xref: /freebsd/contrib/llvm-project/clang/utils/TableGen/ClangAttrEmitter.cpp (revision 1165fc9a526630487a1feb63daef65c5aee1a583)
1 //===- ClangAttrEmitter.cpp - Generate Clang attribute handling =-*- C++ -*--=//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These tablegen backends emit Clang attribute processing code
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "TableGenBackends.h"
14 #include "ASTTableGen.h"
15 
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/MapVector.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallString.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/StringSet.h"
25 #include "llvm/ADT/StringSwitch.h"
26 #include "llvm/ADT/iterator_range.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/TableGen/Error.h"
30 #include "llvm/TableGen/Record.h"
31 #include "llvm/TableGen/StringMatcher.h"
32 #include "llvm/TableGen/TableGenBackend.h"
33 #include <algorithm>
34 #include <cassert>
35 #include <cctype>
36 #include <cstddef>
37 #include <cstdint>
38 #include <map>
39 #include <memory>
40 #include <set>
41 #include <sstream>
42 #include <string>
43 #include <utility>
44 #include <vector>
45 
46 using namespace llvm;
47 
48 namespace {
49 
50 class FlattenedSpelling {
51   std::string V, N, NS;
52   bool K = false;
53 
54 public:
55   FlattenedSpelling(const std::string &Variety, const std::string &Name,
56                     const std::string &Namespace, bool KnownToGCC) :
57     V(Variety), N(Name), NS(Namespace), K(KnownToGCC) {}
58   explicit FlattenedSpelling(const Record &Spelling)
59       : V(std::string(Spelling.getValueAsString("Variety"))),
60         N(std::string(Spelling.getValueAsString("Name"))) {
61     assert(V != "GCC" && V != "Clang" &&
62            "Given a GCC spelling, which means this hasn't been flattened!");
63     if (V == "CXX11" || V == "C2x" || V == "Pragma")
64       NS = std::string(Spelling.getValueAsString("Namespace"));
65   }
66 
67   const std::string &variety() const { return V; }
68   const std::string &name() const { return N; }
69   const std::string &nameSpace() const { return NS; }
70   bool knownToGCC() const { return K; }
71 };
72 
73 } // end anonymous namespace
74 
75 static std::vector<FlattenedSpelling>
76 GetFlattenedSpellings(const Record &Attr) {
77   std::vector<Record *> Spellings = Attr.getValueAsListOfDefs("Spellings");
78   std::vector<FlattenedSpelling> Ret;
79 
80   for (const auto &Spelling : Spellings) {
81     StringRef Variety = Spelling->getValueAsString("Variety");
82     StringRef Name = Spelling->getValueAsString("Name");
83     if (Variety == "GCC") {
84       Ret.emplace_back("GNU", std::string(Name), "", true);
85       Ret.emplace_back("CXX11", std::string(Name), "gnu", true);
86       if (Spelling->getValueAsBit("AllowInC"))
87         Ret.emplace_back("C2x", std::string(Name), "gnu", true);
88     } else if (Variety == "Clang") {
89       Ret.emplace_back("GNU", std::string(Name), "", false);
90       Ret.emplace_back("CXX11", std::string(Name), "clang", false);
91       if (Spelling->getValueAsBit("AllowInC"))
92         Ret.emplace_back("C2x", std::string(Name), "clang", false);
93     } else
94       Ret.push_back(FlattenedSpelling(*Spelling));
95   }
96 
97   return Ret;
98 }
99 
100 static std::string ReadPCHRecord(StringRef type) {
101   return StringSwitch<std::string>(type)
102       .EndsWith("Decl *", "Record.GetLocalDeclAs<" +
103                               std::string(type.data(), 0, type.size() - 1) +
104                               ">(Record.readInt())")
105       .Case("TypeSourceInfo *", "Record.readTypeSourceInfo()")
106       .Case("Expr *", "Record.readExpr()")
107       .Case("IdentifierInfo *", "Record.readIdentifier()")
108       .Case("StringRef", "Record.readString()")
109       .Case("ParamIdx", "ParamIdx::deserialize(Record.readInt())")
110       .Case("OMPTraitInfo *", "Record.readOMPTraitInfo()")
111       .Default("Record.readInt()");
112 }
113 
114 // Get a type that is suitable for storing an object of the specified type.
115 static StringRef getStorageType(StringRef type) {
116   return StringSwitch<StringRef>(type)
117     .Case("StringRef", "std::string")
118     .Default(type);
119 }
120 
121 // Assumes that the way to get the value is SA->getname()
122 static std::string WritePCHRecord(StringRef type, StringRef name) {
123   return "Record." +
124          StringSwitch<std::string>(type)
125              .EndsWith("Decl *", "AddDeclRef(" + std::string(name) + ");\n")
126              .Case("TypeSourceInfo *",
127                    "AddTypeSourceInfo(" + std::string(name) + ");\n")
128              .Case("Expr *", "AddStmt(" + std::string(name) + ");\n")
129              .Case("IdentifierInfo *",
130                    "AddIdentifierRef(" + std::string(name) + ");\n")
131              .Case("StringRef", "AddString(" + std::string(name) + ");\n")
132              .Case("ParamIdx",
133                    "push_back(" + std::string(name) + ".serialize());\n")
134              .Case("OMPTraitInfo *",
135                    "writeOMPTraitInfo(" + std::string(name) + ");\n")
136              .Default("push_back(" + std::string(name) + ");\n");
137 }
138 
139 // Normalize attribute name by removing leading and trailing
140 // underscores. For example, __foo, foo__, __foo__ would
141 // become foo.
142 static StringRef NormalizeAttrName(StringRef AttrName) {
143   AttrName.consume_front("__");
144   AttrName.consume_back("__");
145   return AttrName;
146 }
147 
148 // Normalize the name by removing any and all leading and trailing underscores.
149 // This is different from NormalizeAttrName in that it also handles names like
150 // _pascal and __pascal.
151 static StringRef NormalizeNameForSpellingComparison(StringRef Name) {
152   return Name.trim("_");
153 }
154 
155 // Normalize the spelling of a GNU attribute (i.e. "x" in "__attribute__((x))"),
156 // removing "__" if it appears at the beginning and end of the attribute's name.
157 static StringRef NormalizeGNUAttrSpelling(StringRef AttrSpelling) {
158   if (AttrSpelling.startswith("__") && AttrSpelling.endswith("__")) {
159     AttrSpelling = AttrSpelling.substr(2, AttrSpelling.size() - 4);
160   }
161 
162   return AttrSpelling;
163 }
164 
165 typedef std::vector<std::pair<std::string, const Record *>> ParsedAttrMap;
166 
167 static ParsedAttrMap getParsedAttrList(const RecordKeeper &Records,
168                                        ParsedAttrMap *Dupes = nullptr) {
169   std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
170   std::set<std::string> Seen;
171   ParsedAttrMap R;
172   for (const auto *Attr : Attrs) {
173     if (Attr->getValueAsBit("SemaHandler")) {
174       std::string AN;
175       if (Attr->isSubClassOf("TargetSpecificAttr") &&
176           !Attr->isValueUnset("ParseKind")) {
177         AN = std::string(Attr->getValueAsString("ParseKind"));
178 
179         // If this attribute has already been handled, it does not need to be
180         // handled again.
181         if (Seen.find(AN) != Seen.end()) {
182           if (Dupes)
183             Dupes->push_back(std::make_pair(AN, Attr));
184           continue;
185         }
186         Seen.insert(AN);
187       } else
188         AN = NormalizeAttrName(Attr->getName()).str();
189 
190       R.push_back(std::make_pair(AN, Attr));
191     }
192   }
193   return R;
194 }
195 
196 namespace {
197 
198   class Argument {
199     std::string lowerName, upperName;
200     StringRef attrName;
201     bool isOpt;
202     bool Fake;
203 
204   public:
205     Argument(const Record &Arg, StringRef Attr)
206         : lowerName(std::string(Arg.getValueAsString("Name"))),
207           upperName(lowerName), attrName(Attr), isOpt(false), Fake(false) {
208       if (!lowerName.empty()) {
209         lowerName[0] = std::tolower(lowerName[0]);
210         upperName[0] = std::toupper(upperName[0]);
211       }
212       // Work around MinGW's macro definition of 'interface' to 'struct'. We
213       // have an attribute argument called 'Interface', so only the lower case
214       // name conflicts with the macro definition.
215       if (lowerName == "interface")
216         lowerName = "interface_";
217     }
218     virtual ~Argument() = default;
219 
220     StringRef getLowerName() const { return lowerName; }
221     StringRef getUpperName() const { return upperName; }
222     StringRef getAttrName() const { return attrName; }
223 
224     bool isOptional() const { return isOpt; }
225     void setOptional(bool set) { isOpt = set; }
226 
227     bool isFake() const { return Fake; }
228     void setFake(bool fake) { Fake = fake; }
229 
230     // These functions print the argument contents formatted in different ways.
231     virtual void writeAccessors(raw_ostream &OS) const = 0;
232     virtual void writeAccessorDefinitions(raw_ostream &OS) const {}
233     virtual void writeASTVisitorTraversal(raw_ostream &OS) const {}
234     virtual void writeCloneArgs(raw_ostream &OS) const = 0;
235     virtual void writeTemplateInstantiationArgs(raw_ostream &OS) const = 0;
236     virtual void writeTemplateInstantiation(raw_ostream &OS) const {}
237     virtual void writeCtorBody(raw_ostream &OS) const {}
238     virtual void writeCtorInitializers(raw_ostream &OS) const = 0;
239     virtual void writeCtorDefaultInitializers(raw_ostream &OS) const = 0;
240     virtual void writeCtorParameters(raw_ostream &OS) const = 0;
241     virtual void writeDeclarations(raw_ostream &OS) const = 0;
242     virtual void writePCHReadArgs(raw_ostream &OS) const = 0;
243     virtual void writePCHReadDecls(raw_ostream &OS) const = 0;
244     virtual void writePCHWrite(raw_ostream &OS) const = 0;
245     virtual std::string getIsOmitted() const { return "false"; }
246     virtual void writeValue(raw_ostream &OS) const = 0;
247     virtual void writeDump(raw_ostream &OS) const = 0;
248     virtual void writeDumpChildren(raw_ostream &OS) const {}
249     virtual void writeHasChildren(raw_ostream &OS) const { OS << "false"; }
250 
251     virtual bool isEnumArg() const { return false; }
252     virtual bool isVariadicEnumArg() const { return false; }
253     virtual bool isVariadic() const { return false; }
254 
255     virtual void writeImplicitCtorArgs(raw_ostream &OS) const {
256       OS << getUpperName();
257     }
258   };
259 
260   class SimpleArgument : public Argument {
261     std::string type;
262 
263   public:
264     SimpleArgument(const Record &Arg, StringRef Attr, std::string T)
265         : Argument(Arg, Attr), type(std::move(T)) {}
266 
267     std::string getType() const { return type; }
268 
269     void writeAccessors(raw_ostream &OS) const override {
270       OS << "  " << type << " get" << getUpperName() << "() const {\n";
271       OS << "    return " << getLowerName() << ";\n";
272       OS << "  }";
273     }
274 
275     void writeCloneArgs(raw_ostream &OS) const override {
276       OS << getLowerName();
277     }
278 
279     void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
280       OS << "A->get" << getUpperName() << "()";
281     }
282 
283     void writeCtorInitializers(raw_ostream &OS) const override {
284       OS << getLowerName() << "(" << getUpperName() << ")";
285     }
286 
287     void writeCtorDefaultInitializers(raw_ostream &OS) const override {
288       OS << getLowerName() << "()";
289     }
290 
291     void writeCtorParameters(raw_ostream &OS) const override {
292       OS << type << " " << getUpperName();
293     }
294 
295     void writeDeclarations(raw_ostream &OS) const override {
296       OS << type << " " << getLowerName() << ";";
297     }
298 
299     void writePCHReadDecls(raw_ostream &OS) const override {
300       std::string read = ReadPCHRecord(type);
301       OS << "    " << type << " " << getLowerName() << " = " << read << ";\n";
302     }
303 
304     void writePCHReadArgs(raw_ostream &OS) const override {
305       OS << getLowerName();
306     }
307 
308     void writePCHWrite(raw_ostream &OS) const override {
309       OS << "    "
310          << WritePCHRecord(type,
311                            "SA->get" + std::string(getUpperName()) + "()");
312     }
313 
314     std::string getIsOmitted() const override {
315       if (type == "IdentifierInfo *")
316         return "!get" + getUpperName().str() + "()";
317       if (type == "TypeSourceInfo *")
318         return "!get" + getUpperName().str() + "Loc()";
319       if (type == "ParamIdx")
320         return "!get" + getUpperName().str() + "().isValid()";
321       return "false";
322     }
323 
324     void writeValue(raw_ostream &OS) const override {
325       if (type == "FunctionDecl *")
326         OS << "\" << get" << getUpperName()
327            << "()->getNameInfo().getAsString() << \"";
328       else if (type == "IdentifierInfo *")
329         // Some non-optional (comma required) identifier arguments can be the
330         // empty string but are then recorded as a nullptr.
331         OS << "\" << (get" << getUpperName() << "() ? get" << getUpperName()
332            << "()->getName() : \"\") << \"";
333       else if (type == "VarDecl *")
334         OS << "\" << get" << getUpperName() << "()->getName() << \"";
335       else if (type == "TypeSourceInfo *")
336         OS << "\" << get" << getUpperName() << "().getAsString() << \"";
337       else if (type == "ParamIdx")
338         OS << "\" << get" << getUpperName() << "().getSourceIndex() << \"";
339       else
340         OS << "\" << get" << getUpperName() << "() << \"";
341     }
342 
343     void writeDump(raw_ostream &OS) const override {
344       if (StringRef(type).endswith("Decl *")) {
345         OS << "    OS << \" \";\n";
346         OS << "    dumpBareDeclRef(SA->get" << getUpperName() << "());\n";
347       } else if (type == "IdentifierInfo *") {
348         // Some non-optional (comma required) identifier arguments can be the
349         // empty string but are then recorded as a nullptr.
350         OS << "    if (SA->get" << getUpperName() << "())\n"
351            << "      OS << \" \" << SA->get" << getUpperName()
352            << "()->getName();\n";
353       } else if (type == "TypeSourceInfo *") {
354         if (isOptional())
355           OS << "    if (SA->get" << getUpperName() << "Loc())";
356         OS << "    OS << \" \" << SA->get" << getUpperName()
357            << "().getAsString();\n";
358       } else if (type == "bool") {
359         OS << "    if (SA->get" << getUpperName() << "()) OS << \" "
360            << getUpperName() << "\";\n";
361       } else if (type == "int" || type == "unsigned") {
362         OS << "    OS << \" \" << SA->get" << getUpperName() << "();\n";
363       } else if (type == "ParamIdx") {
364         if (isOptional())
365           OS << "    if (SA->get" << getUpperName() << "().isValid())\n  ";
366         OS << "    OS << \" \" << SA->get" << getUpperName()
367            << "().getSourceIndex();\n";
368       } else if (type == "OMPTraitInfo *") {
369         OS << "    OS << \" \" << SA->get" << getUpperName() << "();\n";
370       } else {
371         llvm_unreachable("Unknown SimpleArgument type!");
372       }
373     }
374   };
375 
376   class DefaultSimpleArgument : public SimpleArgument {
377     int64_t Default;
378 
379   public:
380     DefaultSimpleArgument(const Record &Arg, StringRef Attr,
381                           std::string T, int64_t Default)
382       : SimpleArgument(Arg, Attr, T), Default(Default) {}
383 
384     void writeAccessors(raw_ostream &OS) const override {
385       SimpleArgument::writeAccessors(OS);
386 
387       OS << "\n\n  static const " << getType() << " Default" << getUpperName()
388          << " = ";
389       if (getType() == "bool")
390         OS << (Default != 0 ? "true" : "false");
391       else
392         OS << Default;
393       OS << ";";
394     }
395   };
396 
397   class StringArgument : public Argument {
398   public:
399     StringArgument(const Record &Arg, StringRef Attr)
400       : Argument(Arg, Attr)
401     {}
402 
403     void writeAccessors(raw_ostream &OS) const override {
404       OS << "  llvm::StringRef get" << getUpperName() << "() const {\n";
405       OS << "    return llvm::StringRef(" << getLowerName() << ", "
406          << getLowerName() << "Length);\n";
407       OS << "  }\n";
408       OS << "  unsigned get" << getUpperName() << "Length() const {\n";
409       OS << "    return " << getLowerName() << "Length;\n";
410       OS << "  }\n";
411       OS << "  void set" << getUpperName()
412          << "(ASTContext &C, llvm::StringRef S) {\n";
413       OS << "    " << getLowerName() << "Length = S.size();\n";
414       OS << "    this->" << getLowerName() << " = new (C, 1) char ["
415          << getLowerName() << "Length];\n";
416       OS << "    if (!S.empty())\n";
417       OS << "      std::memcpy(this->" << getLowerName() << ", S.data(), "
418          << getLowerName() << "Length);\n";
419       OS << "  }";
420     }
421 
422     void writeCloneArgs(raw_ostream &OS) const override {
423       OS << "get" << getUpperName() << "()";
424     }
425 
426     void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
427       OS << "A->get" << getUpperName() << "()";
428     }
429 
430     void writeCtorBody(raw_ostream &OS) const override {
431       OS << "    if (!" << getUpperName() << ".empty())\n";
432       OS << "      std::memcpy(" << getLowerName() << ", " << getUpperName()
433          << ".data(), " << getLowerName() << "Length);\n";
434     }
435 
436     void writeCtorInitializers(raw_ostream &OS) const override {
437       OS << getLowerName() << "Length(" << getUpperName() << ".size()),"
438          << getLowerName() << "(new (Ctx, 1) char[" << getLowerName()
439          << "Length])";
440     }
441 
442     void writeCtorDefaultInitializers(raw_ostream &OS) const override {
443       OS << getLowerName() << "Length(0)," << getLowerName() << "(nullptr)";
444     }
445 
446     void writeCtorParameters(raw_ostream &OS) const override {
447       OS << "llvm::StringRef " << getUpperName();
448     }
449 
450     void writeDeclarations(raw_ostream &OS) const override {
451       OS << "unsigned " << getLowerName() << "Length;\n";
452       OS << "char *" << getLowerName() << ";";
453     }
454 
455     void writePCHReadDecls(raw_ostream &OS) const override {
456       OS << "    std::string " << getLowerName()
457          << "= Record.readString();\n";
458     }
459 
460     void writePCHReadArgs(raw_ostream &OS) const override {
461       OS << getLowerName();
462     }
463 
464     void writePCHWrite(raw_ostream &OS) const override {
465       OS << "    Record.AddString(SA->get" << getUpperName() << "());\n";
466     }
467 
468     void writeValue(raw_ostream &OS) const override {
469       OS << "\\\"\" << get" << getUpperName() << "() << \"\\\"";
470     }
471 
472     void writeDump(raw_ostream &OS) const override {
473       OS << "    OS << \" \\\"\" << SA->get" << getUpperName()
474          << "() << \"\\\"\";\n";
475     }
476   };
477 
478   class AlignedArgument : public Argument {
479   public:
480     AlignedArgument(const Record &Arg, StringRef Attr)
481       : Argument(Arg, Attr)
482     {}
483 
484     void writeAccessors(raw_ostream &OS) const override {
485       OS << "  bool is" << getUpperName() << "Dependent() const;\n";
486       OS << "  bool is" << getUpperName() << "ErrorDependent() const;\n";
487 
488       OS << "  unsigned get" << getUpperName() << "(ASTContext &Ctx) const;\n";
489 
490       OS << "  bool is" << getUpperName() << "Expr() const {\n";
491       OS << "    return is" << getLowerName() << "Expr;\n";
492       OS << "  }\n";
493 
494       OS << "  Expr *get" << getUpperName() << "Expr() const {\n";
495       OS << "    assert(is" << getLowerName() << "Expr);\n";
496       OS << "    return " << getLowerName() << "Expr;\n";
497       OS << "  }\n";
498 
499       OS << "  TypeSourceInfo *get" << getUpperName() << "Type() const {\n";
500       OS << "    assert(!is" << getLowerName() << "Expr);\n";
501       OS << "    return " << getLowerName() << "Type;\n";
502       OS << "  }";
503     }
504 
505     void writeAccessorDefinitions(raw_ostream &OS) const override {
506       OS << "bool " << getAttrName() << "Attr::is" << getUpperName()
507          << "Dependent() const {\n";
508       OS << "  if (is" << getLowerName() << "Expr)\n";
509       OS << "    return " << getLowerName() << "Expr && (" << getLowerName()
510          << "Expr->isValueDependent() || " << getLowerName()
511          << "Expr->isTypeDependent());\n";
512       OS << "  else\n";
513       OS << "    return " << getLowerName()
514          << "Type->getType()->isDependentType();\n";
515       OS << "}\n";
516 
517       OS << "bool " << getAttrName() << "Attr::is" << getUpperName()
518          << "ErrorDependent() const {\n";
519       OS << "  if (is" << getLowerName() << "Expr)\n";
520       OS << "    return " << getLowerName() << "Expr && " << getLowerName()
521          << "Expr->containsErrors();\n";
522       OS << "  return " << getLowerName()
523          << "Type->getType()->containsErrors();\n";
524       OS << "}\n";
525 
526       // FIXME: Do not do the calculation here
527       // FIXME: Handle types correctly
528       // A null pointer means maximum alignment
529       OS << "unsigned " << getAttrName() << "Attr::get" << getUpperName()
530          << "(ASTContext &Ctx) const {\n";
531       OS << "  assert(!is" << getUpperName() << "Dependent());\n";
532       OS << "  if (is" << getLowerName() << "Expr)\n";
533       OS << "    return " << getLowerName() << "Expr ? " << getLowerName()
534          << "Expr->EvaluateKnownConstInt(Ctx).getZExtValue()"
535          << " * Ctx.getCharWidth() : "
536          << "Ctx.getTargetDefaultAlignForAttributeAligned();\n";
537       OS << "  else\n";
538       OS << "    return 0; // FIXME\n";
539       OS << "}\n";
540     }
541 
542     void writeASTVisitorTraversal(raw_ostream &OS) const override {
543       StringRef Name = getUpperName();
544       OS << "  if (A->is" << Name << "Expr()) {\n"
545          << "    if (!getDerived().TraverseStmt(A->get" << Name << "Expr()))\n"
546          << "      return false;\n"
547          << "  } else if (auto *TSI = A->get" << Name << "Type()) {\n"
548          << "    if (!getDerived().TraverseTypeLoc(TSI->getTypeLoc()))\n"
549          << "      return false;\n"
550          << "  }\n";
551     }
552 
553     void writeCloneArgs(raw_ostream &OS) const override {
554       OS << "is" << getLowerName() << "Expr, is" << getLowerName()
555          << "Expr ? static_cast<void*>(" << getLowerName()
556          << "Expr) : " << getLowerName()
557          << "Type";
558     }
559 
560     void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
561       // FIXME: move the definition in Sema::InstantiateAttrs to here.
562       // In the meantime, aligned attributes are cloned.
