xref: /freebsd/contrib/llvm-project/clang/utils/TableGen/ClangAttrEmitter.cpp (revision 1323ec571215a77ddd21294f0871979d5ad6b992)
1 //===- ClangAttrEmitter.cpp - Generate Clang attribute handling =-*- C++ -*--=//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These tablegen backends emit Clang attribute processing code
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "TableGenBackends.h"
14 #include "ASTTableGen.h"
15 
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallString.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ADT/StringSet.h"
24 #include "llvm/ADT/StringSwitch.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include "llvm/TableGen/Error.h"
29 #include "llvm/TableGen/Record.h"
30 #include "llvm/TableGen/StringMatcher.h"
31 #include "llvm/TableGen/TableGenBackend.h"
32 #include <algorithm>
33 #include <cassert>
34 #include <cctype>
35 #include <cstddef>
36 #include <cstdint>
37 #include <map>
38 #include <memory>
39 #include <set>
40 #include <sstream>
41 #include <string>
42 #include <utility>
43 #include <vector>
44 
45 using namespace llvm;
46 
47 namespace {
48 
49 class FlattenedSpelling {
50   std::string V, N, NS;
51   bool K = false;
52 
53 public:
54   FlattenedSpelling(const std::string &Variety, const std::string &Name,
55                     const std::string &Namespace, bool KnownToGCC) :
56     V(Variety), N(Name), NS(Namespace), K(KnownToGCC) {}
57   explicit FlattenedSpelling(const Record &Spelling)
58       : V(std::string(Spelling.getValueAsString("Variety"))),
59         N(std::string(Spelling.getValueAsString("Name"))) {
60     assert(V != "GCC" && V != "Clang" &&
61            "Given a GCC spelling, which means this hasn't been flattened!");
62     if (V == "CXX11" || V == "C2x" || V == "Pragma")
63       NS = std::string(Spelling.getValueAsString("Namespace"));
64   }
65 
66   const std::string &variety() const { return V; }
67   const std::string &name() const { return N; }
68   const std::string &nameSpace() const { return NS; }
69   bool knownToGCC() const { return K; }
70 };
71 
72 } // end anonymous namespace
73 
74 static std::vector<FlattenedSpelling>
75 GetFlattenedSpellings(const Record &Attr) {
76   std::vector<Record *> Spellings = Attr.getValueAsListOfDefs("Spellings");
77   std::vector<FlattenedSpelling> Ret;
78 
79   for (const auto &Spelling : Spellings) {
80     StringRef Variety = Spelling->getValueAsString("Variety");
81     StringRef Name = Spelling->getValueAsString("Name");
82     if (Variety == "GCC") {
83       Ret.emplace_back("GNU", std::string(Name), "", true);
84       Ret.emplace_back("CXX11", std::string(Name), "gnu", true);
85       if (Spelling->getValueAsBit("AllowInC"))
86         Ret.emplace_back("C2x", std::string(Name), "gnu", true);
87     } else if (Variety == "Clang") {
88       Ret.emplace_back("GNU", std::string(Name), "", false);
89       Ret.emplace_back("CXX11", std::string(Name), "clang", false);
90       if (Spelling->getValueAsBit("AllowInC"))
91         Ret.emplace_back("C2x", std::string(Name), "clang", false);
92     } else
93       Ret.push_back(FlattenedSpelling(*Spelling));
94   }
95 
96   return Ret;
97 }
98 
99 static std::string ReadPCHRecord(StringRef type) {
100   return StringSwitch<std::string>(type)
101       .EndsWith("Decl *", "Record.GetLocalDeclAs<" +
102                               std::string(type.data(), 0, type.size() - 1) +
103                               ">(Record.readInt())")
104       .Case("TypeSourceInfo *", "Record.readTypeSourceInfo()")
105       .Case("Expr *", "Record.readExpr()")
106       .Case("IdentifierInfo *", "Record.readIdentifier()")
107       .Case("StringRef", "Record.readString()")
108       .Case("ParamIdx", "ParamIdx::deserialize(Record.readInt())")
109       .Case("OMPTraitInfo *", "Record.readOMPTraitInfo()")
110       .Default("Record.readInt()");
111 }
112 
113 // Get a type that is suitable for storing an object of the specified type.
114 static StringRef getStorageType(StringRef type) {
115   return StringSwitch<StringRef>(type)
116     .Case("StringRef", "std::string")
117     .Default(type);
118 }
119 
120 // Assumes that the way to get the value is SA->getname()
121 static std::string WritePCHRecord(StringRef type, StringRef name) {
122   return "Record." +
123          StringSwitch<std::string>(type)
124              .EndsWith("Decl *", "AddDeclRef(" + std::string(name) + ");\n")
125              .Case("TypeSourceInfo *",
126                    "AddTypeSourceInfo(" + std::string(name) + ");\n")
127              .Case("Expr *", "AddStmt(" + std::string(name) + ");\n")
128              .Case("IdentifierInfo *",
129                    "AddIdentifierRef(" + std::string(name) + ");\n")
130              .Case("StringRef", "AddString(" + std::string(name) + ");\n")
131              .Case("ParamIdx",
132                    "push_back(" + std::string(name) + ".serialize());\n")
133              .Case("OMPTraitInfo *",
134                    "writeOMPTraitInfo(" + std::string(name) + ");\n")
135              .Default("push_back(" + std::string(name) + ");\n");
136 }
137 
138 // Normalize attribute name by removing leading and trailing
139 // underscores. For example, __foo, foo__, __foo__ would
140 // become foo.
141 static StringRef NormalizeAttrName(StringRef AttrName) {
142   AttrName.consume_front("__");
143   AttrName.consume_back("__");
144   return AttrName;
145 }
146 
147 // Normalize the name by removing any and all leading and trailing underscores.
148 // This is different from NormalizeAttrName in that it also handles names like
149 // _pascal and __pascal.
150 static StringRef NormalizeNameForSpellingComparison(StringRef Name) {
151   return Name.trim("_");
152 }
153 
154 // Normalize the spelling of a GNU attribute (i.e. "x" in "__attribute__((x))"),
155 // removing "__" if it appears at the beginning and end of the attribute's name.
156 static StringRef NormalizeGNUAttrSpelling(StringRef AttrSpelling) {
157   if (AttrSpelling.startswith("__") && AttrSpelling.endswith("__")) {
158     AttrSpelling = AttrSpelling.substr(2, AttrSpelling.size() - 4);
159   }
160 
161   return AttrSpelling;
162 }
163 
164 typedef std::vector<std::pair<std::string, const Record *>> ParsedAttrMap;
165 
166 static ParsedAttrMap getParsedAttrList(const RecordKeeper &Records,
167                                        ParsedAttrMap *Dupes = nullptr) {
168   std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
169   std::set<std::string> Seen;
170   ParsedAttrMap R;
171   for (const auto *Attr : Attrs) {
172     if (Attr->getValueAsBit("SemaHandler")) {
173       std::string AN;
174       if (Attr->isSubClassOf("TargetSpecificAttr") &&
175           !Attr->isValueUnset("ParseKind")) {
176         AN = std::string(Attr->getValueAsString("ParseKind"));
177 
178         // If this attribute has already been handled, it does not need to be
179         // handled again.
180         if (Seen.find(AN) != Seen.end()) {
181           if (Dupes)
182             Dupes->push_back(std::make_pair(AN, Attr));
183           continue;
184         }
185         Seen.insert(AN);
186       } else
187         AN = NormalizeAttrName(Attr->getName()).str();
188 
189       R.push_back(std::make_pair(AN, Attr));
190     }
191   }
192   return R;
193 }
194 
195 namespace {
196 
197   class Argument {
198     std::string lowerName, upperName;
199     StringRef attrName;
200     bool isOpt;
201     bool Fake;
202 
203   public:
204     Argument(const Record &Arg, StringRef Attr)
205         : lowerName(std::string(Arg.getValueAsString("Name"))),
206           upperName(lowerName), attrName(Attr), isOpt(false), Fake(false) {
207       if (!lowerName.empty()) {
208         lowerName[0] = std::tolower(lowerName[0]);
209         upperName[0] = std::toupper(upperName[0]);
210       }
211       // Work around MinGW's macro definition of 'interface' to 'struct'. We
212       // have an attribute argument called 'Interface', so only the lower case
213       // name conflicts with the macro definition.
214       if (lowerName == "interface")
215         lowerName = "interface_";
216     }
217     virtual ~Argument() = default;
218 
219     StringRef getLowerName() const { return lowerName; }
220     StringRef getUpperName() const { return upperName; }
221     StringRef getAttrName() const { return attrName; }
222 
223     bool isOptional() const { return isOpt; }
224     void setOptional(bool set) { isOpt = set; }
225 
226     bool isFake() const { return Fake; }
227     void setFake(bool fake) { Fake = fake; }
228 
229     // These functions print the argument contents formatted in different ways.
230     virtual void writeAccessors(raw_ostream &OS) const = 0;
231     virtual void writeAccessorDefinitions(raw_ostream &OS) const {}
232     virtual void writeASTVisitorTraversal(raw_ostream &OS) const {}
233     virtual void writeCloneArgs(raw_ostream &OS) const = 0;
234     virtual void writeTemplateInstantiationArgs(raw_ostream &OS) const = 0;
235     virtual void writeTemplateInstantiation(raw_ostream &OS) const {}
236     virtual void writeCtorBody(raw_ostream &OS) const {}
237     virtual void writeCtorInitializers(raw_ostream &OS) const = 0;
238     virtual void writeCtorDefaultInitializers(raw_ostream &OS) const = 0;
239     virtual void writeCtorParameters(raw_ostream &OS) const = 0;
240     virtual void writeDeclarations(raw_ostream &OS) const = 0;
241     virtual void writePCHReadArgs(raw_ostream &OS) const = 0;
242     virtual void writePCHReadDecls(raw_ostream &OS) const = 0;
243     virtual void writePCHWrite(raw_ostream &OS) const = 0;
244     virtual std::string getIsOmitted() const { return "false"; }
245     virtual void writeValue(raw_ostream &OS) const = 0;
246     virtual void writeDump(raw_ostream &OS) const = 0;
247     virtual void writeDumpChildren(raw_ostream &OS) const {}
248     virtual void writeHasChildren(raw_ostream &OS) const { OS << "false"; }
249 
250     virtual bool isEnumArg() const { return false; }
251     virtual bool isVariadicEnumArg() const { return false; }
252     virtual bool isVariadic() const { return false; }
253 
254     virtual void writeImplicitCtorArgs(raw_ostream &OS) const {
255       OS << getUpperName();
256     }
257   };
258 
259   class SimpleArgument : public Argument {
260     std::string type;
261 
262   public:
263     SimpleArgument(const Record &Arg, StringRef Attr, std::string T)
264         : Argument(Arg, Attr), type(std::move(T)) {}
265 
266     std::string getType() const { return type; }
267 
268     void writeAccessors(raw_ostream &OS) const override {
269       OS << "  " << type << " get" << getUpperName() << "() const {\n";
270       OS << "    return " << getLowerName() << ";\n";
271       OS << "  }";
272     }
273 
274     void writeCloneArgs(raw_ostream &OS) const override {
275       OS << getLowerName();
276     }
277 
278     void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
279       OS << "A->get" << getUpperName() << "()";
280     }
281 
282     void writeCtorInitializers(raw_ostream &OS) const override {
283       OS << getLowerName() << "(" << getUpperName() << ")";
284     }
285 
286     void writeCtorDefaultInitializers(raw_ostream &OS) const override {
287       OS << getLowerName() << "()";
288     }
289 
290     void writeCtorParameters(raw_ostream &OS) const override {
291       OS << type << " " << getUpperName();
292     }
293 
294     void writeDeclarations(raw_ostream &OS) const override {
295       OS << type << " " << getLowerName() << ";";
296     }
297 
298     void writePCHReadDecls(raw_ostream &OS) const override {
299       std::string read = ReadPCHRecord(type);
300       OS << "    " << type << " " << getLowerName() << " = " << read << ";\n";
301     }
302 
303     void writePCHReadArgs(raw_ostream &OS) const override {
304       OS << getLowerName();
305     }
306 
307     void writePCHWrite(raw_ostream &OS) const override {
308       OS << "    "
309          << WritePCHRecord(type,
310                            "SA->get" + std::string(getUpperName()) + "()");
311     }
312 
313     std::string getIsOmitted() const override {
314       if (type == "IdentifierInfo *")
315         return "!get" + getUpperName().str() + "()";
316       if (type == "TypeSourceInfo *")
317         return "!get" + getUpperName().str() + "Loc()";
318       if (type == "ParamIdx")
319         return "!get" + getUpperName().str() + "().isValid()";
320       return "false";
321     }
322 
323     void writeValue(raw_ostream &OS) const override {
324       if (type == "FunctionDecl *")
325         OS << "\" << get" << getUpperName()
326            << "()->getNameInfo().getAsString() << \"";
327       else if (type == "IdentifierInfo *")
328         // Some non-optional (comma required) identifier arguments can be the
329         // empty string but are then recorded as a nullptr.
330         OS << "\" << (get" << getUpperName() << "() ? get" << getUpperName()
331            << "()->getName() : \"\") << \"";
332       else if (type == "VarDecl *")
333         OS << "\" << get" << getUpperName() << "()->getName() << \"";
334       else if (type == "TypeSourceInfo *")
335         OS << "\" << get" << getUpperName() << "().getAsString() << \"";
336       else if (type == "ParamIdx")
337         OS << "\" << get" << getUpperName() << "().getSourceIndex() << \"";
338       else
339         OS << "\" << get" << getUpperName() << "() << \"";
340     }
341 
342     void writeDump(raw_ostream &OS) const override {
343       if (StringRef(type).endswith("Decl *")) {
344         OS << "    OS << \" \";\n";
345         OS << "    dumpBareDeclRef(SA->get" << getUpperName() << "());\n";
346       } else if (type == "IdentifierInfo *") {
347         // Some non-optional (comma required) identifier arguments can be the
348         // empty string but are then recorded as a nullptr.
349         OS << "    if (SA->get" << getUpperName() << "())\n"
350            << "      OS << \" \" << SA->get" << getUpperName()
351            << "()->getName();\n";
352       } else if (type == "TypeSourceInfo *") {
353         if (isOptional())
354           OS << "    if (SA->get" << getUpperName() << "Loc())";
355         OS << "    OS << \" \" << SA->get" << getUpperName()
356            << "().getAsString();\n";
357       } else if (type == "bool") {
358         OS << "    if (SA->get" << getUpperName() << "()) OS << \" "
359            << getUpperName() << "\";\n";
360       } else if (type == "int" || type == "unsigned") {
361         OS << "    OS << \" \" << SA->get" << getUpperName() << "();\n";
362       } else if (type == "ParamIdx") {
363         if (isOptional())
364           OS << "    if (SA->get" << getUpperName() << "().isValid())\n  ";
365         OS << "    OS << \" \" << SA->get" << getUpperName()
366            << "().getSourceIndex();\n";
367       } else if (type == "OMPTraitInfo *") {
368         OS << "    OS << \" \" << SA->get" << getUpperName() << "();\n";
369       } else {
370         llvm_unreachable("Unknown SimpleArgument type!");
371       }
372     }
373   };
374 
375   class DefaultSimpleArgument : public SimpleArgument {
376     int64_t Default;
377 
378   public:
379     DefaultSimpleArgument(const Record &Arg, StringRef Attr,
380                           std::string T, int64_t Default)
381       : SimpleArgument(Arg, Attr, T), Default(Default) {}
382 
383     void writeAccessors(raw_ostream &OS) const override {
384       SimpleArgument::writeAccessors(OS);
385 
386       OS << "\n\n  static const " << getType() << " Default" << getUpperName()
387          << " = ";
388       if (getType() == "bool")
389         OS << (Default != 0 ? "true" : "false");
390       else
391         OS << Default;
392       OS << ";";
393     }
394   };
395 
396   class StringArgument : public Argument {
397   public:
398     StringArgument(const Record &Arg, StringRef Attr)
399       : Argument(Arg, Attr)
400     {}
401 
402     void writeAccessors(raw_ostream &OS) const override {
403       OS << "  llvm::StringRef get" << getUpperName() << "() const {\n";
404       OS << "    return llvm::StringRef(" << getLowerName() << ", "
405          << getLowerName() << "Length);\n";
406       OS << "  }\n";
407       OS << "  unsigned get" << getUpperName() << "Length() const {\n";
408       OS << "    return " << getLowerName() << "Length;\n";
409       OS << "  }\n";
410       OS << "  void set" << getUpperName()
411          << "(ASTContext &C, llvm::StringRef S) {\n";
412       OS << "    " << getLowerName() << "Length = S.size();\n";
413       OS << "    this->" << getLowerName() << " = new (C, 1) char ["
414          << getLowerName() << "Length];\n";
415       OS << "    if (!S.empty())\n";
416       OS << "      std::memcpy(this->" << getLowerName() << ", S.data(), "
417          << getLowerName() << "Length);\n";
418       OS << "  }";
419     }
420 
421     void writeCloneArgs(raw_ostream &OS) const override {
422       OS << "get" << getUpperName() << "()";
423     }
424 
425     void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
426       OS << "A->get" << getUpperName() << "()";
427     }
428 
429     void writeCtorBody(raw_ostream &OS) const override {
430       OS << "    if (!" << getUpperName() << ".empty())\n";
431       OS << "      std::memcpy(" << getLowerName() << ", " << getUpperName()
432          << ".data(), " << getLowerName() << "Length);\n";
433     }
434 
435     void writeCtorInitializers(raw_ostream &OS) const override {
436       OS << getLowerName() << "Length(" << getUpperName() << ".size()),"
437          << getLowerName() << "(new (Ctx, 1) char[" << getLowerName()
438          << "Length])";
439     }
440 
441     void writeCtorDefaultInitializers(raw_ostream &OS) const override {
442       OS << getLowerName() << "Length(0)," << getLowerName() << "(nullptr)";
443     }
444 
445     void writeCtorParameters(raw_ostream &OS) const override {
446       OS << "llvm::StringRef " << getUpperName();
447     }
448 
449     void writeDeclarations(raw_ostream &OS) const override {
450       OS << "unsigned " << getLowerName() << "Length;\n";
451       OS << "char *" << getLowerName() << ";";
452     }
453 
454     void writePCHReadDecls(raw_ostream &OS) const override {
455       OS << "    std::string " << getLowerName()
456          << "= Record.readString();\n";
457     }
458 
459     void writePCHReadArgs(raw_ostream &OS) const override {
460       OS << getLowerName();
461     }
462 
463     void writePCHWrite(raw_ostream &OS) const override {
464       OS << "    Record.AddString(SA->get" << getUpperName() << "());\n";
465     }
466 
467     void writeValue(raw_ostream &OS) const override {
468       OS << "\\\"\" << get" << getUpperName() << "() << \"\\\"";
469     }
470 
471     void writeDump(raw_ostream &OS) const override {
472       OS << "    OS << \" \\\"\" << SA->get" << getUpperName()
473          << "() << \"\\\"\";\n";
474     }
475   };
476 
477   class AlignedArgument : public Argument {
478   public:
479     AlignedArgument(const Record &Arg, StringRef Attr)
480       : Argument(Arg, Attr)
481     {}
482 
483     void writeAccessors(raw_ostream &OS) const override {
484       OS << "  bool is" << getUpperName() << "Dependent() const;\n";
485       OS << "  bool is" << getUpperName() << "ErrorDependent() const;\n";
486 
487       OS << "  unsigned get" << getUpperName() << "(ASTContext &Ctx) const;\n";
488 
489       OS << "  bool is" << getUpperName() << "Expr() const {\n";
490       OS << "    return is" << getLowerName() << "Expr;\n";
491       OS << "  }\n";
492 
493       OS << "  Expr *get" << getUpperName() << "Expr() const {\n";
494       OS << "    assert(is" << getLowerName() << "Expr);\n";
495       OS << "    return " << getLowerName() << "Expr;\n";
496       OS << "  }\n";
497 
498       OS << "  TypeSourceInfo *get" << getUpperName() << "Type() const {\n";
499       OS << "    assert(!is" << getLowerName() << "Expr);\n";
500       OS << "    return " << getLowerName() << "Type;\n";
501       OS << "  }";
502     }
503 
504     void writeAccessorDefinitions(raw_ostream &OS) const override {
505       OS << "bool " << getAttrName() << "Attr::is" << getUpperName()
506          << "Dependent() const {\n";
507       OS << "  if (is" << getLowerName() << "Expr)\n";
508       OS << "    return " << getLowerName() << "Expr && (" << getLowerName()
509          << "Expr->isValueDependent() || " << getLowerName()
510          << "Expr->isTypeDependent());\n";
511       OS << "  else\n";
512       OS << "    return " << getLowerName()
513          << "Type->getType()->isDependentType();\n";
514       OS << "}\n";
515 
516       OS << "bool " << getAttrName() << "Attr::is" << getUpperName()
517          << "ErrorDependent() const {\n";
518       OS << "  if (is" << getLowerName() << "Expr)\n";
519       OS << "    return " << getLowerName() << "Expr && " << getLowerName()
520          << "Expr->containsErrors();\n";
521       OS << "  return " << getLowerName()
522          << "Type->getType()->containsErrors();\n";
523       OS << "}\n";
524 
525       // FIXME: Do not do the calculation here
526       // FIXME: Handle types correctly
527       // A null pointer means maximum alignment
528       OS << "unsigned " << getAttrName() << "Attr::get" << getUpperName()
529          << "(ASTContext &Ctx) const {\n";
530       OS << "  assert(!is" << getUpperName() << "Dependent());\n";
531       OS << "  if (is" << getLowerName() << "Expr)\n";
532       OS << "    return " << getLowerName() << "Expr ? " << getLowerName()
533          << "Expr->EvaluateKnownConstInt(Ctx).getZExtValue()"
534          << " * Ctx.getCharWidth() : "
535          << "Ctx.getTargetDefaultAlignForAttributeAligned();\n";
536       OS << "  else\n";
537       OS << "    return 0; // FIXME\n";
538       OS << "}\n";
539     }
540 
541     void writeASTVisitorTraversal(raw_ostream &OS) const override {
542       StringRef Name = getUpperName();
543       OS << "  if (A->is" << Name << "Expr()) {\n"
544          << "    if (!getDerived().TraverseStmt(A->get" << Name << "Expr()))\n"
545          << "      return false;\n"
546          << "  } else if (auto *TSI = A->get" << Name << "Type()) {\n"
547          << "    if (!getDerived().TraverseTypeLoc(TSI->getTypeLoc()))\n"
548          << "      return false;\n"
549          << "  }\n";
550     }
551 
552     void writeCloneArgs(raw_ostream &OS) const override {
553       OS << "is" << getLowerName() << "Expr, is" << getLowerName()
554          << "Expr ? static_cast<void*>(" << getLowerName()
555          << "Expr) : " << getLowerName()
556          << "Type";
557     }
558 
559     void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
560       // FIXME: move the definition in Sema::InstantiateAttrs to here.
561       // In the meantime, aligned attributes are cloned.
