n"; 640 } 641 642 void writeDumpChildren(raw_ostream &OS) const override { 643 OS << " if (SA->is" << getUpperName() << "Expr())\n"; 644 OS << " Visit(SA->get" << getUpperName() << "Expr());\n"; 645 } 646 647 void writeHasChildren(raw_ostream &OS) const override { 648 OS << "SA->is" << getUpperName() << "Expr()"; 649 } 650 }; 651 652 class VariadicArgument : public Argument { 653 std::string Type, ArgName, ArgSizeName, RangeName; 654 655 protected: 656 // Assumed to receive a parameter: raw_ostream OS. 657 virtual void writeValueImpl(raw_ostream &OS) const { 658 OS << " OS << Val;\n"; 659 } 660 // Assumed to receive a parameter: raw_ostream OS. 661 virtual void writeDumpImpl(raw_ostream &OS) const { 662 OS << " OS << \" \" << Val;\n"; 663 } 664 665 public: 666 VariadicArgument(const Record &Arg, StringRef Attr, std::string T) 667 : Argument(Arg, Attr), Type(std::move(T)), 668 ArgName(getLowerName().str() + "_"), ArgSizeName(ArgName + "Size"), 669 RangeName(std::string(getLowerName())) {} 670 671 VariadicArgument(StringRef Arg, StringRef Attr, std::string T) 672 : Argument(Arg, Attr), Type(std::move(T)), 673 ArgName(getLowerName().str() + "_"), ArgSizeName(ArgName + "Size"), 674 RangeName(std::string(getLowerName())) {} 675 676 const std::string &getType() const { return Type; } 677 const std::string &getArgName() const { return ArgName; } 678 const std::string &getArgSizeName() const { return ArgSizeName; } 679 bool isVariadic() const override { return true; } 680 681 void writeAccessors(raw_ostream &OS) const override { 682 std::string IteratorType = getLowerName().str() + "_iterator"; 683 std::string BeginFn = getLowerName().str() + "_begin()"; 684 std::string EndFn = getLowerName().str() + "_end()"; 685 686 OS << " typedef " << Type << "* " << IteratorType << ";\n"; 687 OS << " " << IteratorType << " " << BeginFn << " const {" 688 << " return " << ArgName << "; }\n"; 689 OS << " " << IteratorType << " " << EndFn << " const {" 690 << " return " << ArgName << " + " << ArgSizeName << "; }\n"; 691 OS << " unsigned " << getLowerName() << "_size() const {" 692 << " return " << ArgSizeName << "; }\n"; 693 OS << " llvm::iterator_range<" << IteratorType << "> " << RangeName 694 << "() const { return llvm::make_range(" << BeginFn << ", " << EndFn 695 << "); }\n"; 696 } 697 698 void writeSetter(raw_ostream &OS) const { 699 OS << " void set" << getUpperName() << "(ASTContext &Ctx, "; 700 writeCtorParameters(OS); 701 OS << ") {\n"; 702 OS << " " << ArgSizeName << " = " << getUpperName() << "Size;\n"; 703 OS << " " << ArgName << " = new (Ctx, 16) " << getType() << "[" 704 << ArgSizeName << "];\n"; 705 OS << " "; 706 writeCtorBody(OS); 707 OS << " }\n"; 708 } 709 710 void writeCloneArgs(raw_ostream &OS) const override { 711 OS << ArgName << ", " << ArgSizeName; 712 } 713 714 void writeTemplateInstantiationArgs(raw_ostream &OS) const override { 715 // This isn't elegant, but we have to go through public methods... 716 OS << "A->" << getLowerName() << "_begin(), " 717 << "A->" << getLowerName() << "_size()"; 718 } 719 720 void writeASTVisitorTraversal(raw_ostream &OS) const override { 721 // FIXME: Traverse the elements. 722 } 723 724 void writeCtorBody(raw_ostream &OS) const override { 725 OS << " std::copy(" << getUpperName() << ", " << getUpperName() << " + " 726 << ArgSizeName << ", " << ArgName << ");\n"; 727 } 728 729 void writeCtorInitializers(raw_ostream &OS) const override { 730 OS << ArgSizeName << "(" << getUpperName() << "Size), " 731 << ArgName << "(new (Ctx, 16) " << getType() << "[" 732 << ArgSizeName << "])"; 733 } 734 735 void writeCtorDefaultInitializers(raw_ostream &OS) const override { 736 OS << ArgSizeName << "(0), " << ArgName << "(nullptr)"; 737 } 738 739 void writeCtorParameters(raw_ostream &OS) const override { 740 OS << getType() << " *" << getUpperName() << ", unsigned " 741 << getUpperName() << "Size"; 742 } 743 744 void writeImplicitCtorArgs(raw_ostream &OS) const override { 745 OS << getUpperName() << ", " << getUpperName() << "Size"; 746 } 747 748 void writeDeclarations(raw_ostream &OS) const override { 749 OS << " unsigned " << ArgSizeName << ";\n"; 750 OS << " " << getType() << " *" << ArgName << ";"; 751 } 752 753 void writePCHReadDecls(raw_ostream &OS) const override { 754 OS << " unsigned " << getLowerName() << "Size = Record.readInt();\n"; 755 OS << " SmallVector<" << getType() << ", 4> " 756 << getLowerName() << ";\n"; 757 OS << " " << getLowerName() << ".reserve(" << getLowerName() 758 << "Size);\n"; 759 760 // If we can't store the values in the current type (if it's something 761 // like StringRef), store them in a different type and convert the 762 // container afterwards. 763 std::string StorageType = std::string(getStorageType(getType())); 764 std::string StorageName = std::string(getLowerName()); 765 if (StorageType != getType()) { 766 StorageName += "Storage"; 767 OS << " SmallVector<" << StorageType << ", 4> " 768 << StorageName << ";\n"; 769 OS << " " << StorageName << ".reserve(" << getLowerName() 770 << "Size);\n"; 771 } 772 773 OS << " for (unsigned i = 0; i != " << getLowerName() << "Size; ++i)\n"; 774 std::string read = ReadPCHRecord(Type); 775 OS << " " << StorageName << ".push_back(" << read << ");\n"; 776 777 if (StorageType != getType()) { 778 OS << " for (unsigned i = 0; i != " << getLowerName() << "Size; ++i)\n"; 779 OS << " " << getLowerName() << ".push_back(" 780 << StorageName << "[i]);\n"; 781 } 782 } 783 784 void writePCHReadArgs(raw_ostream &OS) const override { 785 OS << getLowerName() << ".data(), " << getLowerName() << "Size"; 786 } 787 788 void writePCHWrite(raw_ostream &OS) const override { 789 OS << " Record.push_back(SA->" << getLowerName() << "_size());\n"; 790 OS << " for (auto &Val : SA->" << RangeName << "())\n"; 791 OS << " " << WritePCHRecord(Type, "Val"); 792 } 793 794 void writeValue(raw_ostream &OS) const override { 795 OS << "\";\n"; 796 OS << " for (const auto &Val : " << RangeName << "()) {\n" 797 << " DelimitAttributeArgument(OS, IsFirstArgument);\n"; 798 writeValueImpl(OS); 799 OS << " }\n"; 800 OS << " OS << \""; 801 } 802 803 void writeDump(raw_ostream &OS) const override { 804 OS << " for (const auto &Val : SA->" << RangeName << "())\n"; 805 writeDumpImpl(OS); 806 } 807 }; 808 809 class VariadicParamIdxArgument : public VariadicArgument { 810 public: 811 VariadicParamIdxArgument(const Record &Arg, StringRef Attr) 812 : VariadicArgument(Arg, Attr, "ParamIdx") {} 813 814 public: 815 void writeValueImpl(raw_ostream &OS) const override { 816 OS << " OS << Val.getSourceIndex();\n"; 817 } 818 819 void writeDumpImpl(raw_ostream &OS) const override { 820 OS << " OS << \" \" << Val.getSourceIndex();\n"; 821 } 822 }; 823 824 struct VariadicParamOrParamIdxArgument : public VariadicArgument { 825 VariadicParamOrParamIdxArgument(const Record &Arg, StringRef Attr) 826 : VariadicArgument(Arg, Attr, "int") {} 827 }; 828 829 // Unique the enums, but maintain the original declaration ordering. 830 std::vector<StringRef> 831 uniqueEnumsInOrder(const std::vector<StringRef> &enums) { 832 std::vector<StringRef> uniques; 833 SmallDenseSet<StringRef, 8> unique_set; 834 for (const auto &i : enums) { 835 if (unique_set.insert(i).second) 836 uniques.push_back(i); 837 } 838 return uniques; 839 } 840 841 class EnumArgument : public Argument { 842 std::string type; 843 std::vector<StringRef> values, enums, uniques; 844 845 public: 846 EnumArgument(const Record &Arg, StringRef Attr) 847 : Argument(Arg, Attr), type(std::string(Arg.getValueAsString("Type"))), 848 values(Arg.getValueAsListOfStrings("Values")), 849 enums(Arg.getValueAsListOfStrings("Enums")), 850 uniques(uniqueEnumsInOrder(enums)) { 851 // FIXME: Emit a proper error 852 assert(!uniques.empty()); 853 } 854 855 bool isEnumArg() const override { return true; } 856 857 void writeAccessors(raw_ostream &OS) const override { 858 OS << " " << type << " get" << getUpperName() << "() const {\n"; 859 OS << " return " << getLowerName() << ";\n"; 860 OS << " }"; 861 } 862 863 void writeCloneArgs(raw_ostream &OS) const override { 864 OS << getLowerName(); 865 } 866 867 void writeTemplateInstantiationArgs(raw_ostream &OS) const override { 868 OS << "A->get" << getUpperName() << "()"; 869 } 870 void writeCtorInitializers(raw_ostream &OS) const override { 871 OS << getLowerName() << "(" << getUpperName() << ")"; 872 } 873 void writeCtorDefaultInitializers(raw_ostream &OS) const override { 874 OS << getLowerName() << "(" << type << "(0))"; 875 } 876 void writeCtorParameters(raw_ostream &OS) const override { 877 OS << type << " " << getUpperName(); 878 } 879 void writeDeclarations(raw_ostream &OS) const override { 880 auto i = uniques.cbegin(), e = uniques.cend(); 881 // The last one needs to not have a comma. 882 --e; 883 884 OS << "public:\n"; 885 OS << " enum " << type << " {\n"; 886 for (; i != e; ++i) 887 OS << " " << *i << ",\n"; 888 OS << " " << *e << "\n"; 889 OS << " };\n"; 890 OS << "private:\n"; 891 OS << " " << type << " " << getLowerName() << ";"; 892 } 893 894 void writePCHReadDecls(raw_ostream &OS) const override { 895 OS << " " << getAttrName() << "Attr::" << type << " " << getLowerName() 896 << "(static_cast<" << getAttrName() << "Attr::" << type 897 << ">(Record.readInt()));\n"; 898 } 899 900 void writePCHReadArgs(raw_ostream &OS) const override { 901 OS << getLowerName(); 902 } 903 904 void writePCHWrite(raw_ostream &OS) const override { 905 OS << "Record.push_back(SA->get" << getUpperName() << "());\n"; 906 } 907 908 void writeValue(raw_ostream &OS) const override { 909 // FIXME: this isn't 100% correct -- some enum arguments require printing 910 // as a string literal, while others require printing as an identifier. 911 // Tablegen currently does not distinguish between the two forms. 912 OS << "\\\"\" << " << getAttrName() << "Attr::Convert" << type << "ToStr(get" 913 << getUpperName() << "()) << \"\\\""; 914 } 915 916 void writeDump(raw_ostream &OS) const override { 917 OS << " switch(SA->get" << getUpperName() << "()) {\n"; 918 for (const auto &I : uniques) { 919 OS << " case " << getAttrName() << "Attr::" << I << ":\n"; 920 OS << " OS << \" " << I << "\";\n"; 921 OS << " break;\n"; 922 } 923 OS << " }\n"; 924 } 925 926 void writeConversion(raw_ostream &OS, bool Header) const { 927 if (Header) { 928 OS << " static bool ConvertStrTo" << type << "(StringRef Val, " << type 929 << " &Out);\n"; 930 OS << " static const char *Convert" << type << "ToStr(" << type 931 << " Val);\n"; 932 return; 933 } 934 935 OS << "bool " << getAttrName() << "Attr::ConvertStrTo" << type 936 << "(StringRef Val, " << type << " &Out) {\n"; 937 OS << " Optional<" << type << "> R = llvm::StringSwitch<Optional<"; 938 OS << type << ">>(Val)\n"; 939 for (size_t I = 0; I < enums.size(); ++I) { 940 OS << " .Case(\"" << values[I] << "\", "; 941 OS << getAttrName() << "Attr::" << enums[I] << ")\n"; 942 } 943 OS << " .Default(Optional<" << type << ">());\n"; 944 OS << " if (R) {\n"; 945 OS << " Out = *R;\n return true;\n }\n"; 946 OS << " return false;\n"; 947 OS << "}\n\n"; 948 949 // Mapping from enumeration values back to enumeration strings isn't 950 // trivial because some enumeration values have multiple named 951 // enumerators, such as type_visibility(internal) and 952 // type_visibility(hidden) both mapping to TypeVisibilityAttr::Hidden. 953 OS << "const char *" << getAttrName() << "Attr::Convert" << type 954 << "ToStr(" << type << " Val) {\n" 955 << " switch(Val) {\n"; 956 SmallDenseSet<StringRef, 8> Uniques; 957 for (size_t I = 0; I < enums.size(); ++I) { 958 if (Uniques.insert(enums[I]).second) 959 OS << " case " << getAttrName() << "Attr::" << enums[I] 960 << ": return \"" << values[I] << "\";\n"; 961 } 962 OS << " }\n" 963 << " llvm_unreachable(\"No enumerator with that value\");\n" 964 << "}\n"; 965 } 966 }; 967 968 class VariadicEnumArgument: public VariadicArgument { 969 std::string type, QualifiedTypeName; 970 std::vector<StringRef> values, enums, uniques; 971 972 protected: 973 void writeValueImpl(raw_ostream &OS) const override { 974 // FIXME: this isn't 100% correct -- some enum arguments require printing 975 // as a string literal, while others require printing as an identifier. 976 // Tablegen currently does not distinguish between the two forms. 977 OS << " OS << \"\\\"\" << " << getAttrName() << "Attr::Convert" << type 978 << "ToStr(Val)" << "<< \"\\\"\";\n"; 979 } 980 981 public: 982 VariadicEnumArgument(const Record &Arg, StringRef Attr) 983 : VariadicArgument(Arg, Attr, 984 std::string(Arg.getValueAsString("Type"))), 985 type(std::string(Arg.getValueAsString("Type"))), 986 values(Arg.getValueAsListOfStrings("Values")), 987 enums(Arg.getValueAsListOfStrings("Enums")), 988 uniques(uniqueEnumsInOrder(enums)) { 989 QualifiedTypeName = getAttrName().str() + "Attr::" + type; 990 991 // FIXME: Emit a proper error 992 assert(!uniques.empty()); 993 } 994 995 bool isVariadicEnumArg() const override { return true; } 996 997 void writeDeclarations(raw_ostream &OS) const override { 998 auto i = uniques.cbegin(), e = uniques.cend(); 999 // The last one needs to not have a comma. 1000 --e; 1001 1002 OS << "public:\n"; 1003 OS << " enum " << type << " {\n"; 1004 for (; i != e; ++i) 1005 OS << " " << *i << ",\n"; 1006 OS << " " << *e << "\n"; 1007 OS << " };\n"; 1008 OS << "private:\n"; 1009 1010 VariadicArgument::writeDeclarations(OS); 1011 } 1012 1013 void writeDump(raw_ostream &OS) const override { 1014 OS << " for (" << getAttrName() << "Attr::" << getLowerName() 1015 << "_iterator I = SA->" << getLowerName() << "_begin(), E = SA->" 1016 << getLowerName() << "_end(); I != E; ++I) {\n"; 1017 OS << " switch(*I) {\n"; 1018 for (const auto &UI : uniques) { 1019 OS << " case " << getAttrName() << "Attr::" << UI << ":\n"; 1020 OS << " OS << \" " << UI << "\";\n"; 1021 OS << " break;\n"; 1022 } 1023 OS << " }\n"; 1024 OS << " }\n"; 1025 } 1026 1027 void writePCHReadDecls(raw_ostream &OS) const override { 1028 OS << " unsigned " << getLowerName() << "Size = Record.readInt();\n"; 1029 OS << " SmallVector<" << QualifiedTypeName << ", 4> " << getLowerName() 1030 << ";\n"; 1031 OS << " " << getLowerName() << ".reserve(" << getLowerName() 1032 << "Size);\n"; 1033 OS << " for (unsigned i = " << getLowerName() << "Size; i; --i)\n"; 1034 OS << " " << getLowerName() << ".push_back(" << "static_cast<" 1035 << QualifiedTypeName << ">(Record.readInt()));\n"; 1036 } 1037 1038 void writePCHWrite(raw_ostream &OS) const override { 1039 OS << " Record.push_back(SA->" << getLowerName() << "_size());\n"; 1040 OS << " for (" << getAttrName() << "Attr::" << getLowerName() 1041 << "_iterator i = SA->" << getLowerName() << "_begin(), e = SA->" 1042 << getLowerName() << "_end(); i != e; ++i)\n"; 1043 OS << " " << WritePCHRecord(QualifiedTypeName, "(*i)"); 1044 } 1045 1046 void writeConversion(raw_ostream &OS, bool Header) const { 1047 if (Header) { 1048 OS << " static bool ConvertStrTo" << type << "(StringRef Val, " << type 1049 << " &Out);\n"; 1050 OS << " static const char *Convert" << type << "ToStr(" << type 1051 << " Val);\n"; 1052 return; 1053 } 1054 1055 OS << "bool " << getAttrName() << "Attr::ConvertStrTo" << type 1056 << "(StringRef Val, "; 1057 OS << type << " &Out) {\n"; 1058 OS << " Optional<" << type << "> R = llvm::StringSwitch<Optional<"; 1059 OS << type << ">>(Val)\n"; 1060 for (size_t I = 0; I < enums.size(); ++I) { 1061 OS << " .Case(\"" << values[I] << "\", "; 1062 OS << getAttrName() << "Attr::" << enums[I] << ")\n"; 1063 } 1064 OS << " .Default(Optional<" << type << ">());\n"; 1065 OS << " if (R) {\n"; 1066 OS << " Out = *R;\n return true;\n }\n"; 1067 OS << " return false;\n"; 1068 OS << "}\n\n"; 1069 1070 OS << "const char *" << getAttrName() << "Attr::Convert" << type 1071 << "ToStr(" << type << " Val) {\n" 1072 << " switch(Val) {\n"; 1073 SmallDenseSet<StringRef, 8> Uniques; 1074 for (size_t I = 0; I < enums.size(); ++I) { 1075 if (Uniques.insert(enums[I]).second) 1076 OS << " case " << getAttrName() << "Attr::" << enums[I] 1077 << ": return \"" << values[I] << "\";\n"; 1078 } 1079 OS << " }\n" 1080 << " llvm_unreachable(\"No enumerator with that value\");\n" 1081 << "}\n"; 1082 } 1083 }; 1084 1085 class VersionArgument : public Argument { 1086 public: 1087 VersionArgument(const Record &Arg, StringRef Attr) 1088 : Argument(Arg, Attr) 1089 {} 1090 1091 void writeAccessors(raw_ostream &OS) const override { 1092 OS << " VersionTuple get" << getUpperName() << "() const {\n"; 1093 OS << " return " << getLowerName() << ";\n"; 1094 OS << " }\n"; 1095 OS << " void set" << getUpperName() 1096 << "(ASTContext &C, VersionTuple V) {\n"; 1097 OS << " " << getLowerName() << " = V;\n"; 1098 OS << " }"; 1099 } 1100 1101 void writeCloneArgs(raw_ostream &OS) const override { 1102 OS << "get" << getUpperName() << "()"; 1103 } 1104 1105 void writeTemplateInstantiationArgs(raw_ostream &OS) const override { 1106 OS << "A->get" << getUpperName() << "()"; 1107 } 1108 1109 void writeCtorInitializers(raw_ostream &OS) const override { 1110 OS << getLowerName() << "(" << getUpperName() << ")"; 1111 } 1112 1113 void writeCtorDefaultInitializers(raw_ostream &OS) const override { 1114 OS << getLowerName() << "()"; 1115 } 1116 1117 void writeCtorParameters(raw_ostream &OS) const override { 1118 OS << "VersionTuple " << getUpperName(); 1119 } 1120 1121 void writeDeclarations(raw_ostream &OS) const override { 1122 OS << "VersionTuple " << getLowerName() << ";\n"; 1123 } 1124 1125 void writePCHReadDecls(raw_ostream &OS) const override { 1126 OS << " VersionTuple " << getLowerName() 1127 << "= Record.readVersionTuple();\n"; 1128 } 1129 1130 void writePCHReadArgs(raw_ostream &OS) const override { 1131 OS << getLowerName(); 1132 } 1133 1134 void writePCHWrite(raw_ostream &OS) const override { 1135 OS << " Record.AddVersionTuple(SA->get" << getUpperName() << "());\n"; 1136 } 1137 1138 void writeValue(raw_ostream &OS) const override { 1139 OS << getLowerName() << "=\" << get" << getUpperName() << "() << \""; 1140 } 1141 1142 void writeDump(raw_ostream &OS) const override { 1143 OS << " OS << \" \" << SA->get" << getUpperName() << "();\n"; 1144 } 1145 }; 1146 1147 class ExprArgument : public SimpleArgument { 1148 public: 1149 ExprArgument(const Record &Arg, StringRef Attr) 1150 : SimpleArgument(Arg, Attr, "Expr *") 1151 {} 1152 1153 void writeASTVisitorTraversal(raw_ostream &OS) const override { 1154 OS << " if (!" 