563     }
564 
565     void writeCtorBody(raw_ostream &OS) const override {
566       OS << "    if (is" << getLowerName() << "Expr)\n";
567       OS << "       " << getLowerName() << "Expr = reinterpret_cast<Expr *>("
568          << getUpperName() << ");\n";
569       OS << "    else\n";
570       OS << "       " << getLowerName()
571          << "Type = reinterpret_cast<TypeSourceInfo *>(" << getUpperName()
572          << ");\n";
573     }
574 
575     void writeCtorInitializers(raw_ostream &OS) const override {
576       OS << "is" << getLowerName() << "Expr(Is" << getUpperName() << "Expr)";
577     }
578 
579     void writeCtorDefaultInitializers(raw_ostream &OS) const override {
580       OS << "is" << getLowerName() << "Expr(false)";
581     }
582 
583     void writeCtorParameters(raw_ostream &OS) const override {
584       OS << "bool Is" << getUpperName() << "Expr, void *" << getUpperName();
585     }
586 
587     void writeImplicitCtorArgs(raw_ostream &OS) const override {
588       OS << "Is" << getUpperName() << "Expr, " << getUpperName();
589     }
590 
591     void writeDeclarations(raw_ostream &OS) const override {
592       OS << "bool is" << getLowerName() << "Expr;\n";
593       OS << "union {\n";
594       OS << "Expr *" << getLowerName() << "Expr;\n";
595       OS << "TypeSourceInfo *" << getLowerName() << "Type;\n";
596       OS << "};";
597     }
598 
599     void writePCHReadArgs(raw_ostream &OS) const override {
600       OS << "is" << getLowerName() << "Expr, " << getLowerName() << "Ptr";
601     }
602 
603     void writePCHReadDecls(raw_ostream &OS) const override {
604       OS << "    bool is" << getLowerName() << "Expr = Record.readInt();\n";
605       OS << "    void *" << getLowerName() << "Ptr;\n";
606       OS << "    if (is" << getLowerName() << "Expr)\n";
607       OS << "      " << getLowerName() << "Ptr = Record.readExpr();\n";
608       OS << "    else\n";
609       OS << "      " << getLowerName()
610          << "Ptr = Record.readTypeSourceInfo();\n";
611     }
612 
613     void writePCHWrite(raw_ostream &OS) const override {
614       OS << "    Record.push_back(SA->is" << getUpperName() << "Expr());\n";
615       OS << "    if (SA->is" << getUpperName() << "Expr())\n";
616       OS << "      Record.AddStmt(SA->get" << getUpperName() << "Expr());\n";
617       OS << "    else\n";
618       OS << "      Record.AddTypeSourceInfo(SA->get" << getUpperName()
619          << "Type());\n";
620     }
621 
622     std::string getIsOmitted() const override {
623       return "!is" + getLowerName().str() + "Expr || !" + getLowerName().str()
624              + "Expr";
625     }
626 
627     void writeValue(raw_ostream &OS) const override {
628       OS << "\";\n";
629       OS << "    " << getLowerName()
630          << "Expr->printPretty(OS, nullptr, Policy);\n";
631       OS << "    OS << \"";
632     }
633 
634     void writeDump(raw_ostream &OS) const override {
635       OS << "    if (!SA->is" << getUpperName() << "Expr())\n";
636       OS << "      dumpType(SA->get" << getUpperName()
637          << "Type()->getType());\n";
638     }
639 
640     void writeDumpChildren(raw_ostream &OS) const override {
641       OS << "    if (SA->is" << getUpperName() << "Expr())\n";
642       OS << "      Visit(SA->get" << getUpperName() << "Expr());\n";
643     }
644 
645     void writeHasChildren(raw_ostream &OS) const override {
646       OS << "SA->is" << getUpperName() << "Expr()";
647     }
648   };
649 
650   class VariadicArgument : public Argument {
651     std::string Type, ArgName, ArgSizeName, RangeName;
652 
653   protected:
654     // Assumed to receive a parameter: raw_ostream OS.
655     virtual void writeValueImpl(raw_ostream &OS) const {
656       OS << "    OS << Val;\n";
657     }
658     // Assumed to receive a parameter: raw_ostream OS.
659     virtual void writeDumpImpl(raw_ostream &OS) const {
660       OS << "      OS << \" \" << Val;\n";
661     }
662 
663   public:
664     VariadicArgument(const Record &Arg, StringRef Attr, std::string T)
665         : Argument(Arg, Attr), Type(std::move(T)),
666           ArgName(getLowerName().str() + "_"), ArgSizeName(ArgName + "Size"),
667           RangeName(std::string(getLowerName())) {}
668 
669     const std::string &getType() const { return Type; }
670     const std::string &getArgName() const { return ArgName; }
671     const std::string &getArgSizeName() const { return ArgSizeName; }
672     bool isVariadic() const override { return true; }
673 
674     void writeAccessors(raw_ostream &OS) const override {
675       std::string IteratorType = getLowerName().str() + "_iterator";
676       std::string BeginFn = getLowerName().str() + "_begin()";
677       std::string EndFn = getLowerName().str() + "_end()";
678 
679       OS << "  typedef " << Type << "* " << IteratorType << ";\n";
680       OS << "  " << IteratorType << " " << BeginFn << " const {"
681          << " return " << ArgName << "; }\n";
682       OS << "  " << IteratorType << " " << EndFn << " const {"
683          << " return " << ArgName << " + " << ArgSizeName << "; }\n";
684       OS << "  unsigned " << getLowerName() << "_size() const {"
685          << " return " << ArgSizeName << "; }\n";
686       OS << "  llvm::iterator_range<" << IteratorType << "> " << RangeName
687          << "() const { return llvm::make_range(" << BeginFn << ", " << EndFn
688          << "); }\n";
689     }
690 
691     void writeCloneArgs(raw_ostream &OS) const override {
692       OS << ArgName << ", " << ArgSizeName;
693     }
694 
695     void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
696       // This isn't elegant, but we have to go through public methods...
697       OS << "A->" << getLowerName() << "_begin(), "
698          << "A->" << getLowerName() << "_size()";
699     }
700 
701     void writeASTVisitorTraversal(raw_ostream &OS) const override {
702       // FIXME: Traverse the elements.
703     }
704 
705     void writeCtorBody(raw_ostream &OS) const override {
706       OS << "  std::copy(" << getUpperName() << ", " << getUpperName() << " + "
707          << ArgSizeName << ", " << ArgName << ");\n";
708     }
709 
710     void writeCtorInitializers(raw_ostream &OS) const override {
711       OS << ArgSizeName << "(" << getUpperName() << "Size), "
712          << ArgName << "(new (Ctx, 16) " << getType() << "["
713          << ArgSizeName << "])";
714     }
715 
716     void writeCtorDefaultInitializers(raw_ostream &OS) const override {
717       OS << ArgSizeName << "(0), " << ArgName << "(nullptr)";
718     }
719 
720     void writeCtorParameters(raw_ostream &OS) const override {
721       OS << getType() << " *" << getUpperName() << ", unsigned "
722          << getUpperName() << "Size";
723     }
724 
725     void writeImplicitCtorArgs(raw_ostream &OS) const override {
726       OS << getUpperName() << ", " << getUpperName() << "Size";
727     }
728 
729     void writeDeclarations(raw_ostream &OS) const override {
730       OS << "  unsigned " << ArgSizeName << ";\n";
731       OS << "  " << getType() << " *" << ArgName << ";";
732     }
733 
734     void writePCHReadDecls(raw_ostream &OS) const override {
735       OS << "    unsigned " << getLowerName() << "Size = Record.readInt();\n";
736       OS << "    SmallVector<" << getType() << ", 4> "
737          << getLowerName() << ";\n";
738       OS << "    " << getLowerName() << ".reserve(" << getLowerName()
739          << "Size);\n";
740 
741       // If we can't store the values in the current type (if it's something
742       // like StringRef), store them in a different type and convert the
743       // container afterwards.
744       std::string StorageType = std::string(getStorageType(getType()));
745       std::string StorageName = std::string(getLowerName());
746       if (StorageType != getType()) {
747         StorageName += "Storage";
748         OS << "    SmallVector<" << StorageType << ", 4> "
749            << StorageName << ";\n";
750         OS << "    " << StorageName << ".reserve(" << getLowerName()
751            << "Size);\n";
752       }
753 
754       OS << "    for (unsigned i = 0; i != " << getLowerName() << "Size; ++i)\n";
755       std::string read = ReadPCHRecord(Type);
756       OS << "      " << StorageName << ".push_back(" << read << ");\n";
757 
758       if (StorageType != getType()) {
759         OS << "    for (unsigned i = 0; i != " << getLowerName() << "Size; ++i)\n";
760         OS << "      " << getLowerName() << ".push_back("
761            << StorageName << "[i]);\n";
762       }
763     }
764 
765     void writePCHReadArgs(raw_ostream &OS) const override {
766       OS << getLowerName() << ".data(), " << getLowerName() << "Size";
767     }
768 
769     void writePCHWrite(raw_ostream &OS) const override {
770       OS << "    Record.push_back(SA->" << getLowerName() << "_size());\n";
771       OS << "    for (auto &Val : SA->" << RangeName << "())\n";
772       OS << "      " << WritePCHRecord(Type, "Val");
773     }
774 
775     void writeValue(raw_ostream &OS) const override {
776       OS << "\";\n";
777       OS << "  for (const auto &Val : " << RangeName << "()) {\n"
778          << "    DelimitAttributeArgument(OS, IsFirstArgument);\n";
779       writeValueImpl(OS);
780       OS << "  }\n";
781       OS << "  OS << \"";
782     }
783 
784     void writeDump(raw_ostream &OS) const override {
785       OS << "    for (const auto &Val : SA->" << RangeName << "())\n";
786       writeDumpImpl(OS);
787     }
788   };
789 
790   class VariadicParamIdxArgument : public VariadicArgument {
791   public:
792     VariadicParamIdxArgument(const Record &Arg, StringRef Attr)
793         : VariadicArgument(Arg, Attr, "ParamIdx") {}
794 
795   public:
796     void writeValueImpl(raw_ostream &OS) const override {
797       OS << "    OS << Val.getSourceIndex();\n";
798     }
799 
800     void writeDumpImpl(raw_ostream &OS) const override {
801       OS << "      OS << \" \" << Val.getSourceIndex();\n";
802     }
803   };
804 
805   struct VariadicParamOrParamIdxArgument : public VariadicArgument {
806     VariadicParamOrParamIdxArgument(const Record &Arg, StringRef Attr)
807         : VariadicArgument(Arg, Attr, "int") {}
808   };
809 
810   // Unique the enums, but maintain the original declaration ordering.
811   std::vector<StringRef>
812   uniqueEnumsInOrder(const std::vector<StringRef> &enums) {
813     std::vector<StringRef> uniques;
814     SmallDenseSet<StringRef, 8> unique_set;
815     for (const auto &i : enums) {
816       if (unique_set.insert(i).second)
817         uniques.push_back(i);
818     }
819     return uniques;
820   }
821 
822   class EnumArgument : public Argument {
823     std::string type;
824     std::vector<StringRef> values, enums, uniques;
825 
826   public:
827     EnumArgument(const Record &Arg, StringRef Attr)
828         : Argument(Arg, Attr), type(std::string(Arg.getValueAsString("Type"))),
829           values(Arg.getValueAsListOfStrings("Values")),
830           enums(Arg.getValueAsListOfStrings("Enums")),
831           uniques(uniqueEnumsInOrder(enums)) {
832       // FIXME: Emit a proper error
833       assert(!uniques.empty());
834     }
835 
836     bool isEnumArg() const override { return true; }
837 
838     void writeAccessors(raw_ostream &OS) const override {
839       OS << "  " << type << " get" << getUpperName() << "() const {\n";
840       OS << "    return " << getLowerName() << ";\n";
841       OS << "  }";
842     }
843 
844     void writeCloneArgs(raw_ostream &OS) const override {
845       OS << getLowerName();
846     }
847 
848     void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
849       OS << "A->get" << getUpperName() << "()";
850     }
851     void writeCtorInitializers(raw_ostream &OS) const override {
852       OS << getLowerName() << "(" << getUpperName() << ")";
853     }
854     void writeCtorDefaultInitializers(raw_ostream &OS) const override {
855       OS << getLowerName() << "(" << type << "(0))";
856     }
857     void writeCtorParameters(raw_ostream &OS) const override {
858       OS << type << " " << getUpperName();
859     }
860     void writeDeclarations(raw_ostream &OS) const override {
861       auto i = uniques.cbegin(), e = uniques.cend();
862       // The last one needs to not have a comma.
863       --e;
864 
865       OS << "public:\n";
866       OS << "  enum " << type << " {\n";
867       for (; i != e; ++i)
868         OS << "    " << *i << ",\n";
869       OS << "    " << *e << "\n";
870       OS << "  };\n";
871       OS << "private:\n";
872       OS << "  " << type << " " << getLowerName() << ";";
873     }
874 
875     void writePCHReadDecls(raw_ostream &OS) const override {
876       OS << "    " << getAttrName() << "Attr::" << type << " " << getLowerName()
877          << "(static_cast<" << getAttrName() << "Attr::" << type
878          << ">(Record.readInt()));\n";
879     }
880 
881     void writePCHReadArgs(raw_ostream &OS) const override {
882       OS << getLowerName();
883     }
884 
885     void writePCHWrite(raw_ostream &OS) const override {
886       OS << "Record.push_back(SA->get" << getUpperName() << "());\n";
887     }
888 
889     void writeValue(raw_ostream &OS) const override {
890       // FIXME: this isn't 100% correct -- some enum arguments require printing
891       // as a string literal, while others require printing as an identifier.
892       // Tablegen currently does not distinguish between the two forms.
893       OS << "\\\"\" << " << getAttrName() << "Attr::Convert" << type << "ToStr(get"
894          << getUpperName() << "()) << \"\\\"";
895     }
896 
897     void writeDump(raw_ostream &OS) const override {
898       OS << "    switch(SA->get" << getUpperName() << "()) {\n";
899       for (const auto &I : uniques) {
900         OS << "    case " << getAttrName() << "Attr::" << I << ":\n";
901         OS << "      OS << \" " << I << "\";\n";
902         OS << "      break;\n";
903       }
904       OS << "    }\n";
905     }
906 
907     void writeConversion(raw_ostream &OS, bool Header) const {
908       if (Header) {
909         OS << "  static bool ConvertStrTo" << type << "(StringRef Val, " << type
910            << " &Out);\n";
911         OS << "  static const char *Convert" << type << "ToStr(" << type
912            << " Val);\n";
913         return;
914       }
915 
916       OS << "bool " << getAttrName() << "Attr::ConvertStrTo" << type
917          << "(StringRef Val, " << type << " &Out) {\n";
918       OS << "  Optional<" << type << "> R = llvm::StringSwitch<Optional<";
919       OS << type << ">>(Val)\n";
920       for (size_t I = 0; I < enums.size(); ++I) {
921         OS << "    .Case(\"" << values[I] << "\", ";
922         OS << getAttrName() << "Attr::" << enums[I] << ")\n";
923       }
924       OS << "    .Default(Optional<" << type << ">());\n";
925       OS << "  if (R) {\n";
926       OS << "    Out = *R;\n      return true;\n    }\n";
927       OS << "  return false;\n";
928       OS << "}\n\n";
929 
930       // Mapping from enumeration values back to enumeration strings isn't
931       // trivial because some enumeration values have multiple named
932       // enumerators, such as type_visibility(internal) and
933       // type_visibility(hidden) both mapping to TypeVisibilityAttr::Hidden.
934       OS << "const char *" << getAttrName() << "Attr::Convert" << type
935          << "ToStr(" << type << " Val) {\n"
936          << "  switch(Val) {\n";
937       SmallDenseSet<StringRef, 8> Uniques;
938       for (size_t I = 0; I < enums.size(); ++I) {
939         if (Uniques.insert(enums[I]).second)
940           OS << "  case " << getAttrName() << "Attr::" << enums[I]
941              << ": return \"" << values[I] << "\";\n";
942       }
943       OS << "  }\n"
944          << "  llvm_unreachable(\"No enumerator with that value\");\n"
945          << "}\n";
946     }
947   };
948 
949   class VariadicEnumArgument: public VariadicArgument {
950     std::string type, QualifiedTypeName;
951     std::vector<StringRef> values, enums, uniques;
952 
953   protected:
954     void writeValueImpl(raw_ostream &OS) const override {
955       // FIXME: this isn't 100% correct -- some enum arguments require printing
956       // as a string literal, while others require printing as an identifier.
957       // Tablegen currently does not distinguish between the two forms.
958       OS << "    OS << \"\\\"\" << " << getAttrName() << "Attr::Convert" << type
959          << "ToStr(Val)" << "<< \"\\\"\";\n";
960     }
961 
962   public:
963     VariadicEnumArgument(const Record &Arg, StringRef Attr)
964         : VariadicArgument(Arg, Attr,
965                            std::string(Arg.getValueAsString("Type"))),
966           type(std::string(Arg.getValueAsString("Type"))),
967           values(Arg.getValueAsListOfStrings("Values")),
968           enums(Arg.getValueAsListOfStrings("Enums")),
969           uniques(uniqueEnumsInOrder(enums)) {
970       QualifiedTypeName = getAttrName().str() + "Attr::" + type;
971 
972       // FIXME: Emit a proper error
973       assert(!uniques.empty());
974     }
975 
976     bool isVariadicEnumArg() const override { return true; }
977 
978     void writeDeclarations(raw_ostream &OS) const override {
979       auto i = uniques.cbegin(), e = uniques.cend();
980       // The last one needs to not have a comma.
981       --e;
982 
983       OS << "public:\n";
984       OS << "  enum " << type << " {\n";
985       for (; i != e; ++i)
986         OS << "    " << *i << ",\n";
987       OS << "    " << *e << "\n";
988       OS << "  };\n";
989       OS << "private:\n";
990 
991       VariadicArgument::writeDeclarations(OS);
992     }
993 
994     void writeDump(raw_ostream &OS) const override {
995       OS << "    for (" << getAttrName() << "Attr::" << getLowerName()
996          << "_iterator I = SA->" << getLowerName() << "_begin(), E = SA->"
997          << getLowerName() << "_end(); I != E; ++I) {\n";
998       OS << "      switch(*I) {\n";
999       for (const auto &UI : uniques) {
1000         OS << "    case " << getAttrName() << "Attr::" << UI << ":\n";
1001         OS << "      OS << \" " << UI << "\";\n";
1002         OS << "      break;\n";
1003       }
1004       OS << "      }\n";
1005       OS << "    }\n";
1006     }
1007 
1008     void writePCHReadDecls(raw_ostream &OS) const override {
1009       OS << "    unsigned " << getLowerName() << "Size = Record.readInt();\n";
1010       OS << "    SmallVector<" << QualifiedTypeName << ", 4> " << getLowerName()
1011          << ";\n";
1012       OS << "    " << getLowerName() << ".reserve(" << getLowerName()
1013          << "Size);\n";
1014       OS << "    for (unsigned i = " << getLowerName() << "Size; i; --i)\n";
1015       OS << "      " << getLowerName() << ".push_back(" << "static_cast<"
1016          << QualifiedTypeName << ">(Record.readInt()));\n";
1017     }
1018 
1019     void writePCHWrite(raw_ostream &OS) const override {
1020       OS << "    Record.push_back(SA->" << getLowerName() << "_size());\n";
1021       OS << "    for (" << getAttrName() << "Attr::" << getLowerName()
1022          << "_iterator i = SA->" << getLowerName() << "_begin(), e = SA->"
1023          << getLowerName() << "_end(); i != e; ++i)\n";
1024       OS << "      " << WritePCHRecord(QualifiedTypeName, "(*i)");
1025     }
1026 
1027     void writeConversion(raw_ostream &OS, bool Header) const {
1028       if (Header) {
1029         OS << "  static bool ConvertStrTo" << type << "(StringRef Val, " << type
1030            << " &Out);\n";
1031         OS << "  static const char *Convert" << type << "ToStr(" << type
1032            << " Val);\n";
1033         return;
1034       }
1035 
1036       OS << "bool " << getAttrName() << "Attr::ConvertStrTo" << type
1037          << "(StringRef Val, ";
1038       OS << type << " &Out) {\n";
1039       OS << "  Optional<" << type << "> R = llvm::StringSwitch<Optional<";
1040       OS << type << ">>(Val)\n";
1041       for (size_t I = 0; I < enums.size(); ++I) {
1042         OS << "    .Case(\"" << values[I] << "\", ";
1043         OS << getAttrName() << "Attr::" << enums[I] << ")\n";
1044       }
1045       OS << "    .Default(Optional<" << type << ">());\n";
1046       OS << "  if (R) {\n";
1047       OS << "    Out = *R;\n      return true;\n    }\n";
1048       OS << "  return false;\n";
1049       OS << "}\n\n";
1050 
1051       OS << "const char *" << getAttrName() << "Attr::Convert" << type
1052          << "ToStr(" << type << " Val) {\n"
1053          << "  switch(Val) {\n";
1054       SmallDenseSet<StringRef, 8> Uniques;
1055       for (size_t I = 0; I < enums.size(); ++I) {
1056         if (Uniques.insert(enums[I]).second)
1057           OS << "  case " << getAttrName() << "Attr::" << enums[I]
1058              << ": return \"" << values[I] << "\";\n";
1059       }
1060       OS << "  }\n"
1061          << "  llvm_unreachable(\"No enumerator with that value\");\n"
1062          << "}\n";
1063     }
1064   };
1065 
1066   class VersionArgument : public Argument {
1067   public:
1068     VersionArgument(const Record &Arg, StringRef Attr)
1069       : Argument(Arg, Attr)
1070     {}
1071 
1072     void writeAccessors(raw_ostream &OS) const override {
1073       OS << "  VersionTuple get" << getUpperName() << "() const {\n";
1074       OS << "    return " << getLowerName() << ";\n";
1075       OS << "  }\n";
1076       OS << "  void set" << getUpperName()
1077          << "(ASTContext &C, VersionTuple V) {\n";
1078       OS << "    " << getLowerName() << " = V;\n";
1079       OS << "  }";
1080     }
1081 
1082     void writeCloneArgs(raw_ostream &OS) const override {
1083       OS << "get" << getUpperName() << "()";
1084     }
1085 
1086     void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
1087       OS << "A->get" << getUpperName() << "()";
1088     }
1089 
1090     void writeCtorInitializers(raw_ostream &OS) const override {
1091       OS << getLowerName() << "(" << getUpperName() << ")";
1092     }
1093 
1094     void writeCtorDefaultInitializers(raw_ostream &OS) const override {
1095       OS << getLowerName() << "()";
1096     }
1097 
1098     void writeCtorParameters(raw_ostream &OS) const override {
1099       OS << "VersionTuple " << getUpperName();
1100     }
1101 
1102     void writeDeclarations(raw_ostream &OS) const override {
1103       OS << "VersionTuple " << getLowerName() << ";\n";
1104     }
1105 
1106     void writePCHReadDecls(raw_ostream &OS) const override {
1107       OS << "    VersionTuple " << getLowerName()
1108          << "= Record.readVersionTuple();\n";
1109     }
1110 
1111     void writePCHReadArgs(raw_ostream &OS) const override {
1112       OS << getLowerName();
1113     }
1114 
1115     void writePCHWrite(raw_ostream &OS) const override {
1116       OS << "    Record.AddVersionTuple(SA->get" << getUpperName() << "());\n";
1117     }
1118 
1119     void writeValue(raw_ostream &OS) const override {
1120       OS << getLowerName() << "=\" << get" << getUpperName() << "() << \"";
1121     }
1122 
1123     void writeDump(raw_ostream &OS) const override {
1124       OS << "    OS << \" \" << SA->get" << getUpperName() << "();\n";
1125     }
1126   };
1127 
1128   class ExprArgument : public SimpleArgument {
1129   public:
1130     ExprArgument(const Record &Arg, StringRef Attr)
1131       : SimpleArgument(Arg, Attr, "Expr *")