562     }
563 
564     void writeCtorBody(raw_ostream &OS) const override {
565       OS << "    if (is" << getLowerName() << "Expr)\n";
566       OS << "       " << getLowerName() << "Expr = reinterpret_cast<Expr *>("
567          << getUpperName() << ");\n";
568       OS << "    else\n";
569       OS << "       " << getLowerName()
570          << "Type = reinterpret_cast<TypeSourceInfo *>(" << getUpperName()
571          << ");\n";
572     }
573 
574     void writeCtorInitializers(raw_ostream &OS) const override {
575       OS << "is" << getLowerName() << "Expr(Is" << getUpperName() << "Expr)";
576     }
577 
578     void writeCtorDefaultInitializers(raw_ostream &OS) const override {
579       OS << "is" << getLowerName() << "Expr(false)";
580     }
581 
582     void writeCtorParameters(raw_ostream &OS) const override {
583       OS << "bool Is" << getUpperName() << "Expr, void *" << getUpperName();
584     }
585 
586     void writeImplicitCtorArgs(raw_ostream &OS) const override {
587       OS << "Is" << getUpperName() << "Expr, " << getUpperName();
588     }
589 
590     void writeDeclarations(raw_ostream &OS) const override {
591       OS << "bool is" << getLowerName() << "Expr;\n";
592       OS << "union {\n";
593       OS << "Expr *" << getLowerName() << "Expr;\n";
594       OS << "TypeSourceInfo *" << getLowerName() << "Type;\n";
595       OS << "};";
596     }
597 
598     void writePCHReadArgs(raw_ostream &OS) const override {
599       OS << "is" << getLowerName() << "Expr, " << getLowerName() << "Ptr";
600     }
601 
602     void writePCHReadDecls(raw_ostream &OS) const override {
603       OS << "    bool is" << getLowerName() << "Expr = Record.readInt();\n";
604       OS << "    void *" << getLowerName() << "Ptr;\n";
605       OS << "    if (is" << getLowerName() << "Expr)\n";
606       OS << "      " << getLowerName() << "Ptr = Record.readExpr();\n";
607       OS << "    else\n";
608       OS << "      " << getLowerName()
609          << "Ptr = Record.readTypeSourceInfo();\n";
610     }
611 
612     void writePCHWrite(raw_ostream &OS) const override {
613       OS << "    Record.push_back(SA->is" << getUpperName() << "Expr());\n";
614       OS << "    if (SA->is" << getUpperName() << "Expr())\n";
615       OS << "      Record.AddStmt(SA->get" << getUpperName() << "Expr());\n";
616       OS << "    else\n";
617       OS << "      Record.AddTypeSourceInfo(SA->get" << getUpperName()
618          << "Type());\n";
619     }
620 
621     std::string getIsOmitted() const override {
622       return "!is" + getLowerName().str() + "Expr || !" + getLowerName().str()
623              + "Expr";
624     }
625 
626     void writeValue(raw_ostream &OS) const override {
627       OS << "\";\n";
628       OS << "    " << getLowerName()
629          << "Expr->printPretty(OS, nullptr, Policy);\n";
630       OS << "    OS << \"";
631     }
632 
633     void writeDump(raw_ostream &OS) const override {
634       OS << "    if (!SA->is" << getUpperName() << "Expr())\n";
635       OS << "      dumpType(SA->get" << getUpperName()
636          << "Type()->getType());\n";
637     }
638 
639     void writeDumpChildren(raw_ostream &OS) const override {
640       OS << "    if (SA->is" << getUpperName() << "Expr())\n";
641       OS << "      Visit(SA->get" << getUpperName() << "Expr());\n";
642     }
643 
644     void writeHasChildren(raw_ostream &OS) const override {
645       OS << "SA->is" << getUpperName() << "Expr()";
646     }
647   };
648 
649   class VariadicArgument : public Argument {
650     std::string Type, ArgName, ArgSizeName, RangeName;
651 
652   protected:
653     // Assumed to receive a parameter: raw_ostream OS.
654     virtual void writeValueImpl(raw_ostream &OS) const {
655       OS << "    OS << Val;\n";
656     }
657     // Assumed to receive a parameter: raw_ostream OS.
658     virtual void writeDumpImpl(raw_ostream &OS) const {
659       OS << "      OS << \" \" << Val;\n";
660     }
661 
662   public:
663     VariadicArgument(const Record &Arg, StringRef Attr, std::string T)
664         : Argument(Arg, Attr), Type(std::move(T)),
665           ArgName(getLowerName().str() + "_"), ArgSizeName(ArgName + "Size"),
666           RangeName(std::string(getLowerName())) {}
667 
668     const std::string &getType() const { return Type; }
669     const std::string &getArgName() const { return ArgName; }
670     const std::string &getArgSizeName() const { return ArgSizeName; }
671     bool isVariadic() const override { return true; }
672 
673     void writeAccessors(raw_ostream &OS) const override {
674       std::string IteratorType = getLowerName().str() + "_iterator";
675       std::string BeginFn = getLowerName().str() + "_begin()";
676       std::string EndFn = getLowerName().str() + "_end()";
677 
678       OS << "  typedef " << Type << "* " << IteratorType << ";\n";
679       OS << "  " << IteratorType << " " << BeginFn << " const {"
680          << " return " << ArgName << "; }\n";
681       OS << "  " << IteratorType << " " << EndFn << " const {"
682          << " return " << ArgName << " + " << ArgSizeName << "; }\n";
683       OS << "  unsigned " << getLowerName() << "_size() const {"
684          << " return " << ArgSizeName << "; }\n";
685       OS << "  llvm::iterator_range<" << IteratorType << "> " << RangeName
686          << "() const { return llvm::make_range(" << BeginFn << ", " << EndFn
687          << "); }\n";
688     }
689 
690     void writeCloneArgs(raw_ostream &OS) const override {
691       OS << ArgName << ", " << ArgSizeName;
692     }
693 
694     void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
695       // This isn't elegant, but we have to go through public methods...
696       OS << "A->" << getLowerName() << "_begin(), "
697          << "A->" << getLowerName() << "_size()";
698     }
699 
700     void writeASTVisitorTraversal(raw_ostream &OS) const override {
701       // FIXME: Traverse the elements.
702     }
703 
704     void writeCtorBody(raw_ostream &OS) const override {
705       OS << "  std::copy(" << getUpperName() << ", " << getUpperName() << " + "
706          << ArgSizeName << ", " << ArgName << ");\n";
707     }
708 
709     void writeCtorInitializers(raw_ostream &OS) const override {
710       OS << ArgSizeName << "(" << getUpperName() << "Size), "
711          << ArgName << "(new (Ctx, 16) " << getType() << "["
712          << ArgSizeName << "])";
713     }
714 
715     void writeCtorDefaultInitializers(raw_ostream &OS) const override {
716       OS << ArgSizeName << "(0), " << ArgName << "(nullptr)";
717     }
718 
719     void writeCtorParameters(raw_ostream &OS) const override {
720       OS << getType() << " *" << getUpperName() << ", unsigned "
721          << getUpperName() << "Size";
722     }
723 
724     void writeImplicitCtorArgs(raw_ostream &OS) const override {
725       OS << getUpperName() << ", " << getUpperName() << "Size";
726     }
727 
728     void writeDeclarations(raw_ostream &OS) const override {
729       OS << "  unsigned " << ArgSizeName << ";\n";
730       OS << "  " << getType() << " *" << ArgName << ";";
731     }
732 
733     void writePCHReadDecls(raw_ostream &OS) const override {
734       OS << "    unsigned " << getLowerName() << "Size = Record.readInt();\n";
735       OS << "    SmallVector<" << getType() << ", 4> "
736          << getLowerName() << ";\n";
737       OS << "    " << getLowerName() << ".reserve(" << getLowerName()
738          << "Size);\n";
739 
740       // If we can't store the values in the current type (if it's something
741       // like StringRef), store them in a different type and convert the
742       // container afterwards.
743       std::string StorageType = std::string(getStorageType(getType()));
744       std::string StorageName = std::string(getLowerName());
745       if (StorageType != getType()) {
746         StorageName += "Storage";
747         OS << "    SmallVector<" << StorageType << ", 4> "
748            << StorageName << ";\n";
749         OS << "    " << StorageName << ".reserve(" << getLowerName()
750            << "Size);\n";
751       }
752 
753       OS << "    for (unsigned i = 0; i != " << getLowerName() << "Size; ++i)\n";
754       std::string read = ReadPCHRecord(Type);
755       OS << "      " << StorageName << ".push_back(" << read << ");\n";
756 
757       if (StorageType != getType()) {
758         OS << "    for (unsigned i = 0; i != " << getLowerName() << "Size; ++i)\n";
759         OS << "      " << getLowerName() << ".push_back("
760            << StorageName << "[i]);\n";
761       }
762     }
763 
764     void writePCHReadArgs(raw_ostream &OS) const override {
765       OS << getLowerName() << ".data(), " << getLowerName() << "Size";
766     }
767 
768     void writePCHWrite(raw_ostream &OS) const override {
769       OS << "    Record.push_back(SA->" << getLowerName() << "_size());\n";
770       OS << "    for (auto &Val : SA->" << RangeName << "())\n";
771       OS << "      " << WritePCHRecord(Type, "Val");
772     }
773 
774     void writeValue(raw_ostream &OS) const override {
775       OS << "\";\n";
776       OS << "  for (const auto &Val : " << RangeName << "()) {\n"
777          << "    DelimitAttributeArgument(OS, IsFirstArgument);\n";
778       writeValueImpl(OS);
779       OS << "  }\n";
780       OS << "  OS << \"";
781     }
782 
783     void writeDump(raw_ostream &OS) const override {
784       OS << "    for (const auto &Val : SA->" << RangeName << "())\n";
785       writeDumpImpl(OS);
786     }
787   };
788 
789   class VariadicParamIdxArgument : public VariadicArgument {
790   public:
791     VariadicParamIdxArgument(const Record &Arg, StringRef Attr)
792         : VariadicArgument(Arg, Attr, "ParamIdx") {}
793 
794   public:
795     void writeValueImpl(raw_ostream &OS) const override {
796       OS << "    OS << Val.getSourceIndex();\n";
797     }
798 
799     void writeDumpImpl(raw_ostream &OS) const override {
800       OS << "      OS << \" \" << Val.getSourceIndex();\n";
801     }
802   };
803 
804   struct VariadicParamOrParamIdxArgument : public VariadicArgument {
805     VariadicParamOrParamIdxArgument(const Record &Arg, StringRef Attr)
806         : VariadicArgument(Arg, Attr, "int") {}
807   };
808 
809   // Unique the enums, but maintain the original declaration ordering.
810   std::vector<StringRef>
811   uniqueEnumsInOrder(const std::vector<StringRef> &enums) {
812     std::vector<StringRef> uniques;
813     SmallDenseSet<StringRef, 8> unique_set;
814     for (const auto &i : enums) {
815       if (unique_set.insert(i).second)
816         uniques.push_back(i);
817     }
818     return uniques;
819   }
820 
821   class EnumArgument : public Argument {
822     std::string type;
823     std::vector<StringRef> values, enums, uniques;
824 
825   public:
826     EnumArgument(const Record &Arg, StringRef Attr)
827         : Argument(Arg, Attr), type(std::string(Arg.getValueAsString("Type"))),
828           values(Arg.getValueAsListOfStrings("Values")),
829           enums(Arg.getValueAsListOfStrings("Enums")),
830           uniques(uniqueEnumsInOrder(enums)) {
831       // FIXME: Emit a proper error
832       assert(!uniques.empty());
833     }
834 
835     bool isEnumArg() const override { return true; }
836 
837     void writeAccessors(raw_ostream &OS) const override {
838       OS << "  " << type << " get" << getUpperName() << "() const {\n";
839       OS << "    return " << getLowerName() << ";\n";
840       OS << "  }";
841     }
842 
843     void writeCloneArgs(raw_ostream &OS) const override {
844       OS << getLowerName();
845     }
846 
847     void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
848       OS << "A->get" << getUpperName() << "()";
849     }
850     void writeCtorInitializers(raw_ostream &OS) const override {
851       OS << getLowerName() << "(" << getUpperName() << ")";
852     }
853     void writeCtorDefaultInitializers(raw_ostream &OS) const override {
854       OS << getLowerName() << "(" << type << "(0))";
855     }
856     void writeCtorParameters(raw_ostream &OS) const override {
857       OS << type << " " << getUpperName();
858     }
859     void writeDeclarations(raw_ostream &OS) const override {
860       auto i = uniques.cbegin(), e = uniques.cend();
861       // The last one needs to not have a comma.
862       --e;
863 
864       OS << "public:\n";
865       OS << "  enum " << type << " {\n";
866       for (; i != e; ++i)
867         OS << "    " << *i << ",\n";
868       OS << "    " << *e << "\n";
869       OS << "  };\n";
870       OS << "private:\n";
871       OS << "  " << type << " " << getLowerName() << ";";
872     }
873 
874     void writePCHReadDecls(raw_ostream &OS) const override {
875       OS << "    " << getAttrName() << "Attr::" << type << " " << getLowerName()
876          << "(static_cast<" << getAttrName() << "Attr::" << type
877          << ">(Record.readInt()));\n";
878     }
879 
880     void writePCHReadArgs(raw_ostream &OS) const override {
881       OS << getLowerName();
882     }
883 
884     void writePCHWrite(raw_ostream &OS) const override {
885       OS << "Record.push_back(SA->get" << getUpperName() << "());\n";
886     }
887 
888     void writeValue(raw_ostream &OS) const override {
889       // FIXME: this isn't 100% correct -- some enum arguments require printing
890       // as a string literal, while others require printing as an identifier.
891       // Tablegen currently does not distinguish between the two forms.
892       OS << "\\\"\" << " << getAttrName() << "Attr::Convert" << type << "ToStr(get"
893          << getUpperName() << "()) << \"\\\"";
894     }
895 
896     void writeDump(raw_ostream &OS) const override {
897       OS << "    switch(SA->get" << getUpperName() << "()) {\n";
898       for (const auto &I : uniques) {
899         OS << "    case " << getAttrName() << "Attr::" << I << ":\n";
900         OS << "      OS << \" " << I << "\";\n";
901         OS << "      break;\n";
902       }
903       OS << "    }\n";
904     }
905 
906     void writeConversion(raw_ostream &OS, bool Header) const {
907       if (Header) {
908         OS << "  static bool ConvertStrTo" << type << "(StringRef Val, " << type
909            << " &Out);\n";
910         OS << "  static const char *Convert" << type << "ToStr(" << type
911            << " Val);\n";
912         return;
913       }
914 
915       OS << "bool " << getAttrName() << "Attr::ConvertStrTo" << type
916          << "(StringRef Val, " << type << " &Out) {\n";
917       OS << "  Optional<" << type << "> R = llvm::StringSwitch<Optional<";
918       OS << type << ">>(Val)\n";
919       for (size_t I = 0; I < enums.size(); ++I) {
920         OS << "    .Case(\"" << values[I] << "\", ";
921         OS << getAttrName() << "Attr::" << enums[I] << ")\n";
922       }
923       OS << "    .Default(Optional<" << type << ">());\n";
924       OS << "  if (R) {\n";
925       OS << "    Out = *R;\n      return true;\n    }\n";
926       OS << "  return false;\n";
927       OS << "}\n\n";
928 
929       // Mapping from enumeration values back to enumeration strings isn't
930       // trivial because some enumeration values have multiple named
931       // enumerators, such as type_visibility(internal) and
932       // type_visibility(hidden) both mapping to TypeVisibilityAttr::Hidden.
933       OS << "const char *" << getAttrName() << "Attr::Convert" << type
934          << "ToStr(" << type << " Val) {\n"
935          << "  switch(Val) {\n";
936       SmallDenseSet<StringRef, 8> Uniques;
937       for (size_t I = 0; I < enums.size(); ++I) {
938         if (Uniques.insert(enums[I]).second)
939           OS << "  case " << getAttrName() << "Attr::" << enums[I]
940              << ": return \"" << values[I] << "\";\n";
941       }
942       OS << "  }\n"
943          << "  llvm_unreachable(\"No enumerator with that value\");\n"
944          << "}\n";
945     }
946   };
947 
948   class VariadicEnumArgument: public VariadicArgument {
949     std::string type, QualifiedTypeName;
950     std::vector<StringRef> values, enums, uniques;
951 
952   protected:
953     void writeValueImpl(raw_ostream &OS) const override {
954       // FIXME: this isn't 100% correct -- some enum arguments require printing
955       // as a string literal, while others require printing as an identifier.
956       // Tablegen currently does not distinguish between the two forms.
957       OS << "    OS << \"\\\"\" << " << getAttrName() << "Attr::Convert" << type
958          << "ToStr(Val)" << "<< \"\\\"\";\n";
959     }
960 
961   public:
962     VariadicEnumArgument(const Record &Arg, StringRef Attr)
963         : VariadicArgument(Arg, Attr,
964                            std::string(Arg.getValueAsString("Type"))),
965           type(std::string(Arg.getValueAsString("Type"))),
966           values(Arg.getValueAsListOfStrings("Values")),
967           enums(Arg.getValueAsListOfStrings("Enums")),
968           uniques(uniqueEnumsInOrder(enums)) {
969       QualifiedTypeName = getAttrName().str() + "Attr::" + type;
970 
971       // FIXME: Emit a proper error
972       assert(!uniques.empty());
973     }
974 
975     bool isVariadicEnumArg() const override { return true; }
976 
977     void writeDeclarations(raw_ostream &OS) const override {
978       auto i = uniques.cbegin(), e = uniques.cend();
979       // The last one needs to not have a comma.
980       --e;
981 
982       OS << "public:\n";
983       OS << "  enum " << type << " {\n";
984       for (; i != e; ++i)
985         OS << "    " << *i << ",\n";
986       OS << "    " << *e << "\n";
987       OS << "  };\n";
988       OS << "private:\n";
989 
990       VariadicArgument::writeDeclarations(OS);
991     }
992 
993     void writeDump(raw_ostream &OS) const override {
994       OS << "    for (" << getAttrName() << "Attr::" << getLowerName()
995          << "_iterator I = SA->" << getLowerName() << "_begin(), E = SA->"
996          << getLowerName() << "_end(); I != E; ++I) {\n";
997       OS << "      switch(*I) {\n";
998       for (const auto &UI : uniques) {
999         OS << "    case " << getAttrName() << "Attr::" << UI << ":\n";
1000         OS << "      OS << \" " << UI << "\";\n";
1001         OS << "      break;\n";
1002       }
1003       OS << "      }\n";
1004       OS << "    }\n";
1005     }
1006 
1007     void writePCHReadDecls(raw_ostream &OS) const override {
1008       OS << "    unsigned " << getLowerName() << "Size = Record.readInt();\n";
1009       OS << "    SmallVector<" << QualifiedTypeName << ", 4> " << getLowerName()
1010          << ";\n";
1011       OS << "    " << getLowerName() << ".reserve(" << getLowerName()
1012          << "Size);\n";
1013       OS << "    for (unsigned i = " << getLowerName() << "Size; i; --i)\n";
1014       OS << "      " << getLowerName() << ".push_back(" << "static_cast<"
1015          << QualifiedTypeName << ">(Record.readInt()));\n";
1016     }
1017 
1018     void writePCHWrite(raw_ostream &OS) const override {
1019       OS << "    Record.push_back(SA->" << getLowerName() << "_size());\n";
1020       OS << "    for (" << getAttrName() << "Attr::" << getLowerName()
1021          << "_iterator i = SA->" << getLowerName() << "_begin(), e = SA->"
1022          << getLowerName() << "_end(); i != e; ++i)\n";
1023       OS << "      " << WritePCHRecord(QualifiedTypeName, "(*i)");
1024     }
1025 
1026     void writeConversion(raw_ostream &OS, bool Header) const {
1027       if (Header) {
1028         OS << "  static bool ConvertStrTo" << type << "(StringRef Val, " << type
1029            << " &Out);\n";
1030         OS << "  static const char *Convert" << type << "ToStr(" << type
1031            << " Val);\n";
1032         return;
1033       }
1034 
1035       OS << "bool " << getAttrName() << "Attr::ConvertStrTo" << type
1036          << "(StringRef Val, ";
1037       OS << type << " &Out) {\n";
1038       OS << "  Optional<" << type << "> R = llvm::StringSwitch<Optional<";
1039       OS << type << ">>(Val)\n";
1040       for (size_t I = 0; I < enums.size(); ++I) {
1041         OS << "    .Case(\"" << values[I] << "\", ";
1042         OS << getAttrName() << "Attr::" << enums[I] << ")\n";
1043       }
1044       OS << "    .Default(Optional<" << type << ">());\n";
1045       OS << "  if (R) {\n";
1046       OS << "    Out = *R;\n      return true;\n    }\n";
1047       OS << "  return false;\n";
1048       OS << "}\n\n";
1049 
1050       OS << "const char *" << getAttrName() << "Attr::Convert" << type
1051          << "ToStr(" << type << " Val) {\n"
1052          << "  switch(Val) {\n";
1053       SmallDenseSet<StringRef, 8> Uniques;
1054       for (size_t I = 0; I < enums.size(); ++I) {
1055         if (Uniques.insert(enums[I]).second)
1056           OS << "  case " << getAttrName() << "Attr::" << enums[I]
1057              << ": return \"" << values[I] << "\";\n";
1058       }
1059       OS << "  }\n"
1060          << "  llvm_unreachable(\"No enumerator with that value\");\n"
1061          << "}\n";
1062     }
1063   };
1064 
1065   class VersionArgument : public Argument {
1066   public:
1067     VersionArgument(const Record &Arg, StringRef Attr)
1068       : Argument(Arg, Attr)
1069     {}
1070 
1071     void writeAccessors(raw_ostream &OS) const override {
1072       OS << "  VersionTuple get" << getUpperName() << "() const {\n";
1073       OS << "    return " << getLowerName() << ";\n";
1074       OS << "  }\n";
1075       OS << "  void set" << getUpperName()
1076          << "(ASTContext &C, VersionTuple V) {\n";
1077       OS << "    " << getLowerName() << " = V;\n";
1078       OS << "  }";
1079     }
1080 
1081     void writeCloneArgs(raw_ostream &OS) const override {
1082       OS << "get" << getUpperName() << "()";
1083     }
1084 
1085     void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
1086       OS << "A->get" << getUpperName() << "()";
1087     }
1088 
1089     void writeCtorInitializers(raw_ostream &OS) const override {
1090       OS << getLowerName() << "(" << getUpperName() << ")";
1091     }
1092 
1093     void writeCtorDefaultInitializers(raw_ostream &OS) const override {
1094       OS << getLowerName() << "()";
1095     }
1096 
1097     void writeCtorParameters(raw_ostream &OS) const override {
1098       OS << "VersionTuple " << getUpperName();
1099     }
1100 
1101     void writeDeclarations(raw_ostream &OS) const override {
1102       OS << "VersionTuple " << getLowerName() << ";\n";
1103     }
1104 
1105     void writePCHReadDecls(raw_ostream &OS) const override {
1106       OS << "    VersionTuple " << getLowerName()
1107          << "= Record.readVersionTuple();\n";
1108     }
1109 
1110     void writePCHReadArgs(raw_ostream &OS) const override {
1111       OS << getLowerName();
1112     }
1113 
1114     void writePCHWrite(raw_ostream &OS) const override {
1115       OS << "    Record.AddVersionTuple(SA->get" << getUpperName() << "());\n";
1116     }
1117 
1118     void writeValue(raw_ostream &OS) const override {
1119       OS << getLowerName() << "=\" << get" << getUpperName() << "() << \"";
1120     }
1121 
1122     void writeDump(raw_ostream &OS) const override {
1123       OS << "    OS << \" \" << SA->get" << getUpperName() << "();\n";
1124     }
1125   };
1126 
1127   class ExprArgument : public SimpleArgument {
1128   public:
1129     ExprArgument(const Record &Arg, StringRef Attr)
1130       : SimpleArgument(Arg, Attr, "Expr *")