1155 << "getDerived().TraverseStmt(A->get" << getUpperName() << "()))\n"; 1156 OS << " return false;\n"; 1157 } 1158 1159 void writeTemplateInstantiationArgs(raw_ostream &OS) const override { 1160 OS << "tempInst" << getUpperName(); 1161 } 1162 1163 void writeTemplateInstantiation(raw_ostream &OS) const override { 1164 OS << " " << getType() << " tempInst" << getUpperName() << ";\n"; 1165 OS << " {\n"; 1166 OS << " EnterExpressionEvaluationContext " 1167 << "Unevaluated(S, Sema::ExpressionEvaluationContext::Unevaluated);\n"; 1168 OS << " ExprResult " << "Result = S.SubstExpr(" 1169 << "A->get" << getUpperName() << "(), TemplateArgs);\n"; 1170 OS << " if (Result.isInvalid())\n"; 1171 OS << " return nullptr;\n"; 1172 OS << " tempInst" << getUpperName() << " = Result.get();\n"; 1173 OS << " }\n"; 1174 } 1175 1176 void writeDump(raw_ostream &OS) const override {} 1177 1178 void writeDumpChildren(raw_ostream &OS) const override { 1179 OS << " Visit(SA->get" << getUpperName() << "());\n"; 1180 } 1181 1182 void writeHasChildren(raw_ostream &OS) const override { OS << "true"; } 1183 }; 1184 1185 class VariadicExprArgument : public VariadicArgument { 1186 public: 1187 VariadicExprArgument(const Record &Arg, StringRef Attr) 1188 : VariadicArgument(Arg, Attr, "Expr *") 1189 {} 1190 1191 VariadicExprArgument(StringRef ArgName, StringRef Attr) 1192 : VariadicArgument(ArgName, Attr, "Expr *") {} 1193 1194 void writeASTVisitorTraversal(raw_ostream &OS) const override { 1195 OS << " {\n"; 1196 OS << " " << getType() << " *I = A->" << getLowerName() 1197 << "_begin();\n"; 1198 OS << " " << getType() << " *E = A->" << getLowerName() 1199 << "_end();\n"; 1200 OS << " for (; I != E; ++I) {\n"; 1201 OS << " if (!getDerived().TraverseStmt(*I))\n"; 1202 OS << " return false;\n"; 1203 OS << " }\n"; 1204 OS << " }\n"; 1205 } 1206 1207 void writeTemplateInstantiationArgs(raw_ostream &OS) const override { 1208 OS << "tempInst" << getUpperName() << ", " 1209 << "A->" << getLowerName() << "_size()"; 1210 } 1211 1212 void writeTemplateInstantiation(raw_ostream &OS) const override { 1213 OS << " auto *tempInst" << getUpperName() 1214 << " = new (C, 16) " << getType() 1215 << "[A->" << getLowerName() << "_size()];\n"; 1216 OS << " {\n"; 1217 OS << " EnterExpressionEvaluationContext " 1218 << "Unevaluated(S, Sema::ExpressionEvaluationContext::Unevaluated);\n"; 1219 OS << " " << getType() << " *TI = tempInst" << getUpperName() 1220 << ";\n"; 1221 OS << " " << getType() << " *I = A->" << getLowerName() 1222 << "_begin();\n"; 1223 OS << " " << getType() << " *E = A->" << getLowerName() 1224 << "_end();\n"; 1225 OS << " for (; I != E; ++I, ++TI) {\n"; 1226 OS << " ExprResult Result = S.SubstExpr(*I, TemplateArgs);\n"; 1227 OS << " if (Result.isInvalid())\n"; 1228 OS << " return nullptr;\n"; 1229 OS << " *TI = Result.get();\n"; 1230 OS << " }\n"; 1231 OS << " }\n"; 1232 } 1233 1234 void writeDump(raw_ostream &OS) const override {} 1235 1236 void writeDumpChildren(raw_ostream &OS) const override { 1237 OS << " for (" << getAttrName() << "Attr::" << getLowerName() 1238 << "_iterator I = SA->" << getLowerName() << "_begin(), E = SA->" 1239 << getLowerName() << "_end(); I != E; ++I)\n"; 1240 OS << " Visit(*I);\n"; 1241 } 1242 1243 void writeHasChildren(raw_ostream &OS) const override { 1244 OS << "SA->" << getLowerName() << "_begin() != " 1245 << "SA->" << getLowerName() << "_end()"; 1246 } 1247 }; 1248 1249 class VariadicIdentifierArgument : public VariadicArgument { 1250 public: 1251 VariadicIdentifierArgument(const Record &Arg, StringRef Attr) 1252 : VariadicArgument(Arg, Attr, "IdentifierInfo *") 1253 {} 1254 }; 1255 1256 class VariadicStringArgument : public VariadicArgument { 1257 public: 1258 VariadicStringArgument(const Record &Arg, StringRef Attr) 1259 : VariadicArgument(Arg, Attr, "StringRef") 1260 {} 1261 1262 void writeCtorBody(raw_ostream &OS) const override { 1263 OS << " for (size_t I = 0, E = " << getArgSizeName() << "; I != E;\n" 1264 " ++I) {\n" 1265 " StringRef Ref = " << getUpperName() << "[I];\n" 1266 " if (!Ref.empty()) {\n" 1267 " char *Mem = new (Ctx, 1) char[Ref.size()];\n" 1268 " std::memcpy(Mem, Ref.data(), Ref.size());\n" 1269 " " << getArgName() << "[I] = StringRef(Mem, Ref.size());\n" 1270 " }\n" 1271 " }\n"; 1272 } 1273 1274 void writeValueImpl(raw_ostream &OS) const override { 1275 OS << " OS << \"\\\"\" << Val << \"\\\"\";\n"; 1276 } 1277 }; 1278 1279 class TypeArgument : public SimpleArgument { 1280 public: 1281 TypeArgument(const Record &Arg, StringRef Attr) 1282 : SimpleArgument(Arg, Attr, "TypeSourceInfo *") 1283 {} 1284 1285 void writeAccessors(raw_ostream &OS) const override { 1286 OS << " QualType get" << getUpperName() << "() const {\n"; 1287 OS << " return " << getLowerName() << "->getType();\n"; 1288 OS << " }"; 1289 OS << " " << getType() << " get" << getUpperName() << "Loc() const {\n"; 1290 OS << " return " << getLowerName() << ";\n"; 1291 OS << " }"; 1292 } 1293 1294 void writeASTVisitorTraversal(raw_ostream &OS) const override { 1295 OS << " if (auto *TSI = A->get" << getUpperName() << "Loc())\n"; 1296 OS << " if (!getDerived().TraverseTypeLoc(TSI->getTypeLoc()))\n"; 1297 OS << " return false;\n"; 1298 } 1299 1300 void writeTemplateInstantiation(raw_ostream &OS) const override { 1301 OS << " " << getType() << " tempInst" << getUpperName() << " =\n"; 1302 OS << " S.SubstType(A->get" << getUpperName() << "Loc(), " 1303 << "TemplateArgs, A->getLoc(), A->getAttrName());\n"; 1304 OS << " if (!tempInst" << getUpperName() << ")\n"; 1305 OS << " return nullptr;\n"; 1306 } 1307 1308 void writeTemplateInstantiationArgs(raw_ostream &OS) const override { 1309 OS << "tempInst" << getUpperName(); 1310 } 1311 1312 void writePCHWrite(raw_ostream &OS) const override { 1313 OS << " " 1314 << WritePCHRecord(getType(), 1315 "SA->get" + std::string(getUpperName()) + "Loc()"); 1316 } 1317 }; 1318 1319 } // end anonymous namespace 1320 1321 static std::unique_ptr<Argument> 1322 createArgument(const Record &Arg, StringRef Attr, 1323 const Record *Search = nullptr) { 1324 if (!Search) 1325 Search = &Arg; 1326 1327 std::unique_ptr<Argument> Ptr; 1328 llvm::StringRef ArgName = Search->getName(); 1329 1330 if (ArgName == "AlignedArgument") 1331 Ptr = std::make_unique<AlignedArgument>(Arg, Attr); 1332 else if (ArgName == "EnumArgument") 1333 Ptr = std::make_unique<EnumArgument>(Arg, Attr); 1334 else if (ArgName == "ExprArgument") 1335 Ptr = std::make_unique<ExprArgument>(Arg, Attr); 1336 else if (ArgName == "DeclArgument") 1337 Ptr = std::make_unique<SimpleArgument>( 1338 Arg, Attr, (Arg.getValueAsDef("Kind")->getName() + "Decl *").str()); 1339 else if (ArgName == "IdentifierArgument") 1340 Ptr = std::make_unique<SimpleArgument>(Arg, Attr, "IdentifierInfo *"); 1341 else if (ArgName == "DefaultBoolArgument") 1342 Ptr = std::make_unique<DefaultSimpleArgument>( 1343 Arg, Attr, "bool", Arg.getValueAsBit("Default")); 1344 else if (ArgName == "BoolArgument") 1345 Ptr = std::make_unique<SimpleArgument>(Arg, Attr, "bool"); 1346 else if (ArgName == "DefaultIntArgument") 1347 Ptr = std::make_unique<DefaultSimpleArgument>( 1348 Arg, Attr, "int", Arg.getValueAsInt("Default")); 1349 else if (ArgName == "IntArgument") 1350 Ptr = std::make_unique<SimpleArgument>(Arg, Attr, "int"); 1351 else if (ArgName == "StringArgument") 1352 Ptr = std::make_unique<StringArgument>(Arg, Attr); 1353 else if (ArgName == "TypeArgument") 1354 Ptr = std::make_unique<TypeArgument>(Arg, Attr); 1355 else if (ArgName == "UnsignedArgument") 1356 Ptr = std::make_unique<SimpleArgument>(Arg, Attr, "unsigned"); 1357 else if (ArgName == "VariadicUnsignedArgument") 1358 Ptr = std::make_unique<VariadicArgument>(Arg, Attr, "unsigned"); 1359 else if (ArgName == "VariadicStringArgument") 1360 Ptr = std::make_unique<VariadicStringArgument>(Arg, Attr); 1361 else if (ArgName == "VariadicEnumArgument") 1362 Ptr = std::make_unique<VariadicEnumArgument>(Arg, Attr); 1363 else if (ArgName == "VariadicExprArgument") 1364 Ptr = std::make_unique<VariadicExprArgument>(Arg, Attr); 1365 else if (ArgName == "VariadicParamIdxArgument") 1366 Ptr = std::make_unique<VariadicParamIdxArgument>(Arg, Attr); 1367 else if (ArgName == "VariadicParamOrParamIdxArgument") 1368 Ptr = std::make_unique<VariadicParamOrParamIdxArgument>(Arg, Attr); 1369 else if (ArgName == "ParamIdxArgument") 1370 Ptr = std::make_unique<SimpleArgument>(Arg, Attr, "ParamIdx"); 1371 else if (ArgName == "VariadicIdentifierArgument") 1372 Ptr = std::make_unique<VariadicIdentifierArgument>(Arg, Attr); 1373 else if (ArgName == "VersionArgument") 1374 Ptr = std::make_unique<VersionArgument>(Arg, Attr); 1375 else if (ArgName == "OMPTraitInfoArgument") 1376 Ptr = std::make_unique<SimpleArgument>(Arg, Attr, "OMPTraitInfo *"); 1377 1378 if (!Ptr) { 1379 // Search in reverse order so that the most-derived type is handled first. 1380 ArrayRef<std::pair<Record*, SMRange>> Bases = Search->getSuperClasses(); 1381 for (const auto &Base : llvm::reverse(Bases)) { 1382 if ((Ptr = createArgument(Arg, Attr, Base.first))) 1383 break; 1384 } 1385 } 1386 1387 if (Ptr && Arg.getValueAsBit("Optional")) 1388 Ptr->setOptional(true); 1389 1390 if (Ptr && Arg.getValueAsBit("Fake")) 1391 Ptr->setFake(true); 1392 1393 return Ptr; 1394 } 1395 1396 static void writeAvailabilityValue(raw_ostream &OS) { 1397 OS << "\" << getPlatform()->getName();\n" 1398 << " if (getStrict()) OS << \", strict\";\n" 1399 << " if (!getIntroduced().empty()) OS << \", introduced=\" << getIntroduced();\n" 1400 << " if (!getDeprecated().empty()) OS << \", deprecated=\" << getDeprecated();\n" 1401 << " if (!getObsoleted().empty()) OS << \", obsoleted=\" << getObsoleted();\n" 1402 << " if (getUnavailable()) OS << \", unavailable\";\n" 1403 << " OS << \""; 1404 } 1405 1406 static void writeDeprecatedAttrValue(raw_ostream &OS, std::string &Variety) { 1407 OS << "\\\"\" << getMessage() << \"\\\"\";\n"; 1408 // Only GNU deprecated has an optional fixit argument at the second position. 1409 if (Variety == "GNU") 1410 OS << " if (!getReplacement().empty()) OS << \", \\\"\"" 1411 " << getReplacement() << \"\\\"\";\n"; 1412 OS << " OS << \""; 1413 } 1414 1415 static void writeGetSpellingFunction(const Record &R, raw_ostream &OS) { 1416 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R); 1417 1418 OS << "const char *" << R.getName() << "Attr::getSpelling() const {\n"; 1419 if (Spellings.empty()) { 1420 OS << " return \"(No spelling)\";\n}\n\n"; 1421 return; 1422 } 1423 1424 OS << " switch (getAttributeSpellingListIndex()) {\n" 1425 " default:\n" 1426 " llvm_unreachable(\"Unknown attribute spelling!\");\n" 1427 " return \"(No spelling)\";\n"; 1428 1429 for (unsigned I = 0; I < Spellings.size(); ++I) 1430 OS << " case " << I << ":\n" 1431 " return \"" << Spellings[I].name() << "\";\n"; 1432 // End of the switch statement. 1433 OS << " }\n"; 1434 // End of the getSpelling function. 1435 OS << "}\n\n"; 1436 } 1437 1438 static void 1439 writePrettyPrintFunction(const Record &R, 1440 const std::vector<std::unique_ptr<Argument>> &Args, 1441 raw_ostream &OS) { 1442 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R); 1443 1444 OS << "void " << R.getName() << "Attr::printPretty(" 1445 << "raw_ostream &OS, const PrintingPolicy &Policy) const {\n"; 1446 1447 if (Spellings.empty()) { 1448 OS << "}\n\n"; 1449 return; 1450 } 1451 1452 OS << " bool IsFirstArgument = true; (void)IsFirstArgument;\n" 1453 << " unsigned TrailingOmittedArgs = 0; (void)TrailingOmittedArgs;\n" 1454 << " switch (getAttributeSpellingListIndex()) {\n" 1455 << " default:\n" 1456 << " llvm_unreachable(\"Unknown attribute spelling!\");\n" 1457 << " break;\n"; 1458 1459 for (unsigned I = 0; I < Spellings.size(); ++ I) { 1460 llvm::SmallString<16> Prefix; 1461 llvm::SmallString<8> Suffix; 1462 // The actual spelling of the name and namespace (if applicable) 1463 // of an attribute without considering prefix and suffix. 1464 llvm::SmallString<64> Spelling; 1465 std::string Name = Spellings[I].name(); 1466 std::string Variety = Spellings[I].variety(); 1467 1468 if (Variety == "GNU") { 1469 Prefix = " __attribute__(("; 1470 Suffix = "))"; 1471 } else if (Variety == "CXX11" || Variety == "C2x") { 1472 Prefix = " [["; 1473 Suffix = "]]"; 1474 std::string Namespace = Spellings[I].nameSpace(); 1475 if (!Namespace.empty()) { 1476 Spelling += Namespace; 1477 Spelling += "::"; 1478 } 1479 } else if (Variety == "Declspec") { 1480 Prefix = " __declspec("; 1481 Suffix = ")"; 1482 } else if (Variety == "Microsoft") { 1483 Prefix = "["; 1484 Suffix = "]"; 1485 } else if (Variety == "Keyword") { 1486 Prefix = " "; 1487 Suffix = ""; 1488 } else if (Variety == "Pragma") { 1489 Prefix = "#pragma "; 1490 Suffix = "\n"; 1491 std::string Namespace = Spellings[I].nameSpace(); 1492 if (!Namespace.empty()) { 1493 Spelling += Namespace; 1494 Spelling += " "; 1495 } 1496 } else if (Variety == "HLSLSemantic") { 1497 Prefix = ":"; 1498 Suffix = ""; 1499 } else { 1500 llvm_unreachable("Unknown attribute syntax variety!"); 1501 } 1502 1503 Spelling += Name; 1504 1505 OS << " case " << I << " : {\n" 1506 << " OS << \"" << Prefix << Spelling << "\";\n"; 1507 1508 if (Variety == "Pragma") { 1509 OS << " printPrettyPragma(OS, Policy);\n"; 1510 OS << " OS << \"\\n\";"; 1511 OS << " break;\n"; 1512 OS << " }\n"; 1513 continue; 1514 } 1515 1516 if (Spelling == "availability") { 1517 OS << " OS << \"("; 1518 writeAvailabilityValue(OS); 1519 OS << ")\";\n"; 1520 } else if (Spelling == "deprecated" || Spelling == "gnu::deprecated") { 1521 OS << " OS << \"("; 1522 writeDeprecatedAttrValue(OS, Variety); 1523 OS << ")\";\n"; 1524 } else { 1525 // To avoid printing parentheses around an empty argument list or 1526 // printing spurious commas at the end of an argument list, we need to 1527 // determine where the last provided non-fake argument is. 1528 bool FoundNonOptArg = false; 1529 for (const auto &arg : llvm::reverse(Args)) { 1530 if (arg->isFake()) 1531 continue; 1532 if (FoundNonOptArg) 1533 continue; 1534 // FIXME: arg->getIsOmitted() == "false" means we haven't implemented 1535 // any way to detect whether the argument was omitted. 1536 if (!arg->isOptional() || arg->getIsOmitted() == "false") { 1537 FoundNonOptArg = true; 1538 continue; 1539 } 1540 OS << " if (" << arg->getIsOmitted() << ")\n" 1541 << " ++TrailingOmittedArgs;\n"; 1542 } 1543 unsigned ArgIndex = 0; 1544 for (const auto &arg : Args) { 1545 if (arg->isFake()) 1546 continue; 1547 std::string IsOmitted = arg->getIsOmitted(); 1548 if (arg->isOptional() && IsOmitted != "false") 1549 OS << " if (!(" << IsOmitted << ")) {\n"; 1550 // Variadic arguments print their own leading comma. 1551 if (!arg->isVariadic()) 1552 OS << " DelimitAttributeArgument(OS, IsFirstArgument);\n"; 1553 OS << " OS << \""; 1554 arg->writeValue(OS); 1555 OS << "\";\n"; 1556 if (arg->isOptional() && IsOmitted != "false") 1557 OS << " }\n"; 1558 ++ArgIndex; 1559 } 1560 if (ArgIndex != 0) 1561 OS << " if (!IsFirstArgument)\n" 1562 << " OS << \")\";\n"; 1563 } 1564 OS << " OS << \"" << Suffix << "\";\n" 1565 << " break;\n" 1566 << " }\n"; 1567 } 1568 1569 // End of the switch statement. 1570 OS << "}\n"; 1571 // End of the print function. 1572 OS << "}\n\n"; 1573 } 1574 1575 /// Return the index of a spelling in a spelling list. 1576 static unsigned 1577 getSpellingListIndex(const std::vector<FlattenedSpelling> &SpellingList, 1578 const FlattenedSpelling &Spelling) { 1579 assert(!SpellingList.empty() && "Spelling list is empty!"); 1580 1581 for (unsigned Index = 0; Index < SpellingList.size(); ++Index) { 1582 const FlattenedSpelling &S = SpellingList[Index]; 1583 if (S.variety() != Spelling.variety()) 1584 continue; 1585 if (S.nameSpace() != Spelling.nameSpace()) 1586 continue; 1587 if (S.name() != Spelling.name()) 1588 continue; 1589 1590 return Index; 1591 } 1592 1593 llvm_unreachable("Unknown spelling!"); 1594 } 1595 1596 static void writeAttrAccessorDefinition(const Record &R, raw_ostream &OS) { 1597 std::vector<Record*> Accessors = R.getValueAsListOfDefs("Accessors"); 1598 if (Accessors.empty()) 1599 return; 1600 1601 const std::vector<FlattenedSpelling> SpellingList = GetFlattenedSpellings(R); 1602 assert(!SpellingList.empty() && 1603 "Attribute with empty spelling list can't have accessors!"); 1604 for (const auto *Accessor : Accessors) { 1605 const StringRef Name = Accessor->getValueAsString("Name"); 1606 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*Accessor); 1607 1608 OS << " bool " << Name 1609 << "() const { return getAttributeSpellingListIndex() == "; 1610 for (unsigned Index = 0; Index < Spellings.size(); ++Index) { 1611 OS << getSpellingListIndex(SpellingList, Spellings[Index]); 1612 if (Index != Spellings.size() - 1) 1613 OS << " ||\n getAttributeSpellingListIndex() == "; 1614 else 1615 OS << "; }\n"; 1616 } 1617 } 1618 } 1619 1620 static bool 1621 SpellingNamesAreCommon(const std::vector<FlattenedSpelling>& Spellings) { 1622 assert(!Spellings.empty() && "An empty list of spellings was provided"); 1623 std::string FirstName = 1624 std::string(NormalizeNameForSpellingComparison(Spellings.front().name())); 1625 for (const auto &Spelling : 1626 llvm::make_range(std::next(Spellings.begin()), Spellings.end())) { 1627 std::string Name = 1628 std::string(NormalizeNameForSpellingComparison(Spelling.name())); 1629 if (Name != FirstName) 1630 return false; 1631 } 1632 return true; 1633 } 1634 1635 typedef std::map<unsigned, std::string> SemanticSpellingMap; 1636 static std::string 1637 CreateSemanticSpellings(const std::vector<FlattenedSpelling> &Spellings, 1638 SemanticSpellingMap &Map) { 1639 // The enumerants are automatically generated based on the variety, 1640 // namespace (if present) and name for each attribute spelling. However, 1641 // care is taken to avoid trampling on the reserved namespace due to 1642 // underscores. 1643 std::string Ret(" enum Spelling {\n"); 1644 std::set<std::string> Uniques; 1645 unsigned Idx = 0; 1646 1647 // If we have a need to have this many spellings we likely need to add an 1648 // extra bit to the SpellingIndex in AttributeCommonInfo, then increase the 1649 // value of SpellingNotCalculated there and here. 1650 assert(Spellings.size() < 15 && 1651 "Too many spellings, would step on SpellingNotCalculated in " 1652 "AttributeCommonInfo"); 1653 for (auto I = Spellings.begin(), E = Spellings.end(); I != E; ++I, ++Idx) { 1654 const FlattenedSpelling &S = *I; 1655 const std::string &Variety = S.variety(); 1656 const std::string &Spelling = S.name(); 1657 const std::string &Namespace = S.nameSpace(); 1658 std::string EnumName; 1659 1660 EnumName += (Variety + "_"); 1661 if (!Namespace.empty()) 1662 EnumName += (NormalizeNameForSpellingComparison(Namespace).str() + 1663 "_"); 1664 EnumName += NormalizeNameForSpellingComparison(Spelling); 1665 1666 // Even if the name is not unique, this spelling index corresponds to a 1667 // particular enumerant name that we've calculated. 1668 Map[Idx] = EnumName; 1669 1670 // Since we have been stripping underscores to avoid trampling on the 1671 // reserved namespace, we may have inadvertently created duplicate 1672 // enumerant names. These duplicates are not considered part of the 1673 // semantic spelling, and can be elided. 