1132     {}
1133 
1134     void writeASTVisitorTraversal(raw_ostream &OS) const override {
1135       OS << "  if (!"
1136          << "getDerived().TraverseStmt(A->get" << getUpperName() << "()))\n";
1137       OS << "    return false;\n";
1138     }
1139 
1140     void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
1141       OS << "tempInst" << getUpperName();
1142     }
1143 
1144     void writeTemplateInstantiation(raw_ostream &OS) const override {
1145       OS << "      " << getType() << " tempInst" << getUpperName() << ";\n";
1146       OS << "      {\n";
1147       OS << "        EnterExpressionEvaluationContext "
1148          << "Unevaluated(S, Sema::ExpressionEvaluationContext::Unevaluated);\n";
1149       OS << "        ExprResult " << "Result = S.SubstExpr("
1150          << "A->get" << getUpperName() << "(), TemplateArgs);\n";
1151       OS << "        if (Result.isInvalid())\n";
1152       OS << "          return nullptr;\n";
1153       OS << "        tempInst" << getUpperName() << " = Result.get();\n";
1154       OS << "      }\n";
1155     }
1156 
1157     void writeDump(raw_ostream &OS) const override {}
1158 
1159     void writeDumpChildren(raw_ostream &OS) const override {
1160       OS << "    Visit(SA->get" << getUpperName() << "());\n";
1161     }
1162 
1163     void writeHasChildren(raw_ostream &OS) const override { OS << "true"; }
1164   };
1165 
1166   class VariadicExprArgument : public VariadicArgument {
1167   public:
1168     VariadicExprArgument(const Record &Arg, StringRef Attr)
1169       : VariadicArgument(Arg, Attr, "Expr *")
1170     {}
1171 
1172     void writeASTVisitorTraversal(raw_ostream &OS) const override {
1173       OS << "  {\n";
1174       OS << "    " << getType() << " *I = A->" << getLowerName()
1175          << "_begin();\n";
1176       OS << "    " << getType() << " *E = A->" << getLowerName()
1177          << "_end();\n";
1178       OS << "    for (; I != E; ++I) {\n";
1179       OS << "      if (!getDerived().TraverseStmt(*I))\n";
1180       OS << "        return false;\n";
1181       OS << "    }\n";
1182       OS << "  }\n";
1183     }
1184 
1185     void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
1186       OS << "tempInst" << getUpperName() << ", "
1187          << "A->" << getLowerName() << "_size()";
1188     }
1189 
1190     void writeTemplateInstantiation(raw_ostream &OS) const override {
1191       OS << "      auto *tempInst" << getUpperName()
1192          << " = new (C, 16) " << getType()
1193          << "[A->" << getLowerName() << "_size()];\n";
1194       OS << "      {\n";
1195       OS << "        EnterExpressionEvaluationContext "
1196          << "Unevaluated(S, Sema::ExpressionEvaluationContext::Unevaluated);\n";
1197       OS << "        " << getType() << " *TI = tempInst" << getUpperName()
1198          << ";\n";
1199       OS << "        " << getType() << " *I = A->" << getLowerName()
1200          << "_begin();\n";
1201       OS << "        " << getType() << " *E = A->" << getLowerName()
1202          << "_end();\n";
1203       OS << "        for (; I != E; ++I, ++TI) {\n";
1204       OS << "          ExprResult Result = S.SubstExpr(*I, TemplateArgs);\n";
1205       OS << "          if (Result.isInvalid())\n";
1206       OS << "            return nullptr;\n";
1207       OS << "          *TI = Result.get();\n";
1208       OS << "        }\n";
1209       OS << "      }\n";
1210     }
1211 
1212     void writeDump(raw_ostream &OS) const override {}
1213 
1214     void writeDumpChildren(raw_ostream &OS) const override {
1215       OS << "    for (" << getAttrName() << "Attr::" << getLowerName()
1216          << "_iterator I = SA->" << getLowerName() << "_begin(), E = SA->"
1217          << getLowerName() << "_end(); I != E; ++I)\n";
1218       OS << "      Visit(*I);\n";
1219     }
1220 
1221     void writeHasChildren(raw_ostream &OS) const override {
1222       OS << "SA->" << getLowerName() << "_begin() != "
1223          << "SA->" << getLowerName() << "_end()";
1224     }
1225   };
1226 
1227   class VariadicIdentifierArgument : public VariadicArgument {
1228   public:
1229     VariadicIdentifierArgument(const Record &Arg, StringRef Attr)
1230       : VariadicArgument(Arg, Attr, "IdentifierInfo *")
1231     {}
1232   };
1233 
1234   class VariadicStringArgument : public VariadicArgument {
1235   public:
1236     VariadicStringArgument(const Record &Arg, StringRef Attr)
1237       : VariadicArgument(Arg, Attr, "StringRef")
1238     {}
1239 
1240     void writeCtorBody(raw_ostream &OS) const override {
1241       OS << "  for (size_t I = 0, E = " << getArgSizeName() << "; I != E;\n"
1242             "       ++I) {\n"
1243             "    StringRef Ref = " << getUpperName() << "[I];\n"
1244             "    if (!Ref.empty()) {\n"
1245             "      char *Mem = new (Ctx, 1) char[Ref.size()];\n"
1246             "      std::memcpy(Mem, Ref.data(), Ref.size());\n"
1247             "      " << getArgName() << "[I] = StringRef(Mem, Ref.size());\n"
1248             "    }\n"
1249             "  }\n";
1250     }
1251 
1252     void writeValueImpl(raw_ostream &OS) const override {
1253       OS << "    OS << \"\\\"\" << Val << \"\\\"\";\n";
1254     }
1255   };
1256 
1257   class TypeArgument : public SimpleArgument {
1258   public:
1259     TypeArgument(const Record &Arg, StringRef Attr)
1260       : SimpleArgument(Arg, Attr, "TypeSourceInfo *")
1261     {}
1262 
1263     void writeAccessors(raw_ostream &OS) const override {
1264       OS << "  QualType get" << getUpperName() << "() const {\n";
1265       OS << "    return " << getLowerName() << "->getType();\n";
1266       OS << "  }";
1267       OS << "  " << getType() << " get" << getUpperName() << "Loc() const {\n";
1268       OS << "    return " << getLowerName() << ";\n";
1269       OS << "  }";
1270     }
1271 
1272     void writeASTVisitorTraversal(raw_ostream &OS) const override {
1273       OS << "  if (auto *TSI = A->get" << getUpperName() << "Loc())\n";
1274       OS << "    if (!getDerived().TraverseTypeLoc(TSI->getTypeLoc()))\n";
1275       OS << "      return false;\n";
1276     }
1277 
1278     void writeTemplateInstantiation(raw_ostream &OS) const override {
1279       OS << "      " << getType() << " tempInst" << getUpperName() << " =\n";
1280       OS << "        S.SubstType(A->get" << getUpperName() << "Loc(), "
1281          << "TemplateArgs, A->getLoc(), A->getAttrName());\n";
1282       OS << "      if (!tempInst" << getUpperName() << ")\n";
1283       OS << "        return nullptr;\n";
1284     }
1285 
1286     void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
1287       OS << "tempInst" << getUpperName();
1288     }
1289 
1290     void writePCHWrite(raw_ostream &OS) const override {
1291       OS << "    "
1292          << WritePCHRecord(getType(),
1293                            "SA->get" + std::string(getUpperName()) + "Loc()");
1294     }
1295   };
1296 
1297 } // end anonymous namespace
1298 
1299 static std::unique_ptr<Argument>
1300 createArgument(const Record &Arg, StringRef Attr,
1301                const Record *Search = nullptr) {
1302   if (!Search)
1303     Search = &Arg;
1304 
1305   std::unique_ptr<Argument> Ptr;
1306   llvm::StringRef ArgName = Search->getName();
1307 
1308   if (ArgName == "AlignedArgument")
1309     Ptr = std::make_unique<AlignedArgument>(Arg, Attr);
1310   else if (ArgName == "EnumArgument")
1311     Ptr = std::make_unique<EnumArgument>(Arg, Attr);
1312   else if (ArgName == "ExprArgument")
1313     Ptr = std::make_unique<ExprArgument>(Arg, Attr);
1314   else if (ArgName == "DeclArgument")
1315     Ptr = std::make_unique<SimpleArgument>(
1316         Arg, Attr, (Arg.getValueAsDef("Kind")->getName() + "Decl *").str());
1317   else if (ArgName == "IdentifierArgument")
1318     Ptr = std::make_unique<SimpleArgument>(Arg, Attr, "IdentifierInfo *");
1319   else if (ArgName == "DefaultBoolArgument")
1320     Ptr = std::make_unique<DefaultSimpleArgument>(
1321         Arg, Attr, "bool", Arg.getValueAsBit("Default"));
1322   else if (ArgName == "BoolArgument")
1323     Ptr = std::make_unique<SimpleArgument>(Arg, Attr, "bool");
1324   else if (ArgName == "DefaultIntArgument")
1325     Ptr = std::make_unique<DefaultSimpleArgument>(
1326         Arg, Attr, "int", Arg.getValueAsInt("Default"));
1327   else if (ArgName == "IntArgument")
1328     Ptr = std::make_unique<SimpleArgument>(Arg, Attr, "int");
1329   else if (ArgName == "StringArgument")
1330     Ptr = std::make_unique<StringArgument>(Arg, Attr);
1331   else if (ArgName == "TypeArgument")
1332     Ptr = std::make_unique<TypeArgument>(Arg, Attr);
1333   else if (ArgName == "UnsignedArgument")
1334     Ptr = std::make_unique<SimpleArgument>(Arg, Attr, "unsigned");
1335   else if (ArgName == "VariadicUnsignedArgument")
1336     Ptr = std::make_unique<VariadicArgument>(Arg, Attr, "unsigned");
1337   else if (ArgName == "VariadicStringArgument")
1338     Ptr = std::make_unique<VariadicStringArgument>(Arg, Attr);
1339   else if (ArgName == "VariadicEnumArgument")
1340     Ptr = std::make_unique<VariadicEnumArgument>(Arg, Attr);
1341   else if (ArgName == "VariadicExprArgument")
1342     Ptr = std::make_unique<VariadicExprArgument>(Arg, Attr);
1343   else if (ArgName == "VariadicParamIdxArgument")
1344     Ptr = std::make_unique<VariadicParamIdxArgument>(Arg, Attr);
1345   else if (ArgName == "VariadicParamOrParamIdxArgument")
1346     Ptr = std::make_unique<VariadicParamOrParamIdxArgument>(Arg, Attr);
1347   else if (ArgName == "ParamIdxArgument")
1348     Ptr = std::make_unique<SimpleArgument>(Arg, Attr, "ParamIdx");
1349   else if (ArgName == "VariadicIdentifierArgument")
1350     Ptr = std::make_unique<VariadicIdentifierArgument>(Arg, Attr);
1351   else if (ArgName == "VersionArgument")
1352     Ptr = std::make_unique<VersionArgument>(Arg, Attr);
1353   else if (ArgName == "OMPTraitInfoArgument")
1354     Ptr = std::make_unique<SimpleArgument>(Arg, Attr, "OMPTraitInfo *");
1355 
1356   if (!Ptr) {
1357     // Search in reverse order so that the most-derived type is handled first.
1358     ArrayRef<std::pair<Record*, SMRange>> Bases = Search->getSuperClasses();
1359     for (const auto &Base : llvm::reverse(Bases)) {
1360       if ((Ptr = createArgument(Arg, Attr, Base.first)))
1361         break;
1362     }
1363   }
1364 
1365   if (Ptr && Arg.getValueAsBit("Optional"))
1366     Ptr->setOptional(true);
1367 
1368   if (Ptr && Arg.getValueAsBit("Fake"))
1369     Ptr->setFake(true);
1370 
1371   return Ptr;
1372 }
1373 
1374 static void writeAvailabilityValue(raw_ostream &OS) {
1375   OS << "\" << getPlatform()->getName();\n"
1376      << "  if (getStrict()) OS << \", strict\";\n"
1377      << "  if (!getIntroduced().empty()) OS << \", introduced=\" << getIntroduced();\n"
1378      << "  if (!getDeprecated().empty()) OS << \", deprecated=\" << getDeprecated();\n"
1379      << "  if (!getObsoleted().empty()) OS << \", obsoleted=\" << getObsoleted();\n"
1380      << "  if (getUnavailable()) OS << \", unavailable\";\n"
1381      << "  OS << \"";
1382 }
1383 
1384 static void writeDeprecatedAttrValue(raw_ostream &OS, std::string &Variety) {
1385   OS << "\\\"\" << getMessage() << \"\\\"\";\n";
1386   // Only GNU deprecated has an optional fixit argument at the second position.
1387   if (Variety == "GNU")
1388      OS << "    if (!getReplacement().empty()) OS << \", \\\"\""
1389            " << getReplacement() << \"\\\"\";\n";
1390   OS << "    OS << \"";
1391 }
1392 
1393 static void writeGetSpellingFunction(const Record &R, raw_ostream &OS) {
1394   std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R);
1395 
1396   OS << "const char *" << R.getName() << "Attr::getSpelling() const {\n";
1397   if (Spellings.empty()) {
1398     OS << "  return \"(No spelling)\";\n}\n\n";
1399     return;
1400   }
1401 
1402   OS << "  switch (getAttributeSpellingListIndex()) {\n"
1403         "  default:\n"
1404         "    llvm_unreachable(\"Unknown attribute spelling!\");\n"
1405         "    return \"(No spelling)\";\n";
1406 
1407   for (unsigned I = 0; I < Spellings.size(); ++I)
1408     OS << "  case " << I << ":\n"
1409           "    return \"" << Spellings[I].name() << "\";\n";
1410   // End of the switch statement.
1411   OS << "  }\n";
1412   // End of the getSpelling function.
1413   OS << "}\n\n";
1414 }
1415 
1416 static void
1417 writePrettyPrintFunction(const Record &R,
1418                          const std::vector<std::unique_ptr<Argument>> &Args,
1419                          raw_ostream &OS) {
1420   std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R);
1421 
1422   OS << "void " << R.getName() << "Attr::printPretty("
1423     << "raw_ostream &OS, const PrintingPolicy &Policy) const {\n";
1424 
1425   if (Spellings.empty()) {
1426     OS << "}\n\n";
1427     return;
1428   }
1429 
1430   OS << "  bool IsFirstArgument = true; (void)IsFirstArgument;\n"
1431      << "  unsigned TrailingOmittedArgs = 0; (void)TrailingOmittedArgs;\n"
1432      << "  switch (getAttributeSpellingListIndex()) {\n"
1433      << "  default:\n"
1434      << "    llvm_unreachable(\"Unknown attribute spelling!\");\n"
1435      << "    break;\n";
1436 
1437   for (unsigned I = 0; I < Spellings.size(); ++ I) {
1438     llvm::SmallString<16> Prefix;
1439     llvm::SmallString<8> Suffix;
1440     // The actual spelling of the name and namespace (if applicable)
1441     // of an attribute without considering prefix and suffix.
1442     llvm::SmallString<64> Spelling;
1443     std::string Name = Spellings[I].name();
1444     std::string Variety = Spellings[I].variety();
1445 
1446     if (Variety == "GNU") {
1447       Prefix = " __attribute__((";
1448       Suffix = "))";
1449     } else if (Variety == "CXX11" || Variety == "C2x") {
1450       Prefix = " [[";
1451       Suffix = "]]";
1452       std::string Namespace = Spellings[I].nameSpace();
1453       if (!Namespace.empty()) {
1454         Spelling += Namespace;
1455         Spelling += "::";
1456       }
1457     } else if (Variety == "Declspec") {
1458       Prefix = " __declspec(";
1459       Suffix = ")";
1460     } else if (Variety == "Microsoft") {
1461       Prefix = "[";
1462       Suffix = "]";
1463     } else if (Variety == "Keyword") {
1464       Prefix = " ";
1465       Suffix = "";
1466     } else if (Variety == "Pragma") {
1467       Prefix = "#pragma ";
1468       Suffix = "\n";
1469       std::string Namespace = Spellings[I].nameSpace();
1470       if (!Namespace.empty()) {
1471         Spelling += Namespace;
1472         Spelling += " ";
1473       }
1474     } else {
1475       llvm_unreachable("Unknown attribute syntax variety!");
1476     }
1477 
1478     Spelling += Name;
1479 
1480     OS << "  case " << I << " : {\n"
1481        << "    OS << \"" << Prefix << Spelling << "\";\n";
1482 
1483     if (Variety == "Pragma") {
1484       OS << "    printPrettyPragma(OS, Policy);\n";
1485       OS << "    OS << \"\\n\";";
1486       OS << "    break;\n";
1487       OS << "  }\n";
1488       continue;
1489     }
1490 
1491     if (Spelling == "availability") {
1492       OS << "    OS << \"(";
1493       writeAvailabilityValue(OS);
1494       OS << ")\";\n";
1495     } else if (Spelling == "deprecated" || Spelling == "gnu::deprecated") {
1496       OS << "    OS << \"(";
1497       writeDeprecatedAttrValue(OS, Variety);
1498       OS << ")\";\n";
1499     } else {
1500       // To avoid printing parentheses around an empty argument list or
1501       // printing spurious commas at the end of an argument list, we need to
1502       // determine where the last provided non-fake argument is.
1503       unsigned NonFakeArgs = 0;
1504       bool FoundNonOptArg = false;
1505       for (const auto &arg : llvm::reverse(Args)) {
1506         if (arg->isFake())
1507           continue;
1508         ++NonFakeArgs;
1509         if (FoundNonOptArg)
1510           continue;
1511         // FIXME: arg->getIsOmitted() == "false" means we haven't implemented
1512         // any way to detect whether the argument was omitted.
1513         if (!arg->isOptional() || arg->getIsOmitted() == "false") {
1514           FoundNonOptArg = true;
1515           continue;
1516         }
1517         OS << "    if (" << arg->getIsOmitted() << ")\n"
1518            << "      ++TrailingOmittedArgs;\n";
1519       }
1520       unsigned ArgIndex = 0;
1521       for (const auto &arg : Args) {
1522         if (arg->isFake())
1523           continue;
1524         std::string IsOmitted = arg->getIsOmitted();
1525         if (arg->isOptional() && IsOmitted != "false")
1526           OS << "    if (!(" << IsOmitted << ")) {\n";
1527         // Variadic arguments print their own leading comma.
1528         if (!arg->isVariadic())
1529           OS << "    DelimitAttributeArgument(OS, IsFirstArgument);\n";
1530         OS << "    OS << \"";
1531         arg->writeValue(OS);
1532         OS << "\";\n";
1533         if (arg->isOptional() && IsOmitted != "false")
1534           OS << "    }\n";
1535         ++ArgIndex;
1536       }
1537       if (ArgIndex != 0)
1538         OS << "    if (!IsFirstArgument)\n"
1539            << "      OS << \")\";\n";
1540     }
1541     OS << "    OS << \"" << Suffix << "\";\n"
1542        << "    break;\n"
1543        << "  }\n";
1544   }
1545 
1546   // End of the switch statement.
1547   OS << "}\n";
1548   // End of the print function.
1549   OS << "}\n\n";
1550 }
1551 
1552 /// Return the index of a spelling in a spelling list.
1553 static unsigned
1554 getSpellingListIndex(const std::vector<FlattenedSpelling> &SpellingList,
1555                      const FlattenedSpelling &Spelling) {
1556   assert(!SpellingList.empty() && "Spelling list is empty!");
1557 
1558   for (unsigned Index = 0; Index < SpellingList.size(); ++Index) {
1559     const FlattenedSpelling &S = SpellingList[Index];
1560     if (S.variety() != Spelling.variety())
1561       continue;
1562     if (S.nameSpace() != Spelling.nameSpace())
1563       continue;
1564     if (S.name() != Spelling.name())
1565       continue;
1566 
1567     return Index;
1568   }
1569 
1570   llvm_unreachable("Unknown spelling!");
1571 }
1572 
1573 static void writeAttrAccessorDefinition(const Record &R, raw_ostream &OS) {
1574   std::vector<Record*> Accessors = R.getValueAsListOfDefs("Accessors");
1575   if (Accessors.empty())
1576     return;
1577 
1578   const std::vector<FlattenedSpelling> SpellingList = GetFlattenedSpellings(R);
1579   assert(!SpellingList.empty() &&
1580          "Attribute with empty spelling list can't have accessors!");
1581   for (const auto *Accessor : Accessors) {
1582     const StringRef Name = Accessor->getValueAsString("Name");
1583     std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*Accessor);
1584 
1585     OS << "  bool " << Name
1586        << "() const { return getAttributeSpellingListIndex() == ";
1587     for (unsigned Index = 0; Index < Spellings.size(); ++Index) {
1588       OS << getSpellingListIndex(SpellingList, Spellings[Index]);
1589       if (Index != Spellings.size() - 1)
1590         OS << " ||\n    getAttributeSpellingListIndex() == ";
1591       else
1592         OS << "; }\n";
1593     }
1594   }
1595 }
1596 
1597 static bool
1598 SpellingNamesAreCommon(const std::vector<FlattenedSpelling>& Spellings) {
1599   assert(!Spellings.empty() && "An empty list of spellings was provided");
1600   std::string FirstName =
1601       std::string(NormalizeNameForSpellingComparison(Spellings.front().name()));
1602   for (const auto &Spelling :
1603        llvm::make_range(std::next(Spellings.begin()), Spellings.end())) {
1604     std::string Name =
1605         std::string(NormalizeNameForSpellingComparison(Spelling.name()));
1606     if (Name != FirstName)
1607       return false;
1608   }
1609   return true;
1610 }
1611 
1612 typedef std::map<unsigned, std::string> SemanticSpellingMap;
1613 static std::string
1614 CreateSemanticSpellings(const std::vector<FlattenedSpelling> &Spellings,
1615                         SemanticSpellingMap &Map) {
1616   // The enumerants are automatically generated based on the variety,
1617   // namespace (if present) and name for each attribute spelling. However,
1618   // care is taken to avoid trampling on the reserved namespace due to
1619   // underscores.
1620   std::string Ret("  enum Spelling {\n");
1621   std::set<std::string> Uniques;
1622   unsigned Idx = 0;
1623 
1624   // If we have a need to have this many spellings we likely need to add an
1625   // extra bit to the SpellingIndex in AttributeCommonInfo, then increase the
1626   // value of SpellingNotCalculated there and here.
1627   assert(Spellings.size() < 15 &&
1628          "Too many spellings, would step on SpellingNotCalculated in "
1629          "AttributeCommonInfo");
1630   for (auto I = Spellings.begin(), E = Spellings.end(); I != E; ++I, ++Idx) {
1631     const FlattenedSpelling &S = *I;
1632     const std::string &Variety = S.variety();
1633     const std::string &Spelling = S.name();
1634     const std::string &Namespace = S.nameSpace();
1635     std::string EnumName;
1636 
1637     EnumName += (Variety + "_");
1638     if (!Namespace.empty())
1639       EnumName += (NormalizeNameForSpellingComparison(Namespace).str() +
1640       "_");
1641     EnumName += NormalizeNameForSpellingComparison(Spelling);
1642 
1643     // Even if the name is not unique, this spelling index corresponds to a
1644     // particular enumerant name that we've calculated.
1645     Map[Idx] = EnumName;
1646 
1647     // Since we have been stripping underscores to avoid trampling on the
1648     // reserved namespace, we may have inadvertently created duplicate
1649     // enumerant names. These duplicates are not considered part of the
1650     // semantic spelling, and can be elided.
1651     if (Uniques.find(EnumName) != Uniques.end())
1652       continue;
1653 
1654     Uniques.insert(EnumName);
1655     if (I != Spellings.begin())
1656       Ret += ",\n";
1657     // Duplicate spellings are not considered part of the semantic spelling
1658     // enumeration, but the spelling index and semantic spelling values are
1659     // meant to be equivalent, so we must specify a concrete value for each
1660     // enumerator.
1661     Ret += "    " + EnumName + " = " + llvm::utostr(Idx);
1662   }
1663   Ret += ",\n  SpellingNotCalculated = 15\n";
1664   Ret += "\n  };\n\n";
1665   return Ret;
1666 }
1667 
1668 void WriteSemanticSpellingSwitch(const std::string &VarName,
1669                                  const SemanticSpellingMap &Map,
1670                                  raw_ostream &OS) {
1671   OS << "  switch (" << VarName << ") {\n    default: "
1672     << "llvm_unreachable(\"Unknown spelling list index\");\n";
1673   for (const auto &I : Map)
1674     OS << "    case " << I.first << ": return " << I.second << ";\n";
1675   OS << "  }\n";
1676 }
1677 
1678 // Emits the LateParsed property for attributes.
1679 static void emitClangAttrLateParsedList(RecordKeeper &Records, raw_ostream &OS) {
1680   OS << "#if defined(CLANG_ATTR_LATE_PARSED_LIST)\n";
1681   std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr");
1682 
1683   for (const auto *Attr : Attrs) {
1684     bool LateParsed = Attr->getValueAsBit("LateParsed");
1685 
1686     if (LateParsed) {
1687       std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*Attr);
1688 
1689       // FIXME: Handle non-GNU attributes
1690       for (const auto &I : Spellings) {
1691         if (I.variety() != "GNU")
1692           continue;
1693         OS << ".Case(\"" << I.name() << "\", " << LateParsed << ")\n";
1694       }
1695     }
1696   }
1697   OS << "#endif // CLANG_ATTR_LATE_PARSED_LIST\n\n";
1698 }
1699 
1700 static bool hasGNUorCXX11Spelling(const Record &Attribute) {
1701   std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attribute);
1702   for (const auto &I : Spellings) {
1703     if (I.variety() == "GNU" || I.variety() == "CXX11")
1704       return true;
1705   }
1706   return false;
1707 }
1708 
1709 namespace {
1710 
1711 struct AttributeSubjectMatchRule {
1712   const Record *MetaSubject;
1713   const Record *Constraint;
1714 
1715   AttributeSubjectMatchRule(const Record *MetaSubject, const Record *Constraint)
1716       : MetaSubject(MetaSubject), Constraint(Constraint) {
1717     assert(MetaSubject && "Missing subject");
1718   }
1719 
1720   bool isSubRule() const { return Constraint != nullptr; }
1721 
1722   std::vector<Record *> getSubjects() const {
1723     return (Constraint ? Constraint : MetaSubject)
1724         ->getValueAsListOfDefs("Subjects");
1725   }
1726 
1727   std::vector<Record *> getLangOpts() const {
1728     if (Constraint) {
1729       // Lookup the options in the sub-rule first, in case the sub-rule
1730       // overrides the rules options.