1131     {}
1132 
1133     void writeASTVisitorTraversal(raw_ostream &OS) const override {
1134       OS << "  if (!"
1135          << "getDerived().TraverseStmt(A->get" << getUpperName() << "()))\n";
1136       OS << "    return false;\n";
1137     }
1138 
1139     void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
1140       OS << "tempInst" << getUpperName();
1141     }
1142 
1143     void writeTemplateInstantiation(raw_ostream &OS) const override {
1144       OS << "      " << getType() << " tempInst" << getUpperName() << ";\n";
1145       OS << "      {\n";
1146       OS << "        EnterExpressionEvaluationContext "
1147          << "Unevaluated(S, Sema::ExpressionEvaluationContext::Unevaluated);\n";
1148       OS << "        ExprResult " << "Result = S.SubstExpr("
1149          << "A->get" << getUpperName() << "(), TemplateArgs);\n";
1150       OS << "        if (Result.isInvalid())\n";
1151       OS << "          return nullptr;\n";
1152       OS << "        tempInst" << getUpperName() << " = Result.get();\n";
1153       OS << "      }\n";
1154     }
1155 
1156     void writeDump(raw_ostream &OS) const override {}
1157 
1158     void writeDumpChildren(raw_ostream &OS) const override {
1159       OS << "    Visit(SA->get" << getUpperName() << "());\n";
1160     }
1161 
1162     void writeHasChildren(raw_ostream &OS) const override { OS << "true"; }
1163   };
1164 
1165   class VariadicExprArgument : public VariadicArgument {
1166   public:
1167     VariadicExprArgument(const Record &Arg, StringRef Attr)
1168       : VariadicArgument(Arg, Attr, "Expr *")
1169     {}
1170 
1171     void writeASTVisitorTraversal(raw_ostream &OS) const override {
1172       OS << "  {\n";
1173       OS << "    " << getType() << " *I = A->" << getLowerName()
1174          << "_begin();\n";
1175       OS << "    " << getType() << " *E = A->" << getLowerName()
1176          << "_end();\n";
1177       OS << "    for (; I != E; ++I) {\n";
1178       OS << "      if (!getDerived().TraverseStmt(*I))\n";
1179       OS << "        return false;\n";
1180       OS << "    }\n";
1181       OS << "  }\n";
1182     }
1183 
1184     void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
1185       OS << "tempInst" << getUpperName() << ", "
1186          << "A->" << getLowerName() << "_size()";
1187     }
1188 
1189     void writeTemplateInstantiation(raw_ostream &OS) const override {
1190       OS << "      auto *tempInst" << getUpperName()
1191          << " = new (C, 16) " << getType()
1192          << "[A->" << getLowerName() << "_size()];\n";
1193       OS << "      {\n";
1194       OS << "        EnterExpressionEvaluationContext "
1195          << "Unevaluated(S, Sema::ExpressionEvaluationContext::Unevaluated);\n";
1196       OS << "        " << getType() << " *TI = tempInst" << getUpperName()
1197          << ";\n";
1198       OS << "        " << getType() << " *I = A->" << getLowerName()
1199          << "_begin();\n";
1200       OS << "        " << getType() << " *E = A->" << getLowerName()
1201          << "_end();\n";
1202       OS << "        for (; I != E; ++I, ++TI) {\n";
1203       OS << "          ExprResult Result = S.SubstExpr(*I, TemplateArgs);\n";
1204       OS << "          if (Result.isInvalid())\n";
1205       OS << "            return nullptr;\n";
1206       OS << "          *TI = Result.get();\n";
1207       OS << "        }\n";
1208       OS << "      }\n";
1209     }
1210 
1211     void writeDump(raw_ostream &OS) const override {}
1212 
1213     void writeDumpChildren(raw_ostream &OS) const override {
1214       OS << "    for (" << getAttrName() << "Attr::" << getLowerName()
1215          << "_iterator I = SA->" << getLowerName() << "_begin(), E = SA->"
1216          << getLowerName() << "_end(); I != E; ++I)\n";
1217       OS << "      Visit(*I);\n";
1218     }
1219 
1220     void writeHasChildren(raw_ostream &OS) const override {
1221       OS << "SA->" << getLowerName() << "_begin() != "
1222          << "SA->" << getLowerName() << "_end()";
1223     }
1224   };
1225 
1226   class VariadicIdentifierArgument : public VariadicArgument {
1227   public:
1228     VariadicIdentifierArgument(const Record &Arg, StringRef Attr)
1229       : VariadicArgument(Arg, Attr, "IdentifierInfo *")
1230     {}
1231   };
1232 
1233   class VariadicStringArgument : public VariadicArgument {
1234   public:
1235     VariadicStringArgument(const Record &Arg, StringRef Attr)
1236       : VariadicArgument(Arg, Attr, "StringRef")
1237     {}
1238 
1239     void writeCtorBody(raw_ostream &OS) const override {
1240       OS << "  for (size_t I = 0, E = " << getArgSizeName() << "; I != E;\n"
1241             "       ++I) {\n"
1242             "    StringRef Ref = " << getUpperName() << "[I];\n"
1243             "    if (!Ref.empty()) {\n"
1244             "      char *Mem = new (Ctx, 1) char[Ref.size()];\n"
1245             "      std::memcpy(Mem, Ref.data(), Ref.size());\n"
1246             "      " << getArgName() << "[I] = StringRef(Mem, Ref.size());\n"
1247             "    }\n"
1248             "  }\n";
1249     }
1250 
1251     void writeValueImpl(raw_ostream &OS) const override {
1252       OS << "    OS << \"\\\"\" << Val << \"\\\"\";\n";
1253     }
1254   };
1255 
1256   class TypeArgument : public SimpleArgument {
1257   public:
1258     TypeArgument(const Record &Arg, StringRef Attr)
1259       : SimpleArgument(Arg, Attr, "TypeSourceInfo *")
1260     {}
1261 
1262     void writeAccessors(raw_ostream &OS) const override {
1263       OS << "  QualType get" << getUpperName() << "() const {\n";
1264       OS << "    return " << getLowerName() << "->getType();\n";
1265       OS << "  }";
1266       OS << "  " << getType() << " get" << getUpperName() << "Loc() const {\n";
1267       OS << "    return " << getLowerName() << ";\n";
1268       OS << "  }";
1269     }
1270 
1271     void writeASTVisitorTraversal(raw_ostream &OS) const override {
1272       OS << "  if (auto *TSI = A->get" << getUpperName() << "Loc())\n";
1273       OS << "    if (!getDerived().TraverseTypeLoc(TSI->getTypeLoc()))\n";
1274       OS << "      return false;\n";
1275     }
1276 
1277     void writeTemplateInstantiation(raw_ostream &OS) const override {
1278       OS << "      " << getType() << " tempInst" << getUpperName() << " =\n";
1279       OS << "        S.SubstType(A->get" << getUpperName() << "Loc(), "
1280          << "TemplateArgs, A->getLoc(), A->getAttrName());\n";
1281       OS << "      if (!tempInst" << getUpperName() << ")\n";
1282       OS << "        return nullptr;\n";
1283     }
1284 
1285     void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
1286       OS << "tempInst" << getUpperName();
1287     }
1288 
1289     void writePCHWrite(raw_ostream &OS) const override {
1290       OS << "    "
1291          << WritePCHRecord(getType(),
1292                            "SA->get" + std::string(getUpperName()) + "Loc()");
1293     }
1294   };
1295 
1296 } // end anonymous namespace
1297 
1298 static std::unique_ptr<Argument>
1299 createArgument(const Record &Arg, StringRef Attr,
1300                const Record *Search = nullptr) {
1301   if (!Search)
1302     Search = &Arg;
1303 
1304   std::unique_ptr<Argument> Ptr;
1305   llvm::StringRef ArgName = Search->getName();
1306 
1307   if (ArgName == "AlignedArgument")
1308     Ptr = std::make_unique<AlignedArgument>(Arg, Attr);
1309   else if (ArgName == "EnumArgument")
1310     Ptr = std::make_unique<EnumArgument>(Arg, Attr);
1311   else if (ArgName == "ExprArgument")
1312     Ptr = std::make_unique<ExprArgument>(Arg, Attr);
1313   else if (ArgName == "DeclArgument")
1314     Ptr = std::make_unique<SimpleArgument>(
1315         Arg, Attr, (Arg.getValueAsDef("Kind")->getName() + "Decl *").str());
1316   else if (ArgName == "IdentifierArgument")
1317     Ptr = std::make_unique<SimpleArgument>(Arg, Attr, "IdentifierInfo *");
1318   else if (ArgName == "DefaultBoolArgument")
1319     Ptr = std::make_unique<DefaultSimpleArgument>(
1320         Arg, Attr, "bool", Arg.getValueAsBit("Default"));
1321   else if (ArgName == "BoolArgument")
1322     Ptr = std::make_unique<SimpleArgument>(Arg, Attr, "bool");
1323   else if (ArgName == "DefaultIntArgument")
1324     Ptr = std::make_unique<DefaultSimpleArgument>(
1325         Arg, Attr, "int", Arg.getValueAsInt("Default"));
1326   else if (ArgName == "IntArgument")
1327     Ptr = std::make_unique<SimpleArgument>(Arg, Attr, "int");
1328   else if (ArgName == "StringArgument")
1329     Ptr = std::make_unique<StringArgument>(Arg, Attr);
1330   else if (ArgName == "TypeArgument")
1331     Ptr = std::make_unique<TypeArgument>(Arg, Attr);
1332   else if (ArgName == "UnsignedArgument")
1333     Ptr = std::make_unique<SimpleArgument>(Arg, Attr, "unsigned");
1334   else if (ArgName == "VariadicUnsignedArgument")
1335     Ptr = std::make_unique<VariadicArgument>(Arg, Attr, "unsigned");
1336   else if (ArgName == "VariadicStringArgument")
1337     Ptr = std::make_unique<VariadicStringArgument>(Arg, Attr);
1338   else if (ArgName == "VariadicEnumArgument")
1339     Ptr = std::make_unique<VariadicEnumArgument>(Arg, Attr);
1340   else if (ArgName == "VariadicExprArgument")
1341     Ptr = std::make_unique<VariadicExprArgument>(Arg, Attr);
1342   else if (ArgName == "VariadicParamIdxArgument")
1343     Ptr = std::make_unique<VariadicParamIdxArgument>(Arg, Attr);
1344   else if (ArgName == "VariadicParamOrParamIdxArgument")
1345     Ptr = std::make_unique<VariadicParamOrParamIdxArgument>(Arg, Attr);
1346   else if (ArgName == "ParamIdxArgument")
1347     Ptr = std::make_unique<SimpleArgument>(Arg, Attr, "ParamIdx");
1348   else if (ArgName == "VariadicIdentifierArgument")
1349     Ptr = std::make_unique<VariadicIdentifierArgument>(Arg, Attr);
1350   else if (ArgName == "VersionArgument")
1351     Ptr = std::make_unique<VersionArgument>(Arg, Attr);
1352   else if (ArgName == "OMPTraitInfoArgument")
1353     Ptr = std::make_unique<SimpleArgument>(Arg, Attr, "OMPTraitInfo *");
1354 
1355   if (!Ptr) {
1356     // Search in reverse order so that the most-derived type is handled first.
1357     ArrayRef<std::pair<Record*, SMRange>> Bases = Search->getSuperClasses();
1358     for (const auto &Base : llvm::reverse(Bases)) {
1359       if ((Ptr = createArgument(Arg, Attr, Base.first)))
1360         break;
1361     }
1362   }
1363 
1364   if (Ptr && Arg.getValueAsBit("Optional"))
1365     Ptr->setOptional(true);
1366 
1367   if (Ptr && Arg.getValueAsBit("Fake"))
1368     Ptr->setFake(true);
1369 
1370   return Ptr;
1371 }
1372 
1373 static void writeAvailabilityValue(raw_ostream &OS) {
1374   OS << "\" << getPlatform()->getName();\n"
1375      << "  if (getStrict()) OS << \", strict\";\n"
1376      << "  if (!getIntroduced().empty()) OS << \", introduced=\" << getIntroduced();\n"
1377      << "  if (!getDeprecated().empty()) OS << \", deprecated=\" << getDeprecated();\n"
1378      << "  if (!getObsoleted().empty()) OS << \", obsoleted=\" << getObsoleted();\n"
1379      << "  if (getUnavailable()) OS << \", unavailable\";\n"
1380      << "  OS << \"";
1381 }
1382 
1383 static void writeDeprecatedAttrValue(raw_ostream &OS, std::string &Variety) {
1384   OS << "\\\"\" << getMessage() << \"\\\"\";\n";
1385   // Only GNU deprecated has an optional fixit argument at the second position.
1386   if (Variety == "GNU")
1387      OS << "    if (!getReplacement().empty()) OS << \", \\\"\""
1388            " << getReplacement() << \"\\\"\";\n";
1389   OS << "    OS << \"";
1390 }
1391 
1392 static void writeGetSpellingFunction(const Record &R, raw_ostream &OS) {
1393   std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R);
1394 
1395   OS << "const char *" << R.getName() << "Attr::getSpelling() const {\n";
1396   if (Spellings.empty()) {
1397     OS << "  return \"(No spelling)\";\n}\n\n";
1398     return;
1399   }
1400 
1401   OS << "  switch (getAttributeSpellingListIndex()) {\n"
1402         "  default:\n"
1403         "    llvm_unreachable(\"Unknown attribute spelling!\");\n"
1404         "    return \"(No spelling)\";\n";
1405 
1406   for (unsigned I = 0; I < Spellings.size(); ++I)
1407     OS << "  case " << I << ":\n"
1408           "    return \"" << Spellings[I].name() << "\";\n";
1409   // End of the switch statement.
1410   OS << "  }\n";
1411   // End of the getSpelling function.
1412   OS << "}\n\n";
1413 }
1414 
1415 static void
1416 writePrettyPrintFunction(const Record &R,
1417                          const std::vector<std::unique_ptr<Argument>> &Args,
1418                          raw_ostream &OS) {
1419   std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R);
1420 
1421   OS << "void " << R.getName() << "Attr::printPretty("
1422     << "raw_ostream &OS, const PrintingPolicy &Policy) const {\n";
1423 
1424   if (Spellings.empty()) {
1425     OS << "}\n\n";
1426     return;
1427   }
1428 
1429   OS << "  bool IsFirstArgument = true; (void)IsFirstArgument;\n"
1430      << "  unsigned TrailingOmittedArgs = 0; (void)TrailingOmittedArgs;\n"
1431      << "  switch (getAttributeSpellingListIndex()) {\n"
1432      << "  default:\n"
1433      << "    llvm_unreachable(\"Unknown attribute spelling!\");\n"
1434      << "    break;\n";
1435 
1436   for (unsigned I = 0; I < Spellings.size(); ++ I) {
1437     llvm::SmallString<16> Prefix;
1438     llvm::SmallString<8> Suffix;
1439     // The actual spelling of the name and namespace (if applicable)
1440     // of an attribute without considering prefix and suffix.
1441     llvm::SmallString<64> Spelling;
1442     std::string Name = Spellings[I].name();
1443     std::string Variety = Spellings[I].variety();
1444 
1445     if (Variety == "GNU") {
1446       Prefix = " __attribute__((";
1447       Suffix = "))";
1448     } else if (Variety == "CXX11" || Variety == "C2x") {
1449       Prefix = " [[";
1450       Suffix = "]]";
1451       std::string Namespace = Spellings[I].nameSpace();
1452       if (!Namespace.empty()) {
1453         Spelling += Namespace;
1454         Spelling += "::";
1455       }
1456     } else if (Variety == "Declspec") {
1457       Prefix = " __declspec(";
1458       Suffix = ")";
1459     } else if (Variety == "Microsoft") {
1460       Prefix = "[";
1461       Suffix = "]";
1462     } else if (Variety == "Keyword") {
1463       Prefix = " ";
1464       Suffix = "";
1465     } else if (Variety == "Pragma") {
1466       Prefix = "#pragma ";
1467       Suffix = "\n";
1468       std::string Namespace = Spellings[I].nameSpace();
1469       if (!Namespace.empty()) {
1470         Spelling += Namespace;
1471         Spelling += " ";
1472       }
1473     } else {
1474       llvm_unreachable("Unknown attribute syntax variety!");
1475     }
1476 
1477     Spelling += Name;
1478 
1479     OS << "  case " << I << " : {\n"
1480        << "    OS << \"" << Prefix << Spelling << "\";\n";
1481 
1482     if (Variety == "Pragma") {
1483       OS << "    printPrettyPragma(OS, Policy);\n";
1484       OS << "    OS << \"\\n\";";
1485       OS << "    break;\n";
1486       OS << "  }\n";
1487       continue;
1488     }
1489 
1490     if (Spelling == "availability") {
1491       OS << "    OS << \"(";
1492       writeAvailabilityValue(OS);
1493       OS << ")\";\n";
1494     } else if (Spelling == "deprecated" || Spelling == "gnu::deprecated") {
1495       OS << "    OS << \"(";
1496       writeDeprecatedAttrValue(OS, Variety);
1497       OS << ")\";\n";
1498     } else {
1499       // To avoid printing parentheses around an empty argument list or
1500       // printing spurious commas at the end of an argument list, we need to
1501       // determine where the last provided non-fake argument is.
1502       unsigned NonFakeArgs = 0;
1503       bool FoundNonOptArg = false;
1504       for (const auto &arg : llvm::reverse(Args)) {
1505         if (arg->isFake())
1506           continue;
1507         ++NonFakeArgs;
1508         if (FoundNonOptArg)
1509           continue;
1510         // FIXME: arg->getIsOmitted() == "false" means we haven't implemented
1511         // any way to detect whether the argument was omitted.
1512         if (!arg->isOptional() || arg->getIsOmitted() == "false") {
1513           FoundNonOptArg = true;
1514           continue;
1515         }
1516         OS << "    if (" << arg->getIsOmitted() << ")\n"
1517            << "      ++TrailingOmittedArgs;\n";
1518       }
1519       unsigned ArgIndex = 0;
1520       for (const auto &arg : Args) {
1521         if (arg->isFake())
1522           continue;
1523         std::string IsOmitted = arg->getIsOmitted();
1524         if (arg->isOptional() && IsOmitted != "false")
1525           OS << "    if (!(" << IsOmitted << ")) {\n";
1526         // Variadic arguments print their own leading comma.
1527         if (!arg->isVariadic())
1528           OS << "    DelimitAttributeArgument(OS, IsFirstArgument);\n";
1529         OS << "    OS << \"";
1530         arg->writeValue(OS);
1531         OS << "\";\n";
1532         if (arg->isOptional() && IsOmitted != "false")
1533           OS << "    }\n";
1534         ++ArgIndex;
1535       }
1536       if (ArgIndex != 0)
1537         OS << "    if (!IsFirstArgument)\n"
1538            << "      OS << \")\";\n";
1539     }
1540     OS << "    OS << \"" << Suffix << "\";\n"
1541        << "    break;\n"
1542        << "  }\n";
1543   }
1544 
1545   // End of the switch statement.
1546   OS << "}\n";
1547   // End of the print function.
1548   OS << "}\n\n";
1549 }
1550 
1551 /// Return the index of a spelling in a spelling list.
1552 static unsigned
1553 getSpellingListIndex(const std::vector<FlattenedSpelling> &SpellingList,
1554                      const FlattenedSpelling &Spelling) {
1555   assert(!SpellingList.empty() && "Spelling list is empty!");
1556 
1557   for (unsigned Index = 0; Index < SpellingList.size(); ++Index) {
1558     const FlattenedSpelling &S = SpellingList[Index];
1559     if (S.variety() != Spelling.variety())
1560       continue;
1561     if (S.nameSpace() != Spelling.nameSpace())
1562       continue;
1563     if (S.name() != Spelling.name())
1564       continue;
1565 
1566     return Index;
1567   }
1568 
1569   llvm_unreachable("Unknown spelling!");
1570 }
1571 
1572 static void writeAttrAccessorDefinition(const Record &R, raw_ostream &OS) {
1573   std::vector<Record*> Accessors = R.getValueAsListOfDefs("Accessors");
1574   if (Accessors.empty())
1575     return;
1576 
1577   const std::vector<FlattenedSpelling> SpellingList = GetFlattenedSpellings(R);
1578   assert(!SpellingList.empty() &&
1579          "Attribute with empty spelling list can't have accessors!");
1580   for (const auto *Accessor : Accessors) {
1581     const StringRef Name = Accessor->getValueAsString("Name");
1582     std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*Accessor);
1583 
1584     OS << "  bool " << Name
1585        << "() const { return getAttributeSpellingListIndex() == ";
1586     for (unsigned Index = 0; Index < Spellings.size(); ++Index) {
1587       OS << getSpellingListIndex(SpellingList, Spellings[Index]);
1588       if (Index != Spellings.size() - 1)
1589         OS << " ||\n    getAttributeSpellingListIndex() == ";
1590       else
1591         OS << "; }\n";
1592     }
1593   }
1594 }
1595 
1596 static bool
1597 SpellingNamesAreCommon(const std::vector<FlattenedSpelling>& Spellings) {
1598   assert(!Spellings.empty() && "An empty list of spellings was provided");
1599   std::string FirstName =
1600       std::string(NormalizeNameForSpellingComparison(Spellings.front().name()));
1601   for (const auto &Spelling :
1602        llvm::make_range(std::next(Spellings.begin()), Spellings.end())) {
1603     std::string Name =
1604         std::string(NormalizeNameForSpellingComparison(Spelling.name()));
1605     if (Name != FirstName)
1606       return false;
1607   }
1608   return true;
1609 }
1610 
1611 typedef std::map<unsigned, std::string> SemanticSpellingMap;
1612 static std::string
1613 CreateSemanticSpellings(const std::vector<FlattenedSpelling> &Spellings,
1614                         SemanticSpellingMap &Map) {
1615   // The enumerants are automatically generated based on the variety,
1616   // namespace (if present) and name for each attribute spelling. However,
1617   // care is taken to avoid trampling on the reserved namespace due to
1618   // underscores.
1619   std::string Ret("  enum Spelling {\n");
1620   std::set<std::string> Uniques;
1621   unsigned Idx = 0;
1622 
1623   // If we have a need to have this many spellings we likely need to add an
1624   // extra bit to the SpellingIndex in AttributeCommonInfo, then increase the
1625   // value of SpellingNotCalculated there and here.
1626   assert(Spellings.size() < 15 &&
1627          "Too many spellings, would step on SpellingNotCalculated in "
1628          "AttributeCommonInfo");
1629   for (auto I = Spellings.begin(), E = Spellings.end(); I != E; ++I, ++Idx) {
1630     const FlattenedSpelling &S = *I;
1631     const std::string &Variety = S.variety();
1632     const std::string &Spelling = S.name();
1633     const std::string &Namespace = S.nameSpace();
1634     std::string EnumName;
1635 
1636     EnumName += (Variety + "_");
1637     if (!Namespace.empty())
1638       EnumName += (NormalizeNameForSpellingComparison(Namespace).str() +
1639       "_");
1640     EnumName += NormalizeNameForSpellingComparison(Spelling);
1641 
1642     // Even if the name is not unique, this spelling index corresponds to a
1643     // particular enumerant name that we've calculated.
1644     Map[Idx] = EnumName;
1645 
1646     // Since we have been stripping underscores to avoid trampling on the
1647     // reserved namespace, we may have inadvertently created duplicate
1648     // enumerant names. These duplicates are not considered part of the
1649     // semantic spelling, and can be elided.
1650     if (Uniques.find(EnumName) != Uniques.end())
1651       continue;
1652 
1653     Uniques.insert(EnumName);
1654     if (I != Spellings.begin())
1655       Ret += ",\n";
1656     // Duplicate spellings are not considered part of the semantic spelling
1657     // enumeration, but the spelling index and semantic spelling values are
1658     // meant to be equivalent, so we must specify a concrete value for each
1659     // enumerator.
1660     Ret += "    " + EnumName + " = " + llvm::utostr(Idx);
1661   }
1662   Ret += ",\n  SpellingNotCalculated = 15\n";
1663   Ret += "\n  };\n\n";
1664   return Ret;
1665 }
1666 
1667 void WriteSemanticSpellingSwitch(const std::string &VarName,
1668                                  const SemanticSpellingMap &Map,
1669                                  raw_ostream &OS) {
1670   OS << "  switch (" << VarName << ") {\n    default: "
1671     << "llvm_unreachable(\"Unknown spelling list index\");\n";
1672   for (const auto &I : Map)
1673     OS << "    case " << I.first << ": return " << I.second << ";\n";
1674   OS << "  }\n";
1675 }
1676 
1677 // Emits the LateParsed property for attributes.
1678 static void emitClangAttrLateParsedList(RecordKeeper &Records, raw_ostream &OS) {
1679   OS << "#if defined(CLANG_ATTR_LATE_PARSED_LIST)\n";
1680   std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr");
1681 
1682   for (const auto *Attr : Attrs) {
1683     bool LateParsed = Attr->getValueAsBit("LateParsed");
1684 
1685     if (LateParsed) {
1686       std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*Attr);
1687 
1688       // FIXME: Handle non-GNU attributes
1689       for (const auto &I : Spellings) {
1690         if (I.variety() != "GNU")
1691           continue;
1692         OS << ".Case(\"" << I.name() << "\", " << LateParsed << ")\n";
1693       }
1694     }
1695   }
1696   OS << "#endif // CLANG_ATTR_LATE_PARSED_LIST\n\n";
1697 }
1698 
1699 static bool hasGNUorCXX11Spelling(const Record &Attribute) {
1700   std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attribute);
1701   for (const auto &I : Spellings) {
1702     if (I.variety() == "GNU" || I.variety() == "CXX11")
1703       return true;
1704   }
1705   return false;
1706 }
1707 
1708 namespace {
1709 
1710 struct AttributeSubjectMatchRule {
1711   const Record *MetaSubject;
1712   const Record *Constraint;
1713 
1714   AttributeSubjectMatchRule(const Record *MetaSubject, const Record *Constraint)
1715       : MetaSubject(MetaSubject), Constraint(Constraint) {
1716     assert(MetaSubject && "Missing subject");
1717   }
1718 
1719   bool isSubRule() const { return Constraint != nullptr; }
1720 
1721   std::vector<Record *> getSubjects() const {
1722     return (Constraint ? Constraint : MetaSubject)
1723         ->getValueAsListOfDefs("Subjects");
1724   }
1725 
1726   std::vector<Record *> getLangOpts() const {
1727     if (Constraint) {
1728       // Lookup the options in the sub-rule first, in case the sub-rule
1729       // overrides the rules options.
