1 //===- ClangAttrEmitter.cpp - Generate Clang attribute handling =-*- C++ -*--=// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These tablegen backends emit Clang attribute processing code 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "TableGenBackends.h" 14 #include "ASTTableGen.h" 15 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/MapVector.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallString.h" 22 #include "llvm/ADT/StringExtras.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/StringSet.h" 25 #include "llvm/ADT/StringSwitch.h" 26 #include "llvm/ADT/iterator_range.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include "llvm/TableGen/Error.h" 30 #include "llvm/TableGen/Record.h" 31 #include "llvm/TableGen/StringMatcher.h" 32 #include "llvm/TableGen/TableGenBackend.h" 33 #include <algorithm> 34 #include <cassert> 35 #include <cctype> 36 #include <cstddef> 37 #include <cstdint> 38 #include <map> 39 #include <memory> 40 #include <optional> 41 #include <set> 42 #include <sstream> 43 #include <string> 44 #include <utility> 45 #include <vector> 46 47 using namespace llvm; 48 49 namespace { 50 51 class FlattenedSpelling { 52 std::string V, N, NS; 53 bool K = false; 54 const Record &OriginalSpelling; 55 56 public: 57 FlattenedSpelling(const std::string &Variety, const std::string &Name, 58 const std::string &Namespace, bool KnownToGCC, 59 const Record &OriginalSpelling) 60 : V(Variety), N(Name), NS(Namespace), K(KnownToGCC), 61 OriginalSpelling(OriginalSpelling) {} 62 explicit FlattenedSpelling(const Record &Spelling) 63 : V(std::string(Spelling.getValueAsString("Variety"))), 64 N(std::string(Spelling.getValueAsString("Name"))), 65 OriginalSpelling(Spelling) { 66 assert(V != "GCC" && V != "Clang" && 67 "Given a GCC spelling, which means this hasn't been flattened!"); 68 if (V == "CXX11" || V == "C2x" || V == "Pragma") 69 NS = std::string(Spelling.getValueAsString("Namespace")); 70 } 71 72 const std::string &variety() const { return V; } 73 const std::string &name() const { return N; } 74 const std::string &nameSpace() const { return NS; } 75 bool knownToGCC() const { return K; } 76 const Record &getSpellingRecord() const { return OriginalSpelling; } 77 }; 78 79 } // end anonymous namespace 80 81 static std::vector<FlattenedSpelling> 82 GetFlattenedSpellings(const Record &Attr) { 83 std::vector<Record *> Spellings = Attr.getValueAsListOfDefs("Spellings"); 84 std::vector<FlattenedSpelling> Ret; 85 86 for (const auto &Spelling : Spellings) { 87 StringRef Variety = Spelling->getValueAsString("Variety"); 88 StringRef Name = Spelling->getValueAsString("Name"); 89 if (Variety == "GCC") { 90 Ret.emplace_back("GNU", std::string(Name), "", true, *Spelling); 91 Ret.emplace_back("CXX11", std::string(Name), "gnu", true, *Spelling); 92 if (Spelling->getValueAsBit("AllowInC")) 93 Ret.emplace_back("C2x", std::string(Name), "gnu", true, *Spelling); 94 } else if (Variety == "Clang") { 95 Ret.emplace_back("GNU", std::string(Name), "", false, *Spelling); 96 Ret.emplace_back("CXX11", std::string(Name), "clang", false, *Spelling); 97 if (Spelling->getValueAsBit("AllowInC")) 98 Ret.emplace_back("C2x", std::string(Name), "clang", false, *Spelling); 99 } else 100 Ret.push_back(FlattenedSpelling(*Spelling)); 101 } 102 103 return Ret; 104 } 105 106 static std::string ReadPCHRecord(StringRef type) { 107 return StringSwitch<std::string>(type) 108 .EndsWith("Decl *", "Record.GetLocalDeclAs<" + 109 std::string(type.data(), 0, type.size() - 1) + 110 ">(Record.readInt())") 111 .Case("TypeSourceInfo *", "Record.readTypeSourceInfo()") 112 .Case("Expr *", "Record.readExpr()") 113 .Case("IdentifierInfo *", "Record.readIdentifier()") 114 .Case("StringRef", "Record.readString()") 115 .Case("ParamIdx", "ParamIdx::deserialize(Record.readInt())") 116 .Case("OMPTraitInfo *", "Record.readOMPTraitInfo()") 117 .Default("Record.readInt()"); 118 } 119 120 // Get a type that is suitable for storing an object of the specified type. 121 static StringRef getStorageType(StringRef type) { 122 return StringSwitch<StringRef>(type) 123 .Case("StringRef", "std::string") 124 .Default(type); 125 } 126 127 // Assumes that the way to get the value is SA->getname() 128 static std::string WritePCHRecord(StringRef type, StringRef name) { 129 return "Record." + 130 StringSwitch<std::string>(type) 131 .EndsWith("Decl *", "AddDeclRef(" + std::string(name) + ");\n") 132 .Case("TypeSourceInfo *", 133 "AddTypeSourceInfo(" + std::string(name) + ");\n") 134 .Case("Expr *", "AddStmt(" + std::string(name) + ");\n") 135 .Case("IdentifierInfo *", 136 "AddIdentifierRef(" + std::string(name) + ");\n") 137 .Case("StringRef", "AddString(" + std::string(name) + ");\n") 138 .Case("ParamIdx", 139 "push_back(" + std::string(name) + ".serialize());\n") 140 .Case("OMPTraitInfo *", 141 "writeOMPTraitInfo(" + std::string(name) + ");\n") 142 .Default("push_back(" + std::string(name) + ");\n"); 143 } 144 145 // Normalize attribute name by removing leading and trailing 146 // underscores. For example, __foo, foo__, __foo__ would 147 // become foo. 148 static StringRef NormalizeAttrName(StringRef AttrName) { 149 AttrName.consume_front("__"); 150 AttrName.consume_back("__"); 151 return AttrName; 152 } 153 154 // Normalize the name by removing any and all leading and trailing underscores. 155 // This is different from NormalizeAttrName in that it also handles names like 156 // _pascal and __pascal. 157 static StringRef NormalizeNameForSpellingComparison(StringRef Name) { 158 return Name.trim("_"); 159 } 160 161 // Normalize the spelling of a GNU attribute (i.e. "x" in "__attribute__((x))"), 162 // removing "__" if it appears at the beginning and end of the attribute's name. 163 static StringRef NormalizeGNUAttrSpelling(StringRef AttrSpelling) { 164 if (AttrSpelling.startswith("__") && AttrSpelling.endswith("__")) { 165 AttrSpelling = AttrSpelling.substr(2, AttrSpelling.size() - 4); 166 } 167 168 return AttrSpelling; 169 } 170 171 typedef std::vector<std::pair<std::string, const Record *>> ParsedAttrMap; 172 173 static ParsedAttrMap getParsedAttrList(const RecordKeeper &Records, 174 ParsedAttrMap *Dupes = nullptr) { 175 std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr"); 176 std::set<std::string> Seen; 177 ParsedAttrMap R; 178 for (const auto *Attr : Attrs) { 179 if (Attr->getValueAsBit("SemaHandler")) { 180 std::string AN; 181 if (Attr->isSubClassOf("TargetSpecificAttr") && 182 !Attr->isValueUnset("ParseKind")) { 183 AN = std::string(Attr->getValueAsString("ParseKind")); 184 185 // If this attribute has already been handled, it does not need to be 186 // handled again. 187 if (Seen.find(AN) != Seen.end()) { 188 if (Dupes) 189 Dupes->push_back(std::make_pair(AN, Attr)); 190 continue; 191 } 192 Seen.insert(AN); 193 } else 194 AN = NormalizeAttrName(Attr->getName()).str(); 195 196 R.push_back(std::make_pair(AN, Attr)); 197 } 198 } 199 return R; 200 } 201 202 namespace { 203 204 class Argument { 205 std::string lowerName, upperName; 206 StringRef attrName; 207 bool isOpt; 208 bool Fake; 209 210 public: 211 Argument(StringRef Arg, StringRef Attr) 212 : lowerName(std::string(Arg)), upperName(lowerName), attrName(Attr), 213 isOpt(false), Fake(false) { 214 if (!lowerName.empty()) { 215 lowerName[0] = std::tolower(lowerName[0]); 216 upperName[0] = std::toupper(upperName[0]); 217 } 218 // Work around MinGW's macro definition of 'interface' to 'struct'. We 219 // have an attribute argument called 'Interface', so only the lower case 220 // name conflicts with the macro definition. 221 if (lowerName == "interface") 222 lowerName = "interface_"; 223 } 224 Argument(const Record &Arg, StringRef Attr) 225 : Argument(Arg.getValueAsString("Name"), Attr) {} 226 virtual ~Argument() = default; 227 228 StringRef getLowerName() const { return lowerName; } 229 StringRef getUpperName() const { return upperName; } 230 StringRef getAttrName() const { return attrName; } 231 232 bool isOptional() const { return isOpt; } 233 void setOptional(bool set) { isOpt = set; } 234 235 bool isFake() const { return Fake; } 236 void setFake(bool fake) { Fake = fake; } 237 238 // These functions print the argument contents formatted in different ways. 239 virtual void writeAccessors(raw_ostream &OS) const = 0; 240 virtual void writeAccessorDefinitions(raw_ostream &OS) const {} 241 virtual void writeASTVisitorTraversal(raw_ostream &OS) const {} 242 virtual void writeCloneArgs(raw_ostream &OS) const = 0; 243 virtual void writeTemplateInstantiationArgs(raw_ostream &OS) const = 0; 244 virtual void writeTemplateInstantiation(raw_ostream &OS) const {} 245 virtual void writeCtorBody(raw_ostream &OS) const {} 246 virtual void writeCtorInitializers(raw_ostream &OS) const = 0; 247 virtual void writeCtorDefaultInitializers(raw_ostream &OS) const = 0; 248 virtual void writeCtorParameters(raw_ostream &OS) const = 0; 249 virtual void writeDeclarations(raw_ostream &OS) const = 0; 250 virtual void writePCHReadArgs(raw_ostream &OS) const = 0; 251 virtual void writePCHReadDecls(raw_ostream &OS) const = 0; 252 virtual void writePCHWrite(raw_ostream &OS) const = 0; 253 virtual std::string getIsOmitted() const { return "false"; } 254 virtual void writeValue(raw_ostream &OS) const = 0; 255 virtual void writeDump(raw_ostream &OS) const = 0; 256 virtual void writeDumpChildren(raw_ostream &OS) const {} 257 virtual void writeHasChildren(raw_ostream &OS) const { OS << "false"; } 258 259 virtual bool isEnumArg() const { return false; } 260 virtual bool isVariadicEnumArg() const { return false; } 261 virtual bool isVariadic() const { return false; } 262 263 virtual void writeImplicitCtorArgs(raw_ostream &OS) const { 264 OS << getUpperName(); 265 } 266 }; 267 268 class SimpleArgument : public Argument { 269 std::string type; 270 271 public: 272 SimpleArgument(const Record &Arg, StringRef Attr, std::string T) 273 : Argument(Arg, Attr), type(std::move(T)) {} 274 275 std::string getType() const { return type; } 276 277 void writeAccessors(raw_ostream &OS) const override { 278 OS << " " << type << " get" << getUpperName() << "() const {\n"; 279 OS << " return " << getLowerName() << ";\n"; 280 OS << " }"; 281 } 282 283 void writeCloneArgs(raw_ostream &OS) const override { 284 OS << getLowerName(); 285 } 286 287 void writeTemplateInstantiationArgs(raw_ostream &OS) const override { 288 OS << "A->get" << getUpperName() << "()"; 289 } 290 291 void writeCtorInitializers(raw_ostream &OS) const override { 292 OS << getLowerName() << "(" << getUpperName() << ")"; 293 } 294 295 void writeCtorDefaultInitializers(raw_ostream &OS) const override { 296 OS << getLowerName() << "()"; 297 } 298 299 void writeCtorParameters(raw_ostream &OS) const override { 300 OS << type << " " << getUpperName(); 301 } 302 303 void writeDeclarations(raw_ostream &OS) const override { 304 OS << type << " " << getLowerName() << ";"; 305 } 306 307 void writePCHReadDecls(raw_ostream &OS) const override { 308 std::string read = ReadPCHRecord(type); 309 OS << " " << type << " " << getLowerName() << " = " << read << ";\n"; 310 } 311 312 void writePCHReadArgs(raw_ostream &OS) const override { 313 OS << getLowerName(); 314 } 315 316 void writePCHWrite(raw_ostream &OS) const override { 317 OS << " " 318 << WritePCHRecord(type, 319 "SA->get" + std::string(getUpperName()) + "()"); 320 } 321 322 std::string getIsOmitted() const override { 323 if (type == "IdentifierInfo *") 324 return "!get" + getUpperName().str() + "()"; 325 if (type == "TypeSourceInfo *") 326 return "!get" + getUpperName().str() + "Loc()"; 327 if (type == "ParamIdx") 328 return "!get" + getUpperName().str() + "().isValid()"; 329 return "false"; 330 } 331 332 void writeValue(raw_ostream &OS) const override { 333 if (type == "FunctionDecl *") 334 OS << "\" << get" << getUpperName() 335 << "()->getNameInfo().getAsString() << \""; 336 else if (type == "IdentifierInfo *") 337 // Some non-optional (comma required) identifier arguments can be the 338 // empty string but are then recorded as a nullptr. 339 OS << "\" << (get" << getUpperName() << "() ? get" << getUpperName() 340 << "()->getName() : \"\") << \""; 341 else if (type == "VarDecl *") 342 OS << "\" << get" << getUpperName() << "()->getName() << \""; 343 else if (type == "TypeSourceInfo *") 344 OS << "\" << get" << getUpperName() << "().getAsString() << \""; 345 else if (type == "ParamIdx") 346 OS << "\" << get" << getUpperName() << "().getSourceIndex() << \""; 347 else 348 OS << "\" << get" << getUpperName() << "() << \""; 349 } 350 351 void writeDump(raw_ostream &OS) const override { 352 if (StringRef(type).endswith("Decl *")) { 353 OS << " OS << \" \";\n"; 354 OS << " dumpBareDeclRef(SA->get" << getUpperName() << "());\n"; 355 } else if (type == "IdentifierInfo *") { 356 // Some non-optional (comma required) identifier arguments can be the 357 // empty string but are then recorded as a nullptr. 358 OS << " if (SA->get" << getUpperName() << "())\n" 359 << " OS << \" \" << SA->get" << getUpperName() 360 << "()->getName();\n"; 361 } else if (type == "TypeSourceInfo *") { 362 if (isOptional()) 363 OS << " if (SA->get" << getUpperName() << "Loc())"; 364 OS << " OS << \" \" << SA->get" << getUpperName() 365 << "().getAsString();\n"; 366 } else if (type == "bool") { 367 OS << " if (SA->get" << getUpperName() << "()) OS << \" " 368 << getUpperName() << "\";\n"; 369 } else if (type == "int" || type == "unsigned") { 370 OS << " OS << \" \" << SA->get" << getUpperName() << "();\n"; 371 } else if (type == "ParamIdx") { 372 if (isOptional()) 373 OS << " if (SA->get" << getUpperName() << "().isValid())\n "; 374 OS << " OS << \" \" << SA->get" << getUpperName() 375 << "().getSourceIndex();\n"; 376 } else if (type == "OMPTraitInfo *") { 377 OS << " OS << \" \" << SA->get" << getUpperName() << "();\n"; 378 } else { 379 llvm_unreachable("Unknown SimpleArgument type!"); 380 } 381 } 382 }; 383 384 class DefaultSimpleArgument : public SimpleArgument { 385 int64_t Default; 386 387 public: 388 DefaultSimpleArgument(const Record &Arg, StringRef Attr, 389 std::string T, int64_t Default) 390 : SimpleArgument(Arg, Attr, T), Default(Default) {} 391 392 void writeAccessors(raw_ostream &OS) const override { 393 SimpleArgument::writeAccessors(OS); 394 395 OS << "\n\n static const " << getType() << " Default" << getUpperName() 396 << " = "; 397 if (getType() == "bool") 398 OS << (Default != 0 ? "true" : "false"); 399 else 400 OS << Default; 401 OS << ";"; 402 } 403 }; 404 405 class StringArgument : public Argument { 406 public: 407 StringArgument(const Record &Arg, StringRef Attr) 408 : Argument(Arg, Attr) 409 {} 410 411 void writeAccessors(raw_ostream &OS) const override { 412 OS << " llvm::StringRef get" << getUpperName() << "() const {\n"; 413 OS << " return llvm::StringRef(" << getLowerName() << ", " 414 << getLowerName() << "Length);\n"; 415 OS << " }\n"; 416 OS << " unsigned get" << getUpperName() << "Length() const {\n"; 417 OS << " return " << getLowerName() << "Length;\n"; 418 OS << " }\n"; 419 OS << " void set" << getUpperName() 420 << "(ASTContext &C, llvm::StringRef S) {\n"; 421 OS << " " << getLowerName() << "Length = S.size();\n"; 422 OS << " this->" << getLowerName() << " = new (C, 1) char [" 423 << getLowerName() << "Length];\n"; 424 OS << " if (!S.empty())\n"; 425 OS << " std::memcpy(this->" << getLowerName() << ", S.data(), " 426 << getLowerName() << "Length);\n"; 427 OS << " }"; 428 } 429 430 void writeCloneArgs(raw_ostream &OS) const override { 431 OS << "get" << getUpperName() << "()"; 432 } 433 434 void writeTemplateInstantiationArgs(raw_ostream &OS) const override { 435 OS << "A->get" << getUpperName() << "()"; 436 } 437 438 void writeCtorBody(raw_ostream &OS) const override { 439 OS << " if (!" << getUpperName() << ".empty())\n"; 440 OS << " std::memcpy(" << getLowerName() << ", " << getUpperName() 441 << ".data(), " << getLowerName() << "Length);\n"; 442 } 443 444 void writeCtorInitializers(raw_ostream &OS) const override { 445 OS << getLowerName() << "Length(" << getUpperName() << ".size())," 446 << getLowerName() << "(new (Ctx, 1) char[" << getLowerName() 447 << "Length])"; 448 } 449 450 void writeCtorDefaultInitializers(raw_ostream &OS) const override { 451 OS << getLowerName() << "Length(0)," << getLowerName() << "(nullptr)"; 452 } 453 454 void writeCtorParameters(raw_ostream &OS) const override { 455 OS << "llvm::StringRef " << getUpperName(); 456 } 457 458 void writeDeclarations(raw_ostream &OS) const override { 459 OS << "unsigned " << getLowerName() << "Length;\n"; 460 OS << "char *" << getLowerName() << ";"; 461 } 462 463 void writePCHReadDecls(raw_ostream &OS) const override { 464 OS << " std::string " << getLowerName() 465 << "= Record.readString();\n"; 466 } 467 468 void writePCHReadArgs(raw_ostream &OS) const override { 469 OS << getLowerName(); 470 } 471 472 void writePCHWrite(raw_ostream &OS) const override { 473 OS << " Record.AddString(SA->get" << getUpperName() << "());\n"; 474 } 475 476 void writeValue(raw_ostream &OS) const override { 477 OS << "\\\"\" << get" << getUpperName() << "() << \"\\\""; 478 } 479 480 void writeDump(raw_ostream &OS) const override { 481 OS << " OS << \" \\\"\" << SA->get" << getUpperName() 482 << "() << \"\\\"\";\n"; 483 } 484 }; 485 486 class AlignedArgument : public Argument { 487 public: 488 AlignedArgument(const Record &Arg, StringRef Attr) 489 : Argument(Arg, Attr) 490 {} 491 492 void writeAccessors(raw_ostream &OS) const override { 493 OS << " bool is" << getUpperName() << "Dependent() const;\n"; 494 OS << " bool is" << getUpperName() << "ErrorDependent() const;\n"; 495 496 OS << " unsigned get" << getUpperName() << "(ASTContext &Ctx) const;\n"; 497 498 OS << " bool is" << getUpperName() << "Expr() const {\n"; 499 OS << " return is" << getLowerName() << "Expr;\n"; 500 OS << " }\n"; 501 502 OS << " Expr *get" << getUpperName() << "Expr() const {\n"; 503 OS << " assert(is" << getLowerName() << "Expr);\n"; 504 OS << " return " << getLowerName() << "Expr;\n"; 505 OS << " }\n"; 506 507 OS << " TypeSourceInfo *get" << getUpperName() << "Type() const {\n"; 508 OS << " assert(!is" << getLowerName() << "Expr);\n"; 509 OS << " return " << getLowerName() << "Type;\n"; 510 OS << " }"; 511 512 OS << " std::optional<unsigned> getCached" << getUpperName() 513 << "Value() const {\n"; 514 OS << " return " << getLowerName() << "Cache;\n"; 515 OS << " }"; 516 517 OS << " void setCached" << getUpperName() 518 << "Value(unsigned AlignVal) {\n"; 519 OS << " " << getLowerName() << "Cache = AlignVal;\n"; 520 OS << " }"; 521 } 522 523 void writeAccessorDefinitions(raw_ostream &OS) const override { 524 OS << "bool " << getAttrName() << "Attr::is" << getUpperName() 525 << "Dependent() const {\n"; 526 OS << " if (is" << getLowerName() << "Expr)\n"; 527 OS << " return " << getLowerName() << "Expr && (" << getLowerName() 528 << "Expr->isValueDependent() || " << getLowerName() 529 << "Expr->isTypeDependent());\n"; 530 OS << " else\n"; 531 OS << " return " << getLowerName() 532 << "Type->getType()->isDependentType();\n"; 533 OS << "}\n"; 534 535 OS << "bool " << getAttrName() << "Attr::is" << getUpperName() 536 << "ErrorDependent() const {\n"; 537 OS << " if (is" << getLowerName() << "Expr)\n"; 538 OS << " return " << getLowerName() << "Expr && " << getLowerName() 539 << "Expr->containsErrors();\n"; 540 OS << " return " << getLowerName() 541 << "Type->getType()->containsErrors();\n"; 542 OS << "}\n"; 543 } 544 545 void writeASTVisitorTraversal(raw_ostream &OS) const override { 546 StringRef Name = getUpperName(); 547 OS << " if (A->is" << Name << "Expr()) {\n" 548 << " if (!getDerived().TraverseStmt(A->get" << Name << "Expr()))\n" 549 << " return false;\n" 550 << " } else if (auto *TSI = A->get" << Name << "Type()) {\n" 551 << " if (!getDerived().TraverseTypeLoc(TSI->getTypeLoc()))\n" 552 << " return false;\n" 553 << " }\n"; 554 } 555 556 void writeCloneArgs(raw_ostream &OS) const override { 557 OS << "is" << getLowerName() << "Expr, is" << getLowerName() 558 << "Expr ? static_cast<void*>(" << getLowerName() 559 << "Expr) : " << getLowerName() 560 << "Type"; 561 } 562 563 void writeTemplateInstantiationArgs(raw_ostream &OS) const override { 564 // FIXME: move the definition in Sema::InstantiateAttrs to here. 565 // In the meantime, aligned attributes are cloned. 566 } 567 568 void writeCtorBody(raw_ostream &OS) const override { 569 OS << " if (is" << getLowerName() << "Expr)\n"; 570 OS << " " << getLowerName() << "Expr = reinterpret_cast<Expr *>(" 571 << getUpperName() << ");\n"; 572 OS << " else\n"; 573 OS << " " << getLowerName() 574 << "Type = reinterpret_cast<TypeSourceInfo *>(" << getUpperName() 575 << ");\n"; 576 } 577 578 void writeCtorInitializers(raw_ostream &OS) const override { 579 OS << "is" << getLowerName() << "Expr(Is" << getUpperName() << "Expr)"; 580 } 581 582 void writeCtorDefaultInitializers(raw_ostream &OS) const override { 583 OS << "is" << getLowerName() << "Expr(false)"; 584 } 585 586 void writeCtorParameters(raw_ostream &OS) const override { 587 OS << "bool Is" << getUpperName() << "Expr, void *" << getUpperName(); 588 } 589 590 void writeImplicitCtorArgs(raw_ostream &OS) const override { 591 OS << "Is" << getUpperName() << "Expr, " << getUpperName(); 592 } 593 594 void writeDeclarations(raw_ostream &OS) const override { 595 OS << "bool is" << getLowerName() << "Expr;\n"; 596 OS << "union {\n"; 597 OS << "Expr *" << getLowerName() << "Expr;\n"; 598 OS << "TypeSourceInfo *" << getLowerName() << "Type;\n"; 599 OS << "};\n"; 600 OS << "std::optional<unsigned> " << getLowerName() << "Cache;\n"; 601 } 602 603 void writePCHReadArgs(raw_ostream &OS) const override { 604 OS << "is" << getLowerName() << "Expr, " << getLowerName() << "Ptr"; 605 } 606 607 void writePCHReadDecls(raw_ostream &OS) const override { 608 OS << " bool is" << getLowerName() << "Expr = Record.readInt();\n"; 609 OS << " void *" << getLowerName() << "Ptr;\n"; 610 OS << " if (is" << getLowerName() << "Expr)\n"; 611 OS << " " << getLowerName() << "Ptr = Record.readExpr();\n"; 612 OS << " else\n"; 613 OS << " " << getLowerName() 614 << "Ptr = Record.readTypeSourceInfo();\n"; 615 } 616 617 void writePCHWrite(raw_ostream &OS) const override { 618 OS << " Record.push_back(SA->is" << getUpperName() << "Expr());\n"; 619 OS << " if (SA->is" << getUpperName() << "Expr())\n"; 620 OS << " Record.AddStmt(SA->get" << getUpperName() << "Expr());\n"; 621 OS << " else\n"; 622 OS << " Record.AddTypeSourceInfo(SA->get" << getUpperName() 623 << "Type());\n"; 624 } 625 626 std::string getIsOmitted() const override { 627 return "!