1674 if (Uniques.find(EnumName) != Uniques.end()) 1675 continue; 1676 1677 Uniques.insert(EnumName); 1678 if (I != Spellings.begin()) 1679 Ret += ",\n"; 1680 // Duplicate spellings are not considered part of the semantic spelling 1681 // enumeration, but the spelling index and semantic spelling values are 1682 // meant to be equivalent, so we must specify a concrete value for each 1683 // enumerator. 1684 Ret += " " + EnumName + " = " + llvm::utostr(Idx); 1685 } 1686 Ret += ",\n SpellingNotCalculated = 15\n"; 1687 Ret += "\n };\n\n"; 1688 return Ret; 1689 } 1690 1691 void WriteSemanticSpellingSwitch(const std::string &VarName, 1692 const SemanticSpellingMap &Map, 1693 raw_ostream &OS) { 1694 OS << " switch (" << VarName << ") {\n default: " 1695 << "llvm_unreachable(\"Unknown spelling list index\");\n"; 1696 for (const auto &I : Map) 1697 OS << " case " << I.first << ": return " << I.second << ";\n"; 1698 OS << " }\n"; 1699 } 1700 1701 // Emits the LateParsed property for attributes. 1702 static void emitClangAttrLateParsedList(RecordKeeper &Records, raw_ostream &OS) { 1703 OS << "#if defined(CLANG_ATTR_LATE_PARSED_LIST)\n"; 1704 std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"); 1705 1706 for (const auto *Attr : Attrs) { 1707 bool LateParsed = Attr->getValueAsBit("LateParsed"); 1708 1709 if (LateParsed) { 1710 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*Attr); 1711 1712 // FIXME: Handle non-GNU attributes 1713 for (const auto &I : Spellings) { 1714 if (I.variety() != "GNU") 1715 continue; 1716 OS << ".Case(\"" << I.name() << "\", " << LateParsed << ")\n"; 1717 } 1718 } 1719 } 1720 OS << "#endif // CLANG_ATTR_LATE_PARSED_LIST\n\n"; 1721 } 1722 1723 static bool hasGNUorCXX11Spelling(const Record &Attribute) { 1724 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attribute); 1725 for (const auto &I : Spellings) { 1726 if (I.variety() == "GNU" || I.variety() == "CXX11") 1727 return true; 1728 } 1729 return false; 1730 } 1731 1732 namespace { 1733 1734 struct AttributeSubjectMatchRule { 1735 const Record *MetaSubject; 1736 const Record *Constraint; 1737 1738 AttributeSubjectMatchRule(const Record *MetaSubject, const Record *Constraint) 1739 : MetaSubject(MetaSubject), Constraint(Constraint) { 1740 assert(MetaSubject && "Missing subject"); 1741 } 1742 1743 bool isSubRule() const { return Constraint != nullptr; } 1744 1745 std::vector<Record *> getSubjects() const { 1746 return (Constraint ? Constraint : MetaSubject) 1747 ->getValueAsListOfDefs("Subjects"); 1748 } 1749 1750 std::vector<Record *> getLangOpts() const { 1751 if (Constraint) { 1752 // Lookup the options in the sub-rule first, in case the sub-rule 1753 // overrides the rules options. 1754 std::vector<Record *> Opts = Constraint->getValueAsListOfDefs("LangOpts"); 1755 if (!Opts.empty()) 1756 return Opts; 1757 } 1758 return MetaSubject->getValueAsListOfDefs("LangOpts"); 1759 } 1760 1761 // Abstract rules are used only for sub-rules 1762 bool isAbstractRule() const { return getSubjects().empty(); } 1763 1764 StringRef getName() const { 1765 return (Constraint ? Constraint : MetaSubject)->getValueAsString("Name"); 1766 } 1767 1768 bool isNegatedSubRule() const { 1769 assert(isSubRule() && "Not a sub-rule"); 1770 return Constraint->getValueAsBit("Negated"); 1771 } 1772 1773 std::string getSpelling() const { 1774 std::string Result = std::string(MetaSubject->getValueAsString("Name")); 1775 if (isSubRule()) { 1776 Result += '('; 1777 if (isNegatedSubRule()) 1778 Result += "unless("; 1779 Result += getName(); 1780 if (isNegatedSubRule()) 1781 Result += ')'; 1782 Result += ')'; 1783 } 1784 return Result; 1785 } 1786 1787 std::string getEnumValueName() const { 1788 SmallString<128> Result; 1789 Result += "SubjectMatchRule_"; 1790 Result += MetaSubject->getValueAsString("Name"); 1791 if (isSubRule()) { 1792 Result += "_"; 1793 if (isNegatedSubRule()) 1794 Result += "not_"; 1795 Result += Constraint->getValueAsString("Name"); 1796 } 1797 if (isAbstractRule()) 1798 Result += "_abstract"; 1799 return std::string(Result.str()); 1800 } 1801 1802 std::string getEnumValue() const { return "attr::" + getEnumValueName(); } 1803 1804 static const char *EnumName; 1805 }; 1806 1807 const char *AttributeSubjectMatchRule::EnumName = "attr::SubjectMatchRule"; 1808 1809 struct PragmaClangAttributeSupport { 1810 std::vector<AttributeSubjectMatchRule> Rules; 1811 1812 class RuleOrAggregateRuleSet { 1813 std::vector<AttributeSubjectMatchRule> Rules; 1814 bool IsRule; 1815 RuleOrAggregateRuleSet(ArrayRef<AttributeSubjectMatchRule> Rules, 1816 bool IsRule) 1817 : Rules(Rules), IsRule(IsRule) {} 1818 1819 public: 1820 bool isRule() const { return IsRule; } 1821 1822 const AttributeSubjectMatchRule &getRule() const { 1823 assert(IsRule && "not a rule!"); 1824 return Rules[0]; 1825 } 1826 1827 ArrayRef<AttributeSubjectMatchRule> getAggregateRuleSet() const { 1828 return Rules; 1829 } 1830 1831 static RuleOrAggregateRuleSet 1832 getRule(const AttributeSubjectMatchRule &Rule) { 1833 return RuleOrAggregateRuleSet(Rule, /*IsRule=*/true); 1834 } 1835 static RuleOrAggregateRuleSet 1836 getAggregateRuleSet(ArrayRef<AttributeSubjectMatchRule> Rules) { 1837 return RuleOrAggregateRuleSet(Rules, /*IsRule=*/false); 1838 } 1839 }; 1840 llvm::DenseMap<const Record *, RuleOrAggregateRuleSet> SubjectsToRules; 1841 1842 PragmaClangAttributeSupport(RecordKeeper &Records); 1843 1844 bool isAttributedSupported(const Record &Attribute); 1845 1846 void emitMatchRuleList(raw_ostream &OS); 1847 1848 void generateStrictConformsTo(const Record &Attr, raw_ostream &OS); 1849 1850 void generateParsingHelpers(raw_ostream &OS); 1851 }; 1852 1853 } // end anonymous namespace 1854 1855 static bool isSupportedPragmaClangAttributeSubject(const Record &Subject) { 1856 // FIXME: #pragma clang attribute does not currently support statement 1857 // attributes, so test whether the subject is one that appertains to a 1858 // declaration node. However, it may be reasonable for support for statement 1859 // attributes to be added. 1860 if (Subject.isSubClassOf("DeclNode") || Subject.isSubClassOf("DeclBase") || 1861 Subject.getName() == "DeclBase") 1862 return true; 1863 1864 if (Subject.isSubClassOf("SubsetSubject")) 1865 return isSupportedPragmaClangAttributeSubject( 1866 *Subject.getValueAsDef("Base")); 1867 1868 return false; 1869 } 1870 1871 static bool doesDeclDeriveFrom(const Record *D, const Record *Base) { 1872 const Record *CurrentBase = D->getValueAsOptionalDef(BaseFieldName); 1873 if (!CurrentBase) 1874 return false; 1875 if (CurrentBase == Base) 1876 return true; 1877 return doesDeclDeriveFrom(CurrentBase, Base); 1878 } 1879 1880 PragmaClangAttributeSupport::PragmaClangAttributeSupport( 1881 RecordKeeper &Records) { 1882 std::vector<Record *> MetaSubjects = 1883 Records.getAllDerivedDefinitions("AttrSubjectMatcherRule"); 1884 auto MapFromSubjectsToRules = [this](const Record *SubjectContainer, 1885 const Record *MetaSubject, 1886 const Record *Constraint) { 1887 Rules.emplace_back(MetaSubject, Constraint); 1888 std::vector<Record *> ApplicableSubjects = 1889 SubjectContainer->getValueAsListOfDefs("Subjects"); 1890 for (const auto *Subject : ApplicableSubjects) { 1891 bool Inserted = 1892 SubjectsToRules 1893 .try_emplace(Subject, RuleOrAggregateRuleSet::getRule( 1894 AttributeSubjectMatchRule(MetaSubject, 1895 Constraint))) 1896 .second; 1897 if (!Inserted) { 1898 PrintFatalError("Attribute subject match rules should not represent" 1899 "same attribute subjects."); 1900 } 1901 } 1902 }; 1903 for (const auto *MetaSubject : MetaSubjects) { 1904 MapFromSubjectsToRules(MetaSubject, MetaSubject, /*Constraints=*/nullptr); 1905 std::vector<Record *> Constraints = 1906 MetaSubject->getValueAsListOfDefs("Constraints"); 1907 for (const auto *Constraint : Constraints) 1908 MapFromSubjectsToRules(Constraint, MetaSubject, Constraint); 1909 } 1910 1911 std::vector<Record *> Aggregates = 1912 Records.getAllDerivedDefinitions("AttrSubjectMatcherAggregateRule"); 1913 std::vector<Record *> DeclNodes = 1914 Records.getAllDerivedDefinitions(DeclNodeClassName); 1915 for (const auto *Aggregate : Aggregates) { 1916 Record *SubjectDecl = Aggregate->getValueAsDef("Subject"); 1917 1918 // Gather sub-classes of the aggregate subject that act as attribute 1919 // subject rules. 1920 std::vector<AttributeSubjectMatchRule> Rules; 1921 for (const auto *D : DeclNodes) { 1922 if (doesDeclDeriveFrom(D, SubjectDecl)) { 1923 auto It = SubjectsToRules.find(D); 1924 if (It == SubjectsToRules.end()) 1925 continue; 1926 if (!It->second.isRule() || It->second.getRule().isSubRule()) 1927 continue; // Assume that the rule will be included as well. 1928 Rules.push_back(It->second.getRule()); 1929 } 1930 } 1931 1932 bool Inserted = 1933 SubjectsToRules 1934 .try_emplace(SubjectDecl, 1935 RuleOrAggregateRuleSet::getAggregateRuleSet(Rules)) 1936 .second; 1937 if (!Inserted) { 1938 PrintFatalError("Attribute subject match rules should not represent" 1939 "same attribute subjects."); 1940 } 1941 } 1942 } 1943 1944 static PragmaClangAttributeSupport & 1945 getPragmaAttributeSupport(RecordKeeper &Records) { 1946 static PragmaClangAttributeSupport Instance(Records); 1947 return Instance; 1948 } 1949 1950 void PragmaClangAttributeSupport::emitMatchRuleList(raw_ostream &OS) { 1951 OS << "#ifndef ATTR_MATCH_SUB_RULE\n"; 1952 OS << "#define ATTR_MATCH_SUB_RULE(Value, Spelling, IsAbstract, Parent, " 1953 "IsNegated) " 1954 << "ATTR_MATCH_RULE(Value, Spelling, IsAbstract)\n"; 1955 OS << "#endif\n"; 1956 for (const auto &Rule : Rules) { 1957 OS << (Rule.isSubRule() ? "ATTR_MATCH_SUB_RULE" : "ATTR_MATCH_RULE") << '('; 1958 OS << Rule.getEnumValueName() << ", \"" << Rule.getSpelling() << "\", " 1959 << Rule.isAbstractRule(); 1960 if (Rule.isSubRule()) 1961 OS << ", " 1962 << AttributeSubjectMatchRule(Rule.MetaSubject, nullptr).getEnumValue() 1963 << ", " << Rule.isNegatedSubRule(); 1964 OS << ")\n"; 1965 } 1966 OS << "#undef ATTR_MATCH_SUB_RULE\n"; 1967 } 1968 1969 bool PragmaClangAttributeSupport::isAttributedSupported( 1970 const Record &Attribute) { 1971 // If the attribute explicitly specified whether to support #pragma clang 1972 // attribute, use that setting. 1973 bool Unset; 1974 bool SpecifiedResult = 1975 Attribute.getValueAsBitOrUnset("PragmaAttributeSupport", Unset); 1976 if (!Unset) 1977 return SpecifiedResult; 1978 1979 // Opt-out rules: 1980 // An attribute requires delayed parsing (LateParsed is on) 1981 if (Attribute.getValueAsBit("LateParsed")) 1982 return false; 1983 // An attribute has no GNU/CXX11 spelling 1984 if (!hasGNUorCXX11Spelling(Attribute)) 1985 return false; 1986 // An attribute subject list has a subject that isn't covered by one of the 1987 // subject match rules or has no subjects at all. 1988 if (Attribute.isValueUnset("Subjects")) 1989 return false; 1990 const Record *SubjectObj = Attribute.getValueAsDef("Subjects"); 1991 std::vector<Record *> Subjects = SubjectObj->getValueAsListOfDefs("Subjects"); 1992 bool HasAtLeastOneValidSubject = false; 1993 for (const auto *Subject : Subjects) { 1994 if (!isSupportedPragmaClangAttributeSubject(*Subject)) 1995 continue; 1996 if (SubjectsToRules.find(Subject) == SubjectsToRules.end()) 1997 return false; 1998 HasAtLeastOneValidSubject = true; 1999 } 2000 return HasAtLeastOneValidSubject; 2001 } 2002 2003 static std::string GenerateTestExpression(ArrayRef<Record *> LangOpts) { 2004 std::string Test; 2005 2006 for (auto *E : LangOpts) { 2007 if (!Test.empty()) 2008 Test += " || "; 2009 2010 const StringRef Code = E->getValueAsString("CustomCode"); 2011 if (!Code.empty()) { 2012 Test += "("; 2013 Test += Code; 2014 Test += ")"; 2015 if (!E->getValueAsString("Name").empty()) { 2016 PrintWarning( 2017 E->getLoc(), 2018 "non-empty 'Name' field ignored because 'CustomCode' was supplied"); 2019 } 2020 } else { 2021 Test += "LangOpts."; 2022 Test += E->getValueAsString("Name"); 2023 } 2024 } 2025 2026 if (Test.empty()) 2027 return "true"; 2028 2029 return Test; 2030 } 2031 2032 void 2033 PragmaClangAttributeSupport::generateStrictConformsTo(const Record &Attr, 2034 raw_ostream &OS) { 2035 if (!isAttributedSupported(Attr) || Attr.isValueUnset("Subjects")) 2036 return; 2037 // Generate a function that constructs a set of matching rules that describe 2038 // to which declarations the attribute should apply to. 2039 OS << "void getPragmaAttributeMatchRules(" 2040 << "llvm::SmallVectorImpl<std::pair<" 2041 << AttributeSubjectMatchRule::EnumName 2042 << ", bool>> &MatchRules, const LangOptions &LangOpts) const override {\n"; 2043 const Record *SubjectObj = Attr.getValueAsDef("Subjects"); 2044 std::vector<Record *> Subjects = SubjectObj->getValueAsListOfDefs("Subjects"); 2045 for (const auto *Subject : Subjects) { 2046 if (!isSupportedPragmaClangAttributeSubject(*Subject)) 2047 continue; 2048 auto It = SubjectsToRules.find(Subject); 2049 assert(It != SubjectsToRules.end() && 2050 "This attribute is unsupported by #pragma clang attribute"); 2051 for (const auto &Rule : It->getSecond().getAggregateRuleSet()) { 2052 // The rule might be language specific, so only subtract it from the given 2053 // rules if the specific language options are specified. 2054 std::vector<Record *> LangOpts = Rule.getLangOpts(); 2055 OS << " MatchRules.push_back(std::make_pair(" << Rule.getEnumValue() 2056 << ", /*IsSupported=*/" << GenerateTestExpression(LangOpts) 2057 << "));\n"; 2058 } 2059 } 2060 OS << "}\n\n"; 2061 } 2062 2063 void PragmaClangAttributeSupport::generateParsingHelpers(raw_ostream &OS) { 2064 // Generate routines that check the names of sub-rules. 2065 OS << "Optional<attr::SubjectMatchRule> " 2066 "defaultIsAttributeSubjectMatchSubRuleFor(StringRef, bool) {\n"; 2067 OS << " return None;\n"; 2068 OS << "}\n\n"; 2069 2070 llvm::MapVector<const Record *, std::vector<AttributeSubjectMatchRule>> 2071 SubMatchRules; 2072 for (const auto &Rule : Rules) { 2073 if (!Rule.isSubRule()) 2074 continue; 2075 SubMatchRules[Rule.MetaSubject].push_back(Rule); 2076 } 2077 2078 for (const auto &SubMatchRule : SubMatchRules) { 2079 OS << "Optional<attr::SubjectMatchRule> isAttributeSubjectMatchSubRuleFor_" 2080 << SubMatchRule.first->getValueAsString("Name") 2081 << "(StringRef Name, bool IsUnless) {\n"; 2082 OS << " if (IsUnless)\n"; 2083 OS << " return " 2084 "llvm::StringSwitch<Optional<attr::SubjectMatchRule>>(Name).\n"; 2085 for (const auto &Rule : SubMatchRule.second) { 2086 if (Rule.isNegatedSubRule()) 2087 OS << " Case(\"" << Rule.getName() << "\", " << Rule.getEnumValue() 2088 << ").\n"; 2089 } 2090 OS << " Default(None);\n"; 2091 OS << " return " 2092 "llvm::StringSwitch<Optional<attr::SubjectMatchRule>>(Name).\n"; 2093 for (const auto &Rule : SubMatchRule.second) { 2094 if (!Rule.isNegatedSubRule()) 2095 OS << " Case(\"" << Rule.getName() << "\", " << Rule.getEnumValue() 2096 << ").\n"; 2097 } 2098 OS << " Default(None);\n"; 2099 OS << "}\n\n"; 2100 } 2101 2102 // Generate the function that checks for the top-level rules. 2103 OS << "std::pair<Optional<attr::SubjectMatchRule>, " 2104 "Optional<attr::SubjectMatchRule> (*)(StringRef, " 2105 "bool)> isAttributeSubjectMatchRule(StringRef Name) {\n"; 2106 OS << " return " 2107 "llvm::StringSwitch<std::pair<Optional<attr::SubjectMatchRule>, " 2108 "Optional<attr::SubjectMatchRule> (*) (StringRef, " 2109 "bool)>>(Name).\n"; 2110 for (const auto &Rule : Rules) { 2111 if (Rule.isSubRule()) 2112 continue; 2113 std::string SubRuleFunction; 2114 if (SubMatchRules.count(Rule.MetaSubject)) 2115 SubRuleFunction = 2116 ("isAttributeSubjectMatchSubRuleFor_" + Rule.getName()).str(); 2117 else 2118 SubRuleFunction = "defaultIsAttributeSubjectMatchSubRuleFor"; 2119 OS << " Case(\"" << Rule.getName() << "\", std::make_pair(" 2120 << Rule.getEnumValue() << ", " << SubRuleFunction << ")).\n"; 2121 } 2122 OS << " Default(std::make_pair(None, " 2123 "defaultIsAttributeSubjectMatchSubRuleFor));\n"; 2124 OS << "}\n\n"; 2125 2126 // Generate the function that checks for the submatch rules. 2127 OS << "const char *validAttributeSubjectMatchSubRules(" 2128 << AttributeSubjectMatchRule::EnumName << " Rule) {\n"; 2129 OS << " switch (Rule) {\n"; 2130 for (const auto &SubMatchRule : SubMatchRules) { 2131 OS << " case " 2132 << AttributeSubjectMatchRule(SubMatchRule.first, nullptr).getEnumValue() 2133 << ":\n"; 2134 OS << " return \"'"; 2135 bool IsFirst = true; 2136 for (const auto &Rule : SubMatchRule.second) { 2137 if (!IsFirst) 2138 OS << ", '"; 2139 IsFirst = false; 2140 if (Rule.isNegatedSubRule()) 2141 OS << "unless("; 2142 OS << Rule.getName(); 2143 if (Rule.isNegatedSubRule()) 2144 OS << ')'; 2145 OS << "'"; 2146 } 2147 OS << "\";\n"; 2148 } 2149 OS << " default: return nullptr;\n"; 2150 OS << " }\n"; 2151 OS << "}\n\n"; 2152 } 2153 2154 template <typename Fn> 2155 static void forEachUniqueSpelling(const Record &Attr, Fn &&F) { 2156 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attr); 2157 SmallDenseSet<StringRef, 8> Seen; 2158 for (const FlattenedSpelling &S : Spellings) { 2159 if (Seen.insert(S.name()).second) 2160 F(S); 2161 } 2162 } 2163 2164 static bool isTypeArgument(const Record *Arg) { 2165 return !Arg->getSuperClasses().empty() && 2166 Arg->getSuperClasses().back().first->getName() == "TypeArgument"; 2167 } 2168 2169 /// Emits the first-argument-is-type property for attributes. 2170 static void emitClangAttrTypeArgList(RecordKeeper &Records, raw_ostream &OS) { 2171 OS << "#if defined(CLANG_ATTR_TYPE_ARG_LIST)\n"; 2172 std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr"); 2173 2174 for (const auto *Attr : Attrs) { 2175 // Determine whether the first argument is a type. 2176 std::vector<Record *> Args = Attr->getValueAsListOfDefs("Args"); 2177 if (Args.empty()) 2178 continue; 2179 2180 if (!isTypeArgument(Args[0])) 2181 continue; 2182 2183 // All these spellings take a single type argument. 2184 forEachUniqueSpelling(*Attr, [&](const FlattenedSpelling &S) { 2185 OS << ".Case(\"" << S.name() << "\", " << "true" << ")\n"; 2186 }); 2187 } 2188 OS << "#endif // CLANG_ATTR_TYPE_ARG_LIST\n\n"; 2189 } 2190 2191 /// Emits the parse-arguments-in-unevaluated-context property for 2192 /// attributes. 2193 static void emitClangAttrArgContextList(RecordKeeper &Records, raw_ostream &OS) { 2194 OS << "#if defined(CLANG_ATTR_ARG_CONTEXT_LIST)\n"; 2195 ParsedAttrMap Attrs = getParsedAttrList(Records); 2196 for (const auto &I : Attrs) { 2197 const Record &Attr = *I.second; 2198 2199 if (!Attr.getValueAsBit("ParseArgumentsAsUnevaluated")) 2200 continue; 2201 2202 // All these spellings take are parsed unevaluated. 