1731       std::vector<Record *> Opts = Constraint->getValueAsListOfDefs("LangOpts");
1732       if (!Opts.empty())
1733         return Opts;
1734     }
1735     return MetaSubject->getValueAsListOfDefs("LangOpts");
1736   }
1737 
1738   // Abstract rules are used only for sub-rules
1739   bool isAbstractRule() const { return getSubjects().empty(); }
1740 
1741   StringRef getName() const {
1742     return (Constraint ? Constraint : MetaSubject)->getValueAsString("Name");
1743   }
1744 
1745   bool isNegatedSubRule() const {
1746     assert(isSubRule() && "Not a sub-rule");
1747     return Constraint->getValueAsBit("Negated");
1748   }
1749 
1750   std::string getSpelling() const {
1751     std::string Result = std::string(MetaSubject->getValueAsString("Name"));
1752     if (isSubRule()) {
1753       Result += '(';
1754       if (isNegatedSubRule())
1755         Result += "unless(";
1756       Result += getName();
1757       if (isNegatedSubRule())
1758         Result += ')';
1759       Result += ')';
1760     }
1761     return Result;
1762   }
1763 
1764   std::string getEnumValueName() const {
1765     SmallString<128> Result;
1766     Result += "SubjectMatchRule_";
1767     Result += MetaSubject->getValueAsString("Name");
1768     if (isSubRule()) {
1769       Result += "_";
1770       if (isNegatedSubRule())
1771         Result += "not_";
1772       Result += Constraint->getValueAsString("Name");
1773     }
1774     if (isAbstractRule())
1775       Result += "_abstract";
1776     return std::string(Result.str());
1777   }
1778 
1779   std::string getEnumValue() const { return "attr::" + getEnumValueName(); }
1780 
1781   static const char *EnumName;
1782 };
1783 
1784 const char *AttributeSubjectMatchRule::EnumName = "attr::SubjectMatchRule";
1785 
1786 struct PragmaClangAttributeSupport {
1787   std::vector<AttributeSubjectMatchRule> Rules;
1788 
1789   class RuleOrAggregateRuleSet {
1790     std::vector<AttributeSubjectMatchRule> Rules;
1791     bool IsRule;
1792     RuleOrAggregateRuleSet(ArrayRef<AttributeSubjectMatchRule> Rules,
1793                            bool IsRule)
1794         : Rules(Rules), IsRule(IsRule) {}
1795 
1796   public:
1797     bool isRule() const { return IsRule; }
1798 
1799     const AttributeSubjectMatchRule &getRule() const {
1800       assert(IsRule && "not a rule!");
1801       return Rules[0];
1802     }
1803 
1804     ArrayRef<AttributeSubjectMatchRule> getAggregateRuleSet() const {
1805       return Rules;
1806     }
1807 
1808     static RuleOrAggregateRuleSet
1809     getRule(const AttributeSubjectMatchRule &Rule) {
1810       return RuleOrAggregateRuleSet(Rule, /*IsRule=*/true);
1811     }
1812     static RuleOrAggregateRuleSet
1813     getAggregateRuleSet(ArrayRef<AttributeSubjectMatchRule> Rules) {
1814       return RuleOrAggregateRuleSet(Rules, /*IsRule=*/false);
1815     }
1816   };
1817   llvm::DenseMap<const Record *, RuleOrAggregateRuleSet> SubjectsToRules;
1818 
1819   PragmaClangAttributeSupport(RecordKeeper &Records);
1820 
1821   bool isAttributedSupported(const Record &Attribute);
1822 
1823   void emitMatchRuleList(raw_ostream &OS);
1824 
1825   void generateStrictConformsTo(const Record &Attr, raw_ostream &OS);
1826 
1827   void generateParsingHelpers(raw_ostream &OS);
1828 };
1829 
1830 } // end anonymous namespace
1831 
1832 static bool isSupportedPragmaClangAttributeSubject(const Record &Subject) {
1833   // FIXME: #pragma clang attribute does not currently support statement
1834   // attributes, so test whether the subject is one that appertains to a
1835   // declaration node. However, it may be reasonable for support for statement
1836   // attributes to be added.
1837   if (Subject.isSubClassOf("DeclNode") || Subject.isSubClassOf("DeclBase") ||
1838       Subject.getName() == "DeclBase")
1839     return true;
1840 
1841   if (Subject.isSubClassOf("SubsetSubject"))
1842     return isSupportedPragmaClangAttributeSubject(
1843         *Subject.getValueAsDef("Base"));
1844 
1845   return false;
1846 }
1847 
1848 static bool doesDeclDeriveFrom(const Record *D, const Record *Base) {
1849   const Record *CurrentBase = D->getValueAsOptionalDef(BaseFieldName);
1850   if (!CurrentBase)
1851     return false;
1852   if (CurrentBase == Base)
1853     return true;
1854   return doesDeclDeriveFrom(CurrentBase, Base);
1855 }
1856 
1857 PragmaClangAttributeSupport::PragmaClangAttributeSupport(
1858     RecordKeeper &Records) {
1859   std::vector<Record *> MetaSubjects =
1860       Records.getAllDerivedDefinitions("AttrSubjectMatcherRule");
1861   auto MapFromSubjectsToRules = [this](const Record *SubjectContainer,
1862                                        const Record *MetaSubject,
1863                                        const Record *Constraint) {
1864     Rules.emplace_back(MetaSubject, Constraint);
1865     std::vector<Record *> ApplicableSubjects =
1866         SubjectContainer->getValueAsListOfDefs("Subjects");
1867     for (const auto *Subject : ApplicableSubjects) {
1868       bool Inserted =
1869           SubjectsToRules
1870               .try_emplace(Subject, RuleOrAggregateRuleSet::getRule(
1871                                         AttributeSubjectMatchRule(MetaSubject,
1872                                                                   Constraint)))
1873               .second;
1874       if (!Inserted) {
1875         PrintFatalError("Attribute subject match rules should not represent"
1876                         "same attribute subjects.");
1877       }
1878     }
1879   };
1880   for (const auto *MetaSubject : MetaSubjects) {
1881     MapFromSubjectsToRules(MetaSubject, MetaSubject, /*Constraints=*/nullptr);
1882     std::vector<Record *> Constraints =
1883         MetaSubject->getValueAsListOfDefs("Constraints");
1884     for (const auto *Constraint : Constraints)
1885       MapFromSubjectsToRules(Constraint, MetaSubject, Constraint);
1886   }
1887 
1888   std::vector<Record *> Aggregates =
1889       Records.getAllDerivedDefinitions("AttrSubjectMatcherAggregateRule");
1890   std::vector<Record *> DeclNodes =
1891     Records.getAllDerivedDefinitions(DeclNodeClassName);
1892   for (const auto *Aggregate : Aggregates) {
1893     Record *SubjectDecl = Aggregate->getValueAsDef("Subject");
1894 
1895     // Gather sub-classes of the aggregate subject that act as attribute
1896     // subject rules.
1897     std::vector<AttributeSubjectMatchRule> Rules;
1898     for (const auto *D : DeclNodes) {
1899       if (doesDeclDeriveFrom(D, SubjectDecl)) {
1900         auto It = SubjectsToRules.find(D);
1901         if (It == SubjectsToRules.end())
1902           continue;
1903         if (!It->second.isRule() || It->second.getRule().isSubRule())
1904           continue; // Assume that the rule will be included as well.
1905         Rules.push_back(It->second.getRule());
1906       }
1907     }
1908 
1909     bool Inserted =
1910         SubjectsToRules
1911             .try_emplace(SubjectDecl,
1912                          RuleOrAggregateRuleSet::getAggregateRuleSet(Rules))
1913             .second;
1914     if (!Inserted) {
1915       PrintFatalError("Attribute subject match rules should not represent"
1916                       "same attribute subjects.");
1917     }
1918   }
1919 }
1920 
1921 static PragmaClangAttributeSupport &
1922 getPragmaAttributeSupport(RecordKeeper &Records) {
1923   static PragmaClangAttributeSupport Instance(Records);
1924   return Instance;
1925 }
1926 
1927 void PragmaClangAttributeSupport::emitMatchRuleList(raw_ostream &OS) {
1928   OS << "#ifndef ATTR_MATCH_SUB_RULE\n";
1929   OS << "#define ATTR_MATCH_SUB_RULE(Value, Spelling, IsAbstract, Parent, "
1930         "IsNegated) "
1931      << "ATTR_MATCH_RULE(Value, Spelling, IsAbstract)\n";
1932   OS << "#endif\n";
1933   for (const auto &Rule : Rules) {
1934     OS << (Rule.isSubRule() ? "ATTR_MATCH_SUB_RULE" : "ATTR_MATCH_RULE") << '(';
1935     OS << Rule.getEnumValueName() << ", \"" << Rule.getSpelling() << "\", "
1936        << Rule.isAbstractRule();
1937     if (Rule.isSubRule())
1938       OS << ", "
1939          << AttributeSubjectMatchRule(Rule.MetaSubject, nullptr).getEnumValue()
1940          << ", " << Rule.isNegatedSubRule();
1941     OS << ")\n";
1942   }
1943   OS << "#undef ATTR_MATCH_SUB_RULE\n";
1944 }
1945 
1946 bool PragmaClangAttributeSupport::isAttributedSupported(
1947     const Record &Attribute) {
1948   // If the attribute explicitly specified whether to support #pragma clang
1949   // attribute, use that setting.
1950   bool Unset;
1951   bool SpecifiedResult =
1952     Attribute.getValueAsBitOrUnset("PragmaAttributeSupport", Unset);
1953   if (!Unset)
1954     return SpecifiedResult;
1955 
1956   // Opt-out rules:
1957   // An attribute requires delayed parsing (LateParsed is on)
1958   if (Attribute.getValueAsBit("LateParsed"))
1959     return false;
1960   // An attribute has no GNU/CXX11 spelling
1961   if (!hasGNUorCXX11Spelling(Attribute))
1962     return false;
1963   // An attribute subject list has a subject that isn't covered by one of the
1964   // subject match rules or has no subjects at all.
1965   if (Attribute.isValueUnset("Subjects"))
1966     return false;
1967   const Record *SubjectObj = Attribute.getValueAsDef("Subjects");
1968   std::vector<Record *> Subjects = SubjectObj->getValueAsListOfDefs("Subjects");
1969   bool HasAtLeastOneValidSubject = false;
1970   for (const auto *Subject : Subjects) {
1971     if (!isSupportedPragmaClangAttributeSubject(*Subject))
1972       continue;
1973     if (SubjectsToRules.find(Subject) == SubjectsToRules.end())
1974       return false;
1975     HasAtLeastOneValidSubject = true;
1976   }
1977   return HasAtLeastOneValidSubject;
1978 }
1979 
1980 static std::string GenerateTestExpression(ArrayRef<Record *> LangOpts) {
1981   std::string Test;
1982 
1983   for (auto *E : LangOpts) {
1984     if (!Test.empty())
1985       Test += " || ";
1986 
1987     const StringRef Code = E->getValueAsString("CustomCode");
1988     if (!Code.empty()) {
1989       Test += "(";
1990       Test += Code;
1991       Test += ")";
1992       if (!E->getValueAsString("Name").empty()) {
1993         PrintWarning(
1994             E->getLoc(),
1995             "non-empty 'Name' field ignored because 'CustomCode' was supplied");
1996       }
1997     } else {
1998       Test += "LangOpts.";
1999       Test += E->getValueAsString("Name");
2000     }
2001   }
2002 
2003   if (Test.empty())
2004     return "true";
2005 
2006   return Test;
2007 }
2008 
2009 void
2010 PragmaClangAttributeSupport::generateStrictConformsTo(const Record &Attr,
2011                                                       raw_ostream &OS) {
2012   if (!isAttributedSupported(Attr) || Attr.isValueUnset("Subjects"))
2013     return;
2014   // Generate a function that constructs a set of matching rules that describe
2015   // to which declarations the attribute should apply to.
2016   OS << "void getPragmaAttributeMatchRules("
2017      << "llvm::SmallVectorImpl<std::pair<"
2018      << AttributeSubjectMatchRule::EnumName
2019      << ", bool>> &MatchRules, const LangOptions &LangOpts) const override {\n";
2020   const Record *SubjectObj = Attr.getValueAsDef("Subjects");
2021   std::vector<Record *> Subjects = SubjectObj->getValueAsListOfDefs("Subjects");
2022   for (const auto *Subject : Subjects) {
2023     if (!isSupportedPragmaClangAttributeSubject(*Subject))
2024       continue;
2025     auto It = SubjectsToRules.find(Subject);
2026     assert(It != SubjectsToRules.end() &&
2027            "This attribute is unsupported by #pragma clang attribute");
2028     for (const auto &Rule : It->getSecond().getAggregateRuleSet()) {
2029       // The rule might be language specific, so only subtract it from the given
2030       // rules if the specific language options are specified.
2031       std::vector<Record *> LangOpts = Rule.getLangOpts();
2032       OS << "  MatchRules.push_back(std::make_pair(" << Rule.getEnumValue()
2033          << ", /*IsSupported=*/" << GenerateTestExpression(LangOpts)
2034          << "));\n";
2035     }
2036   }
2037   OS << "}\n\n";
2038 }
2039 
2040 void PragmaClangAttributeSupport::generateParsingHelpers(raw_ostream &OS) {
2041   // Generate routines that check the names of sub-rules.
2042   OS << "Optional<attr::SubjectMatchRule> "
2043         "defaultIsAttributeSubjectMatchSubRuleFor(StringRef, bool) {\n";
2044   OS << "  return None;\n";
2045   OS << "}\n\n";
2046 
2047   llvm::MapVector<const Record *, std::vector<AttributeSubjectMatchRule>>
2048       SubMatchRules;
2049   for (const auto &Rule : Rules) {
2050     if (!Rule.isSubRule())
2051       continue;
2052     SubMatchRules[Rule.MetaSubject].push_back(Rule);
2053   }
2054 
2055   for (const auto &SubMatchRule : SubMatchRules) {
2056     OS << "Optional<attr::SubjectMatchRule> isAttributeSubjectMatchSubRuleFor_"
2057        << SubMatchRule.first->getValueAsString("Name")
2058        << "(StringRef Name, bool IsUnless) {\n";
2059     OS << "  if (IsUnless)\n";
2060     OS << "    return "
2061           "llvm::StringSwitch<Optional<attr::SubjectMatchRule>>(Name).\n";
2062     for (const auto &Rule : SubMatchRule.second) {
2063       if (Rule.isNegatedSubRule())
2064         OS << "    Case(\"" << Rule.getName() << "\", " << Rule.getEnumValue()
2065            << ").\n";
2066     }
2067     OS << "    Default(None);\n";
2068     OS << "  return "
2069           "llvm::StringSwitch<Optional<attr::SubjectMatchRule>>(Name).\n";
2070     for (const auto &Rule : SubMatchRule.second) {
2071       if (!Rule.isNegatedSubRule())
2072         OS << "  Case(\"" << Rule.getName() << "\", " << Rule.getEnumValue()
2073            << ").\n";
2074     }
2075     OS << "  Default(None);\n";
2076     OS << "}\n\n";
2077   }
2078 
2079   // Generate the function that checks for the top-level rules.
2080   OS << "std::pair<Optional<attr::SubjectMatchRule>, "
2081         "Optional<attr::SubjectMatchRule> (*)(StringRef, "
2082         "bool)> isAttributeSubjectMatchRule(StringRef Name) {\n";
2083   OS << "  return "
2084         "llvm::StringSwitch<std::pair<Optional<attr::SubjectMatchRule>, "
2085         "Optional<attr::SubjectMatchRule> (*) (StringRef, "
2086         "bool)>>(Name).\n";
2087   for (const auto &Rule : Rules) {
2088     if (Rule.isSubRule())
2089       continue;
2090     std::string SubRuleFunction;
2091     if (SubMatchRules.count(Rule.MetaSubject))
2092       SubRuleFunction =
2093           ("isAttributeSubjectMatchSubRuleFor_" + Rule.getName()).str();
2094     else
2095       SubRuleFunction = "defaultIsAttributeSubjectMatchSubRuleFor";
2096     OS << "  Case(\"" << Rule.getName() << "\", std::make_pair("
2097        << Rule.getEnumValue() << ", " << SubRuleFunction << ")).\n";
2098   }
2099   OS << "  Default(std::make_pair(None, "
2100         "defaultIsAttributeSubjectMatchSubRuleFor));\n";
2101   OS << "}\n\n";
2102 
2103   // Generate the function that checks for the submatch rules.
2104   OS << "const char *validAttributeSubjectMatchSubRules("
2105      << AttributeSubjectMatchRule::EnumName << " Rule) {\n";
2106   OS << "  switch (Rule) {\n";
2107   for (const auto &SubMatchRule : SubMatchRules) {
2108     OS << "  case "
2109        << AttributeSubjectMatchRule(SubMatchRule.first, nullptr).getEnumValue()
2110        << ":\n";
2111     OS << "  return \"'";
2112     bool IsFirst = true;
2113     for (const auto &Rule : SubMatchRule.second) {
2114       if (!IsFirst)
2115         OS << ", '";
2116       IsFirst = false;
2117       if (Rule.isNegatedSubRule())
2118         OS << "unless(";
2119       OS << Rule.getName();
2120       if (Rule.isNegatedSubRule())
2121         OS << ')';
2122       OS << "'";
2123     }
2124     OS << "\";\n";
2125   }
2126   OS << "  default: return nullptr;\n";
2127   OS << "  }\n";
2128   OS << "}\n\n";
2129 }
2130 
2131 template <typename Fn>
2132 static void forEachUniqueSpelling(const Record &Attr, Fn &&F) {
2133   std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attr);
2134   SmallDenseSet<StringRef, 8> Seen;
2135   for (const FlattenedSpelling &S : Spellings) {
2136     if (Seen.insert(S.name()).second)
2137       F(S);
2138   }
2139 }
2140 
2141 /// Emits the first-argument-is-type property for attributes.
2142 static void emitClangAttrTypeArgList(RecordKeeper &Records, raw_ostream &OS) {
2143   OS << "#if defined(CLANG_ATTR_TYPE_ARG_LIST)\n";
2144   std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
2145 
2146   for (const auto *Attr : Attrs) {
2147     // Determine whether the first argument is a type.
2148     std::vector<Record *> Args = Attr->getValueAsListOfDefs("Args");
2149     if (Args.empty())
2150       continue;
2151 
2152     if (Args[0]->getSuperClasses().back().first->getName() != "TypeArgument")
2153       continue;
2154 
2155     // All these spellings take a single type argument.
2156     forEachUniqueSpelling(*Attr, [&](const FlattenedSpelling &S) {
2157       OS << ".Case(\"" << S.name() << "\", " << "true" << ")\n";
2158     });
2159   }
2160   OS << "#endif // CLANG_ATTR_TYPE_ARG_LIST\n\n";
2161 }
2162 
2163 /// Emits the parse-arguments-in-unevaluated-context property for
2164 /// attributes.
2165 static void emitClangAttrArgContextList(RecordKeeper &Records, raw_ostream &OS) {
2166   OS << "#if defined(CLANG_ATTR_ARG_CONTEXT_LIST)\n";
2167   ParsedAttrMap Attrs = getParsedAttrList(Records);
2168   for (const auto &I : Attrs) {
2169     const Record &Attr = *I.second;
2170 
2171     if (!Attr.getValueAsBit("ParseArgumentsAsUnevaluated"))
2172       continue;
2173 
2174     // All these spellings take are parsed unevaluated.
2175     forEachUniqueSpelling(Attr, [&](const FlattenedSpelling &S) {
2176       OS << ".Case(\"" << S.name() << "\", " << "true" << ")\n";
2177     });
2178   }
2179   OS << "#endif // CLANG_ATTR_ARG_CONTEXT_LIST\n\n";
2180 }
2181 
2182 static bool isIdentifierArgument(Record *Arg) {
2183   return !Arg->getSuperClasses().empty() &&
2184     llvm::StringSwitch<bool>(Arg->getSuperClasses().back().first->getName())
2185     .Case("IdentifierArgument", true)
2186     .Case("EnumArgument", true)
2187     .Case("VariadicEnumArgument", true)
2188     .Default(false);
2189 }
2190 
2191 static bool isVariadicIdentifierArgument(Record *Arg) {
2192   return !Arg->getSuperClasses().empty() &&
2193          llvm::StringSwitch<bool>(
2194              Arg->getSuperClasses().back().first->getName())
2195              .Case("VariadicIdentifierArgument", true)
2196              .Case("VariadicParamOrParamIdxArgument", true)
2197              .Default(false);
2198 }
2199 
2200 static void emitClangAttrVariadicIdentifierArgList(RecordKeeper &Records,
2201                                                    raw_ostream &OS) {
2202   OS << "#if defined(CLANG_ATTR_VARIADIC_IDENTIFIER_ARG_LIST)\n";
2203   std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
2204   for (const auto *A : Attrs) {
2205     // Determine whether the first argument is a variadic identifier.
2206     std::vector<Record *> Args = A->getValueAsListOfDefs("Args");
2207     if (Args.empty() || !isVariadicIdentifierArgument(Args[0]))
2208       continue;
2209 
2210     // All these spellings take an identifier argument.
2211     forEachUniqueSpelling(*A, [&](const FlattenedSpelling &S) {
2212       OS << ".Case(\"" << S.name() << "\", "
2213          << "true"
2214          << ")\n";
2215     });
2216   }
2217   OS << "#endif // CLANG_ATTR_VARIADIC_IDENTIFIER_ARG_LIST\n\n";
2218 }
2219 
2220 // Emits the first-argument-is-identifier property for attributes.
2221 static void emitClangAttrIdentifierArgList(RecordKeeper &Records, raw_ostream &OS) {
2222   OS << "#if defined(CLANG_ATTR_IDENTIFIER_ARG_LIST)\n";
2223   std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr");
2224 
2225   for (const auto *Attr : Attrs) {
2226     // Determine whether the first argument is an identifier.
2227     std::vector<Record *> Args = Attr->getValueAsListOfDefs("Args");
2228     if (Args.empty() || !isIdentifierArgument(Args[0]))
2229       continue;
2230 
2231     // All these spellings take an identifier argument.
2232     forEachUniqueSpelling(*Attr, [&](const FlattenedSpelling &S) {
2233       OS << ".Case(\"" << S.name() << "\", " << "true" << ")\n";
2234     });
2235   }
2236   OS << "#endif // CLANG_ATTR_IDENTIFIER_ARG_LIST\n\n";
2237 }
2238 
2239 static bool keywordThisIsaIdentifierInArgument(const Record *Arg) {
2240   return !Arg->getSuperClasses().empty() &&
2241          llvm::StringSwitch<bool>(
2242              Arg->getSuperClasses().back().first->getName())
2243              .Case("VariadicParamOrParamIdxArgument", true)
2244              .Default(false);
2245 }
2246 
2247 static void emitClangAttrThisIsaIdentifierArgList(RecordKeeper &Records,
2248                                                   raw_ostream &OS) {
2249   OS << "#if defined(CLANG_ATTR_THIS_ISA_IDENTIFIER_ARG_LIST)\n";
2250   std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
2251   for (const auto *A : Attrs) {
2252     // Determine whether the first argument is a variadic identifier.
2253     std::vector<Record *> Args = A->getValueAsListOfDefs("Args");
2254     if (Args.empty() || !keywordThisIsaIdentifierInArgument(Args[0]))
2255       continue;
2256 
2257     // All these spellings take an identifier argument.
2258     forEachUniqueSpelling(*A, [&](const FlattenedSpelling &S) {
2259       OS << ".Case(\"" << S.name() << "\", "
2260          << "true"
2261          << ")\n";
2262     });
2263   }
2264   OS << "#endif // CLANG_ATTR_THIS_ISA_IDENTIFIER_ARG_LIST\n\n";
2265 }
2266 
2267 static void emitAttributes(RecordKeeper &Records, raw_ostream &OS,
2268                            bool Header) {
2269   std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr");
2270   ParsedAttrMap AttrMap = getParsedAttrList(Records);
2271 
2272   // Helper to print the starting character of an attribute argument. If there
2273   // hasn't been an argument yet, it prints an opening parenthese; otherwise it
2274   // prints a comma.
2275   OS << "static inline void DelimitAttributeArgument("
2276      << "raw_ostream& OS, bool& IsFirst) {\n"
2277      << "  if (IsFirst) {\n"
2278      << "    IsFirst = false;\n"
2279      << "    OS << \"(\";\n"
2280      << "  } else\n"
2281      << "    OS << \", \";\n"
2282      << "}\n";
2283 
2284   for (const auto *Attr : Attrs) {
2285     const Record &R = *Attr;
2286 
2287     // FIXME: Currently, documentation is generated as-needed due to the fact
2288     // that there is no way to allow a generated project "reach into" the docs
2289     // directory (for instance, it may be an out-of-tree build). However, we want
2290     // to ensure that every attribute has a Documentation field, and produce an
2291     // error if it has been neglected. Otherwise, the on-demand generation which
2292     // happens server-side will fail. This code is ensuring that functionality,
2293     // even though this Emitter doesn't technically need the documentation.