1730       std::vector<Record *> Opts = Constraint->getValueAsListOfDefs("LangOpts");
1731       if (!Opts.empty())
1732         return Opts;
1733     }
1734     return MetaSubject->getValueAsListOfDefs("LangOpts");
1735   }
1736 
1737   // Abstract rules are used only for sub-rules
1738   bool isAbstractRule() const { return getSubjects().empty(); }
1739 
1740   StringRef getName() const {
1741     return (Constraint ? Constraint : MetaSubject)->getValueAsString("Name");
1742   }
1743 
1744   bool isNegatedSubRule() const {
1745     assert(isSubRule() && "Not a sub-rule");
1746     return Constraint->getValueAsBit("Negated");
1747   }
1748 
1749   std::string getSpelling() const {
1750     std::string Result = std::string(MetaSubject->getValueAsString("Name"));
1751     if (isSubRule()) {
1752       Result += '(';
1753       if (isNegatedSubRule())
1754         Result += "unless(";
1755       Result += getName();
1756       if (isNegatedSubRule())
1757         Result += ')';
1758       Result += ')';
1759     }
1760     return Result;
1761   }
1762 
1763   std::string getEnumValueName() const {
1764     SmallString<128> Result;
1765     Result += "SubjectMatchRule_";
1766     Result += MetaSubject->getValueAsString("Name");
1767     if (isSubRule()) {
1768       Result += "_";
1769       if (isNegatedSubRule())
1770         Result += "not_";
1771       Result += Constraint->getValueAsString("Name");
1772     }
1773     if (isAbstractRule())
1774       Result += "_abstract";
1775     return std::string(Result.str());
1776   }
1777 
1778   std::string getEnumValue() const { return "attr::" + getEnumValueName(); }
1779 
1780   static const char *EnumName;
1781 };
1782 
1783 const char *AttributeSubjectMatchRule::EnumName = "attr::SubjectMatchRule";
1784 
1785 struct PragmaClangAttributeSupport {
1786   std::vector<AttributeSubjectMatchRule> Rules;
1787 
1788   class RuleOrAggregateRuleSet {
1789     std::vector<AttributeSubjectMatchRule> Rules;
1790     bool IsRule;
1791     RuleOrAggregateRuleSet(ArrayRef<AttributeSubjectMatchRule> Rules,
1792                            bool IsRule)
1793         : Rules(Rules), IsRule(IsRule) {}
1794 
1795   public:
1796     bool isRule() const { return IsRule; }
1797 
1798     const AttributeSubjectMatchRule &getRule() const {
1799       assert(IsRule && "not a rule!");
1800       return Rules[0];
1801     }
1802 
1803     ArrayRef<AttributeSubjectMatchRule> getAggregateRuleSet() const {
1804       return Rules;
1805     }
1806 
1807     static RuleOrAggregateRuleSet
1808     getRule(const AttributeSubjectMatchRule &Rule) {
1809       return RuleOrAggregateRuleSet(Rule, /*IsRule=*/true);
1810     }
1811     static RuleOrAggregateRuleSet
1812     getAggregateRuleSet(ArrayRef<AttributeSubjectMatchRule> Rules) {
1813       return RuleOrAggregateRuleSet(Rules, /*IsRule=*/false);
1814     }
1815   };
1816   llvm::DenseMap<const Record *, RuleOrAggregateRuleSet> SubjectsToRules;
1817 
1818   PragmaClangAttributeSupport(RecordKeeper &Records);
1819 
1820   bool isAttributedSupported(const Record &Attribute);
1821 
1822   void emitMatchRuleList(raw_ostream &OS);
1823 
1824   void generateStrictConformsTo(const Record &Attr, raw_ostream &OS);
1825 
1826   void generateParsingHelpers(raw_ostream &OS);
1827 };
1828 
1829 } // end anonymous namespace
1830 
1831 static bool isSupportedPragmaClangAttributeSubject(const Record &Subject) {
1832   // FIXME: #pragma clang attribute does not currently support statement
1833   // attributes, so test whether the subject is one that appertains to a
1834   // declaration node. However, it may be reasonable for support for statement
1835   // attributes to be added.
1836   if (Subject.isSubClassOf("DeclNode") || Subject.isSubClassOf("DeclBase") ||
1837       Subject.getName() == "DeclBase")
1838     return true;
1839 
1840   if (Subject.isSubClassOf("SubsetSubject"))
1841     return isSupportedPragmaClangAttributeSubject(
1842         *Subject.getValueAsDef("Base"));
1843 
1844   return false;
1845 }
1846 
1847 static bool doesDeclDeriveFrom(const Record *D, const Record *Base) {
1848   const Record *CurrentBase = D->getValueAsOptionalDef(BaseFieldName);
1849   if (!CurrentBase)
1850     return false;
1851   if (CurrentBase == Base)
1852     return true;
1853   return doesDeclDeriveFrom(CurrentBase, Base);
1854 }
1855 
1856 PragmaClangAttributeSupport::PragmaClangAttributeSupport(
1857     RecordKeeper &Records) {
1858   std::vector<Record *> MetaSubjects =
1859       Records.getAllDerivedDefinitions("AttrSubjectMatcherRule");
1860   auto MapFromSubjectsToRules = [this](const Record *SubjectContainer,
1861                                        const Record *MetaSubject,
1862                                        const Record *Constraint) {
1863     Rules.emplace_back(MetaSubject, Constraint);
1864     std::vector<Record *> ApplicableSubjects =
1865         SubjectContainer->getValueAsListOfDefs("Subjects");
1866     for (const auto *Subject : ApplicableSubjects) {
1867       bool Inserted =
1868           SubjectsToRules
1869               .try_emplace(Subject, RuleOrAggregateRuleSet::getRule(
1870                                         AttributeSubjectMatchRule(MetaSubject,
1871                                                                   Constraint)))
1872               .second;
1873       if (!Inserted) {
1874         PrintFatalError("Attribute subject match rules should not represent"
1875                         "same attribute subjects.");
1876       }
1877     }
1878   };
1879   for (const auto *MetaSubject : MetaSubjects) {
1880     MapFromSubjectsToRules(MetaSubject, MetaSubject, /*Constraints=*/nullptr);
1881     std::vector<Record *> Constraints =
1882         MetaSubject->getValueAsListOfDefs("Constraints");
1883     for (const auto *Constraint : Constraints)
1884       MapFromSubjectsToRules(Constraint, MetaSubject, Constraint);
1885   }
1886 
1887   std::vector<Record *> Aggregates =
1888       Records.getAllDerivedDefinitions("AttrSubjectMatcherAggregateRule");
1889   std::vector<Record *> DeclNodes =
1890     Records.getAllDerivedDefinitions(DeclNodeClassName);
1891   for (const auto *Aggregate : Aggregates) {
1892     Record *SubjectDecl = Aggregate->getValueAsDef("Subject");
1893 
1894     // Gather sub-classes of the aggregate subject that act as attribute
1895     // subject rules.
1896     std::vector<AttributeSubjectMatchRule> Rules;
1897     for (const auto *D : DeclNodes) {
1898       if (doesDeclDeriveFrom(D, SubjectDecl)) {
1899         auto It = SubjectsToRules.find(D);
1900         if (It == SubjectsToRules.end())
1901           continue;
1902         if (!It->second.isRule() || It->second.getRule().isSubRule())
1903           continue; // Assume that the rule will be included as well.
1904         Rules.push_back(It->second.getRule());
1905       }
1906     }
1907 
1908     bool Inserted =
1909         SubjectsToRules
1910             .try_emplace(SubjectDecl,
1911                          RuleOrAggregateRuleSet::getAggregateRuleSet(Rules))
1912             .second;
1913     if (!Inserted) {
1914       PrintFatalError("Attribute subject match rules should not represent"
1915                       "same attribute subjects.");
1916     }
1917   }
1918 }
1919 
1920 static PragmaClangAttributeSupport &
1921 getPragmaAttributeSupport(RecordKeeper &Records) {
1922   static PragmaClangAttributeSupport Instance(Records);
1923   return Instance;
1924 }
1925 
1926 void PragmaClangAttributeSupport::emitMatchRuleList(raw_ostream &OS) {
1927   OS << "#ifndef ATTR_MATCH_SUB_RULE\n";
1928   OS << "#define ATTR_MATCH_SUB_RULE(Value, Spelling, IsAbstract, Parent, "
1929         "IsNegated) "
1930      << "ATTR_MATCH_RULE(Value, Spelling, IsAbstract)\n";
1931   OS << "#endif\n";
1932   for (const auto &Rule : Rules) {
1933     OS << (Rule.isSubRule() ? "ATTR_MATCH_SUB_RULE" : "ATTR_MATCH_RULE") << '(';
1934     OS << Rule.getEnumValueName() << ", \"" << Rule.getSpelling() << "\", "
1935        << Rule.isAbstractRule();
1936     if (Rule.isSubRule())
1937       OS << ", "
1938          << AttributeSubjectMatchRule(Rule.MetaSubject, nullptr).getEnumValue()
1939          << ", " << Rule.isNegatedSubRule();
1940     OS << ")\n";
1941   }
1942   OS << "#undef ATTR_MATCH_SUB_RULE\n";
1943 }
1944 
1945 bool PragmaClangAttributeSupport::isAttributedSupported(
1946     const Record &Attribute) {
1947   // If the attribute explicitly specified whether to support #pragma clang
1948   // attribute, use that setting.
1949   bool Unset;
1950   bool SpecifiedResult =
1951     Attribute.getValueAsBitOrUnset("PragmaAttributeSupport", Unset);
1952   if (!Unset)
1953     return SpecifiedResult;
1954 
1955   // Opt-out rules:
1956   // An attribute requires delayed parsing (LateParsed is on)
1957   if (Attribute.getValueAsBit("LateParsed"))
1958     return false;
1959   // An attribute has no GNU/CXX11 spelling
1960   if (!hasGNUorCXX11Spelling(Attribute))
1961     return false;
1962   // An attribute subject list has a subject that isn't covered by one of the
1963   // subject match rules or has no subjects at all.
1964   if (Attribute.isValueUnset("Subjects"))
1965     return false;
1966   const Record *SubjectObj = Attribute.getValueAsDef("Subjects");
1967   std::vector<Record *> Subjects = SubjectObj->getValueAsListOfDefs("Subjects");
1968   bool HasAtLeastOneValidSubject = false;
1969   for (const auto *Subject : Subjects) {
1970     if (!isSupportedPragmaClangAttributeSubject(*Subject))
1971       continue;
1972     if (SubjectsToRules.find(Subject) == SubjectsToRules.end())
1973       return false;
1974     HasAtLeastOneValidSubject = true;
1975   }
1976   return HasAtLeastOneValidSubject;
1977 }
1978 
1979 static std::string GenerateTestExpression(ArrayRef<Record *> LangOpts) {
1980   std::string Test;
1981 
1982   for (auto *E : LangOpts) {
1983     if (!Test.empty())
1984       Test += " || ";
1985 
1986     const StringRef Code = E->getValueAsString("CustomCode");
1987     if (!Code.empty()) {
1988       Test += "(";
1989       Test += Code;
1990       Test += ")";
1991       if (!E->getValueAsString("Name").empty()) {
1992         PrintWarning(
1993             E->getLoc(),
1994             "non-empty 'Name' field ignored because 'CustomCode' was supplied");
1995       }
1996     } else {
1997       Test += "LangOpts.";
1998       Test += E->getValueAsString("Name");
1999     }
2000   }
2001 
2002   if (Test.empty())
2003     return "true";
2004 
2005   return Test;
2006 }
2007 
2008 void
2009 PragmaClangAttributeSupport::generateStrictConformsTo(const Record &Attr,
2010                                                       raw_ostream &OS) {
2011   if (!isAttributedSupported(Attr) || Attr.isValueUnset("Subjects"))
2012     return;
2013   // Generate a function that constructs a set of matching rules that describe
2014   // to which declarations the attribute should apply to.
2015   OS << "void getPragmaAttributeMatchRules("
2016      << "llvm::SmallVectorImpl<std::pair<"
2017      << AttributeSubjectMatchRule::EnumName
2018      << ", bool>> &MatchRules, const LangOptions &LangOpts) const override {\n";
2019   const Record *SubjectObj = Attr.getValueAsDef("Subjects");
2020   std::vector<Record *> Subjects = SubjectObj->getValueAsListOfDefs("Subjects");
2021   for (const auto *Subject : Subjects) {
2022     if (!isSupportedPragmaClangAttributeSubject(*Subject))
2023       continue;
2024     auto It = SubjectsToRules.find(Subject);
2025     assert(It != SubjectsToRules.end() &&
2026            "This attribute is unsupported by #pragma clang attribute");
2027     for (const auto &Rule : It->getSecond().getAggregateRuleSet()) {
2028       // The rule might be language specific, so only subtract it from the given
2029       // rules if the specific language options are specified.
2030       std::vector<Record *> LangOpts = Rule.getLangOpts();
2031       OS << "  MatchRules.push_back(std::make_pair(" << Rule.getEnumValue()
2032          << ", /*IsSupported=*/" << GenerateTestExpression(LangOpts)
2033          << "));\n";
2034     }
2035   }
2036   OS << "}\n\n";
2037 }
2038 
2039 void PragmaClangAttributeSupport::generateParsingHelpers(raw_ostream &OS) {
2040   // Generate routines that check the names of sub-rules.
2041   OS << "Optional<attr::SubjectMatchRule> "
2042         "defaultIsAttributeSubjectMatchSubRuleFor(StringRef, bool) {\n";
2043   OS << "  return None;\n";
2044   OS << "}\n\n";
2045 
2046   std::map<const Record *, std::vector<AttributeSubjectMatchRule>>
2047       SubMatchRules;
2048   for (const auto &Rule : Rules) {
2049     if (!Rule.isSubRule())
2050       continue;
2051     SubMatchRules[Rule.MetaSubject].push_back(Rule);
2052   }
2053 
2054   for (const auto &SubMatchRule : SubMatchRules) {
2055     OS << "Optional<attr::SubjectMatchRule> isAttributeSubjectMatchSubRuleFor_"
2056        << SubMatchRule.first->getValueAsString("Name")
2057        << "(StringRef Name, bool IsUnless) {\n";
2058     OS << "  if (IsUnless)\n";
2059     OS << "    return "
2060           "llvm::StringSwitch<Optional<attr::SubjectMatchRule>>(Name).\n";
2061     for (const auto &Rule : SubMatchRule.second) {
2062       if (Rule.isNegatedSubRule())
2063         OS << "    Case(\"" << Rule.getName() << "\", " << Rule.getEnumValue()
2064            << ").\n";
2065     }
2066     OS << "    Default(None);\n";
2067     OS << "  return "
2068           "llvm::StringSwitch<Optional<attr::SubjectMatchRule>>(Name).\n";
2069     for (const auto &Rule : SubMatchRule.second) {
2070       if (!Rule.isNegatedSubRule())
2071         OS << "  Case(\"" << Rule.getName() << "\", " << Rule.getEnumValue()
2072            << ").\n";
2073     }
2074     OS << "  Default(None);\n";
2075     OS << "}\n\n";
2076   }
2077 
2078   // Generate the function that checks for the top-level rules.
2079   OS << "std::pair<Optional<attr::SubjectMatchRule>, "
2080         "Optional<attr::SubjectMatchRule> (*)(StringRef, "
2081         "bool)> isAttributeSubjectMatchRule(StringRef Name) {\n";
2082   OS << "  return "
2083         "llvm::StringSwitch<std::pair<Optional<attr::SubjectMatchRule>, "
2084         "Optional<attr::SubjectMatchRule> (*) (StringRef, "
2085         "bool)>>(Name).\n";
2086   for (const auto &Rule : Rules) {
2087     if (Rule.isSubRule())
2088       continue;
2089     std::string SubRuleFunction;
2090     if (SubMatchRules.count(Rule.MetaSubject))
2091       SubRuleFunction =
2092           ("isAttributeSubjectMatchSubRuleFor_" + Rule.getName()).str();
2093     else
2094       SubRuleFunction = "defaultIsAttributeSubjectMatchSubRuleFor";
2095     OS << "  Case(\"" << Rule.getName() << "\", std::make_pair("
2096        << Rule.getEnumValue() << ", " << SubRuleFunction << ")).\n";
2097   }
2098   OS << "  Default(std::make_pair(None, "
2099         "defaultIsAttributeSubjectMatchSubRuleFor));\n";
2100   OS << "}\n\n";
2101 
2102   // Generate the function that checks for the submatch rules.
2103   OS << "const char *validAttributeSubjectMatchSubRules("
2104      << AttributeSubjectMatchRule::EnumName << " Rule) {\n";
2105   OS << "  switch (Rule) {\n";
2106   for (const auto &SubMatchRule : SubMatchRules) {
2107     OS << "  case "
2108        << AttributeSubjectMatchRule(SubMatchRule.first, nullptr).getEnumValue()
2109        << ":\n";
2110     OS << "  return \"'";
2111     bool IsFirst = true;
2112     for (const auto &Rule : SubMatchRule.second) {
2113       if (!IsFirst)
2114         OS << ", '";
2115       IsFirst = false;
2116       if (Rule.isNegatedSubRule())
2117         OS << "unless(";
2118       OS << Rule.getName();
2119       if (Rule.isNegatedSubRule())
2120         OS << ')';
2121       OS << "'";
2122     }
2123     OS << "\";\n";
2124   }
2125   OS << "  default: return nullptr;\n";
2126   OS << "  }\n";
2127   OS << "}\n\n";
2128 }
2129 
2130 template <typename Fn>
2131 static void forEachUniqueSpelling(const Record &Attr, Fn &&F) {
2132   std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attr);
2133   SmallDenseSet<StringRef, 8> Seen;
2134   for (const FlattenedSpelling &S : Spellings) {
2135     if (Seen.insert(S.name()).second)
2136       F(S);
2137   }
2138 }
2139 
2140 /// Emits the first-argument-is-type property for attributes.
2141 static void emitClangAttrTypeArgList(RecordKeeper &Records, raw_ostream &OS) {
2142   OS << "#if defined(CLANG_ATTR_TYPE_ARG_LIST)\n";
2143   std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
2144 
2145   for (const auto *Attr : Attrs) {
2146     // Determine whether the first argument is a type.
2147     std::vector<Record *> Args = Attr->getValueAsListOfDefs("Args");
2148     if (Args.empty())
2149       continue;
2150 
2151     if (Args[0]->getSuperClasses().back().first->getName() != "TypeArgument")
2152       continue;
2153 
2154     // All these spellings take a single type argument.
2155     forEachUniqueSpelling(*Attr, [&](const FlattenedSpelling &S) {
2156       OS << ".Case(\"" << S.name() << "\", " << "true" << ")\n";
2157     });
2158   }
2159   OS << "#endif // CLANG_ATTR_TYPE_ARG_LIST\n\n";
2160 }
2161 
2162 /// Emits the parse-arguments-in-unevaluated-context property for
2163 /// attributes.
2164 static void emitClangAttrArgContextList(RecordKeeper &Records, raw_ostream &OS) {
2165   OS << "#if defined(CLANG_ATTR_ARG_CONTEXT_LIST)\n";
2166   ParsedAttrMap Attrs = getParsedAttrList(Records);
2167   for (const auto &I : Attrs) {
2168     const Record &Attr = *I.second;
2169 
2170     if (!Attr.getValueAsBit("ParseArgumentsAsUnevaluated"))
2171       continue;
2172 
2173     // All these spellings take are parsed unevaluated.
2174     forEachUniqueSpelling(Attr, [&](const FlattenedSpelling &S) {
2175       OS << ".Case(\"" << S.name() << "\", " << "true" << ")\n";
2176     });
2177   }
2178   OS << "#endif // CLANG_ATTR_ARG_CONTEXT_LIST\n\n";
2179 }
2180 
2181 static bool isIdentifierArgument(Record *Arg) {
2182   return !Arg->getSuperClasses().empty() &&
2183     llvm::StringSwitch<bool>(Arg->getSuperClasses().back().first->getName())
2184     .Case("IdentifierArgument", true)
2185     .Case("EnumArgument", true)
2186     .Case("VariadicEnumArgument", true)
2187     .Default(false);
2188 }
2189 
2190 static bool isVariadicIdentifierArgument(Record *Arg) {
2191   return !Arg->getSuperClasses().empty() &&
2192          llvm::StringSwitch<bool>(
2193              Arg->getSuperClasses().back().first->getName())
2194              .Case("VariadicIdentifierArgument", true)
2195              .Case("VariadicParamOrParamIdxArgument", true)
2196              .Default(false);
2197 }
2198 
2199 static void emitClangAttrVariadicIdentifierArgList(RecordKeeper &Records,
2200                                                    raw_ostream &OS) {
2201   OS << "#if defined(CLANG_ATTR_VARIADIC_IDENTIFIER_ARG_LIST)\n";
2202   std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
2203   for (const auto *A : Attrs) {
2204     // Determine whether the first argument is a variadic identifier.
2205     std::vector<Record *> Args = A->getValueAsListOfDefs("Args");
2206     if (Args.empty() || !isVariadicIdentifierArgument(Args[0]))
2207       continue;
2208 
2209     // All these spellings take an identifier argument.
2210     forEachUniqueSpelling(*A, [&](const FlattenedSpelling &S) {
2211       OS << ".Case(\"" << S.name() << "\", "
2212          << "true"
2213          << ")\n";
2214     });
2215   }
2216   OS << "#endif // CLANG_ATTR_VARIADIC_IDENTIFIER_ARG_LIST\n\n";
2217 }
2218 
2219 // Emits the first-argument-is-identifier property for attributes.
2220 static void emitClangAttrIdentifierArgList(RecordKeeper &Records, raw_ostream &OS) {
2221   OS << "#if defined(CLANG_ATTR_IDENTIFIER_ARG_LIST)\n";
2222   std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr");
2223 
2224   for (const auto *Attr : Attrs) {
2225     // Determine whether the first argument is an identifier.
2226     std::vector<Record *> Args = Attr->getValueAsListOfDefs("Args");
2227     if (Args.empty() || !isIdentifierArgument(Args[0]))
2228       continue;
2229 
2230     // All these spellings take an identifier argument.
2231     forEachUniqueSpelling(*Attr, [&](const FlattenedSpelling &S) {
2232       OS << ".Case(\"" << S.name() << "\", " << "true" << ")\n";
2233     });
2234   }
2235   OS << "#endif // CLANG_ATTR_IDENTIFIER_ARG_LIST\n\n";
2236 }
2237 
2238 static bool keywordThisIsaIdentifierInArgument(const Record *Arg) {
2239   return !Arg->getSuperClasses().empty() &&
2240          llvm::StringSwitch<bool>(
2241              Arg->getSuperClasses().back().first->getName())
2242              .Case("VariadicParamOrParamIdxArgument", true)
2243              .Default(false);
2244 }
2245 
2246 static void emitClangAttrThisIsaIdentifierArgList(RecordKeeper &Records,
2247                                                   raw_ostream &OS) {
2248   OS << "#if defined(CLANG_ATTR_THIS_ISA_IDENTIFIER_ARG_LIST)\n";
2249   std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
2250   for (const auto *A : Attrs) {
2251     // Determine whether the first argument is a variadic identifier.
2252     std::vector<Record *> Args = A->getValueAsListOfDefs("Args");
2253     if (Args.empty() || !keywordThisIsaIdentifierInArgument(Args[0]))
2254       continue;
2255 
2256     // All these spellings take an identifier argument.
2257     forEachUniqueSpelling(*A, [&](const FlattenedSpelling &S) {
2258       OS << ".Case(\"" << S.name() << "\", "
2259          << "true"
2260          << ")\n";
2261     });
2262   }
2263   OS << "#endif // CLANG_ATTR_THIS_ISA_IDENTIFIER_ARG_LIST\n\n";
2264 }
2265 
2266 static void emitAttributes(RecordKeeper &Records, raw_ostream &OS,
2267                            bool Header) {
2268   std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr");
2269   ParsedAttrMap AttrMap = getParsedAttrList(Records);
2270 
2271   // Helper to print the starting character of an attribute argument. If there
2272   // hasn't been an argument yet, it prints an opening parenthese; otherwise it
2273   // prints a comma.