2203 forEachUniqueSpelling(Attr, [&](const FlattenedSpelling &S) { 2204 OS << ".Case(\"" << S.name() << "\", " << "true" << ")\n"; 2205 }); 2206 } 2207 OS << "#endif // CLANG_ATTR_ARG_CONTEXT_LIST\n\n"; 2208 } 2209 2210 static bool isIdentifierArgument(const Record *Arg) { 2211 return !Arg->getSuperClasses().empty() && 2212 llvm::StringSwitch<bool>(Arg->getSuperClasses().back().first->getName()) 2213 .Case("IdentifierArgument", true) 2214 .Case("EnumArgument", true) 2215 .Case("VariadicEnumArgument", true) 2216 .Default(false); 2217 } 2218 2219 static bool isVariadicIdentifierArgument(const Record *Arg) { 2220 return !Arg->getSuperClasses().empty() && 2221 llvm::StringSwitch<bool>( 2222 Arg->getSuperClasses().back().first->getName()) 2223 .Case("VariadicIdentifierArgument", true) 2224 .Case("VariadicParamOrParamIdxArgument", true) 2225 .Default(false); 2226 } 2227 2228 static bool isVariadicExprArgument(const Record *Arg) { 2229 return !Arg->getSuperClasses().empty() && 2230 llvm::StringSwitch<bool>( 2231 Arg->getSuperClasses().back().first->getName()) 2232 .Case("VariadicExprArgument", true) 2233 .Default(false); 2234 } 2235 2236 static void emitClangAttrVariadicIdentifierArgList(RecordKeeper &Records, 2237 raw_ostream &OS) { 2238 OS << "#if defined(CLANG_ATTR_VARIADIC_IDENTIFIER_ARG_LIST)\n"; 2239 std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr"); 2240 for (const auto *A : Attrs) { 2241 // Determine whether the first argument is a variadic identifier. 2242 std::vector<Record *> Args = A->getValueAsListOfDefs("Args"); 2243 if (Args.empty() || !isVariadicIdentifierArgument(Args[0])) 2244 continue; 2245 2246 // All these spellings take an identifier argument. 2247 forEachUniqueSpelling(*A, [&](const FlattenedSpelling &S) { 2248 OS << ".Case(\"" << S.name() << "\", " 2249 << "true" 2250 << ")\n"; 2251 }); 2252 } 2253 OS << "#endif // CLANG_ATTR_VARIADIC_IDENTIFIER_ARG_LIST\n\n"; 2254 } 2255 2256 // Emits the first-argument-is-identifier property for attributes. 2257 static void emitClangAttrIdentifierArgList(RecordKeeper &Records, raw_ostream &OS) { 2258 OS << "#if defined(CLANG_ATTR_IDENTIFIER_ARG_LIST)\n"; 2259 std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"); 2260 2261 for (const auto *Attr : Attrs) { 2262 // Determine whether the first argument is an identifier. 2263 std::vector<Record *> Args = Attr->getValueAsListOfDefs("Args"); 2264 if (Args.empty() || !isIdentifierArgument(Args[0])) 2265 continue; 2266 2267 // All these spellings take an identifier argument. 2268 forEachUniqueSpelling(*Attr, [&](const FlattenedSpelling &S) { 2269 OS << ".Case(\"" << S.name() << "\", " << "true" << ")\n"; 2270 }); 2271 } 2272 OS << "#endif // CLANG_ATTR_IDENTIFIER_ARG_LIST\n\n"; 2273 } 2274 2275 static bool keywordThisIsaIdentifierInArgument(const Record *Arg) { 2276 return !Arg->getSuperClasses().empty() && 2277 llvm::StringSwitch<bool>( 2278 Arg->getSuperClasses().back().first->getName()) 2279 .Case("VariadicParamOrParamIdxArgument", true) 2280 .Default(false); 2281 } 2282 2283 static void emitClangAttrThisIsaIdentifierArgList(RecordKeeper &Records, 2284 raw_ostream &OS) { 2285 OS << "#if defined(CLANG_ATTR_THIS_ISA_IDENTIFIER_ARG_LIST)\n"; 2286 std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr"); 2287 for (const auto *A : Attrs) { 2288 // Determine whether the first argument is a variadic identifier. 2289 std::vector<Record *> Args = A->getValueAsListOfDefs("Args"); 2290 if (Args.empty() || !keywordThisIsaIdentifierInArgument(Args[0])) 2291 continue; 2292 2293 // All these spellings take an identifier argument. 2294 forEachUniqueSpelling(*A, [&](const FlattenedSpelling &S) { 2295 OS << ".Case(\"" << S.name() << "\", " 2296 << "true" 2297 << ")\n"; 2298 }); 2299 } 2300 OS << "#endif // CLANG_ATTR_THIS_ISA_IDENTIFIER_ARG_LIST\n\n"; 2301 } 2302 2303 static void emitClangAttrAcceptsExprPack(RecordKeeper &Records, 2304 raw_ostream &OS) { 2305 OS << "#if defined(CLANG_ATTR_ACCEPTS_EXPR_PACK)\n"; 2306 ParsedAttrMap Attrs = getParsedAttrList(Records); 2307 for (const auto &I : Attrs) { 2308 const Record &Attr = *I.second; 2309 2310 if (!Attr.getValueAsBit("AcceptsExprPack")) 2311 continue; 2312 2313 forEachUniqueSpelling(Attr, [&](const FlattenedSpelling &S) { 2314 OS << ".Case(\"" << S.name() << "\", true)\n"; 2315 }); 2316 } 2317 OS << "#endif // CLANG_ATTR_ACCEPTS_EXPR_PACK\n\n"; 2318 } 2319 2320 static void emitAttributes(RecordKeeper &Records, raw_ostream &OS, 2321 bool Header) { 2322 std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"); 2323 ParsedAttrMap AttrMap = getParsedAttrList(Records); 2324 2325 // Helper to print the starting character of an attribute argument. If there 2326 // hasn't been an argument yet, it prints an opening parenthese; otherwise it 2327 // prints a comma. 2328 OS << "static inline void DelimitAttributeArgument(" 2329 << "raw_ostream& OS, bool& IsFirst) {\n" 2330 << " if (IsFirst) {\n" 2331 << " IsFirst = false;\n" 2332 << " OS << \"(\";\n" 2333 << " } else\n" 2334 << " OS << \", \";\n" 2335 << "}\n"; 2336 2337 for (const auto *Attr : Attrs) { 2338 const Record &R = *Attr; 2339 2340 // FIXME: Currently, documentation is generated as-needed due to the fact 2341 // that there is no way to allow a generated project "reach into" the docs 2342 // directory (for instance, it may be an out-of-tree build). However, we want 2343 // to ensure that every attribute has a Documentation field, and produce an 2344 // error if it has been neglected. Otherwise, the on-demand generation which 2345 // happens server-side will fail. This code is ensuring that functionality, 2346 // even though this Emitter doesn't technically need the documentation. 2347 // When attribute documentation can be generated as part of the build 2348 // itself, this code can be removed. 2349 (void)R.getValueAsListOfDefs("Documentation"); 2350 2351 if (!R.getValueAsBit("ASTNode")) 2352 continue; 2353 2354 ArrayRef<std::pair<Record *, SMRange>> Supers = R.getSuperClasses(); 2355 assert(!Supers.empty() && "Forgot to specify a superclass for the attr"); 2356 std::string SuperName; 2357 bool Inheritable = false; 2358 for (const auto &Super : llvm::reverse(Supers)) { 2359 const Record *R = Super.first; 2360 if (R->getName() != "TargetSpecificAttr" && 2361 R->getName() != "DeclOrTypeAttr" && SuperName.empty()) 2362 SuperName = std::string(R->getName()); 2363 if (R->getName() == "InheritableAttr") 2364 Inheritable = true; 2365 } 2366 2367 if (Header) 2368 OS << "class " << R.getName() << "Attr : public " << SuperName << " {\n"; 2369 else 2370 OS << "\n// " << R.getName() << "Attr implementation\n\n"; 2371 2372 std::vector<Record*> ArgRecords = R.getValueAsListOfDefs("Args"); 2373 std::vector<std::unique_ptr<Argument>> Args; 2374 Args.reserve(ArgRecords.size()); 2375 2376 bool AttrAcceptsExprPack = Attr->getValueAsBit("AcceptsExprPack"); 2377 if (AttrAcceptsExprPack) { 2378 for (size_t I = 0; I < ArgRecords.size(); ++I) { 2379 const Record *ArgR = ArgRecords[I]; 2380 if (isIdentifierArgument(ArgR) || isVariadicIdentifierArgument(ArgR) || 2381 isTypeArgument(ArgR)) 2382 PrintFatalError(Attr->getLoc(), 2383 "Attributes accepting packs cannot also " 2384 "have identifier or type arguments."); 2385 // When trying to determine if value-dependent expressions can populate 2386 // the attribute without prior instantiation, the decision is made based 2387 // on the assumption that only the last argument is ever variadic. 2388 if (I < (ArgRecords.size() - 1) && isVariadicExprArgument(ArgR)) 2389 PrintFatalError(Attr->getLoc(), 2390 "Attributes accepting packs can only have the last " 2391 "argument be variadic."); 2392 } 2393 } 2394 2395 bool HasOptArg = false; 2396 bool HasFakeArg = false; 2397 for (const auto *ArgRecord : ArgRecords) { 2398 Args.emplace_back(createArgument(*ArgRecord, R.getName())); 2399 if (Header) { 2400 Args.back()->writeDeclarations(OS); 2401 OS << "\n\n"; 2402 } 2403 2404 // For these purposes, fake takes priority over optional. 2405 if (Args.back()->isFake()) { 2406 HasFakeArg = true; 2407 } else if (Args.back()->isOptional()) { 2408 HasOptArg = true; 2409 } 2410 } 2411 2412 std::unique_ptr<VariadicExprArgument> DelayedArgs = nullptr; 2413 if (AttrAcceptsExprPack) { 2414 DelayedArgs = 2415 std::make_unique<VariadicExprArgument>("DelayedArgs", R.getName()); 2416 if (Header) { 2417 DelayedArgs->writeDeclarations(OS); 2418 OS << "\n\n"; 2419 } 2420 } 2421 2422 if (Header) 2423 OS << "public:\n"; 2424 2425 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R); 2426 2427 // If there are zero or one spellings, all spelling-related functionality 2428 // can be elided. If all of the spellings share the same name, the spelling 2429 // functionality can also be elided. 2430 bool ElideSpelling = (Spellings.size() <= 1) || 2431 SpellingNamesAreCommon(Spellings); 2432 2433 // This maps spelling index values to semantic Spelling enumerants. 2434 SemanticSpellingMap SemanticToSyntacticMap; 2435 2436 std::string SpellingEnum; 2437 if (Spellings.size() > 1) 2438 SpellingEnum = CreateSemanticSpellings(Spellings, SemanticToSyntacticMap); 2439 if (Header) 2440 OS << SpellingEnum; 2441 2442 const auto &ParsedAttrSpellingItr = llvm::find_if( 2443 AttrMap, [R](const std::pair<std::string, const Record *> &P) { 2444 return &R == P.second; 2445 }); 2446 2447 // Emit CreateImplicit factory methods. 2448 auto emitCreate = [&](bool Implicit, bool DelayedArgsOnly, bool emitFake) { 2449 if (Header) 2450 OS << " static "; 2451 OS << R.getName() << "Attr *"; 2452 if (!Header) 2453 OS << R.getName() << "Attr::"; 2454 OS << "Create"; 2455 if (Implicit) 2456 OS << "Implicit"; 2457 if (DelayedArgsOnly) 2458 OS << "WithDelayedArgs"; 2459 OS << "("; 2460 OS << "ASTContext &Ctx"; 2461 if (!DelayedArgsOnly) { 2462 for (auto const &ai : Args) { 2463 if (ai->isFake() && !emitFake) 2464 continue; 2465 OS << ", "; 2466 ai->writeCtorParameters(OS); 2467 } 2468 } else { 2469 OS << ", "; 2470 DelayedArgs->writeCtorParameters(OS); 2471 } 2472 OS << ", const AttributeCommonInfo &CommonInfo"; 2473 if (Header && Implicit) 2474 OS << " = {SourceRange{}}"; 2475 OS << ")"; 2476 if (Header) { 2477 OS << ";\n"; 2478 return; 2479 } 2480 2481 OS << " {\n"; 2482 OS << " auto *A = new (Ctx) " << R.getName(); 2483 OS << "Attr(Ctx, CommonInfo"; 2484 if (!DelayedArgsOnly) { 2485 for (auto const &ai : Args) { 2486 if (ai->isFake() && !emitFake) 2487 continue; 2488 OS << ", "; 2489 ai->writeImplicitCtorArgs(OS); 2490 } 2491 } 2492 OS << ");\n"; 2493 if (Implicit) { 2494 OS << " A->setImplicit(true);\n"; 2495 } 2496 if (Implicit || ElideSpelling) { 2497 OS << " if (!A->isAttributeSpellingListCalculated() && " 2498 "!A->getAttrName())\n"; 2499 OS << " A->setAttributeSpellingListIndex(0);\n"; 2500 } 2501 if (DelayedArgsOnly) { 2502 OS << " A->setDelayedArgs(Ctx, "; 2503 DelayedArgs->writeImplicitCtorArgs(OS); 2504 OS << ");\n"; 2505 } 2506 OS << " return A;\n}\n\n"; 2507 }; 2508 2509 auto emitCreateNoCI = [&](bool Implicit, bool DelayedArgsOnly, 2510 bool emitFake) { 2511 if (Header) 2512 OS << " static "; 2513 OS << R.getName() << "Attr *"; 2514 if (!Header) 2515 OS << R.getName() << "Attr::"; 2516 OS << "Create"; 2517 if (Implicit) 2518 OS << "Implicit"; 2519 if (DelayedArgsOnly) 2520 OS << "WithDelayedArgs"; 2521 OS << "("; 2522 OS << "ASTContext &Ctx"; 2523 if (!DelayedArgsOnly) { 2524 for (auto const &ai : Args) { 2525 if (ai->isFake() && !emitFake) 2526 continue; 2527 OS << ", "; 2528 ai->writeCtorParameters(OS); 2529 } 2530 } else { 2531 OS << ", "; 2532 DelayedArgs->writeCtorParameters(OS); 2533 } 2534 OS << ", SourceRange Range, AttributeCommonInfo::Syntax Syntax"; 2535 if (!ElideSpelling) { 2536 OS << ", " << R.getName() << "Attr::Spelling S"; 2537 if (Header) 2538 OS << " = static_cast<Spelling>(SpellingNotCalculated)"; 2539 } 2540 OS << ")"; 2541 if (Header) { 2542 OS << ";\n"; 2543 return; 2544 } 2545 2546 OS << " {\n"; 2547 OS << " AttributeCommonInfo I(Range, "; 2548 2549 if (ParsedAttrSpellingItr != std::end(AttrMap)) 2550 OS << "AT_" << ParsedAttrSpellingItr->first; 2551 else 2552 OS << "NoSemaHandlerAttribute"; 2553 2554 OS << ", Syntax"; 2555 if (!ElideSpelling) 2556 OS << ", S"; 2557 OS << ");\n"; 2558 OS << " return Create"; 2559 if (Implicit) 2560 OS << "Implicit"; 2561 if (DelayedArgsOnly) 2562 OS << "WithDelayedArgs"; 2563 OS << "(Ctx"; 2564 if (!DelayedArgsOnly) { 2565 for (auto const &ai : Args) { 2566 if (ai->isFake() && !emitFake) 2567 continue; 2568 OS << ", "; 2569 ai->writeImplicitCtorArgs(OS); 2570 } 2571 } else { 2572 OS << ", "; 2573 DelayedArgs->writeImplicitCtorArgs(OS); 2574 } 2575 OS << ", I);\n"; 2576 OS << "}\n\n"; 2577 }; 2578 2579 auto emitCreates = [&](bool DelayedArgsOnly, bool emitFake) { 2580 emitCreate(true, DelayedArgsOnly, emitFake); 2581 emitCreate(false, DelayedArgsOnly, emitFake); 2582 emitCreateNoCI(true, DelayedArgsOnly, emitFake); 2583 emitCreateNoCI(false, DelayedArgsOnly, emitFake); 2584 }; 2585 2586 if (Header) 2587 OS << " // Factory methods\n"; 2588 2589 // Emit a CreateImplicit that takes all the arguments. 2590 emitCreates(false, true); 2591 2592 // Emit a CreateImplicit that takes all the non-fake arguments. 2593 if (HasFakeArg) 2594 emitCreates(false, false); 2595 2596 // Emit a CreateWithDelayedArgs that takes only the dependent argument 2597 // expressions. 2598 if (DelayedArgs) 2599 emitCreates(true, false); 2600 2601 // Emit constructors. 2602 auto emitCtor = [&](bool emitOpt, bool emitFake, bool emitNoArgs) { 2603 auto shouldEmitArg = [=](const std::unique_ptr<Argument> &arg) { 2604 if (emitNoArgs) 2605 return false; 2606 if (arg->isFake()) 2607 return emitFake; 2608 if (arg->isOptional()) 2609 return emitOpt; 2610 return true; 2611 }; 2612 if (Header) 2613 OS << " "; 2614 else 2615 OS << R.getName() << "Attr::"; 2616 OS << R.getName() 2617 << "Attr(ASTContext &Ctx, const AttributeCommonInfo &CommonInfo"; 2618 OS << '\n'; 2619 for (auto const &ai : Args) { 2620 if (!shouldEmitArg(ai)) 2621 continue; 2622 OS << " , "; 2623 ai->writeCtorParameters(OS); 2624 OS << "\n"; 2625 } 2626 2627 OS << " )"; 2628 if (Header) { 2629 OS << ";\n"; 2630 return; 2631 } 2632 OS << "\n : " << SuperName << "(Ctx, CommonInfo, "; 2633 OS << "attr::" << R.getName() << ", " 2634 << (R.getValueAsBit("LateParsed") ? "true" : "false"); 2635 if (Inheritable) { 2636 OS << ", " 2637 << (R.getValueAsBit("InheritEvenIfAlreadyPresent") ? "true" 2638 : "false"); 2639 } 2640 OS << ")\n"; 2641 2642 for (auto const &ai : Args) { 2643 OS << " , "; 2644 if (!shouldEmitArg(ai)) { 2645 ai->writeCtorDefaultInitializers(OS); 2646 } else { 2647 ai->writeCtorInitializers(OS); 2648 } 2649 OS << "\n"; 2650 } 2651 if (DelayedArgs) { 2652 OS << " , "; 2653 DelayedArgs->writeCtorDefaultInitializers(OS); 2654 OS << "\n"; 2655 } 2656 2657 OS << " {\n"; 2658 2659 for (auto const &ai : Args) { 2660 if (!shouldEmitArg(ai)) 2661 continue; 2662 ai->writeCtorBody(OS); 2663 } 2664 OS << "}\n\n"; 2665 }; 2666 2667 if (Header) 2668 OS << "\n // Constructors\n"; 2669 2670 // Emit a constructor that includes all the arguments. 2671 // This is necessary for cloning. 2672 emitCtor(true, true, false); 2673 2674 // Emit a constructor that takes all the non-fake arguments. 2675 if (HasFakeArg) 2676 emitCtor(true, false, false); 2677 2678 // Emit a constructor that takes all the non-fake, non-optional arguments. 2679 if (HasOptArg) 2680 emitCtor(false, false, false); 2681 2682 // Emit constructors that takes no arguments if none already exists. 2683 // This is used for delaying arguments. 2684 bool HasRequiredArgs = std::count_if( 2685 Args.begin(), Args.end(), [=](const std::unique_ptr<Argument> &arg) { 2686 return !arg->isFake() && !arg->isOptional(); 2687 }); 2688 if (DelayedArgs && HasRequiredArgs) 2689 emitCtor(false, false, true); 2690 2691 if (Header) { 2692 OS << '\n'; 2693 OS << " " << R.getName() << "Attr *clone(ASTContext &C) const;\n"; 2694 OS << " void printPretty(raw_ostream &OS,\n" 2695 << " const PrintingPolicy &Policy) const;\n"; 2696 OS << " const char *getSpelling() const;\n"; 2697 } 2698 2699 if (!ElideSpelling) { 2700 assert(!SemanticToSyntacticMap.empty() && "Empty semantic mapping list"); 2701 if (Header) 2702 OS << " Spelling getSemanticSpelling() const;\n"; 2703 else { 2704 OS << R.getName() << "Attr::Spelling " << R.getName() 2705 << "Attr::getSemanticSpelling() const {\n"; 2706 WriteSemanticSpellingSwitch("getAttributeSpellingListIndex()", 2707 SemanticToSyntacticMap, OS); 2708 OS << "}\n"; 2709 } 2710 } 2711 2712 if (Header) 2713 writeAttrAccessorDefinition(R, OS); 2714 2715 for (auto const &ai : Args) { 2716 if (Header) { 2717 ai->writeAccessors(OS); 2718 } else { 2719 ai->writeAccessorDefinitions(OS); 2720 } 2721 OS << "\n\n"; 2722 2723 // Don't write conversion routines for fake arguments. 2724 if (ai->isFake()) continue; 2725 2726 if (ai->isEnumArg()) 2727 static_cast<const EnumArgument *>(ai.get())->writeConversion(OS, 2728 Header); 2729 else if (ai->isVariadicEnumArg()) 2730 static_cast<const VariadicEnumArgument *>(ai.get())->writeConversion( 2731 OS, Header); 2732 } 2733 2734 if (Header) { 2735 if (DelayedArgs) { 2736 DelayedArgs->writeAccessors(OS); 2737 DelayedArgs->writeSetter(OS); 2738 } 2739 2740 OS << R.getValueAsString("AdditionalMembers"); 2741 OS << "\n\n"; 2742 2743 OS << " static bool classof(const Attr *A) { return A->getKind() == " 2744 << "attr::" << R.getName() << "; }\n"; 2745 2746 OS << "};\n\n"; 2747 } else { 2748 if (DelayedArgs) 2749 DelayedArgs->writeAccessorDefinitions(OS); 2750 2751 OS << R.getName() << "Attr *" << R.getName() 2752 << "Attr::clone(ASTContext &C) const {\n"; 2753 OS << " auto *A = new (C) " << R.getName() << "Attr(C, *this"; 2754 for (auto const &ai : Args) { 2755 OS << ", "; 2756 ai->writeCloneArgs(OS); 2757 } 2758 OS << ");\n"; 2759 OS << " A->Inherited = Inherited;\n"; 2760 OS << " A->IsPackExpansion = IsPackExpansion;\n"; 2761 OS << " A->setImplicit(Implicit);\n"; 2762 if (DelayedArgs) { 2763 OS << " A->setDelayedArgs(C, "; 2764 DelayedArgs->writeCloneArgs(OS); 2765 OS << ");\n"; 2766 } 2767 OS << " return A;\n}\n\n"; 2768 2769 writePrettyPrintFunction(R, Args, OS); 2770 writeGetSpellingFunction(R, OS); 2771 } 2772 } 2773 } 2774 // Emits the class definitions for attributes. 2775 void clang::EmitClangAttrClass(RecordKeeper &Records, raw_ostream &OS) { 2776 emitSourceFileHeader("Attribute classes' definitions", OS); 2777 2778 OS << "#ifndef LLVM_CLANG_ATTR_CLASSES_INC\n"; 2779 OS << "#define LLVM_CLANG_ATTR_CLASSES_INC\n\n"; 2780 2781 emitAttributes(Records, OS, true); 2782 2783 OS << "#endif // LLVM_CLANG_ATTR_CLASSES_INC\n"; 2784 } 2785 2786 // Emits the class method definitions for attributes. 2787 void clang::EmitClangAttrImpl(RecordKeeper &Records, raw_ostream &OS) { 2788 emitSourceFileHeader("Attribute classes' member function definitions", OS); 2789 2790 emitAttributes(Records, OS, false); 2791 2792 std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr"); 2793 2794 // Instead of relying on virtual dispatch we just create a huge dispatch 2795 // switch. This is both smaller and faster than virtual functions. 