2294     // When attribute documentation can be generated as part of the build
2295     // itself, this code can be removed.
2296     (void)R.getValueAsListOfDefs("Documentation");
2297 
2298     if (!R.getValueAsBit("ASTNode"))
2299       continue;
2300 
2301     ArrayRef<std::pair<Record *, SMRange>> Supers = R.getSuperClasses();
2302     assert(!Supers.empty() && "Forgot to specify a superclass for the attr");
2303     std::string SuperName;
2304     bool Inheritable = false;
2305     for (const auto &Super : llvm::reverse(Supers)) {
2306       const Record *R = Super.first;
2307       if (R->getName() != "TargetSpecificAttr" &&
2308           R->getName() != "DeclOrTypeAttr" && SuperName.empty())
2309         SuperName = std::string(R->getName());
2310       if (R->getName() == "InheritableAttr")
2311         Inheritable = true;
2312     }
2313 
2314     if (Header)
2315       OS << "class " << R.getName() << "Attr : public " << SuperName << " {\n";
2316     else
2317       OS << "\n// " << R.getName() << "Attr implementation\n\n";
2318 
2319     std::vector<Record*> ArgRecords = R.getValueAsListOfDefs("Args");
2320     std::vector<std::unique_ptr<Argument>> Args;
2321     Args.reserve(ArgRecords.size());
2322 
2323     bool HasOptArg = false;
2324     bool HasFakeArg = false;
2325     for (const auto *ArgRecord : ArgRecords) {
2326       Args.emplace_back(createArgument(*ArgRecord, R.getName()));
2327       if (Header) {
2328         Args.back()->writeDeclarations(OS);
2329         OS << "\n\n";
2330       }
2331 
2332       // For these purposes, fake takes priority over optional.
2333       if (Args.back()->isFake()) {
2334         HasFakeArg = true;
2335       } else if (Args.back()->isOptional()) {
2336         HasOptArg = true;
2337       }
2338     }
2339 
2340     if (Header)
2341       OS << "public:\n";
2342 
2343     std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R);
2344 
2345     // If there are zero or one spellings, all spelling-related functionality
2346     // can be elided. If all of the spellings share the same name, the spelling
2347     // functionality can also be elided.
2348     bool ElideSpelling = (Spellings.size() <= 1) ||
2349                          SpellingNamesAreCommon(Spellings);
2350 
2351     // This maps spelling index values to semantic Spelling enumerants.
2352     SemanticSpellingMap SemanticToSyntacticMap;
2353 
2354     std::string SpellingEnum;
2355     if (Spellings.size() > 1)
2356       SpellingEnum = CreateSemanticSpellings(Spellings, SemanticToSyntacticMap);
2357     if (Header)
2358       OS << SpellingEnum;
2359 
2360     const auto &ParsedAttrSpellingItr = llvm::find_if(
2361         AttrMap, [R](const std::pair<std::string, const Record *> &P) {
2362           return &R == P.second;
2363         });
2364 
2365     // Emit CreateImplicit factory methods.
2366     auto emitCreate = [&](bool Implicit, bool emitFake) {
2367       if (Header)
2368         OS << "  static ";
2369       OS << R.getName() << "Attr *";
2370       if (!Header)
2371         OS << R.getName() << "Attr::";
2372       OS << "Create";
2373       if (Implicit)
2374         OS << "Implicit";
2375       OS << "(";
2376       OS << "ASTContext &Ctx";
2377       for (auto const &ai : Args) {
2378         if (ai->isFake() && !emitFake) continue;
2379         OS << ", ";
2380         ai->writeCtorParameters(OS);
2381       }
2382       OS << ", const AttributeCommonInfo &CommonInfo";
2383       if (Header && Implicit)
2384         OS << " = {SourceRange{}}";
2385       OS << ")";
2386       if (Header) {
2387         OS << ";\n";
2388         return;
2389       }
2390 
2391       OS << " {\n";
2392       OS << "  auto *A = new (Ctx) " << R.getName();
2393       OS << "Attr(Ctx, CommonInfo";
2394       for (auto const &ai : Args) {
2395         if (ai->isFake() && !emitFake) continue;
2396         OS << ", ";
2397         ai->writeImplicitCtorArgs(OS);
2398       }
2399       OS << ");\n";
2400       if (Implicit) {
2401         OS << "  A->setImplicit(true);\n";
2402       }
2403       if (Implicit || ElideSpelling) {
2404         OS << "  if (!A->isAttributeSpellingListCalculated() && "
2405               "!A->getAttrName())\n";
2406         OS << "    A->setAttributeSpellingListIndex(0);\n";
2407       }
2408       OS << "  return A;\n}\n\n";
2409     };
2410 
2411     auto emitCreateNoCI = [&](bool Implicit, bool emitFake) {
2412       if (Header)
2413         OS << "  static ";
2414       OS << R.getName() << "Attr *";
2415       if (!Header)
2416         OS << R.getName() << "Attr::";
2417       OS << "Create";
2418       if (Implicit)
2419         OS << "Implicit";
2420       OS << "(";
2421       OS << "ASTContext &Ctx";
2422       for (auto const &ai : Args) {
2423         if (ai->isFake() && !emitFake) continue;
2424         OS << ", ";
2425         ai->writeCtorParameters(OS);
2426       }
2427       OS << ", SourceRange Range, AttributeCommonInfo::Syntax Syntax";
2428       if (!ElideSpelling) {
2429         OS << ", " << R.getName() << "Attr::Spelling S";
2430         if (Header)
2431           OS << " = static_cast<Spelling>(SpellingNotCalculated)";
2432       }
2433       OS << ")";
2434       if (Header) {
2435         OS << ";\n";
2436         return;
2437       }
2438 
2439       OS << " {\n";
2440       OS << "  AttributeCommonInfo I(Range, ";
2441 
2442       if (ParsedAttrSpellingItr != std::end(AttrMap))
2443         OS << "AT_" << ParsedAttrSpellingItr->first;
2444       else
2445         OS << "NoSemaHandlerAttribute";
2446 
2447       OS << ", Syntax";
2448       if (!ElideSpelling)
2449         OS << ", S";
2450       OS << ");\n";
2451       OS << "  return Create";
2452       if (Implicit)
2453         OS << "Implicit";
2454       OS << "(Ctx";
2455       for (auto const &ai : Args) {
2456         if (ai->isFake() && !emitFake) continue;
2457         OS << ", ";
2458         ai->writeImplicitCtorArgs(OS);
2459       }
2460       OS << ", I);\n";
2461       OS << "}\n\n";
2462     };
2463 
2464     auto emitCreates = [&](bool emitFake) {
2465       emitCreate(true, emitFake);
2466       emitCreate(false, emitFake);
2467       emitCreateNoCI(true, emitFake);
2468       emitCreateNoCI(false, emitFake);
2469     };
2470 
2471     if (Header)
2472       OS << "  // Factory methods\n";
2473 
2474     // Emit a CreateImplicit that takes all the arguments.
2475     emitCreates(true);
2476 
2477     // Emit a CreateImplicit that takes all the non-fake arguments.
2478     if (HasFakeArg)
2479       emitCreates(false);
2480 
2481     // Emit constructors.
2482     auto emitCtor = [&](bool emitOpt, bool emitFake) {
2483       auto shouldEmitArg = [=](const std::unique_ptr<Argument> &arg) {
2484         if (arg->isFake()) return emitFake;
2485         if (arg->isOptional()) return emitOpt;
2486         return true;
2487       };
2488       if (Header)
2489         OS << "  ";
2490       else
2491         OS << R.getName() << "Attr::";
2492       OS << R.getName()
2493          << "Attr(ASTContext &Ctx, const AttributeCommonInfo &CommonInfo";
2494       OS << '\n';
2495       for (auto const &ai : Args) {
2496         if (!shouldEmitArg(ai)) continue;
2497         OS << "              , ";
2498         ai->writeCtorParameters(OS);
2499         OS << "\n";
2500       }
2501 
2502       OS << "             )";
2503       if (Header) {
2504         OS << ";\n";
2505         return;
2506       }
2507       OS << "\n  : " << SuperName << "(Ctx, CommonInfo, ";
2508       OS << "attr::" << R.getName() << ", "
2509          << (R.getValueAsBit("LateParsed") ? "true" : "false");
2510       if (Inheritable) {
2511         OS << ", "
2512            << (R.getValueAsBit("InheritEvenIfAlreadyPresent") ? "true"
2513                                                               : "false");
2514       }
2515       OS << ")\n";
2516 
2517       for (auto const &ai : Args) {
2518         OS << "              , ";
2519         if (!shouldEmitArg(ai)) {
2520           ai->writeCtorDefaultInitializers(OS);
2521         } else {
2522           ai->writeCtorInitializers(OS);
2523         }
2524         OS << "\n";
2525       }
2526 
2527       OS << "  {\n";
2528 
2529       for (auto const &ai : Args) {
2530         if (!shouldEmitArg(ai)) continue;
2531         ai->writeCtorBody(OS);
2532       }
2533       OS << "}\n\n";
2534     };
2535 
2536     if (Header)
2537       OS << "\n  // Constructors\n";
2538 
2539     // Emit a constructor that includes all the arguments.
2540     // This is necessary for cloning.
2541     emitCtor(true, true);
2542 
2543     // Emit a constructor that takes all the non-fake arguments.
2544     if (HasFakeArg)
2545       emitCtor(true, false);
2546 
2547     // Emit a constructor that takes all the non-fake, non-optional arguments.
2548     if (HasOptArg)
2549       emitCtor(false, false);
2550 
2551     if (Header) {
2552       OS << '\n';
2553       OS << "  " << R.getName() << "Attr *clone(ASTContext &C) const;\n";
2554       OS << "  void printPretty(raw_ostream &OS,\n"
2555          << "                   const PrintingPolicy &Policy) const;\n";
2556       OS << "  const char *getSpelling() const;\n";
2557     }
2558 
2559     if (!ElideSpelling) {
2560       assert(!SemanticToSyntacticMap.empty() && "Empty semantic mapping list");
2561       if (Header)
2562         OS << "  Spelling getSemanticSpelling() const;\n";
2563       else {
2564         OS << R.getName() << "Attr::Spelling " << R.getName()
2565            << "Attr::getSemanticSpelling() const {\n";
2566         WriteSemanticSpellingSwitch("getAttributeSpellingListIndex()",
2567                                     SemanticToSyntacticMap, OS);
2568         OS << "}\n";
2569       }
2570     }
2571 
2572     if (Header)
2573       writeAttrAccessorDefinition(R, OS);
2574 
2575     for (auto const &ai : Args) {
2576       if (Header) {
2577         ai->writeAccessors(OS);
2578       } else {
2579         ai->writeAccessorDefinitions(OS);
2580       }
2581       OS << "\n\n";
2582 
2583       // Don't write conversion routines for fake arguments.
2584       if (ai->isFake()) continue;
2585 
2586       if (ai->isEnumArg())
2587         static_cast<const EnumArgument *>(ai.get())->writeConversion(OS,
2588                                                                      Header);
2589       else if (ai->isVariadicEnumArg())
2590         static_cast<const VariadicEnumArgument *>(ai.get())->writeConversion(
2591             OS, Header);
2592     }
2593 
2594     if (Header) {
2595       OS << R.getValueAsString("AdditionalMembers");
2596       OS << "\n\n";
2597 
2598       OS << "  static bool classof(const Attr *A) { return A->getKind() == "
2599          << "attr::" << R.getName() << "; }\n";
2600 
2601       OS << "};\n\n";
2602     } else {
2603       OS << R.getName() << "Attr *" << R.getName()
2604          << "Attr::clone(ASTContext &C) const {\n";
2605       OS << "  auto *A = new (C) " << R.getName() << "Attr(C, *this";
2606       for (auto const &ai : Args) {
2607         OS << ", ";
2608         ai->writeCloneArgs(OS);
2609       }
2610       OS << ");\n";
2611       OS << "  A->Inherited = Inherited;\n";
2612       OS << "  A->IsPackExpansion = IsPackExpansion;\n";
2613       OS << "  A->setImplicit(Implicit);\n";
2614       OS << "  return A;\n}\n\n";
2615 
2616       writePrettyPrintFunction(R, Args, OS);
2617       writeGetSpellingFunction(R, OS);
2618     }
2619   }
2620 }
2621 // Emits the class definitions for attributes.
2622 void clang::EmitClangAttrClass(RecordKeeper &Records, raw_ostream &OS) {
2623   emitSourceFileHeader("Attribute classes' definitions", OS);
2624 
2625   OS << "#ifndef LLVM_CLANG_ATTR_CLASSES_INC\n";
2626   OS << "#define LLVM_CLANG_ATTR_CLASSES_INC\n\n";
2627 
2628   emitAttributes(Records, OS, true);
2629 
2630   OS << "#endif // LLVM_CLANG_ATTR_CLASSES_INC\n";
2631 }
2632 
2633 // Emits the class method definitions for attributes.
2634 void clang::EmitClangAttrImpl(RecordKeeper &Records, raw_ostream &OS) {
2635   emitSourceFileHeader("Attribute classes' member function definitions", OS);
2636 
2637   emitAttributes(Records, OS, false);
2638 
2639   std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
2640 
2641   // Instead of relying on virtual dispatch we just create a huge dispatch
2642   // switch. This is both smaller and faster than virtual functions.
2643   auto EmitFunc = [&](const char *Method) {
2644     OS << "  switch (getKind()) {\n";
2645     for (const auto *Attr : Attrs) {
2646       const Record &R = *Attr;
2647       if (!R.getValueAsBit("ASTNode"))
2648         continue;
2649 
2650       OS << "  case attr::" << R.getName() << ":\n";
2651       OS << "    return cast<" << R.getName() << "Attr>(this)->" << Method
2652          << ";\n";
2653     }
2654     OS << "  }\n";
2655     OS << "  llvm_unreachable(\"Unexpected attribute kind!\");\n";
2656     OS << "}\n\n";
2657   };
2658 
2659   OS << "const char *Attr::getSpelling() const {\n";
2660   EmitFunc("getSpelling()");
2661 
2662   OS << "Attr *Attr::clone(ASTContext &C) const {\n";
2663   EmitFunc("clone(C)");
2664 
2665   OS << "void Attr::printPretty(raw_ostream &OS, "
2666         "const PrintingPolicy &Policy) const {\n";
2667   EmitFunc("printPretty(OS, Policy)");
2668 }
2669 
2670 static void emitAttrList(raw_ostream &OS, StringRef Class,
2671                          const std::vector<Record*> &AttrList) {
2672   for (auto Cur : AttrList) {
2673     OS << Class << "(" << Cur->getName() << ")\n";
2674   }
2675 }
2676 
2677 // Determines if an attribute has a Pragma spelling.
2678 static bool AttrHasPragmaSpelling(const Record *R) {
2679   std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*R);
2680   return llvm::any_of(Spellings, [](const FlattenedSpelling &S) {
2681     return S.variety() == "Pragma";
2682   });
2683 }
2684 
2685 namespace {
2686 
2687   struct AttrClassDescriptor {
2688     const char * const MacroName;
2689     const char * const TableGenName;
2690   };
2691 
2692 } // end anonymous namespace
2693 
2694 static const AttrClassDescriptor AttrClassDescriptors[] = {
2695   { "ATTR", "Attr" },
2696   { "TYPE_ATTR", "TypeAttr" },
2697   { "STMT_ATTR", "StmtAttr" },
2698   { "DECL_OR_STMT_ATTR", "DeclOrStmtAttr" },
2699   { "INHERITABLE_ATTR", "InheritableAttr" },
2700   { "DECL_OR_TYPE_ATTR", "DeclOrTypeAttr" },
2701   { "INHERITABLE_PARAM_ATTR", "InheritableParamAttr" },
2702   { "PARAMETER_ABI_ATTR", "ParameterABIAttr" }
2703 };
2704 
2705 static void emitDefaultDefine(raw_ostream &OS, StringRef name,
2706                               const char *superName) {
2707   OS << "#ifndef " << name << "\n";
2708   OS << "#define " << name << "(NAME) ";
2709   if (superName) OS << superName << "(NAME)";
2710   OS << "\n#endif\n\n";
2711 }
2712 
2713 namespace {
2714 
2715   /// A class of attributes.
2716   struct AttrClass {
2717     const AttrClassDescriptor &Descriptor;
2718     Record *TheRecord;
2719     AttrClass *SuperClass = nullptr;
2720     std::vector<AttrClass*> SubClasses;
2721     std::vector<Record*> Attrs;
2722 
2723     AttrClass(const AttrClassDescriptor &Descriptor, Record *R)
2724       : Descriptor(Descriptor), TheRecord(R) {}
2725 
2726     void emitDefaultDefines(raw_ostream &OS) const {
2727       // Default the macro unless this is a root class (i.e. Attr).
2728       if (SuperClass) {
2729         emitDefaultDefine(OS, Descriptor.MacroName,
2730                           SuperClass->Descriptor.MacroName);
2731       }
2732     }
2733 
2734     void emitUndefs(raw_ostream &OS) const {
2735       OS << "#undef " << Descriptor.MacroName << "\n";
2736     }
2737 
2738     void emitAttrList(raw_ostream &OS) const {
2739       for (auto SubClass : SubClasses) {
2740         SubClass->emitAttrList(OS);
2741       }
2742 
2743       ::emitAttrList(OS, Descriptor.MacroName, Attrs);
2744     }
2745 
2746     void classifyAttrOnRoot(Record *Attr) {
2747       bool result = classifyAttr(Attr);
2748       assert(result && "failed to classify on root"); (void) result;
2749     }
2750 
2751     void emitAttrRange(raw_ostream &OS) const {
2752       OS << "ATTR_RANGE(" << Descriptor.TableGenName
2753          << ", " << getFirstAttr()->getName()
2754          << ", " << getLastAttr()->getName() << ")\n";
2755     }
2756 
2757   private:
2758     bool classifyAttr(Record *Attr) {
2759       // Check all the subclasses.
2760       for (auto SubClass : SubClasses) {
2761         if (SubClass->classifyAttr(Attr))
2762           return true;
2763       }
2764 
2765       // It's not more specific than this class, but it might still belong here.
2766       if (Attr->isSubClassOf(TheRecord)) {
2767         Attrs.push_back(Attr);
2768         return true;
2769       }
2770 
2771       return false;
2772     }
2773 
2774     Record *getFirstAttr() const {
2775       if (!SubClasses.empty())
2776         return SubClasses.front()->getFirstAttr();
2777       return Attrs.front();
2778     }
2779 
2780     Record *getLastAttr() const {
2781       if (!Attrs.empty())
2782         return Attrs.back();
2783       return SubClasses.back()->getLastAttr();
2784     }
2785   };
2786 
2787   /// The entire hierarchy of attribute classes.
2788   class AttrClassHierarchy {
2789     std::vector<std::unique_ptr<AttrClass>> Classes;
2790 
2791   public:
2792     AttrClassHierarchy(RecordKeeper &Records) {
2793       // Find records for all the classes.
2794       for (auto &Descriptor : AttrClassDescriptors) {
2795         Record *ClassRecord = Records.getClass(Descriptor.TableGenName);
2796         AttrClass *Class = new AttrClass(Descriptor, ClassRecord);
2797         Classes.emplace_back(Class);
2798       }
2799 
2800       // Link up the hierarchy.
2801       for (auto &Class : Classes) {
2802         if (AttrClass *SuperClass = findSuperClass(Class->TheRecord)) {
2803           Class->SuperClass = SuperClass;
2804           SuperClass->SubClasses.push_back(Class.get());
2805         }
2806       }
2807 
2808 #ifndef NDEBUG
2809       for (auto i = Classes.begin(), e = Classes.end(); i != e; ++i) {
2810         assert((i == Classes.begin()) == ((*i)->SuperClass == nullptr) &&
2811                "only the first class should be a root class!");
2812       }
2813 #endif
2814     }
2815 
2816     void emitDefaultDefines(raw_ostream &OS) const {
2817       for (auto &Class : Classes) {
2818         Class->emitDefaultDefines(OS);
2819       }
2820     }
2821 
2822     void emitUndefs(raw_ostream &OS) const {
2823       for (auto &Class : Classes) {
2824         Class->emitUndefs(OS);
2825       }
2826     }
2827 
2828     void emitAttrLists(raw_ostream &OS) const {
2829       // Just start from the root class.
2830       Classes[0]->emitAttrList(OS);
2831     }
2832 
2833     void emitAttrRanges(raw_ostream &OS) const {
2834       for (auto &Class : Classes)
2835         Class->emitAttrRange(OS);
2836     }
2837 
2838     void classifyAttr(Record *Attr) {
2839       // Add the attribute to the root class.
2840       Classes[0]->classifyAttrOnRoot(Attr);
2841     }
2842 
2843   private:
2844     AttrClass *findClassByRecord(Record *R) const {
2845       for (auto &Class : Classes) {
2846         if (Class->TheRecord == R)
2847           return Class.get();
2848       }
2849       return nullptr;
2850     }
2851 
2852     AttrClass *findSuperClass(Record *R) const {
2853       // TableGen flattens the superclass list, so we just need to walk it
2854       // in reverse.
2855       auto SuperClasses = R->getSuperClasses();
2856       for (signed i = 0, e = SuperClasses.size(); i != e; ++i) {
2857         auto SuperClass = findClassByRecord(SuperClasses[e - i - 1].first);
2858         if (SuperClass) return SuperClass;
2859       }
2860       return nullptr;
2861     }
2862   };
2863 
2864 } // end anonymous namespace
2865 
2866 namespace clang {
2867 
2868 // Emits the enumeration list for attributes.
2869 void EmitClangAttrList(RecordKeeper &Records, raw_ostream &OS) {
2870   emitSourceFileHeader("List of all attributes that Clang recognizes", OS);
2871 
2872   AttrClassHierarchy Hierarchy(Records);
2873 
2874   // Add defaulting macro definitions.
2875   Hierarchy.emitDefaultDefines(OS);
2876   emitDefaultDefine(OS, "PRAGMA_SPELLING_ATTR", nullptr);
2877 
2878   std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
2879   std::vector<Record *> PragmaAttrs;
2880   for (auto *Attr : Attrs) {
2881     if (!Attr->getValueAsBit("ASTNode"))
2882       continue;
2883 
2884     // Add the attribute to the ad-hoc groups.
2885     if (AttrHasPragmaSpelling(Attr))
2886       PragmaAttrs.push_back(Attr);
2887 
2888     // Place it in the hierarchy.
2889     Hierarchy.classifyAttr(Attr);
2890   }
2891 
2892   // Emit the main attribute list.
2893   Hierarchy.emitAttrLists(OS);
2894 
2895   // Emit the ad hoc groups.
2896   emitAttrList(OS, "PRAGMA_SPELLING_ATTR", PragmaAttrs);
2897 
2898   // Emit the attribute ranges.
2899   OS << "#ifdef ATTR_RANGE\n";
2900   Hierarchy.emitAttrRanges(OS);
2901   OS << "#undef ATTR_RANGE\n";
2902   OS << "#endif\n";
2903 
2904   Hierarchy.emitUndefs(OS);
2905   OS << "#undef PRAGMA_SPELLING_ATTR\n";
2906 }
2907 
2908 // Emits the enumeration list for attributes.
2909 void EmitClangAttrSubjectMatchRuleList(RecordKeeper &Records, raw_ostream &OS) {
2910   emitSourceFileHeader(
2911       "List of all attribute subject matching rules that Clang recognizes", OS);
2912   PragmaClangAttributeSupport &PragmaAttributeSupport =
2913       getPragmaAttributeSupport(Records);
2914   emitDefaultDefine(OS, "ATTR_MATCH_RULE", nullptr);
2915   PragmaAttributeSupport.emitMatchRuleList(OS);
2916   OS << "#undef ATTR_MATCH_RULE\n";
2917 }
2918 
2919 // Emits the code to read an attribute from a precompiled header.