((is" + getLowerName().str() + "Expr && " + 628 getLowerName().str() + "Expr) || (!is" + getLowerName().str() + 629 "Expr && " + getLowerName().str() + "Type))"; 630 } 631 632 void writeValue(raw_ostream &OS) const override { 633 OS << "\";\n"; 634 OS << " if (is" << getLowerName() << "Expr && " << getLowerName() 635 << "Expr)"; 636 OS << " " << getLowerName() 637 << "Expr->printPretty(OS, nullptr, Policy);\n"; 638 OS << " if (!is" << getLowerName() << "Expr && " << getLowerName() 639 << "Type)"; 640 OS << " " << getLowerName() 641 << "Type->getType().print(OS, Policy);\n"; 642 OS << " OS << \""; 643 } 644 645 void writeDump(raw_ostream &OS) const override { 646 OS << " if (!SA->is" << getUpperName() << "Expr())\n"; 647 OS << " dumpType(SA->get" << getUpperName() 648 << "Type()->getType());\n"; 649 } 650 651 void writeDumpChildren(raw_ostream &OS) const override { 652 OS << " if (SA->is" << getUpperName() << "Expr())\n"; 653 OS << " Visit(SA->get" << getUpperName() << "Expr());\n"; 654 } 655 656 void writeHasChildren(raw_ostream &OS) const override { 657 OS << "SA->is" << getUpperName() << "Expr()"; 658 } 659 }; 660 661 class VariadicArgument : public Argument { 662 std::string Type, ArgName, ArgSizeName, RangeName; 663 664 protected: 665 // Assumed to receive a parameter: raw_ostream OS. 666 virtual void writeValueImpl(raw_ostream &OS) const { 667 OS << " OS << Val;\n"; 668 } 669 // Assumed to receive a parameter: raw_ostream OS. 670 virtual void writeDumpImpl(raw_ostream &OS) const { 671 OS << " OS << \" \" << Val;\n"; 672 } 673 674 public: 675 VariadicArgument(const Record &Arg, StringRef Attr, std::string T) 676 : Argument(Arg, Attr), Type(std::move(T)), 677 ArgName(getLowerName().str() + "_"), ArgSizeName(ArgName + "Size"), 678 RangeName(std::string(getLowerName())) {} 679 680 VariadicArgument(StringRef Arg, StringRef Attr, std::string T) 681 : Argument(Arg, Attr), Type(std::move(T)), 682 ArgName(getLowerName().str() + "_"), ArgSizeName(ArgName + "Size"), 683 RangeName(std::string(getLowerName())) {} 684 685 const std::string &getType() const { return Type; } 686 const std::string &getArgName() const { return ArgName; } 687 const std::string &getArgSizeName() const { return ArgSizeName; } 688 bool isVariadic() const override { return true; } 689 690 void writeAccessors(raw_ostream &OS) const override { 691 std::string IteratorType = getLowerName().str() + "_iterator"; 692 std::string BeginFn = getLowerName().str() + "_begin()"; 693 std::string EndFn = getLowerName().str() + "_end()"; 694 695 OS << " typedef " << Type << "* " << IteratorType << ";\n"; 696 OS << " " << IteratorType << " " << BeginFn << " const {" 697 << " return " << ArgName << "; }\n"; 698 OS << " " << IteratorType << " " << EndFn << " const {" 699 << " return " << ArgName << " + " << ArgSizeName << "; }\n"; 700 OS << " unsigned " << getLowerName() << "_size() const {" 701 << " return " << ArgSizeName << "; }\n"; 702 OS << " llvm::iterator_range<" << IteratorType << "> " << RangeName 703 << "() const { return llvm::make_range(" << BeginFn << ", " << EndFn 704 << "); }\n"; 705 } 706 707 void writeSetter(raw_ostream &OS) const { 708 OS << " void set" << getUpperName() << "(ASTContext &Ctx, "; 709 writeCtorParameters(OS); 710 OS << ") {\n"; 711 OS << " " << ArgSizeName << " = " << getUpperName() << "Size;\n"; 712 OS << " " << ArgName << " = new (Ctx, 16) " << getType() << "[" 713 << ArgSizeName << "];\n"; 714 OS << " "; 715 writeCtorBody(OS); 716 OS << " }\n"; 717 } 718 719 void writeCloneArgs(raw_ostream &OS) const override { 720 OS << ArgName << ", " << ArgSizeName; 721 } 722 723 void writeTemplateInstantiationArgs(raw_ostream &OS) const override { 724 // This isn't elegant, but we have to go through public methods... 725 OS << "A->" << getLowerName() << "_begin(), " 726 << "A->" << getLowerName() << "_size()"; 727 } 728 729 void writeASTVisitorTraversal(raw_ostream &OS) const override { 730 // FIXME: Traverse the elements. 731 } 732 733 void writeCtorBody(raw_ostream &OS) const override { 734 OS << " std::copy(" << getUpperName() << ", " << getUpperName() << " + " 735 << ArgSizeName << ", " << ArgName << ");\n"; 736 } 737 738 void writeCtorInitializers(raw_ostream &OS) const override { 739 OS << ArgSizeName << "(" << getUpperName() << "Size), " 740 << ArgName << "(new (Ctx, 16) " << getType() << "[" 741 << ArgSizeName << "])"; 742 } 743 744 void writeCtorDefaultInitializers(raw_ostream &OS) const override { 745 OS << ArgSizeName << "(0), " << ArgName << "(nullptr)"; 746 } 747 748 void writeCtorParameters(raw_ostream &OS) const override { 749 OS << getType() << " *" << getUpperName() << ", unsigned " 750 << getUpperName() << "Size"; 751 } 752 753 void writeImplicitCtorArgs(raw_ostream &OS) const override { 754 OS << getUpperName() << ", " << getUpperName() << "Size"; 755 } 756 757 void writeDeclarations(raw_ostream &OS) const override { 758 OS << " unsigned " << ArgSizeName << ";\n"; 759 OS << " " << getType() << " *" << ArgName << ";"; 760 } 761 762 void writePCHReadDecls(raw_ostream &OS) const override { 763 OS << " unsigned " << getLowerName() << "Size = Record.readInt();\n"; 764 OS << " SmallVector<" << getType() << ", 4> " 765 << getLowerName() << ";\n"; 766 OS << " " << getLowerName() << ".reserve(" << getLowerName() 767 << "Size);\n"; 768 769 // If we can't store the values in the current type (if it's something 770 // like StringRef), store them in a different type and convert the 771 // container afterwards. 772 std::string StorageType = std::string(getStorageType(getType())); 773 std::string StorageName = std::string(getLowerName()); 774 if (StorageType != getType()) { 775 StorageName += "Storage"; 776 OS << " SmallVector<" << StorageType << ", 4> " 777 << StorageName << ";\n"; 778 OS << " " << StorageName << ".reserve(" << getLowerName() 779 << "Size);\n"; 780 } 781 782 OS << " for (unsigned i = 0; i != " << getLowerName() << "Size; ++i)\n"; 783 std::string read = ReadPCHRecord(Type); 784 OS << " " << StorageName << ".push_back(" << read << ");\n"; 785 786 if (StorageType != getType()) { 787 OS << " for (unsigned i = 0; i != " << getLowerName() << "Size; ++i)\n"; 788 OS << " " << getLowerName() << ".push_back(" 789 << StorageName << "[i]);\n"; 790 } 791 } 792 793 void writePCHReadArgs(raw_ostream &OS) const override { 794 OS << getLowerName() << ".data(), " << getLowerName() << "Size"; 795 } 796 797 void writePCHWrite(raw_ostream &OS) const override { 798 OS << " Record.push_back(SA->" << getLowerName() << "_size());\n"; 799 OS << " for (auto &Val : SA->" << RangeName << "())\n"; 800 OS << " " << WritePCHRecord(Type, "Val"); 801 } 802 803 void writeValue(raw_ostream &OS) const override { 804 OS << "\";\n"; 805 OS << " for (const auto &Val : " << RangeName << "()) {\n" 806 << " DelimitAttributeArgument(OS, IsFirstArgument);\n"; 807 writeValueImpl(OS); 808 OS << " }\n"; 809 OS << " OS << \""; 810 } 811 812 void writeDump(raw_ostream &OS) const override { 813 OS << " for (const auto &Val : SA->" << RangeName << "())\n"; 814 writeDumpImpl(OS); 815 } 816 }; 817 818 class VariadicOMPInteropInfoArgument : public VariadicArgument { 819 public: 820 VariadicOMPInteropInfoArgument(const Record &Arg, StringRef Attr) 821 : VariadicArgument(Arg, Attr, "OMPInteropInfo") {} 822 823 void writeDump(raw_ostream &OS) const override { 824 OS << " for (" << getAttrName() << "Attr::" << getLowerName() 825 << "_iterator I = SA->" << getLowerName() << "_begin(), E = SA->" 826 << getLowerName() << "_end(); I != E; ++I) {\n"; 827 OS << " if (I->IsTarget && I->IsTargetSync)\n"; 828 OS << " OS << \" Target_TargetSync\";\n"; 829 OS << " else if (I->IsTarget)\n"; 830 OS << " OS << \" Target\";\n"; 831 OS << " else\n"; 832 OS << " OS << \" TargetSync\";\n"; 833 OS << " }\n"; 834 } 835 836 void writePCHReadDecls(raw_ostream &OS) const override { 837 OS << " unsigned " << getLowerName() << "Size = Record.readInt();\n"; 838 OS << " SmallVector<OMPInteropInfo, 4> " << getLowerName() << ";\n"; 839 OS << " " << getLowerName() << ".reserve(" << getLowerName() 840 << "Size);\n"; 841 OS << " for (unsigned I = 0, E = " << getLowerName() << "Size; "; 842 OS << "I != E; ++I) {\n"; 843 OS << " bool IsTarget = Record.readBool();\n"; 844 OS << " bool IsTargetSync = Record.readBool();\n"; 845 OS << " " << getLowerName() 846 << ".emplace_back(IsTarget, IsTargetSync);\n"; 847 OS << " }\n"; 848 } 849 850 void writePCHWrite(raw_ostream &OS) const override { 851 OS << " Record.push_back(SA->" << getLowerName() << "_size());\n"; 852 OS << " for (" << getAttrName() << "Attr::" << getLowerName() 853 << "_iterator I = SA->" << getLowerName() << "_begin(), E = SA->" 854 << getLowerName() << "_end(); I != E; ++I) {\n"; 855 OS << " Record.writeBool(I->IsTarget);\n"; 856 OS << " Record.writeBool(I->IsTargetSync);\n"; 857 OS << " }\n"; 858 } 859 }; 860 861 class VariadicParamIdxArgument : public VariadicArgument { 862 public: 863 VariadicParamIdxArgument(const Record &Arg, StringRef Attr) 864 : VariadicArgument(Arg, Attr, "ParamIdx") {} 865 866 public: 867 void writeValueImpl(raw_ostream &OS) const override { 868 OS << " OS << Val.getSourceIndex();\n"; 869 } 870 871 void writeDumpImpl(raw_ostream &OS) const override { 872 OS << " OS << \" \" << Val.getSourceIndex();\n"; 873 } 874 }; 875 876 struct VariadicParamOrParamIdxArgument : public VariadicArgument { 877 VariadicParamOrParamIdxArgument(const Record &Arg, StringRef Attr) 878 : VariadicArgument(Arg, Attr, "int") {} 879 }; 880 881 // Unique the enums, but maintain the original declaration ordering. 882 std::vector<StringRef> 883 uniqueEnumsInOrder(const std::vector<StringRef> &enums) { 884 std::vector<StringRef> uniques; 885 SmallDenseSet<StringRef, 8> unique_set; 886 for (const auto &i : enums) { 887 if (unique_set.insert(i).second) 888 uniques.push_back(i); 889 } 890 return uniques; 891 } 892 893 class EnumArgument : public Argument { 894 std::string type; 895 std::vector<StringRef> values, enums, uniques; 896 897 public: 898 EnumArgument(const Record &Arg, StringRef Attr) 899 : Argument(Arg, Attr), type(std::string(Arg.getValueAsString("Type"))), 900 values(Arg.getValueAsListOfStrings("Values")), 901 enums(Arg.getValueAsListOfStrings("Enums")), 902 uniques(uniqueEnumsInOrder(enums)) { 903 // FIXME: Emit a proper error 904 assert(!uniques.empty()); 905 } 906 907 bool isEnumArg() const override { return true; } 908 909 void writeAccessors(raw_ostream &OS) const override { 910 OS << " " << type << " get" << getUpperName() << "() const {\n"; 911 OS << " return " << getLowerName() << ";\n"; 912 OS << " }"; 913 } 914 915 void writeCloneArgs(raw_ostream &OS) const override { 916 OS << getLowerName(); 917 } 918 919 void writeTemplateInstantiationArgs(raw_ostream &OS) const override { 920 OS << "A->get" << getUpperName() << "()"; 921 } 922 void writeCtorInitializers(raw_ostream &OS) const override { 923 OS << getLowerName() << "(" << getUpperName() << ")"; 924 } 925 void writeCtorDefaultInitializers(raw_ostream &OS) const override { 926 OS << getLowerName() << "(" << type << "(0))"; 927 } 928 void writeCtorParameters(raw_ostream &OS) const override { 929 OS << type << " " << getUpperName(); 930 } 931 void writeDeclarations(raw_ostream &OS) const override { 932 auto i = uniques.cbegin(), e = uniques.cend(); 933 // The last one needs to not have a comma. 934 --e; 935 936 OS << "public:\n"; 937 OS << " enum " << type << " {\n"; 938 for (; i != e; ++i) 939 OS << " " << *i << ",\n"; 940 OS << " " << *e << "\n"; 941 OS << " };\n"; 942 OS << "private:\n"; 943 OS << " " << type << " " << getLowerName() << ";"; 944 } 945 946 void writePCHReadDecls(raw_ostream &OS) const override { 947 OS << " " << getAttrName() << "Attr::" << type << " " << getLowerName() 948 << "(static_cast<" << getAttrName() << "Attr::" << type 949 << ">(Record.readInt()));\n"; 950 } 951 952 void writePCHReadArgs(raw_ostream &OS) const override { 953 OS << getLowerName(); 954 } 955 956 void writePCHWrite(raw_ostream &OS) const override { 957 OS << "Record.push_back(SA->get" << getUpperName() << "());\n"; 958 } 959 960 void writeValue(raw_ostream &OS) const override { 961 // FIXME: this isn't 100% correct -- some enum arguments require printing 962 // as a string literal, while others require printing as an identifier. 963 // Tablegen currently does not distinguish between the two forms. 964 OS << "\\\"\" << " << getAttrName() << "Attr::Convert" << type << "ToStr(get" 965 << getUpperName() << "()) << \"\\\""; 966 } 967 968 void writeDump(raw_ostream &OS) const override { 969 OS << " switch(SA->get" << getUpperName() << "()) {\n"; 970 for (const auto &I : uniques) { 971 OS << " case " << getAttrName() << "Attr::" << I << ":\n"; 972 OS << " OS << \" " << I << "\";\n"; 973 OS << " break;\n"; 974 } 975 OS << " }\n"; 976 } 977 978 void writeConversion(raw_ostream &OS, bool Header) const { 979 if (Header) { 980 OS << " static bool ConvertStrTo" << type << "(StringRef Val, " << type 981 << " &Out);\n"; 982 OS << " static const char *Convert" << type << "ToStr(" << type 983 << " Val);\n"; 984 return; 985 } 986 987 OS << "bool " << getAttrName() << "Attr::ConvertStrTo" << type 988 << "(StringRef Val, " << type << " &Out) {\n"; 989 OS << " std::optional<" << type 990 << "> R = llvm::StringSwitch<std::optional<"; 991 OS << type << ">>(Val)\n"; 992 for (size_t I = 0; I < enums.size(); ++I) { 993 OS << " .Case(\"" << values[I] << "\", "; 994 OS << getAttrName() << "Attr::" << enums[I] << ")\n"; 995 } 996 OS << " .Default(std::optional<" << type << ">());\n"; 997 OS << " if (R) {\n"; 998 OS << " Out = *R;\n return true;\n }\n"; 999 OS << " return false;\n"; 1000 OS << "}\n\n"; 1001 1002 // Mapping from enumeration values back to enumeration strings isn't 1003 // trivial because some enumeration values have multiple named 1004 // enumerators, such as type_visibility(internal) and 1005 // type_visibility(hidden) both mapping to TypeVisibilityAttr::Hidden. 1006 OS << "const char *" << getAttrName() << "Attr::Convert" << type 1007 << "ToStr(" << type << " Val) {\n" 1008 << " switch(Val) {\n"; 1009 SmallDenseSet<StringRef, 8> Uniques; 1010 for (size_t I = 0; I < enums.size(); ++I) { 1011 if (Uniques.insert(enums[I]).second) 1012 OS << " case " << getAttrName() << "Attr::" << enums[I] 1013 << ": return \"" << values[I] << "\";\n"; 1014 } 1015 OS << " }\n" 1016 << " llvm_unreachable(\"No enumerator with that value\");\n" 1017 << "}\n"; 1018 } 1019 }; 1020 1021 class VariadicEnumArgument: public VariadicArgument { 1022 std::string type, QualifiedTypeName; 1023 std::vector<StringRef> values, enums, uniques; 1024 1025 protected: 1026 void writeValueImpl(raw_ostream &OS) const override { 1027 // FIXME: this isn't 100% correct -- some enum arguments require printing 1028 // as a string literal, while others require printing as an identifier. 1029 // Tablegen currently does not distinguish between the two forms. 1030 OS << " OS << \"\\\"\" << " << getAttrName() << "Attr::Convert" << type 1031 << "ToStr(Val)" << "<< \"\\\"\";\n"; 1032 } 1033 1034 public: 1035 VariadicEnumArgument(const Record &Arg, StringRef Attr) 1036 : VariadicArgument(Arg, Attr, 1037 std::string(Arg.getValueAsString("Type"))), 1038 type(std::string(Arg.getValueAsString("Type"))), 1039 values(Arg.getValueAsListOfStrings("Values")), 1040 enums(Arg.getValueAsListOfStrings("Enums")), 1041 uniques(uniqueEnumsInOrder(enums)) { 1042 QualifiedTypeName = getAttrName().str() + "Attr::" + type; 1043 1044 // FIXME: Emit a proper error 1045 assert(!uniques.empty()); 1046 } 1047 1048 bool isVariadicEnumArg() const override { return true; } 1049 1050 void writeDeclarations(raw_ostream &OS) const override { 1051 auto i = uniques.cbegin(), e = uniques.cend(); 1052 // The last one needs to not have a comma. 1053 --e; 1054 1055 OS << "public:\n"; 1056 OS << " enum " << type << " {\n"; 1057 for (; i != e; ++i) 1058 OS << " " << *i << ",\n"; 1059 OS << " " << *e << "\n"; 1060 OS << " };\n"; 1061 OS << "private:\n"; 1062 1063 VariadicArgument::writeDeclarations(OS); 1064 } 1065 1066 void writeDump(raw_ostream &OS) const override { 1067 OS << " for (" << getAttrName() << "Attr::" << getLowerName() 1068 << "_iterator I = SA->" << getLowerName() << "_begin(), E = SA->" 1069 << getLowerName() << "_end(); I != E; ++I) {\n"; 1070 OS << " switch(*I) {\n"; 1071 for (const auto &UI : uniques) { 1072 OS << " case " << getAttrName() << "Attr::" << UI << ":\n"; 1073 OS << " OS << \" " << UI << "\";\n"; 1074 OS << " break;\n"; 1075 } 1076 OS << " }\n"; 1077 OS << " }\n"; 1078 } 1079 1080 void writePCHReadDecls(raw_ostream &OS) const override { 1081 OS << " unsigned " << getLowerName() << "Size = Record.readInt();\n"; 1082 OS << " SmallVector<" << QualifiedTypeName << ", 4> " << getLowerName() 1083 << ";\n"; 1084 OS << " " << getLowerName() << ".reserve(" << getLowerName() 1085 << "Size);\n"; 1086 OS << " for (unsigned i = " << getLowerName() << "Size; i; --i)\n"; 1087 OS << " " << getLowerName() << ".push_back(" << "static_cast<" 1088 << QualifiedTypeName << ">(Record.readInt()));\n"; 1089 } 1090 1091 void writePCHWrite(raw_ostream &OS) const override { 1092 OS << " Record.push_back(SA->" << getLowerName() << "_size());\n"; 1093 OS << " for (" << getAttrName() << "Attr::" << getLowerName() 1094 << "_iterator i = SA->" << getLowerName() << "_begin(), e = SA->" 1095 << getLowerName() << "_end(); i != e; ++i)\n"; 1096 OS << " " << WritePCHRecord(QualifiedTypeName, "(*i)"); 1097 } 1098 1099 void writeConversion(raw_ostream &OS, bool Header) const { 1100 if (Header) { 1101 OS << " static bool ConvertStrTo" << type << "(StringRef Val, " << type 1102 << " &Out);\n"; 1103 OS << " static const char *Convert" << type << "ToStr(" << type 1104 << " Val);\n"; 1105 return; 1106 } 1107 1108 OS << "bool " << getAttrName() << "Attr::ConvertStrTo" << type 1109 << "(StringRef Val, "; 1110 OS << type << " &Out) {\n"; 1111 OS << " std::optional<" << type 1112 << "> R = llvm::StringSwitch<std::optional<"; 1113 OS << type << ">>(Val)\n"; 1114 for (size_t I = 0; I < enums.size(); ++I) { 1115 OS << " .Case(\"" << values[I] << "\", "; 1116 OS << getAttrName() << "Attr::" << enums[I] << ")\n"; 1117 } 1118 OS << " .Default(std::optional<" << type << ">());\n"; 1119 OS << " if (R) {\n"; 1120 OS << " Out = *R;\n return true;\n }\n"; 1121 OS << " return false;\n"; 1122 OS << "}\n\n"; 1123 1124 OS << "const char *" << getAttrName() << "Attr::Convert" << type 1125 << "ToStr(" << type << " Val) {\n" 1126 << " switch(Val) {\n"; 1127 SmallDenseSet<StringRef, 8> Uniques; 1128 for (size_t I = 0; I < enums.size(); ++I) { 1129 if (Uniques.insert(enums[I]).second) 1130 OS << " case " << getAttrName() << "Attr::" << enums[I] 1131 << ": return \"" << values[I] << "\";\n"; 1132 } 1133 OS << " }\n" 1134 << " llvm_unreachable(\"No enumerator with that value\");\n" 1135 << "}\n"; 1136 } 1137 }; 1138 1139 class VersionArgument : public Argument { 1140 public: 1141 VersionArgument(const Record &Arg, StringRef Attr) 1142 : Argument(Arg, Attr) 1143 {} 1144 1145 void writeAccessors(raw_ostream &OS) const override { 1146 OS << " VersionTuple get" << getUpperName() << "() const {\n"; 1147 OS << " return " << getLowerName() << ";\n"; 1148 OS << " }\n"; 1149 OS << " void set" << getUpperName() 1150 << "(ASTContext &C, VersionTuple V) {\n"; 1151 OS << " " << getLowerName() << " = V;\n"; 1152 OS << " }"; 1153 } 1154 1155 void writeCloneArgs(raw_ostream &OS) const override { 1156 OS << "get" << getUpperName() << "()"; 1157 } 1158 1159 void writeTemplateInstantiationArgs(raw_ostream &OS) const override { 1160 OS << "A->get" << getUpperName() << "()"; 1161 } 1162 1163 void writeCtorInitializers(raw_ostream &OS) const override { 1164 OS << getLowerName() << "(" << getUpperName() << ")"; 1165 } 1166 1167 void writeCtorDefaultInitializers(raw_ostream &OS) const override { 1168 OS << getLowerName() << "()"; 1169 } 1170 1171 void writeCtorParameters(raw_ostream &OS) const override { 1172 OS << "VersionTuple " << getUpperName(); 1173 } 1174 1175 void writeDeclarations(raw_ostream &OS) const override { 1176 OS << "VersionTuple " << getLowerName() << ";\n"; 1177 } 1178 1179 void writePCHReadDecls(raw_ostream &OS) const override { 1180 OS << " VersionTuple " << getLowerName() 1181 << "= Record.readVersionTuple();\n"; 1182 } 1183 1184 void writePCHReadArgs(raw_ostream &OS) const override { 1185 OS << getLowerName(); 1186 } 1187 1188 void writePCHWrite(raw_ostream &OS) const override { 1189 OS << " Record.AddVersionTuple(SA->get" << getUpperName() << "());\n"; 1190 } 1191 1192 void writeValue(raw_ostream &OS) const override { 1193 OS << getLowerName() << "=\" << get" << getUpperName() << "() << \""; 1194 } 1195 1196 void writeDump(raw_ostream &OS) const override { 1197 OS << " OS << \" \" << SA->get" << getUpperName() << "();\n"; 1198 } 1199 }; 1200 1201 class ExprArgument : public SimpleArgument { 1202 public: 1203 ExprArgument(const Record &Arg, StringRef Attr) 1204 : SimpleArgument(Arg, Attr, "Expr *") 1205 {} 1206 1207 void writeASTVisitorTraversal(raw_ostream &OS) const override { 1208 OS << " if (!" 