2796 auto EmitFunc = [&](const char *Method) { 2797 OS << " switch (getKind()) {\n"; 2798 for (const auto *Attr : Attrs) { 2799 const Record &R = *Attr; 2800 if (!R.getValueAsBit("ASTNode")) 2801 continue; 2802 2803 OS << " case attr::" << R.getName() << ":\n"; 2804 OS << " return cast<" << R.getName() << "Attr>(this)->" << Method 2805 << ";\n"; 2806 } 2807 OS << " }\n"; 2808 OS << " llvm_unreachable(\"Unexpected attribute kind!\");\n"; 2809 OS << "}\n\n"; 2810 }; 2811 2812 OS << "const char *Attr::getSpelling() const {\n"; 2813 EmitFunc("getSpelling()"); 2814 2815 OS << "Attr *Attr::clone(ASTContext &C) const {\n"; 2816 EmitFunc("clone(C)"); 2817 2818 OS << "void Attr::printPretty(raw_ostream &OS, " 2819 "const PrintingPolicy &Policy) const {\n"; 2820 EmitFunc("printPretty(OS, Policy)"); 2821 } 2822 2823 static void emitAttrList(raw_ostream &OS, StringRef Class, 2824 const std::vector<Record*> &AttrList) { 2825 for (auto Cur : AttrList) { 2826 OS << Class << "(" << Cur->getName() << ")\n"; 2827 } 2828 } 2829 2830 // Determines if an attribute has a Pragma spelling. 2831 static bool AttrHasPragmaSpelling(const Record *R) { 2832 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*R); 2833 return llvm::any_of(Spellings, [](const FlattenedSpelling &S) { 2834 return S.variety() == "Pragma"; 2835 }); 2836 } 2837 2838 namespace { 2839 2840 struct AttrClassDescriptor { 2841 const char * const MacroName; 2842 const char * const TableGenName; 2843 }; 2844 2845 } // end anonymous namespace 2846 2847 static const AttrClassDescriptor AttrClassDescriptors[] = { 2848 { "ATTR", "Attr" }, 2849 { "TYPE_ATTR", "TypeAttr" }, 2850 { "STMT_ATTR", "StmtAttr" }, 2851 { "DECL_OR_STMT_ATTR", "DeclOrStmtAttr" }, 2852 { "INHERITABLE_ATTR", "InheritableAttr" }, 2853 { "DECL_OR_TYPE_ATTR", "DeclOrTypeAttr" }, 2854 { "INHERITABLE_PARAM_ATTR", "InheritableParamAttr" }, 2855 { "PARAMETER_ABI_ATTR", "ParameterABIAttr" } 2856 }; 2857 2858 static void emitDefaultDefine(raw_ostream &OS, StringRef name, 2859 const char *superName) { 2860 OS << "#ifndef " << name << "\n"; 2861 OS << "#define " << name << "(NAME) "; 2862 if (superName) OS << superName << "(NAME)"; 2863 OS << "\n#endif\n\n"; 2864 } 2865 2866 namespace { 2867 2868 /// A class of attributes. 2869 struct AttrClass { 2870 const AttrClassDescriptor &Descriptor; 2871 Record *TheRecord; 2872 AttrClass *SuperClass = nullptr; 2873 std::vector<AttrClass*> SubClasses; 2874 std::vector<Record*> Attrs; 2875 2876 AttrClass(const AttrClassDescriptor &Descriptor, Record *R) 2877 : Descriptor(Descriptor), TheRecord(R) {} 2878 2879 void emitDefaultDefines(raw_ostream &OS) const { 2880 // Default the macro unless this is a root class (i.e. Attr). 2881 if (SuperClass) { 2882 emitDefaultDefine(OS, Descriptor.MacroName, 2883 SuperClass->Descriptor.MacroName); 2884 } 2885 } 2886 2887 void emitUndefs(raw_ostream &OS) const { 2888 OS << "#undef " << Descriptor.MacroName << "\n"; 2889 } 2890 2891 void emitAttrList(raw_ostream &OS) const { 2892 for (auto SubClass : SubClasses) { 2893 SubClass->emitAttrList(OS); 2894 } 2895 2896 ::emitAttrList(OS, Descriptor.MacroName, Attrs); 2897 } 2898 2899 void classifyAttrOnRoot(Record *Attr) { 2900 bool result = classifyAttr(Attr); 2901 assert(result && "failed to classify on root"); (void) result; 2902 } 2903 2904 void emitAttrRange(raw_ostream &OS) const { 2905 OS << "ATTR_RANGE(" << Descriptor.TableGenName 2906 << ", " << getFirstAttr()->getName() 2907 << ", " << getLastAttr()->getName() << ")\n"; 2908 } 2909 2910 private: 2911 bool classifyAttr(Record *Attr) { 2912 // Check all the subclasses. 2913 for (auto SubClass : SubClasses) { 2914 if (SubClass->classifyAttr(Attr)) 2915 return true; 2916 } 2917 2918 // It's not more specific than this class, but it might still belong here. 2919 if (Attr->isSubClassOf(TheRecord)) { 2920 Attrs.push_back(Attr); 2921 return true; 2922 } 2923 2924 return false; 2925 } 2926 2927 Record *getFirstAttr() const { 2928 if (!SubClasses.empty()) 2929 return SubClasses.front()->getFirstAttr(); 2930 return Attrs.front(); 2931 } 2932 2933 Record *getLastAttr() const { 2934 if (!Attrs.empty()) 2935 return Attrs.back(); 2936 return SubClasses.back()->getLastAttr(); 2937 } 2938 }; 2939 2940 /// The entire hierarchy of attribute classes. 2941 class AttrClassHierarchy { 2942 std::vector<std::unique_ptr<AttrClass>> Classes; 2943 2944 public: 2945 AttrClassHierarchy(RecordKeeper &Records) { 2946 // Find records for all the classes. 2947 for (auto &Descriptor : AttrClassDescriptors) { 2948 Record *ClassRecord = Records.getClass(Descriptor.TableGenName); 2949 AttrClass *Class = new AttrClass(Descriptor, ClassRecord); 2950 Classes.emplace_back(Class); 2951 } 2952 2953 // Link up the hierarchy. 2954 for (auto &Class : Classes) { 2955 if (AttrClass *SuperClass = findSuperClass(Class->TheRecord)) { 2956 Class->SuperClass = SuperClass; 2957 SuperClass->SubClasses.push_back(Class.get()); 2958 } 2959 } 2960 2961 #ifndef NDEBUG 2962 for (auto i = Classes.begin(), e = Classes.end(); i != e; ++i) { 2963 assert((i == Classes.begin()) == ((*i)->SuperClass == nullptr) && 2964 "only the first class should be a root class!"); 2965 } 2966 #endif 2967 } 2968 2969 void emitDefaultDefines(raw_ostream &OS) const { 2970 for (auto &Class : Classes) { 2971 Class->emitDefaultDefines(OS); 2972 } 2973 } 2974 2975 void emitUndefs(raw_ostream &OS) const { 2976 for (auto &Class : Classes) { 2977 Class->emitUndefs(OS); 2978 } 2979 } 2980 2981 void emitAttrLists(raw_ostream &OS) const { 2982 // Just start from the root class. 2983 Classes[0]->emitAttrList(OS); 2984 } 2985 2986 void emitAttrRanges(raw_ostream &OS) const { 2987 for (auto &Class : Classes) 2988 Class->emitAttrRange(OS); 2989 } 2990 2991 void classifyAttr(Record *Attr) { 2992 // Add the attribute to the root class. 2993 Classes[0]->classifyAttrOnRoot(Attr); 2994 } 2995 2996 private: 2997 AttrClass *findClassByRecord(Record *R) const { 2998 for (auto &Class : Classes) { 2999 if (Class->TheRecord == R) 3000 return Class.get(); 3001 } 3002 return nullptr; 3003 } 3004 3005 AttrClass *findSuperClass(Record *R) const { 3006 // TableGen flattens the superclass list, so we just need to walk it 3007 // in reverse. 3008 auto SuperClasses = R->getSuperClasses(); 3009 for (signed i = 0, e = SuperClasses.size(); i != e; ++i) { 3010 auto SuperClass = findClassByRecord(SuperClasses[e - i - 1].first); 3011 if (SuperClass) return SuperClass; 3012 } 3013 return nullptr; 3014 } 3015 }; 3016 3017 } // end anonymous namespace 3018 3019 namespace clang { 3020 3021 // Emits the enumeration list for attributes. 3022 void EmitClangAttrList(RecordKeeper &Records, raw_ostream &OS) { 3023 emitSourceFileHeader("List of all attributes that Clang recognizes", OS); 3024 3025 AttrClassHierarchy Hierarchy(Records); 3026 3027 // Add defaulting macro definitions. 3028 Hierarchy.emitDefaultDefines(OS); 3029 emitDefaultDefine(OS, "PRAGMA_SPELLING_ATTR", nullptr); 3030 3031 std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr"); 3032 std::vector<Record *> PragmaAttrs; 3033 for (auto *Attr : Attrs) { 3034 if (!Attr->getValueAsBit("ASTNode")) 3035 continue; 3036 3037 // Add the attribute to the ad-hoc groups. 3038 if (AttrHasPragmaSpelling(Attr)) 3039 PragmaAttrs.push_back(Attr); 3040 3041 // Place it in the hierarchy. 3042 Hierarchy.classifyAttr(Attr); 3043 } 3044 3045 // Emit the main attribute list. 3046 Hierarchy.emitAttrLists(OS); 3047 3048 // Emit the ad hoc groups. 3049 emitAttrList(OS, "PRAGMA_SPELLING_ATTR", PragmaAttrs); 3050 3051 // Emit the attribute ranges. 3052 OS << "#ifdef ATTR_RANGE\n"; 3053 Hierarchy.emitAttrRanges(OS); 3054 OS << "#undef ATTR_RANGE\n"; 3055 OS << "#endif\n"; 3056 3057 Hierarchy.emitUndefs(OS); 3058 OS << "#undef PRAGMA_SPELLING_ATTR\n"; 3059 } 3060 3061 // Emits the enumeration list for attributes. 3062 void EmitClangAttrSubjectMatchRuleList(RecordKeeper &Records, raw_ostream &OS) { 3063 emitSourceFileHeader( 3064 "List of all attribute subject matching rules that Clang recognizes", OS); 3065 PragmaClangAttributeSupport &PragmaAttributeSupport = 3066 getPragmaAttributeSupport(Records); 3067 emitDefaultDefine(OS, "ATTR_MATCH_RULE", nullptr); 3068 PragmaAttributeSupport.emitMatchRuleList(OS); 3069 OS << "#undef ATTR_MATCH_RULE\n"; 3070 } 3071 3072 // Emits the code to read an attribute from a precompiled header. 3073 void EmitClangAttrPCHRead(RecordKeeper &Records, raw_ostream &OS) { 3074 emitSourceFileHeader("Attribute deserialization code", OS); 3075 3076 Record *InhClass = Records.getClass("InheritableAttr"); 3077 std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"), 3078 ArgRecords; 3079 std::vector<std::unique_ptr<Argument>> Args; 3080 std::unique_ptr<VariadicExprArgument> DelayedArgs; 3081 3082 OS << " switch (Kind) {\n"; 3083 for (const auto *Attr : Attrs) { 3084 const Record &R = *Attr; 3085 if (!R.getValueAsBit("ASTNode")) 3086 continue; 3087 3088 OS << " case attr::" << R.getName() << ": {\n"; 3089 if (R.isSubClassOf(InhClass)) 3090 OS << " bool isInherited = Record.readInt();\n"; 3091 OS << " bool isImplicit = Record.readInt();\n"; 3092 OS << " bool isPackExpansion = Record.readInt();\n"; 3093 DelayedArgs = nullptr; 3094 if (Attr->getValueAsBit("AcceptsExprPack")) { 3095 DelayedArgs = 3096 std::make_unique<VariadicExprArgument>("DelayedArgs", R.getName()); 3097 DelayedArgs->writePCHReadDecls(OS); 3098 } 3099 ArgRecords = R.getValueAsListOfDefs("Args"); 3100 Args.clear(); 3101 for (const auto *Arg : ArgRecords) { 3102 Args.emplace_back(createArgument(*Arg, R.getName())); 3103 Args.back()->writePCHReadDecls(OS); 3104 } 3105 OS << " New = new (Context) " << R.getName() << "Attr(Context, Info"; 3106 for (auto const &ri : Args) { 3107 OS << ", "; 3108 ri->writePCHReadArgs(OS); 3109 } 3110 OS << ");\n"; 3111 if (R.isSubClassOf(InhClass)) 3112 OS << " cast<InheritableAttr>(New)->setInherited(isInherited);\n"; 3113 OS << " New->setImplicit(isImplicit);\n"; 3114 OS << " New->setPackExpansion(isPackExpansion);\n"; 3115 if (DelayedArgs) { 3116 OS << " cast<" << R.getName() 3117 << "Attr>(New)->setDelayedArgs(Context, "; 3118 DelayedArgs->writePCHReadArgs(OS); 3119 OS << ");\n"; 3120 } 3121 OS << " break;\n"; 3122 OS << " }\n"; 3123 } 3124 OS << " }\n"; 3125 } 3126 3127 // Emits the code to write an attribute to a precompiled header. 3128 void EmitClangAttrPCHWrite(RecordKeeper &Records, raw_ostream &OS) { 3129 emitSourceFileHeader("Attribute serialization code", OS); 3130 3131 Record *InhClass = Records.getClass("InheritableAttr"); 3132 std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"), Args; 3133 3134 OS << " switch (A->getKind()) {\n"; 3135 for (const auto *Attr : Attrs) { 3136 const Record &R = *Attr; 3137 if (!R.getValueAsBit("ASTNode")) 3138 continue; 3139 OS << " case attr::" << R.getName() << ": {\n"; 3140 Args = R.getValueAsListOfDefs("Args"); 3141 if (R.isSubClassOf(InhClass) || !Args.empty()) 3142 OS << " const auto *SA = cast<" << R.getName() 3143 << "Attr>(A);\n"; 3144 if (R.isSubClassOf(InhClass)) 3145 OS << " Record.push_back(SA->isInherited());\n"; 3146 OS << " Record.push_back(A->isImplicit());\n"; 3147 OS << " Record.push_back(A->isPackExpansion());\n"; 3148 if (Attr->getValueAsBit("AcceptsExprPack")) 3149 VariadicExprArgument("DelayedArgs", R.getName()).writePCHWrite(OS); 3150 3151 for (const auto *Arg : Args) 3152 createArgument(*Arg, R.getName())->writePCHWrite(OS); 3153 OS << " break;\n"; 3154 OS << " }\n"; 3155 } 3156 OS << " }\n"; 3157 } 3158 3159 // Helper function for GenerateTargetSpecificAttrChecks that alters the 'Test' 3160 // parameter with only a single check type, if applicable. 3161 static bool GenerateTargetSpecificAttrCheck(const Record *R, std::string &Test, 3162 std::string *FnName, 3163 StringRef ListName, 3164 StringRef CheckAgainst, 3165 StringRef Scope) { 3166 if (!R->isValueUnset(ListName)) { 3167 Test += " && ("; 3168 std::vector<StringRef> Items = R->getValueAsListOfStrings(ListName); 3169 for (auto I = Items.begin(), E = Items.end(); I != E; ++I) { 3170 StringRef Part = *I; 3171 Test += CheckAgainst; 3172 Test += " == "; 3173 Test += Scope; 3174 Test += Part; 3175 if (I + 1 != E) 3176 Test += " || "; 3177 if (FnName) 3178 *FnName += Part; 3179 } 3180 Test += ")"; 3181 return true; 3182 } 3183 return false; 3184 } 3185 3186 // Generate a conditional expression to check if the current target satisfies 3187 // the conditions for a TargetSpecificAttr record, and append the code for 3188 // those checks to the Test string. If the FnName string pointer is non-null, 3189 // append a unique suffix to distinguish this set of target checks from other 3190 // TargetSpecificAttr records. 3191 static bool GenerateTargetSpecificAttrChecks(const Record *R, 3192 std::vector<StringRef> &Arches, 3193 std::string &Test, 3194 std::string *FnName) { 3195 bool AnyTargetChecks = false; 3196 3197 // It is assumed that there will be an llvm::Triple object 3198 // named "T" and a TargetInfo object named "Target" within 3199 // scope that can be used to determine whether the attribute exists in 3200 // a given target. 3201 Test += "true"; 3202 // If one or more architectures is specified, check those. Arches are handled 3203 // differently because GenerateTargetRequirements needs to combine the list 3204 // with ParseKind. 3205 if (!Arches.empty()) { 3206 AnyTargetChecks = true; 3207 Test += " && ("; 3208 for (auto I = Arches.begin(), E = Arches.end(); I != E; ++I) { 3209 StringRef Part = *I; 3210 Test += "T.getArch() == llvm::Triple::"; 3211 Test += Part; 3212 if (I + 1 != E) 3213 Test += " || "; 3214 if (FnName) 3215 *FnName += Part; 3216 } 3217 Test += ")"; 3218 } 3219 3220 // If the attribute is specific to particular OSes, check those. 3221 AnyTargetChecks |= GenerateTargetSpecificAttrCheck( 3222 R, Test, FnName, "OSes", "T.getOS()", "llvm::Triple::"); 3223 3224 // If one or more object formats is specified, check those. 3225 AnyTargetChecks |= 3226 GenerateTargetSpecificAttrCheck(R, Test, FnName, "ObjectFormats", 3227 "T.getObjectFormat()", "llvm::Triple::"); 3228 3229 // If custom code is specified, emit it. 3230 StringRef Code = R->getValueAsString("CustomCode"); 3231 if (!Code.empty()) { 3232 AnyTargetChecks = true; 3233 Test += " && ("; 3234 Test += Code; 3235 Test += ")"; 3236 } 3237 3238 return AnyTargetChecks; 3239 } 3240 3241 static void GenerateHasAttrSpellingStringSwitch( 3242 const std::vector<Record *> &Attrs, raw_ostream &OS, 3243 const std::string &Variety = "", const std::string &Scope = "") { 3244 for (const auto *Attr : Attrs) { 3245 // C++11-style attributes have specific version information associated with 3246 // them. If the attribute has no scope, the version information must not 3247 // have the default value (1), as that's incorrect. Instead, the unscoped 3248 // attribute version information should be taken from the SD-6 standing 3249 // document, which can be found at: 3250 // https://isocpp.org/std/standing-documents/sd-6-sg10-feature-test-recommendations 3251 // 3252 // C2x-style attributes have the same kind of version information 3253 // associated with them. The unscoped attribute version information should 3254 // be taken from the specification of the attribute in the C Standard. 3255 int Version = 1; 3256 3257 if (Variety == "CXX11" || Variety == "C2x") { 3258 std::vector<Record *> Spellings = Attr->getValueAsListOfDefs("Spellings"); 3259 for (const auto &Spelling : Spellings) { 3260 if (Spelling->getValueAsString("Variety") == Variety) { 3261 Version = static_cast<int>(Spelling->getValueAsInt("Version")); 3262 if (Scope.empty() && Version == 1) 3263 PrintError(Spelling->getLoc(), "Standard attributes must have " 3264 "valid version information."); 3265 break; 3266 } 3267 } 3268 } 3269 3270 std::string Test; 3271 if (Attr->isSubClassOf("TargetSpecificAttr")) { 3272 const Record *R = Attr->getValueAsDef("Target"); 3273 std::vector<StringRef> Arches = R->getValueAsListOfStrings("Arches"); 3274 GenerateTargetSpecificAttrChecks(R, Arches, Test, nullptr); 3275 3276 // If this is the C++11 variety, also add in the LangOpts test. 3277 if (Variety == "CXX11") 3278 Test += " && LangOpts.CPlusPlus11"; 3279 else if (Variety == "C2x") 3280 Test += " && LangOpts.DoubleSquareBracketAttributes"; 3281 } else if (Variety == "CXX11") 3282 // C++11 mode should be checked against LangOpts, which is presumed to be 3283 // present in the caller. 3284 Test = "LangOpts.CPlusPlus11"; 3285 else if (Variety == "C2x") 3286 Test = "LangOpts.DoubleSquareBracketAttributes"; 3287 3288 std::string TestStr = 3289 !Test.empty() ? Test + " ? " + llvm::itostr(Version) + " : 0" : "1"; 3290 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*Attr); 3291 for (const auto &S : Spellings) 3292 if (Variety.empty() || (Variety == S.variety() && 3293 (Scope.empty() || Scope == S.nameSpace()))) 3294 OS << " .Case(\"" << S.name() << "\", " << TestStr << ")\n"; 3295 } 3296 OS << " .Default(0);\n"; 3297 } 3298 3299 // Emits the list of spellings for attributes. 3300 void EmitClangAttrHasAttrImpl(RecordKeeper &Records, raw_ostream &OS) { 3301 emitSourceFileHeader("Code to implement the __has_attribute logic", OS); 3302 3303 // Separate all of the attributes out into four group: generic, C++11, GNU, 3304 // and declspecs. Then generate a big switch statement for each of them. 3305 std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr"); 3306 std::vector<Record *> Declspec, Microsoft, GNU, Pragma, HLSLSemantic; 3307 std::map<std::string, std::vector<Record *>> CXX, C2x; 3308 3309 // Walk over the list of all attributes, and split them out based on the 3310 // spelling variety. 3311 for (auto *R : Attrs) { 3312 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*R); 3313 for (const auto &SI : Spellings) { 3314 const std::string &Variety = SI.variety(); 3315 if (Variety == "GNU") 3316 GNU.push_back(R); 3317 else if (Variety == "Declspec") 3318 Declspec.push_back(R); 3319 else if (Variety == "Microsoft") 3320 Microsoft.push_back(R); 3321 else if (Variety == "CXX11") 3322 CXX[SI.nameSpace()].push_back(R); 3323 else if (Variety == "C2x") 3324 C2x[SI.nameSpace()].push_back(R); 3325 else if (Variety == "Pragma") 3326 Pragma.push_back(R); 3327 else if (Variety == "HLSLSemantic") 3328 HLSLSemantic.push_back(R); 3329 } 3330 } 3331 3332 OS << "const llvm::Triple &T = Target.getTriple();\n"; 3333 OS << "switch (Syntax) {\n"; 3334 OS << "case AttributeCommonInfo::Syntax::AS_GNU:\n"; 3335 OS << " return llvm::StringSwitch<int>(Name)\n"; 3336 GenerateHasAttrSpellingStringSwitch(GNU, OS, "GNU"); 3337 OS << "case AttributeCommonInfo::Syntax::AS_Declspec:\n"; 3338 OS << " return llvm::StringSwitch<int>(Name)\n"; 3339 GenerateHasAttrSpellingStringSwitch(Declspec, OS, "Declspec"); 3340 OS << "case AttributeCommonInfo::Syntax::AS_Microsoft:\n"; 3341 OS << " return llvm::StringSwitch<int>(Name)\n"; 3342 GenerateHasAttrSpellingStringSwitch(Microsoft, OS, "Microsoft"); 3343 OS << "case AttributeCommonInfo::Syntax::AS_Pragma:\n"; 3344 OS << " return llvm::StringSwitch<int>(Name)\n"; 3345 GenerateHasAttrSpellingStringSwitch(Pragma, OS, "Pragma"); 3346 OS << "case AttributeCommonInfo::Syntax::AS_HLSLSemantic:\n"; 3347 OS << " return llvm::StringSwitch<int>(Name)\n"; 3348 GenerateHasAttrSpellingStringSwitch(HLSLSemantic, OS, "HLSLSemantic"); 3349 auto fn = [&OS](const char *Spelling, 3350 const std::map<std::string, std::vector<Record *>> &List) { 3351 OS << "case AttributeCommonInfo::Syntax::AS_" << Spelling << ": {\n"; 3352 // C++11-style attributes are further split out based on the Scope. 