2920 void EmitClangAttrPCHRead(RecordKeeper &Records, raw_ostream &OS) {
2921   emitSourceFileHeader("Attribute deserialization code", OS);
2922 
2923   Record *InhClass = Records.getClass("InheritableAttr");
2924   std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"),
2925                        ArgRecords;
2926   std::vector<std::unique_ptr<Argument>> Args;
2927 
2928   OS << "  switch (Kind) {\n";
2929   for (const auto *Attr : Attrs) {
2930     const Record &R = *Attr;
2931     if (!R.getValueAsBit("ASTNode"))
2932       continue;
2933 
2934     OS << "  case attr::" << R.getName() << ": {\n";
2935     if (R.isSubClassOf(InhClass))
2936       OS << "    bool isInherited = Record.readInt();\n";
2937     OS << "    bool isImplicit = Record.readInt();\n";
2938     OS << "    bool isPackExpansion = Record.readInt();\n";
2939     ArgRecords = R.getValueAsListOfDefs("Args");
2940     Args.clear();
2941     for (const auto *Arg : ArgRecords) {
2942       Args.emplace_back(createArgument(*Arg, R.getName()));
2943       Args.back()->writePCHReadDecls(OS);
2944     }
2945     OS << "    New = new (Context) " << R.getName() << "Attr(Context, Info";
2946     for (auto const &ri : Args) {
2947       OS << ", ";
2948       ri->writePCHReadArgs(OS);
2949     }
2950     OS << ");\n";
2951     if (R.isSubClassOf(InhClass))
2952       OS << "    cast<InheritableAttr>(New)->setInherited(isInherited);\n";
2953     OS << "    New->setImplicit(isImplicit);\n";
2954     OS << "    New->setPackExpansion(isPackExpansion);\n";
2955     OS << "    break;\n";
2956     OS << "  }\n";
2957   }
2958   OS << "  }\n";
2959 }
2960 
2961 // Emits the code to write an attribute to a precompiled header.
2962 void EmitClangAttrPCHWrite(RecordKeeper &Records, raw_ostream &OS) {
2963   emitSourceFileHeader("Attribute serialization code", OS);
2964 
2965   Record *InhClass = Records.getClass("InheritableAttr");
2966   std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"), Args;
2967 
2968   OS << "  switch (A->getKind()) {\n";
2969   for (const auto *Attr : Attrs) {
2970     const Record &R = *Attr;
2971     if (!R.getValueAsBit("ASTNode"))
2972       continue;
2973     OS << "  case attr::" << R.getName() << ": {\n";
2974     Args = R.getValueAsListOfDefs("Args");
2975     if (R.isSubClassOf(InhClass) || !Args.empty())
2976       OS << "    const auto *SA = cast<" << R.getName()
2977          << "Attr>(A);\n";
2978     if (R.isSubClassOf(InhClass))
2979       OS << "    Record.push_back(SA->isInherited());\n";
2980     OS << "    Record.push_back(A->isImplicit());\n";
2981     OS << "    Record.push_back(A->isPackExpansion());\n";
2982 
2983     for (const auto *Arg : Args)
2984       createArgument(*Arg, R.getName())->writePCHWrite(OS);
2985     OS << "    break;\n";
2986     OS << "  }\n";
2987   }
2988   OS << "  }\n";
2989 }
2990 
2991 // Helper function for GenerateTargetSpecificAttrChecks that alters the 'Test'
2992 // parameter with only a single check type, if applicable.
2993 static bool GenerateTargetSpecificAttrCheck(const Record *R, std::string &Test,
2994                                             std::string *FnName,
2995                                             StringRef ListName,
2996                                             StringRef CheckAgainst,
2997                                             StringRef Scope) {
2998   if (!R->isValueUnset(ListName)) {
2999     Test += " && (";
3000     std::vector<StringRef> Items = R->getValueAsListOfStrings(ListName);
3001     for (auto I = Items.begin(), E = Items.end(); I != E; ++I) {
3002       StringRef Part = *I;
3003       Test += CheckAgainst;
3004       Test += " == ";
3005       Test += Scope;
3006       Test += Part;
3007       if (I + 1 != E)
3008         Test += " || ";
3009       if (FnName)
3010         *FnName += Part;
3011     }
3012     Test += ")";
3013     return true;
3014   }
3015   return false;
3016 }
3017 
3018 // Generate a conditional expression to check if the current target satisfies
3019 // the conditions for a TargetSpecificAttr record, and append the code for
3020 // those checks to the Test string. If the FnName string pointer is non-null,
3021 // append a unique suffix to distinguish this set of target checks from other
3022 // TargetSpecificAttr records.
3023 static bool GenerateTargetSpecificAttrChecks(const Record *R,
3024                                              std::vector<StringRef> &Arches,
3025                                              std::string &Test,
3026                                              std::string *FnName) {
3027   bool AnyTargetChecks = false;
3028 
3029   // It is assumed that there will be an llvm::Triple object
3030   // named "T" and a TargetInfo object named "Target" within
3031   // scope that can be used to determine whether the attribute exists in
3032   // a given target.
3033   Test += "true";
3034   // If one or more architectures is specified, check those.  Arches are handled
3035   // differently because GenerateTargetRequirements needs to combine the list
3036   // with ParseKind.
3037   if (!Arches.empty()) {
3038     AnyTargetChecks = true;
3039     Test += " && (";
3040     for (auto I = Arches.begin(), E = Arches.end(); I != E; ++I) {
3041       StringRef Part = *I;
3042       Test += "T.getArch() == llvm::Triple::";
3043       Test += Part;
3044       if (I + 1 != E)
3045         Test += " || ";
3046       if (FnName)
3047         *FnName += Part;
3048     }
3049     Test += ")";
3050   }
3051 
3052   // If the attribute is specific to particular OSes, check those.
3053   AnyTargetChecks |= GenerateTargetSpecificAttrCheck(
3054       R, Test, FnName, "OSes", "T.getOS()", "llvm::Triple::");
3055 
3056   // If one or more object formats is specified, check those.
3057   AnyTargetChecks |=
3058       GenerateTargetSpecificAttrCheck(R, Test, FnName, "ObjectFormats",
3059                                       "T.getObjectFormat()", "llvm::Triple::");
3060 
3061   // If custom code is specified, emit it.
3062   StringRef Code = R->getValueAsString("CustomCode");
3063   if (!Code.empty()) {
3064     AnyTargetChecks = true;
3065     Test += " && (";
3066     Test += Code;
3067     Test += ")";
3068   }
3069 
3070   return AnyTargetChecks;
3071 }
3072 
3073 static void GenerateHasAttrSpellingStringSwitch(
3074     const std::vector<Record *> &Attrs, raw_ostream &OS,
3075     const std::string &Variety = "", const std::string &Scope = "") {
3076   for (const auto *Attr : Attrs) {
3077     // C++11-style attributes have specific version information associated with
3078     // them. If the attribute has no scope, the version information must not
3079     // have the default value (1), as that's incorrect. Instead, the unscoped
3080     // attribute version information should be taken from the SD-6 standing
3081     // document, which can be found at:
3082     // https://isocpp.org/std/standing-documents/sd-6-sg10-feature-test-recommendations
3083     //
3084     // C2x-style attributes have the same kind of version information
3085     // associated with them. The unscoped attribute version information should
3086     // be taken from the specification of the attribute in the C Standard.
3087     int Version = 1;
3088 
3089     if (Variety == "CXX11" || Variety == "C2x") {
3090       std::vector<Record *> Spellings = Attr->getValueAsListOfDefs("Spellings");
3091       for (const auto &Spelling : Spellings) {
3092         if (Spelling->getValueAsString("Variety") == Variety) {
3093           Version = static_cast<int>(Spelling->getValueAsInt("Version"));
3094           if (Scope.empty() && Version == 1)
3095             PrintError(Spelling->getLoc(), "Standard attributes must have "
3096                                            "valid version information.");
3097           break;
3098         }
3099       }
3100     }
3101 
3102     std::string Test;
3103     if (Attr->isSubClassOf("TargetSpecificAttr")) {
3104       const Record *R = Attr->getValueAsDef("Target");
3105       std::vector<StringRef> Arches = R->getValueAsListOfStrings("Arches");
3106       GenerateTargetSpecificAttrChecks(R, Arches, Test, nullptr);
3107 
3108       // If this is the C++11 variety, also add in the LangOpts test.
3109       if (Variety == "CXX11")
3110         Test += " && LangOpts.CPlusPlus11";
3111       else if (Variety == "C2x")
3112         Test += " && LangOpts.DoubleSquareBracketAttributes";
3113     } else if (Variety == "CXX11")
3114       // C++11 mode should be checked against LangOpts, which is presumed to be
3115       // present in the caller.
3116       Test = "LangOpts.CPlusPlus11";
3117     else if (Variety == "C2x")
3118       Test = "LangOpts.DoubleSquareBracketAttributes";
3119 
3120     std::string TestStr =
3121         !Test.empty() ? Test + " ? " + llvm::itostr(Version) + " : 0" : "1";
3122     std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*Attr);
3123     for (const auto &S : Spellings)
3124       if (Variety.empty() || (Variety == S.variety() &&
3125                               (Scope.empty() || Scope == S.nameSpace())))
3126         OS << "    .Case(\"" << S.name() << "\", " << TestStr << ")\n";
3127   }
3128   OS << "    .Default(0);\n";
3129 }
3130 
3131 // Emits the list of spellings for attributes.
3132 void EmitClangAttrHasAttrImpl(RecordKeeper &Records, raw_ostream &OS) {
3133   emitSourceFileHeader("Code to implement the __has_attribute logic", OS);
3134 
3135   // Separate all of the attributes out into four group: generic, C++11, GNU,
3136   // and declspecs. Then generate a big switch statement for each of them.
3137   std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
3138   std::vector<Record *> Declspec, Microsoft, GNU, Pragma;
3139   std::map<std::string, std::vector<Record *>> CXX, C2x;
3140 
3141   // Walk over the list of all attributes, and split them out based on the
3142   // spelling variety.
3143   for (auto *R : Attrs) {
3144     std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*R);
3145     for (const auto &SI : Spellings) {
3146       const std::string &Variety = SI.variety();
3147       if (Variety == "GNU")
3148         GNU.push_back(R);
3149       else if (Variety == "Declspec")
3150         Declspec.push_back(R);
3151       else if (Variety == "Microsoft")
3152         Microsoft.push_back(R);
3153       else if (Variety == "CXX11")
3154         CXX[SI.nameSpace()].push_back(R);
3155       else if (Variety == "C2x")
3156         C2x[SI.nameSpace()].push_back(R);
3157       else if (Variety == "Pragma")
3158         Pragma.push_back(R);
3159     }
3160   }
3161 
3162   OS << "const llvm::Triple &T = Target.getTriple();\n";
3163   OS << "switch (Syntax) {\n";
3164   OS << "case AttrSyntax::GNU:\n";
3165   OS << "  return llvm::StringSwitch<int>(Name)\n";
3166   GenerateHasAttrSpellingStringSwitch(GNU, OS, "GNU");
3167   OS << "case AttrSyntax::Declspec:\n";
3168   OS << "  return llvm::StringSwitch<int>(Name)\n";
3169   GenerateHasAttrSpellingStringSwitch(Declspec, OS, "Declspec");
3170   OS << "case AttrSyntax::Microsoft:\n";
3171   OS << "  return llvm::StringSwitch<int>(Name)\n";
3172   GenerateHasAttrSpellingStringSwitch(Microsoft, OS, "Microsoft");
3173   OS << "case AttrSyntax::Pragma:\n";
3174   OS << "  return llvm::StringSwitch<int>(Name)\n";
3175   GenerateHasAttrSpellingStringSwitch(Pragma, OS, "Pragma");
3176   auto fn = [&OS](const char *Spelling, const char *Variety,
3177                   const std::map<std::string, std::vector<Record *>> &List) {
3178     OS << "case AttrSyntax::" << Variety << ": {\n";
3179     // C++11-style attributes are further split out based on the Scope.
3180     for (auto I = List.cbegin(), E = List.cend(); I != E; ++I) {
3181       if (I != List.cbegin())
3182         OS << " else ";
3183       if (I->first.empty())
3184         OS << "if (ScopeName == \"\") {\n";
3185       else
3186         OS << "if (ScopeName == \"" << I->first << "\") {\n";
3187       OS << "  return llvm::StringSwitch<int>(Name)\n";
3188       GenerateHasAttrSpellingStringSwitch(I->second, OS, Spelling, I->first);
3189       OS << "}";
3190     }
3191     OS << "\n} break;\n";
3192   };
3193   fn("CXX11", "CXX", CXX);
3194   fn("C2x", "C", C2x);
3195   OS << "}\n";
3196 }
3197 
3198 void EmitClangAttrSpellingListIndex(RecordKeeper &Records, raw_ostream &OS) {
3199   emitSourceFileHeader("Code to translate different attribute spellings "
3200                        "into internal identifiers", OS);
3201 
3202   OS << "  switch (getParsedKind()) {\n";
3203   OS << "    case IgnoredAttribute:\n";
3204   OS << "    case UnknownAttribute:\n";
3205   OS << "    case NoSemaHandlerAttribute:\n";
3206   OS << "      llvm_unreachable(\"Ignored/unknown shouldn't get here\");\n";
3207 
3208   ParsedAttrMap Attrs = getParsedAttrList(Records);
3209   for (const auto &I : Attrs) {
3210     const Record &R = *I.second;
3211     std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R);
3212     OS << "  case AT_" << I.first << ": {\n";
3213     for (unsigned I = 0; I < Spellings.size(); ++ I) {
3214       OS << "    if (Name == \"" << Spellings[I].name() << "\" && "
3215          << "getSyntax() == AttributeCommonInfo::AS_" << Spellings[I].variety()
3216          << " && Scope == \"" << Spellings[I].nameSpace() << "\")\n"
3217          << "        return " << I << ";\n";
3218     }
3219 
3220     OS << "    break;\n";
3221     OS << "  }\n";
3222   }
3223 
3224   OS << "  }\n";
3225   OS << "  return 0;\n";
3226 }
3227 
3228 // Emits code used by RecursiveASTVisitor to visit attributes
3229 void EmitClangAttrASTVisitor(RecordKeeper &Records, raw_ostream &OS) {
3230   emitSourceFileHeader("Used by RecursiveASTVisitor to visit attributes.", OS);
3231 
3232   std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr");
3233 
3234   // Write method declarations for Traverse* methods.
3235   // We emit this here because we only generate methods for attributes that
3236   // are declared as ASTNodes.
3237   OS << "#ifdef ATTR_VISITOR_DECLS_ONLY\n\n";
3238   for (const auto *Attr : Attrs) {
3239     const Record &R = *Attr;
3240     if (!R.getValueAsBit("ASTNode"))
3241       continue;
3242     OS << "  bool Traverse"
3243        << R.getName() << "Attr(" << R.getName() << "Attr *A);\n";
3244     OS << "  bool Visit"
3245        << R.getName() << "Attr(" << R.getName() << "Attr *A) {\n"
3246        << "    return true; \n"
3247        << "  }\n";
3248   }
3249   OS << "\n#else // ATTR_VISITOR_DECLS_ONLY\n\n";
3250 
3251   // Write individual Traverse* methods for each attribute class.
3252   for (const auto *Attr : Attrs) {
3253     const Record &R = *Attr;
3254     if (!R.getValueAsBit("ASTNode"))
3255       continue;
3256 
3257     OS << "template <typename Derived>\n"
3258        << "bool VISITORCLASS<Derived>::Traverse"
3259        << R.getName() << "Attr(" << R.getName() << "Attr *A) {\n"
3260        << "  if (!getDerived().VisitAttr(A))\n"
3261        << "    return false;\n"
3262        << "  if (!getDerived().Visit" << R.getName() << "Attr(A))\n"
3263        << "    return false;\n";
3264 
3265     std::vector<Record*> ArgRecords = R.getValueAsListOfDefs("Args");
3266     for (const auto *Arg : ArgRecords)
3267       createArgument(*Arg, R.getName())->writeASTVisitorTraversal(OS);
3268 
3269     OS << "  return true;\n";
3270     OS << "}\n\n";
3271   }
3272 
3273   // Write generic Traverse routine
3274   OS << "template <typename Derived>\n"
3275      << "bool VISITORCLASS<Derived>::TraverseAttr(Attr *A) {\n"
3276      << "  if (!A)\n"
3277      << "    return true;\n"
3278      << "\n"
3279      << "  switch (A->getKind()) {\n";
3280 
3281   for (const auto *Attr : Attrs) {
3282     const Record &R = *Attr;
3283     if (!R.getValueAsBit("ASTNode"))
3284       continue;
3285 
3286     OS << "    case attr::" << R.getName() << ":\n"
3287        << "      return getDerived().Traverse" << R.getName() << "Attr("
3288        << "cast<" << R.getName() << "Attr>(A));\n";
3289   }
3290   OS << "  }\n";  // end switch
3291   OS << "  llvm_unreachable(\"bad attribute kind\");\n";
3292   OS << "}\n";  // end function
3293   OS << "#endif  // ATTR_VISITOR_DECLS_ONLY\n";
3294 }
3295 
3296 void EmitClangAttrTemplateInstantiateHelper(const std::vector<Record *> &Attrs,
3297                                             raw_ostream &OS,
3298                                             bool AppliesToDecl) {
3299 
3300   OS << "  switch (At->getKind()) {\n";
3301   for (const auto *Attr : Attrs) {
3302     const Record &R = *Attr;
3303     if (!R.getValueAsBit("ASTNode"))
3304       continue;
3305     OS << "    case attr::" << R.getName() << ": {\n";
3306     bool ShouldClone = R.getValueAsBit("Clone") &&
3307                        (!AppliesToDecl ||
3308                         R.getValueAsBit("MeaningfulToClassTemplateDefinition"));
3309 
3310     if (!ShouldClone) {
3311       OS << "      return nullptr;\n";
3312       OS << "    }\n";
3313       continue;
3314     }
3315 
3316     OS << "      const auto *A = cast<"
3317        << R.getName() << "Attr>(At);\n";
3318     bool TDependent = R.getValueAsBit("TemplateDependent");
3319 
3320     if (!TDependent) {
3321       OS << "      return A->clone(C);\n";
3322       OS << "    }\n";
3323       continue;
3324     }
3325 
3326     std::vector<Record*> ArgRecords = R.getValueAsListOfDefs("Args");
3327     std::vector<std::unique_ptr<Argument>> Args;
3328     Args.reserve(ArgRecords.size());
3329 
3330     for (const auto *ArgRecord : ArgRecords)
3331       Args.emplace_back(createArgument(*ArgRecord, R.getName()));
3332 
3333     for (auto const &ai : Args)
3334       ai->writeTemplateInstantiation(OS);
3335 
3336     OS << "      return new (C) " << R.getName() << "Attr(C, *A";
3337     for (auto const &ai : Args) {
3338       OS << ", ";
3339       ai->writeTemplateInstantiationArgs(OS);
3340     }
3341     OS << ");\n"
3342        << "    }\n";
3343   }
3344   OS << "  } // end switch\n"
3345      << "  llvm_unreachable(\"Unknown attribute!\");\n"
3346      << "  return nullptr;\n";
3347 }
3348 
3349 // Emits code to instantiate dependent attributes on templates.
3350 void EmitClangAttrTemplateInstantiate(RecordKeeper &Records, raw_ostream &OS) {
3351   emitSourceFileHeader("Template instantiation code for attributes", OS);
3352 
3353   std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr");
3354 
3355   OS << "namespace clang {\n"
3356      << "namespace sema {\n\n"
3357      << "Attr *instantiateTemplateAttribute(const Attr *At, ASTContext &C, "
3358      << "Sema &S,\n"
3359      << "        const MultiLevelTemplateArgumentList &TemplateArgs) {\n";
3360   EmitClangAttrTemplateInstantiateHelper(Attrs, OS, /*AppliesToDecl*/false);
3361   OS << "}\n\n"
3362      << "Attr *instantiateTemplateAttributeForDecl(const Attr *At,\n"
3363      << " ASTContext &C, Sema &S,\n"
3364      << "        const MultiLevelTemplateArgumentList &TemplateArgs) {\n";
3365   EmitClangAttrTemplateInstantiateHelper(Attrs, OS, /*AppliesToDecl*/true);
3366   OS << "}\n\n"
3367      << "} // end namespace sema\n"
3368      << "} // end namespace clang\n";
3369 }
3370 
3371 // Emits the list of parsed attributes.
3372 void EmitClangAttrParsedAttrList(RecordKeeper &Records, raw_ostream &OS) {
3373   emitSourceFileHeader("List of all attributes that Clang recognizes", OS);
3374 
3375   OS << "#ifndef PARSED_ATTR\n";
3376   OS << "#define PARSED_ATTR(NAME) NAME\n";
3377   OS << "#endif\n\n";
3378 
3379   ParsedAttrMap Names = getParsedAttrList(Records);
3380   for (const auto &I : Names) {
3381     OS << "PARSED_ATTR(" << I.first << ")\n";
3382   }
3383 }
3384 
3385 static bool isArgVariadic(const Record &R, StringRef AttrName) {
3386   return createArgument(R, AttrName)->isVariadic();
3387 }
3388 
3389 static void emitArgInfo(const Record &R, raw_ostream &OS) {
3390   // This function will count the number of arguments specified for the
3391   // attribute and emit the number of required arguments followed by the
3392   // number of optional arguments.
3393   std::vector<Record *> Args = R.getValueAsListOfDefs("Args");
3394   unsigned ArgCount = 0, OptCount = 0;
3395   bool HasVariadic = false;
3396   for (const auto *Arg : Args) {
3397     // If the arg is fake, it's the user's job to supply it: general parsing
3398     // logic shouldn't need to know anything about it.
3399     if (Arg->getValueAsBit("Fake"))
3400       continue;
3401     Arg->getValueAsBit("Optional") ? ++OptCount : ++ArgCount;
3402     if (!HasVariadic && isArgVariadic(*Arg, R.getName()))
3403       HasVariadic = true;
3404   }
3405 
3406   // If there is a variadic argument, we will set the optional argument count
3407   // to its largest value. Since it's currently a 4-bit number, we set it to 15.
3408   OS << "    NumArgs = " << ArgCount << ";\n";
3409   OS << "    OptArgs = " << (HasVariadic ? 15 : OptCount) << ";\n";
3410 }
3411 
3412 static std::string GetDiagnosticSpelling(const Record &R) {
3413   std::string Ret = std::string(R.getValueAsString("DiagSpelling"));
3414   if (!Ret.empty())
3415     return Ret;
3416 
3417   // If we couldn't find the DiagSpelling in this object, we can check to see
3418   // if the object is one that has a base, and if it is, loop up to the Base
3419   // member recursively.
3420   if (auto Base = R.getValueAsOptionalDef(BaseFieldName))
3421     return GetDiagnosticSpelling(*Base);
3422 
3423   return "";
3424 }
3425 
3426 static std::string CalculateDiagnostic(const Record &S) {
3427   // If the SubjectList object has a custom diagnostic associated with it,
3428   // return that directly.
3429   const StringRef CustomDiag = S.getValueAsString("CustomDiag");
3430   if (!CustomDiag.empty())
3431     return ("\"" + Twine(CustomDiag) + "\"").str();
3432 
3433   std::vector<std::string> DiagList;
3434   std::vector<Record *> Subjects = S.getValueAsListOfDefs("Subjects");
3435   for (const auto *Subject : Subjects) {
3436     const Record &R = *Subject;
3437     // Get the diagnostic text from the Decl or Stmt node given.
3438     std::string V = GetDiagnosticSpelling(R);
3439     if (V.empty()) {
3440       PrintError(R.getLoc(),
3441                  "Could not determine diagnostic spelling for the node: " +
3442                      R.getName() + "; please add one to DeclNodes.td");
3443     } else {
3444       // The node may contain a list of elements itself, so split the elements
3445       // by a comma, and trim any whitespace.
3446       SmallVector<StringRef, 2> Frags;
3447       llvm::SplitString(V, Frags, ",");
3448       for (auto Str : Frags) {
3449         DiagList.push_back(std::string(Str.trim()));
3450       }
3451     }
3452   }
3453 
3454   if (DiagList.empty()) {
3455     PrintFatalError(S.getLoc(),
3456                     "Could not deduce diagnostic argument for Attr subjects");
3457     return "";
3458   }
3459 
3460   // FIXME: this is not particularly good for localization purposes and ideally
3461   // should be part of the diagnostics engine itself with some sort of list
3462   // specifier.
3463 
3464   // A single member of the list can be returned directly.
3465   if (DiagList.size() == 1)
3466     return '"' + DiagList.front() + '"';
3467 
3468   if (DiagList.size() == 2)
3469     return '"' + DiagList[0] + " and " + DiagList[1] + '"';
3470 
3471   // If there are more than two in the list, we serialize the first N - 1
3472   // elements with a comma. This leaves the string in the state: foo, bar,
3473   // baz (but misses quux). We can then add ", and " for the last element
3474   // manually.