1209 << "getDerived().TraverseStmt(A->get" << getUpperName() << "()))\n"; 1210 OS << " return false;\n"; 1211 } 1212 1213 void writeTemplateInstantiationArgs(raw_ostream &OS) const override { 1214 OS << "tempInst" << getUpperName(); 1215 } 1216 1217 void writeTemplateInstantiation(raw_ostream &OS) const override { 1218 OS << " " << getType() << " tempInst" << getUpperName() << ";\n"; 1219 OS << " {\n"; 1220 OS << " EnterExpressionEvaluationContext " 1221 << "Unevaluated(S, Sema::ExpressionEvaluationContext::Unevaluated);\n"; 1222 OS << " ExprResult " << "Result = S.SubstExpr(" 1223 << "A->get" << getUpperName() << "(), TemplateArgs);\n"; 1224 OS << " if (Result.isInvalid())\n"; 1225 OS << " return nullptr;\n"; 1226 OS << " tempInst" << getUpperName() << " = Result.get();\n"; 1227 OS << " }\n"; 1228 } 1229 1230 void writeValue(raw_ostream &OS) const override { 1231 OS << "\";\n"; 1232 OS << " get" << getUpperName() 1233 << "()->printPretty(OS, nullptr, Policy);\n"; 1234 OS << " OS << \""; 1235 } 1236 1237 void writeDump(raw_ostream &OS) const override {} 1238 1239 void writeDumpChildren(raw_ostream &OS) const override { 1240 OS << " Visit(SA->get" << getUpperName() << "());\n"; 1241 } 1242 1243 void writeHasChildren(raw_ostream &OS) const override { OS << "true"; } 1244 }; 1245 1246 class VariadicExprArgument : public VariadicArgument { 1247 public: 1248 VariadicExprArgument(const Record &Arg, StringRef Attr) 1249 : VariadicArgument(Arg, Attr, "Expr *") 1250 {} 1251 1252 VariadicExprArgument(StringRef ArgName, StringRef Attr) 1253 : VariadicArgument(ArgName, Attr, "Expr *") {} 1254 1255 void writeASTVisitorTraversal(raw_ostream &OS) const override { 1256 OS << " {\n"; 1257 OS << " " << getType() << " *I = A->" << getLowerName() 1258 << "_begin();\n"; 1259 OS << " " << getType() << " *E = A->" << getLowerName() 1260 << "_end();\n"; 1261 OS << " for (; I != E; ++I) {\n"; 1262 OS << " if (!getDerived().TraverseStmt(*I))\n"; 1263 OS << " return false;\n"; 1264 OS << " }\n"; 1265 OS << " }\n"; 1266 } 1267 1268 void writeTemplateInstantiationArgs(raw_ostream &OS) const override { 1269 OS << "tempInst" << getUpperName() << ", " 1270 << "A->" << getLowerName() << "_size()"; 1271 } 1272 1273 void writeTemplateInstantiation(raw_ostream &OS) const override { 1274 OS << " auto *tempInst" << getUpperName() 1275 << " = new (C, 16) " << getType() 1276 << "[A->" << getLowerName() << "_size()];\n"; 1277 OS << " {\n"; 1278 OS << " EnterExpressionEvaluationContext " 1279 << "Unevaluated(S, Sema::ExpressionEvaluationContext::Unevaluated);\n"; 1280 OS << " " << getType() << " *TI = tempInst" << getUpperName() 1281 << ";\n"; 1282 OS << " " << getType() << " *I = A->" << getLowerName() 1283 << "_begin();\n"; 1284 OS << " " << getType() << " *E = A->" << getLowerName() 1285 << "_end();\n"; 1286 OS << " for (; I != E; ++I, ++TI) {\n"; 1287 OS << " ExprResult Result = S.SubstExpr(*I, TemplateArgs);\n"; 1288 OS << " if (Result.isInvalid())\n"; 1289 OS << " return nullptr;\n"; 1290 OS << " *TI = Result.get();\n"; 1291 OS << " }\n"; 1292 OS << " }\n"; 1293 } 1294 1295 void writeDump(raw_ostream &OS) const override {} 1296 1297 void writeDumpChildren(raw_ostream &OS) const override { 1298 OS << " for (" << getAttrName() << "Attr::" << getLowerName() 1299 << "_iterator I = SA->" << getLowerName() << "_begin(), E = SA->" 1300 << getLowerName() << "_end(); I != E; ++I)\n"; 1301 OS << " Visit(*I);\n"; 1302 } 1303 1304 void writeHasChildren(raw_ostream &OS) const override { 1305 OS << "SA->" << getLowerName() << "_begin() != " 1306 << "SA->" << getLowerName() << "_end()"; 1307 } 1308 }; 1309 1310 class VariadicIdentifierArgument : public VariadicArgument { 1311 public: 1312 VariadicIdentifierArgument(const Record &Arg, StringRef Attr) 1313 : VariadicArgument(Arg, Attr, "IdentifierInfo *") 1314 {} 1315 }; 1316 1317 class VariadicStringArgument : public VariadicArgument { 1318 public: 1319 VariadicStringArgument(const Record &Arg, StringRef Attr) 1320 : VariadicArgument(Arg, Attr, "StringRef") 1321 {} 1322 1323 void writeCtorBody(raw_ostream &OS) const override { 1324 OS << " for (size_t I = 0, E = " << getArgSizeName() << "; I != E;\n" 1325 " ++I) {\n" 1326 " StringRef Ref = " << getUpperName() << "[I];\n" 1327 " if (!Ref.empty()) {\n" 1328 " char *Mem = new (Ctx, 1) char[Ref.size()];\n" 1329 " std::memcpy(Mem, Ref.data(), Ref.size());\n" 1330 " " << getArgName() << "[I] = StringRef(Mem, Ref.size());\n" 1331 " }\n" 1332 " }\n"; 1333 } 1334 1335 void writeValueImpl(raw_ostream &OS) const override { 1336 OS << " OS << \"\\\"\" << Val << \"\\\"\";\n"; 1337 } 1338 }; 1339 1340 class TypeArgument : public SimpleArgument { 1341 public: 1342 TypeArgument(const Record &Arg, StringRef Attr) 1343 : SimpleArgument(Arg, Attr, "TypeSourceInfo *") 1344 {} 1345 1346 void writeAccessors(raw_ostream &OS) const override { 1347 OS << " QualType get" << getUpperName() << "() const {\n"; 1348 OS << " return " << getLowerName() << "->getType();\n"; 1349 OS << " }"; 1350 OS << " " << getType() << " get" << getUpperName() << "Loc() const {\n"; 1351 OS << " return " << getLowerName() << ";\n"; 1352 OS << " }"; 1353 } 1354 1355 void writeASTVisitorTraversal(raw_ostream &OS) const override { 1356 OS << " if (auto *TSI = A->get" << getUpperName() << "Loc())\n"; 1357 OS << " if (!getDerived().TraverseTypeLoc(TSI->getTypeLoc()))\n"; 1358 OS << " return false;\n"; 1359 } 1360 1361 void writeTemplateInstantiation(raw_ostream &OS) const override { 1362 OS << " " << getType() << " tempInst" << getUpperName() << " =\n"; 1363 OS << " S.SubstType(A->get" << getUpperName() << "Loc(), " 1364 << "TemplateArgs, A->getLoc(), A->getAttrName());\n"; 1365 OS << " if (!tempInst" << getUpperName() << ")\n"; 1366 OS << " return nullptr;\n"; 1367 } 1368 1369 void writeTemplateInstantiationArgs(raw_ostream &OS) const override { 1370 OS << "tempInst" << getUpperName(); 1371 } 1372 1373 void writePCHWrite(raw_ostream &OS) const override { 1374 OS << " " 1375 << WritePCHRecord(getType(), 1376 "SA->get" + std::string(getUpperName()) + "Loc()"); 1377 } 1378 }; 1379 1380 } // end anonymous namespace 1381 1382 static std::unique_ptr<Argument> 1383 createArgument(const Record &Arg, StringRef Attr, 1384 const Record *Search = nullptr) { 1385 if (!Search) 1386 Search = &Arg; 1387 1388 std::unique_ptr<Argument> Ptr; 1389 llvm::StringRef ArgName = Search->getName(); 1390 1391 if (ArgName == "AlignedArgument") 1392 Ptr = std::make_unique<AlignedArgument>(Arg, Attr); 1393 else if (ArgName == "EnumArgument") 1394 Ptr = std::make_unique<EnumArgument>(Arg, Attr); 1395 else if (ArgName == "ExprArgument") 1396 Ptr = std::make_unique<ExprArgument>(Arg, Attr); 1397 else if (ArgName == "DeclArgument") 1398 Ptr = std::make_unique<SimpleArgument>( 1399 Arg, Attr, (Arg.getValueAsDef("Kind")->getName() + "Decl *").str()); 1400 else if (ArgName == "IdentifierArgument") 1401 Ptr = std::make_unique<SimpleArgument>(Arg, Attr, "IdentifierInfo *"); 1402 else if (ArgName == "DefaultBoolArgument") 1403 Ptr = std::make_unique<DefaultSimpleArgument>( 1404 Arg, Attr, "bool", Arg.getValueAsBit("Default")); 1405 else if (ArgName == "BoolArgument") 1406 Ptr = std::make_unique<SimpleArgument>(Arg, Attr, "bool"); 1407 else if (ArgName == "DefaultIntArgument") 1408 Ptr = std::make_unique<DefaultSimpleArgument>( 1409 Arg, Attr, "int", Arg.getValueAsInt("Default")); 1410 else if (ArgName == "IntArgument") 1411 Ptr = std::make_unique<SimpleArgument>(Arg, Attr, "int"); 1412 else if (ArgName == "StringArgument") 1413 Ptr = std::make_unique<StringArgument>(Arg, Attr); 1414 else if (ArgName == "TypeArgument") 1415 Ptr = std::make_unique<TypeArgument>(Arg, Attr); 1416 else if (ArgName == "UnsignedArgument") 1417 Ptr = std::make_unique<SimpleArgument>(Arg, Attr, "unsigned"); 1418 else if (ArgName == "VariadicUnsignedArgument") 1419 Ptr = std::make_unique<VariadicArgument>(Arg, Attr, "unsigned"); 1420 else if (ArgName == "VariadicStringArgument") 1421 Ptr = std::make_unique<VariadicStringArgument>(Arg, Attr); 1422 else if (ArgName == "VariadicEnumArgument") 1423 Ptr = std::make_unique<VariadicEnumArgument>(Arg, Attr); 1424 else if (ArgName == "VariadicExprArgument") 1425 Ptr = std::make_unique<VariadicExprArgument>(Arg, Attr); 1426 else if (ArgName == "VariadicParamIdxArgument") 1427 Ptr = std::make_unique<VariadicParamIdxArgument>(Arg, Attr); 1428 else if (ArgName == "VariadicParamOrParamIdxArgument") 1429 Ptr = std::make_unique<VariadicParamOrParamIdxArgument>(Arg, Attr); 1430 else if (ArgName == "ParamIdxArgument") 1431 Ptr = std::make_unique<SimpleArgument>(Arg, Attr, "ParamIdx"); 1432 else if (ArgName == "VariadicIdentifierArgument") 1433 Ptr = std::make_unique<VariadicIdentifierArgument>(Arg, Attr); 1434 else if (ArgName == "VersionArgument") 1435 Ptr = std::make_unique<VersionArgument>(Arg, Attr); 1436 else if (ArgName == "OMPTraitInfoArgument") 1437 Ptr = std::make_unique<SimpleArgument>(Arg, Attr, "OMPTraitInfo *"); 1438 else if (ArgName == "VariadicOMPInteropInfoArgument") 1439 Ptr = std::make_unique<VariadicOMPInteropInfoArgument>(Arg, Attr); 1440 1441 if (!Ptr) { 1442 // Search in reverse order so that the most-derived type is handled first. 1443 ArrayRef<std::pair<Record*, SMRange>> Bases = Search->getSuperClasses(); 1444 for (const auto &Base : llvm::reverse(Bases)) { 1445 if ((Ptr = createArgument(Arg, Attr, Base.first))) 1446 break; 1447 } 1448 } 1449 1450 if (Ptr && Arg.getValueAsBit("Optional")) 1451 Ptr->setOptional(true); 1452 1453 if (Ptr && Arg.getValueAsBit("Fake")) 1454 Ptr->setFake(true); 1455 1456 return Ptr; 1457 } 1458 1459 static void writeAvailabilityValue(raw_ostream &OS) { 1460 OS << "\" << getPlatform()->getName();\n" 1461 << " if (getStrict()) OS << \", strict\";\n" 1462 << " if (!getIntroduced().empty()) OS << \", introduced=\" << getIntroduced();\n" 1463 << " if (!getDeprecated().empty()) OS << \", deprecated=\" << getDeprecated();\n" 1464 << " if (!getObsoleted().empty()) OS << \", obsoleted=\" << getObsoleted();\n" 1465 << " if (getUnavailable()) OS << \", unavailable\";\n" 1466 << " OS << \""; 1467 } 1468 1469 static void writeDeprecatedAttrValue(raw_ostream &OS, std::string &Variety) { 1470 OS << "\\\"\" << getMessage() << \"\\\"\";\n"; 1471 // Only GNU deprecated has an optional fixit argument at the second position. 1472 if (Variety == "GNU") 1473 OS << " if (!getReplacement().empty()) OS << \", \\\"\"" 1474 " << getReplacement() << \"\\\"\";\n"; 1475 OS << " OS << \""; 1476 } 1477 1478 static void writeGetSpellingFunction(const Record &R, raw_ostream &OS) { 1479 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R); 1480 1481 OS << "const char *" << R.getName() << "Attr::getSpelling() const {\n"; 1482 if (Spellings.empty()) { 1483 OS << " return \"(No spelling)\";\n}\n\n"; 1484 return; 1485 } 1486 1487 OS << " switch (getAttributeSpellingListIndex()) {\n" 1488 " default:\n" 1489 " llvm_unreachable(\"Unknown attribute spelling!\");\n" 1490 " return \"(No spelling)\";\n"; 1491 1492 for (unsigned I = 0; I < Spellings.size(); ++I) 1493 OS << " case " << I << ":\n" 1494 " return \"" << Spellings[I].name() << "\";\n"; 1495 // End of the switch statement. 1496 OS << " }\n"; 1497 // End of the getSpelling function. 1498 OS << "}\n\n"; 1499 } 1500 1501 static void 1502 writePrettyPrintFunction(const Record &R, 1503 const std::vector<std::unique_ptr<Argument>> &Args, 1504 raw_ostream &OS) { 1505 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R); 1506 1507 OS << "void " << R.getName() << "Attr::printPretty(" 1508 << "raw_ostream &OS, const PrintingPolicy &Policy) const {\n"; 1509 1510 if (Spellings.empty()) { 1511 OS << "}\n\n"; 1512 return; 1513 } 1514 1515 OS << " bool IsFirstArgument = true; (void)IsFirstArgument;\n" 1516 << " unsigned TrailingOmittedArgs = 0; (void)TrailingOmittedArgs;\n" 1517 << " switch (getAttributeSpellingListIndex()) {\n" 1518 << " default:\n" 1519 << " llvm_unreachable(\"Unknown attribute spelling!\");\n" 1520 << " break;\n"; 1521 1522 for (unsigned I = 0; I < Spellings.size(); ++ I) { 1523 llvm::SmallString<16> Prefix; 1524 llvm::SmallString<8> Suffix; 1525 // The actual spelling of the name and namespace (if applicable) 1526 // of an attribute without considering prefix and suffix. 1527 llvm::SmallString<64> Spelling; 1528 std::string Name = Spellings[I].name(); 1529 std::string Variety = Spellings[I].variety(); 1530 1531 if (Variety == "GNU") { 1532 Prefix = " __attribute__(("; 1533 Suffix = "))"; 1534 } else if (Variety == "CXX11" || Variety == "C2x") { 1535 Prefix = " [["; 1536 Suffix = "]]"; 1537 std::string Namespace = Spellings[I].nameSpace(); 1538 if (!Namespace.empty()) { 1539 Spelling += Namespace; 1540 Spelling += "::"; 1541 } 1542 } else if (Variety == "Declspec") { 1543 Prefix = " __declspec("; 1544 Suffix = ")"; 1545 } else if (Variety == "Microsoft") { 1546 Prefix = "["; 1547 Suffix = "]"; 1548 } else if (Variety == "Keyword") { 1549 Prefix = " "; 1550 Suffix = ""; 1551 } else if (Variety == "Pragma") { 1552 Prefix = "#pragma "; 1553 Suffix = "\n"; 1554 std::string Namespace = Spellings[I].nameSpace(); 1555 if (!Namespace.empty()) { 1556 Spelling += Namespace; 1557 Spelling += " "; 1558 } 1559 } else if (Variety == "HLSLSemantic") { 1560 Prefix = ":"; 1561 Suffix = ""; 1562 } else { 1563 llvm_unreachable("Unknown attribute syntax variety!"); 1564 } 1565 1566 Spelling += Name; 1567 1568 OS << " case " << I << " : {\n" 1569 << " OS << \"" << Prefix << Spelling << "\";\n"; 1570 1571 if (Variety == "Pragma") { 1572 OS << " printPrettyPragma(OS, Policy);\n"; 1573 OS << " OS << \"\\n\";"; 1574 OS << " break;\n"; 1575 OS << " }\n"; 1576 continue; 1577 } 1578 1579 if (Spelling == "availability") { 1580 OS << " OS << \"("; 1581 writeAvailabilityValue(OS); 1582 OS << ")\";\n"; 1583 } else if (Spelling == "deprecated" || Spelling == "gnu::deprecated") { 1584 OS << " OS << \"("; 1585 writeDeprecatedAttrValue(OS, Variety); 1586 OS << ")\";\n"; 1587 } else { 1588 // To avoid printing parentheses around an empty argument list or 1589 // printing spurious commas at the end of an argument list, we need to 1590 // determine where the last provided non-fake argument is. 1591 bool FoundNonOptArg = false; 1592 for (const auto &arg : llvm::reverse(Args)) { 1593 if (arg->isFake()) 1594 continue; 1595 if (FoundNonOptArg) 1596 continue; 1597 // FIXME: arg->getIsOmitted() == "false" means we haven't implemented 1598 // any way to detect whether the argument was omitted. 1599 if (!arg->isOptional() || arg->getIsOmitted() == "false") { 1600 FoundNonOptArg = true; 1601 continue; 1602 } 1603 OS << " if (" << arg->getIsOmitted() << ")\n" 1604 << " ++TrailingOmittedArgs;\n"; 1605 } 1606 unsigned ArgIndex = 0; 1607 for (const auto &arg : Args) { 1608 if (arg->isFake()) 1609 continue; 1610 std::string IsOmitted = arg->getIsOmitted(); 1611 if (arg->isOptional() && IsOmitted != "false") 1612 OS << " if (!(" << IsOmitted << ")) {\n"; 1613 // Variadic arguments print their own leading comma. 1614 if (!arg->isVariadic()) 1615 OS << " DelimitAttributeArgument(OS, IsFirstArgument);\n"; 1616 OS << " OS << \""; 1617 arg->writeValue(OS); 1618 OS << "\";\n"; 1619 if (arg->isOptional() && IsOmitted != "false") 1620 OS << " }\n"; 1621 ++ArgIndex; 1622 } 1623 if (ArgIndex != 0) 1624 OS << " if (!IsFirstArgument)\n" 1625 << " OS << \")\";\n"; 1626 } 1627 OS << " OS << \"" << Suffix << "\";\n" 1628 << " break;\n" 1629 << " }\n"; 1630 } 1631 1632 // End of the switch statement. 1633 OS << "}\n"; 1634 // End of the print function. 1635 OS << "}\n\n"; 1636 } 1637 1638 /// Return the index of a spelling in a spelling list. 1639 static unsigned 1640 getSpellingListIndex(const std::vector<FlattenedSpelling> &SpellingList, 1641 const FlattenedSpelling &Spelling) { 1642 assert(!SpellingList.empty() && "Spelling list is empty!"); 1643 1644 for (unsigned Index = 0; Index < SpellingList.size(); ++Index) { 1645 const FlattenedSpelling &S = SpellingList[Index]; 1646 if (S.variety() != Spelling.variety()) 1647 continue; 1648 if (S.nameSpace() != Spelling.nameSpace()) 1649 continue; 1650 if (S.name() != Spelling.name()) 1651 continue; 1652 1653 return Index; 1654 } 1655 1656 llvm_unreachable("Unknown spelling!"); 1657 } 1658 1659 static void writeAttrAccessorDefinition(const Record &R, raw_ostream &OS) { 1660 std::vector<Record*> Accessors = R.getValueAsListOfDefs("Accessors"); 1661 if (Accessors.empty()) 1662 return; 1663 1664 const std::vector<FlattenedSpelling> SpellingList = GetFlattenedSpellings(R); 1665 assert(!SpellingList.empty() && 1666 "Attribute with empty spelling list can't have accessors!"); 1667 for (const auto *Accessor : Accessors) { 1668 const StringRef Name = Accessor->getValueAsString("Name"); 1669 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*Accessor); 1670 1671 OS << " bool " << Name 1672 << "() const { return getAttributeSpellingListIndex() == "; 1673 for (unsigned Index = 0; Index < Spellings.size(); ++Index) { 1674 OS << getSpellingListIndex(SpellingList, Spellings[Index]); 1675 if (Index != Spellings.size() - 1) 1676 OS << " ||\n getAttributeSpellingListIndex() == "; 1677 else 1678 OS << "; }\n"; 1679 } 1680 } 1681 } 1682 1683 static bool 1684 SpellingNamesAreCommon(const std::vector<FlattenedSpelling>& Spellings) { 1685 assert(!Spellings.empty() && "An empty list of spellings was provided"); 1686 std::string FirstName = 1687 std::string(NormalizeNameForSpellingComparison(Spellings.front().name())); 1688 for (const auto &Spelling : 1689 llvm::make_range(std::next(Spellings.begin()), Spellings.end())) { 1690 std::string Name = 1691 std::string(NormalizeNameForSpellingComparison(Spelling.name())); 1692 if (Name != FirstName) 1693 return false; 1694 } 1695 return true; 1696 } 1697 1698 typedef std::map<unsigned, std::string> SemanticSpellingMap; 1699 static std::string 1700 CreateSemanticSpellings(const std::vector<FlattenedSpelling> &Spellings, 1701 SemanticSpellingMap &Map) { 1702 // The enumerants are automatically generated based on the variety, 1703 // namespace (if present) and name for each attribute spelling. However, 1704 // care is taken to avoid trampling on the reserved namespace due to 1705 // underscores. 1706 std::string Ret(" enum Spelling {\n"); 1707 std::set<std::string> Uniques; 1708 unsigned Idx = 0; 1709 1710 // If we have a need to have this many spellings we likely need to add an 1711 // extra bit to the SpellingIndex in AttributeCommonInfo, then increase the 1712 // value of SpellingNotCalculated there and here. 1713 assert(Spellings.size() < 15 && 1714 "Too many spellings, would step on SpellingNotCalculated in " 1715 "AttributeCommonInfo"); 1716 for (auto I = Spellings.begin(), E = Spellings.end(); I != E; ++I, ++Idx) { 1717 const FlattenedSpelling &S = *I; 1718 const std::string &Variety = S.variety(); 1719 const std::string &Spelling = S.name(); 1720 const std::string &Namespace = S.nameSpace(); 1721 std::string EnumName; 1722 1723 EnumName += (Variety + "_"); 1724 if (!Namespace.empty()) 1725 EnumName += (NormalizeNameForSpellingComparison(Namespace).str() + 1726 "_"); 1727 EnumName += NormalizeNameForSpellingComparison(Spelling); 1728 1729 // Even if the name is not unique, this spelling index corresponds to a 1730 // particular enumerant name that we've calculated. 1731 Map[Idx] = EnumName; 1732 1733 // Since we have been stripping underscores to avoid trampling on the 1734 // reserved namespace, we may have inadvertently created duplicate 1735 // enumerant names. These duplicates are not considered part of the 1736 // semantic spelling, and can be elided. 1737 if (Uniques.find(EnumName) != Uniques.end()) 1738 continue; 1739 1740 Uniques.insert(EnumName); 1741 if (I != Spellings.begin()) 1742 Ret += ",\n"; 1743 // Duplicate spellings are not considered part of the semantic spelling 1744 // enumeration, but the spelling index and semantic spelling values are 1745 // meant to be equivalent, so we must specify a concrete value for each 1746 // enumerator. 1747 Ret += " " + EnumName + " = " + llvm::utostr(Idx); 1748 } 1749 Ret += ",\n SpellingNotCalculated = 15\n"; 1750 Ret += "\n };\n\n"; 1751 return Ret; 1752 } 1753 1754 void WriteSemanticSpellingSwitch(const std::string &VarName, 1755 const SemanticSpellingMap &Map, 1756 raw_ostream &OS) { 1757 OS << " switch (" << VarName << ") {\n default: " 1758 << "llvm_unreachable(\"Unknown spelling list index\");\n"; 1759 for (const auto &I : Map) 1760 OS << " case " << I.first << ": return " << I.second << ";\n"; 1761 OS << " }\n"; 1762 } 1763 1764 // Emits the LateParsed property for attributes. 