3353 for (auto I = List.cbegin(), E = List.cend(); I != E; ++I) { 3354 if (I != List.cbegin()) 3355 OS << " else "; 3356 if (I->first.empty()) 3357 OS << "if (ScopeName == \"\") {\n"; 3358 else 3359 OS << "if (ScopeName == \"" << I->first << "\") {\n"; 3360 OS << " return llvm::StringSwitch<int>(Name)\n"; 3361 GenerateHasAttrSpellingStringSwitch(I->second, OS, Spelling, I->first); 3362 OS << "}"; 3363 } 3364 OS << "\n} break;\n"; 3365 }; 3366 fn("CXX11", CXX); 3367 fn("C2x", C2x); 3368 OS << "case AttributeCommonInfo::Syntax::AS_Keyword:\n"; 3369 OS << "case AttributeCommonInfo::Syntax::AS_ContextSensitiveKeyword:\n"; 3370 OS << " llvm_unreachable(\"hasAttribute not supported for keyword\");\n"; 3371 OS << " return 0;\n"; 3372 3373 OS << "}\n"; 3374 } 3375 3376 void EmitClangAttrSpellingListIndex(RecordKeeper &Records, raw_ostream &OS) { 3377 emitSourceFileHeader("Code to translate different attribute spellings " 3378 "into internal identifiers", OS); 3379 3380 OS << " switch (getParsedKind()) {\n"; 3381 OS << " case IgnoredAttribute:\n"; 3382 OS << " case UnknownAttribute:\n"; 3383 OS << " case NoSemaHandlerAttribute:\n"; 3384 OS << " llvm_unreachable(\"Ignored/unknown shouldn't get here\");\n"; 3385 3386 ParsedAttrMap Attrs = getParsedAttrList(Records); 3387 for (const auto &I : Attrs) { 3388 const Record &R = *I.second; 3389 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R); 3390 OS << " case AT_" << I.first << ": {\n"; 3391 for (unsigned I = 0; I < Spellings.size(); ++ I) { 3392 OS << " if (Name == \"" << Spellings[I].name() << "\" && " 3393 << "getSyntax() == AttributeCommonInfo::AS_" << Spellings[I].variety() 3394 << " && Scope == \"" << Spellings[I].nameSpace() << "\")\n" 3395 << " return " << I << ";\n"; 3396 } 3397 3398 OS << " break;\n"; 3399 OS << " }\n"; 3400 } 3401 3402 OS << " }\n"; 3403 OS << " return 0;\n"; 3404 } 3405 3406 // Emits code used by RecursiveASTVisitor to visit attributes 3407 void EmitClangAttrASTVisitor(RecordKeeper &Records, raw_ostream &OS) { 3408 emitSourceFileHeader("Used by RecursiveASTVisitor to visit attributes.", OS); 3409 3410 std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"); 3411 3412 // Write method declarations for Traverse* methods. 3413 // We emit this here because we only generate methods for attributes that 3414 // are declared as ASTNodes. 3415 OS << "#ifdef ATTR_VISITOR_DECLS_ONLY\n\n"; 3416 for (const auto *Attr : Attrs) { 3417 const Record &R = *Attr; 3418 if (!R.getValueAsBit("ASTNode")) 3419 continue; 3420 OS << " bool Traverse" 3421 << R.getName() << "Attr(" << R.getName() << "Attr *A);\n"; 3422 OS << " bool Visit" 3423 << R.getName() << "Attr(" << R.getName() << "Attr *A) {\n" 3424 << " return true; \n" 3425 << " }\n"; 3426 } 3427 OS << "\n#else // ATTR_VISITOR_DECLS_ONLY\n\n"; 3428 3429 // Write individual Traverse* methods for each attribute class. 3430 for (const auto *Attr : Attrs) { 3431 const Record &R = *Attr; 3432 if (!R.getValueAsBit("ASTNode")) 3433 continue; 3434 3435 OS << "template <typename Derived>\n" 3436 << "bool VISITORCLASS<Derived>::Traverse" 3437 << R.getName() << "Attr(" << R.getName() << "Attr *A) {\n" 3438 << " if (!getDerived().VisitAttr(A))\n" 3439 << " return false;\n" 3440 << " if (!getDerived().Visit" << R.getName() << "Attr(A))\n" 3441 << " return false;\n"; 3442 3443 std::vector<Record*> ArgRecords = R.getValueAsListOfDefs("Args"); 3444 for (const auto *Arg : ArgRecords) 3445 createArgument(*Arg, R.getName())->writeASTVisitorTraversal(OS); 3446 3447 if (Attr->getValueAsBit("AcceptsExprPack")) 3448 VariadicExprArgument("DelayedArgs", R.getName()) 3449 .writeASTVisitorTraversal(OS); 3450 3451 OS << " return true;\n"; 3452 OS << "}\n\n"; 3453 } 3454 3455 // Write generic Traverse routine 3456 OS << "template <typename Derived>\n" 3457 << "bool VISITORCLASS<Derived>::TraverseAttr(Attr *A) {\n" 3458 << " if (!A)\n" 3459 << " return true;\n" 3460 << "\n" 3461 << " switch (A->getKind()) {\n"; 3462 3463 for (const auto *Attr : Attrs) { 3464 const Record &R = *Attr; 3465 if (!R.getValueAsBit("ASTNode")) 3466 continue; 3467 3468 OS << " case attr::" << R.getName() << ":\n" 3469 << " return getDerived().Traverse" << R.getName() << "Attr(" 3470 << "cast<" << R.getName() << "Attr>(A));\n"; 3471 } 3472 OS << " }\n"; // end switch 3473 OS << " llvm_unreachable(\"bad attribute kind\");\n"; 3474 OS << "}\n"; // end function 3475 OS << "#endif // ATTR_VISITOR_DECLS_ONLY\n"; 3476 } 3477 3478 void EmitClangAttrTemplateInstantiateHelper(const std::vector<Record *> &Attrs, 3479 raw_ostream &OS, 3480 bool AppliesToDecl) { 3481 3482 OS << " switch (At->getKind()) {\n"; 3483 for (const auto *Attr : Attrs) { 3484 const Record &R = *Attr; 3485 if (!R.getValueAsBit("ASTNode")) 3486 continue; 3487 OS << " case attr::" << R.getName() << ": {\n"; 3488 bool ShouldClone = R.getValueAsBit("Clone") && 3489 (!AppliesToDecl || 3490 R.getValueAsBit("MeaningfulToClassTemplateDefinition")); 3491 3492 if (!ShouldClone) { 3493 OS << " return nullptr;\n"; 3494 OS << " }\n"; 3495 continue; 3496 } 3497 3498 OS << " const auto *A = cast<" 3499 << R.getName() << "Attr>(At);\n"; 3500 bool TDependent = R.getValueAsBit("TemplateDependent"); 3501 3502 if (!TDependent) { 3503 OS << " return A->clone(C);\n"; 3504 OS << " }\n"; 3505 continue; 3506 } 3507 3508 std::vector<Record*> ArgRecords = R.getValueAsListOfDefs("Args"); 3509 std::vector<std::unique_ptr<Argument>> Args; 3510 Args.reserve(ArgRecords.size()); 3511 3512 for (const auto *ArgRecord : ArgRecords) 3513 Args.emplace_back(createArgument(*ArgRecord, R.getName())); 3514 3515 for (auto const &ai : Args) 3516 ai->writeTemplateInstantiation(OS); 3517 3518 OS << " return new (C) " << R.getName() << "Attr(C, *A"; 3519 for (auto const &ai : Args) { 3520 OS << ", "; 3521 ai->writeTemplateInstantiationArgs(OS); 3522 } 3523 OS << ");\n" 3524 << " }\n"; 3525 } 3526 OS << " } // end switch\n" 3527 << " llvm_unreachable(\"Unknown attribute!\");\n" 3528 << " return nullptr;\n"; 3529 } 3530 3531 // Emits code to instantiate dependent attributes on templates. 3532 void EmitClangAttrTemplateInstantiate(RecordKeeper &Records, raw_ostream &OS) { 3533 emitSourceFileHeader("Template instantiation code for attributes", OS); 3534 3535 std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"); 3536 3537 OS << "namespace clang {\n" 3538 << "namespace sema {\n\n" 3539 << "Attr *instantiateTemplateAttribute(const Attr *At, ASTContext &C, " 3540 << "Sema &S,\n" 3541 << " const MultiLevelTemplateArgumentList &TemplateArgs) {\n"; 3542 EmitClangAttrTemplateInstantiateHelper(Attrs, OS, /*AppliesToDecl*/false); 3543 OS << "}\n\n" 3544 << "Attr *instantiateTemplateAttributeForDecl(const Attr *At,\n" 3545 << " ASTContext &C, Sema &S,\n" 3546 << " const MultiLevelTemplateArgumentList &TemplateArgs) {\n"; 3547 EmitClangAttrTemplateInstantiateHelper(Attrs, OS, /*AppliesToDecl*/true); 3548 OS << "}\n\n" 3549 << "} // end namespace sema\n" 3550 << "} // end namespace clang\n"; 3551 } 3552 3553 // Emits the list of parsed attributes. 3554 void EmitClangAttrParsedAttrList(RecordKeeper &Records, raw_ostream &OS) { 3555 emitSourceFileHeader("List of all attributes that Clang recognizes", OS); 3556 3557 OS << "#ifndef PARSED_ATTR\n"; 3558 OS << "#define PARSED_ATTR(NAME) NAME\n"; 3559 OS << "#endif\n\n"; 3560 3561 ParsedAttrMap Names = getParsedAttrList(Records); 3562 for (const auto &I : Names) { 3563 OS << "PARSED_ATTR(" << I.first << ")\n"; 3564 } 3565 } 3566 3567 static bool isArgVariadic(const Record &R, StringRef AttrName) { 3568 return createArgument(R, AttrName)->isVariadic(); 3569 } 3570 3571 static void emitArgInfo(const Record &R, raw_ostream &OS) { 3572 // This function will count the number of arguments specified for the 3573 // attribute and emit the number of required arguments followed by the 3574 // number of optional arguments. 3575 std::vector<Record *> Args = R.getValueAsListOfDefs("Args"); 3576 unsigned ArgCount = 0, OptCount = 0, ArgMemberCount = 0; 3577 bool HasVariadic = false; 3578 for (const auto *Arg : Args) { 3579 // If the arg is fake, it's the user's job to supply it: general parsing 3580 // logic shouldn't need to know anything about it. 3581 if (Arg->getValueAsBit("Fake")) 3582 continue; 3583 Arg->getValueAsBit("Optional") ? ++OptCount : ++ArgCount; 3584 ++ArgMemberCount; 3585 if (!HasVariadic && isArgVariadic(*Arg, R.getName())) 3586 HasVariadic = true; 3587 } 3588 3589 // If there is a variadic argument, we will set the optional argument count 3590 // to its largest value. Since it's currently a 4-bit number, we set it to 15. 3591 OS << " /*NumArgs=*/" << ArgCount << ",\n"; 3592 OS << " /*OptArgs=*/" << (HasVariadic ? 15 : OptCount) << ",\n"; 3593 OS << " /*NumArgMembers=*/" << ArgMemberCount << ",\n"; 3594 } 3595 3596 static std::string GetDiagnosticSpelling(const Record &R) { 3597 std::string Ret = std::string(R.getValueAsString("DiagSpelling")); 3598 if (!Ret.empty()) 3599 return Ret; 3600 3601 // If we couldn't find the DiagSpelling in this object, we can check to see 3602 // if the object is one that has a base, and if it is, loop up to the Base 3603 // member recursively. 3604 if (auto Base = R.getValueAsOptionalDef(BaseFieldName)) 3605 return GetDiagnosticSpelling(*Base); 3606 3607 return ""; 3608 } 3609 3610 static std::string CalculateDiagnostic(const Record &S) { 3611 // If the SubjectList object has a custom diagnostic associated with it, 3612 // return that directly. 3613 const StringRef CustomDiag = S.getValueAsString("CustomDiag"); 3614 if (!CustomDiag.empty()) 3615 return ("\"" + Twine(CustomDiag) + "\"").str(); 3616 3617 std::vector<std::string> DiagList; 3618 std::vector<Record *> Subjects = S.getValueAsListOfDefs("Subjects"); 3619 for (const auto *Subject : Subjects) { 3620 const Record &R = *Subject; 3621 // Get the diagnostic text from the Decl or Stmt node given. 3622 std::string V = GetDiagnosticSpelling(R); 3623 if (V.empty()) { 3624 PrintError(R.getLoc(), 3625 "Could not determine diagnostic spelling for the node: " + 3626 R.getName() + "; please add one to DeclNodes.td"); 3627 } else { 3628 // The node may contain a list of elements itself, so split the elements 3629 // by a comma, and trim any whitespace. 3630 SmallVector<StringRef, 2> Frags; 3631 llvm::SplitString(V, Frags, ","); 3632 for (auto Str : Frags) { 3633 DiagList.push_back(std::string(Str.trim())); 3634 } 3635 } 3636 } 3637 3638 if (DiagList.empty()) { 3639 PrintFatalError(S.getLoc(), 3640 "Could not deduce diagnostic argument for Attr subjects"); 3641 return ""; 3642 } 3643 3644 // FIXME: this is not particularly good for localization purposes and ideally 3645 // should be part of the diagnostics engine itself with some sort of list 3646 // specifier. 3647 3648 // A single member of the list can be returned directly. 3649 if (DiagList.size() == 1) 3650 return '"' + DiagList.front() + '"'; 3651 3652 if (DiagList.size() == 2) 3653 return '"' + DiagList[0] + " and " + DiagList[1] + '"'; 3654 3655 // If there are more than two in the list, we serialize the first N - 1 3656 // elements with a comma. This leaves the string in the state: foo, bar, 3657 // baz (but misses quux). We can then add ", and " for the last element 3658 // manually. 3659 std::string Diag = llvm::join(DiagList.begin(), DiagList.end() - 1, ", "); 3660 return '"' + Diag + ", and " + *(DiagList.end() - 1) + '"'; 3661 } 3662 3663 static std::string GetSubjectWithSuffix(const Record *R) { 3664 const std::string &B = std::string(R->getName()); 3665 if (B == "DeclBase") 3666 return "Decl"; 3667 return B + "Decl"; 3668 } 3669 3670 static std::string functionNameForCustomAppertainsTo(const Record &Subject) { 3671 return "is" + Subject.getName().str(); 3672 } 3673 3674 static void GenerateCustomAppertainsTo(const Record &Subject, raw_ostream &OS) { 3675 std::string FnName = functionNameForCustomAppertainsTo(Subject); 3676 3677 // If this code has already been generated, we don't need to do anything. 3678 static std::set<std::string> CustomSubjectSet; 3679 auto I = CustomSubjectSet.find(FnName); 3680 if (I != CustomSubjectSet.end()) 3681 return; 3682 3683 // This only works with non-root Decls. 3684 Record *Base = Subject.getValueAsDef(BaseFieldName); 3685 3686 // Not currently support custom subjects within custom subjects. 3687 if (Base->isSubClassOf("SubsetSubject")) { 3688 PrintFatalError(Subject.getLoc(), 3689 "SubsetSubjects within SubsetSubjects is not supported"); 3690 return; 3691 } 3692 3693 OS << "static bool " << FnName << "(const Decl *D) {\n"; 3694 OS << " if (const auto *S = dyn_cast<"; 3695 OS << GetSubjectWithSuffix(Base); 3696 OS << ">(D))\n"; 3697 OS << " return " << Subject.getValueAsString("CheckCode") << ";\n"; 3698 OS << " return false;\n"; 3699 OS << "}\n\n"; 3700 3701 CustomSubjectSet.insert(FnName); 3702 } 3703 3704 static void GenerateAppertainsTo(const Record &Attr, raw_ostream &OS) { 3705 // If the attribute does not contain a Subjects definition, then use the 3706 // default appertainsTo logic. 3707 if (Attr.isValueUnset("Subjects")) 3708 return; 3709 3710 const Record *SubjectObj = Attr.getValueAsDef("Subjects"); 3711 std::vector<Record *> Subjects = SubjectObj->getValueAsListOfDefs("Subjects"); 3712 3713 // If the list of subjects is empty, it is assumed that the attribute 3714 // appertains to everything. 3715 if (Subjects.empty()) 3716 return; 3717 3718 bool Warn = SubjectObj->getValueAsDef("Diag")->getValueAsBit("Warn"); 3719 3720 // Split the subjects into declaration subjects and statement subjects. 3721 // FIXME: subset subjects are added to the declaration list until there are 3722 // enough statement attributes with custom subject needs to warrant 3723 // the implementation effort. 3724 std::vector<Record *> DeclSubjects, StmtSubjects; 3725 llvm::copy_if( 3726 Subjects, std::back_inserter(DeclSubjects), [](const Record *R) { 3727 return R->isSubClassOf("SubsetSubject") || !R->isSubClassOf("StmtNode"); 3728 }); 3729 llvm::copy_if(Subjects, std::back_inserter(StmtSubjects), 3730 [](const Record *R) { return R->isSubClassOf("StmtNode"); }); 3731 3732 // We should have sorted all of the subjects into two lists. 3733 // FIXME: this assertion will be wrong if we ever add type attribute subjects. 3734 assert(DeclSubjects.size() + StmtSubjects.size() == Subjects.size()); 3735 3736 if (DeclSubjects.empty()) { 3737 // If there are no decl subjects but there are stmt subjects, diagnose 3738 // trying to apply a statement attribute to a declaration. 3739 if (!StmtSubjects.empty()) { 3740 OS << "bool diagAppertainsToDecl(Sema &S, const ParsedAttr &AL, "; 3741 OS << "const Decl *D) const override {\n"; 3742 OS << " S.Diag(AL.getLoc(), diag::err_attribute_invalid_on_decl)\n"; 3743 OS << " << AL << D->getLocation();\n"; 3744 OS << " return false;\n"; 3745 OS << "}\n\n"; 3746 } 3747 } else { 3748 // Otherwise, generate an appertainsTo check specific to this attribute 3749 // which checks all of the given subjects against the Decl passed in. 3750 OS << "bool diagAppertainsToDecl(Sema &S, "; 3751 OS << "const ParsedAttr &Attr, const Decl *D) const override {\n"; 3752 OS << " if ("; 3753 for (auto I = DeclSubjects.begin(), E = DeclSubjects.end(); I != E; ++I) { 3754 // If the subject has custom code associated with it, use the generated 3755 // function for it. The function cannot be inlined into this check (yet) 3756 // because it requires the subject to be of a specific type, and were that 3757 // information inlined here, it would not support an attribute with 3758 // multiple custom subjects. 3759 if ((*I)->isSubClassOf("SubsetSubject")) 3760 OS << "!" << functionNameForCustomAppertainsTo(**I) << "(D)"; 3761 else 3762 OS << "!isa<" << GetSubjectWithSuffix(*I) << ">(D)"; 3763 3764 if (I + 1 != E) 3765 OS << " && "; 3766 } 3767 OS << ") {\n"; 3768 OS << " S.Diag(Attr.getLoc(), diag::"; 3769 OS << (Warn ? "warn_attribute_wrong_decl_type_str" 3770 : "err_attribute_wrong_decl_type_str"); 3771 OS << ")\n"; 3772 OS << " << Attr << "; 3773 OS << CalculateDiagnostic(*SubjectObj) << ";\n"; 3774 OS << " return false;\n"; 3775 OS << " }\n"; 3776 OS << " return true;\n"; 3777 OS << "}\n\n"; 3778 } 3779 3780 if (StmtSubjects.empty()) { 3781 // If there are no stmt subjects but there are decl subjects, diagnose 3782 // trying to apply a declaration attribute to a statement. 3783 if (!DeclSubjects.empty()) { 3784 OS << "bool diagAppertainsToStmt(Sema &S, const ParsedAttr &AL, "; 3785 OS << "const Stmt *St) const override {\n"; 3786 OS << " S.Diag(AL.getLoc(), diag::err_decl_attribute_invalid_on_stmt)\n"; 3787 OS << " << AL << St->getBeginLoc();\n"; 3788 OS << " return false;\n"; 3789 OS << "}\n\n"; 3790 } 3791 } else { 3792 // Now, do the same for statements. 3793 OS << "bool diagAppertainsToStmt(Sema &S, "; 3794 OS << "const ParsedAttr &Attr, const Stmt *St) const override {\n"; 3795 OS << " if ("; 3796 for (auto I = StmtSubjects.begin(), E = StmtSubjects.end(); I != E; ++I) { 3797 OS << "!isa<" << (*I)->getName() << ">(St)"; 3798 if (I + 1 != E) 3799 OS << " && "; 3800 } 3801 OS << ") {\n"; 3802 OS << " S.Diag(Attr.getLoc(), diag::"; 3803 OS << (Warn ? "warn_attribute_wrong_decl_type_str" 3804 : "err_attribute_wrong_decl_type_str"); 3805 OS << ")\n"; 3806 OS << " << Attr << "; 3807 OS << CalculateDiagnostic(*SubjectObj) << ";\n"; 3808 OS << " return false;\n"; 3809 OS << " }\n"; 3810 OS << " return true;\n"; 3811 OS << "}\n\n"; 3812 } 3813 } 3814 3815 // Generates the mutual exclusion checks. The checks for parsed attributes are 3816 // written into OS and the checks for merging declaration attributes are 3817 // written into MergeOS. 3818 static void GenerateMutualExclusionsChecks(const Record &Attr, 3819 const RecordKeeper &Records, 3820 raw_ostream &OS, 3821 raw_ostream &MergeDeclOS, 3822 raw_ostream &MergeStmtOS) { 3823 // Find all of the definitions that inherit from MutualExclusions and include 3824 // the given attribute in the list of exclusions to generate the 3825 // diagMutualExclusion() check. 3826 std::vector<Record *> ExclusionsList = 3827 Records.getAllDerivedDefinitions("MutualExclusions"); 3828 3829 // We don't do any of this magic for type attributes yet. 3830 if (Attr.isSubClassOf("TypeAttr")) 3831 return; 3832 3833 // This means the attribute is either a statement attribute, a decl 3834 // attribute, or both; find out which. 