2274   OS << "static inline void DelimitAttributeArgument("
2275      << "raw_ostream& OS, bool& IsFirst) {\n"
2276      << "  if (IsFirst) {\n"
2277      << "    IsFirst = false;\n"
2278      << "    OS << \"(\";\n"
2279      << "  } else\n"
2280      << "    OS << \", \";\n"
2281      << "}\n";
2282 
2283   for (const auto *Attr : Attrs) {
2284     const Record &R = *Attr;
2285 
2286     // FIXME: Currently, documentation is generated as-needed due to the fact
2287     // that there is no way to allow a generated project "reach into" the docs
2288     // directory (for instance, it may be an out-of-tree build). However, we want
2289     // to ensure that every attribute has a Documentation field, and produce an
2290     // error if it has been neglected. Otherwise, the on-demand generation which
2291     // happens server-side will fail. This code is ensuring that functionality,
2292     // even though this Emitter doesn't technically need the documentation.
2293     // When attribute documentation can be generated as part of the build
2294     // itself, this code can be removed.
2295     (void)R.getValueAsListOfDefs("Documentation");
2296 
2297     if (!R.getValueAsBit("ASTNode"))
2298       continue;
2299 
2300     ArrayRef<std::pair<Record *, SMRange>> Supers = R.getSuperClasses();
2301     assert(!Supers.empty() && "Forgot to specify a superclass for the attr");
2302     std::string SuperName;
2303     bool Inheritable = false;
2304     for (const auto &Super : llvm::reverse(Supers)) {
2305       const Record *R = Super.first;
2306       if (R->getName() != "TargetSpecificAttr" &&
2307           R->getName() != "DeclOrTypeAttr" && SuperName.empty())
2308         SuperName = std::string(R->getName());
2309       if (R->getName() == "InheritableAttr")
2310         Inheritable = true;
2311     }
2312 
2313     if (Header)
2314       OS << "class " << R.getName() << "Attr : public " << SuperName << " {\n";
2315     else
2316       OS << "\n// " << R.getName() << "Attr implementation\n\n";
2317 
2318     std::vector<Record*> ArgRecords = R.getValueAsListOfDefs("Args");
2319     std::vector<std::unique_ptr<Argument>> Args;
2320     Args.reserve(ArgRecords.size());
2321 
2322     bool HasOptArg = false;
2323     bool HasFakeArg = false;
2324     for (const auto *ArgRecord : ArgRecords) {
2325       Args.emplace_back(createArgument(*ArgRecord, R.getName()));
2326       if (Header) {
2327         Args.back()->writeDeclarations(OS);
2328         OS << "\n\n";
2329       }
2330 
2331       // For these purposes, fake takes priority over optional.
2332       if (Args.back()->isFake()) {
2333         HasFakeArg = true;
2334       } else if (Args.back()->isOptional()) {
2335         HasOptArg = true;
2336       }
2337     }
2338 
2339     if (Header)
2340       OS << "public:\n";
2341 
2342     std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R);
2343 
2344     // If there are zero or one spellings, all spelling-related functionality
2345     // can be elided. If all of the spellings share the same name, the spelling
2346     // functionality can also be elided.
2347     bool ElideSpelling = (Spellings.size() <= 1) ||
2348                          SpellingNamesAreCommon(Spellings);
2349 
2350     // This maps spelling index values to semantic Spelling enumerants.
2351     SemanticSpellingMap SemanticToSyntacticMap;
2352 
2353     std::string SpellingEnum;
2354     if (Spellings.size() > 1)
2355       SpellingEnum = CreateSemanticSpellings(Spellings, SemanticToSyntacticMap);
2356     if (Header)
2357       OS << SpellingEnum;
2358 
2359     const auto &ParsedAttrSpellingItr = llvm::find_if(
2360         AttrMap, [R](const std::pair<std::string, const Record *> &P) {
2361           return &R == P.second;
2362         });
2363 
2364     // Emit CreateImplicit factory methods.
2365     auto emitCreate = [&](bool Implicit, bool emitFake) {
2366       if (Header)
2367         OS << "  static ";
2368       OS << R.getName() << "Attr *";
2369       if (!Header)
2370         OS << R.getName() << "Attr::";
2371       OS << "Create";
2372       if (Implicit)
2373         OS << "Implicit";
2374       OS << "(";
2375       OS << "ASTContext &Ctx";
2376       for (auto const &ai : Args) {
2377         if (ai->isFake() && !emitFake) continue;
2378         OS << ", ";
2379         ai->writeCtorParameters(OS);
2380       }
2381       OS << ", const AttributeCommonInfo &CommonInfo";
2382       if (Header && Implicit)
2383         OS << " = {SourceRange{}}";
2384       OS << ")";
2385       if (Header) {
2386         OS << ";\n";
2387         return;
2388       }
2389 
2390       OS << " {\n";
2391       OS << "  auto *A = new (Ctx) " << R.getName();
2392       OS << "Attr(Ctx, CommonInfo";
2393       for (auto const &ai : Args) {
2394         if (ai->isFake() && !emitFake) continue;
2395         OS << ", ";
2396         ai->writeImplicitCtorArgs(OS);
2397       }
2398       OS << ");\n";
2399       if (Implicit) {
2400         OS << "  A->setImplicit(true);\n";
2401       }
2402       if (Implicit || ElideSpelling) {
2403         OS << "  if (!A->isAttributeSpellingListCalculated() && "
2404               "!A->getAttrName())\n";
2405         OS << "    A->setAttributeSpellingListIndex(0);\n";
2406       }
2407       OS << "  return A;\n}\n\n";
2408     };
2409 
2410     auto emitCreateNoCI = [&](bool Implicit, bool emitFake) {
2411       if (Header)
2412         OS << "  static ";
2413       OS << R.getName() << "Attr *";
2414       if (!Header)
2415         OS << R.getName() << "Attr::";
2416       OS << "Create";
2417       if (Implicit)
2418         OS << "Implicit";
2419       OS << "(";
2420       OS << "ASTContext &Ctx";
2421       for (auto const &ai : Args) {
2422         if (ai->isFake() && !emitFake) continue;
2423         OS << ", ";
2424         ai->writeCtorParameters(OS);
2425       }
2426       OS << ", SourceRange Range, AttributeCommonInfo::Syntax Syntax";
2427       if (!ElideSpelling) {
2428         OS << ", " << R.getName() << "Attr::Spelling S";
2429         if (Header)
2430           OS << " = static_cast<Spelling>(SpellingNotCalculated)";
2431       }
2432       OS << ")";
2433       if (Header) {
2434         OS << ";\n";
2435         return;
2436       }
2437 
2438       OS << " {\n";
2439       OS << "  AttributeCommonInfo I(Range, ";
2440 
2441       if (ParsedAttrSpellingItr != std::end(AttrMap))
2442         OS << "AT_" << ParsedAttrSpellingItr->first;
2443       else
2444         OS << "NoSemaHandlerAttribute";
2445 
2446       OS << ", Syntax";
2447       if (!ElideSpelling)
2448         OS << ", S";
2449       OS << ");\n";
2450       OS << "  return Create";
2451       if (Implicit)
2452         OS << "Implicit";
2453       OS << "(Ctx";
2454       for (auto const &ai : Args) {
2455         if (ai->isFake() && !emitFake) continue;
2456         OS << ", ";
2457         ai->writeImplicitCtorArgs(OS);
2458       }
2459       OS << ", I);\n";
2460       OS << "}\n\n";
2461     };
2462 
2463     auto emitCreates = [&](bool emitFake) {
2464       emitCreate(true, emitFake);
2465       emitCreate(false, emitFake);
2466       emitCreateNoCI(true, emitFake);
2467       emitCreateNoCI(false, emitFake);
2468     };
2469 
2470     if (Header)
2471       OS << "  // Factory methods\n";
2472 
2473     // Emit a CreateImplicit that takes all the arguments.
2474     emitCreates(true);
2475 
2476     // Emit a CreateImplicit that takes all the non-fake arguments.
2477     if (HasFakeArg)
2478       emitCreates(false);
2479 
2480     // Emit constructors.
2481     auto emitCtor = [&](bool emitOpt, bool emitFake) {
2482       auto shouldEmitArg = [=](const std::unique_ptr<Argument> &arg) {
2483         if (arg->isFake()) return emitFake;
2484         if (arg->isOptional()) return emitOpt;
2485         return true;
2486       };
2487       if (Header)
2488         OS << "  ";
2489       else
2490         OS << R.getName() << "Attr::";
2491       OS << R.getName()
2492          << "Attr(ASTContext &Ctx, const AttributeCommonInfo &CommonInfo";
2493       OS << '\n';
2494       for (auto const &ai : Args) {
2495         if (!shouldEmitArg(ai)) continue;
2496         OS << "              , ";
2497         ai->writeCtorParameters(OS);
2498         OS << "\n";
2499       }
2500 
2501       OS << "             )";
2502       if (Header) {
2503         OS << ";\n";
2504         return;
2505       }
2506       OS << "\n  : " << SuperName << "(Ctx, CommonInfo, ";
2507       OS << "attr::" << R.getName() << ", "
2508          << (R.getValueAsBit("LateParsed") ? "true" : "false");
2509       if (Inheritable) {
2510         OS << ", "
2511            << (R.getValueAsBit("InheritEvenIfAlreadyPresent") ? "true"
2512                                                               : "false");
2513       }
2514       OS << ")\n";
2515 
2516       for (auto const &ai : Args) {
2517         OS << "              , ";
2518         if (!shouldEmitArg(ai)) {
2519           ai->writeCtorDefaultInitializers(OS);
2520         } else {
2521           ai->writeCtorInitializers(OS);
2522         }
2523         OS << "\n";
2524       }
2525 
2526       OS << "  {\n";
2527 
2528       for (auto const &ai : Args) {
2529         if (!shouldEmitArg(ai)) continue;
2530         ai->writeCtorBody(OS);
2531       }
2532       OS << "}\n\n";
2533     };
2534 
2535     if (Header)
2536       OS << "\n  // Constructors\n";
2537 
2538     // Emit a constructor that includes all the arguments.
2539     // This is necessary for cloning.
2540     emitCtor(true, true);
2541 
2542     // Emit a constructor that takes all the non-fake arguments.
2543     if (HasFakeArg)
2544       emitCtor(true, false);
2545 
2546     // Emit a constructor that takes all the non-fake, non-optional arguments.
2547     if (HasOptArg)
2548       emitCtor(false, false);
2549 
2550     if (Header) {
2551       OS << '\n';
2552       OS << "  " << R.getName() << "Attr *clone(ASTContext &C) const;\n";
2553       OS << "  void printPretty(raw_ostream &OS,\n"
2554          << "                   const PrintingPolicy &Policy) const;\n";
2555       OS << "  const char *getSpelling() const;\n";
2556     }
2557 
2558     if (!ElideSpelling) {
2559       assert(!SemanticToSyntacticMap.empty() && "Empty semantic mapping list");
2560       if (Header)
2561         OS << "  Spelling getSemanticSpelling() const;\n";
2562       else {
2563         OS << R.getName() << "Attr::Spelling " << R.getName()
2564            << "Attr::getSemanticSpelling() const {\n";
2565         WriteSemanticSpellingSwitch("getAttributeSpellingListIndex()",
2566                                     SemanticToSyntacticMap, OS);
2567         OS << "}\n";
2568       }
2569     }
2570 
2571     if (Header)
2572       writeAttrAccessorDefinition(R, OS);
2573 
2574     for (auto const &ai : Args) {
2575       if (Header) {
2576         ai->writeAccessors(OS);
2577       } else {
2578         ai->writeAccessorDefinitions(OS);
2579       }
2580       OS << "\n\n";
2581 
2582       // Don't write conversion routines for fake arguments.
2583       if (ai->isFake()) continue;
2584 
2585       if (ai->isEnumArg())
2586         static_cast<const EnumArgument *>(ai.get())->writeConversion(OS,
2587                                                                      Header);
2588       else if (ai->isVariadicEnumArg())
2589         static_cast<const VariadicEnumArgument *>(ai.get())->writeConversion(
2590             OS, Header);
2591     }
2592 
2593     if (Header) {
2594       OS << R.getValueAsString("AdditionalMembers");
2595       OS << "\n\n";
2596 
2597       OS << "  static bool classof(const Attr *A) { return A->getKind() == "
2598          << "attr::" << R.getName() << "; }\n";
2599 
2600       OS << "};\n\n";
2601     } else {
2602       OS << R.getName() << "Attr *" << R.getName()
2603          << "Attr::clone(ASTContext &C) const {\n";
2604       OS << "  auto *A = new (C) " << R.getName() << "Attr(C, *this";
2605       for (auto const &ai : Args) {
2606         OS << ", ";
2607         ai->writeCloneArgs(OS);
2608       }
2609       OS << ");\n";
2610       OS << "  A->Inherited = Inherited;\n";
2611       OS << "  A->IsPackExpansion = IsPackExpansion;\n";
2612       OS << "  A->setImplicit(Implicit);\n";
2613       OS << "  return A;\n}\n\n";
2614 
2615       writePrettyPrintFunction(R, Args, OS);
2616       writeGetSpellingFunction(R, OS);
2617     }
2618   }
2619 }
2620 // Emits the class definitions for attributes.
2621 void clang::EmitClangAttrClass(RecordKeeper &Records, raw_ostream &OS) {
2622   emitSourceFileHeader("Attribute classes' definitions", OS);
2623 
2624   OS << "#ifndef LLVM_CLANG_ATTR_CLASSES_INC\n";
2625   OS << "#define LLVM_CLANG_ATTR_CLASSES_INC\n\n";
2626 
2627   emitAttributes(Records, OS, true);
2628 
2629   OS << "#endif // LLVM_CLANG_ATTR_CLASSES_INC\n";
2630 }
2631 
2632 // Emits the class method definitions for attributes.
2633 void clang::EmitClangAttrImpl(RecordKeeper &Records, raw_ostream &OS) {
2634   emitSourceFileHeader("Attribute classes' member function definitions", OS);
2635 
2636   emitAttributes(Records, OS, false);
2637 
2638   std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
2639 
2640   // Instead of relying on virtual dispatch we just create a huge dispatch
2641   // switch. This is both smaller and faster than virtual functions.
2642   auto EmitFunc = [&](const char *Method) {
2643     OS << "  switch (getKind()) {\n";
2644     for (const auto *Attr : Attrs) {
2645       const Record &R = *Attr;
2646       if (!R.getValueAsBit("ASTNode"))
2647         continue;
2648 
2649       OS << "  case attr::" << R.getName() << ":\n";
2650       OS << "    return cast<" << R.getName() << "Attr>(this)->" << Method
2651          << ";\n";
2652     }
2653     OS << "  }\n";
2654     OS << "  llvm_unreachable(\"Unexpected attribute kind!\");\n";
2655     OS << "}\n\n";
2656   };
2657 
2658   OS << "const char *Attr::getSpelling() const {\n";
2659   EmitFunc("getSpelling()");
2660 
2661   OS << "Attr *Attr::clone(ASTContext &C) const {\n";
2662   EmitFunc("clone(C)");
2663 
2664   OS << "void Attr::printPretty(raw_ostream &OS, "
2665         "const PrintingPolicy &Policy) const {\n";
2666   EmitFunc("printPretty(OS, Policy)");
2667 }
2668 
2669 static void emitAttrList(raw_ostream &OS, StringRef Class,
2670                          const std::vector<Record*> &AttrList) {
2671   for (auto Cur : AttrList) {
2672     OS << Class << "(" << Cur->getName() << ")\n";
2673   }
2674 }
2675 
2676 // Determines if an attribute has a Pragma spelling.
2677 static bool AttrHasPragmaSpelling(const Record *R) {
2678   std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*R);
2679   return llvm::find_if(Spellings, [](const FlattenedSpelling &S) {
2680            return S.variety() == "Pragma";
2681          }) != Spellings.end();
2682 }
2683 
2684 namespace {
2685 
2686   struct AttrClassDescriptor {
2687     const char * const MacroName;
2688     const char * const TableGenName;
2689   };
2690 
2691 } // end anonymous namespace
2692 
2693 static const AttrClassDescriptor AttrClassDescriptors[] = {
2694   { "ATTR", "Attr" },
2695   { "TYPE_ATTR", "TypeAttr" },
2696   { "STMT_ATTR", "StmtAttr" },
2697   { "DECL_OR_STMT_ATTR", "DeclOrStmtAttr" },
2698   { "INHERITABLE_ATTR", "InheritableAttr" },
2699   { "DECL_OR_TYPE_ATTR", "DeclOrTypeAttr" },
2700   { "INHERITABLE_PARAM_ATTR", "InheritableParamAttr" },
2701   { "PARAMETER_ABI_ATTR", "ParameterABIAttr" }
2702 };
2703 
2704 static void emitDefaultDefine(raw_ostream &OS, StringRef name,
2705                               const char *superName) {
2706   OS << "#ifndef " << name << "\n";
2707   OS << "#define " << name << "(NAME) ";
2708   if (superName) OS << superName << "(NAME)";
2709   OS << "\n#endif\n\n";
2710 }
2711 
2712 namespace {
2713 
2714   /// A class of attributes.
2715   struct AttrClass {
2716     const AttrClassDescriptor &Descriptor;
2717     Record *TheRecord;
2718     AttrClass *SuperClass = nullptr;
2719     std::vector<AttrClass*> SubClasses;
2720     std::vector<Record*> Attrs;
2721 
2722     AttrClass(const AttrClassDescriptor &Descriptor, Record *R)
2723       : Descriptor(Descriptor), TheRecord(R) {}
2724 
2725     void emitDefaultDefines(raw_ostream &OS) const {
2726       // Default the macro unless this is a root class (i.e. Attr).
2727       if (SuperClass) {
2728         emitDefaultDefine(OS, Descriptor.MacroName,
2729                           SuperClass->Descriptor.MacroName);
2730       }
2731     }
2732 
2733     void emitUndefs(raw_ostream &OS) const {
2734       OS << "#undef " << Descriptor.MacroName << "\n";
2735     }
2736 
2737     void emitAttrList(raw_ostream &OS) const {
2738       for (auto SubClass : SubClasses) {
2739         SubClass->emitAttrList(OS);
2740       }
2741 
2742       ::emitAttrList(OS, Descriptor.MacroName, Attrs);
2743     }
2744 
2745     void classifyAttrOnRoot(Record *Attr) {
2746       bool result = classifyAttr(Attr);
2747       assert(result && "failed to classify on root"); (void) result;
2748     }
2749 
2750     void emitAttrRange(raw_ostream &OS) const {
2751       OS << "ATTR_RANGE(" << Descriptor.TableGenName
2752          << ", " << getFirstAttr()->getName()
2753          << ", " << getLastAttr()->getName() << ")\n";
2754     }
2755 
2756   private:
2757     bool classifyAttr(Record *Attr) {
2758       // Check all the subclasses.
2759       for (auto SubClass : SubClasses) {
2760         if (SubClass->classifyAttr(Attr))
2761           return true;
2762       }
2763 
2764       // It's not more specific than this class, but it might still belong here.
2765       if (Attr->isSubClassOf(TheRecord)) {
2766         Attrs.push_back(Attr);
2767         return true;
2768       }
2769 
2770       return false;
2771     }
2772 
2773     Record *getFirstAttr() const {
2774       if (!SubClasses.empty())
2775         return SubClasses.front()->getFirstAttr();
2776       return Attrs.front();
2777     }
2778 
2779     Record *getLastAttr() const {
2780       if (!Attrs.empty())
2781         return Attrs.back();
2782       return SubClasses.back()->getLastAttr();
2783     }
2784   };
2785 
2786   /// The entire hierarchy of attribute classes.
2787   class AttrClassHierarchy {
2788     std::vector<std::unique_ptr<AttrClass>> Classes;
2789 
2790   public:
2791     AttrClassHierarchy(RecordKeeper &Records) {
2792       // Find records for all the classes.
2793       for (auto &Descriptor : AttrClassDescriptors) {
2794         Record *ClassRecord = Records.getClass(Descriptor.TableGenName);
2795         AttrClass *Class = new AttrClass(Descriptor, ClassRecord);
2796         Classes.emplace_back(Class);
2797       }
2798 
2799       // Link up the hierarchy.
2800       for (auto &Class : Classes) {
2801         if (AttrClass *SuperClass = findSuperClass(Class->TheRecord)) {
2802           Class->SuperClass = SuperClass;
2803           SuperClass->SubClasses.push_back(Class.get());
2804         }
2805       }
2806 
2807 #ifndef NDEBUG
2808       for (auto i = Classes.begin(), e = Classes.end(); i != e; ++i) {
2809         assert((i == Classes.begin()) == ((*i)->SuperClass == nullptr) &&
2810                "only the first class should be a root class!");
2811       }
2812 #endif
2813     }
2814 
2815     void emitDefaultDefines(raw_ostream &OS) const {
2816       for (auto &Class : Classes) {
2817         Class->emitDefaultDefines(OS);
2818       }
2819     }
2820 
2821     void emitUndefs(raw_ostream &OS) const {
2822       for (auto &Class : Classes) {
2823         Class->emitUndefs(OS);
2824       }
2825     }
2826 
2827     void emitAttrLists(raw_ostream &OS) const {
2828       // Just start from the root class.
2829       Classes[0]->emitAttrList(OS);
2830     }
2831 
2832     void emitAttrRanges(raw_ostream &OS) const {
2833       for (auto &Class : Classes)
2834         Class->emitAttrRange(OS);
2835     }
2836 
2837     void classifyAttr(Record *Attr) {
2838       // Add the attribute to the root class.
2839       Classes[0]->classifyAttrOnRoot(Attr);
2840     }
2841 
2842   private:
2843     AttrClass *findClassByRecord(Record *R) const {
2844       for (auto &Class : Classes) {
2845         if (Class->TheRecord == R)
2846           return Class.get();
2847       }
2848       return nullptr;
2849     }
2850 
2851     AttrClass *findSuperClass(Record *R) const {
2852       // TableGen flattens the superclass list, so we just need to walk it
2853       // in reverse.
2854       auto SuperClasses = R->getSuperClasses();
2855       for (signed i = 0, e = SuperClasses.size(); i != e; ++i) {
2856         auto SuperClass = findClassByRecord(SuperClasses[e - i - 1].first);
2857         if (SuperClass) return SuperClass;
2858       }
2859       return nullptr;
2860     }
2861   };
2862 
2863 } // end anonymous namespace
2864 
2865 namespace clang {
2866 
2867 // Emits the enumeration list for attributes.
2868 void EmitClangAttrList(RecordKeeper &Records, raw_ostream &OS) {
2869   emitSourceFileHeader("List of all attributes that Clang recognizes", OS);
2870 
2871   AttrClassHierarchy Hierarchy(Records);
2872 
2873   // Add defaulting macro definitions.
2874   Hierarchy.emitDefaultDefines(OS);
2875   emitDefaultDefine(OS, "PRAGMA_SPELLING_ATTR", nullptr);
2876 
2877   std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
2878   std::vector<Record *> PragmaAttrs;
2879   for (auto *Attr : Attrs) {
2880     if (!Attr->getValueAsBit("ASTNode"))
2881       continue;
2882 
2883     // Add the attribute to the ad-hoc groups.
2884     if (AttrHasPragmaSpelling(Attr))
2885       PragmaAttrs.push_back(Attr);
2886 
2887     // Place it in the hierarchy.
2888     Hierarchy.classifyAttr(Attr);
2889   }
2890 
2891   // Emit the main attribute list.
2892   Hierarchy.emitAttrLists(OS);
2893 
2894   // Emit the ad hoc groups.
2895   emitAttrList(OS, "PRAGMA_SPELLING_ATTR", PragmaAttrs);
2896 
2897   // Emit the attribute ranges.
2898   OS << "#ifdef ATTR_RANGE\n";
2899   Hierarchy.emitAttrRanges(OS);
2900   OS << "#undef ATTR_RANGE\n";
2901   OS << "#endif\n";
2902 
2903   Hierarchy.emitUndefs(OS);
2904   OS << "#undef PRAGMA_SPELLING_ATTR\n";
2905 }
2906 
2907 // Emits the enumeration list for attributes.