1765 static void emitClangAttrLateParsedList(RecordKeeper &Records, raw_ostream &OS) { 1766 OS << "#if defined(CLANG_ATTR_LATE_PARSED_LIST)\n"; 1767 std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"); 1768 1769 for (const auto *Attr : Attrs) { 1770 bool LateParsed = Attr->getValueAsBit("LateParsed"); 1771 1772 if (LateParsed) { 1773 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*Attr); 1774 1775 // FIXME: Handle non-GNU attributes 1776 for (const auto &I : Spellings) { 1777 if (I.variety() != "GNU") 1778 continue; 1779 OS << ".Case(\"" << I.name() << "\", " << LateParsed << ")\n"; 1780 } 1781 } 1782 } 1783 OS << "#endif // CLANG_ATTR_LATE_PARSED_LIST\n\n"; 1784 } 1785 1786 static bool hasGNUorCXX11Spelling(const Record &Attribute) { 1787 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attribute); 1788 for (const auto &I : Spellings) { 1789 if (I.variety() == "GNU" || I.variety() == "CXX11") 1790 return true; 1791 } 1792 return false; 1793 } 1794 1795 namespace { 1796 1797 struct AttributeSubjectMatchRule { 1798 const Record *MetaSubject; 1799 const Record *Constraint; 1800 1801 AttributeSubjectMatchRule(const Record *MetaSubject, const Record *Constraint) 1802 : MetaSubject(MetaSubject), Constraint(Constraint) { 1803 assert(MetaSubject && "Missing subject"); 1804 } 1805 1806 bool isSubRule() const { return Constraint != nullptr; } 1807 1808 std::vector<Record *> getSubjects() const { 1809 return (Constraint ? Constraint : MetaSubject) 1810 ->getValueAsListOfDefs("Subjects"); 1811 } 1812 1813 std::vector<Record *> getLangOpts() const { 1814 if (Constraint) { 1815 // Lookup the options in the sub-rule first, in case the sub-rule 1816 // overrides the rules options. 1817 std::vector<Record *> Opts = Constraint->getValueAsListOfDefs("LangOpts"); 1818 if (!Opts.empty()) 1819 return Opts; 1820 } 1821 return MetaSubject->getValueAsListOfDefs("LangOpts"); 1822 } 1823 1824 // Abstract rules are used only for sub-rules 1825 bool isAbstractRule() const { return getSubjects().empty(); } 1826 1827 StringRef getName() const { 1828 return (Constraint ? Constraint : MetaSubject)->getValueAsString("Name"); 1829 } 1830 1831 bool isNegatedSubRule() const { 1832 assert(isSubRule() && "Not a sub-rule"); 1833 return Constraint->getValueAsBit("Negated"); 1834 } 1835 1836 std::string getSpelling() const { 1837 std::string Result = std::string(MetaSubject->getValueAsString("Name")); 1838 if (isSubRule()) { 1839 Result += '('; 1840 if (isNegatedSubRule()) 1841 Result += "unless("; 1842 Result += getName(); 1843 if (isNegatedSubRule()) 1844 Result += ')'; 1845 Result += ')'; 1846 } 1847 return Result; 1848 } 1849 1850 std::string getEnumValueName() const { 1851 SmallString<128> Result; 1852 Result += "SubjectMatchRule_"; 1853 Result += MetaSubject->getValueAsString("Name"); 1854 if (isSubRule()) { 1855 Result += "_"; 1856 if (isNegatedSubRule()) 1857 Result += "not_"; 1858 Result += Constraint->getValueAsString("Name"); 1859 } 1860 if (isAbstractRule()) 1861 Result += "_abstract"; 1862 return std::string(Result.str()); 1863 } 1864 1865 std::string getEnumValue() const { return "attr::" + getEnumValueName(); } 1866 1867 static const char *EnumName; 1868 }; 1869 1870 const char *AttributeSubjectMatchRule::EnumName = "attr::SubjectMatchRule"; 1871 1872 struct PragmaClangAttributeSupport { 1873 std::vector<AttributeSubjectMatchRule> Rules; 1874 1875 class RuleOrAggregateRuleSet { 1876 std::vector<AttributeSubjectMatchRule> Rules; 1877 bool IsRule; 1878 RuleOrAggregateRuleSet(ArrayRef<AttributeSubjectMatchRule> Rules, 1879 bool IsRule) 1880 : Rules(Rules), IsRule(IsRule) {} 1881 1882 public: 1883 bool isRule() const { return IsRule; } 1884 1885 const AttributeSubjectMatchRule &getRule() const { 1886 assert(IsRule && "not a rule!"); 1887 return Rules[0]; 1888 } 1889 1890 ArrayRef<AttributeSubjectMatchRule> getAggregateRuleSet() const { 1891 return Rules; 1892 } 1893 1894 static RuleOrAggregateRuleSet 1895 getRule(const AttributeSubjectMatchRule &Rule) { 1896 return RuleOrAggregateRuleSet(Rule, /*IsRule=*/true); 1897 } 1898 static RuleOrAggregateRuleSet 1899 getAggregateRuleSet(ArrayRef<AttributeSubjectMatchRule> Rules) { 1900 return RuleOrAggregateRuleSet(Rules, /*IsRule=*/false); 1901 } 1902 }; 1903 llvm::DenseMap<const Record *, RuleOrAggregateRuleSet> SubjectsToRules; 1904 1905 PragmaClangAttributeSupport(RecordKeeper &Records); 1906 1907 bool isAttributedSupported(const Record &Attribute); 1908 1909 void emitMatchRuleList(raw_ostream &OS); 1910 1911 void generateStrictConformsTo(const Record &Attr, raw_ostream &OS); 1912 1913 void generateParsingHelpers(raw_ostream &OS); 1914 }; 1915 1916 } // end anonymous namespace 1917 1918 static bool isSupportedPragmaClangAttributeSubject(const Record &Subject) { 1919 // FIXME: #pragma clang attribute does not currently support statement 1920 // attributes, so test whether the subject is one that appertains to a 1921 // declaration node. However, it may be reasonable for support for statement 1922 // attributes to be added. 1923 if (Subject.isSubClassOf("DeclNode") || Subject.isSubClassOf("DeclBase") || 1924 Subject.getName() == "DeclBase") 1925 return true; 1926 1927 if (Subject.isSubClassOf("SubsetSubject")) 1928 return isSupportedPragmaClangAttributeSubject( 1929 *Subject.getValueAsDef("Base")); 1930 1931 return false; 1932 } 1933 1934 static bool doesDeclDeriveFrom(const Record *D, const Record *Base) { 1935 const Record *CurrentBase = D->getValueAsOptionalDef(BaseFieldName); 1936 if (!CurrentBase) 1937 return false; 1938 if (CurrentBase == Base) 1939 return true; 1940 return doesDeclDeriveFrom(CurrentBase, Base); 1941 } 1942 1943 PragmaClangAttributeSupport::PragmaClangAttributeSupport( 1944 RecordKeeper &Records) { 1945 std::vector<Record *> MetaSubjects = 1946 Records.getAllDerivedDefinitions("AttrSubjectMatcherRule"); 1947 auto MapFromSubjectsToRules = [this](const Record *SubjectContainer, 1948 const Record *MetaSubject, 1949 const Record *Constraint) { 1950 Rules.emplace_back(MetaSubject, Constraint); 1951 std::vector<Record *> ApplicableSubjects = 1952 SubjectContainer->getValueAsListOfDefs("Subjects"); 1953 for (const auto *Subject : ApplicableSubjects) { 1954 bool Inserted = 1955 SubjectsToRules 1956 .try_emplace(Subject, RuleOrAggregateRuleSet::getRule( 1957 AttributeSubjectMatchRule(MetaSubject, 1958 Constraint))) 1959 .second; 1960 if (!Inserted) { 1961 PrintFatalError("Attribute subject match rules should not represent" 1962 "same attribute subjects."); 1963 } 1964 } 1965 }; 1966 for (const auto *MetaSubject : MetaSubjects) { 1967 MapFromSubjectsToRules(MetaSubject, MetaSubject, /*Constraints=*/nullptr); 1968 std::vector<Record *> Constraints = 1969 MetaSubject->getValueAsListOfDefs("Constraints"); 1970 for (const auto *Constraint : Constraints) 1971 MapFromSubjectsToRules(Constraint, MetaSubject, Constraint); 1972 } 1973 1974 std::vector<Record *> Aggregates = 1975 Records.getAllDerivedDefinitions("AttrSubjectMatcherAggregateRule"); 1976 std::vector<Record *> DeclNodes = 1977 Records.getAllDerivedDefinitions(DeclNodeClassName); 1978 for (const auto *Aggregate : Aggregates) { 1979 Record *SubjectDecl = Aggregate->getValueAsDef("Subject"); 1980 1981 // Gather sub-classes of the aggregate subject that act as attribute 1982 // subject rules. 1983 std::vector<AttributeSubjectMatchRule> Rules; 1984 for (const auto *D : DeclNodes) { 1985 if (doesDeclDeriveFrom(D, SubjectDecl)) { 1986 auto It = SubjectsToRules.find(D); 1987 if (It == SubjectsToRules.end()) 1988 continue; 1989 if (!It->second.isRule() || It->second.getRule().isSubRule()) 1990 continue; // Assume that the rule will be included as well. 1991 Rules.push_back(It->second.getRule()); 1992 } 1993 } 1994 1995 bool Inserted = 1996 SubjectsToRules 1997 .try_emplace(SubjectDecl, 1998 RuleOrAggregateRuleSet::getAggregateRuleSet(Rules)) 1999 .second; 2000 if (!Inserted) { 2001 PrintFatalError("Attribute subject match rules should not represent" 2002 "same attribute subjects."); 2003 } 2004 } 2005 } 2006 2007 static PragmaClangAttributeSupport & 2008 getPragmaAttributeSupport(RecordKeeper &Records) { 2009 static PragmaClangAttributeSupport Instance(Records); 2010 return Instance; 2011 } 2012 2013 void PragmaClangAttributeSupport::emitMatchRuleList(raw_ostream &OS) { 2014 OS << "#ifndef ATTR_MATCH_SUB_RULE\n"; 2015 OS << "#define ATTR_MATCH_SUB_RULE(Value, Spelling, IsAbstract, Parent, " 2016 "IsNegated) " 2017 << "ATTR_MATCH_RULE(Value, Spelling, IsAbstract)\n"; 2018 OS << "#endif\n"; 2019 for (const auto &Rule : Rules) { 2020 OS << (Rule.isSubRule() ? "ATTR_MATCH_SUB_RULE" : "ATTR_MATCH_RULE") << '('; 2021 OS << Rule.getEnumValueName() << ", \"" << Rule.getSpelling() << "\", " 2022 << Rule.isAbstractRule(); 2023 if (Rule.isSubRule()) 2024 OS << ", " 2025 << AttributeSubjectMatchRule(Rule.MetaSubject, nullptr).getEnumValue() 2026 << ", " << Rule.isNegatedSubRule(); 2027 OS << ")\n"; 2028 } 2029 OS << "#undef ATTR_MATCH_SUB_RULE\n"; 2030 } 2031 2032 bool PragmaClangAttributeSupport::isAttributedSupported( 2033 const Record &Attribute) { 2034 // If the attribute explicitly specified whether to support #pragma clang 2035 // attribute, use that setting. 2036 bool Unset; 2037 bool SpecifiedResult = 2038 Attribute.getValueAsBitOrUnset("PragmaAttributeSupport", Unset); 2039 if (!Unset) 2040 return SpecifiedResult; 2041 2042 // Opt-out rules: 2043 // An attribute requires delayed parsing (LateParsed is on) 2044 if (Attribute.getValueAsBit("LateParsed")) 2045 return false; 2046 // An attribute has no GNU/CXX11 spelling 2047 if (!hasGNUorCXX11Spelling(Attribute)) 2048 return false; 2049 // An attribute subject list has a subject that isn't covered by one of the 2050 // subject match rules or has no subjects at all. 2051 if (Attribute.isValueUnset("Subjects")) 2052 return false; 2053 const Record *SubjectObj = Attribute.getValueAsDef("Subjects"); 2054 std::vector<Record *> Subjects = SubjectObj->getValueAsListOfDefs("Subjects"); 2055 bool HasAtLeastOneValidSubject = false; 2056 for (const auto *Subject : Subjects) { 2057 if (!isSupportedPragmaClangAttributeSubject(*Subject)) 2058 continue; 2059 if (!SubjectsToRules.contains(Subject)) 2060 return false; 2061 HasAtLeastOneValidSubject = true; 2062 } 2063 return HasAtLeastOneValidSubject; 2064 } 2065 2066 static std::string GenerateTestExpression(ArrayRef<Record *> LangOpts) { 2067 std::string Test; 2068 2069 for (auto *E : LangOpts) { 2070 if (!Test.empty()) 2071 Test += " || "; 2072 2073 const StringRef Code = E->getValueAsString("CustomCode"); 2074 if (!Code.empty()) { 2075 Test += "("; 2076 Test += Code; 2077 Test += ")"; 2078 if (!E->getValueAsString("Name").empty()) { 2079 PrintWarning( 2080 E->getLoc(), 2081 "non-empty 'Name' field ignored because 'CustomCode' was supplied"); 2082 } 2083 } else { 2084 Test += "LangOpts."; 2085 Test += E->getValueAsString("Name"); 2086 } 2087 } 2088 2089 if (Test.empty()) 2090 return "true"; 2091 2092 return Test; 2093 } 2094 2095 void 2096 PragmaClangAttributeSupport::generateStrictConformsTo(const Record &Attr, 2097 raw_ostream &OS) { 2098 if (!isAttributedSupported(Attr) || Attr.isValueUnset("Subjects")) 2099 return; 2100 // Generate a function that constructs a set of matching rules that describe 2101 // to which declarations the attribute should apply to. 2102 OS << "void getPragmaAttributeMatchRules(" 2103 << "llvm::SmallVectorImpl<std::pair<" 2104 << AttributeSubjectMatchRule::EnumName 2105 << ", bool>> &MatchRules, const LangOptions &LangOpts) const override {\n"; 2106 const Record *SubjectObj = Attr.getValueAsDef("Subjects"); 2107 std::vector<Record *> Subjects = SubjectObj->getValueAsListOfDefs("Subjects"); 2108 for (const auto *Subject : Subjects) { 2109 if (!isSupportedPragmaClangAttributeSubject(*Subject)) 2110 continue; 2111 auto It = SubjectsToRules.find(Subject); 2112 assert(It != SubjectsToRules.end() && 2113 "This attribute is unsupported by #pragma clang attribute"); 2114 for (const auto &Rule : It->getSecond().getAggregateRuleSet()) { 2115 // The rule might be language specific, so only subtract it from the given 2116 // rules if the specific language options are specified. 2117 std::vector<Record *> LangOpts = Rule.getLangOpts(); 2118 OS << " MatchRules.push_back(std::make_pair(" << Rule.getEnumValue() 2119 << ", /*IsSupported=*/" << GenerateTestExpression(LangOpts) 2120 << "));\n"; 2121 } 2122 } 2123 OS << "}\n\n"; 2124 } 2125 2126 void PragmaClangAttributeSupport::generateParsingHelpers(raw_ostream &OS) { 2127 // Generate routines that check the names of sub-rules. 2128 OS << "std::optional<attr::SubjectMatchRule> " 2129 "defaultIsAttributeSubjectMatchSubRuleFor(StringRef, bool) {\n"; 2130 OS << " return std::nullopt;\n"; 2131 OS << "}\n\n"; 2132 2133 llvm::MapVector<const Record *, std::vector<AttributeSubjectMatchRule>> 2134 SubMatchRules; 2135 for (const auto &Rule : Rules) { 2136 if (!Rule.isSubRule()) 2137 continue; 2138 SubMatchRules[Rule.MetaSubject].push_back(Rule); 2139 } 2140 2141 for (const auto &SubMatchRule : SubMatchRules) { 2142 OS << "std::optional<attr::SubjectMatchRule> " 2143 "isAttributeSubjectMatchSubRuleFor_" 2144 << SubMatchRule.first->getValueAsString("Name") 2145 << "(StringRef Name, bool IsUnless) {\n"; 2146 OS << " if (IsUnless)\n"; 2147 OS << " return " 2148 "llvm::StringSwitch<std::optional<attr::SubjectMatchRule>>(Name).\n"; 2149 for (const auto &Rule : SubMatchRule.second) { 2150 if (Rule.isNegatedSubRule()) 2151 OS << " Case(\"" << Rule.getName() << "\", " << Rule.getEnumValue() 2152 << ").\n"; 2153 } 2154 OS << " Default(std::nullopt);\n"; 2155 OS << " return " 2156 "llvm::StringSwitch<std::optional<attr::SubjectMatchRule>>(Name).\n"; 2157 for (const auto &Rule : SubMatchRule.second) { 2158 if (!Rule.isNegatedSubRule()) 2159 OS << " Case(\"" << Rule.getName() << "\", " << Rule.getEnumValue() 2160 << ").\n"; 2161 } 2162 OS << " Default(std::nullopt);\n"; 2163 OS << "}\n\n"; 2164 } 2165 2166 // Generate the function that checks for the top-level rules. 2167 OS << "std::pair<std::optional<attr::SubjectMatchRule>, " 2168 "std::optional<attr::SubjectMatchRule> (*)(StringRef, " 2169 "bool)> isAttributeSubjectMatchRule(StringRef Name) {\n"; 2170 OS << " return " 2171 "llvm::StringSwitch<std::pair<std::optional<attr::SubjectMatchRule>, " 2172 "std::optional<attr::SubjectMatchRule> (*) (StringRef, " 2173 "bool)>>(Name).\n"; 2174 for (const auto &Rule : Rules) { 2175 if (Rule.isSubRule()) 2176 continue; 2177 std::string SubRuleFunction; 2178 if (SubMatchRules.count(Rule.MetaSubject)) 2179 SubRuleFunction = 2180 ("isAttributeSubjectMatchSubRuleFor_" + Rule.getName()).str(); 2181 else 2182 SubRuleFunction = "defaultIsAttributeSubjectMatchSubRuleFor"; 2183 OS << " Case(\"" << Rule.getName() << "\", std::make_pair(" 2184 << Rule.getEnumValue() << ", " << SubRuleFunction << ")).\n"; 2185 } 2186 OS << " Default(std::make_pair(std::nullopt, " 2187 "defaultIsAttributeSubjectMatchSubRuleFor));\n"; 2188 OS << "}\n\n"; 2189 2190 // Generate the function that checks for the submatch rules. 2191 OS << "const char *validAttributeSubjectMatchSubRules(" 2192 << AttributeSubjectMatchRule::EnumName << " Rule) {\n"; 2193 OS << " switch (Rule) {\n"; 2194 for (const auto &SubMatchRule : SubMatchRules) { 2195 OS << " case " 2196 << AttributeSubjectMatchRule(SubMatchRule.first, nullptr).getEnumValue() 2197 << ":\n"; 2198 OS << " return \"'"; 2199 bool IsFirst = true; 2200 for (const auto &Rule : SubMatchRule.second) { 2201 if (!IsFirst) 2202 OS << ", '"; 2203 IsFirst = false; 2204 if (Rule.isNegatedSubRule()) 2205 OS << "unless("; 2206 OS << Rule.getName(); 2207 if (Rule.isNegatedSubRule()) 2208 OS << ')'; 2209 OS << "'"; 2210 } 2211 OS << "\";\n"; 2212 } 2213 OS << " default: return nullptr;\n"; 2214 OS << " }\n"; 2215 OS << "}\n\n"; 2216 } 2217 2218 template <typename Fn> 2219 static void forEachUniqueSpelling(const Record &Attr, Fn &&F) { 2220 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attr); 2221 SmallDenseSet<StringRef, 8> Seen; 2222 for (const FlattenedSpelling &S : Spellings) { 2223 if (Seen.insert(S.name()).second) 2224 F(S); 2225 } 2226 } 2227 2228 static bool isTypeArgument(const Record *Arg) { 2229 return !Arg->getSuperClasses().empty() && 2230 Arg->getSuperClasses().back().first->getName() == "TypeArgument"; 2231 } 2232 2233 /// Emits the first-argument-is-type property for attributes. 2234 static void emitClangAttrTypeArgList(RecordKeeper &Records, raw_ostream &OS) { 2235 OS << "#if defined(CLANG_ATTR_TYPE_ARG_LIST)\n"; 2236 std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr"); 2237 2238 for (const auto *Attr : Attrs) { 2239 // Determine whether the first argument is a type. 2240 std::vector<Record *> Args = Attr->getValueAsListOfDefs("Args"); 2241 if (Args.empty()) 2242 continue; 2243 2244 if (!isTypeArgument(Args[0])) 2245 continue; 2246 2247 // All these spellings take a single type argument. 2248 forEachUniqueSpelling(*Attr, [&](const FlattenedSpelling &S) { 2249 OS << ".Case(\"" << S.name() << "\", " << "true" << ")\n"; 2250 }); 2251 } 2252 OS << "#endif // CLANG_ATTR_TYPE_ARG_LIST\n\n"; 2253 } 2254 2255 /// Emits the parse-arguments-in-unevaluated-context property for 2256 /// attributes. 2257 static void emitClangAttrArgContextList(RecordKeeper &Records, raw_ostream &OS) { 2258 OS << "#if defined(CLANG_ATTR_ARG_CONTEXT_LIST)\n"; 2259 ParsedAttrMap Attrs = getParsedAttrList(Records); 2260 for (const auto &I : Attrs) { 2261 const Record &Attr = *I.second; 2262 2263 if (!Attr.getValueAsBit("ParseArgumentsAsUnevaluated")) 2264 continue; 2265 2266 // All these spellings take are parsed unevaluated. 2267 forEachUniqueSpelling(Attr, [&](const FlattenedSpelling &S) { 2268 OS << ".Case(\"" << S.name() << "\", " << "true" << ")\n"; 2269 }); 2270 } 2271 OS << "#endif // CLANG_ATTR_ARG_CONTEXT_LIST\n\n"; 2272 } 2273 2274 static bool isIdentifierArgument(const Record *Arg) { 2275 return !Arg->getSuperClasses().empty() && 2276 llvm::StringSwitch<bool>(Arg->getSuperClasses().back().first->getName()) 2277 .Case("IdentifierArgument", true) 2278 .Case("EnumArgument", true) 2279 .Case("VariadicEnumArgument", true) 2280 .Default(false); 2281 } 2282 2283 static bool isVariadicIdentifierArgument(const Record *Arg) { 2284 return !Arg->getSuperClasses().empty() && 2285 llvm::StringSwitch<bool>( 2286 Arg->getSuperClasses().back().first->getName()) 2287 .Case("VariadicIdentifierArgument", true) 2288 .Case("VariadicParamOrParamIdxArgument", true) 2289 .Default(false); 2290 } 2291 2292 static bool isVariadicExprArgument(const Record *Arg) { 2293 return !Arg->getSuperClasses().empty() && 2294 llvm::StringSwitch<bool>( 2295 Arg->getSuperClasses().back().first->getName()) 2296 .Case("VariadicExprArgument", true) 2297 .Default(false); 2298 } 2299 2300 static void emitClangAttrVariadicIdentifierArgList(RecordKeeper &Records, 2301 raw_ostream &OS) { 2302 OS << "#if defined(CLANG_ATTR_VARIADIC_IDENTIFIER_ARG_LIST)\n"; 2303 std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr"); 2304 for (const auto *A : Attrs) { 2305 // Determine whether the first argument is a variadic identifier. 2306 std::vector<Record *> Args = A->getValueAsListOfDefs("Args"); 2307 if (Args.empty() || !isVariadicIdentifierArgument(Args[0])) 2308 continue; 2309 2310 // All these spellings take an identifier argument. 2311 forEachUniqueSpelling(*A, [&](const FlattenedSpelling &S) { 2312 OS << ".Case(\"" << S.name() << "\", " 2313 << "true" 2314 << ")\n"; 2315 }); 2316 } 2317 OS << "#endif // CLANG_ATTR_VARIADIC_IDENTIFIER_ARG_LIST\n\n"; 2318 } 2319 2320 // Emits the first-argument-is-identifier property for attributes. 2321 static void emitClangAttrIdentifierArgList(RecordKeeper &Records, raw_ostream &OS) { 2322 OS << "#if defined(CLANG_ATTR_IDENTIFIER_ARG_LIST)\n"; 2323 std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"); 2324 2325 for (const auto *Attr : Attrs) { 2326 // Determine whether the first argument is an identifier. 2327 std::vector<Record *> Args = Attr->getValueAsListOfDefs("Args"); 2328 if (Args.empty() || !isIdentifierArgument(Args[0])) 2329 continue; 2330 2331 // All these spellings take an identifier argument. 2332 forEachUniqueSpelling(*Attr, [&](const FlattenedSpelling &S) { 2333 OS << ".Case(\"" << S.name() << "\", " << "true" << ")\n"; 2334 }); 2335 } 2336 OS << "#endif // CLANG_ATTR_IDENTIFIER_ARG_LIST\n\n"; 2337 } 2338 2339 static bool keywordThisIsaIdentifierInArgument(const Record *Arg) { 2340 return !Arg->getSuperClasses().empty() && 2341 llvm::StringSwitch<bool>( 2342 Arg->getSuperClasses().back().first->getName()) 2343 .Case("VariadicParamOrParamIdxArgument", true) 2344 .Default(false); 2345 } 2346 2347 static void emitClangAttrThisIsaIdentifierArgList(RecordKeeper &Records, 2348 raw_ostream &OS) { 2349 OS << "#if defined(CLANG_ATTR_THIS_ISA_IDENTIFIER_ARG_LIST)\n"; 2350 std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr"); 2351 for (const auto *A : Attrs) { 2352 // Determine whether the first argument is a variadic identifier. 2353 std::vector<Record *> Args = A->getValueAsListOfDefs("Args"); 2354 if (Args.empty() || !keywordThisIsaIdentifierInArgument(Args[0])) 2355 continue; 2356 2357 // All these spellings take an identifier argument. 