3835 bool CurAttrIsStmtAttr = 3836 Attr.isSubClassOf("StmtAttr") || Attr.isSubClassOf("DeclOrStmtAttr"); 3837 bool CurAttrIsDeclAttr = 3838 !CurAttrIsStmtAttr || Attr.isSubClassOf("DeclOrStmtAttr"); 3839 3840 std::vector<std::string> DeclAttrs, StmtAttrs; 3841 3842 for (const Record *Exclusion : ExclusionsList) { 3843 std::vector<Record *> MutuallyExclusiveAttrs = 3844 Exclusion->getValueAsListOfDefs("Exclusions"); 3845 auto IsCurAttr = [Attr](const Record *R) { 3846 return R->getName() == Attr.getName(); 3847 }; 3848 if (llvm::any_of(MutuallyExclusiveAttrs, IsCurAttr)) { 3849 // This list of exclusions includes the attribute we're looking for, so 3850 // add the exclusive attributes to the proper list for checking. 3851 for (const Record *AttrToExclude : MutuallyExclusiveAttrs) { 3852 if (IsCurAttr(AttrToExclude)) 3853 continue; 3854 3855 if (CurAttrIsStmtAttr) 3856 StmtAttrs.push_back((AttrToExclude->getName() + "Attr").str()); 3857 if (CurAttrIsDeclAttr) 3858 DeclAttrs.push_back((AttrToExclude->getName() + "Attr").str()); 3859 } 3860 } 3861 } 3862 3863 // If there are any decl or stmt attributes, silence -Woverloaded-virtual 3864 // warnings for them both. 3865 if (!DeclAttrs.empty() || !StmtAttrs.empty()) 3866 OS << " using ParsedAttrInfo::diagMutualExclusion;\n\n"; 3867 3868 // If we discovered any decl or stmt attributes to test for, generate the 3869 // predicates for them now. 3870 if (!DeclAttrs.empty()) { 3871 // Generate the ParsedAttrInfo subclass logic for declarations. 3872 OS << " bool diagMutualExclusion(Sema &S, const ParsedAttr &AL, " 3873 << "const Decl *D) const override {\n"; 3874 for (const std::string &A : DeclAttrs) { 3875 OS << " if (const auto *A = D->getAttr<" << A << ">()) {\n"; 3876 OS << " S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)" 3877 << " << AL << A;\n"; 3878 OS << " S.Diag(A->getLocation(), diag::note_conflicting_attribute);"; 3879 OS << " \nreturn false;\n"; 3880 OS << " }\n"; 3881 } 3882 OS << " return true;\n"; 3883 OS << " }\n\n"; 3884 3885 // Also generate the declaration attribute merging logic if the current 3886 // attribute is one that can be inheritted on a declaration. It is assumed 3887 // this code will be executed in the context of a function with parameters: 3888 // Sema &S, Decl *D, Attr *A and that returns a bool (false on diagnostic, 3889 // true on success). 3890 if (Attr.isSubClassOf("InheritableAttr")) { 3891 MergeDeclOS << " if (const auto *Second = dyn_cast<" 3892 << (Attr.getName() + "Attr").str() << ">(A)) {\n"; 3893 for (const std::string &A : DeclAttrs) { 3894 MergeDeclOS << " if (const auto *First = D->getAttr<" << A 3895 << ">()) {\n"; 3896 MergeDeclOS << " S.Diag(First->getLocation(), " 3897 << "diag::err_attributes_are_not_compatible) << First << " 3898 << "Second;\n"; 3899 MergeDeclOS << " S.Diag(Second->getLocation(), " 3900 << "diag::note_conflicting_attribute);\n"; 3901 MergeDeclOS << " return false;\n"; 3902 MergeDeclOS << " }\n"; 3903 } 3904 MergeDeclOS << " return true;\n"; 3905 MergeDeclOS << " }\n"; 3906 } 3907 } 3908 3909 // Statement attributes are a bit different from declarations. With 3910 // declarations, each attribute is added to the declaration as it is 3911 // processed, and so you can look on the Decl * itself to see if there is a 3912 // conflicting attribute. Statement attributes are processed as a group 3913 // because AttributedStmt needs to tail-allocate all of the attribute nodes 3914 // at once. This means we cannot check whether the statement already contains 3915 // an attribute to check for the conflict. Instead, we need to check whether 3916 // the given list of semantic attributes contain any conflicts. It is assumed 3917 // this code will be executed in the context of a function with parameters: 3918 // Sema &S, const SmallVectorImpl<const Attr *> &C. The code will be within a 3919 // loop which loops over the container C with a loop variable named A to 3920 // represent the current attribute to check for conflicts. 3921 // 3922 // FIXME: it would be nice not to walk over the list of potential attributes 3923 // to apply to the statement more than once, but statements typically don't 3924 // have long lists of attributes on them, so re-walking the list should not 3925 // be an expensive operation. 3926 if (!StmtAttrs.empty()) { 3927 MergeStmtOS << " if (const auto *Second = dyn_cast<" 3928 << (Attr.getName() + "Attr").str() << ">(A)) {\n"; 3929 MergeStmtOS << " auto Iter = llvm::find_if(C, [](const Attr *Check) " 3930 << "{ return isa<"; 3931 interleave( 3932 StmtAttrs, [&](const std::string &Name) { MergeStmtOS << Name; }, 3933 [&] { MergeStmtOS << ", "; }); 3934 MergeStmtOS << ">(Check); });\n"; 3935 MergeStmtOS << " if (Iter != C.end()) {\n"; 3936 MergeStmtOS << " S.Diag((*Iter)->getLocation(), " 3937 << "diag::err_attributes_are_not_compatible) << *Iter << " 3938 << "Second;\n"; 3939 MergeStmtOS << " S.Diag(Second->getLocation(), " 3940 << "diag::note_conflicting_attribute);\n"; 3941 MergeStmtOS << " return false;\n"; 3942 MergeStmtOS << " }\n"; 3943 MergeStmtOS << " }\n"; 3944 } 3945 } 3946 3947 static void 3948 emitAttributeMatchRules(PragmaClangAttributeSupport &PragmaAttributeSupport, 3949 raw_ostream &OS) { 3950 OS << "static bool checkAttributeMatchRuleAppliesTo(const Decl *D, " 3951 << AttributeSubjectMatchRule::EnumName << " rule) {\n"; 3952 OS << " switch (rule) {\n"; 3953 for (const auto &Rule : PragmaAttributeSupport.Rules) { 3954 if (Rule.isAbstractRule()) { 3955 OS << " case " << Rule.getEnumValue() << ":\n"; 3956 OS << " assert(false && \"Abstract matcher rule isn't allowed\");\n"; 3957 OS << " return false;\n"; 3958 continue; 3959 } 3960 std::vector<Record *> Subjects = Rule.getSubjects(); 3961 assert(!Subjects.empty() && "Missing subjects"); 3962 OS << " case " << Rule.getEnumValue() << ":\n"; 3963 OS << " return "; 3964 for (auto I = Subjects.begin(), E = Subjects.end(); I != E; ++I) { 3965 // If the subject has custom code associated with it, use the function 3966 // that was generated for GenerateAppertainsTo to check if the declaration 3967 // is valid. 3968 if ((*I)->isSubClassOf("SubsetSubject")) 3969 OS << functionNameForCustomAppertainsTo(**I) << "(D)"; 3970 else 3971 OS << "isa<" << GetSubjectWithSuffix(*I) << ">(D)"; 3972 3973 if (I + 1 != E) 3974 OS << " || "; 3975 } 3976 OS << ";\n"; 3977 } 3978 OS << " }\n"; 3979 OS << " llvm_unreachable(\"Invalid match rule\");\nreturn false;\n"; 3980 OS << "}\n\n"; 3981 } 3982 3983 static void GenerateLangOptRequirements(const Record &R, 3984 raw_ostream &OS) { 3985 // If the attribute has an empty or unset list of language requirements, 3986 // use the default handler. 3987 std::vector<Record *> LangOpts = R.getValueAsListOfDefs("LangOpts"); 3988 if (LangOpts.empty()) 3989 return; 3990 3991 OS << "bool acceptsLangOpts(const LangOptions &LangOpts) const override {\n"; 3992 OS << " return " << GenerateTestExpression(LangOpts) << ";\n"; 3993 OS << "}\n\n"; 3994 } 3995 3996 static void GenerateTargetRequirements(const Record &Attr, 3997 const ParsedAttrMap &Dupes, 3998 raw_ostream &OS) { 3999 // If the attribute is not a target specific attribute, use the default 4000 // target handler. 4001 if (!Attr.isSubClassOf("TargetSpecificAttr")) 4002 return; 4003 4004 // Get the list of architectures to be tested for. 4005 const Record *R = Attr.getValueAsDef("Target"); 4006 std::vector<StringRef> Arches = R->getValueAsListOfStrings("Arches"); 4007 4008 // If there are other attributes which share the same parsed attribute kind, 4009 // such as target-specific attributes with a shared spelling, collapse the 4010 // duplicate architectures. This is required because a shared target-specific 4011 // attribute has only one ParsedAttr::Kind enumeration value, but it 4012 // applies to multiple target architectures. In order for the attribute to be 4013 // considered valid, all of its architectures need to be included. 4014 if (!Attr.isValueUnset("ParseKind")) { 4015 const StringRef APK = Attr.getValueAsString("ParseKind"); 4016 for (const auto &I : Dupes) { 4017 if (I.first == APK) { 4018 std::vector<StringRef> DA = 4019 I.second->getValueAsDef("Target")->getValueAsListOfStrings( 4020 "Arches"); 4021 Arches.insert(Arches.end(), DA.begin(), DA.end()); 4022 } 4023 } 4024 } 4025 4026 std::string FnName = "isTarget"; 4027 std::string Test; 4028 bool UsesT = GenerateTargetSpecificAttrChecks(R, Arches, Test, &FnName); 4029 4030 OS << "bool existsInTarget(const TargetInfo &Target) const override {\n"; 4031 if (UsesT) 4032 OS << " const llvm::Triple &T = Target.getTriple(); (void)T;\n"; 4033 OS << " return " << Test << ";\n"; 4034 OS << "}\n\n"; 4035 } 4036 4037 static void GenerateSpellingIndexToSemanticSpelling(const Record &Attr, 4038 raw_ostream &OS) { 4039 // If the attribute does not have a semantic form, we can bail out early. 4040 if (!Attr.getValueAsBit("ASTNode")) 4041 return; 4042 4043 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attr); 4044 4045 // If there are zero or one spellings, or all of the spellings share the same 4046 // name, we can also bail out early. 4047 if (Spellings.size() <= 1 || SpellingNamesAreCommon(Spellings)) 4048 return; 4049 4050 // Generate the enumeration we will use for the mapping. 4051 SemanticSpellingMap SemanticToSyntacticMap; 4052 std::string Enum = CreateSemanticSpellings(Spellings, SemanticToSyntacticMap); 4053 std::string Name = Attr.getName().str() + "AttrSpellingMap"; 4054 4055 OS << "unsigned spellingIndexToSemanticSpelling("; 4056 OS << "const ParsedAttr &Attr) const override {\n"; 4057 OS << Enum; 4058 OS << " unsigned Idx = Attr.getAttributeSpellingListIndex();\n"; 4059 WriteSemanticSpellingSwitch("Idx", SemanticToSyntacticMap, OS); 4060 OS << "}\n\n"; 4061 } 4062 4063 static void GenerateHandleDeclAttribute(const Record &Attr, raw_ostream &OS) { 4064 // Only generate if Attr can be handled simply. 4065 if (!Attr.getValueAsBit("SimpleHandler")) 4066 return; 4067 4068 // Generate a function which just converts from ParsedAttr to the Attr type. 4069 OS << "AttrHandling handleDeclAttribute(Sema &S, Decl *D,"; 4070 OS << "const ParsedAttr &Attr) const override {\n"; 4071 OS << " D->addAttr(::new (S.Context) " << Attr.getName(); 4072 OS << "Attr(S.Context, Attr));\n"; 4073 OS << " return AttributeApplied;\n"; 4074 OS << "}\n\n"; 4075 } 4076 4077 static bool isParamExpr(const Record *Arg) { 4078 return !Arg->getSuperClasses().empty() && 4079 llvm::StringSwitch<bool>( 4080 Arg->getSuperClasses().back().first->getName()) 4081 .Case("ExprArgument", true) 4082 .Case("VariadicExprArgument", true) 4083 .Default(false); 4084 } 4085 4086 void GenerateIsParamExpr(const Record &Attr, raw_ostream &OS) { 4087 OS << "bool isParamExpr(size_t N) const override {\n"; 4088 OS << " return "; 4089 auto Args = Attr.getValueAsListOfDefs("Args"); 4090 for (size_t I = 0; I < Args.size(); ++I) 4091 if (isParamExpr(Args[I])) 4092 OS << "(N == " << I << ") || "; 4093 OS << "false;\n"; 4094 OS << "}\n\n"; 4095 } 4096 4097 void GenerateHandleAttrWithDelayedArgs(RecordKeeper &Records, raw_ostream &OS) { 4098 OS << "static void handleAttrWithDelayedArgs(Sema &S, Decl *D, "; 4099 OS << "const ParsedAttr &Attr) {\n"; 4100 OS << " SmallVector<Expr *, 4> ArgExprs;\n"; 4101 OS << " ArgExprs.reserve(Attr.getNumArgs());\n"; 4102 OS << " for (unsigned I = 0; I < Attr.getNumArgs(); ++I) {\n"; 4103 OS << " assert(!Attr.isArgIdent(I));\n"; 4104 OS << " ArgExprs.push_back(Attr.getArgAsExpr(I));\n"; 4105 OS << " }\n"; 4106 OS << " clang::Attr *CreatedAttr = nullptr;\n"; 4107 OS << " switch (Attr.getKind()) {\n"; 4108 OS << " default:\n"; 4109 OS << " llvm_unreachable(\"Attribute cannot hold delayed arguments.\");\n"; 4110 ParsedAttrMap Attrs = getParsedAttrList(Records); 4111 for (const auto &I : Attrs) { 4112 const Record &R = *I.second; 4113 if (!R.getValueAsBit("AcceptsExprPack")) 4114 continue; 4115 OS << " case ParsedAttr::AT_" << I.first << ": {\n"; 4116 OS << " CreatedAttr = " << R.getName() << "Attr::CreateWithDelayedArgs"; 4117 OS << "(S.Context, ArgExprs.data(), ArgExprs.size(), Attr);\n"; 4118 OS << " break;\n"; 4119 OS << " }\n"; 4120 } 4121 OS << " }\n"; 4122 OS << " D->addAttr(CreatedAttr);\n"; 4123 OS << "}\n\n"; 4124 } 4125 4126 static bool IsKnownToGCC(const Record &Attr) { 4127 // Look at the spellings for this subject; if there are any spellings which 4128 // claim to be known to GCC, the attribute is known to GCC. 4129 return llvm::any_of( 4130 GetFlattenedSpellings(Attr), 4131 [](const FlattenedSpelling &S) { return S.knownToGCC(); }); 4132 } 4133 4134 /// Emits the parsed attribute helpers 4135 void EmitClangAttrParsedAttrImpl(RecordKeeper &Records, raw_ostream &OS) { 4136 emitSourceFileHeader("Parsed attribute helpers", OS); 4137 4138 OS << "#if !defined(WANT_DECL_MERGE_LOGIC) && " 4139 << "!defined(WANT_STMT_MERGE_LOGIC)\n"; 4140 PragmaClangAttributeSupport &PragmaAttributeSupport = 4141 getPragmaAttributeSupport(Records); 4142 4143 // Get the list of parsed attributes, and accept the optional list of 4144 // duplicates due to the ParseKind. 4145 ParsedAttrMap Dupes; 4146 ParsedAttrMap Attrs = getParsedAttrList(Records, &Dupes); 4147 4148 // Generate all of the custom appertainsTo functions that the attributes 4149 // will be using. 4150 for (auto I : Attrs) { 4151 const Record &Attr = *I.second; 4152 if (Attr.isValueUnset("Subjects")) 4153 continue; 4154 const Record *SubjectObj = Attr.getValueAsDef("Subjects"); 4155 for (auto Subject : SubjectObj->getValueAsListOfDefs("Subjects")) 4156 if (Subject->isSubClassOf("SubsetSubject")) 4157 GenerateCustomAppertainsTo(*Subject, OS); 4158 } 4159 4160 // This stream is used to collect all of the declaration attribute merging 4161 // logic for performing mutual exclusion checks. This gets emitted at the 4162 // end of the file in a helper function of its own. 4163 std::string DeclMergeChecks, StmtMergeChecks; 4164 raw_string_ostream MergeDeclOS(DeclMergeChecks), MergeStmtOS(StmtMergeChecks); 4165 4166 // Generate a ParsedAttrInfo struct for each of the attributes. 4167 for (auto I = Attrs.begin(), E = Attrs.end(); I != E; ++I) { 4168 // TODO: If the attribute's kind appears in the list of duplicates, that is 4169 // because it is a target-specific attribute that appears multiple times. 4170 // It would be beneficial to test whether the duplicates are "similar 4171 // enough" to each other to not cause problems. For instance, check that 4172 // the spellings are identical, and custom parsing rules match, etc. 4173 4174 // We need to generate struct instances based off ParsedAttrInfo from 4175 // ParsedAttr.cpp. 4176 const std::string &AttrName = I->first; 4177 const Record &Attr = *I->second; 4178 auto Spellings = GetFlattenedSpellings(Attr); 4179 if (!Spellings.empty()) { 4180 OS << "static constexpr ParsedAttrInfo::Spelling " << I->first 4181 << "Spellings[] = {\n"; 4182 for (const auto &S : Spellings) { 4183 const std::string &RawSpelling = S.name(); 4184 std::string Spelling; 4185 if (!S.nameSpace().empty()) 4186 Spelling += S.nameSpace() + "::"; 4187 if (S.variety() == "GNU") 4188 Spelling += NormalizeGNUAttrSpelling(RawSpelling); 4189 else 4190 Spelling += RawSpelling; 4191 OS << " {AttributeCommonInfo::AS_" << S.variety(); 4192 OS << ", \"" << Spelling << "\"},\n"; 4193 } 4194 OS << "};\n"; 4195 } 4196 4197 std::vector<std::string> ArgNames; 4198 for (const auto &Arg : Attr.getValueAsListOfDefs("Args")) { 4199 bool UnusedUnset; 4200 if (Arg->getValueAsBitOrUnset("Fake", UnusedUnset)) 4201 continue; 4202 ArgNames.push_back(Arg->getValueAsString("Name").str()); 4203 for (const auto &Class : Arg->getSuperClasses()) { 4204 if (Class.first->getName().startswith("Variadic")) { 4205 ArgNames.back().append("..."); 4206 break; 4207 } 4208 } 4209 } 4210 if (!ArgNames.empty()) { 4211 OS << "static constexpr const char *" << I->first << "ArgNames[] = {\n"; 4212 for (const auto &N : ArgNames) 4213 OS << '"' << N << "\","; 4214 OS << "};\n"; 4215 } 4216 4217 OS << "struct ParsedAttrInfo" << I->first 4218 << " final : public ParsedAttrInfo {\n"; 4219 OS << " constexpr ParsedAttrInfo" << I->first << "() : ParsedAttrInfo(\n"; 4220 OS << " /*AttrKind=*/ParsedAttr::AT_" << AttrName << ",\n"; 4221 emitArgInfo(Attr, OS); 4222 OS << " /*HasCustomParsing=*/"; 4223 OS << Attr.getValueAsBit("HasCustomParsing") << ",\n"; 4224 OS << " /*AcceptsExprPack=*/"; 4225 OS << Attr.getValueAsBit("AcceptsExprPack") << ",\n"; 4226 OS << " /*IsTargetSpecific=*/"; 4227 OS << Attr.isSubClassOf("TargetSpecificAttr") << ",\n"; 4228 OS << " /*IsType=*/"; 4229 OS << (Attr.isSubClassOf("TypeAttr") || Attr.isSubClassOf("DeclOrTypeAttr")) 4230 << ",\n"; 4231 OS << " /*IsStmt=*/"; 4232 OS << (Attr.isSubClassOf("StmtAttr") || Attr.isSubClassOf("DeclOrStmtAttr")) 4233 << ",\n"; 4234 OS << " /*IsKnownToGCC=*/"; 4235 OS << IsKnownToGCC(Attr) << ",\n"; 4236 OS << " /*IsSupportedByPragmaAttribute=*/"; 4237 OS << PragmaAttributeSupport.isAttributedSupported(*I->second) << ",\n"; 4238 if (!Spellings.empty()) 4239 OS << " /*Spellings=*/" << I->first << "Spellings,\n"; 4240 else 4241 OS << " /*Spellings=*/{},\n"; 4242 if (!ArgNames.empty()) 4243 OS << " /*ArgNames=*/" << I->first << "ArgNames"; 4244 else 4245 OS << " /*ArgNames=*/{}"; 4246 OS << ") {}\n"; 4247 GenerateAppertainsTo(Attr, OS); 4248 GenerateMutualExclusionsChecks(Attr, Records, OS, MergeDeclOS, MergeStmtOS); 4249 GenerateLangOptRequirements(Attr, OS); 4250 GenerateTargetRequirements(Attr, Dupes, OS); 4251 GenerateSpellingIndexToSemanticSpelling(Attr, OS); 4252 PragmaAttributeSupport.generateStrictConformsTo(*I->second, OS); 4253 GenerateHandleDeclAttribute(Attr, OS); 4254 GenerateIsParamExpr(Attr, OS); 4255 OS << "static const ParsedAttrInfo" << I->first << " Instance;\n"; 4256 OS << "};\n"; 4257 OS << "const ParsedAttrInfo" << I->first << " ParsedAttrInfo" << I->first 4258 << "::Instance;\n"; 4259 } 4260 4261 OS << "static const ParsedAttrInfo *AttrInfoMap[] = {\n"; 4262 for (auto I = Attrs.begin(), E = Attrs.end(); I != E; ++I) { 4263 OS << "&ParsedAttrInfo" << I->first << "::Instance,\n"; 4264 } 4265 OS << "};\n\n"; 4266 4267 // Generate function for handling attributes with delayed arguments 4268 GenerateHandleAttrWithDelayedArgs(Records, OS); 4269 4270 // Generate the attribute match rules. 4271 emitAttributeMatchRules(PragmaAttributeSupport, OS); 4272 4273 OS << "#elif defined(WANT_DECL_MERGE_LOGIC)\n\n"; 4274 4275 // Write out the declaration merging check logic. 4276 OS << "static bool DiagnoseMutualExclusions(Sema &S, const NamedDecl *D, " 4277 << "const Attr *A) {\n"; 4278 OS << MergeDeclOS.str(); 4279 OS << " return true;\n"; 4280 OS << "}\n\n"; 4281 4282 OS << "#elif defined(WANT_STMT_MERGE_LOGIC)\n\n"; 4283 4284 // Write out the statement merging check logic. 