2908 void EmitClangAttrSubjectMatchRuleList(RecordKeeper &Records, raw_ostream &OS) {
2909   emitSourceFileHeader(
2910       "List of all attribute subject matching rules that Clang recognizes", OS);
2911   PragmaClangAttributeSupport &PragmaAttributeSupport =
2912       getPragmaAttributeSupport(Records);
2913   emitDefaultDefine(OS, "ATTR_MATCH_RULE", nullptr);
2914   PragmaAttributeSupport.emitMatchRuleList(OS);
2915   OS << "#undef ATTR_MATCH_RULE\n";
2916 }
2917 
2918 // Emits the code to read an attribute from a precompiled header.
2919 void EmitClangAttrPCHRead(RecordKeeper &Records, raw_ostream &OS) {
2920   emitSourceFileHeader("Attribute deserialization code", OS);
2921 
2922   Record *InhClass = Records.getClass("InheritableAttr");
2923   std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"),
2924                        ArgRecords;
2925   std::vector<std::unique_ptr<Argument>> Args;
2926 
2927   OS << "  switch (Kind) {\n";
2928   for (const auto *Attr : Attrs) {
2929     const Record &R = *Attr;
2930     if (!R.getValueAsBit("ASTNode"))
2931       continue;
2932 
2933     OS << "  case attr::" << R.getName() << ": {\n";
2934     if (R.isSubClassOf(InhClass))
2935       OS << "    bool isInherited = Record.readInt();\n";
2936     OS << "    bool isImplicit = Record.readInt();\n";
2937     OS << "    bool isPackExpansion = Record.readInt();\n";
2938     ArgRecords = R.getValueAsListOfDefs("Args");
2939     Args.clear();
2940     for (const auto *Arg : ArgRecords) {
2941       Args.emplace_back(createArgument(*Arg, R.getName()));
2942       Args.back()->writePCHReadDecls(OS);
2943     }
2944     OS << "    New = new (Context) " << R.getName() << "Attr(Context, Info";
2945     for (auto const &ri : Args) {
2946       OS << ", ";
2947       ri->writePCHReadArgs(OS);
2948     }
2949     OS << ");\n";
2950     if (R.isSubClassOf(InhClass))
2951       OS << "    cast<InheritableAttr>(New)->setInherited(isInherited);\n";
2952     OS << "    New->setImplicit(isImplicit);\n";
2953     OS << "    New->setPackExpansion(isPackExpansion);\n";
2954     OS << "    break;\n";
2955     OS << "  }\n";
2956   }
2957   OS << "  }\n";
2958 }
2959 
2960 // Emits the code to write an attribute to a precompiled header.
2961 void EmitClangAttrPCHWrite(RecordKeeper &Records, raw_ostream &OS) {
2962   emitSourceFileHeader("Attribute serialization code", OS);
2963 
2964   Record *InhClass = Records.getClass("InheritableAttr");
2965   std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"), Args;
2966 
2967   OS << "  switch (A->getKind()) {\n";
2968   for (const auto *Attr : Attrs) {
2969     const Record &R = *Attr;
2970     if (!R.getValueAsBit("ASTNode"))
2971       continue;
2972     OS << "  case attr::" << R.getName() << ": {\n";
2973     Args = R.getValueAsListOfDefs("Args");
2974     if (R.isSubClassOf(InhClass) || !Args.empty())
2975       OS << "    const auto *SA = cast<" << R.getName()
2976          << "Attr>(A);\n";
2977     if (R.isSubClassOf(InhClass))
2978       OS << "    Record.push_back(SA->isInherited());\n";
2979     OS << "    Record.push_back(A->isImplicit());\n";
2980     OS << "    Record.push_back(A->isPackExpansion());\n";
2981 
2982     for (const auto *Arg : Args)
2983       createArgument(*Arg, R.getName())->writePCHWrite(OS);
2984     OS << "    break;\n";
2985     OS << "  }\n";
2986   }
2987   OS << "  }\n";
2988 }
2989 
2990 // Helper function for GenerateTargetSpecificAttrChecks that alters the 'Test'
2991 // parameter with only a single check type, if applicable.
2992 static bool GenerateTargetSpecificAttrCheck(const Record *R, std::string &Test,
2993                                             std::string *FnName,
2994                                             StringRef ListName,
2995                                             StringRef CheckAgainst,
2996                                             StringRef Scope) {
2997   if (!R->isValueUnset(ListName)) {
2998     Test += " && (";
2999     std::vector<StringRef> Items = R->getValueAsListOfStrings(ListName);
3000     for (auto I = Items.begin(), E = Items.end(); I != E; ++I) {
3001       StringRef Part = *I;
3002       Test += CheckAgainst;
3003       Test += " == ";
3004       Test += Scope;
3005       Test += Part;
3006       if (I + 1 != E)
3007         Test += " || ";
3008       if (FnName)
3009         *FnName += Part;
3010     }
3011     Test += ")";
3012     return true;
3013   }
3014   return false;
3015 }
3016 
3017 // Generate a conditional expression to check if the current target satisfies
3018 // the conditions for a TargetSpecificAttr record, and append the code for
3019 // those checks to the Test string. If the FnName string pointer is non-null,
3020 // append a unique suffix to distinguish this set of target checks from other
3021 // TargetSpecificAttr records.
3022 static bool GenerateTargetSpecificAttrChecks(const Record *R,
3023                                              std::vector<StringRef> &Arches,
3024                                              std::string &Test,
3025                                              std::string *FnName) {
3026   bool AnyTargetChecks = false;
3027 
3028   // It is assumed that there will be an llvm::Triple object
3029   // named "T" and a TargetInfo object named "Target" within
3030   // scope that can be used to determine whether the attribute exists in
3031   // a given target.
3032   Test += "true";
3033   // If one or more architectures is specified, check those.  Arches are handled
3034   // differently because GenerateTargetRequirements needs to combine the list
3035   // with ParseKind.
3036   if (!Arches.empty()) {
3037     AnyTargetChecks = true;
3038     Test += " && (";
3039     for (auto I = Arches.begin(), E = Arches.end(); I != E; ++I) {
3040       StringRef Part = *I;
3041       Test += "T.getArch() == llvm::Triple::";
3042       Test += Part;
3043       if (I + 1 != E)
3044         Test += " || ";
3045       if (FnName)
3046         *FnName += Part;
3047     }
3048     Test += ")";
3049   }
3050 
3051   // If the attribute is specific to particular OSes, check those.
3052   AnyTargetChecks |= GenerateTargetSpecificAttrCheck(
3053       R, Test, FnName, "OSes", "T.getOS()", "llvm::Triple::");
3054 
3055   // If one or more object formats is specified, check those.
3056   AnyTargetChecks |=
3057       GenerateTargetSpecificAttrCheck(R, Test, FnName, "ObjectFormats",
3058                                       "T.getObjectFormat()", "llvm::Triple::");
3059 
3060   // If custom code is specified, emit it.
3061   StringRef Code = R->getValueAsString("CustomCode");
3062   if (!Code.empty()) {
3063     AnyTargetChecks = true;
3064     Test += " && (";
3065     Test += Code;
3066     Test += ")";
3067   }
3068 
3069   return AnyTargetChecks;
3070 }
3071 
3072 static void GenerateHasAttrSpellingStringSwitch(
3073     const std::vector<Record *> &Attrs, raw_ostream &OS,
3074     const std::string &Variety = "", const std::string &Scope = "") {
3075   for (const auto *Attr : Attrs) {
3076     // C++11-style attributes have specific version information associated with
3077     // them. If the attribute has no scope, the version information must not
3078     // have the default value (1), as that's incorrect. Instead, the unscoped
3079     // attribute version information should be taken from the SD-6 standing
3080     // document, which can be found at:
3081     // https://isocpp.org/std/standing-documents/sd-6-sg10-feature-test-recommendations
3082     //
3083     // C2x-style attributes have the same kind of version information
3084     // associated with them. The unscoped attribute version information should
3085     // be taken from the specification of the attribute in the C Standard.
3086     int Version = 1;
3087 
3088     if (Variety == "CXX11" || Variety == "C2x") {
3089       std::vector<Record *> Spellings = Attr->getValueAsListOfDefs("Spellings");
3090       for (const auto &Spelling : Spellings) {
3091         if (Spelling->getValueAsString("Variety") == Variety) {
3092           Version = static_cast<int>(Spelling->getValueAsInt("Version"));
3093           if (Scope.empty() && Version == 1)
3094             PrintError(Spelling->getLoc(), "Standard attributes must have "
3095                                            "valid version information.");
3096           break;
3097         }
3098       }
3099     }
3100 
3101     std::string Test;
3102     if (Attr->isSubClassOf("TargetSpecificAttr")) {
3103       const Record *R = Attr->getValueAsDef("Target");
3104       std::vector<StringRef> Arches = R->getValueAsListOfStrings("Arches");
3105       GenerateTargetSpecificAttrChecks(R, Arches, Test, nullptr);
3106 
3107       // If this is the C++11 variety, also add in the LangOpts test.
3108       if (Variety == "CXX11")
3109         Test += " && LangOpts.CPlusPlus11";
3110       else if (Variety == "C2x")
3111         Test += " && LangOpts.DoubleSquareBracketAttributes";
3112     } else if (Variety == "CXX11")
3113       // C++11 mode should be checked against LangOpts, which is presumed to be
3114       // present in the caller.
3115       Test = "LangOpts.CPlusPlus11";
3116     else if (Variety == "C2x")
3117       Test = "LangOpts.DoubleSquareBracketAttributes";
3118 
3119     std::string TestStr =
3120         !Test.empty() ? Test + " ? " + llvm::itostr(Version) + " : 0" : "1";
3121     std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*Attr);
3122     for (const auto &S : Spellings)
3123       if (Variety.empty() || (Variety == S.variety() &&
3124                               (Scope.empty() || Scope == S.nameSpace())))
3125         OS << "    .Case(\"" << S.name() << "\", " << TestStr << ")\n";
3126   }
3127   OS << "    .Default(0);\n";
3128 }
3129 
3130 // Emits the list of spellings for attributes.
3131 void EmitClangAttrHasAttrImpl(RecordKeeper &Records, raw_ostream &OS) {
3132   emitSourceFileHeader("Code to implement the __has_attribute logic", OS);
3133 
3134   // Separate all of the attributes out into four group: generic, C++11, GNU,
3135   // and declspecs. Then generate a big switch statement for each of them.
3136   std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
3137   std::vector<Record *> Declspec, Microsoft, GNU, Pragma;
3138   std::map<std::string, std::vector<Record *>> CXX, C2x;
3139 
3140   // Walk over the list of all attributes, and split them out based on the
3141   // spelling variety.
3142   for (auto *R : Attrs) {
3143     std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*R);
3144     for (const auto &SI : Spellings) {
3145       const std::string &Variety = SI.variety();
3146       if (Variety == "GNU")
3147         GNU.push_back(R);
3148       else if (Variety == "Declspec")
3149         Declspec.push_back(R);
3150       else if (Variety == "Microsoft")
3151         Microsoft.push_back(R);
3152       else if (Variety == "CXX11")
3153         CXX[SI.nameSpace()].push_back(R);
3154       else if (Variety == "C2x")
3155         C2x[SI.nameSpace()].push_back(R);
3156       else if (Variety == "Pragma")
3157         Pragma.push_back(R);
3158     }
3159   }
3160 
3161   OS << "const llvm::Triple &T = Target.getTriple();\n";
3162   OS << "switch (Syntax) {\n";
3163   OS << "case AttrSyntax::GNU:\n";
3164   OS << "  return llvm::StringSwitch<int>(Name)\n";
3165   GenerateHasAttrSpellingStringSwitch(GNU, OS, "GNU");
3166   OS << "case AttrSyntax::Declspec:\n";
3167   OS << "  return llvm::StringSwitch<int>(Name)\n";
3168   GenerateHasAttrSpellingStringSwitch(Declspec, OS, "Declspec");
3169   OS << "case AttrSyntax::Microsoft:\n";
3170   OS << "  return llvm::StringSwitch<int>(Name)\n";
3171   GenerateHasAttrSpellingStringSwitch(Microsoft, OS, "Microsoft");
3172   OS << "case AttrSyntax::Pragma:\n";
3173   OS << "  return llvm::StringSwitch<int>(Name)\n";
3174   GenerateHasAttrSpellingStringSwitch(Pragma, OS, "Pragma");
3175   auto fn = [&OS](const char *Spelling, const char *Variety,
3176                   const std::map<std::string, std::vector<Record *>> &List) {
3177     OS << "case AttrSyntax::" << Variety << ": {\n";
3178     // C++11-style attributes are further split out based on the Scope.
3179     for (auto I = List.cbegin(), E = List.cend(); I != E; ++I) {
3180       if (I != List.cbegin())
3181         OS << " else ";
3182       if (I->first.empty())
3183         OS << "if (ScopeName == \"\") {\n";
3184       else
3185         OS << "if (ScopeName == \"" << I->first << "\") {\n";
3186       OS << "  return llvm::StringSwitch<int>(Name)\n";
3187       GenerateHasAttrSpellingStringSwitch(I->second, OS, Spelling, I->first);
3188       OS << "}";
3189     }
3190     OS << "\n} break;\n";
3191   };
3192   fn("CXX11", "CXX", CXX);
3193   fn("C2x", "C", C2x);
3194   OS << "}\n";
3195 }
3196 
3197 void EmitClangAttrSpellingListIndex(RecordKeeper &Records, raw_ostream &OS) {
3198   emitSourceFileHeader("Code to translate different attribute spellings "
3199                        "into internal identifiers", OS);
3200 
3201   OS << "  switch (getParsedKind()) {\n";
3202   OS << "    case IgnoredAttribute:\n";
3203   OS << "    case UnknownAttribute:\n";
3204   OS << "    case NoSemaHandlerAttribute:\n";
3205   OS << "      llvm_unreachable(\"Ignored/unknown shouldn't get here\");\n";
3206 
3207   ParsedAttrMap Attrs = getParsedAttrList(Records);
3208   for (const auto &I : Attrs) {
3209     const Record &R = *I.second;
3210     std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R);
3211     OS << "  case AT_" << I.first << ": {\n";
3212     for (unsigned I = 0; I < Spellings.size(); ++ I) {
3213       OS << "    if (Name == \"" << Spellings[I].name() << "\" && "
3214          << "getSyntax() == AttributeCommonInfo::AS_" << Spellings[I].variety()
3215          << " && Scope == \"" << Spellings[I].nameSpace() << "\")\n"
3216          << "        return " << I << ";\n";
3217     }
3218 
3219     OS << "    break;\n";
3220     OS << "  }\n";
3221   }
3222 
3223   OS << "  }\n";
3224   OS << "  return 0;\n";
3225 }
3226 
3227 // Emits code used by RecursiveASTVisitor to visit attributes
3228 void EmitClangAttrASTVisitor(RecordKeeper &Records, raw_ostream &OS) {
3229   emitSourceFileHeader("Used by RecursiveASTVisitor to visit attributes.", OS);
3230 
3231   std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr");
3232 
3233   // Write method declarations for Traverse* methods.
3234   // We emit this here because we only generate methods for attributes that
3235   // are declared as ASTNodes.
3236   OS << "#ifdef ATTR_VISITOR_DECLS_ONLY\n\n";
3237   for (const auto *Attr : Attrs) {
3238     const Record &R = *Attr;
3239     if (!R.getValueAsBit("ASTNode"))
3240       continue;
3241     OS << "  bool Traverse"
3242        << R.getName() << "Attr(" << R.getName() << "Attr *A);\n";
3243     OS << "  bool Visit"
3244        << R.getName() << "Attr(" << R.getName() << "Attr *A) {\n"
3245        << "    return true; \n"
3246        << "  }\n";
3247   }
3248   OS << "\n#else // ATTR_VISITOR_DECLS_ONLY\n\n";
3249 
3250   // Write individual Traverse* methods for each attribute class.
3251   for (const auto *Attr : Attrs) {
3252     const Record &R = *Attr;
3253     if (!R.getValueAsBit("ASTNode"))
3254       continue;
3255 
3256     OS << "template <typename Derived>\n"
3257        << "bool VISITORCLASS<Derived>::Traverse"
3258        << R.getName() << "Attr(" << R.getName() << "Attr *A) {\n"
3259        << "  if (!getDerived().VisitAttr(A))\n"
3260        << "    return false;\n"
3261        << "  if (!getDerived().Visit" << R.getName() << "Attr(A))\n"
3262        << "    return false;\n";
3263 
3264     std::vector<Record*> ArgRecords = R.getValueAsListOfDefs("Args");
3265     for (const auto *Arg : ArgRecords)
3266       createArgument(*Arg, R.getName())->writeASTVisitorTraversal(OS);
3267 
3268     OS << "  return true;\n";
3269     OS << "}\n\n";
3270   }
3271 
3272   // Write generic Traverse routine
3273   OS << "template <typename Derived>\n"
3274      << "bool VISITORCLASS<Derived>::TraverseAttr(Attr *A) {\n"
3275      << "  if (!A)\n"
3276      << "    return true;\n"
3277      << "\n"
3278      << "  switch (A->getKind()) {\n";
3279 
3280   for (const auto *Attr : Attrs) {
3281     const Record &R = *Attr;
3282     if (!R.getValueAsBit("ASTNode"))
3283       continue;
3284 
3285     OS << "    case attr::" << R.getName() << ":\n"
3286        << "      return getDerived().Traverse" << R.getName() << "Attr("
3287        << "cast<" << R.getName() << "Attr>(A));\n";
3288   }
3289   OS << "  }\n";  // end switch
3290   OS << "  llvm_unreachable(\"bad attribute kind\");\n";
3291   OS << "}\n";  // end function
3292   OS << "#endif  // ATTR_VISITOR_DECLS_ONLY\n";
3293 }
3294 
3295 void EmitClangAttrTemplateInstantiateHelper(const std::vector<Record *> &Attrs,
3296                                             raw_ostream &OS,
3297                                             bool AppliesToDecl) {
3298 
3299   OS << "  switch (At->getKind()) {\n";
3300   for (const auto *Attr : Attrs) {
3301     const Record &R = *Attr;
3302     if (!R.getValueAsBit("ASTNode"))
3303       continue;
3304     OS << "    case attr::" << R.getName() << ": {\n";
3305     bool ShouldClone = R.getValueAsBit("Clone") &&
3306                        (!AppliesToDecl ||
3307                         R.getValueAsBit("MeaningfulToClassTemplateDefinition"));
3308 
3309     if (!ShouldClone) {
3310       OS << "      return nullptr;\n";
3311       OS << "    }\n";
3312       continue;
3313     }
3314 
3315     OS << "      const auto *A = cast<"
3316        << R.getName() << "Attr>(At);\n";
3317     bool TDependent = R.getValueAsBit("TemplateDependent");
3318 
3319     if (!TDependent) {
3320       OS << "      return A->clone(C);\n";
3321       OS << "    }\n";
3322       continue;
3323     }
3324 
3325     std::vector<Record*> ArgRecords = R.getValueAsListOfDefs("Args");
3326     std::vector<std::unique_ptr<Argument>> Args;
3327     Args.reserve(ArgRecords.size());
3328 
3329     for (const auto *ArgRecord : ArgRecords)
3330       Args.emplace_back(createArgument(*ArgRecord, R.getName()));
3331 
3332     for (auto const &ai : Args)
3333       ai->writeTemplateInstantiation(OS);
3334 
3335     OS << "      return new (C) " << R.getName() << "Attr(C, *A";
3336     for (auto const &ai : Args) {
3337       OS << ", ";
3338       ai->writeTemplateInstantiationArgs(OS);
3339     }
3340     OS << ");\n"
3341        << "    }\n";
3342   }
3343   OS << "  } // end switch\n"
3344      << "  llvm_unreachable(\"Unknown attribute!\");\n"
3345      << "  return nullptr;\n";
3346 }
3347 
3348 // Emits code to instantiate dependent attributes on templates.
3349 void EmitClangAttrTemplateInstantiate(RecordKeeper &Records, raw_ostream &OS) {
3350   emitSourceFileHeader("Template instantiation code for attributes", OS);
3351 
3352   std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr");
3353 
3354   OS << "namespace clang {\n"
3355      << "namespace sema {\n\n"
3356      << "Attr *instantiateTemplateAttribute(const Attr *At, ASTContext &C, "
3357      << "Sema &S,\n"
3358      << "        const MultiLevelTemplateArgumentList &TemplateArgs) {\n";
3359   EmitClangAttrTemplateInstantiateHelper(Attrs, OS, /*AppliesToDecl*/false);
3360   OS << "}\n\n"
3361      << "Attr *instantiateTemplateAttributeForDecl(const Attr *At,\n"
3362      << " ASTContext &C, Sema &S,\n"
3363      << "        const MultiLevelTemplateArgumentList &TemplateArgs) {\n";
3364   EmitClangAttrTemplateInstantiateHelper(Attrs, OS, /*AppliesToDecl*/true);
3365   OS << "}\n\n"
3366      << "} // end namespace sema\n"
3367      << "} // end namespace clang\n";
3368 }
3369 
3370 // Emits the list of parsed attributes.
3371 void EmitClangAttrParsedAttrList(RecordKeeper &Records, raw_ostream &OS) {
3372   emitSourceFileHeader("List of all attributes that Clang recognizes", OS);
3373 
3374   OS << "#ifndef PARSED_ATTR\n";
3375   OS << "#define PARSED_ATTR(NAME) NAME\n";
3376   OS << "#endif\n\n";
3377 
3378   ParsedAttrMap Names = getParsedAttrList(Records);
3379   for (const auto &I : Names) {
3380     OS << "PARSED_ATTR(" << I.first << ")\n";
3381   }
3382 }
3383 
3384 static bool isArgVariadic(const Record &R, StringRef AttrName) {
3385   return createArgument(R, AttrName)->isVariadic();
3386 }
3387 
3388 static void emitArgInfo(const Record &R, raw_ostream &OS) {
3389   // This function will count the number of arguments specified for the
3390   // attribute and emit the number of required arguments followed by the
3391   // number of optional arguments.
3392   std::vector<Record *> Args = R.getValueAsListOfDefs("Args");
3393   unsigned ArgCount = 0, OptCount = 0;
3394   bool HasVariadic = false;
3395   for (const auto *Arg : Args) {
3396     // If the arg is fake, it's the user's job to supply it: general parsing
3397     // logic shouldn't need to know anything about it.
3398     if (Arg->getValueAsBit("Fake"))
3399       continue;
3400     Arg->getValueAsBit("Optional") ? ++OptCount : ++ArgCount;
3401     if (!HasVariadic && isArgVariadic(*Arg, R.getName()))
3402       HasVariadic = true;
3403   }
3404 
3405   // If there is a variadic argument, we will set the optional argument count
3406   // to its largest value. Since it's currently a 4-bit number, we set it to 15.
3407   OS << "    NumArgs = " << ArgCount << ";\n";
3408   OS << "    OptArgs = " << (HasVariadic ? 15 : OptCount) << ";\n";
3409 }
3410 
3411 static std::string GetDiagnosticSpelling(const Record &R) {
3412   std::string Ret = std::string(R.getValueAsString("DiagSpelling"));
3413   if (!Ret.empty())
3414     return Ret;
3415 
3416   // If we couldn't find the DiagSpelling in this object, we can check to see
3417   // if the object is one that has a base, and if it is, loop up to the Base
3418   // member recursively.
3419   if (auto Base = R.getValueAsOptionalDef(BaseFieldName))
3420     return GetDiagnosticSpelling(*Base);
3421 
3422   return "";
3423 }
3424 
3425 static std::string CalculateDiagnostic(const Record &S) {
3426   // If the SubjectList object has a custom diagnostic associated with it,
3427   // return that directly.
3428   const StringRef CustomDiag = S.getValueAsString("CustomDiag");
3429   if (!CustomDiag.empty())
3430     return ("\"" + Twine(CustomDiag) + "\"").str();
3431 
3432   std::vector<std::string> DiagList;
3433   std::vector<Record *> Subjects = S.getValueAsListOfDefs("Subjects");
3434   for (const auto *Subject : Subjects) {
3435     const Record &R = *Subject;
3436     // Get the diagnostic text from the Decl or Stmt node given.