2358 forEachUniqueSpelling(*A, [&](const FlattenedSpelling &S) { 2359 OS << ".Case(\"" << S.name() << "\", " 2360 << "true" 2361 << ")\n"; 2362 }); 2363 } 2364 OS << "#endif // CLANG_ATTR_THIS_ISA_IDENTIFIER_ARG_LIST\n\n"; 2365 } 2366 2367 static void emitClangAttrAcceptsExprPack(RecordKeeper &Records, 2368 raw_ostream &OS) { 2369 OS << "#if defined(CLANG_ATTR_ACCEPTS_EXPR_PACK)\n"; 2370 ParsedAttrMap Attrs = getParsedAttrList(Records); 2371 for (const auto &I : Attrs) { 2372 const Record &Attr = *I.second; 2373 2374 if (!Attr.getValueAsBit("AcceptsExprPack")) 2375 continue; 2376 2377 forEachUniqueSpelling(Attr, [&](const FlattenedSpelling &S) { 2378 OS << ".Case(\"" << S.name() << "\", true)\n"; 2379 }); 2380 } 2381 OS << "#endif // CLANG_ATTR_ACCEPTS_EXPR_PACK\n\n"; 2382 } 2383 2384 static bool isRegularKeywordAttribute(const FlattenedSpelling &S) { 2385 return (S.variety() == "Keyword" && 2386 !S.getSpellingRecord().getValueAsBit("HasOwnParseRules")); 2387 } 2388 2389 static void emitFormInitializer(raw_ostream &OS, 2390 const FlattenedSpelling &Spelling, 2391 StringRef SpellingIndex) { 2392 bool IsAlignas = 2393 (Spelling.variety() == "Keyword" && Spelling.name() == "alignas"); 2394 OS << "{AttributeCommonInfo::AS_" << Spelling.variety() << ", " 2395 << SpellingIndex << ", " << (IsAlignas ? "true" : "false") 2396 << " /*IsAlignas*/, " 2397 << (isRegularKeywordAttribute(Spelling) ? "true" : "false") 2398 << " /*IsRegularKeywordAttribute*/}"; 2399 } 2400 2401 static void emitAttributes(RecordKeeper &Records, raw_ostream &OS, 2402 bool Header) { 2403 std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"); 2404 ParsedAttrMap AttrMap = getParsedAttrList(Records); 2405 2406 // Helper to print the starting character of an attribute argument. If there 2407 // hasn't been an argument yet, it prints an opening parenthese; otherwise it 2408 // prints a comma. 2409 OS << "static inline void DelimitAttributeArgument(" 2410 << "raw_ostream& OS, bool& IsFirst) {\n" 2411 << " if (IsFirst) {\n" 2412 << " IsFirst = false;\n" 2413 << " OS << \"(\";\n" 2414 << " } else\n" 2415 << " OS << \", \";\n" 2416 << "}\n"; 2417 2418 for (const auto *Attr : Attrs) { 2419 const Record &R = *Attr; 2420 2421 // FIXME: Currently, documentation is generated as-needed due to the fact 2422 // that there is no way to allow a generated project "reach into" the docs 2423 // directory (for instance, it may be an out-of-tree build). However, we want 2424 // to ensure that every attribute has a Documentation field, and produce an 2425 // error if it has been neglected. Otherwise, the on-demand generation which 2426 // happens server-side will fail. This code is ensuring that functionality, 2427 // even though this Emitter doesn't technically need the documentation. 2428 // When attribute documentation can be generated as part of the build 2429 // itself, this code can be removed. 2430 (void)R.getValueAsListOfDefs("Documentation"); 2431 2432 if (!R.getValueAsBit("ASTNode")) 2433 continue; 2434 2435 ArrayRef<std::pair<Record *, SMRange>> Supers = R.getSuperClasses(); 2436 assert(!Supers.empty() && "Forgot to specify a superclass for the attr"); 2437 std::string SuperName; 2438 bool Inheritable = false; 2439 for (const auto &Super : llvm::reverse(Supers)) { 2440 const Record *R = Super.first; 2441 if (R->getName() != "TargetSpecificAttr" && 2442 R->getName() != "DeclOrTypeAttr" && SuperName.empty()) 2443 SuperName = std::string(R->getName()); 2444 if (R->getName() == "InheritableAttr") 2445 Inheritable = true; 2446 } 2447 2448 if (Header) 2449 OS << "class " << R.getName() << "Attr : public " << SuperName << " {\n"; 2450 else 2451 OS << "\n// " << R.getName() << "Attr implementation\n\n"; 2452 2453 std::vector<Record*> ArgRecords = R.getValueAsListOfDefs("Args"); 2454 std::vector<std::unique_ptr<Argument>> Args; 2455 Args.reserve(ArgRecords.size()); 2456 2457 bool AttrAcceptsExprPack = Attr->getValueAsBit("AcceptsExprPack"); 2458 if (AttrAcceptsExprPack) { 2459 for (size_t I = 0; I < ArgRecords.size(); ++I) { 2460 const Record *ArgR = ArgRecords[I]; 2461 if (isIdentifierArgument(ArgR) || isVariadicIdentifierArgument(ArgR) || 2462 isTypeArgument(ArgR)) 2463 PrintFatalError(Attr->getLoc(), 2464 "Attributes accepting packs cannot also " 2465 "have identifier or type arguments."); 2466 // When trying to determine if value-dependent expressions can populate 2467 // the attribute without prior instantiation, the decision is made based 2468 // on the assumption that only the last argument is ever variadic. 2469 if (I < (ArgRecords.size() - 1) && isVariadicExprArgument(ArgR)) 2470 PrintFatalError(Attr->getLoc(), 2471 "Attributes accepting packs can only have the last " 2472 "argument be variadic."); 2473 } 2474 } 2475 2476 bool HasOptArg = false; 2477 bool HasFakeArg = false; 2478 for (const auto *ArgRecord : ArgRecords) { 2479 Args.emplace_back(createArgument(*ArgRecord, R.getName())); 2480 if (Header) { 2481 Args.back()->writeDeclarations(OS); 2482 OS << "\n\n"; 2483 } 2484 2485 // For these purposes, fake takes priority over optional. 2486 if (Args.back()->isFake()) { 2487 HasFakeArg = true; 2488 } else if (Args.back()->isOptional()) { 2489 HasOptArg = true; 2490 } 2491 } 2492 2493 std::unique_ptr<VariadicExprArgument> DelayedArgs = nullptr; 2494 if (AttrAcceptsExprPack) { 2495 DelayedArgs = 2496 std::make_unique<VariadicExprArgument>("DelayedArgs", R.getName()); 2497 if (Header) { 2498 DelayedArgs->writeDeclarations(OS); 2499 OS << "\n\n"; 2500 } 2501 } 2502 2503 if (Header) 2504 OS << "public:\n"; 2505 2506 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R); 2507 2508 // If there are zero or one spellings, all spelling-related functionality 2509 // can be elided. If all of the spellings share the same name, the spelling 2510 // functionality can also be elided. 2511 bool ElideSpelling = (Spellings.size() <= 1) || 2512 SpellingNamesAreCommon(Spellings); 2513 2514 // This maps spelling index values to semantic Spelling enumerants. 2515 SemanticSpellingMap SemanticToSyntacticMap; 2516 2517 std::string SpellingEnum; 2518 if (Spellings.size() > 1) 2519 SpellingEnum = CreateSemanticSpellings(Spellings, SemanticToSyntacticMap); 2520 if (Header) 2521 OS << SpellingEnum; 2522 2523 const auto &ParsedAttrSpellingItr = llvm::find_if( 2524 AttrMap, [R](const std::pair<std::string, const Record *> &P) { 2525 return &R == P.second; 2526 }); 2527 2528 // Emit CreateImplicit factory methods. 2529 auto emitCreate = [&](bool Implicit, bool DelayedArgsOnly, bool emitFake) { 2530 if (Header) 2531 OS << " static "; 2532 OS << R.getName() << "Attr *"; 2533 if (!Header) 2534 OS << R.getName() << "Attr::"; 2535 OS << "Create"; 2536 if (Implicit) 2537 OS << "Implicit"; 2538 if (DelayedArgsOnly) 2539 OS << "WithDelayedArgs"; 2540 OS << "("; 2541 OS << "ASTContext &Ctx"; 2542 if (!DelayedArgsOnly) { 2543 for (auto const &ai : Args) { 2544 if (ai->isFake() && !emitFake) 2545 continue; 2546 OS << ", "; 2547 ai->writeCtorParameters(OS); 2548 } 2549 } else { 2550 OS << ", "; 2551 DelayedArgs->writeCtorParameters(OS); 2552 } 2553 OS << ", const AttributeCommonInfo &CommonInfo"; 2554 OS << ")"; 2555 if (Header) { 2556 OS << ";\n"; 2557 return; 2558 } 2559 2560 OS << " {\n"; 2561 OS << " auto *A = new (Ctx) " << R.getName(); 2562 OS << "Attr(Ctx, CommonInfo"; 2563 2564 if (!DelayedArgsOnly) { 2565 for (auto const &ai : Args) { 2566 if (ai->isFake() && !emitFake) 2567 continue; 2568 OS << ", "; 2569 ai->writeImplicitCtorArgs(OS); 2570 } 2571 } 2572 OS << ");\n"; 2573 if (Implicit) { 2574 OS << " A->setImplicit(true);\n"; 2575 } 2576 if (Implicit || ElideSpelling) { 2577 OS << " if (!A->isAttributeSpellingListCalculated() && " 2578 "!A->getAttrName())\n"; 2579 OS << " A->setAttributeSpellingListIndex(0);\n"; 2580 } 2581 if (DelayedArgsOnly) { 2582 OS << " A->setDelayedArgs(Ctx, "; 2583 DelayedArgs->writeImplicitCtorArgs(OS); 2584 OS << ");\n"; 2585 } 2586 OS << " return A;\n}\n\n"; 2587 }; 2588 2589 auto emitCreateNoCI = [&](bool Implicit, bool DelayedArgsOnly, 2590 bool emitFake) { 2591 if (Header) 2592 OS << " static "; 2593 OS << R.getName() << "Attr *"; 2594 if (!Header) 2595 OS << R.getName() << "Attr::"; 2596 OS << "Create"; 2597 if (Implicit) 2598 OS << "Implicit"; 2599 if (DelayedArgsOnly) 2600 OS << "WithDelayedArgs"; 2601 OS << "("; 2602 OS << "ASTContext &Ctx"; 2603 if (!DelayedArgsOnly) { 2604 for (auto const &ai : Args) { 2605 if (ai->isFake() && !emitFake) 2606 continue; 2607 OS << ", "; 2608 ai->writeCtorParameters(OS); 2609 } 2610 } else { 2611 OS << ", "; 2612 DelayedArgs->writeCtorParameters(OS); 2613 } 2614 OS << ", SourceRange Range"; 2615 if (Header) 2616 OS << " = {}"; 2617 if (Spellings.size() > 1) { 2618 OS << ", Spelling S"; 2619 if (Header) 2620 OS << " = " << SemanticToSyntacticMap[0]; 2621 } 2622 OS << ")"; 2623 if (Header) { 2624 OS << ";\n"; 2625 return; 2626 } 2627 2628 OS << " {\n"; 2629 OS << " AttributeCommonInfo I(Range, "; 2630 2631 if (ParsedAttrSpellingItr != std::end(AttrMap)) 2632 OS << "AT_" << ParsedAttrSpellingItr->first; 2633 else 2634 OS << "NoSemaHandlerAttribute"; 2635 2636 if (Spellings.size() == 0) { 2637 OS << ", AttributeCommonInfo::Form::Implicit()"; 2638 } else if (Spellings.size() == 1) { 2639 OS << ", "; 2640 emitFormInitializer(OS, Spellings[0], "0"); 2641 } else { 2642 OS << ", (\n"; 2643 std::set<std::string> Uniques; 2644 unsigned Idx = 0; 2645 for (auto I = Spellings.begin(), E = Spellings.end(); I != E; 2646 ++I, ++Idx) { 2647 const FlattenedSpelling &S = *I; 2648 const auto &Name = SemanticToSyntacticMap[Idx]; 2649 if (Uniques.insert(Name).second) { 2650 OS << " S == " << Name << " ? AttributeCommonInfo::Form"; 2651 emitFormInitializer(OS, S, Name); 2652 OS << " :\n"; 2653 } 2654 } 2655 OS << " (llvm_unreachable(\"Unknown attribute spelling!\"), " 2656 << " AttributeCommonInfo::Form"; 2657 emitFormInitializer(OS, Spellings[0], "0"); 2658 OS << "))"; 2659 } 2660 2661 OS << ");\n"; 2662 OS << " return Create"; 2663 if (Implicit) 2664 OS << "Implicit"; 2665 if (DelayedArgsOnly) 2666 OS << "WithDelayedArgs"; 2667 OS << "(Ctx"; 2668 if (!DelayedArgsOnly) { 2669 for (auto const &ai : Args) { 2670 if (ai->isFake() && !emitFake) 2671 continue; 2672 OS << ", "; 2673 ai->writeImplicitCtorArgs(OS); 2674 } 2675 } else { 2676 OS << ", "; 2677 DelayedArgs->writeImplicitCtorArgs(OS); 2678 } 2679 OS << ", I);\n"; 2680 OS << "}\n\n"; 2681 }; 2682 2683 auto emitCreates = [&](bool DelayedArgsOnly, bool emitFake) { 2684 emitCreate(true, DelayedArgsOnly, emitFake); 2685 emitCreate(false, DelayedArgsOnly, emitFake); 2686 emitCreateNoCI(true, DelayedArgsOnly, emitFake); 2687 emitCreateNoCI(false, DelayedArgsOnly, emitFake); 2688 }; 2689 2690 if (Header) 2691 OS << " // Factory methods\n"; 2692 2693 // Emit a CreateImplicit that takes all the arguments. 2694 emitCreates(false, true); 2695 2696 // Emit a CreateImplicit that takes all the non-fake arguments. 2697 if (HasFakeArg) 2698 emitCreates(false, false); 2699 2700 // Emit a CreateWithDelayedArgs that takes only the dependent argument 2701 // expressions. 2702 if (DelayedArgs) 2703 emitCreates(true, false); 2704 2705 // Emit constructors. 2706 auto emitCtor = [&](bool emitOpt, bool emitFake, bool emitNoArgs) { 2707 auto shouldEmitArg = [=](const std::unique_ptr<Argument> &arg) { 2708 if (emitNoArgs) 2709 return false; 2710 if (arg->isFake()) 2711 return emitFake; 2712 if (arg->isOptional()) 2713 return emitOpt; 2714 return true; 2715 }; 2716 if (Header) 2717 OS << " "; 2718 else 2719 OS << R.getName() << "Attr::"; 2720 OS << R.getName() 2721 << "Attr(ASTContext &Ctx, const AttributeCommonInfo &CommonInfo"; 2722 OS << '\n'; 2723 for (auto const &ai : Args) { 2724 if (!shouldEmitArg(ai)) 2725 continue; 2726 OS << " , "; 2727 ai->writeCtorParameters(OS); 2728 OS << "\n"; 2729 } 2730 2731 OS << " )"; 2732 if (Header) { 2733 OS << ";\n"; 2734 return; 2735 } 2736 OS << "\n : " << SuperName << "(Ctx, CommonInfo, "; 2737 OS << "attr::" << R.getName() << ", " 2738 << (R.getValueAsBit("LateParsed") ? "true" : "false"); 2739 if (Inheritable) { 2740 OS << ", " 2741 << (R.getValueAsBit("InheritEvenIfAlreadyPresent") ? "true" 2742 : "false"); 2743 } 2744 OS << ")\n"; 2745 2746 for (auto const &ai : Args) { 2747 OS << " , "; 2748 if (!shouldEmitArg(ai)) { 2749 ai->writeCtorDefaultInitializers(OS); 2750 } else { 2751 ai->writeCtorInitializers(OS); 2752 } 2753 OS << "\n"; 2754 } 2755 if (DelayedArgs) { 2756 OS << " , "; 2757 DelayedArgs->writeCtorDefaultInitializers(OS); 2758 OS << "\n"; 2759 } 2760 2761 OS << " {\n"; 2762 2763 for (auto const &ai : Args) { 2764 if (!shouldEmitArg(ai)) 2765 continue; 2766 ai->writeCtorBody(OS); 2767 } 2768 OS << "}\n\n"; 2769 }; 2770 2771 if (Header) 2772 OS << "\n // Constructors\n"; 2773 2774 // Emit a constructor that includes all the arguments. 2775 // This is necessary for cloning. 2776 emitCtor(true, true, false); 2777 2778 // Emit a constructor that takes all the non-fake arguments. 2779 if (HasFakeArg) 2780 emitCtor(true, false, false); 2781 2782 // Emit a constructor that takes all the non-fake, non-optional arguments. 2783 if (HasOptArg) 2784 emitCtor(false, false, false); 2785 2786 // Emit constructors that takes no arguments if none already exists. 2787 // This is used for delaying arguments. 2788 bool HasRequiredArgs = 2789 llvm::count_if(Args, [=](const std::unique_ptr<Argument> &arg) { 2790 return !arg->isFake() && !arg->isOptional(); 2791 }); 2792 if (DelayedArgs && HasRequiredArgs) 2793 emitCtor(false, false, true); 2794 2795 if (Header) { 2796 OS << '\n'; 2797 OS << " " << R.getName() << "Attr *clone(ASTContext &C) const;\n"; 2798 OS << " void printPretty(raw_ostream &OS,\n" 2799 << " const PrintingPolicy &Policy) const;\n"; 2800 OS << " const char *getSpelling() const;\n"; 2801 } 2802 2803 if (!ElideSpelling) { 2804 assert(!SemanticToSyntacticMap.empty() && "Empty semantic mapping list"); 2805 if (Header) 2806 OS << " Spelling getSemanticSpelling() const;\n"; 2807 else { 2808 OS << R.getName() << "Attr::Spelling " << R.getName() 2809 << "Attr::getSemanticSpelling() const {\n"; 2810 WriteSemanticSpellingSwitch("getAttributeSpellingListIndex()", 2811 SemanticToSyntacticMap, OS); 2812 OS << "}\n"; 2813 } 2814 } 2815 2816 if (Header) 2817 writeAttrAccessorDefinition(R, OS); 2818 2819 for (auto const &ai : Args) { 2820 if (Header) { 2821 ai->writeAccessors(OS); 2822 } else { 2823 ai->writeAccessorDefinitions(OS); 2824 } 2825 OS << "\n\n"; 2826 2827 // Don't write conversion routines for fake arguments. 2828 if (ai->isFake()) continue; 2829 2830 if (ai->isEnumArg()) 2831 static_cast<const EnumArgument *>(ai.get())->writeConversion(OS, 2832 Header); 2833 else if (ai->isVariadicEnumArg()) 2834 static_cast<const VariadicEnumArgument *>(ai.get())->writeConversion( 2835 OS, Header); 2836 } 2837 2838 if (Header) { 2839 if (DelayedArgs) { 2840 DelayedArgs->writeAccessors(OS); 2841 DelayedArgs->writeSetter(OS); 2842 } 2843 2844 OS << R.getValueAsString("AdditionalMembers"); 2845 OS << "\n\n"; 2846 2847 OS << " static bool classof(const Attr *A) { return A->getKind() == " 2848 << "attr::" << R.getName() << "; }\n"; 2849 2850 OS << "};\n\n"; 2851 } else { 2852 if (DelayedArgs) 2853 DelayedArgs->writeAccessorDefinitions(OS); 2854 2855 OS << R.getName() << "Attr *" << R.getName() 2856 << "Attr::clone(ASTContext &C) const {\n"; 2857 OS << " auto *A = new (C) " << R.getName() << "Attr(C, *this"; 2858 for (auto const &ai : Args) { 2859 OS << ", "; 2860 ai->writeCloneArgs(OS); 2861 } 2862 OS << ");\n"; 2863 OS << " A->Inherited = Inherited;\n"; 2864 OS << " A->IsPackExpansion = IsPackExpansion;\n"; 2865 OS << " A->setImplicit(Implicit);\n"; 2866 if (DelayedArgs) { 2867 OS << " A->setDelayedArgs(C, "; 2868 DelayedArgs->writeCloneArgs(OS); 2869 OS << ");\n"; 2870 } 2871 OS << " return A;\n}\n\n"; 2872 2873 writePrettyPrintFunction(R, Args, OS); 2874 writeGetSpellingFunction(R, OS); 2875 } 2876 } 2877 } 2878 // Emits the class definitions for attributes. 2879 void clang::EmitClangAttrClass(RecordKeeper &Records, raw_ostream &OS) { 2880 emitSourceFileHeader("Attribute classes' definitions", OS); 2881 2882 OS << "#ifndef LLVM_CLANG_ATTR_CLASSES_INC\n"; 2883 OS << "#define LLVM_CLANG_ATTR_CLASSES_INC\n\n"; 2884 2885 emitAttributes(Records, OS, true); 2886 2887 OS << "#endif // LLVM_CLANG_ATTR_CLASSES_INC\n"; 2888 } 2889 2890 // Emits the class method definitions for attributes. 2891 void clang::EmitClangAttrImpl(RecordKeeper &Records, raw_ostream &OS) { 2892 emitSourceFileHeader("Attribute classes' member function definitions", OS); 2893 2894 emitAttributes(Records, OS, false); 2895 2896 std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr"); 2897 2898 // Instead of relying on virtual dispatch we just create a huge dispatch 2899 // switch. This is both smaller and faster than virtual functions. 2900 auto EmitFunc = [&](const char *Method) { 2901 OS << " switch (getKind()) {\n"; 2902 for (const auto *Attr : Attrs) { 2903 const Record &R = *Attr; 2904 if (!R.getValueAsBit("ASTNode")) 2905 continue; 2906 2907 OS << " case attr::" << R.getName() << ":\n"; 2908 OS << " return cast<" << R.getName() << "Attr>(this)->" << Method 2909 << ";\n"; 2910 } 2911 OS << " }\n"; 2912 OS << " llvm_unreachable(\"Unexpected attribute kind!\");\n"; 2913 OS << "}\n\n"; 2914 }; 2915 2916 OS << "const char *Attr::getSpelling() const {\n"; 2917 EmitFunc("getSpelling()"); 2918 2919 OS << "Attr *Attr::clone(ASTContext &C) const {\n"; 2920 EmitFunc("clone(C)"); 2921 2922 OS << "void Attr::printPretty(raw_ostream &OS, " 2923 "const PrintingPolicy &Policy) const {\n"; 2924 EmitFunc("printPretty(OS, Policy)"); 2925 } 2926 2927 static void emitAttrList(raw_ostream &OS, StringRef Class, 2928 const std::vector<Record*> &AttrList) { 2929 for (auto Cur : AttrList) { 2930 OS << Class << "(" << Cur->getName() << ")\n"; 2931 } 2932 } 2933 2934 // Determines if an attribute has a Pragma spelling. 2935 static bool AttrHasPragmaSpelling(const Record *R) { 2936 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*R); 2937 return llvm::any_of(Spellings, [](const FlattenedSpelling &S) { 2938 return S.variety() == "Pragma"; 2939 }); 2940 } 2941 2942 namespace { 2943 2944 struct AttrClassDescriptor { 2945 const char * const MacroName; 2946 const char * const TableGenName; 2947 }; 2948 2949 } // end anonymous namespace 2950 2951 static const AttrClassDescriptor AttrClassDescriptors[] = { 2952 { "ATTR", "Attr" }, 2953 { "TYPE_ATTR", "TypeAttr" }, 2954 { "STMT_ATTR", "StmtAttr" }, 2955 { "DECL_OR_STMT_ATTR", "DeclOrStmtAttr" }, 2956 { "INHERITABLE_ATTR", "InheritableAttr" }, 2957 { "DECL_OR_TYPE_ATTR", "DeclOrTypeAttr" }, 2958 { "INHERITABLE_PARAM_ATTR", "InheritableParamAttr" }, 2959 { "PARAMETER_ABI_ATTR", "ParameterABIAttr" }, 2960 { "HLSL_ANNOTATION_ATTR", "HLSLAnnotationAttr"} 2961 }; 2962 2963 static void emitDefaultDefine(raw_ostream &OS, StringRef name, 2964 const char *superName) { 2965 OS << "#ifndef " << name << "\n"; 2966 OS << "#define " << name << "(NAME) "; 2967 if (superName) OS << superName << "(NAME)"; 2968 OS << "\n#endif\n\n"; 2969 } 2970 2971 namespace { 2972 2973 /// A class of attributes. 2974 struct AttrClass { 2975 const AttrClassDescriptor &Descriptor; 2976 Record *TheRecord; 2977 AttrClass *SuperClass = nullptr; 2978 std::vector<AttrClass*> SubClasses; 2979 std::vector<Record*> Attrs; 2980 2981 AttrClass(const AttrClassDescriptor &Descriptor, Record *R) 2982 : Descriptor(Descriptor), TheRecord(R) {} 2983 2984 void emitDefaultDefines(raw_ostream &OS) const { 2985 // Default the macro unless this is a root class (i.e. Attr). 2986 if (SuperClass) { 2987 emitDefaultDefine(OS, Descriptor.MacroName, 2988 SuperClass->Descriptor.MacroName); 2989 } 2990 } 2991 2992 void emitUndefs(raw_ostream &OS) const { 2993 OS << "#undef " << Descriptor.MacroName << "\n"; 2994 } 2995 2996 void emitAttrList(raw_ostream &OS) const { 2997 for (auto SubClass : SubClasses) { 2998 SubClass->emitAttrList(OS); 2999 } 3000 3001 ::emitAttrList(OS, Descriptor.MacroName, Attrs); 3002 } 3003 3004 void classifyAttrOnRoot(Record *Attr) { 3005 bool result = classifyAttr(Attr); 3006 assert(result && "failed to classify on root"); (void) result; 3007 } 3008 3009 void emitAttrRange(raw_ostream &OS) const { 3010 OS << "ATTR_RANGE(" << Descriptor.TableGenName 3011 << ", " << getFirstAttr()->getName() 3012 << ", " << getLastAttr()->getName() << ")\n"; 3013 } 3014 3015 private: 3016 bool classifyAttr(Record *Attr) { 3017 // Check all the subclasses. 3018 for (auto SubClass : SubClasses) { 3019 if (SubClass->classifyAttr(Attr)) 3020 return true; 3021 } 3022 3023 // It's not more specific than this class, but it might still belong here. 3024 if (Attr->isSubClassOf(TheRecord)) { 3025 Attrs.push_back(Attr); 3026 return true; 3027 } 3028 3029 return false; 3030 } 3031 3032 Record *getFirstAttr() const { 3033 if (!SubClasses.empty()) 3034 return SubClasses.front()->getFirstAttr(); 3035 return Attrs.front(); 3036 } 3037 3038 Record *getLastAttr() const { 3039 if (!Attrs.empty()) 3040 return Attrs.back(); 3041 return SubClasses.back()->getLastAttr(); 3042 } 3043 }; 3044 3045 /// The entire hierarchy of attribute classes. 3046 class AttrClassHierarchy { 3047 std::vector<std::unique_ptr<AttrClass>> Classes; 3048 3049 public: 3050 AttrClassHierarchy(RecordKeeper &Records) { 3051 // Find records for all the classes. 3052 for (auto &Descriptor : AttrClassDescriptors) { 3053 Record *ClassRecord = Records.getClass(Descriptor.TableGenName); 3054 AttrClass *Class = new AttrClass(Descriptor, ClassRecord); 3055 Classes.emplace_back(Class); 3056 } 3057 3058 // Link up the hierarchy. 