4285 OS << "static bool DiagnoseMutualExclusions(Sema &S, " 4286 << "const SmallVectorImpl<const Attr *> &C) {\n"; 4287 OS << " for (const Attr *A : C) {\n"; 4288 OS << MergeStmtOS.str(); 4289 OS << " }\n"; 4290 OS << " return true;\n"; 4291 OS << "}\n\n"; 4292 4293 OS << "#endif\n"; 4294 } 4295 4296 // Emits the kind list of parsed attributes 4297 void EmitClangAttrParsedAttrKinds(RecordKeeper &Records, raw_ostream &OS) { 4298 emitSourceFileHeader("Attribute name matcher", OS); 4299 4300 std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr"); 4301 std::vector<StringMatcher::StringPair> GNU, Declspec, Microsoft, CXX11, 4302 Keywords, Pragma, C2x, HLSLSemantic; 4303 std::set<std::string> Seen; 4304 for (const auto *A : Attrs) { 4305 const Record &Attr = *A; 4306 4307 bool SemaHandler = Attr.getValueAsBit("SemaHandler"); 4308 bool Ignored = Attr.getValueAsBit("Ignored"); 4309 if (SemaHandler || Ignored) { 4310 // Attribute spellings can be shared between target-specific attributes, 4311 // and can be shared between syntaxes for the same attribute. For 4312 // instance, an attribute can be spelled GNU<"interrupt"> for an ARM- 4313 // specific attribute, or MSP430-specific attribute. Additionally, an 4314 // attribute can be spelled GNU<"dllexport"> and Declspec<"dllexport"> 4315 // for the same semantic attribute. Ultimately, we need to map each of 4316 // these to a single AttributeCommonInfo::Kind value, but the 4317 // StringMatcher class cannot handle duplicate match strings. So we 4318 // generate a list of string to match based on the syntax, and emit 4319 // multiple string matchers depending on the syntax used. 4320 std::string AttrName; 4321 if (Attr.isSubClassOf("TargetSpecificAttr") && 4322 !Attr.isValueUnset("ParseKind")) { 4323 AttrName = std::string(Attr.getValueAsString("ParseKind")); 4324 if (!Seen.insert(AttrName).second) 4325 continue; 4326 } else 4327 AttrName = NormalizeAttrName(StringRef(Attr.getName())).str(); 4328 4329 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attr); 4330 for (const auto &S : Spellings) { 4331 const std::string &RawSpelling = S.name(); 4332 std::vector<StringMatcher::StringPair> *Matches = nullptr; 4333 std::string Spelling; 4334 const std::string &Variety = S.variety(); 4335 if (Variety == "CXX11") { 4336 Matches = &CXX11; 4337 if (!S.nameSpace().empty()) 4338 Spelling += S.nameSpace() + "::"; 4339 } else if (Variety == "C2x") { 4340 Matches = &C2x; 4341 if (!S.nameSpace().empty()) 4342 Spelling += S.nameSpace() + "::"; 4343 } else if (Variety == "GNU") 4344 Matches = &GNU; 4345 else if (Variety == "Declspec") 4346 Matches = &Declspec; 4347 else if (Variety == "Microsoft") 4348 Matches = &Microsoft; 4349 else if (Variety == "Keyword") 4350 Matches = &Keywords; 4351 else if (Variety == "Pragma") 4352 Matches = &Pragma; 4353 else if (Variety == "HLSLSemantic") 4354 Matches = &HLSLSemantic; 4355 4356 assert(Matches && "Unsupported spelling variety found"); 4357 4358 if (Variety == "GNU") 4359 Spelling += NormalizeGNUAttrSpelling(RawSpelling); 4360 else 4361 Spelling += RawSpelling; 4362 4363 if (SemaHandler) 4364 Matches->push_back(StringMatcher::StringPair( 4365 Spelling, "return AttributeCommonInfo::AT_" + AttrName + ";")); 4366 else 4367 Matches->push_back(StringMatcher::StringPair( 4368 Spelling, "return AttributeCommonInfo::IgnoredAttribute;")); 4369 } 4370 } 4371 } 4372 4373 OS << "static AttributeCommonInfo::Kind getAttrKind(StringRef Name, "; 4374 OS << "AttributeCommonInfo::Syntax Syntax) {\n"; 4375 OS << " if (AttributeCommonInfo::AS_GNU == Syntax) {\n"; 4376 StringMatcher("Name", GNU, OS).Emit(); 4377 OS << " } else if (AttributeCommonInfo::AS_Declspec == Syntax) {\n"; 4378 StringMatcher("Name", Declspec, OS).Emit(); 4379 OS << " } else if (AttributeCommonInfo::AS_Microsoft == Syntax) {\n"; 4380 StringMatcher("Name", Microsoft, OS).Emit(); 4381 OS << " } else if (AttributeCommonInfo::AS_CXX11 == Syntax) {\n"; 4382 StringMatcher("Name", CXX11, OS).Emit(); 4383 OS << " } else if (AttributeCommonInfo::AS_C2x == Syntax) {\n"; 4384 StringMatcher("Name", C2x, OS).Emit(); 4385 OS << " } else if (AttributeCommonInfo::AS_Keyword == Syntax || "; 4386 OS << "AttributeCommonInfo::AS_ContextSensitiveKeyword == Syntax) {\n"; 4387 StringMatcher("Name", Keywords, OS).Emit(); 4388 OS << " } else if (AttributeCommonInfo::AS_Pragma == Syntax) {\n"; 4389 StringMatcher("Name", Pragma, OS).Emit(); 4390 OS << " } else if (AttributeCommonInfo::AS_HLSLSemantic == Syntax) {\n"; 4391 StringMatcher("Name", HLSLSemantic, OS).Emit(); 4392 OS << " }\n"; 4393 OS << " return AttributeCommonInfo::UnknownAttribute;\n" 4394 << "}\n"; 4395 } 4396 4397 // Emits the code to dump an attribute. 4398 void EmitClangAttrTextNodeDump(RecordKeeper &Records, raw_ostream &OS) { 4399 emitSourceFileHeader("Attribute text node dumper", OS); 4400 4401 std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"), Args; 4402 for (const auto *Attr : Attrs) { 4403 const Record &R = *Attr; 4404 if (!R.getValueAsBit("ASTNode")) 4405 continue; 4406 4407 // If the attribute has a semantically-meaningful name (which is determined 4408 // by whether there is a Spelling enumeration for it), then write out the 4409 // spelling used for the attribute. 4410 4411 std::string FunctionContent; 4412 llvm::raw_string_ostream SS(FunctionContent); 4413 4414 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R); 4415 if (Spellings.size() > 1 && !SpellingNamesAreCommon(Spellings)) 4416 SS << " OS << \" \" << A->getSpelling();\n"; 4417 4418 Args = R.getValueAsListOfDefs("Args"); 4419 for (const auto *Arg : Args) 4420 createArgument(*Arg, R.getName())->writeDump(SS); 4421 4422 if (Attr->getValueAsBit("AcceptsExprPack")) 4423 VariadicExprArgument("DelayedArgs", R.getName()).writeDump(OS); 4424 4425 if (SS.tell()) { 4426 OS << " void Visit" << R.getName() << "Attr(const " << R.getName() 4427 << "Attr *A) {\n"; 4428 if (!Args.empty()) 4429 OS << " const auto *SA = cast<" << R.getName() 4430 << "Attr>(A); (void)SA;\n"; 4431 OS << SS.str(); 4432 OS << " }\n"; 4433 } 4434 } 4435 } 4436 4437 void EmitClangAttrNodeTraverse(RecordKeeper &Records, raw_ostream &OS) { 4438 emitSourceFileHeader("Attribute text node traverser", OS); 4439 4440 std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr"), Args; 4441 for (const auto *Attr : Attrs) { 4442 const Record &R = *Attr; 4443 if (!R.getValueAsBit("ASTNode")) 4444 continue; 4445 4446 std::string FunctionContent; 4447 llvm::raw_string_ostream SS(FunctionContent); 4448 4449 Args = R.getValueAsListOfDefs("Args"); 4450 for (const auto *Arg : Args) 4451 createArgument(*Arg, R.getName())->writeDumpChildren(SS); 4452 if (Attr->getValueAsBit("AcceptsExprPack")) 4453 VariadicExprArgument("DelayedArgs", R.getName()).writeDumpChildren(SS); 4454 if (SS.tell()) { 4455 OS << " void Visit" << R.getName() << "Attr(const " << R.getName() 4456 << "Attr *A) {\n"; 4457 if (!Args.empty()) 4458 OS << " const auto *SA = cast<" << R.getName() 4459 << "Attr>(A); (void)SA;\n"; 4460 OS << SS.str(); 4461 OS << " }\n"; 4462 } 4463 } 4464 } 4465 4466 void EmitClangAttrParserStringSwitches(RecordKeeper &Records, 4467 raw_ostream &OS) { 4468 emitSourceFileHeader("Parser-related llvm::StringSwitch cases", OS); 4469 emitClangAttrArgContextList(Records, OS); 4470 emitClangAttrIdentifierArgList(Records, OS); 4471 emitClangAttrVariadicIdentifierArgList(Records, OS); 4472 emitClangAttrThisIsaIdentifierArgList(Records, OS); 4473 emitClangAttrAcceptsExprPack(Records, OS); 4474 emitClangAttrTypeArgList(Records, OS); 4475 emitClangAttrLateParsedList(Records, OS); 4476 } 4477 4478 void EmitClangAttrSubjectMatchRulesParserStringSwitches(RecordKeeper &Records, 4479 raw_ostream &OS) { 4480 getPragmaAttributeSupport(Records).generateParsingHelpers(OS); 4481 } 4482 4483 void EmitClangAttrDocTable(RecordKeeper &Records, raw_ostream &OS) { 4484 emitSourceFileHeader("Clang attribute documentation", OS); 4485 4486 std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr"); 4487 for (const auto *A : Attrs) { 4488 if (!A->getValueAsBit("ASTNode")) 4489 continue; 4490 std::vector<Record *> Docs = A->getValueAsListOfDefs("Documentation"); 4491 assert(!Docs.empty()); 4492 // Only look at the first documentation if there are several. 4493 // (Currently there's only one such attr, revisit if this becomes common). 4494 StringRef Text = 4495 Docs.front()->getValueAsOptionalString("Content").value_or(""); 4496 OS << "\nstatic const char AttrDoc_" << A->getName() << "[] = " 4497 << "R\"reST(" << Text.trim() << ")reST\";\n"; 4498 } 4499 } 4500 4501 enum class SpellingKind : size_t { 4502 GNU, 4503 CXX11, 4504 C2x, 4505 Declspec, 4506 Microsoft, 4507 Keyword, 4508 Pragma, 4509 HLSLSemantic, 4510 NumSpellingKinds 4511 }; 4512 static const size_t NumSpellingKinds = (size_t)SpellingKind::NumSpellingKinds; 4513 4514 class SpellingList { 4515 std::vector<std::string> Spellings[NumSpellingKinds]; 4516 4517 public: 4518 ArrayRef<std::string> operator[](SpellingKind K) const { 4519 return Spellings[(size_t)K]; 4520 } 4521 4522 void add(const Record &Attr, FlattenedSpelling Spelling) { 4523 SpellingKind Kind = StringSwitch<SpellingKind>(Spelling.variety()) 4524 .Case("GNU", SpellingKind::GNU) 4525 .Case("CXX11", SpellingKind::CXX11) 4526 .Case("C2x", SpellingKind::C2x) 4527 .Case("Declspec", SpellingKind::Declspec) 4528 .Case("Microsoft", SpellingKind::Microsoft) 4529 .Case("Keyword", SpellingKind::Keyword) 4530 .Case("Pragma", SpellingKind::Pragma) 4531 .Case("HLSLSemantic", SpellingKind::HLSLSemantic); 4532 std::string Name; 4533 if (!Spelling.nameSpace().empty()) { 4534 switch (Kind) { 4535 case SpellingKind::CXX11: 4536 case SpellingKind::C2x: 4537 Name = Spelling.nameSpace() + "::"; 4538 break; 4539 case SpellingKind::Pragma: 4540 Name = Spelling.nameSpace() + " "; 4541 break; 4542 default: 4543 PrintFatalError(Attr.getLoc(), "Unexpected namespace in spelling"); 4544 } 4545 } 4546 Name += Spelling.name(); 4547 4548 Spellings[(size_t)Kind].push_back(Name); 4549 } 4550 }; 4551 4552 class DocumentationData { 4553 public: 4554 const Record *Documentation; 4555 const Record *Attribute; 4556 std::string Heading; 4557 SpellingList SupportedSpellings; 4558 4559 DocumentationData(const Record &Documentation, const Record &Attribute, 4560 std::pair<std::string, SpellingList> HeadingAndSpellings) 4561 : Documentation(&Documentation), Attribute(&Attribute), 4562 Heading(std::move(HeadingAndSpellings.first)), 4563 SupportedSpellings(std::move(HeadingAndSpellings.second)) {} 4564 }; 4565 4566 static void WriteCategoryHeader(const Record *DocCategory, 4567 raw_ostream &OS) { 4568 const StringRef Name = DocCategory->getValueAsString("Name"); 4569 OS << Name << "\n" << std::string(Name.size(), '=') << "\n"; 4570 4571 // If there is content, print that as well. 4572 const StringRef ContentStr = DocCategory->getValueAsString("Content"); 4573 // Trim leading and trailing newlines and spaces. 4574 OS << ContentStr.trim(); 4575 4576 OS << "\n\n"; 4577 } 4578 4579 static std::pair<std::string, SpellingList> 4580 GetAttributeHeadingAndSpellings(const Record &Documentation, 4581 const Record &Attribute, 4582 StringRef Cat) { 4583 // FIXME: there is no way to have a per-spelling category for the attribute 4584 // documentation. This may not be a limiting factor since the spellings 4585 // should generally be consistently applied across the category. 4586 4587 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attribute); 4588 if (Spellings.empty()) 4589 PrintFatalError(Attribute.getLoc(), 4590 "Attribute has no supported spellings; cannot be " 4591 "documented"); 4592 4593 // Determine the heading to be used for this attribute. 4594 std::string Heading = std::string(Documentation.getValueAsString("Heading")); 4595 if (Heading.empty()) { 4596 // If there's only one spelling, we can simply use that. 4597 if (Spellings.size() == 1) 4598 Heading = Spellings.begin()->name(); 4599 else { 4600 std::set<std::string> Uniques; 4601 for (auto I = Spellings.begin(), E = Spellings.end(); 4602 I != E; ++I) { 4603 std::string Spelling = 4604 std::string(NormalizeNameForSpellingComparison(I->name())); 4605 Uniques.insert(Spelling); 4606 } 4607 // If the semantic map has only one spelling, that is sufficient for our 4608 // needs. 4609 if (Uniques.size() == 1) 4610 Heading = *Uniques.begin(); 4611 // If it's in the undocumented category, just construct a header by 4612 // concatenating all the spellings. Might not be great, but better than 4613 // nothing. 4614 else if (Cat == "Undocumented") 4615 Heading = llvm::join(Uniques.begin(), Uniques.end(), ", "); 4616 } 4617 } 4618 4619 // If the heading is still empty, it is an error. 4620 if (Heading.empty()) 4621 PrintFatalError(Attribute.getLoc(), 4622 "This attribute requires a heading to be specified"); 4623 4624 SpellingList SupportedSpellings; 4625 for (const auto &I : Spellings) 4626 SupportedSpellings.add(Attribute, I); 4627 4628 return std::make_pair(std::move(Heading), std::move(SupportedSpellings)); 4629 } 4630 4631 static void WriteDocumentation(RecordKeeper &Records, 4632 const DocumentationData &Doc, raw_ostream &OS) { 4633 OS << Doc.Heading << "\n" << std::string(Doc.Heading.length(), '-') << "\n"; 4634 4635 // List what spelling syntaxes the attribute supports. 4636 OS << ".. csv-table:: Supported Syntaxes\n"; 4637 OS << " :header: \"GNU\", \"C++11\", \"C2x\", \"``__declspec``\","; 4638 OS << " \"Keyword\", \"``#pragma``\", \"``#pragma clang attribute``\","; 4639 OS << " \"HLSL Semantic\"\n\n \""; 4640 for (size_t Kind = 0; Kind != NumSpellingKinds; ++Kind) { 4641 SpellingKind K = (SpellingKind)Kind; 4642 // TODO: List Microsoft (IDL-style attribute) spellings once we fully 4643 // support them. 4644 if (K == SpellingKind::Microsoft) 4645 continue; 4646 4647 bool PrintedAny = false; 4648 for (StringRef Spelling : Doc.SupportedSpellings[K]) { 4649 if (PrintedAny) 4650 OS << " |br| "; 4651 OS << "``" << Spelling << "``"; 4652 PrintedAny = true; 4653 } 4654 4655 OS << "\",\""; 4656 } 4657 4658 if (getPragmaAttributeSupport(Records).isAttributedSupported( 4659 *Doc.Attribute)) 4660 OS << "Yes"; 4661 OS << "\"\n\n"; 4662 4663 // If the attribute is deprecated, print a message about it, and possibly 4664 // provide a replacement attribute. 4665 if (!Doc.Documentation->isValueUnset("Deprecated")) { 4666 OS << "This attribute has been deprecated, and may be removed in a future " 4667 << "version of Clang."; 4668 const Record &Deprecated = *Doc.Documentation->getValueAsDef("Deprecated"); 4669 const StringRef Replacement = Deprecated.getValueAsString("Replacement"); 4670 if (!Replacement.empty()) 4671 OS << " This attribute has been superseded by ``" << Replacement 4672 << "``."; 4673 OS << "\n\n"; 4674 } 4675 4676 const StringRef ContentStr = Doc.Documentation->getValueAsString("Content"); 4677 // Trim leading and trailing newlines and spaces. 4678 OS << ContentStr.trim(); 4679 4680 OS << "\n\n\n"; 4681 } 4682 4683 void EmitClangAttrDocs(RecordKeeper &Records, raw_ostream &OS) { 4684 // Get the documentation introduction paragraph. 4685 const Record *Documentation = Records.getDef("GlobalDocumentation"); 4686 if (!Documentation) { 4687 PrintFatalError("The Documentation top-level definition is missing, " 4688 "no documentation will be generated."); 4689 return; 4690 } 4691 4692 OS << Documentation->getValueAsString("Intro") << "\n"; 4693 4694 // Gather the Documentation lists from each of the attributes, based on the 4695 // category provided. 4696 std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr"); 4697 struct CategoryLess { 4698 bool operator()(const Record *L, const Record *R) const { 4699 return L->getValueAsString("Name") < R->getValueAsString("Name"); 4700 } 4701 }; 4702 std::map<const Record *, std::vector<DocumentationData>, CategoryLess> 4703 SplitDocs; 4704 for (const auto *A : Attrs) { 4705 const Record &Attr = *A; 4706 std::vector<Record *> Docs = Attr.getValueAsListOfDefs("Documentation"); 4707 for (const auto *D : Docs) { 4708 const Record &Doc = *D; 4709 const Record *Category = Doc.getValueAsDef("Category"); 4710 // If the category is "InternalOnly", then there cannot be any other 4711 // documentation categories (otherwise, the attribute would be 4712 // emitted into the docs). 4713 const StringRef Cat = Category->getValueAsString("Name"); 4714 bool InternalOnly = Cat == "InternalOnly"; 4715 if (InternalOnly && Docs.size() > 1) 4716 PrintFatalError(Doc.getLoc(), 4717 "Attribute is \"InternalOnly\", but has multiple " 4718 "documentation categories"); 4719 4720 if (!InternalOnly) 4721 SplitDocs[Category].push_back(DocumentationData( 4722 Doc, Attr, GetAttributeHeadingAndSpellings(Doc, Attr, Cat))); 4723 } 4724 } 4725 4726 // Having split the attributes out based on what documentation goes where, 4727 // we can begin to generate sections of documentation. 4728 for (auto &I : SplitDocs) { 4729 WriteCategoryHeader(I.first, OS); 4730 4731 llvm::sort(I.second, 4732 [](const DocumentationData &D1, const DocumentationData &D2) { 4733 return D1.Heading < D2.Heading; 4734 }); 4735 4736 // Walk over each of the attributes in the category and write out their 4737 // documentation. 4738 for (const auto &Doc : I.second) 4739 WriteDocumentation(Records, Doc, OS); 4740 } 4741 } 4742 4743 void EmitTestPragmaAttributeSupportedAttributes(RecordKeeper &Records, 4744 raw_ostream &OS) { 4745 PragmaClangAttributeSupport Support = getPragmaAttributeSupport(Records); 4746 ParsedAttrMap Attrs = getParsedAttrList(Records); 4747 OS << "#pragma clang attribute supports the following attributes:\n"; 4748 for (const auto &I : Attrs) { 4749 if (!Support.isAttributedSupported(*I.second)) 4750 continue; 4751 OS << I.first; 4752 if (I.second->isValueUnset("Subjects")) { 4753 OS << " ()\n"; 4754 continue; 4755 } 4756 const Record *SubjectObj = I.second->getValueAsDef("Subjects"); 4757 std::vector<Record *> Subjects = 4758 SubjectObj->getValueAsListOfDefs("Subjects"); 4759 OS << " ("; 4760 bool PrintComma = false; 4761 for (const auto &Subject : llvm::enumerate(Subjects)) { 4762 if (!isSupportedPragmaClangAttributeSubject(*Subject.value())) 4763 continue; 4764 if (PrintComma) 4765 OS << ", "; 4766 PrintComma = true; 4767 PragmaClangAttributeSupport::RuleOrAggregateRuleSet &RuleSet = 4768 Support.SubjectsToRules.find(Subject.value())->getSecond(); 4769 if (RuleSet.isRule()) { 4770 OS << RuleSet.getRule().getEnumValueName(); 4771 continue; 4772 } 4773 OS << "("; 4774 for (const auto &Rule : llvm::enumerate(RuleSet.getAggregateRuleSet())) { 4775 if (Rule.index()) 4776 OS << ", "; 4777 OS << Rule.value().getEnumValueName(); 4778 } 4779 OS << ")"; 4780 } 4781 OS << ")\n"; 4782 } 4783 OS << "End of supported attributes.\n"; 4784 } 4785 4786 } // end namespace clang 4787