3437     std::string V = GetDiagnosticSpelling(R);
3438     if (V.empty()) {
3439       PrintError(R.getLoc(),
3440                  "Could not determine diagnostic spelling for the node: " +
3441                      R.getName() + "; please add one to DeclNodes.td");
3442     } else {
3443       // The node may contain a list of elements itself, so split the elements
3444       // by a comma, and trim any whitespace.
3445       SmallVector<StringRef, 2> Frags;
3446       llvm::SplitString(V, Frags, ",");
3447       for (auto Str : Frags) {
3448         DiagList.push_back(std::string(Str.trim()));
3449       }
3450     }
3451   }
3452 
3453   if (DiagList.empty()) {
3454     PrintFatalError(S.getLoc(),
3455                     "Could not deduce diagnostic argument for Attr subjects");
3456     return "";
3457   }
3458 
3459   // FIXME: this is not particularly good for localization purposes and ideally
3460   // should be part of the diagnostics engine itself with some sort of list
3461   // specifier.
3462 
3463   // A single member of the list can be returned directly.
3464   if (DiagList.size() == 1)
3465     return '"' + DiagList.front() + '"';
3466 
3467   if (DiagList.size() == 2)
3468     return '"' + DiagList[0] + " and " + DiagList[1] + '"';
3469 
3470   // If there are more than two in the list, we serialize the first N - 1
3471   // elements with a comma. This leaves the string in the state: foo, bar,
3472   // baz (but misses quux). We can then add ", and " for the last element
3473   // manually.
3474   std::string Diag = llvm::join(DiagList.begin(), DiagList.end() - 1, ", ");
3475   return '"' + Diag + ", and " + *(DiagList.end() - 1) + '"';
3476 }
3477 
3478 static std::string GetSubjectWithSuffix(const Record *R) {
3479   const std::string &B = std::string(R->getName());
3480   if (B == "DeclBase")
3481     return "Decl";
3482   return B + "Decl";
3483 }
3484 
3485 static std::string functionNameForCustomAppertainsTo(const Record &Subject) {
3486   return "is" + Subject.getName().str();
3487 }
3488 
3489 static void GenerateCustomAppertainsTo(const Record &Subject, raw_ostream &OS) {
3490   std::string FnName = functionNameForCustomAppertainsTo(Subject);
3491 
3492   // If this code has already been generated, we don't need to do anything.
3493   static std::set<std::string> CustomSubjectSet;
3494   auto I = CustomSubjectSet.find(FnName);
3495   if (I != CustomSubjectSet.end())
3496     return;
3497 
3498   // This only works with non-root Decls.
3499   Record *Base = Subject.getValueAsDef(BaseFieldName);
3500 
3501   // Not currently support custom subjects within custom subjects.
3502   if (Base->isSubClassOf("SubsetSubject")) {
3503     PrintFatalError(Subject.getLoc(),
3504                     "SubsetSubjects within SubsetSubjects is not supported");
3505     return;
3506   }
3507 
3508   OS << "static bool " << FnName << "(const Decl *D) {\n";
3509   OS << "  if (const auto *S = dyn_cast<";
3510   OS << GetSubjectWithSuffix(Base);
3511   OS << ">(D))\n";
3512   OS << "    return " << Subject.getValueAsString("CheckCode") << ";\n";
3513   OS << "  return false;\n";
3514   OS << "}\n\n";
3515 
3516   CustomSubjectSet.insert(FnName);
3517 }
3518 
3519 static void GenerateAppertainsTo(const Record &Attr, raw_ostream &OS) {
3520   // If the attribute does not contain a Subjects definition, then use the
3521   // default appertainsTo logic.
3522   if (Attr.isValueUnset("Subjects"))
3523     return;
3524 
3525   const Record *SubjectObj = Attr.getValueAsDef("Subjects");
3526   std::vector<Record *> Subjects = SubjectObj->getValueAsListOfDefs("Subjects");
3527 
3528   // If the list of subjects is empty, it is assumed that the attribute
3529   // appertains to everything.
3530   if (Subjects.empty())
3531     return;
3532 
3533   bool Warn = SubjectObj->getValueAsDef("Diag")->getValueAsBit("Warn");
3534 
3535   // Split the subjects into declaration subjects and statement subjects.
3536   // FIXME: subset subjects are added to the declaration list until there are
3537   // enough statement attributes with custom subject needs to warrant
3538   // the implementation effort.
3539   std::vector<Record *> DeclSubjects, StmtSubjects;
3540   llvm::copy_if(
3541       Subjects, std::back_inserter(DeclSubjects), [](const Record *R) {
3542         return R->isSubClassOf("SubsetSubject") || !R->isSubClassOf("StmtNode");
3543       });
3544   llvm::copy_if(Subjects, std::back_inserter(StmtSubjects),
3545                 [](const Record *R) { return R->isSubClassOf("StmtNode"); });
3546 
3547   // We should have sorted all of the subjects into two lists.
3548   // FIXME: this assertion will be wrong if we ever add type attribute subjects.
3549   assert(DeclSubjects.size() + StmtSubjects.size() == Subjects.size());
3550 
3551   if (DeclSubjects.empty()) {
3552     // If there are no decl subjects but there are stmt subjects, diagnose
3553     // trying to apply a statement attribute to a declaration.
3554     if (!StmtSubjects.empty()) {
3555       OS << "bool diagAppertainsToDecl(Sema &S, const ParsedAttr &AL, ";
3556       OS << "const Decl *D) const override {\n";
3557       OS << "  S.Diag(AL.getLoc(), diag::err_stmt_attribute_invalid_on_decl)\n";
3558       OS << "    << AL << D->getLocation();\n";
3559       OS << "  return false;\n";
3560       OS << "}\n\n";
3561     }
3562   } else {
3563     // Otherwise, generate an appertainsTo check specific to this attribute
3564     // which checks all of the given subjects against the Decl passed in.
3565     OS << "bool diagAppertainsToDecl(Sema &S, ";
3566     OS << "const ParsedAttr &Attr, const Decl *D) const override {\n";
3567     OS << "  if (";
3568     for (auto I = DeclSubjects.begin(), E = DeclSubjects.end(); I != E; ++I) {
3569       // If the subject has custom code associated with it, use the generated
3570       // function for it. The function cannot be inlined into this check (yet)
3571       // because it requires the subject to be of a specific type, and were that
3572       // information inlined here, it would not support an attribute with
3573       // multiple custom subjects.
3574       if ((*I)->isSubClassOf("SubsetSubject"))
3575         OS << "!" << functionNameForCustomAppertainsTo(**I) << "(D)";
3576       else
3577         OS << "!isa<" << GetSubjectWithSuffix(*I) << ">(D)";
3578 
3579       if (I + 1 != E)
3580         OS << " && ";
3581     }
3582     OS << ") {\n";
3583     OS << "    S.Diag(Attr.getLoc(), diag::";
3584     OS << (Warn ? "warn_attribute_wrong_decl_type_str"
3585                 : "err_attribute_wrong_decl_type_str");
3586     OS << ")\n";
3587     OS << "      << Attr << ";
3588     OS << CalculateDiagnostic(*SubjectObj) << ";\n";
3589     OS << "    return false;\n";
3590     OS << "  }\n";
3591     OS << "  return true;\n";
3592     OS << "}\n\n";
3593   }
3594 
3595   if (StmtSubjects.empty()) {
3596     // If there are no stmt subjects but there are decl subjects, diagnose
3597     // trying to apply a declaration attribute to a statement.
3598     if (!DeclSubjects.empty()) {
3599       OS << "bool diagAppertainsToStmt(Sema &S, const ParsedAttr &AL, ";
3600       OS << "const Stmt *St) const override {\n";
3601       OS << "  S.Diag(AL.getLoc(), diag::err_decl_attribute_invalid_on_stmt)\n";
3602       OS << "    << AL << St->getBeginLoc();\n";
3603       OS << "  return false;\n";
3604       OS << "}\n\n";
3605     }
3606   } else {
3607     // Now, do the same for statements.
3608     OS << "bool diagAppertainsToStmt(Sema &S, ";
3609     OS << "const ParsedAttr &Attr, const Stmt *St) const override {\n";
3610     OS << "  if (";
3611     for (auto I = StmtSubjects.begin(), E = StmtSubjects.end(); I != E; ++I) {
3612       OS << "!isa<" << (*I)->getName() << ">(St)";
3613       if (I + 1 != E)
3614         OS << " && ";
3615     }
3616     OS << ") {\n";
3617     OS << "    S.Diag(Attr.getLoc(), diag::";
3618     OS << (Warn ? "warn_attribute_wrong_decl_type_str"
3619                 : "err_attribute_wrong_decl_type_str");
3620     OS << ")\n";
3621     OS << "      << Attr << ";
3622     OS << CalculateDiagnostic(*SubjectObj) << ";\n";
3623     OS << "    return false;\n";
3624     OS << "  }\n";
3625     OS << "  return true;\n";
3626     OS << "}\n\n";
3627   }
3628 }
3629 
3630 // Generates the mutual exclusion checks. The checks for parsed attributes are
3631 // written into OS and the checks for merging declaration attributes are
3632 // written into MergeOS.
3633 static void GenerateMutualExclusionsChecks(const Record &Attr,
3634                                            const RecordKeeper &Records,
3635                                            raw_ostream &OS,
3636                                            raw_ostream &MergeDeclOS,
3637                                            raw_ostream &MergeStmtOS) {
3638   // Find all of the definitions that inherit from MutualExclusions and include
3639   // the given attribute in the list of exclusions to generate the
3640   // diagMutualExclusion() check.
3641   std::vector<Record *> ExclusionsList =
3642       Records.getAllDerivedDefinitions("MutualExclusions");
3643 
3644   // We don't do any of this magic for type attributes yet.
3645   if (Attr.isSubClassOf("TypeAttr"))
3646     return;
3647 
3648   // This means the attribute is either a statement attribute, a decl
3649   // attribute, or both; find out which.
3650   bool CurAttrIsStmtAttr =
3651       Attr.isSubClassOf("StmtAttr") || Attr.isSubClassOf("DeclOrStmtAttr");
3652   bool CurAttrIsDeclAttr =
3653       !CurAttrIsStmtAttr || Attr.isSubClassOf("DeclOrStmtAttr");
3654 
3655   std::vector<std::string> DeclAttrs, StmtAttrs;
3656 
3657   for (const Record *Exclusion : ExclusionsList) {
3658     std::vector<Record *> MutuallyExclusiveAttrs =
3659         Exclusion->getValueAsListOfDefs("Exclusions");
3660     auto IsCurAttr = [Attr](const Record *R) {
3661       return R->getName() == Attr.getName();
3662     };
3663     if (llvm::any_of(MutuallyExclusiveAttrs, IsCurAttr)) {
3664       // This list of exclusions includes the attribute we're looking for, so
3665       // add the exclusive attributes to the proper list for checking.
3666       for (const Record *AttrToExclude : MutuallyExclusiveAttrs) {
3667         if (IsCurAttr(AttrToExclude))
3668           continue;
3669 
3670         if (CurAttrIsStmtAttr)
3671           StmtAttrs.push_back((AttrToExclude->getName() + "Attr").str());
3672         if (CurAttrIsDeclAttr)
3673           DeclAttrs.push_back((AttrToExclude->getName() + "Attr").str());
3674       }
3675     }
3676   }
3677 
3678   // If there are any decl or stmt attributes, silence -Woverloaded-virtual
3679   // warnings for them both.
3680   if (!DeclAttrs.empty() || !StmtAttrs.empty())
3681     OS << "  using ParsedAttrInfo::diagMutualExclusion;\n\n";
3682 
3683   // If we discovered any decl or stmt attributes to test for, generate the
3684   // predicates for them now.
3685   if (!DeclAttrs.empty()) {
3686     // Generate the ParsedAttrInfo subclass logic for declarations.
3687     OS << "  bool diagMutualExclusion(Sema &S, const ParsedAttr &AL, "
3688        << "const Decl *D) const override {\n";
3689     for (const std::string &A : DeclAttrs) {
3690       OS << "    if (const auto *A = D->getAttr<" << A << ">()) {\n";
3691       OS << "      S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)"
3692          << " << AL << A;\n";
3693       OS << "      S.Diag(A->getLocation(), diag::note_conflicting_attribute);";
3694       OS << "      \nreturn false;\n";
3695       OS << "    }\n";
3696     }
3697     OS << "    return true;\n";
3698     OS << "  }\n\n";
3699 
3700     // Also generate the declaration attribute merging logic if the current
3701     // attribute is one that can be inheritted on a declaration. It is assumed
3702     // this code will be executed in the context of a function with parameters:
3703     // Sema &S, Decl *D, Attr *A and that returns a bool (false on diagnostic,
3704     // true on success).
3705     if (Attr.isSubClassOf("InheritableAttr")) {
3706       MergeDeclOS << "  if (const auto *Second = dyn_cast<"
3707                   << (Attr.getName() + "Attr").str() << ">(A)) {\n";
3708       for (const std::string &A : DeclAttrs) {
3709         MergeDeclOS << "    if (const auto *First = D->getAttr<" << A
3710                     << ">()) {\n";
3711         MergeDeclOS << "      S.Diag(First->getLocation(), "
3712                     << "diag::err_attributes_are_not_compatible) << First << "
3713                     << "Second;\n";
3714         MergeDeclOS << "      S.Diag(Second->getLocation(), "
3715                     << "diag::note_conflicting_attribute);\n";
3716         MergeDeclOS << "      return false;\n";
3717         MergeDeclOS << "    }\n";
3718       }
3719       MergeDeclOS << "    return true;\n";
3720       MergeDeclOS << "  }\n";
3721     }
3722   }
3723 
3724   // Statement attributes are a bit different from declarations. With
3725   // declarations, each attribute is added to the declaration as it is
3726   // processed, and so you can look on the Decl * itself to see if there is a
3727   // conflicting attribute. Statement attributes are processed as a group
3728   // because AttributedStmt needs to tail-allocate all of the attribute nodes
3729   // at once. This means we cannot check whether the statement already contains
3730   // an attribute to check for the conflict. Instead, we need to check whether
3731   // the given list of semantic attributes contain any conflicts. It is assumed
3732   // this code will be executed in the context of a function with parameters:
3733   // Sema &S, const SmallVectorImpl<const Attr *> &C. The code will be within a
3734   // loop which loops over the container C with a loop variable named A to
3735   // represent the current attribute to check for conflicts.
3736   //
3737   // FIXME: it would be nice not to walk over the list of potential attributes
3738   // to apply to the statement more than once, but statements typically don't
3739   // have long lists of attributes on them, so re-walking the list should not
3740   // be an expensive operation.
3741   if (!StmtAttrs.empty()) {
3742     MergeStmtOS << "    if (const auto *Second = dyn_cast<"
3743                 << (Attr.getName() + "Attr").str() << ">(A)) {\n";
3744     MergeStmtOS << "      auto Iter = llvm::find_if(C, [](const Attr *Check) "
3745                 << "{ return isa<";
3746     interleave(
3747         StmtAttrs, [&](const std::string &Name) { MergeStmtOS << Name; },
3748         [&] { MergeStmtOS << ", "; });
3749     MergeStmtOS << ">(Check); });\n";
3750     MergeStmtOS << "      if (Iter != C.end()) {\n";
3751     MergeStmtOS << "        S.Diag((*Iter)->getLocation(), "
3752                 << "diag::err_attributes_are_not_compatible) << *Iter << "
3753                 << "Second;\n";
3754     MergeStmtOS << "        S.Diag(Second->getLocation(), "
3755                 << "diag::note_conflicting_attribute);\n";
3756     MergeStmtOS << "        return false;\n";
3757     MergeStmtOS << "      }\n";
3758     MergeStmtOS << "    }\n";
3759   }
3760 }
3761 
3762 static void
3763 emitAttributeMatchRules(PragmaClangAttributeSupport &PragmaAttributeSupport,
3764                         raw_ostream &OS) {
3765   OS << "static bool checkAttributeMatchRuleAppliesTo(const Decl *D, "
3766      << AttributeSubjectMatchRule::EnumName << " rule) {\n";
3767   OS << "  switch (rule) {\n";
3768   for (const auto &Rule : PragmaAttributeSupport.Rules) {
3769     if (Rule.isAbstractRule()) {
3770       OS << "  case " << Rule.getEnumValue() << ":\n";
3771       OS << "    assert(false && \"Abstract matcher rule isn't allowed\");\n";
3772       OS << "    return false;\n";
3773       continue;
3774     }
3775     std::vector<Record *> Subjects = Rule.getSubjects();
3776     assert(!Subjects.empty() && "Missing subjects");
3777     OS << "  case " << Rule.getEnumValue() << ":\n";
3778     OS << "    return ";
3779     for (auto I = Subjects.begin(), E = Subjects.end(); I != E; ++I) {
3780       // If the subject has custom code associated with it, use the function
3781       // that was generated for GenerateAppertainsTo to check if the declaration
3782       // is valid.
3783       if ((*I)->isSubClassOf("SubsetSubject"))
3784         OS << functionNameForCustomAppertainsTo(**I) << "(D)";
3785       else
3786         OS << "isa<" << GetSubjectWithSuffix(*I) << ">(D)";
3787 
3788       if (I + 1 != E)
3789         OS << " || ";
3790     }
3791     OS << ";\n";
3792   }
3793   OS << "  }\n";
3794   OS << "  llvm_unreachable(\"Invalid match rule\");\nreturn false;\n";
3795   OS << "}\n\n";
3796 }
3797 
3798 static void GenerateLangOptRequirements(const Record &R,
3799                                         raw_ostream &OS) {
3800   // If the attribute has an empty or unset list of language requirements,
3801   // use the default handler.
3802   std::vector<Record *> LangOpts = R.getValueAsListOfDefs("LangOpts");
3803   if (LangOpts.empty())
3804     return;
3805 
3806   OS << "bool diagLangOpts(Sema &S, const ParsedAttr &Attr) ";
3807   OS << "const override {\n";
3808   OS << "  auto &LangOpts = S.LangOpts;\n";
3809   OS << "  if (" << GenerateTestExpression(LangOpts) << ")\n";
3810   OS << "    return true;\n\n";
3811   OS << "  S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) ";
3812   OS << "<< Attr;\n";
3813   OS << "  return false;\n";
3814   OS << "}\n\n";
3815 }
3816 
3817 static void GenerateTargetRequirements(const Record &Attr,
3818                                        const ParsedAttrMap &Dupes,
3819                                        raw_ostream &OS) {
3820   // If the attribute is not a target specific attribute, use the default
3821   // target handler.
3822   if (!Attr.isSubClassOf("TargetSpecificAttr"))
3823     return;
3824 
3825   // Get the list of architectures to be tested for.
3826   const Record *R = Attr.getValueAsDef("Target");
3827   std::vector<StringRef> Arches = R->getValueAsListOfStrings("Arches");
3828 
3829   // If there are other attributes which share the same parsed attribute kind,
3830   // such as target-specific attributes with a shared spelling, collapse the
3831   // duplicate architectures. This is required because a shared target-specific
3832   // attribute has only one ParsedAttr::Kind enumeration value, but it
3833   // applies to multiple target architectures. In order for the attribute to be
3834   // considered valid, all of its architectures need to be included.
3835   if (!Attr.isValueUnset("ParseKind")) {
3836     const StringRef APK = Attr.getValueAsString("ParseKind");
3837     for (const auto &I : Dupes) {
3838       if (I.first == APK) {
3839         std::vector<StringRef> DA =
3840             I.second->getValueAsDef("Target")->getValueAsListOfStrings(
3841                 "Arches");
3842         Arches.insert(Arches.end(), DA.begin(), DA.end());
3843       }
3844     }
3845   }
3846 
3847   std::string FnName = "isTarget";
3848   std::string Test;
3849   bool UsesT = GenerateTargetSpecificAttrChecks(R, Arches, Test, &FnName);
3850 
3851   OS << "bool existsInTarget(const TargetInfo &Target) const override {\n";
3852   if (UsesT)
3853     OS << "  const llvm::Triple &T = Target.getTriple(); (void)T;\n";
3854   OS << "  return " << Test << ";\n";
3855   OS << "}\n\n";
3856 }
3857 
3858 static void GenerateSpellingIndexToSemanticSpelling(const Record &Attr,
3859                                                     raw_ostream &OS) {
3860   // If the attribute does not have a semantic form, we can bail out early.
3861   if (!Attr.getValueAsBit("ASTNode"))
3862     return;
3863 
3864   std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attr);
3865 
3866   // If there are zero or one spellings, or all of the spellings share the same
3867   // name, we can also bail out early.
3868   if (Spellings.size() <= 1 || SpellingNamesAreCommon(Spellings))
3869     return;
3870 
3871   // Generate the enumeration we will use for the mapping.
3872   SemanticSpellingMap SemanticToSyntacticMap;
3873   std::string Enum = CreateSemanticSpellings(Spellings, SemanticToSyntacticMap);
3874   std::string Name = Attr.getName().str() + "AttrSpellingMap";
3875 
3876   OS << "unsigned spellingIndexToSemanticSpelling(";
3877   OS << "const ParsedAttr &Attr) const override {\n";
3878   OS << Enum;
3879   OS << "  unsigned Idx = Attr.getAttributeSpellingListIndex();\n";
3880   WriteSemanticSpellingSwitch("Idx", SemanticToSyntacticMap, OS);
3881   OS << "}\n\n";
3882 }
3883 
3884 static void GenerateHandleDeclAttribute(const Record &Attr, raw_ostream &OS) {
3885   // Only generate if Attr can be handled simply.
3886   if (!Attr.getValueAsBit("SimpleHandler"))
3887     return;
3888 
3889   // Generate a function which just converts from ParsedAttr to the Attr type.
3890   OS << "AttrHandling handleDeclAttribute(Sema &S, Decl *D,";
3891   OS << "const ParsedAttr &Attr) const override {\n";
3892   OS << "  D->addAttr(::new (S.Context) " << Attr.getName();
3893   OS << "Attr(S.Context, Attr));\n";
3894   OS << "  return AttributeApplied;\n";
3895   OS << "}\n\n";
3896 }
3897 
3898 static bool IsKnownToGCC(const Record &Attr) {
3899   // Look at the spellings for this subject; if there are any spellings which
3900   // claim to be known to GCC, the attribute is known to GCC.
3901   return llvm::any_of(
3902       GetFlattenedSpellings(Attr),
3903       [](const FlattenedSpelling &S) { return S.knownToGCC(); });
3904 }
3905 
3906 /// Emits the parsed attribute helpers
3907 void EmitClangAttrParsedAttrImpl(RecordKeeper &Records, raw_ostream &OS) {
3908   emitSourceFileHeader("Parsed attribute helpers", OS);
3909 
3910   OS << "#if !defined(WANT_DECL_MERGE_LOGIC) && "
3911      << "!defined(WANT_STMT_MERGE_LOGIC)\n";
3912   PragmaClangAttributeSupport &PragmaAttributeSupport =
3913       getPragmaAttributeSupport(Records);
3914 
3915   // Get the list of parsed attributes, and accept the optional list of
3916   // duplicates due to the ParseKind.
3917   ParsedAttrMap Dupes;
3918   ParsedAttrMap Attrs = getParsedAttrList(Records, &Dupes);
3919 
3920   // Generate all of the custom appertainsTo functions that the attributes
3921   // will be using.
3922   for (auto I : Attrs) {
3923     const Record &Attr = *I.second;
3924     if (Attr.isValueUnset("Subjects"))
3925       continue;
3926     const Record *SubjectObj = Attr.getValueAsDef("Subjects");
3927     for (auto Subject : SubjectObj->getValueAsListOfDefs("Subjects"))
3928       if (Subject->isSubClassOf("SubsetSubject"))
3929         GenerateCustomAppertainsTo(*Subject, OS);
3930   }
3931 
3932   // This stream is used to collect all of the declaration attribute merging
3933   // logic for performing mutual exclusion checks. This gets emitted at the
3934   // end of the file in a helper function of its own.
3935   std::string DeclMergeChecks, StmtMergeChecks;
3936   raw_string_ostream MergeDeclOS(DeclMergeChecks), MergeStmtOS(StmtMergeChecks);
3937 
3938   // Generate a ParsedAttrInfo struct for each of the attributes.
3939   for (auto I = Attrs.begin(), E = Attrs.end(); I != E; ++I) {
3940     // TODO: If the attribute's kind appears in the list of duplicates, that is
3941     // because it is a target-specific attribute that appears multiple times.