3059 for (auto &Class : Classes) { 3060 if (AttrClass *SuperClass = findSuperClass(Class->TheRecord)) { 3061 Class->SuperClass = SuperClass; 3062 SuperClass->SubClasses.push_back(Class.get()); 3063 } 3064 } 3065 3066 #ifndef NDEBUG 3067 for (auto i = Classes.begin(), e = Classes.end(); i != e; ++i) { 3068 assert((i == Classes.begin()) == ((*i)->SuperClass == nullptr) && 3069 "only the first class should be a root class!"); 3070 } 3071 #endif 3072 } 3073 3074 void emitDefaultDefines(raw_ostream &OS) const { 3075 for (auto &Class : Classes) { 3076 Class->emitDefaultDefines(OS); 3077 } 3078 } 3079 3080 void emitUndefs(raw_ostream &OS) const { 3081 for (auto &Class : Classes) { 3082 Class->emitUndefs(OS); 3083 } 3084 } 3085 3086 void emitAttrLists(raw_ostream &OS) const { 3087 // Just start from the root class. 3088 Classes[0]->emitAttrList(OS); 3089 } 3090 3091 void emitAttrRanges(raw_ostream &OS) const { 3092 for (auto &Class : Classes) 3093 Class->emitAttrRange(OS); 3094 } 3095 3096 void classifyAttr(Record *Attr) { 3097 // Add the attribute to the root class. 3098 Classes[0]->classifyAttrOnRoot(Attr); 3099 } 3100 3101 private: 3102 AttrClass *findClassByRecord(Record *R) const { 3103 for (auto &Class : Classes) { 3104 if (Class->TheRecord == R) 3105 return Class.get(); 3106 } 3107 return nullptr; 3108 } 3109 3110 AttrClass *findSuperClass(Record *R) const { 3111 // TableGen flattens the superclass list, so we just need to walk it 3112 // in reverse. 3113 auto SuperClasses = R->getSuperClasses(); 3114 for (signed i = 0, e = SuperClasses.size(); i != e; ++i) { 3115 auto SuperClass = findClassByRecord(SuperClasses[e - i - 1].first); 3116 if (SuperClass) return SuperClass; 3117 } 3118 return nullptr; 3119 } 3120 }; 3121 3122 } // end anonymous namespace 3123 3124 namespace clang { 3125 3126 // Emits the enumeration list for attributes. 3127 void EmitClangAttrList(RecordKeeper &Records, raw_ostream &OS) { 3128 emitSourceFileHeader("List of all attributes that Clang recognizes", OS); 3129 3130 AttrClassHierarchy Hierarchy(Records); 3131 3132 // Add defaulting macro definitions. 3133 Hierarchy.emitDefaultDefines(OS); 3134 emitDefaultDefine(OS, "PRAGMA_SPELLING_ATTR", nullptr); 3135 3136 std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr"); 3137 std::vector<Record *> PragmaAttrs; 3138 for (auto *Attr : Attrs) { 3139 if (!Attr->getValueAsBit("ASTNode")) 3140 continue; 3141 3142 // Add the attribute to the ad-hoc groups. 3143 if (AttrHasPragmaSpelling(Attr)) 3144 PragmaAttrs.push_back(Attr); 3145 3146 // Place it in the hierarchy. 3147 Hierarchy.classifyAttr(Attr); 3148 } 3149 3150 // Emit the main attribute list. 3151 Hierarchy.emitAttrLists(OS); 3152 3153 // Emit the ad hoc groups. 3154 emitAttrList(OS, "PRAGMA_SPELLING_ATTR", PragmaAttrs); 3155 3156 // Emit the attribute ranges. 3157 OS << "#ifdef ATTR_RANGE\n"; 3158 Hierarchy.emitAttrRanges(OS); 3159 OS << "#undef ATTR_RANGE\n"; 3160 OS << "#endif\n"; 3161 3162 Hierarchy.emitUndefs(OS); 3163 OS << "#undef PRAGMA_SPELLING_ATTR\n"; 3164 } 3165 3166 // Emits the enumeration list for attributes. 3167 void EmitClangAttrSubjectMatchRuleList(RecordKeeper &Records, raw_ostream &OS) { 3168 emitSourceFileHeader( 3169 "List of all attribute subject matching rules that Clang recognizes", OS); 3170 PragmaClangAttributeSupport &PragmaAttributeSupport = 3171 getPragmaAttributeSupport(Records); 3172 emitDefaultDefine(OS, "ATTR_MATCH_RULE", nullptr); 3173 PragmaAttributeSupport.emitMatchRuleList(OS); 3174 OS << "#undef ATTR_MATCH_RULE\n"; 3175 } 3176 3177 // Emits the code to read an attribute from a precompiled header. 3178 void EmitClangAttrPCHRead(RecordKeeper &Records, raw_ostream &OS) { 3179 emitSourceFileHeader("Attribute deserialization code", OS); 3180 3181 Record *InhClass = Records.getClass("InheritableAttr"); 3182 std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"), 3183 ArgRecords; 3184 std::vector<std::unique_ptr<Argument>> Args; 3185 std::unique_ptr<VariadicExprArgument> DelayedArgs; 3186 3187 OS << " switch (Kind) {\n"; 3188 for (const auto *Attr : Attrs) { 3189 const Record &R = *Attr; 3190 if (!R.getValueAsBit("ASTNode")) 3191 continue; 3192 3193 OS << " case attr::" << R.getName() << ": {\n"; 3194 if (R.isSubClassOf(InhClass)) 3195 OS << " bool isInherited = Record.readInt();\n"; 3196 OS << " bool isImplicit = Record.readInt();\n"; 3197 OS << " bool isPackExpansion = Record.readInt();\n"; 3198 DelayedArgs = nullptr; 3199 if (Attr->getValueAsBit("AcceptsExprPack")) { 3200 DelayedArgs = 3201 std::make_unique<VariadicExprArgument>("DelayedArgs", R.getName()); 3202 DelayedArgs->writePCHReadDecls(OS); 3203 } 3204 ArgRecords = R.getValueAsListOfDefs("Args"); 3205 Args.clear(); 3206 for (const auto *Arg : ArgRecords) { 3207 Args.emplace_back(createArgument(*Arg, R.getName())); 3208 Args.back()->writePCHReadDecls(OS); 3209 } 3210 OS << " New = new (Context) " << R.getName() << "Attr(Context, Info"; 3211 for (auto const &ri : Args) { 3212 OS << ", "; 3213 ri->writePCHReadArgs(OS); 3214 } 3215 OS << ");\n"; 3216 if (R.isSubClassOf(InhClass)) 3217 OS << " cast<InheritableAttr>(New)->setInherited(isInherited);\n"; 3218 OS << " New->setImplicit(isImplicit);\n"; 3219 OS << " New->setPackExpansion(isPackExpansion);\n"; 3220 if (DelayedArgs) { 3221 OS << " cast<" << R.getName() 3222 << "Attr>(New)->setDelayedArgs(Context, "; 3223 DelayedArgs->writePCHReadArgs(OS); 3224 OS << ");\n"; 3225 } 3226 OS << " break;\n"; 3227 OS << " }\n"; 3228 } 3229 OS << " }\n"; 3230 } 3231 3232 // Emits the code to write an attribute to a precompiled header. 3233 void EmitClangAttrPCHWrite(RecordKeeper &Records, raw_ostream &OS) { 3234 emitSourceFileHeader("Attribute serialization code", OS); 3235 3236 Record *InhClass = Records.getClass("InheritableAttr"); 3237 std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"), Args; 3238 3239 OS << " switch (A->getKind()) {\n"; 3240 for (const auto *Attr : Attrs) { 3241 const Record &R = *Attr; 3242 if (!R.getValueAsBit("ASTNode")) 3243 continue; 3244 OS << " case attr::" << R.getName() << ": {\n"; 3245 Args = R.getValueAsListOfDefs("Args"); 3246 if (R.isSubClassOf(InhClass) || !Args.empty()) 3247 OS << " const auto *SA = cast<" << R.getName() 3248 << "Attr>(A);\n"; 3249 if (R.isSubClassOf(InhClass)) 3250 OS << " Record.push_back(SA->isInherited());\n"; 3251 OS << " Record.push_back(A->isImplicit());\n"; 3252 OS << " Record.push_back(A->isPackExpansion());\n"; 3253 if (Attr->getValueAsBit("AcceptsExprPack")) 3254 VariadicExprArgument("DelayedArgs", R.getName()).writePCHWrite(OS); 3255 3256 for (const auto *Arg : Args) 3257 createArgument(*Arg, R.getName())->writePCHWrite(OS); 3258 OS << " break;\n"; 3259 OS << " }\n"; 3260 } 3261 OS << " }\n"; 3262 } 3263 3264 // Helper function for GenerateTargetSpecificAttrChecks that alters the 'Test' 3265 // parameter with only a single check type, if applicable. 3266 static bool GenerateTargetSpecificAttrCheck(const Record *R, std::string &Test, 3267 std::string *FnName, 3268 StringRef ListName, 3269 StringRef CheckAgainst, 3270 StringRef Scope) { 3271 if (!R->isValueUnset(ListName)) { 3272 Test += " && ("; 3273 std::vector<StringRef> Items = R->getValueAsListOfStrings(ListName); 3274 for (auto I = Items.begin(), E = Items.end(); I != E; ++I) { 3275 StringRef Part = *I; 3276 Test += CheckAgainst; 3277 Test += " == "; 3278 Test += Scope; 3279 Test += Part; 3280 if (I + 1 != E) 3281 Test += " || "; 3282 if (FnName) 3283 *FnName += Part; 3284 } 3285 Test += ")"; 3286 return true; 3287 } 3288 return false; 3289 } 3290 3291 // Generate a conditional expression to check if the current target satisfies 3292 // the conditions for a TargetSpecificAttr record, and append the code for 3293 // those checks to the Test string. If the FnName string pointer is non-null, 3294 // append a unique suffix to distinguish this set of target checks from other 3295 // TargetSpecificAttr records. 3296 static bool GenerateTargetSpecificAttrChecks(const Record *R, 3297 std::vector<StringRef> &Arches, 3298 std::string &Test, 3299 std::string *FnName) { 3300 bool AnyTargetChecks = false; 3301 3302 // It is assumed that there will be an llvm::Triple object 3303 // named "T" and a TargetInfo object named "Target" within 3304 // scope that can be used to determine whether the attribute exists in 3305 // a given target. 3306 Test += "true"; 3307 // If one or more architectures is specified, check those. Arches are handled 3308 // differently because GenerateTargetRequirements needs to combine the list 3309 // with ParseKind. 3310 if (!Arches.empty()) { 3311 AnyTargetChecks = true; 3312 Test += " && ("; 3313 for (auto I = Arches.begin(), E = Arches.end(); I != E; ++I) { 3314 StringRef Part = *I; 3315 Test += "T.getArch() == llvm::Triple::"; 3316 Test += Part; 3317 if (I + 1 != E) 3318 Test += " || "; 3319 if (FnName) 3320 *FnName += Part; 3321 } 3322 Test += ")"; 3323 } 3324 3325 // If the attribute is specific to particular OSes, check those. 3326 AnyTargetChecks |= GenerateTargetSpecificAttrCheck( 3327 R, Test, FnName, "OSes", "T.getOS()", "llvm::Triple::"); 3328 3329 // If one or more object formats is specified, check those. 3330 AnyTargetChecks |= 3331 GenerateTargetSpecificAttrCheck(R, Test, FnName, "ObjectFormats", 3332 "T.getObjectFormat()", "llvm::Triple::"); 3333 3334 // If custom code is specified, emit it. 3335 StringRef Code = R->getValueAsString("CustomCode"); 3336 if (!Code.empty()) { 3337 AnyTargetChecks = true; 3338 Test += " && ("; 3339 Test += Code; 3340 Test += ")"; 3341 } 3342 3343 return AnyTargetChecks; 3344 } 3345 3346 static void GenerateHasAttrSpellingStringSwitch( 3347 const std::vector<Record *> &Attrs, raw_ostream &OS, 3348 const std::string &Variety = "", const std::string &Scope = "") { 3349 for (const auto *Attr : Attrs) { 3350 // C++11-style attributes have specific version information associated with 3351 // them. If the attribute has no scope, the version information must not 3352 // have the default value (1), as that's incorrect. Instead, the unscoped 3353 // attribute version information should be taken from the SD-6 standing 3354 // document, which can be found at: 3355 // https://isocpp.org/std/standing-documents/sd-6-sg10-feature-test-recommendations 3356 // 3357 // C2x-style attributes have the same kind of version information 3358 // associated with them. The unscoped attribute version information should 3359 // be taken from the specification of the attribute in the C Standard. 3360 // 3361 // Clang-specific attributes have the same kind of version information 3362 // associated with them. This version is typically the default value (1). 3363 // These version values are clang-specific and should typically be 3364 // incremented once the attribute changes its syntax and/or semantics in a 3365 // a way that is impactful to the end user. 3366 int Version = 1; 3367 3368 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*Attr); 3369 for (const auto &Spelling : Spellings) { 3370 if (Spelling.variety() == Variety && 3371 (Spelling.nameSpace().empty() || Scope == Spelling.nameSpace())) { 3372 Version = static_cast<int>( 3373 Spelling.getSpellingRecord().getValueAsInt("Version")); 3374 // Verify that explicitly specified CXX11 and C2x spellings (i.e. 3375 // not inferred from Clang/GCC spellings) have a version that's 3376 // different than the default (1). 3377 bool RequiresValidVersion = 3378 (Variety == "CXX11" || Variety == "C2x") && 3379 Spelling.getSpellingRecord().getValueAsString("Variety") == Variety; 3380 if (RequiresValidVersion && Scope.empty() && Version == 1) 3381 PrintError(Spelling.getSpellingRecord().getLoc(), 3382 "Standard attributes must have " 3383 "valid version information."); 3384 break; 3385 } 3386 } 3387 3388 std::string Test; 3389 if (Attr->isSubClassOf("TargetSpecificAttr")) { 3390 const Record *R = Attr->getValueAsDef("Target"); 3391 std::vector<StringRef> Arches = R->getValueAsListOfStrings("Arches"); 3392 GenerateTargetSpecificAttrChecks(R, Arches, Test, nullptr); 3393 3394 // If this is the C++11 variety, also add in the LangOpts test. 3395 if (Variety == "CXX11") 3396 Test += " && LangOpts.CPlusPlus11"; 3397 } else if (Variety == "CXX11") 3398 // C++11 mode should be checked against LangOpts, which is presumed to be 3399 // present in the caller. 3400 Test = "LangOpts.CPlusPlus11"; 3401 3402 std::string TestStr = !Test.empty() 3403 ? Test + " ? " + llvm::itostr(Version) + " : 0" 3404 : llvm::itostr(Version); 3405 for (const auto &S : Spellings) 3406 if (Variety.empty() || (Variety == S.variety() && 3407 (Scope.empty() || Scope == S.nameSpace()))) 3408 OS << " .Case(\"" << S.name() << "\", " << TestStr << ")\n"; 3409 } 3410 OS << " .Default(0);\n"; 3411 } 3412 3413 // Emits the list of tokens for regular keyword attributes. 3414 void EmitClangAttrTokenKinds(RecordKeeper &Records, raw_ostream &OS) { 3415 emitSourceFileHeader("A list of tokens generated from the attribute" 3416 " definitions", 3417 OS); 3418 // Assume for now that the same token is not used in multiple regular 3419 // keyword attributes. 3420 for (auto *R : Records.getAllDerivedDefinitions("Attr")) 3421 for (const auto &S : GetFlattenedSpellings(*R)) 3422 if (isRegularKeywordAttribute(S)) { 3423 if (!R->getValueAsListOfDefs("Args").empty()) 3424 PrintError(R->getLoc(), 3425 "RegularKeyword attributes with arguments are not " 3426 "yet supported"); 3427 OS << "KEYWORD_ATTRIBUTE(" 3428 << S.getSpellingRecord().getValueAsString("Name") << ")\n"; 3429 } 3430 OS << "#undef KEYWORD_ATTRIBUTE\n"; 3431 } 3432 3433 // Emits the list of spellings for attributes. 3434 void EmitClangAttrHasAttrImpl(RecordKeeper &Records, raw_ostream &OS) { 3435 emitSourceFileHeader("Code to implement the __has_attribute logic", OS); 3436 3437 // Separate all of the attributes out into four group: generic, C++11, GNU, 3438 // and declspecs. Then generate a big switch statement for each of them. 3439 std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr"); 3440 std::vector<Record *> Declspec, Microsoft, GNU, Pragma, HLSLSemantic; 3441 std::map<std::string, std::vector<Record *>> CXX, C2x; 3442 3443 // Walk over the list of all attributes, and split them out based on the 3444 // spelling variety. 3445 for (auto *R : Attrs) { 3446 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*R); 3447 for (const auto &SI : Spellings) { 3448 const std::string &Variety = SI.variety(); 3449 if (Variety == "GNU") 3450 GNU.push_back(R); 3451 else if (Variety == "Declspec") 3452 Declspec.push_back(R); 3453 else if (Variety == "Microsoft") 3454 Microsoft.push_back(R); 3455 else if (Variety == "CXX11") 3456 CXX[SI.nameSpace()].push_back(R); 3457 else if (Variety == "C2x") 3458 C2x[SI.nameSpace()].push_back(R); 3459 else if (Variety == "Pragma") 3460 Pragma.push_back(R); 3461 else if (Variety == "HLSLSemantic") 3462 HLSLSemantic.push_back(R); 3463 } 3464 } 3465 3466 OS << "const llvm::Triple &T = Target.getTriple();\n"; 3467 OS << "switch (Syntax) {\n"; 3468 OS << "case AttributeCommonInfo::Syntax::AS_GNU:\n"; 3469 OS << " return llvm::StringSwitch<int>(Name)\n"; 3470 GenerateHasAttrSpellingStringSwitch(GNU, OS, "GNU"); 3471 OS << "case AttributeCommonInfo::Syntax::AS_Declspec:\n"; 3472 OS << " return llvm::StringSwitch<int>(Name)\n"; 3473 GenerateHasAttrSpellingStringSwitch(Declspec, OS, "Declspec"); 3474 OS << "case AttributeCommonInfo::Syntax::AS_Microsoft:\n"; 3475 OS << " return llvm::StringSwitch<int>(Name)\n"; 3476 GenerateHasAttrSpellingStringSwitch(Microsoft, OS, "Microsoft"); 3477 OS << "case AttributeCommonInfo::Syntax::AS_Pragma:\n"; 3478 OS << " return llvm::StringSwitch<int>(Name)\n"; 3479 GenerateHasAttrSpellingStringSwitch(Pragma, OS, "Pragma"); 3480 OS << "case AttributeCommonInfo::Syntax::AS_HLSLSemantic:\n"; 3481 OS << " return llvm::StringSwitch<int>(Name)\n"; 3482 GenerateHasAttrSpellingStringSwitch(HLSLSemantic, OS, "HLSLSemantic"); 3483 auto fn = [&OS](const char *Spelling, 3484 const std::map<std::string, std::vector<Record *>> &List) { 3485 OS << "case AttributeCommonInfo::Syntax::AS_" << Spelling << ": {\n"; 3486 // C++11-style attributes are further split out based on the Scope. 3487 for (auto I = List.cbegin(), E = List.cend(); I != E; ++I) { 3488 if (I != List.cbegin()) 3489 OS << " else "; 3490 if (I->first.empty()) 3491 OS << "if (ScopeName == \"\") {\n"; 3492 else 3493 OS << "if (ScopeName == \"" << I->first << "\") {\n"; 3494 OS << " return llvm::StringSwitch<int>(Name)\n"; 3495 GenerateHasAttrSpellingStringSwitch(I->second, OS, Spelling, I->first); 3496 OS << "}"; 3497 } 3498 OS << "\n} break;\n"; 3499 }; 3500 fn("CXX11", CXX); 3501 fn("C2x", C2x); 3502 OS << "case AttributeCommonInfo::Syntax::AS_Keyword:\n"; 3503 OS << "case AttributeCommonInfo::Syntax::AS_ContextSensitiveKeyword:\n"; 3504 OS << " llvm_unreachable(\"hasAttribute not supported for keyword\");\n"; 3505 OS << " return 0;\n"; 3506 OS << "case AttributeCommonInfo::Syntax::AS_Implicit:\n"; 3507 OS << " llvm_unreachable (\"hasAttribute not supported for " 3508 "AS_Implicit\");\n"; 3509 OS << " return 0;\n"; 3510 3511 OS << "}\n"; 3512 } 3513 3514 void EmitClangAttrSpellingListIndex(RecordKeeper &Records, raw_ostream &OS) { 3515 emitSourceFileHeader("Code to translate different attribute spellings " 3516 "into internal identifiers", OS); 3517 3518 OS << " switch (getParsedKind()) {\n"; 3519 OS << " case IgnoredAttribute:\n"; 3520 OS << " case UnknownAttribute:\n"; 3521 OS << " case NoSemaHandlerAttribute:\n"; 3522 OS << " llvm_unreachable(\"Ignored/unknown shouldn't get here\");\n"; 3523 3524 ParsedAttrMap Attrs = getParsedAttrList(Records); 3525 for (const auto &I : Attrs) { 3526 const Record &R = *I.second; 3527 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R); 3528 OS << " case AT_" << I.first << ": {\n"; 3529 for (unsigned I = 0; I < Spellings.size(); ++ I) { 3530 OS << " if (Name == \"" << Spellings[I].name() << "\" && " 3531 << "getSyntax() == AttributeCommonInfo::AS_" << Spellings[I].variety() 3532 << " && Scope == \"" << Spellings[I].nameSpace() << "\")\n" 3533 << " return " << I << ";\n"; 3534 } 3535 3536 OS << " break;\n"; 3537 OS << " }\n"; 3538 } 3539 3540 OS << " }\n"; 3541 OS << " return 0;\n"; 3542 } 3543 3544 // Emits code used by RecursiveASTVisitor to visit attributes 3545 void EmitClangAttrASTVisitor(RecordKeeper &Records, raw_ostream &OS) { 3546 emitSourceFileHeader("Used by RecursiveASTVisitor to visit attributes.", OS); 3547 3548 std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"); 3549 3550 // Write method declarations for Traverse* methods. 3551 // We emit this here because we only generate methods for attributes that 3552 // are declared as ASTNodes. 3553 OS << "#ifdef ATTR_VISITOR_DECLS_ONLY\n\n"; 3554 for (const auto *Attr : Attrs) { 3555 const Record &R = *Attr; 3556 if (!R.getValueAsBit("ASTNode")) 3557 continue; 3558 OS << " bool Traverse" 3559 << R.getName() << "Attr(" << R.getName() << "Attr *A);\n"; 3560 OS << " bool Visit" 3561 << R.getName() << "Attr(" << R.getName() << "Attr *A) {\n" 3562 << " return true; \n" 3563 << " }\n"; 3564 } 3565 OS << "\n#else // ATTR_VISITOR_DECLS_ONLY\n\n"; 3566 3567 // Write individual Traverse* methods for each attribute class. 3568 for (const auto *Attr : Attrs) { 3569 const Record &R = *Attr; 3570 if (!R.getValueAsBit("ASTNode")) 3571 continue; 3572 3573 OS << "template <typename Derived>\n" 3574 << "bool VISITORCLASS<Derived>::Traverse" 3575 << R.getName() << "Attr(" << R.getName() << "Attr *A) {\n" 3576 << " if (!getDerived().VisitAttr(A))\n" 3577 << " return false;\n" 3578 << " if (!getDerived().Visit" << R.getName() << "Attr(A))\n" 3579 << " return false;\n"; 3580 3581 std::vector<Record*> ArgRecords = R.getValueAsListOfDefs("Args"); 3582 for (const auto *Arg : ArgRecords) 3583 createArgument(*Arg, R.getName())->writeASTVisitorTraversal(OS); 3584 3585 if (Attr->getValueAsBit("AcceptsExprPack")) 3586 VariadicExprArgument("DelayedArgs", R.getName()) 3587 .writeASTVisitorTraversal(OS); 3588 3589 OS << " return true;\n"; 3590 OS << "}\n\n"; 3591 } 3592 3593 // Write generic Traverse routine 3594 OS << "template <typename Derived>\n" 3595 << "bool VISITORCLASS<Derived>::TraverseAttr(Attr *A) {\n" 3596 << " if (!A)\n" 3597 << " return true;\n" 3598 << "\n" 3599 << " switch (A->getKind()) {\n"; 3600 3601 for (const auto *Attr : Attrs) { 3602 const Record &R = *Attr; 3603 if (!R.getValueAsBit("ASTNode")) 3604 continue; 3605 3606 OS << " case attr::" << R.getName() << ":\n" 3607 << " return getDerived().Traverse" << R.getName() << "Attr(" 3608 << "cast<" << R.getName() << "Attr>(A));\n"; 3609 } 3610 OS << " }\n"; // end switch 3611 OS << " llvm_unreachable(\"bad attribute kind\");\n"; 3612 OS << "}\n"; // end function 3613 OS << "#endif // ATTR_VISITOR_DECLS_ONLY\n"; 3614 } 3615 3616 void EmitClangAttrTemplateInstantiateHelper(const std::vector<Record *> &Attrs, 3617 raw_ostream &OS, 3618 bool AppliesToDecl) { 3619 3620 OS << " switch (At->getKind()) {\n"; 3621 for (const auto *Attr : Attrs) { 3622 const Record &R = *Attr; 3623 if (!R.getValueAsBit("ASTNode")) 3624 continue; 3625 OS << " case attr::" << R.getName() << ": {\n"; 3626 bool ShouldClone = R.getValueAsBit("Clone") && 3627 (!AppliesToDecl || 3628 R.getValueAsBit("MeaningfulToClassTemplateDefinition")); 3629 3630 if (!ShouldClone) { 3631 OS << " return nullptr;\n"; 3632 OS << " }\n"; 3633 continue; 3634 } 3635 3636 OS << " const auto *A = cast<" 3637 << R.getName() << "Attr>(At);\n"; 3638 bool TDependent = R.getValueAsBit("TemplateDependent"); 3639 3640 if (!TDependent) { 3641 OS << " return A->clone(C);\n"; 3642 OS << " }\n"; 3643 continue; 3644 } 3645 3646 std::vector<Record*> ArgRecords = R.getValueAsListOfDefs("Args"); 3647 std::vector<std::unique_ptr<Argument>> Args; 3648 Args.reserve(ArgRecords.size()); 3649 3650 for (const auto *ArgRecord : ArgRecords) 3651 Args.emplace_back(createArgument(*ArgRecord, R.getName())); 3652 3653 for (auto const &ai : Args) 3654 ai->writeTemplateInstantiation(OS); 3655 3656 OS << " return new (C) " << R.getName() << "Attr(C, *A"; 3657 for (auto const &ai : Args) { 3658 OS << ", "; 3659 ai->writeTemplateInstantiationArgs(OS); 3660 } 3661 OS << ");\n" 3662 << " }\n"; 3663 } 3664 OS << " } // end switch\n" 3665 << " llvm_unreachable(\"Unknown attribute!