3475   std::string Diag = llvm::join(DiagList.begin(), DiagList.end() - 1, ", ");
3476   return '"' + Diag + ", and " + *(DiagList.end() - 1) + '"';
3477 }
3478 
3479 static std::string GetSubjectWithSuffix(const Record *R) {
3480   const std::string &B = std::string(R->getName());
3481   if (B == "DeclBase")
3482     return "Decl";
3483   return B + "Decl";
3484 }
3485 
3486 static std::string functionNameForCustomAppertainsTo(const Record &Subject) {
3487   return "is" + Subject.getName().str();
3488 }
3489 
3490 static void GenerateCustomAppertainsTo(const Record &Subject, raw_ostream &OS) {
3491   std::string FnName = functionNameForCustomAppertainsTo(Subject);
3492 
3493   // If this code has already been generated, we don't need to do anything.
3494   static std::set<std::string> CustomSubjectSet;
3495   auto I = CustomSubjectSet.find(FnName);
3496   if (I != CustomSubjectSet.end())
3497     return;
3498 
3499   // This only works with non-root Decls.
3500   Record *Base = Subject.getValueAsDef(BaseFieldName);
3501 
3502   // Not currently support custom subjects within custom subjects.
3503   if (Base->isSubClassOf("SubsetSubject")) {
3504     PrintFatalError(Subject.getLoc(),
3505                     "SubsetSubjects within SubsetSubjects is not supported");
3506     return;
3507   }
3508 
3509   OS << "static bool " << FnName << "(const Decl *D) {\n";
3510   OS << "  if (const auto *S = dyn_cast<";
3511   OS << GetSubjectWithSuffix(Base);
3512   OS << ">(D))\n";
3513   OS << "    return " << Subject.getValueAsString("CheckCode") << ";\n";
3514   OS << "  return false;\n";
3515   OS << "}\n\n";
3516 
3517   CustomSubjectSet.insert(FnName);
3518 }
3519 
3520 static void GenerateAppertainsTo(const Record &Attr, raw_ostream &OS) {
3521   // If the attribute does not contain a Subjects definition, then use the
3522   // default appertainsTo logic.
3523   if (Attr.isValueUnset("Subjects"))
3524     return;
3525 
3526   const Record *SubjectObj = Attr.getValueAsDef("Subjects");
3527   std::vector<Record *> Subjects = SubjectObj->getValueAsListOfDefs("Subjects");
3528 
3529   // If the list of subjects is empty, it is assumed that the attribute
3530   // appertains to everything.
3531   if (Subjects.empty())
3532     return;
3533 
3534   bool Warn = SubjectObj->getValueAsDef("Diag")->getValueAsBit("Warn");
3535 
3536   // Split the subjects into declaration subjects and statement subjects.
3537   // FIXME: subset subjects are added to the declaration list until there are
3538   // enough statement attributes with custom subject needs to warrant
3539   // the implementation effort.
3540   std::vector<Record *> DeclSubjects, StmtSubjects;
3541   llvm::copy_if(
3542       Subjects, std::back_inserter(DeclSubjects), [](const Record *R) {
3543         return R->isSubClassOf("SubsetSubject") || !R->isSubClassOf("StmtNode");
3544       });
3545   llvm::copy_if(Subjects, std::back_inserter(StmtSubjects),
3546                 [](const Record *R) { return R->isSubClassOf("StmtNode"); });
3547 
3548   // We should have sorted all of the subjects into two lists.
3549   // FIXME: this assertion will be wrong if we ever add type attribute subjects.
3550   assert(DeclSubjects.size() + StmtSubjects.size() == Subjects.size());
3551 
3552   if (DeclSubjects.empty()) {
3553     // If there are no decl subjects but there are stmt subjects, diagnose
3554     // trying to apply a statement attribute to a declaration.
3555     if (!StmtSubjects.empty()) {
3556       OS << "bool diagAppertainsToDecl(Sema &S, const ParsedAttr &AL, ";
3557       OS << "const Decl *D) const override {\n";
3558       OS << "  S.Diag(AL.getLoc(), diag::err_stmt_attribute_invalid_on_decl)\n";
3559       OS << "    << AL << D->getLocation();\n";
3560       OS << "  return false;\n";
3561       OS << "}\n\n";
3562     }
3563   } else {
3564     // Otherwise, generate an appertainsTo check specific to this attribute
3565     // which checks all of the given subjects against the Decl passed in.
3566     OS << "bool diagAppertainsToDecl(Sema &S, ";
3567     OS << "const ParsedAttr &Attr, const Decl *D) const override {\n";
3568     OS << "  if (";
3569     for (auto I = DeclSubjects.begin(), E = DeclSubjects.end(); I != E; ++I) {
3570       // If the subject has custom code associated with it, use the generated
3571       // function for it. The function cannot be inlined into this check (yet)
3572       // because it requires the subject to be of a specific type, and were that
3573       // information inlined here, it would not support an attribute with
3574       // multiple custom subjects.
3575       if ((*I)->isSubClassOf("SubsetSubject"))
3576         OS << "!" << functionNameForCustomAppertainsTo(**I) << "(D)";
3577       else
3578         OS << "!isa<" << GetSubjectWithSuffix(*I) << ">(D)";
3579 
3580       if (I + 1 != E)
3581         OS << " && ";
3582     }
3583     OS << ") {\n";
3584     OS << "    S.Diag(Attr.getLoc(), diag::";
3585     OS << (Warn ? "warn_attribute_wrong_decl_type_str"
3586                 : "err_attribute_wrong_decl_type_str");
3587     OS << ")\n";
3588     OS << "      << Attr << ";
3589     OS << CalculateDiagnostic(*SubjectObj) << ";\n";
3590     OS << "    return false;\n";
3591     OS << "  }\n";
3592     OS << "  return true;\n";
3593     OS << "}\n\n";
3594   }
3595 
3596   if (StmtSubjects.empty()) {
3597     // If there are no stmt subjects but there are decl subjects, diagnose
3598     // trying to apply a declaration attribute to a statement.
3599     if (!DeclSubjects.empty()) {
3600       OS << "bool diagAppertainsToStmt(Sema &S, const ParsedAttr &AL, ";
3601       OS << "const Stmt *St) const override {\n";
3602       OS << "  S.Diag(AL.getLoc(), diag::err_decl_attribute_invalid_on_stmt)\n";
3603       OS << "    << AL << St->getBeginLoc();\n";
3604       OS << "  return false;\n";
3605       OS << "}\n\n";
3606     }
3607   } else {
3608     // Now, do the same for statements.
3609     OS << "bool diagAppertainsToStmt(Sema &S, ";
3610     OS << "const ParsedAttr &Attr, const Stmt *St) const override {\n";
3611     OS << "  if (";
3612     for (auto I = StmtSubjects.begin(), E = StmtSubjects.end(); I != E; ++I) {
3613       OS << "!isa<" << (*I)->getName() << ">(St)";
3614       if (I + 1 != E)
3615         OS << " && ";
3616     }
3617     OS << ") {\n";
3618     OS << "    S.Diag(Attr.getLoc(), diag::";
3619     OS << (Warn ? "warn_attribute_wrong_decl_type_str"
3620                 : "err_attribute_wrong_decl_type_str");
3621     OS << ")\n";
3622     OS << "      << Attr << ";
3623     OS << CalculateDiagnostic(*SubjectObj) << ";\n";
3624     OS << "    return false;\n";
3625     OS << "  }\n";
3626     OS << "  return true;\n";
3627     OS << "}\n\n";
3628   }
3629 }
3630 
3631 // Generates the mutual exclusion checks. The checks for parsed attributes are
3632 // written into OS and the checks for merging declaration attributes are
3633 // written into MergeOS.
3634 static void GenerateMutualExclusionsChecks(const Record &Attr,
3635                                            const RecordKeeper &Records,
3636                                            raw_ostream &OS,
3637                                            raw_ostream &MergeDeclOS,
3638                                            raw_ostream &MergeStmtOS) {
3639   // Find all of the definitions that inherit from MutualExclusions and include
3640   // the given attribute in the list of exclusions to generate the
3641   // diagMutualExclusion() check.
3642   std::vector<Record *> ExclusionsList =
3643       Records.getAllDerivedDefinitions("MutualExclusions");
3644 
3645   // We don't do any of this magic for type attributes yet.
3646   if (Attr.isSubClassOf("TypeAttr"))
3647     return;
3648 
3649   // This means the attribute is either a statement attribute, a decl
3650   // attribute, or both; find out which.
3651   bool CurAttrIsStmtAttr =
3652       Attr.isSubClassOf("StmtAttr") || Attr.isSubClassOf("DeclOrStmtAttr");
3653   bool CurAttrIsDeclAttr =
3654       !CurAttrIsStmtAttr || Attr.isSubClassOf("DeclOrStmtAttr");
3655 
3656   std::vector<std::string> DeclAttrs, StmtAttrs;
3657 
3658   for (const Record *Exclusion : ExclusionsList) {
3659     std::vector<Record *> MutuallyExclusiveAttrs =
3660         Exclusion->getValueAsListOfDefs("Exclusions");
3661     auto IsCurAttr = [Attr](const Record *R) {
3662       return R->getName() == Attr.getName();
3663     };
3664     if (llvm::any_of(MutuallyExclusiveAttrs, IsCurAttr)) {
3665       // This list of exclusions includes the attribute we're looking for, so
3666       // add the exclusive attributes to the proper list for checking.
3667       for (const Record *AttrToExclude : MutuallyExclusiveAttrs) {
3668         if (IsCurAttr(AttrToExclude))
3669           continue;
3670 
3671         if (CurAttrIsStmtAttr)
3672           StmtAttrs.push_back((AttrToExclude->getName() + "Attr").str());
3673         if (CurAttrIsDeclAttr)
3674           DeclAttrs.push_back((AttrToExclude->getName() + "Attr").str());
3675       }
3676     }
3677   }
3678 
3679   // If there are any decl or stmt attributes, silence -Woverloaded-virtual
3680   // warnings for them both.
3681   if (!DeclAttrs.empty() || !StmtAttrs.empty())
3682     OS << "  using ParsedAttrInfo::diagMutualExclusion;\n\n";
3683 
3684   // If we discovered any decl or stmt attributes to test for, generate the
3685   // predicates for them now.
3686   if (!DeclAttrs.empty()) {
3687     // Generate the ParsedAttrInfo subclass logic for declarations.
3688     OS << "  bool diagMutualExclusion(Sema &S, const ParsedAttr &AL, "
3689        << "const Decl *D) const override {\n";
3690     for (const std::string &A : DeclAttrs) {
3691       OS << "    if (const auto *A = D->getAttr<" << A << ">()) {\n";
3692       OS << "      S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)"
3693          << " << AL << A;\n";
3694       OS << "      S.Diag(A->getLocation(), diag::note_conflicting_attribute);";
3695       OS << "      \nreturn false;\n";
3696       OS << "    }\n";
3697     }
3698     OS << "    return true;\n";
3699     OS << "  }\n\n";
3700 
3701     // Also generate the declaration attribute merging logic if the current
3702     // attribute is one that can be inheritted on a declaration. It is assumed
3703     // this code will be executed in the context of a function with parameters:
3704     // Sema &S, Decl *D, Attr *A and that returns a bool (false on diagnostic,
3705     // true on success).
3706     if (Attr.isSubClassOf("InheritableAttr")) {
3707       MergeDeclOS << "  if (const auto *Second = dyn_cast<"
3708                   << (Attr.getName() + "Attr").str() << ">(A)) {\n";
3709       for (const std::string &A : DeclAttrs) {
3710         MergeDeclOS << "    if (const auto *First = D->getAttr<" << A
3711                     << ">()) {\n";
3712         MergeDeclOS << "      S.Diag(First->getLocation(), "
3713                     << "diag::err_attributes_are_not_compatible) << First << "
3714                     << "Second;\n";
3715         MergeDeclOS << "      S.Diag(Second->getLocation(), "
3716                     << "diag::note_conflicting_attribute);\n";
3717         MergeDeclOS << "      return false;\n";
3718         MergeDeclOS << "    }\n";
3719       }
3720       MergeDeclOS << "    return true;\n";
3721       MergeDeclOS << "  }\n";
3722     }
3723   }
3724 
3725   // Statement attributes are a bit different from declarations. With
3726   // declarations, each attribute is added to the declaration as it is
3727   // processed, and so you can look on the Decl * itself to see if there is a
3728   // conflicting attribute. Statement attributes are processed as a group
3729   // because AttributedStmt needs to tail-allocate all of the attribute nodes
3730   // at once. This means we cannot check whether the statement already contains
3731   // an attribute to check for the conflict. Instead, we need to check whether
3732   // the given list of semantic attributes contain any conflicts. It is assumed
3733   // this code will be executed in the context of a function with parameters:
3734   // Sema &S, const SmallVectorImpl<const Attr *> &C. The code will be within a
3735   // loop which loops over the container C with a loop variable named A to
3736   // represent the current attribute to check for conflicts.
3737   //
3738   // FIXME: it would be nice not to walk over the list of potential attributes
3739   // to apply to the statement more than once, but statements typically don't
3740   // have long lists of attributes on them, so re-walking the list should not
3741   // be an expensive operation.
3742   if (!StmtAttrs.empty()) {
3743     MergeStmtOS << "    if (const auto *Second = dyn_cast<"
3744                 << (Attr.getName() + "Attr").str() << ">(A)) {\n";
3745     MergeStmtOS << "      auto Iter = llvm::find_if(C, [](const Attr *Check) "
3746                 << "{ return isa<";
3747     interleave(
3748         StmtAttrs, [&](const std::string &Name) { MergeStmtOS << Name; },
3749         [&] { MergeStmtOS << ", "; });
3750     MergeStmtOS << ">(Check); });\n";
3751     MergeStmtOS << "      if (Iter != C.end()) {\n";
3752     MergeStmtOS << "        S.Diag((*Iter)->getLocation(), "
3753                 << "diag::err_attributes_are_not_compatible) << *Iter << "
3754                 << "Second;\n";
3755     MergeStmtOS << "        S.Diag(Second->getLocation(), "
3756                 << "diag::note_conflicting_attribute);\n";
3757     MergeStmtOS << "        return false;\n";
3758     MergeStmtOS << "      }\n";
3759     MergeStmtOS << "    }\n";
3760   }
3761 }
3762 
3763 static void
3764 emitAttributeMatchRules(PragmaClangAttributeSupport &PragmaAttributeSupport,
3765                         raw_ostream &OS) {
3766   OS << "static bool checkAttributeMatchRuleAppliesTo(const Decl *D, "
3767      << AttributeSubjectMatchRule::EnumName << " rule) {\n";
3768   OS << "  switch (rule) {\n";
3769   for (const auto &Rule : PragmaAttributeSupport.Rules) {
3770     if (Rule.isAbstractRule()) {
3771       OS << "  case " << Rule.getEnumValue() << ":\n";
3772       OS << "    assert(false && \"Abstract matcher rule isn't allowed\");\n";
3773       OS << "    return false;\n";
3774       continue;
3775     }
3776     std::vector<Record *> Subjects = Rule.getSubjects();
3777     assert(!Subjects.empty() && "Missing subjects");
3778     OS << "  case " << Rule.getEnumValue() << ":\n";
3779     OS << "    return ";
3780     for (auto I = Subjects.begin(), E = Subjects.end(); I != E; ++I) {
3781       // If the subject has custom code associated with it, use the function
3782       // that was generated for GenerateAppertainsTo to check if the declaration
3783       // is valid.
3784       if ((*I)->isSubClassOf("SubsetSubject"))
3785         OS << functionNameForCustomAppertainsTo(**I) << "(D)";
3786       else
3787         OS << "isa<" << GetSubjectWithSuffix(*I) << ">(D)";
3788 
3789       if (I + 1 != E)
3790         OS << " || ";
3791     }
3792     OS << ";\n";
3793   }
3794   OS << "  }\n";
3795   OS << "  llvm_unreachable(\"Invalid match rule\");\nreturn false;\n";
3796   OS << "}\n\n";
3797 }
3798 
3799 static void GenerateLangOptRequirements(const Record &R,
3800                                         raw_ostream &OS) {
3801   // If the attribute has an empty or unset list of language requirements,
3802   // use the default handler.
3803   std::vector<Record *> LangOpts = R.getValueAsListOfDefs("LangOpts");
3804   if (LangOpts.empty())
3805     return;
3806 
3807   OS << "bool acceptsLangOpts(const LangOptions &LangOpts) const override {\n";
3808   OS << "  return " << GenerateTestExpression(LangOpts) << ";\n";
3809   OS << "}\n\n";
3810 }
3811 
3812 static void GenerateTargetRequirements(const Record &Attr,
3813                                        const ParsedAttrMap &Dupes,
3814                                        raw_ostream &OS) {
3815   // If the attribute is not a target specific attribute, use the default
3816   // target handler.
3817   if (!Attr.isSubClassOf("TargetSpecificAttr"))
3818     return;
3819 
3820   // Get the list of architectures to be tested for.
3821   const Record *R = Attr.getValueAsDef("Target");
3822   std::vector<StringRef> Arches = R->getValueAsListOfStrings("Arches");
3823 
3824   // If there are other attributes which share the same parsed attribute kind,
3825   // such as target-specific attributes with a shared spelling, collapse the
3826   // duplicate architectures. This is required because a shared target-specific
3827   // attribute has only one ParsedAttr::Kind enumeration value, but it
3828   // applies to multiple target architectures. In order for the attribute to be
3829   // considered valid, all of its architectures need to be included.
3830   if (!Attr.isValueUnset("ParseKind")) {
3831     const StringRef APK = Attr.getValueAsString("ParseKind");
3832     for (const auto &I : Dupes) {
3833       if (I.first == APK) {
3834         std::vector<StringRef> DA =
3835             I.second->getValueAsDef("Target")->getValueAsListOfStrings(
3836                 "Arches");
3837         Arches.insert(Arches.end(), DA.begin(), DA.end());
3838       }
3839     }
3840   }
3841 
3842   std::string FnName = "isTarget";
3843   std::string Test;
3844   bool UsesT = GenerateTargetSpecificAttrChecks(R, Arches, Test, &FnName);
3845 
3846   OS << "bool existsInTarget(const TargetInfo &Target) const override {\n";
3847   if (UsesT)
3848     OS << "  const llvm::Triple &T = Target.getTriple(); (void)T;\n";
3849   OS << "  return " << Test << ";\n";
3850   OS << "}\n\n";
3851 }
3852 
3853 static void GenerateSpellingIndexToSemanticSpelling(const Record &Attr,
3854                                                     raw_ostream &OS) {
3855   // If the attribute does not have a semantic form, we can bail out early.
3856   if (!Attr.getValueAsBit("ASTNode"))
3857     return;
3858 
3859   std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attr);
3860 
3861   // If there are zero or one spellings, or all of the spellings share the same
3862   // name, we can also bail out early.
3863   if (Spellings.size() <= 1 || SpellingNamesAreCommon(Spellings))
3864     return;
3865 
3866   // Generate the enumeration we will use for the mapping.
3867   SemanticSpellingMap SemanticToSyntacticMap;
3868   std::string Enum = CreateSemanticSpellings(Spellings, SemanticToSyntacticMap);
3869   std::string Name = Attr.getName().str() + "AttrSpellingMap";
3870 
3871   OS << "unsigned spellingIndexToSemanticSpelling(";
3872   OS << "const ParsedAttr &Attr) const override {\n";
3873   OS << Enum;
3874   OS << "  unsigned Idx = Attr.getAttributeSpellingListIndex();\n";
3875   WriteSemanticSpellingSwitch("Idx", SemanticToSyntacticMap, OS);
3876   OS << "}\n\n";
3877 }
3878 
3879 static void GenerateHandleDeclAttribute(const Record &Attr, raw_ostream &OS) {
3880   // Only generate if Attr can be handled simply.
3881   if (!Attr.getValueAsBit("SimpleHandler"))
3882     return;
3883 
3884   // Generate a function which just converts from ParsedAttr to the Attr type.
3885   OS << "AttrHandling handleDeclAttribute(Sema &S, Decl *D,";
3886   OS << "const ParsedAttr &Attr) const override {\n";
3887   OS << "  D->addAttr(::new (S.Context) " << Attr.getName();
3888   OS << "Attr(S.Context, Attr));\n";
3889   OS << "  return AttributeApplied;\n";
3890   OS << "}\n\n";
3891 }
3892 
3893 static bool IsKnownToGCC(const Record &Attr) {
3894   // Look at the spellings for this subject; if there are any spellings which
3895   // claim to be known to GCC, the attribute is known to GCC.
3896   return llvm::any_of(
3897       GetFlattenedSpellings(Attr),
3898       [](const FlattenedSpelling &S) { return S.knownToGCC(); });
3899 }
3900 
3901 /// Emits the parsed attribute helpers
3902 void EmitClangAttrParsedAttrImpl(RecordKeeper &Records, raw_ostream &OS) {
3903   emitSourceFileHeader("Parsed attribute helpers", OS);
3904 
3905   OS << "#if !defined(WANT_DECL_MERGE_LOGIC) && "
3906      << "!defined(WANT_STMT_MERGE_LOGIC)\n";
3907   PragmaClangAttributeSupport &PragmaAttributeSupport =
3908       getPragmaAttributeSupport(Records);
3909 
3910   // Get the list of parsed attributes, and accept the optional list of
3911   // duplicates due to the ParseKind.
3912   ParsedAttrMap Dupes;
3913   ParsedAttrMap Attrs = getParsedAttrList(Records, &Dupes);
3914 
3915   // Generate all of the custom appertainsTo functions that the attributes
3916   // will be using.
3917   for (auto I : Attrs) {
3918     const Record &Attr = *I.second;
3919     if (Attr.isValueUnset("Subjects"))
3920       continue;
3921     const Record *SubjectObj = Attr.getValueAsDef("Subjects");
3922     for (auto Subject : SubjectObj->getValueAsListOfDefs("Subjects"))
3923       if (Subject->isSubClassOf("SubsetSubject"))
3924         GenerateCustomAppertainsTo(*Subject, OS);
3925   }
3926 
3927   // This stream is used to collect all of the declaration attribute merging
3928   // logic for performing mutual exclusion checks. This gets emitted at the
3929   // end of the file in a helper function of its own.
3930   std::string DeclMergeChecks, StmtMergeChecks;
3931   raw_string_ostream MergeDeclOS(DeclMergeChecks), MergeStmtOS(StmtMergeChecks);
3932 
3933   // Generate a ParsedAttrInfo struct for each of the attributes.
3934   for (auto I = Attrs.begin(), E = Attrs.end(); I != E; ++I) {
3935     // TODO: If the attribute's kind appears in the list of duplicates, that is
3936     // because it is a target-specific attribute that appears multiple times.
3937     // It would be beneficial to test whether the duplicates are "similar
3938     // enough" to each other to not cause problems. For instance, check that
3939     // the spellings are identical, and custom parsing rules match, etc.
3940 
3941     // We need to generate struct instances based off ParsedAttrInfo from
3942     // ParsedAttr.cpp.