3942     // It would be beneficial to test whether the duplicates are "similar
3943     // enough" to each other to not cause problems. For instance, check that
3944     // the spellings are identical, and custom parsing rules match, etc.
3945 
3946     // We need to generate struct instances based off ParsedAttrInfo from
3947     // ParsedAttr.cpp.
3948     const std::string &AttrName = I->first;
3949     const Record &Attr = *I->second;
3950     auto Spellings = GetFlattenedSpellings(Attr);
3951     if (!Spellings.empty()) {
3952       OS << "static constexpr ParsedAttrInfo::Spelling " << I->first
3953          << "Spellings[] = {\n";
3954       for (const auto &S : Spellings) {
3955         const std::string &RawSpelling = S.name();
3956         std::string Spelling;
3957         if (!S.nameSpace().empty())
3958           Spelling += S.nameSpace() + "::";
3959         if (S.variety() == "GNU")
3960           Spelling += NormalizeGNUAttrSpelling(RawSpelling);
3961         else
3962           Spelling += RawSpelling;
3963         OS << "  {AttributeCommonInfo::AS_" << S.variety();
3964         OS << ", \"" << Spelling << "\"},\n";
3965       }
3966       OS << "};\n";
3967     }
3968     OS << "struct ParsedAttrInfo" << I->first
3969        << " final : public ParsedAttrInfo {\n";
3970     OS << "  ParsedAttrInfo" << I->first << "() {\n";
3971     OS << "    AttrKind = ParsedAttr::AT_" << AttrName << ";\n";
3972     emitArgInfo(Attr, OS);
3973     OS << "    HasCustomParsing = ";
3974     OS << Attr.getValueAsBit("HasCustomParsing") << ";\n";
3975     OS << "    IsTargetSpecific = ";
3976     OS << Attr.isSubClassOf("TargetSpecificAttr") << ";\n";
3977     OS << "    IsType = ";
3978     OS << (Attr.isSubClassOf("TypeAttr") ||
3979            Attr.isSubClassOf("DeclOrTypeAttr")) << ";\n";
3980     OS << "    IsStmt = ";
3981     OS << (Attr.isSubClassOf("StmtAttr") || Attr.isSubClassOf("DeclOrStmtAttr"))
3982        << ";\n";
3983     OS << "    IsKnownToGCC = ";
3984     OS << IsKnownToGCC(Attr) << ";\n";
3985     OS << "    IsSupportedByPragmaAttribute = ";
3986     OS << PragmaAttributeSupport.isAttributedSupported(*I->second) << ";\n";
3987     if (!Spellings.empty())
3988       OS << "    Spellings = " << I->first << "Spellings;\n";
3989     OS << "  }\n";
3990     GenerateAppertainsTo(Attr, OS);
3991     GenerateMutualExclusionsChecks(Attr, Records, OS, MergeDeclOS, MergeStmtOS);
3992     GenerateLangOptRequirements(Attr, OS);
3993     GenerateTargetRequirements(Attr, Dupes, OS);
3994     GenerateSpellingIndexToSemanticSpelling(Attr, OS);
3995     PragmaAttributeSupport.generateStrictConformsTo(*I->second, OS);
3996     GenerateHandleDeclAttribute(Attr, OS);
3997     OS << "static const ParsedAttrInfo" << I->first << " Instance;\n";
3998     OS << "};\n";
3999     OS << "const ParsedAttrInfo" << I->first << " ParsedAttrInfo" << I->first
4000        << "::Instance;\n";
4001   }
4002 
4003   OS << "static const ParsedAttrInfo *AttrInfoMap[] = {\n";
4004   for (auto I = Attrs.begin(), E = Attrs.end(); I != E; ++I) {
4005     OS << "&ParsedAttrInfo" << I->first << "::Instance,\n";
4006   }
4007   OS << "};\n\n";
4008 
4009   // Generate the attribute match rules.
4010   emitAttributeMatchRules(PragmaAttributeSupport, OS);
4011 
4012   OS << "#elif defined(WANT_DECL_MERGE_LOGIC)\n\n";
4013 
4014   // Write out the declaration merging check logic.
4015   OS << "static bool DiagnoseMutualExclusions(Sema &S, const NamedDecl *D, "
4016      << "const Attr *A) {\n";
4017   OS << MergeDeclOS.str();
4018   OS << "  return true;\n";
4019   OS << "}\n\n";
4020 
4021   OS << "#elif defined(WANT_STMT_MERGE_LOGIC)\n\n";
4022 
4023   // Write out the statement merging check logic.
4024   OS << "static bool DiagnoseMutualExclusions(Sema &S, "
4025      << "const SmallVectorImpl<const Attr *> &C) {\n";
4026   OS << "  for (const Attr *A : C) {\n";
4027   OS << MergeStmtOS.str();
4028   OS << "  }\n";
4029   OS << "  return true;\n";
4030   OS << "}\n\n";
4031 
4032   OS << "#endif\n";
4033 }
4034 
4035 // Emits the kind list of parsed attributes
4036 void EmitClangAttrParsedAttrKinds(RecordKeeper &Records, raw_ostream &OS) {
4037   emitSourceFileHeader("Attribute name matcher", OS);
4038 
4039   std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
4040   std::vector<StringMatcher::StringPair> GNU, Declspec, Microsoft, CXX11,
4041       Keywords, Pragma, C2x;
4042   std::set<std::string> Seen;
4043   for (const auto *A : Attrs) {
4044     const Record &Attr = *A;
4045 
4046     bool SemaHandler = Attr.getValueAsBit("SemaHandler");
4047     bool Ignored = Attr.getValueAsBit("Ignored");
4048     if (SemaHandler || Ignored) {
4049       // Attribute spellings can be shared between target-specific attributes,
4050       // and can be shared between syntaxes for the same attribute. For
4051       // instance, an attribute can be spelled GNU<"interrupt"> for an ARM-
4052       // specific attribute, or MSP430-specific attribute. Additionally, an
4053       // attribute can be spelled GNU<"dllexport"> and Declspec<"dllexport">
4054       // for the same semantic attribute. Ultimately, we need to map each of
4055       // these to a single AttributeCommonInfo::Kind value, but the
4056       // StringMatcher class cannot handle duplicate match strings. So we
4057       // generate a list of string to match based on the syntax, and emit
4058       // multiple string matchers depending on the syntax used.
4059       std::string AttrName;
4060       if (Attr.isSubClassOf("TargetSpecificAttr") &&
4061           !Attr.isValueUnset("ParseKind")) {
4062         AttrName = std::string(Attr.getValueAsString("ParseKind"));
4063         if (Seen.find(AttrName) != Seen.end())
4064           continue;
4065         Seen.insert(AttrName);
4066       } else
4067         AttrName = NormalizeAttrName(StringRef(Attr.getName())).str();
4068 
4069       std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attr);
4070       for (const auto &S : Spellings) {
4071         const std::string &RawSpelling = S.name();
4072         std::vector<StringMatcher::StringPair> *Matches = nullptr;
4073         std::string Spelling;
4074         const std::string &Variety = S.variety();
4075         if (Variety == "CXX11") {
4076           Matches = &CXX11;
4077           if (!S.nameSpace().empty())
4078             Spelling += S.nameSpace() + "::";
4079         } else if (Variety == "C2x") {
4080           Matches = &C2x;
4081           if (!S.nameSpace().empty())
4082             Spelling += S.nameSpace() + "::";
4083         } else if (Variety == "GNU")
4084           Matches = &GNU;
4085         else if (Variety == "Declspec")
4086           Matches = &Declspec;
4087         else if (Variety == "Microsoft")
4088           Matches = &Microsoft;
4089         else if (Variety == "Keyword")
4090           Matches = &Keywords;
4091         else if (Variety == "Pragma")
4092           Matches = &Pragma;
4093 
4094         assert(Matches && "Unsupported spelling variety found");
4095 
4096         if (Variety == "GNU")
4097           Spelling += NormalizeGNUAttrSpelling(RawSpelling);
4098         else
4099           Spelling += RawSpelling;
4100 
4101         if (SemaHandler)
4102           Matches->push_back(StringMatcher::StringPair(
4103               Spelling, "return AttributeCommonInfo::AT_" + AttrName + ";"));
4104         else
4105           Matches->push_back(StringMatcher::StringPair(
4106               Spelling, "return AttributeCommonInfo::IgnoredAttribute;"));
4107       }
4108     }
4109   }
4110 
4111   OS << "static AttributeCommonInfo::Kind getAttrKind(StringRef Name, ";
4112   OS << "AttributeCommonInfo::Syntax Syntax) {\n";
4113   OS << "  if (AttributeCommonInfo::AS_GNU == Syntax) {\n";
4114   StringMatcher("Name", GNU, OS).Emit();
4115   OS << "  } else if (AttributeCommonInfo::AS_Declspec == Syntax) {\n";
4116   StringMatcher("Name", Declspec, OS).Emit();
4117   OS << "  } else if (AttributeCommonInfo::AS_Microsoft == Syntax) {\n";
4118   StringMatcher("Name", Microsoft, OS).Emit();
4119   OS << "  } else if (AttributeCommonInfo::AS_CXX11 == Syntax) {\n";
4120   StringMatcher("Name", CXX11, OS).Emit();
4121   OS << "  } else if (AttributeCommonInfo::AS_C2x == Syntax) {\n";
4122   StringMatcher("Name", C2x, OS).Emit();
4123   OS << "  } else if (AttributeCommonInfo::AS_Keyword == Syntax || ";
4124   OS << "AttributeCommonInfo::AS_ContextSensitiveKeyword == Syntax) {\n";
4125   StringMatcher("Name", Keywords, OS).Emit();
4126   OS << "  } else if (AttributeCommonInfo::AS_Pragma == Syntax) {\n";
4127   StringMatcher("Name", Pragma, OS).Emit();
4128   OS << "  }\n";
4129   OS << "  return AttributeCommonInfo::UnknownAttribute;\n"
4130      << "}\n";
4131 }
4132 
4133 // Emits the code to dump an attribute.
4134 void EmitClangAttrTextNodeDump(RecordKeeper &Records, raw_ostream &OS) {
4135   emitSourceFileHeader("Attribute text node dumper", OS);
4136 
4137   std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"), Args;
4138   for (const auto *Attr : Attrs) {
4139     const Record &R = *Attr;
4140     if (!R.getValueAsBit("ASTNode"))
4141       continue;
4142 
4143     // If the attribute has a semantically-meaningful name (which is determined
4144     // by whether there is a Spelling enumeration for it), then write out the
4145     // spelling used for the attribute.
4146 
4147     std::string FunctionContent;
4148     llvm::raw_string_ostream SS(FunctionContent);
4149 
4150     std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R);
4151     if (Spellings.size() > 1 && !SpellingNamesAreCommon(Spellings))
4152       SS << "    OS << \" \" << A->getSpelling();\n";
4153 
4154     Args = R.getValueAsListOfDefs("Args");
4155     for (const auto *Arg : Args)
4156       createArgument(*Arg, R.getName())->writeDump(SS);
4157 
4158     if (SS.tell()) {
4159       OS << "  void Visit" << R.getName() << "Attr(const " << R.getName()
4160          << "Attr *A) {\n";
4161       if (!Args.empty())
4162         OS << "    const auto *SA = cast<" << R.getName()
4163            << "Attr>(A); (void)SA;\n";
4164       OS << SS.str();
4165       OS << "  }\n";
4166     }
4167   }
4168 }
4169 
4170 void EmitClangAttrNodeTraverse(RecordKeeper &Records, raw_ostream &OS) {
4171   emitSourceFileHeader("Attribute text node traverser", OS);
4172 
4173   std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr"), Args;
4174   for (const auto *Attr : Attrs) {
4175     const Record &R = *Attr;
4176     if (!R.getValueAsBit("ASTNode"))
4177       continue;
4178 
4179     std::string FunctionContent;
4180     llvm::raw_string_ostream SS(FunctionContent);
4181 
4182     Args = R.getValueAsListOfDefs("Args");
4183     for (const auto *Arg : Args)
4184       createArgument(*Arg, R.getName())->writeDumpChildren(SS);
4185     if (SS.tell()) {
4186       OS << "  void Visit" << R.getName() << "Attr(const " << R.getName()
4187          << "Attr *A) {\n";
4188       if (!Args.empty())
4189         OS << "    const auto *SA = cast<" << R.getName()
4190            << "Attr>(A); (void)SA;\n";
4191       OS << SS.str();
4192       OS << "  }\n";
4193     }
4194   }
4195 }
4196 
4197 void EmitClangAttrParserStringSwitches(RecordKeeper &Records,
4198                                        raw_ostream &OS) {
4199   emitSourceFileHeader("Parser-related llvm::StringSwitch cases", OS);
4200   emitClangAttrArgContextList(Records, OS);
4201   emitClangAttrIdentifierArgList(Records, OS);
4202   emitClangAttrVariadicIdentifierArgList(Records, OS);
4203   emitClangAttrThisIsaIdentifierArgList(Records, OS);
4204   emitClangAttrTypeArgList(Records, OS);
4205   emitClangAttrLateParsedList(Records, OS);
4206 }
4207 
4208 void EmitClangAttrSubjectMatchRulesParserStringSwitches(RecordKeeper &Records,
4209                                                         raw_ostream &OS) {
4210   getPragmaAttributeSupport(Records).generateParsingHelpers(OS);
4211 }
4212 
4213 enum class SpellingKind {
4214   GNU,
4215   CXX11,
4216   C2x,
4217   Declspec,
4218   Microsoft,
4219   Keyword,
4220   Pragma,
4221 };
4222 static const size_t NumSpellingKinds = (size_t)SpellingKind::Pragma + 1;
4223 
4224 class SpellingList {
4225   std::vector<std::string> Spellings[NumSpellingKinds];
4226 
4227 public:
4228   ArrayRef<std::string> operator[](SpellingKind K) const {
4229     return Spellings[(size_t)K];
4230   }
4231 
4232   void add(const Record &Attr, FlattenedSpelling Spelling) {
4233     SpellingKind Kind = StringSwitch<SpellingKind>(Spelling.variety())
4234                             .Case("GNU", SpellingKind::GNU)
4235                             .Case("CXX11", SpellingKind::CXX11)
4236                             .Case("C2x", SpellingKind::C2x)
4237                             .Case("Declspec", SpellingKind::Declspec)
4238                             .Case("Microsoft", SpellingKind::Microsoft)
4239                             .Case("Keyword", SpellingKind::Keyword)
4240                             .Case("Pragma", SpellingKind::Pragma);
4241     std::string Name;
4242     if (!Spelling.nameSpace().empty()) {
4243       switch (Kind) {
4244       case SpellingKind::CXX11:
4245       case SpellingKind::C2x:
4246         Name = Spelling.nameSpace() + "::";
4247         break;
4248       case SpellingKind::Pragma:
4249         Name = Spelling.nameSpace() + " ";
4250         break;
4251       default:
4252         PrintFatalError(Attr.getLoc(), "Unexpected namespace in spelling");
4253       }
4254     }
4255     Name += Spelling.name();
4256 
4257     Spellings[(size_t)Kind].push_back(Name);
4258   }
4259 };
4260 
4261 class DocumentationData {
4262 public:
4263   const Record *Documentation;
4264   const Record *Attribute;
4265   std::string Heading;
4266   SpellingList SupportedSpellings;
4267 
4268   DocumentationData(const Record &Documentation, const Record &Attribute,
4269                     std::pair<std::string, SpellingList> HeadingAndSpellings)
4270       : Documentation(&Documentation), Attribute(&Attribute),
4271         Heading(std::move(HeadingAndSpellings.first)),
4272         SupportedSpellings(std::move(HeadingAndSpellings.second)) {}
4273 };
4274 
4275 static void WriteCategoryHeader(const Record *DocCategory,
4276                                 raw_ostream &OS) {
4277   const StringRef Name = DocCategory->getValueAsString("Name");
4278   OS << Name << "\n" << std::string(Name.size(), '=') << "\n";
4279 
4280   // If there is content, print that as well.
4281   const StringRef ContentStr = DocCategory->getValueAsString("Content");
4282   // Trim leading and trailing newlines and spaces.
4283   OS << ContentStr.trim();
4284 
4285   OS << "\n\n";
4286 }
4287 
4288 static std::pair<std::string, SpellingList>
4289 GetAttributeHeadingAndSpellings(const Record &Documentation,
4290                                 const Record &Attribute) {
4291   // FIXME: there is no way to have a per-spelling category for the attribute
4292   // documentation. This may not be a limiting factor since the spellings
4293   // should generally be consistently applied across the category.
4294 
4295   std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attribute);
4296   if (Spellings.empty())
4297     PrintFatalError(Attribute.getLoc(),
4298                     "Attribute has no supported spellings; cannot be "
4299                     "documented");
4300 
4301   // Determine the heading to be used for this attribute.
4302   std::string Heading = std::string(Documentation.getValueAsString("Heading"));
4303   if (Heading.empty()) {
4304     // If there's only one spelling, we can simply use that.
4305     if (Spellings.size() == 1)
4306       Heading = Spellings.begin()->name();
4307     else {
4308       std::set<std::string> Uniques;
4309       for (auto I = Spellings.begin(), E = Spellings.end();
4310            I != E && Uniques.size() <= 1; ++I) {
4311         std::string Spelling =
4312             std::string(NormalizeNameForSpellingComparison(I->name()));
4313         Uniques.insert(Spelling);
4314       }
4315       // If the semantic map has only one spelling, that is sufficient for our
4316       // needs.
4317       if (Uniques.size() == 1)
4318         Heading = *Uniques.begin();
4319     }
4320   }
4321 
4322   // If the heading is still empty, it is an error.
4323   if (Heading.empty())
4324     PrintFatalError(Attribute.getLoc(),
4325                     "This attribute requires a heading to be specified");
4326 
4327   SpellingList SupportedSpellings;
4328   for (const auto &I : Spellings)
4329     SupportedSpellings.add(Attribute, I);
4330 
4331   return std::make_pair(std::move(Heading), std::move(SupportedSpellings));
4332 }
4333 
4334 static void WriteDocumentation(RecordKeeper &Records,
4335                                const DocumentationData &Doc, raw_ostream &OS) {
4336   OS << Doc.Heading << "\n" << std::string(Doc.Heading.length(), '-') << "\n";
4337 
4338   // List what spelling syntaxes the attribute supports.
4339   OS << ".. csv-table:: Supported Syntaxes\n";
4340   OS << "   :header: \"GNU\", \"C++11\", \"C2x\", \"``__declspec``\",";
4341   OS << " \"Keyword\", \"``#pragma``\", \"``#pragma clang attribute``\"\n\n";
4342   OS << "   \"";
4343   for (size_t Kind = 0; Kind != NumSpellingKinds; ++Kind) {
4344     SpellingKind K = (SpellingKind)Kind;
4345     // TODO: List Microsoft (IDL-style attribute) spellings once we fully
4346     // support them.
4347     if (K == SpellingKind::Microsoft)
4348       continue;
4349 
4350     bool PrintedAny = false;
4351     for (StringRef Spelling : Doc.SupportedSpellings[K]) {
4352       if (PrintedAny)
4353         OS << " |br| ";
4354       OS << "``" << Spelling << "``";
4355       PrintedAny = true;
4356     }
4357 
4358     OS << "\",\"";
4359   }
4360 
4361   if (getPragmaAttributeSupport(Records).isAttributedSupported(
4362           *Doc.Attribute))
4363     OS << "Yes";
4364   OS << "\"\n\n";
4365 
4366   // If the attribute is deprecated, print a message about it, and possibly
4367   // provide a replacement attribute.
4368   if (!Doc.Documentation->isValueUnset("Deprecated")) {
4369     OS << "This attribute has been deprecated, and may be removed in a future "
4370        << "version of Clang.";
4371     const Record &Deprecated = *Doc.Documentation->getValueAsDef("Deprecated");
4372     const StringRef Replacement = Deprecated.getValueAsString("Replacement");
4373     if (!Replacement.empty())
4374       OS << "  This attribute has been superseded by ``" << Replacement
4375          << "``.";
4376     OS << "\n\n";
4377   }
4378 
4379   const StringRef ContentStr = Doc.Documentation->getValueAsString("Content");
4380   // Trim leading and trailing newlines and spaces.
4381   OS << ContentStr.trim();
4382 
4383   OS << "\n\n\n";
4384 }
4385 
4386 void EmitClangAttrDocs(RecordKeeper &Records, raw_ostream &OS) {
4387   // Get the documentation introduction paragraph.
4388   const Record *Documentation = Records.getDef("GlobalDocumentation");
4389   if (!Documentation) {
4390     PrintFatalError("The Documentation top-level definition is missing, "
4391                     "no documentation will be generated.");
4392     return;
4393   }
4394 
4395   OS << Documentation->getValueAsString("Intro") << "\n";
4396 
4397   // Gather the Documentation lists from each of the attributes, based on the
4398   // category provided.
4399   std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
4400   std::map<const Record *, std::vector<DocumentationData>> SplitDocs;
4401   for (const auto *A : Attrs) {
4402     const Record &Attr = *A;
4403     std::vector<Record *> Docs = Attr.getValueAsListOfDefs("Documentation");
4404     for (const auto *D : Docs) {
4405       const Record &Doc = *D;
4406       const Record *Category = Doc.getValueAsDef("Category");
4407       // If the category is "undocumented", then there cannot be any other
4408       // documentation categories (otherwise, the attribute would become
4409       // documented).
4410       const StringRef Cat = Category->getValueAsString("Name");
4411       bool Undocumented = Cat == "Undocumented";
4412       if (Undocumented && Docs.size() > 1)
4413         PrintFatalError(Doc.getLoc(),
4414                         "Attribute is \"Undocumented\", but has multiple "
4415                         "documentation categories");
4416 
4417       if (!Undocumented)
4418         SplitDocs[Category].push_back(DocumentationData(
4419             Doc, Attr, GetAttributeHeadingAndSpellings(Doc, Attr)));
4420     }
4421   }
4422 
4423   // Having split the attributes out based on what documentation goes where,
4424   // we can begin to generate sections of documentation.
4425   for (auto &I : SplitDocs) {
4426     WriteCategoryHeader(I.first, OS);
4427 
4428     llvm::sort(I.second,
4429                [](const DocumentationData &D1, const DocumentationData &D2) {
4430                  return D1.Heading < D2.Heading;
4431                });
4432 
4433     // Walk over each of the attributes in the category and write out their
4434     // documentation.
4435     for (const auto &Doc : I.second)
4436       WriteDocumentation(Records, Doc, OS);
4437   }
4438 }
4439 
4440 void EmitTestPragmaAttributeSupportedAttributes(RecordKeeper &Records,
4441                                                 raw_ostream &OS) {
4442   PragmaClangAttributeSupport Support = getPragmaAttributeSupport(Records);
4443   ParsedAttrMap Attrs = getParsedAttrList(Records);
4444   OS << "#pragma clang attribute supports the following attributes:\n";
4445   for (const auto &I : Attrs) {
4446     if (!Support.isAttributedSupported(*I.second))
4447       continue;
4448     OS << I.first;
4449     if (I.second->isValueUnset("Subjects")) {
4450       OS << " ()\n";
4451       continue;
4452     }
4453     const Record *SubjectObj = I.second->getValueAsDef("Subjects");
4454     std::vector<Record *> Subjects =
4455         SubjectObj->getValueAsListOfDefs("Subjects");
4456     OS << " (";
4457     bool PrintComma = false;
4458     for (const auto &Subject : llvm::enumerate(Subjects)) {
4459       if (!isSupportedPragmaClangAttributeSubject(*Subject.value()))
4460         continue;
4461       if (PrintComma)
4462         OS << ", ";
4463       PrintComma = true;
4464       PragmaClangAttributeSupport::RuleOrAggregateRuleSet &RuleSet =
4465           Support.SubjectsToRules.find(Subject.value())->getSecond();
4466       if (RuleSet.isRule()) {
4467         OS << RuleSet.getRule().getEnumValueName();
4468         continue;
4469       }
4470       OS << "(";
4471       for (const auto &Rule : llvm::enumerate(RuleSet.getAggregateRuleSet())) {
4472         if (Rule.index())
4473           OS << ", ";
4474         OS << Rule.value().getEnumValueName();
4475       }
4476       OS << ")";
4477     }
4478     OS << ")\n";
4479   }
4480   OS << "End of supported attributes.\n";
4481 }
4482 
4483 } // end namespace clang
4484