\");\n" 3666 << " return nullptr;\n"; 3667 } 3668 3669 // Emits code to instantiate dependent attributes on templates. 3670 void EmitClangAttrTemplateInstantiate(RecordKeeper &Records, raw_ostream &OS) { 3671 emitSourceFileHeader("Template instantiation code for attributes", OS); 3672 3673 std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"); 3674 3675 OS << "namespace clang {\n" 3676 << "namespace sema {\n\n" 3677 << "Attr *instantiateTemplateAttribute(const Attr *At, ASTContext &C, " 3678 << "Sema &S,\n" 3679 << " const MultiLevelTemplateArgumentList &TemplateArgs) {\n"; 3680 EmitClangAttrTemplateInstantiateHelper(Attrs, OS, /*AppliesToDecl*/false); 3681 OS << "}\n\n" 3682 << "Attr *instantiateTemplateAttributeForDecl(const Attr *At,\n" 3683 << " ASTContext &C, Sema &S,\n" 3684 << " const MultiLevelTemplateArgumentList &TemplateArgs) {\n"; 3685 EmitClangAttrTemplateInstantiateHelper(Attrs, OS, /*AppliesToDecl*/true); 3686 OS << "}\n\n" 3687 << "} // end namespace sema\n" 3688 << "} // end namespace clang\n"; 3689 } 3690 3691 // Emits the list of parsed attributes. 3692 void EmitClangAttrParsedAttrList(RecordKeeper &Records, raw_ostream &OS) { 3693 emitSourceFileHeader("List of all attributes that Clang recognizes", OS); 3694 3695 OS << "#ifndef PARSED_ATTR\n"; 3696 OS << "#define PARSED_ATTR(NAME) NAME\n"; 3697 OS << "#endif\n\n"; 3698 3699 ParsedAttrMap Names = getParsedAttrList(Records); 3700 for (const auto &I : Names) { 3701 OS << "PARSED_ATTR(" << I.first << ")\n"; 3702 } 3703 } 3704 3705 static bool isArgVariadic(const Record &R, StringRef AttrName) { 3706 return createArgument(R, AttrName)->isVariadic(); 3707 } 3708 3709 static void emitArgInfo(const Record &R, raw_ostream &OS) { 3710 // This function will count the number of arguments specified for the 3711 // attribute and emit the number of required arguments followed by the 3712 // number of optional arguments. 3713 std::vector<Record *> Args = R.getValueAsListOfDefs("Args"); 3714 unsigned ArgCount = 0, OptCount = 0, ArgMemberCount = 0; 3715 bool HasVariadic = false; 3716 for (const auto *Arg : Args) { 3717 // If the arg is fake, it's the user's job to supply it: general parsing 3718 // logic shouldn't need to know anything about it. 3719 if (Arg->getValueAsBit("Fake")) 3720 continue; 3721 Arg->getValueAsBit("Optional") ? ++OptCount : ++ArgCount; 3722 ++ArgMemberCount; 3723 if (!HasVariadic && isArgVariadic(*Arg, R.getName())) 3724 HasVariadic = true; 3725 } 3726 3727 // If there is a variadic argument, we will set the optional argument count 3728 // to its largest value. Since it's currently a 4-bit number, we set it to 15. 3729 OS << " /*NumArgs=*/" << ArgCount << ",\n"; 3730 OS << " /*OptArgs=*/" << (HasVariadic ? 15 : OptCount) << ",\n"; 3731 OS << " /*NumArgMembers=*/" << ArgMemberCount << ",\n"; 3732 } 3733 3734 static std::string GetDiagnosticSpelling(const Record &R) { 3735 std::string Ret = std::string(R.getValueAsString("DiagSpelling")); 3736 if (!Ret.empty()) 3737 return Ret; 3738 3739 // If we couldn't find the DiagSpelling in this object, we can check to see 3740 // if the object is one that has a base, and if it is, loop up to the Base 3741 // member recursively. 3742 if (auto Base = R.getValueAsOptionalDef(BaseFieldName)) 3743 return GetDiagnosticSpelling(*Base); 3744 3745 return ""; 3746 } 3747 3748 static std::string CalculateDiagnostic(const Record &S) { 3749 // If the SubjectList object has a custom diagnostic associated with it, 3750 // return that directly. 3751 const StringRef CustomDiag = S.getValueAsString("CustomDiag"); 3752 if (!CustomDiag.empty()) 3753 return ("\"" + Twine(CustomDiag) + "\"").str(); 3754 3755 std::vector<std::string> DiagList; 3756 std::vector<Record *> Subjects = S.getValueAsListOfDefs("Subjects"); 3757 for (const auto *Subject : Subjects) { 3758 const Record &R = *Subject; 3759 // Get the diagnostic text from the Decl or Stmt node given. 3760 std::string V = GetDiagnosticSpelling(R); 3761 if (V.empty()) { 3762 PrintError(R.getLoc(), 3763 "Could not determine diagnostic spelling for the node: " + 3764 R.getName() + "; please add one to DeclNodes.td"); 3765 } else { 3766 // The node may contain a list of elements itself, so split the elements 3767 // by a comma, and trim any whitespace. 3768 SmallVector<StringRef, 2> Frags; 3769 llvm::SplitString(V, Frags, ","); 3770 for (auto Str : Frags) { 3771 DiagList.push_back(std::string(Str.trim())); 3772 } 3773 } 3774 } 3775 3776 if (DiagList.empty()) { 3777 PrintFatalError(S.getLoc(), 3778 "Could not deduce diagnostic argument for Attr subjects"); 3779 return ""; 3780 } 3781 3782 // FIXME: this is not particularly good for localization purposes and ideally 3783 // should be part of the diagnostics engine itself with some sort of list 3784 // specifier. 3785 3786 // A single member of the list can be returned directly. 3787 if (DiagList.size() == 1) 3788 return '"' + DiagList.front() + '"'; 3789 3790 if (DiagList.size() == 2) 3791 return '"' + DiagList[0] + " and " + DiagList[1] + '"'; 3792 3793 // If there are more than two in the list, we serialize the first N - 1 3794 // elements with a comma. This leaves the string in the state: foo, bar, 3795 // baz (but misses quux). We can then add ", and " for the last element 3796 // manually. 3797 std::string Diag = llvm::join(DiagList.begin(), DiagList.end() - 1, ", "); 3798 return '"' + Diag + ", and " + *(DiagList.end() - 1) + '"'; 3799 } 3800 3801 static std::string GetSubjectWithSuffix(const Record *R) { 3802 const std::string &B = std::string(R->getName()); 3803 if (B == "DeclBase") 3804 return "Decl"; 3805 return B + "Decl"; 3806 } 3807 3808 static std::string functionNameForCustomAppertainsTo(const Record &Subject) { 3809 return "is" + Subject.getName().str(); 3810 } 3811 3812 static void GenerateCustomAppertainsTo(const Record &Subject, raw_ostream &OS) { 3813 std::string FnName = functionNameForCustomAppertainsTo(Subject); 3814 3815 // If this code has already been generated, we don't need to do anything. 3816 static std::set<std::string> CustomSubjectSet; 3817 auto I = CustomSubjectSet.find(FnName); 3818 if (I != CustomSubjectSet.end()) 3819 return; 3820 3821 // This only works with non-root Decls. 3822 Record *Base = Subject.getValueAsDef(BaseFieldName); 3823 3824 // Not currently support custom subjects within custom subjects. 3825 if (Base->isSubClassOf("SubsetSubject")) { 3826 PrintFatalError(Subject.getLoc(), 3827 "SubsetSubjects within SubsetSubjects is not supported"); 3828 return; 3829 } 3830 3831 OS << "static bool " << FnName << "(const Decl *D) {\n"; 3832 OS << " if (const auto *S = dyn_cast<"; 3833 OS << GetSubjectWithSuffix(Base); 3834 OS << ">(D))\n"; 3835 OS << " return " << Subject.getValueAsString("CheckCode") << ";\n"; 3836 OS << " return false;\n"; 3837 OS << "}\n\n"; 3838 3839 CustomSubjectSet.insert(FnName); 3840 } 3841 3842 static void GenerateAppertainsTo(const Record &Attr, raw_ostream &OS) { 3843 // If the attribute does not contain a Subjects definition, then use the 3844 // default appertainsTo logic. 3845 if (Attr.isValueUnset("Subjects")) 3846 return; 3847 3848 const Record *SubjectObj = Attr.getValueAsDef("Subjects"); 3849 std::vector<Record *> Subjects = SubjectObj->getValueAsListOfDefs("Subjects"); 3850 3851 // If the list of subjects is empty, it is assumed that the attribute 3852 // appertains to everything. 3853 if (Subjects.empty()) 3854 return; 3855 3856 bool Warn = SubjectObj->getValueAsDef("Diag")->getValueAsBit("Warn"); 3857 3858 // Split the subjects into declaration subjects and statement subjects. 3859 // FIXME: subset subjects are added to the declaration list until there are 3860 // enough statement attributes with custom subject needs to warrant 3861 // the implementation effort. 3862 std::vector<Record *> DeclSubjects, StmtSubjects; 3863 llvm::copy_if( 3864 Subjects, std::back_inserter(DeclSubjects), [](const Record *R) { 3865 return R->isSubClassOf("SubsetSubject") || !R->isSubClassOf("StmtNode"); 3866 }); 3867 llvm::copy_if(Subjects, std::back_inserter(StmtSubjects), 3868 [](const Record *R) { return R->isSubClassOf("StmtNode"); }); 3869 3870 // We should have sorted all of the subjects into two lists. 3871 // FIXME: this assertion will be wrong if we ever add type attribute subjects. 3872 assert(DeclSubjects.size() + StmtSubjects.size() == Subjects.size()); 3873 3874 if (DeclSubjects.empty()) { 3875 // If there are no decl subjects but there are stmt subjects, diagnose 3876 // trying to apply a statement attribute to a declaration. 3877 if (!StmtSubjects.empty()) { 3878 OS << "bool diagAppertainsToDecl(Sema &S, const ParsedAttr &AL, "; 3879 OS << "const Decl *D) const override {\n"; 3880 OS << " S.Diag(AL.getLoc(), diag::err_attribute_invalid_on_decl)\n"; 3881 OS << " << AL << AL.isRegularKeywordAttribute() << " 3882 "D->getLocation();\n"; 3883 OS << " return false;\n"; 3884 OS << "}\n\n"; 3885 } 3886 } else { 3887 // Otherwise, generate an appertainsTo check specific to this attribute 3888 // which checks all of the given subjects against the Decl passed in. 3889 OS << "bool diagAppertainsToDecl(Sema &S, "; 3890 OS << "const ParsedAttr &Attr, const Decl *D) const override {\n"; 3891 OS << " if ("; 3892 for (auto I = DeclSubjects.begin(), E = DeclSubjects.end(); I != E; ++I) { 3893 // If the subject has custom code associated with it, use the generated 3894 // function for it. The function cannot be inlined into this check (yet) 3895 // because it requires the subject to be of a specific type, and were that 3896 // information inlined here, it would not support an attribute with 3897 // multiple custom subjects. 3898 if ((*I)->isSubClassOf("SubsetSubject")) 3899 OS << "!" << functionNameForCustomAppertainsTo(**I) << "(D)"; 3900 else 3901 OS << "!isa<" << GetSubjectWithSuffix(*I) << ">(D)"; 3902 3903 if (I + 1 != E) 3904 OS << " && "; 3905 } 3906 OS << ") {\n"; 3907 OS << " S.Diag(Attr.getLoc(), diag::"; 3908 OS << (Warn ? "warn_attribute_wrong_decl_type_str" 3909 : "err_attribute_wrong_decl_type_str"); 3910 OS << ")\n"; 3911 OS << " << Attr << Attr.isRegularKeywordAttribute() << "; 3912 OS << CalculateDiagnostic(*SubjectObj) << ";\n"; 3913 OS << " return false;\n"; 3914 OS << " }\n"; 3915 OS << " return true;\n"; 3916 OS << "}\n\n"; 3917 } 3918 3919 if (StmtSubjects.empty()) { 3920 // If there are no stmt subjects but there are decl subjects, diagnose 3921 // trying to apply a declaration attribute to a statement. 3922 if (!DeclSubjects.empty()) { 3923 OS << "bool diagAppertainsToStmt(Sema &S, const ParsedAttr &AL, "; 3924 OS << "const Stmt *St) const override {\n"; 3925 OS << " S.Diag(AL.getLoc(), diag::err_decl_attribute_invalid_on_stmt)\n"; 3926 OS << " << AL << AL.isRegularKeywordAttribute() << " 3927 "St->getBeginLoc();\n"; 3928 OS << " return false;\n"; 3929 OS << "}\n\n"; 3930 } 3931 } else { 3932 // Now, do the same for statements. 3933 OS << "bool diagAppertainsToStmt(Sema &S, "; 3934 OS << "const ParsedAttr &Attr, const Stmt *St) const override {\n"; 3935 OS << " if ("; 3936 for (auto I = StmtSubjects.begin(), E = StmtSubjects.end(); I != E; ++I) { 3937 OS << "!isa<" << (*I)->getName() << ">(St)"; 3938 if (I + 1 != E) 3939 OS << " && "; 3940 } 3941 OS << ") {\n"; 3942 OS << " S.Diag(Attr.getLoc(), diag::"; 3943 OS << (Warn ? "warn_attribute_wrong_decl_type_str" 3944 : "err_attribute_wrong_decl_type_str"); 3945 OS << ")\n"; 3946 OS << " << Attr << Attr.isRegularKeywordAttribute() << "; 3947 OS << CalculateDiagnostic(*SubjectObj) << ";\n"; 3948 OS << " return false;\n"; 3949 OS << " }\n"; 3950 OS << " return true;\n"; 3951 OS << "}\n\n"; 3952 } 3953 } 3954 3955 // Generates the mutual exclusion checks. The checks for parsed attributes are 3956 // written into OS and the checks for merging declaration attributes are 3957 // written into MergeOS. 3958 static void GenerateMutualExclusionsChecks(const Record &Attr, 3959 const RecordKeeper &Records, 3960 raw_ostream &OS, 3961 raw_ostream &MergeDeclOS, 3962 raw_ostream &MergeStmtOS) { 3963 // Find all of the definitions that inherit from MutualExclusions and include 3964 // the given attribute in the list of exclusions to generate the 3965 // diagMutualExclusion() check. 3966 std::vector<Record *> ExclusionsList = 3967 Records.getAllDerivedDefinitions("MutualExclusions"); 3968 3969 // We don't do any of this magic for type attributes yet. 3970 if (Attr.isSubClassOf("TypeAttr")) 3971 return; 3972 3973 // This means the attribute is either a statement attribute, a decl 3974 // attribute, or both; find out which. 3975 bool CurAttrIsStmtAttr = 3976 Attr.isSubClassOf("StmtAttr") || Attr.isSubClassOf("DeclOrStmtAttr"); 3977 bool CurAttrIsDeclAttr = 3978 !CurAttrIsStmtAttr || Attr.isSubClassOf("DeclOrStmtAttr"); 3979 3980 std::vector<std::string> DeclAttrs, StmtAttrs; 3981 3982 for (const Record *Exclusion : ExclusionsList) { 3983 std::vector<Record *> MutuallyExclusiveAttrs = 3984 Exclusion->getValueAsListOfDefs("Exclusions"); 3985 auto IsCurAttr = [Attr](const Record *R) { 3986 return R->getName() == Attr.getName(); 3987 }; 3988 if (llvm::any_of(MutuallyExclusiveAttrs, IsCurAttr)) { 3989 // This list of exclusions includes the attribute we're looking for, so 3990 // add the exclusive attributes to the proper list for checking. 3991 for (const Record *AttrToExclude : MutuallyExclusiveAttrs) { 3992 if (IsCurAttr(AttrToExclude)) 3993 continue; 3994 3995 if (CurAttrIsStmtAttr) 3996 StmtAttrs.push_back((AttrToExclude->getName() + "Attr").str()); 3997 if (CurAttrIsDeclAttr) 3998 DeclAttrs.push_back((AttrToExclude->getName() + "Attr").str()); 3999 } 4000 } 4001 } 4002 4003 // If there are any decl or stmt attributes, silence -Woverloaded-virtual 4004 // warnings for them both. 4005 if (!DeclAttrs.empty() || !StmtAttrs.empty()) 4006 OS << " using ParsedAttrInfo::diagMutualExclusion;\n\n"; 4007 4008 // If we discovered any decl or stmt attributes to test for, generate the 4009 // predicates for them now. 4010 if (!DeclAttrs.empty()) { 4011 // Generate the ParsedAttrInfo subclass logic for declarations. 4012 OS << " bool diagMutualExclusion(Sema &S, const ParsedAttr &AL, " 4013 << "const Decl *D) const override {\n"; 4014 for (const std::string &A : DeclAttrs) { 4015 OS << " if (const auto *A = D->getAttr<" << A << ">()) {\n"; 4016 OS << " S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)" 4017 << " << AL << A << (AL.isRegularKeywordAttribute() ||" 4018 << " A->isRegularKeywordAttribute());\n"; 4019 OS << " S.Diag(A->getLocation(), diag::note_conflicting_attribute);"; 4020 OS << " \nreturn false;\n"; 4021 OS << " }\n"; 4022 } 4023 OS << " return true;\n"; 4024 OS << " }\n\n"; 4025 4026 // Also generate the declaration attribute merging logic if the current 4027 // attribute is one that can be inheritted on a declaration. It is assumed 4028 // this code will be executed in the context of a function with parameters: 4029 // Sema &S, Decl *D, Attr *A and that returns a bool (false on diagnostic, 4030 // true on success). 4031 if (Attr.isSubClassOf("InheritableAttr")) { 4032 MergeDeclOS << " if (const auto *Second = dyn_cast<" 4033 << (Attr.getName() + "Attr").str() << ">(A)) {\n"; 4034 for (const std::string &A : DeclAttrs) { 4035 MergeDeclOS << " if (const auto *First = D->getAttr<" << A 4036 << ">()) {\n"; 4037 MergeDeclOS << " S.Diag(First->getLocation(), " 4038 << "diag::err_attributes_are_not_compatible) << First << " 4039 << "Second << (First->isRegularKeywordAttribute() || " 4040 << "Second->isRegularKeywordAttribute());\n"; 4041 MergeDeclOS << " S.Diag(Second->getLocation(), " 4042 << "diag::note_conflicting_attribute);\n"; 4043 MergeDeclOS << " return false;\n"; 4044 MergeDeclOS << " }\n"; 4045 } 4046 MergeDeclOS << " return true;\n"; 4047 MergeDeclOS << " }\n"; 4048 } 4049 } 4050 4051 // Statement attributes are a bit different from declarations. With 4052 // declarations, each attribute is added to the declaration as it is 4053 // processed, and so you can look on the Decl * itself to see if there is a 4054 // conflicting attribute. Statement attributes are processed as a group 4055 // because AttributedStmt needs to tail-allocate all of the attribute nodes 4056 // at once. This means we cannot check whether the statement already contains 4057 // an attribute to check for the conflict. Instead, we need to check whether 4058 // the given list of semantic attributes contain any conflicts. It is assumed 4059 // this code will be executed in the context of a function with parameters: 4060 // Sema &S, const SmallVectorImpl<const Attr *> &C. The code will be within a 4061 // loop which loops over the container C with a loop variable named A to 4062 // represent the current attribute to check for conflicts. 4063 // 4064 // FIXME: it would be nice not to walk over the list of potential attributes 4065 // to apply to the statement more than once, but statements typically don't 4066 // have long lists of attributes on them, so re-walking the list should not 4067 // be an expensive operation. 4068 if (!StmtAttrs.empty()) { 4069 MergeStmtOS << " if (const auto *Second = dyn_cast<" 4070 << (Attr.getName() + "Attr").str() << ">(A)) {\n"; 4071 MergeStmtOS << " auto Iter = llvm::find_if(C, [](const Attr *Check) " 4072 << "{ return isa<"; 4073 interleave( 4074 StmtAttrs, [&](const std::string &Name) { MergeStmtOS << Name; }, 4075 [&] { MergeStmtOS << ", "; }); 4076 MergeStmtOS << ">(Check); });\n"; 4077 MergeStmtOS << " if (Iter != C.end()) {\n"; 4078 MergeStmtOS << " S.Diag((*Iter)->getLocation(), " 4079 << "diag::err_attributes_are_not_compatible) << *Iter << " 4080 << "Second << ((*Iter)->isRegularKeywordAttribute() || " 4081 << "Second->isRegularKeywordAttribute());\n"; 4082 MergeStmtOS << " S.Diag(Second->getLocation(), " 4083 << "diag::note_conflicting_attribute);\n"; 4084 MergeStmtOS << " return false;\n"; 4085 MergeStmtOS << " }\n"; 4086 MergeStmtOS << " }\n"; 4087 } 4088 } 4089 4090 static void 4091 emitAttributeMatchRules(PragmaClangAttributeSupport &PragmaAttributeSupport, 4092 raw_ostream &OS) { 4093 OS << "static bool checkAttributeMatchRuleAppliesTo(const Decl *D, " 4094 << AttributeSubjectMatchRule::EnumName << " rule) {\n"; 4095 OS << " switch (rule) {\n"; 4096 for (const auto &Rule : PragmaAttributeSupport.Rules) { 4097 if (Rule.isAbstractRule()) { 4098 OS << " case " << Rule.getEnumValue() << ":\n"; 4099 OS << " assert(false && \"Abstract matcher rule isn't allowed\");\n"; 4100 OS << " return false;\n"; 4101 continue; 4102 } 4103 std::vector<Record *> Subjects = Rule.getSubjects(); 4104 assert(!Subjects.empty() && "Missing subjects"); 4105 OS << " case " << Rule.getEnumValue() << ":\n"; 4106 OS << " return "; 4107 for (auto I = Subjects.begin(), E = Subjects.end(); I != E; ++I) { 4108 // If the subject has custom code associated with it, use the function 4109 // that was generated for GenerateAppertainsTo to check if the declaration 4110 // is valid. 4111 if ((*I)->isSubClassOf("SubsetSubject")) 4112 OS << functionNameForCustomAppertainsTo(**I) << "(D)"; 4113 else 4114 OS << "isa<" << GetSubjectWithSuffix(*I) << ">(D)"; 4115 4116 if (I + 1 != E) 4117 OS << " || "; 4118 } 4119 OS << ";\n"; 4120 } 4121 OS << " }\n"; 4122 OS << " llvm_unreachable(\"Invalid match rule\");\nreturn false;\n"; 4123 OS << "}\n\n"; 4124 } 4125 4126 static void GenerateLangOptRequirements(const Record &R, 4127 raw_ostream &OS) { 4128 // If the attribute has an empty or unset list of language requirements, 4129 // use the default handler. 4130 std::vector<Record *> LangOpts = R.getValueAsListOfDefs("LangOpts"); 4131 if (LangOpts.empty()) 4132 return; 4133 4134 OS << "bool acceptsLangOpts(const LangOptions &LangOpts) const override {\n"; 4135 OS << " return " << GenerateTestExpression(LangOpts) << ";\n"; 4136 OS << "}\n\n"; 4137 } 4138 4139 static void GenerateTargetRequirements(const Record &Attr, 4140 const ParsedAttrMap &Dupes, 4141 raw_ostream &OS) { 4142 // If the attribute is not a target specific attribute, use the default 4143 // target handler. 4144 if (!Attr.isSubClassOf("TargetSpecificAttr")) 4145 return; 4146 4147 // Get the list of architectures to be tested for. 4148 const Record *R = Attr.getValueAsDef("Target"); 4149 std::vector<StringRef> Arches = R->getValueAsListOfStrings("Arches"); 4150 4151 // If there are other attributes which share the same parsed attribute kind, 4152 // such as target-specific attributes with a shared spelling, collapse the 4153 // duplicate architectures. This is required because a shared target-specific 4154 // attribute has only one ParsedAttr::Kind enumeration value, but it 4155 // applies to multiple target architectures. In order for the attribute to be 4156 // considered valid, all of its architectures need to be included. 