3943     const std::string &AttrName = I->first;
3944     const Record &Attr = *I->second;
3945     auto Spellings = GetFlattenedSpellings(Attr);
3946     if (!Spellings.empty()) {
3947       OS << "static constexpr ParsedAttrInfo::Spelling " << I->first
3948          << "Spellings[] = {\n";
3949       for (const auto &S : Spellings) {
3950         const std::string &RawSpelling = S.name();
3951         std::string Spelling;
3952         if (!S.nameSpace().empty())
3953           Spelling += S.nameSpace() + "::";
3954         if (S.variety() == "GNU")
3955           Spelling += NormalizeGNUAttrSpelling(RawSpelling);
3956         else
3957           Spelling += RawSpelling;
3958         OS << "  {AttributeCommonInfo::AS_" << S.variety();
3959         OS << ", \"" << Spelling << "\"},\n";
3960       }
3961       OS << "};\n";
3962     }
3963 
3964     std::vector<std::string> ArgNames;
3965     for (const auto &Arg : Attr.getValueAsListOfDefs("Args")) {
3966       bool UnusedUnset;
3967       if (Arg->getValueAsBitOrUnset("Fake", UnusedUnset))
3968         continue;
3969       ArgNames.push_back(Arg->getValueAsString("Name").str());
3970       for (const auto &Class : Arg->getSuperClasses()) {
3971         if (Class.first->getName().startswith("Variadic")) {
3972           ArgNames.back().append("...");
3973           break;
3974         }
3975       }
3976     }
3977     if (!ArgNames.empty()) {
3978       OS << "static constexpr const char *" << I->first << "ArgNames[] = {\n";
3979       for (const auto &N : ArgNames)
3980         OS << '"' << N << "\",";
3981       OS << "};\n";
3982     }
3983 
3984     OS << "struct ParsedAttrInfo" << I->first
3985        << " final : public ParsedAttrInfo {\n";
3986     OS << "  ParsedAttrInfo" << I->first << "() {\n";
3987     OS << "    AttrKind = ParsedAttr::AT_" << AttrName << ";\n";
3988     emitArgInfo(Attr, OS);
3989     OS << "    HasCustomParsing = ";
3990     OS << Attr.getValueAsBit("HasCustomParsing") << ";\n";
3991     OS << "    IsTargetSpecific = ";
3992     OS << Attr.isSubClassOf("TargetSpecificAttr") << ";\n";
3993     OS << "    IsType = ";
3994     OS << (Attr.isSubClassOf("TypeAttr") ||
3995            Attr.isSubClassOf("DeclOrTypeAttr")) << ";\n";
3996     OS << "    IsStmt = ";
3997     OS << (Attr.isSubClassOf("StmtAttr") || Attr.isSubClassOf("DeclOrStmtAttr"))
3998        << ";\n";
3999     OS << "    IsKnownToGCC = ";
4000     OS << IsKnownToGCC(Attr) << ";\n";
4001     OS << "    IsSupportedByPragmaAttribute = ";
4002     OS << PragmaAttributeSupport.isAttributedSupported(*I->second) << ";\n";
4003     if (!Spellings.empty())
4004       OS << "    Spellings = " << I->first << "Spellings;\n";
4005     if (!ArgNames.empty())
4006       OS << "    ArgNames = " << I->first << "ArgNames;\n";
4007     OS << "  }\n";
4008     GenerateAppertainsTo(Attr, OS);
4009     GenerateMutualExclusionsChecks(Attr, Records, OS, MergeDeclOS, MergeStmtOS);
4010     GenerateLangOptRequirements(Attr, OS);
4011     GenerateTargetRequirements(Attr, Dupes, OS);
4012     GenerateSpellingIndexToSemanticSpelling(Attr, OS);
4013     PragmaAttributeSupport.generateStrictConformsTo(*I->second, OS);
4014     GenerateHandleDeclAttribute(Attr, OS);
4015     OS << "static const ParsedAttrInfo" << I->first << " Instance;\n";
4016     OS << "};\n";
4017     OS << "const ParsedAttrInfo" << I->first << " ParsedAttrInfo" << I->first
4018        << "::Instance;\n";
4019   }
4020 
4021   OS << "static const ParsedAttrInfo *AttrInfoMap[] = {\n";
4022   for (auto I = Attrs.begin(), E = Attrs.end(); I != E; ++I) {
4023     OS << "&ParsedAttrInfo" << I->first << "::Instance,\n";
4024   }
4025   OS << "};\n\n";
4026 
4027   // Generate the attribute match rules.
4028   emitAttributeMatchRules(PragmaAttributeSupport, OS);
4029 
4030   OS << "#elif defined(WANT_DECL_MERGE_LOGIC)\n\n";
4031 
4032   // Write out the declaration merging check logic.
4033   OS << "static bool DiagnoseMutualExclusions(Sema &S, const NamedDecl *D, "
4034      << "const Attr *A) {\n";
4035   OS << MergeDeclOS.str();
4036   OS << "  return true;\n";
4037   OS << "}\n\n";
4038 
4039   OS << "#elif defined(WANT_STMT_MERGE_LOGIC)\n\n";
4040 
4041   // Write out the statement merging check logic.
4042   OS << "static bool DiagnoseMutualExclusions(Sema &S, "
4043      << "const SmallVectorImpl<const Attr *> &C) {\n";
4044   OS << "  for (const Attr *A : C) {\n";
4045   OS << MergeStmtOS.str();
4046   OS << "  }\n";
4047   OS << "  return true;\n";
4048   OS << "}\n\n";
4049 
4050   OS << "#endif\n";
4051 }
4052 
4053 // Emits the kind list of parsed attributes
4054 void EmitClangAttrParsedAttrKinds(RecordKeeper &Records, raw_ostream &OS) {
4055   emitSourceFileHeader("Attribute name matcher", OS);
4056 
4057   std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
4058   std::vector<StringMatcher::StringPair> GNU, Declspec, Microsoft, CXX11,
4059       Keywords, Pragma, C2x;
4060   std::set<std::string> Seen;
4061   for (const auto *A : Attrs) {
4062     const Record &Attr = *A;
4063 
4064     bool SemaHandler = Attr.getValueAsBit("SemaHandler");
4065     bool Ignored = Attr.getValueAsBit("Ignored");
4066     if (SemaHandler || Ignored) {
4067       // Attribute spellings can be shared between target-specific attributes,
4068       // and can be shared between syntaxes for the same attribute. For
4069       // instance, an attribute can be spelled GNU<"interrupt"> for an ARM-
4070       // specific attribute, or MSP430-specific attribute. Additionally, an
4071       // attribute can be spelled GNU<"dllexport"> and Declspec<"dllexport">
4072       // for the same semantic attribute. Ultimately, we need to map each of
4073       // these to a single AttributeCommonInfo::Kind value, but the
4074       // StringMatcher class cannot handle duplicate match strings. So we
4075       // generate a list of string to match based on the syntax, and emit
4076       // multiple string matchers depending on the syntax used.
4077       std::string AttrName;
4078       if (Attr.isSubClassOf("TargetSpecificAttr") &&
4079           !Attr.isValueUnset("ParseKind")) {
4080         AttrName = std::string(Attr.getValueAsString("ParseKind"));
4081         if (Seen.find(AttrName) != Seen.end())
4082           continue;
4083         Seen.insert(AttrName);
4084       } else
4085         AttrName = NormalizeAttrName(StringRef(Attr.getName())).str();
4086 
4087       std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attr);
4088       for (const auto &S : Spellings) {
4089         const std::string &RawSpelling = S.name();
4090         std::vector<StringMatcher::StringPair> *Matches = nullptr;
4091         std::string Spelling;
4092         const std::string &Variety = S.variety();
4093         if (Variety == "CXX11") {
4094           Matches = &CXX11;
4095           if (!S.nameSpace().empty())
4096             Spelling += S.nameSpace() + "::";
4097         } else if (Variety == "C2x") {
4098           Matches = &C2x;
4099           if (!S.nameSpace().empty())
4100             Spelling += S.nameSpace() + "::";
4101         } else if (Variety == "GNU")
4102           Matches = &GNU;
4103         else if (Variety == "Declspec")
4104           Matches = &Declspec;
4105         else if (Variety == "Microsoft")
4106           Matches = &Microsoft;
4107         else if (Variety == "Keyword")
4108           Matches = &Keywords;
4109         else if (Variety == "Pragma")
4110           Matches = &Pragma;
4111 
4112         assert(Matches && "Unsupported spelling variety found");
4113 
4114         if (Variety == "GNU")
4115           Spelling += NormalizeGNUAttrSpelling(RawSpelling);
4116         else
4117           Spelling += RawSpelling;
4118 
4119         if (SemaHandler)
4120           Matches->push_back(StringMatcher::StringPair(
4121               Spelling, "return AttributeCommonInfo::AT_" + AttrName + ";"));
4122         else
4123           Matches->push_back(StringMatcher::StringPair(
4124               Spelling, "return AttributeCommonInfo::IgnoredAttribute;"));
4125       }
4126     }
4127   }
4128 
4129   OS << "static AttributeCommonInfo::Kind getAttrKind(StringRef Name, ";
4130   OS << "AttributeCommonInfo::Syntax Syntax) {\n";
4131   OS << "  if (AttributeCommonInfo::AS_GNU == Syntax) {\n";
4132   StringMatcher("Name", GNU, OS).Emit();
4133   OS << "  } else if (AttributeCommonInfo::AS_Declspec == Syntax) {\n";
4134   StringMatcher("Name", Declspec, OS).Emit();
4135   OS << "  } else if (AttributeCommonInfo::AS_Microsoft == Syntax) {\n";
4136   StringMatcher("Name", Microsoft, OS).Emit();
4137   OS << "  } else if (AttributeCommonInfo::AS_CXX11 == Syntax) {\n";
4138   StringMatcher("Name", CXX11, OS).Emit();
4139   OS << "  } else if (AttributeCommonInfo::AS_C2x == Syntax) {\n";
4140   StringMatcher("Name", C2x, OS).Emit();
4141   OS << "  } else if (AttributeCommonInfo::AS_Keyword == Syntax || ";
4142   OS << "AttributeCommonInfo::AS_ContextSensitiveKeyword == Syntax) {\n";
4143   StringMatcher("Name", Keywords, OS).Emit();
4144   OS << "  } else if (AttributeCommonInfo::AS_Pragma == Syntax) {\n";
4145   StringMatcher("Name", Pragma, OS).Emit();
4146   OS << "  }\n";
4147   OS << "  return AttributeCommonInfo::UnknownAttribute;\n"
4148      << "}\n";
4149 }
4150 
4151 // Emits the code to dump an attribute.
4152 void EmitClangAttrTextNodeDump(RecordKeeper &Records, raw_ostream &OS) {
4153   emitSourceFileHeader("Attribute text node dumper", OS);
4154 
4155   std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"), Args;
4156   for (const auto *Attr : Attrs) {
4157     const Record &R = *Attr;
4158     if (!R.getValueAsBit("ASTNode"))
4159       continue;
4160 
4161     // If the attribute has a semantically-meaningful name (which is determined
4162     // by whether there is a Spelling enumeration for it), then write out the
4163     // spelling used for the attribute.
4164 
4165     std::string FunctionContent;
4166     llvm::raw_string_ostream SS(FunctionContent);
4167 
4168     std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R);
4169     if (Spellings.size() > 1 && !SpellingNamesAreCommon(Spellings))
4170       SS << "    OS << \" \" << A->getSpelling();\n";
4171 
4172     Args = R.getValueAsListOfDefs("Args");
4173     for (const auto *Arg : Args)
4174       createArgument(*Arg, R.getName())->writeDump(SS);
4175 
4176     if (SS.tell()) {
4177       OS << "  void Visit" << R.getName() << "Attr(const " << R.getName()
4178          << "Attr *A) {\n";
4179       if (!Args.empty())
4180         OS << "    const auto *SA = cast<" << R.getName()
4181            << "Attr>(A); (void)SA;\n";
4182       OS << SS.str();
4183       OS << "  }\n";
4184     }
4185   }
4186 }
4187 
4188 void EmitClangAttrNodeTraverse(RecordKeeper &Records, raw_ostream &OS) {
4189   emitSourceFileHeader("Attribute text node traverser", OS);
4190 
4191   std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr"), Args;
4192   for (const auto *Attr : Attrs) {
4193     const Record &R = *Attr;
4194     if (!R.getValueAsBit("ASTNode"))
4195       continue;
4196 
4197     std::string FunctionContent;
4198     llvm::raw_string_ostream SS(FunctionContent);
4199 
4200     Args = R.getValueAsListOfDefs("Args");
4201     for (const auto *Arg : Args)
4202       createArgument(*Arg, R.getName())->writeDumpChildren(SS);
4203     if (SS.tell()) {
4204       OS << "  void Visit" << R.getName() << "Attr(const " << R.getName()
4205          << "Attr *A) {\n";
4206       if (!Args.empty())
4207         OS << "    const auto *SA = cast<" << R.getName()
4208            << "Attr>(A); (void)SA;\n";
4209       OS << SS.str();
4210       OS << "  }\n";
4211     }
4212   }
4213 }
4214 
4215 void EmitClangAttrParserStringSwitches(RecordKeeper &Records,
4216                                        raw_ostream &OS) {
4217   emitSourceFileHeader("Parser-related llvm::StringSwitch cases", OS);
4218   emitClangAttrArgContextList(Records, OS);
4219   emitClangAttrIdentifierArgList(Records, OS);
4220   emitClangAttrVariadicIdentifierArgList(Records, OS);
4221   emitClangAttrThisIsaIdentifierArgList(Records, OS);
4222   emitClangAttrTypeArgList(Records, OS);
4223   emitClangAttrLateParsedList(Records, OS);
4224 }
4225 
4226 void EmitClangAttrSubjectMatchRulesParserStringSwitches(RecordKeeper &Records,
4227                                                         raw_ostream &OS) {
4228   getPragmaAttributeSupport(Records).generateParsingHelpers(OS);
4229 }
4230 
4231 void EmitClangAttrDocTable(RecordKeeper &Records, raw_ostream &OS) {
4232   emitSourceFileHeader("Clang attribute documentation", OS);
4233 
4234   std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
4235   for (const auto *A : Attrs) {
4236     if (!A->getValueAsBit("ASTNode"))
4237       continue;
4238     std::vector<Record *> Docs = A->getValueAsListOfDefs("Documentation");
4239     assert(!Docs.empty());
4240     // Only look at the first documentation if there are several.
4241     // (Currently there's only one such attr, revisit if this becomes common).
4242     StringRef Text =
4243         Docs.front()->getValueAsOptionalString("Content").getValueOr("");
4244     OS << "\nstatic const char AttrDoc_" << A->getName() << "[] = "
4245        << "R\"reST(" << Text.trim() << ")reST\";\n";
4246   }
4247 }
4248 
4249 enum class SpellingKind {
4250   GNU,
4251   CXX11,
4252   C2x,
4253   Declspec,
4254   Microsoft,
4255   Keyword,
4256   Pragma,
4257 };
4258 static const size_t NumSpellingKinds = (size_t)SpellingKind::Pragma + 1;
4259 
4260 class SpellingList {
4261   std::vector<std::string> Spellings[NumSpellingKinds];
4262 
4263 public:
4264   ArrayRef<std::string> operator[](SpellingKind K) const {
4265     return Spellings[(size_t)K];
4266   }
4267 
4268   void add(const Record &Attr, FlattenedSpelling Spelling) {
4269     SpellingKind Kind = StringSwitch<SpellingKind>(Spelling.variety())
4270                             .Case("GNU", SpellingKind::GNU)
4271                             .Case("CXX11", SpellingKind::CXX11)
4272                             .Case("C2x", SpellingKind::C2x)
4273                             .Case("Declspec", SpellingKind::Declspec)
4274                             .Case("Microsoft", SpellingKind::Microsoft)
4275                             .Case("Keyword", SpellingKind::Keyword)
4276                             .Case("Pragma", SpellingKind::Pragma);
4277     std::string Name;
4278     if (!Spelling.nameSpace().empty()) {
4279       switch (Kind) {
4280       case SpellingKind::CXX11:
4281       case SpellingKind::C2x:
4282         Name = Spelling.nameSpace() + "::";
4283         break;
4284       case SpellingKind::Pragma:
4285         Name = Spelling.nameSpace() + " ";
4286         break;
4287       default:
4288         PrintFatalError(Attr.getLoc(), "Unexpected namespace in spelling");
4289       }
4290     }
4291     Name += Spelling.name();
4292 
4293     Spellings[(size_t)Kind].push_back(Name);
4294   }
4295 };
4296 
4297 class DocumentationData {
4298 public:
4299   const Record *Documentation;
4300   const Record *Attribute;
4301   std::string Heading;
4302   SpellingList SupportedSpellings;
4303 
4304   DocumentationData(const Record &Documentation, const Record &Attribute,
4305                     std::pair<std::string, SpellingList> HeadingAndSpellings)
4306       : Documentation(&Documentation), Attribute(&Attribute),
4307         Heading(std::move(HeadingAndSpellings.first)),
4308         SupportedSpellings(std::move(HeadingAndSpellings.second)) {}
4309 };
4310 
4311 static void WriteCategoryHeader(const Record *DocCategory,
4312                                 raw_ostream &OS) {
4313   const StringRef Name = DocCategory->getValueAsString("Name");
4314   OS << Name << "\n" << std::string(Name.size(), '=') << "\n";
4315 
4316   // If there is content, print that as well.
4317   const StringRef ContentStr = DocCategory->getValueAsString("Content");
4318   // Trim leading and trailing newlines and spaces.
4319   OS << ContentStr.trim();
4320 
4321   OS << "\n\n";
4322 }
4323 
4324 static std::pair<std::string, SpellingList>
4325 GetAttributeHeadingAndSpellings(const Record &Documentation,
4326                                 const Record &Attribute) {
4327   // FIXME: there is no way to have a per-spelling category for the attribute
4328   // documentation. This may not be a limiting factor since the spellings
4329   // should generally be consistently applied across the category.
4330 
4331   std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attribute);
4332   if (Spellings.empty())
4333     PrintFatalError(Attribute.getLoc(),
4334                     "Attribute has no supported spellings; cannot be "
4335                     "documented");
4336 
4337   // Determine the heading to be used for this attribute.
4338   std::string Heading = std::string(Documentation.getValueAsString("Heading"));
4339   if (Heading.empty()) {
4340     // If there's only one spelling, we can simply use that.
4341     if (Spellings.size() == 1)
4342       Heading = Spellings.begin()->name();
4343     else {
4344       std::set<std::string> Uniques;
4345       for (auto I = Spellings.begin(), E = Spellings.end();
4346            I != E && Uniques.size() <= 1; ++I) {
4347         std::string Spelling =
4348             std::string(NormalizeNameForSpellingComparison(I->name()));
4349         Uniques.insert(Spelling);
4350       }
4351       // If the semantic map has only one spelling, that is sufficient for our
4352       // needs.
4353       if (Uniques.size() == 1)
4354         Heading = *Uniques.begin();
4355     }
4356   }
4357 
4358   // If the heading is still empty, it is an error.
4359   if (Heading.empty())
4360     PrintFatalError(Attribute.getLoc(),
4361                     "This attribute requires a heading to be specified");
4362 
4363   SpellingList SupportedSpellings;
4364   for (const auto &I : Spellings)
4365     SupportedSpellings.add(Attribute, I);
4366 
4367   return std::make_pair(std::move(Heading), std::move(SupportedSpellings));
4368 }
4369 
4370 static void WriteDocumentation(RecordKeeper &Records,
4371                                const DocumentationData &Doc, raw_ostream &OS) {
4372   OS << Doc.Heading << "\n" << std::string(Doc.Heading.length(), '-') << "\n";
4373 
4374   // List what spelling syntaxes the attribute supports.
4375   OS << ".. csv-table:: Supported Syntaxes\n";
4376   OS << "   :header: \"GNU\", \"C++11\", \"C2x\", \"``__declspec``\",";
4377   OS << " \"Keyword\", \"``#pragma``\", \"``#pragma clang attribute``\"\n\n";
4378   OS << "   \"";
4379   for (size_t Kind = 0; Kind != NumSpellingKinds; ++Kind) {
4380     SpellingKind K = (SpellingKind)Kind;
4381     // TODO: List Microsoft (IDL-style attribute) spellings once we fully
4382     // support them.
4383     if (K == SpellingKind::Microsoft)
4384       continue;
4385 
4386     bool PrintedAny = false;
4387     for (StringRef Spelling : Doc.SupportedSpellings[K]) {
4388       if (PrintedAny)
4389         OS << " |br| ";
4390       OS << "``" << Spelling << "``";
4391       PrintedAny = true;
4392     }
4393 
4394     OS << "\",\"";
4395   }
4396 
4397   if (getPragmaAttributeSupport(Records).isAttributedSupported(
4398           *Doc.Attribute))
4399     OS << "Yes";
4400   OS << "\"\n\n";
4401 
4402   // If the attribute is deprecated, print a message about it, and possibly
4403   // provide a replacement attribute.
4404   if (!Doc.Documentation->isValueUnset("Deprecated")) {
4405     OS << "This attribute has been deprecated, and may be removed in a future "
4406        << "version of Clang.";
4407     const Record &Deprecated = *Doc.Documentation->getValueAsDef("Deprecated");
4408     const StringRef Replacement = Deprecated.getValueAsString("Replacement");
4409     if (!Replacement.empty())
4410       OS << "  This attribute has been superseded by ``" << Replacement
4411          << "``.";
4412     OS << "\n\n";
4413   }
4414 
4415   const StringRef ContentStr = Doc.Documentation->getValueAsString("Content");
4416   // Trim leading and trailing newlines and spaces.
4417   OS << ContentStr.trim();
4418 
4419   OS << "\n\n\n";
4420 }
4421 
4422 void EmitClangAttrDocs(RecordKeeper &Records, raw_ostream &OS) {
4423   // Get the documentation introduction paragraph.
4424   const Record *Documentation = Records.getDef("GlobalDocumentation");
4425   if (!Documentation) {
4426     PrintFatalError("The Documentation top-level definition is missing, "
4427                     "no documentation will be generated.");
4428     return;
4429   }
4430 
4431   OS << Documentation->getValueAsString("Intro") << "\n";
4432 
4433   // Gather the Documentation lists from each of the attributes, based on the
4434   // category provided.
4435   std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
4436   struct CategoryLess {
4437     bool operator()(const Record *L, const Record *R) const {
4438       return L->getValueAsString("Name") < R->getValueAsString("Name");
4439     }
4440   };
4441   std::map<const Record *, std::vector<DocumentationData>, CategoryLess>
4442       SplitDocs;
4443   for (const auto *A : Attrs) {
4444     const Record &Attr = *A;
4445     std::vector<Record *> Docs = Attr.getValueAsListOfDefs("Documentation");
4446     for (const auto *D : Docs) {
4447       const Record &Doc = *D;
4448       const Record *Category = Doc.getValueAsDef("Category");
4449       // If the category is "undocumented", then there cannot be any other
4450       // documentation categories (otherwise, the attribute would become
4451       // documented).
4452       const StringRef Cat = Category->getValueAsString("Name");
4453       bool Undocumented = Cat == "Undocumented";
4454       if (Undocumented && Docs.size() > 1)
4455         PrintFatalError(Doc.getLoc(),
4456                         "Attribute is \"Undocumented\", but has multiple "
4457                         "documentation categories");
4458 
4459       if (!Undocumented)
4460         SplitDocs[Category].push_back(DocumentationData(
4461             Doc, Attr, GetAttributeHeadingAndSpellings(Doc, Attr)));
4462     }
4463   }
4464 
4465   // Having split the attributes out based on what documentation goes where,
4466   // we can begin to generate sections of documentation.
4467   for (auto &I : SplitDocs) {
4468     WriteCategoryHeader(I.first, OS);
4469 
4470     llvm::sort(I.second,
4471                [](const DocumentationData &D1, const DocumentationData &D2) {
4472                  return D1.Heading < D2.Heading;
4473                });
4474 
4475     // Walk over each of the attributes in the category and write out their
4476     // documentation.
4477     for (const auto &Doc : I.second)
4478       WriteDocumentation(Records, Doc, OS);
4479   }
4480 }
4481 
4482 void EmitTestPragmaAttributeSupportedAttributes(RecordKeeper &Records,
4483                                                 raw_ostream &OS) {
4484   PragmaClangAttributeSupport Support = getPragmaAttributeSupport(Records);
4485   ParsedAttrMap Attrs = getParsedAttrList(Records);
4486   OS << "#pragma clang attribute supports the following attributes:\n";
4487   for (const auto &I : Attrs) {
4488     if (!Support.isAttributedSupported(*I.second))
4489       continue;
4490     OS << I.first;
4491     if (I.second->isValueUnset("Subjects")) {
4492       OS << " ()\n";
4493       continue;
4494     }
4495     const Record *SubjectObj = I.second->getValueAsDef("Subjects");
4496     std::vector<Record *> Subjects =
4497         SubjectObj->getValueAsListOfDefs("Subjects");
4498     OS << " (";
4499     bool PrintComma = false;
4500     for (const auto &Subject : llvm::enumerate(Subjects)) {
4501       if (!isSupportedPragmaClangAttributeSubject(*Subject.value()))
4502         continue;
4503       if (PrintComma)
4504         OS << ", ";
4505       PrintComma = true;
4506       PragmaClangAttributeSupport::RuleOrAggregateRuleSet &RuleSet =
4507           Support.SubjectsToRules.find(Subject.value())->getSecond();
4508       if (RuleSet.isRule()) {
4509         OS << RuleSet.getRule().getEnumValueName();
4510         continue;
4511       }
4512       OS << "(";
4513       for (const auto &Rule : llvm::enumerate(RuleSet.getAggregateRuleSet())) {
4514         if (Rule.index())
4515           OS << ", ";
4516         OS << Rule.value().getEnumValueName();
4517       }
4518       OS << ")";
4519     }
4520     OS << ")\n";
4521   }
4522   OS << "End of supported attributes.\n";
4523 }
4524 
4525 } // end namespace clang
4526