4157 if (!Attr.isValueUnset("ParseKind")) { 4158 const StringRef APK = Attr.getValueAsString("ParseKind"); 4159 for (const auto &I : Dupes) { 4160 if (I.first == APK) { 4161 std::vector<StringRef> DA = 4162 I.second->getValueAsDef("Target")->getValueAsListOfStrings( 4163 "Arches"); 4164 Arches.insert(Arches.end(), DA.begin(), DA.end()); 4165 } 4166 } 4167 } 4168 4169 std::string FnName = "isTarget"; 4170 std::string Test; 4171 bool UsesT = GenerateTargetSpecificAttrChecks(R, Arches, Test, &FnName); 4172 4173 OS << "bool existsInTarget(const TargetInfo &Target) const override {\n"; 4174 if (UsesT) 4175 OS << " const llvm::Triple &T = Target.getTriple(); (void)T;\n"; 4176 OS << " return " << Test << ";\n"; 4177 OS << "}\n\n"; 4178 } 4179 4180 static void GenerateSpellingIndexToSemanticSpelling(const Record &Attr, 4181 raw_ostream &OS) { 4182 // If the attribute does not have a semantic form, we can bail out early. 4183 if (!Attr.getValueAsBit("ASTNode")) 4184 return; 4185 4186 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attr); 4187 4188 // If there are zero or one spellings, or all of the spellings share the same 4189 // name, we can also bail out early. 4190 if (Spellings.size() <= 1 || SpellingNamesAreCommon(Spellings)) 4191 return; 4192 4193 // Generate the enumeration we will use for the mapping. 4194 SemanticSpellingMap SemanticToSyntacticMap; 4195 std::string Enum = CreateSemanticSpellings(Spellings, SemanticToSyntacticMap); 4196 std::string Name = Attr.getName().str() + "AttrSpellingMap"; 4197 4198 OS << "unsigned spellingIndexToSemanticSpelling("; 4199 OS << "const ParsedAttr &Attr) const override {\n"; 4200 OS << Enum; 4201 OS << " unsigned Idx = Attr.getAttributeSpellingListIndex();\n"; 4202 WriteSemanticSpellingSwitch("Idx", SemanticToSyntacticMap, OS); 4203 OS << "}\n\n"; 4204 } 4205 4206 static void GenerateHandleDeclAttribute(const Record &Attr, raw_ostream &OS) { 4207 // Only generate if Attr can be handled simply. 4208 if (!Attr.getValueAsBit("SimpleHandler")) 4209 return; 4210 4211 // Generate a function which just converts from ParsedAttr to the Attr type. 4212 OS << "AttrHandling handleDeclAttribute(Sema &S, Decl *D,"; 4213 OS << "const ParsedAttr &Attr) const override {\n"; 4214 OS << " D->addAttr(::new (S.Context) " << Attr.getName(); 4215 OS << "Attr(S.Context, Attr));\n"; 4216 OS << " return AttributeApplied;\n"; 4217 OS << "}\n\n"; 4218 } 4219 4220 static bool isParamExpr(const Record *Arg) { 4221 return !Arg->getSuperClasses().empty() && 4222 llvm::StringSwitch<bool>( 4223 Arg->getSuperClasses().back().first->getName()) 4224 .Case("ExprArgument", true) 4225 .Case("VariadicExprArgument", true) 4226 .Default(false); 4227 } 4228 4229 void GenerateIsParamExpr(const Record &Attr, raw_ostream &OS) { 4230 OS << "bool isParamExpr(size_t N) const override {\n"; 4231 OS << " return "; 4232 auto Args = Attr.getValueAsListOfDefs("Args"); 4233 for (size_t I = 0; I < Args.size(); ++I) 4234 if (isParamExpr(Args[I])) 4235 OS << "(N == " << I << ") || "; 4236 OS << "false;\n"; 4237 OS << "}\n\n"; 4238 } 4239 4240 void GenerateHandleAttrWithDelayedArgs(RecordKeeper &Records, raw_ostream &OS) { 4241 OS << "static void handleAttrWithDelayedArgs(Sema &S, Decl *D, "; 4242 OS << "const ParsedAttr &Attr) {\n"; 4243 OS << " SmallVector<Expr *, 4> ArgExprs;\n"; 4244 OS << " ArgExprs.reserve(Attr.getNumArgs());\n"; 4245 OS << " for (unsigned I = 0; I < Attr.getNumArgs(); ++I) {\n"; 4246 OS << " assert(!Attr.isArgIdent(I));\n"; 4247 OS << " ArgExprs.push_back(Attr.getArgAsExpr(I));\n"; 4248 OS << " }\n"; 4249 OS << " clang::Attr *CreatedAttr = nullptr;\n"; 4250 OS << " switch (Attr.getKind()) {\n"; 4251 OS << " default:\n"; 4252 OS << " llvm_unreachable(\"Attribute cannot hold delayed arguments.\");\n"; 4253 ParsedAttrMap Attrs = getParsedAttrList(Records); 4254 for (const auto &I : Attrs) { 4255 const Record &R = *I.second; 4256 if (!R.getValueAsBit("AcceptsExprPack")) 4257 continue; 4258 OS << " case ParsedAttr::AT_" << I.first << ": {\n"; 4259 OS << " CreatedAttr = " << R.getName() << "Attr::CreateWithDelayedArgs"; 4260 OS << "(S.Context, ArgExprs.data(), ArgExprs.size(), Attr);\n"; 4261 OS << " break;\n"; 4262 OS << " }\n"; 4263 } 4264 OS << " }\n"; 4265 OS << " D->addAttr(CreatedAttr);\n"; 4266 OS << "}\n\n"; 4267 } 4268 4269 static bool IsKnownToGCC(const Record &Attr) { 4270 // Look at the spellings for this subject; if there are any spellings which 4271 // claim to be known to GCC, the attribute is known to GCC. 4272 return llvm::any_of( 4273 GetFlattenedSpellings(Attr), 4274 [](const FlattenedSpelling &S) { return S.knownToGCC(); }); 4275 } 4276 4277 /// Emits the parsed attribute helpers 4278 void EmitClangAttrParsedAttrImpl(RecordKeeper &Records, raw_ostream &OS) { 4279 emitSourceFileHeader("Parsed attribute helpers", OS); 4280 4281 OS << "#if !defined(WANT_DECL_MERGE_LOGIC) && " 4282 << "!defined(WANT_STMT_MERGE_LOGIC)\n"; 4283 PragmaClangAttributeSupport &PragmaAttributeSupport = 4284 getPragmaAttributeSupport(Records); 4285 4286 // Get the list of parsed attributes, and accept the optional list of 4287 // duplicates due to the ParseKind. 4288 ParsedAttrMap Dupes; 4289 ParsedAttrMap Attrs = getParsedAttrList(Records, &Dupes); 4290 4291 // Generate all of the custom appertainsTo functions that the attributes 4292 // will be using. 4293 for (const auto &I : Attrs) { 4294 const Record &Attr = *I.second; 4295 if (Attr.isValueUnset("Subjects")) 4296 continue; 4297 const Record *SubjectObj = Attr.getValueAsDef("Subjects"); 4298 for (auto Subject : SubjectObj->getValueAsListOfDefs("Subjects")) 4299 if (Subject->isSubClassOf("SubsetSubject")) 4300 GenerateCustomAppertainsTo(*Subject, OS); 4301 } 4302 4303 // This stream is used to collect all of the declaration attribute merging 4304 // logic for performing mutual exclusion checks. This gets emitted at the 4305 // end of the file in a helper function of its own. 4306 std::string DeclMergeChecks, StmtMergeChecks; 4307 raw_string_ostream MergeDeclOS(DeclMergeChecks), MergeStmtOS(StmtMergeChecks); 4308 4309 // Generate a ParsedAttrInfo struct for each of the attributes. 4310 for (auto I = Attrs.begin(), E = Attrs.end(); I != E; ++I) { 4311 // TODO: If the attribute's kind appears in the list of duplicates, that is 4312 // because it is a target-specific attribute that appears multiple times. 4313 // It would be beneficial to test whether the duplicates are "similar 4314 // enough" to each other to not cause problems. For instance, check that 4315 // the spellings are identical, and custom parsing rules match, etc. 4316 4317 // We need to generate struct instances based off ParsedAttrInfo from 4318 // ParsedAttr.cpp. 4319 const std::string &AttrName = I->first; 4320 const Record &Attr = *I->second; 4321 auto Spellings = GetFlattenedSpellings(Attr); 4322 if (!Spellings.empty()) { 4323 OS << "static constexpr ParsedAttrInfo::Spelling " << I->first 4324 << "Spellings[] = {\n"; 4325 for (const auto &S : Spellings) { 4326 const std::string &RawSpelling = S.name(); 4327 std::string Spelling; 4328 if (!S.nameSpace().empty()) 4329 Spelling += S.nameSpace() + "::"; 4330 if (S.variety() == "GNU") 4331 Spelling += NormalizeGNUAttrSpelling(RawSpelling); 4332 else 4333 Spelling += RawSpelling; 4334 OS << " {AttributeCommonInfo::AS_" << S.variety(); 4335 OS << ", \"" << Spelling << "\"},\n"; 4336 } 4337 OS << "};\n"; 4338 } 4339 4340 std::vector<std::string> ArgNames; 4341 for (const auto &Arg : Attr.getValueAsListOfDefs("Args")) { 4342 bool UnusedUnset; 4343 if (Arg->getValueAsBitOrUnset("Fake", UnusedUnset)) 4344 continue; 4345 ArgNames.push_back(Arg->getValueAsString("Name").str()); 4346 for (const auto &Class : Arg->getSuperClasses()) { 4347 if (Class.first->getName().startswith("Variadic")) { 4348 ArgNames.back().append("..."); 4349 break; 4350 } 4351 } 4352 } 4353 if (!ArgNames.empty()) { 4354 OS << "static constexpr const char *" << I->first << "ArgNames[] = {\n"; 4355 for (const auto &N : ArgNames) 4356 OS << '"' << N << "\","; 4357 OS << "};\n"; 4358 } 4359 4360 OS << "struct ParsedAttrInfo" << I->first 4361 << " final : public ParsedAttrInfo {\n"; 4362 OS << " constexpr ParsedAttrInfo" << I->first << "() : ParsedAttrInfo(\n"; 4363 OS << " /*AttrKind=*/ParsedAttr::AT_" << AttrName << ",\n"; 4364 emitArgInfo(Attr, OS); 4365 OS << " /*HasCustomParsing=*/"; 4366 OS << Attr.getValueAsBit("HasCustomParsing") << ",\n"; 4367 OS << " /*AcceptsExprPack=*/"; 4368 OS << Attr.getValueAsBit("AcceptsExprPack") << ",\n"; 4369 OS << " /*IsTargetSpecific=*/"; 4370 OS << Attr.isSubClassOf("TargetSpecificAttr") << ",\n"; 4371 OS << " /*IsType=*/"; 4372 OS << (Attr.isSubClassOf("TypeAttr") || Attr.isSubClassOf("DeclOrTypeAttr")) 4373 << ",\n"; 4374 OS << " /*IsStmt=*/"; 4375 OS << (Attr.isSubClassOf("StmtAttr") || Attr.isSubClassOf("DeclOrStmtAttr")) 4376 << ",\n"; 4377 OS << " /*IsKnownToGCC=*/"; 4378 OS << IsKnownToGCC(Attr) << ",\n"; 4379 OS << " /*IsSupportedByPragmaAttribute=*/"; 4380 OS << PragmaAttributeSupport.isAttributedSupported(*I->second) << ",\n"; 4381 if (!Spellings.empty()) 4382 OS << " /*Spellings=*/" << I->first << "Spellings,\n"; 4383 else 4384 OS << " /*Spellings=*/{},\n"; 4385 if (!ArgNames.empty()) 4386 OS << " /*ArgNames=*/" << I->first << "ArgNames"; 4387 else 4388 OS << " /*ArgNames=*/{}"; 4389 OS << ") {}\n"; 4390 GenerateAppertainsTo(Attr, OS); 4391 GenerateMutualExclusionsChecks(Attr, Records, OS, MergeDeclOS, MergeStmtOS); 4392 GenerateLangOptRequirements(Attr, OS); 4393 GenerateTargetRequirements(Attr, Dupes, OS); 4394 GenerateSpellingIndexToSemanticSpelling(Attr, OS); 4395 PragmaAttributeSupport.generateStrictConformsTo(*I->second, OS); 4396 GenerateHandleDeclAttribute(Attr, OS); 4397 GenerateIsParamExpr(Attr, OS); 4398 OS << "static const ParsedAttrInfo" << I->first << " Instance;\n"; 4399 OS << "};\n"; 4400 OS << "const ParsedAttrInfo" << I->first << " ParsedAttrInfo" << I->first 4401 << "::Instance;\n"; 4402 } 4403 4404 OS << "static const ParsedAttrInfo *AttrInfoMap[] = {\n"; 4405 for (auto I = Attrs.begin(), E = Attrs.end(); I != E; ++I) { 4406 OS << "&ParsedAttrInfo" << I->first << "::Instance,\n"; 4407 } 4408 OS << "};\n\n"; 4409 4410 // Generate function for handling attributes with delayed arguments 4411 GenerateHandleAttrWithDelayedArgs(Records, OS); 4412 4413 // Generate the attribute match rules. 4414 emitAttributeMatchRules(PragmaAttributeSupport, OS); 4415 4416 OS << "#elif defined(WANT_DECL_MERGE_LOGIC)\n\n"; 4417 4418 // Write out the declaration merging check logic. 4419 OS << "static bool DiagnoseMutualExclusions(Sema &S, const NamedDecl *D, " 4420 << "const Attr *A) {\n"; 4421 OS << MergeDeclOS.str(); 4422 OS << " return true;\n"; 4423 OS << "}\n\n"; 4424 4425 OS << "#elif defined(WANT_STMT_MERGE_LOGIC)\n\n"; 4426 4427 // Write out the statement merging check logic. 4428 OS << "static bool DiagnoseMutualExclusions(Sema &S, " 4429 << "const SmallVectorImpl<const Attr *> &C) {\n"; 4430 OS << " for (const Attr *A : C) {\n"; 4431 OS << MergeStmtOS.str(); 4432 OS << " }\n"; 4433 OS << " return true;\n"; 4434 OS << "}\n\n"; 4435 4436 OS << "#endif\n"; 4437 } 4438 4439 // Emits the kind list of parsed attributes 4440 void EmitClangAttrParsedAttrKinds(RecordKeeper &Records, raw_ostream &OS) { 4441 emitSourceFileHeader("Attribute name matcher", OS); 4442 4443 std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr"); 4444 std::vector<StringMatcher::StringPair> GNU, Declspec, Microsoft, CXX11, 4445 Keywords, Pragma, C2x, HLSLSemantic; 4446 std::set<std::string> Seen; 4447 for (const auto *A : Attrs) { 4448 const Record &Attr = *A; 4449 4450 bool SemaHandler = Attr.getValueAsBit("SemaHandler"); 4451 bool Ignored = Attr.getValueAsBit("Ignored"); 4452 if (SemaHandler || Ignored) { 4453 // Attribute spellings can be shared between target-specific attributes, 4454 // and can be shared between syntaxes for the same attribute. For 4455 // instance, an attribute can be spelled GNU<"interrupt"> for an ARM- 4456 // specific attribute, or MSP430-specific attribute. Additionally, an 4457 // attribute can be spelled GNU<"dllexport"> and Declspec<"dllexport"> 4458 // for the same semantic attribute. Ultimately, we need to map each of 4459 // these to a single AttributeCommonInfo::Kind value, but the 4460 // StringMatcher class cannot handle duplicate match strings. So we 4461 // generate a list of string to match based on the syntax, and emit 4462 // multiple string matchers depending on the syntax used. 4463 std::string AttrName; 4464 if (Attr.isSubClassOf("TargetSpecificAttr") && 4465 !Attr.isValueUnset("ParseKind")) { 4466 AttrName = std::string(Attr.getValueAsString("ParseKind")); 4467 if (!Seen.insert(AttrName).second) 4468 continue; 4469 } else 4470 AttrName = NormalizeAttrName(StringRef(Attr.getName())).str(); 4471 4472 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attr); 4473 for (const auto &S : Spellings) { 4474 const std::string &RawSpelling = S.name(); 4475 std::vector<StringMatcher::StringPair> *Matches = nullptr; 4476 std::string Spelling; 4477 const std::string &Variety = S.variety(); 4478 if (Variety == "CXX11") { 4479 Matches = &CXX11; 4480 if (!S.nameSpace().empty()) 4481 Spelling += S.nameSpace() + "::"; 4482 } else if (Variety == "C2x") { 4483 Matches = &C2x; 4484 if (!S.nameSpace().empty()) 4485 Spelling += S.nameSpace() + "::"; 4486 } else if (Variety == "GNU") 4487 Matches = &GNU; 4488 else if (Variety == "Declspec") 4489 Matches = &Declspec; 4490 else if (Variety == "Microsoft") 4491 Matches = &Microsoft; 4492 else if (Variety == "Keyword") 4493 Matches = &Keywords; 4494 else if (Variety == "Pragma") 4495 Matches = &Pragma; 4496 else if (Variety == "HLSLSemantic") 4497 Matches = &HLSLSemantic; 4498 4499 assert(Matches && "Unsupported spelling variety found"); 4500 4501 if (Variety == "GNU") 4502 Spelling += NormalizeGNUAttrSpelling(RawSpelling); 4503 else 4504 Spelling += RawSpelling; 4505 4506 if (SemaHandler) 4507 Matches->push_back(StringMatcher::StringPair( 4508 Spelling, "return AttributeCommonInfo::AT_" + AttrName + ";")); 4509 else 4510 Matches->push_back(StringMatcher::StringPair( 4511 Spelling, "return AttributeCommonInfo::IgnoredAttribute;")); 4512 } 4513 } 4514 } 4515 4516 OS << "static AttributeCommonInfo::Kind getAttrKind(StringRef Name, "; 4517 OS << "AttributeCommonInfo::Syntax Syntax) {\n"; 4518 OS << " if (AttributeCommonInfo::AS_GNU == Syntax) {\n"; 4519 StringMatcher("Name", GNU, OS).Emit(); 4520 OS << " } else if (AttributeCommonInfo::AS_Declspec == Syntax) {\n"; 4521 StringMatcher("Name", Declspec, OS).Emit(); 4522 OS << " } else if (AttributeCommonInfo::AS_Microsoft == Syntax) {\n"; 4523 StringMatcher("Name", Microsoft, OS).Emit(); 4524 OS << " } else if (AttributeCommonInfo::AS_CXX11 == Syntax) {\n"; 4525 StringMatcher("Name", CXX11, OS).Emit(); 4526 OS << " } else if (AttributeCommonInfo::AS_C2x == Syntax) {\n"; 4527 StringMatcher("Name", C2x, OS).Emit(); 4528 OS << " } else if (AttributeCommonInfo::AS_Keyword == Syntax || "; 4529 OS << "AttributeCommonInfo::AS_ContextSensitiveKeyword == Syntax) {\n"; 4530 StringMatcher("Name", Keywords, OS).Emit(); 4531 OS << " } else if (AttributeCommonInfo::AS_Pragma == Syntax) {\n"; 4532 StringMatcher("Name", Pragma, OS).Emit(); 4533 OS << " } else if (AttributeCommonInfo::AS_HLSLSemantic == Syntax) {\n"; 4534 StringMatcher("Name", HLSLSemantic, OS).Emit(); 4535 OS << " }\n"; 4536 OS << " return AttributeCommonInfo::UnknownAttribute;\n" 4537 << "}\n"; 4538 } 4539 4540 // Emits the code to dump an attribute. 4541 void EmitClangAttrTextNodeDump(RecordKeeper &Records, raw_ostream &OS) { 4542 emitSourceFileHeader("Attribute text node dumper", OS); 4543 4544 std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"), Args; 4545 for (const auto *Attr : Attrs) { 4546 const Record &R = *Attr; 4547 if (!R.getValueAsBit("ASTNode")) 4548 continue; 4549 4550 // If the attribute has a semantically-meaningful name (which is determined 4551 // by whether there is a Spelling enumeration for it), then write out the 4552 // spelling used for the attribute. 4553 4554 std::string FunctionContent; 4555 llvm::raw_string_ostream SS(FunctionContent); 4556 4557 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R); 4558 if (Spellings.size() > 1 && !SpellingNamesAreCommon(Spellings)) 4559 SS << " OS << \" \" << A->getSpelling();\n"; 4560 4561 Args = R.getValueAsListOfDefs("Args"); 4562 for (const auto *Arg : Args) 4563 createArgument(*Arg, R.getName())->writeDump(SS); 4564 4565 if (Attr->getValueAsBit("AcceptsExprPack")) 4566 VariadicExprArgument("DelayedArgs", R.getName()).writeDump(OS); 4567 4568 if (SS.tell()) { 4569 OS << " void Visit" << R.getName() << "Attr(const " << R.getName() 4570 << "Attr *A) {\n"; 4571 if (!Args.empty()) 4572 OS << " const auto *SA = cast<" << R.getName() 4573 << "Attr>(A); (void)SA;\n"; 4574 OS << SS.str(); 4575 OS << " }\n"; 4576 } 4577 } 4578 } 4579 4580 void EmitClangAttrNodeTraverse(RecordKeeper &Records, raw_ostream &OS) { 4581 emitSourceFileHeader("Attribute text node traverser", OS); 4582 4583 std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr"), Args; 4584 for (const auto *Attr : Attrs) { 4585 const Record &R = *Attr; 4586 if (!R.getValueAsBit("ASTNode")) 4587 continue; 4588 4589 std::string FunctionContent; 4590 llvm::raw_string_ostream SS(FunctionContent); 4591 4592 Args = R.getValueAsListOfDefs("Args"); 4593 for (const auto *Arg : Args) 4594 createArgument(*Arg, R.getName())->writeDumpChildren(SS); 4595 if (Attr->getValueAsBit("AcceptsExprPack")) 4596 VariadicExprArgument("DelayedArgs", R.getName()).writeDumpChildren(SS); 4597 if (SS.tell()) { 4598 OS << " void Visit" << R.getName() << "Attr(const " << R.getName() 4599 << "Attr *A) {\n"; 4600 if (!Args.empty()) 4601 OS << " const auto *SA = cast<" << R.getName() 4602 << "Attr>(A); (void)SA;\n"; 4603 OS << SS.str(); 4604 OS << " }\n"; 4605 } 4606 } 4607 } 4608 4609 void EmitClangAttrParserStringSwitches(RecordKeeper &Records, 4610 raw_ostream &OS) { 4611 emitSourceFileHeader("Parser-related llvm::StringSwitch cases", OS); 4612 emitClangAttrArgContextList(Records, OS); 4613 emitClangAttrIdentifierArgList(Records, OS); 4614 emitClangAttrVariadicIdentifierArgList(Records, OS); 4615 emitClangAttrThisIsaIdentifierArgList(Records, OS); 4616 emitClangAttrAcceptsExprPack(Records, OS); 4617 emitClangAttrTypeArgList(Records, OS); 4618 emitClangAttrLateParsedList(Records, OS); 4619 } 4620 4621 void EmitClangAttrSubjectMatchRulesParserStringSwitches(RecordKeeper &Records, 4622 raw_ostream &OS) { 4623 getPragmaAttributeSupport(Records).generateParsingHelpers(OS); 4624 } 4625 4626 void EmitClangAttrDocTable(RecordKeeper &Records, raw_ostream &OS) { 4627 emitSourceFileHeader("Clang attribute documentation", OS); 4628 4629 std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr"); 4630 for (const auto *A : Attrs) { 4631 if (!A->getValueAsBit("ASTNode")) 4632 continue; 4633 std::vector<Record *> Docs = A->getValueAsListOfDefs("Documentation"); 4634 assert(!Docs.empty()); 4635 // Only look at the first documentation if there are several. 4636 // (Currently there's only one such attr, revisit if this becomes common). 4637 StringRef Text = 4638 Docs.front()->getValueAsOptionalString("Content").value_or(""); 4639 OS << "\nstatic const char AttrDoc_" << A->getName() << "[] = " 4640 << "R\"reST(" << Text.trim() << ")reST\";\n"; 4641 } 4642 } 4643 4644 enum class SpellingKind : size_t { 4645 GNU, 4646 CXX11, 4647 C2x, 4648 Declspec, 4649 Microsoft, 4650 Keyword, 4651 Pragma, 4652 HLSLSemantic, 4653 NumSpellingKinds 4654 }; 4655 static const size_t NumSpellingKinds = (size_t)SpellingKind::NumSpellingKinds; 4656 4657 class SpellingList { 4658 std::vector<std::string> Spellings[NumSpellingKinds]; 4659 4660 public: 4661 ArrayRef<std::string> operator[](SpellingKind K) const { 4662 return Spellings[(size_t)K]; 4663 } 4664 4665 void add(const Record &Attr, FlattenedSpelling Spelling) { 4666 SpellingKind Kind = StringSwitch<SpellingKind>(Spelling.variety()) 4667 .Case("GNU", SpellingKind::GNU) 4668 .Case("CXX11", SpellingKind::CXX11) 4669 .Case("C2x", SpellingKind::C2x) 4670 .Case("Declspec", SpellingKind::Declspec) 4671 .Case("Microsoft", SpellingKind::Microsoft) 4672 .Case("Keyword", SpellingKind::Keyword) 4673 .Case("Pragma", SpellingKind::Pragma) 4674 .Case("HLSLSemantic", SpellingKind::HLSLSemantic); 4675 std::string Name; 4676 if (!Spelling.nameSpace().empty()) { 4677 switch (Kind) { 4678 case SpellingKind::CXX11: 4679 case SpellingKind::C2x: 4680 Name = Spelling.nameSpace() + "::"; 4681 break; 4682 case SpellingKind::Pragma: 4683 Name = Spelling.nameSpace() + " "; 4684 break; 4685 default: 4686 PrintFatalError(Attr.getLoc(), "Unexpected namespace in spelling"); 4687 } 4688 } 4689 Name += Spelling.name(); 4690 4691 Spellings[(size_t)Kind].push_back(Name); 4692 } 4693 }; 4694 4695 class DocumentationData { 4696 public: 4697 const Record *Documentation; 4698 const Record *Attribute; 4699 std::string Heading; 4700 SpellingList SupportedSpellings; 4701 4702 DocumentationData(const Record &Documentation, const Record &Attribute, 4703 std::pair<std::string, SpellingList> HeadingAndSpellings) 4704 : Documentation(&Documentation), Attribute(&Attribute), 4705 Heading(std::move(HeadingAndSpellings.first)), 4706 SupportedSpellings(std::move(HeadingAndSpellings.second)) {} 4707 }; 4708 4709 static void WriteCategoryHeader(const Record *DocCategory, 4710 raw_ostream &OS) { 4711 const StringRef Name = DocCategory->getValueAsString("Name"); 4712 OS << Name << "\n" << std::string(Name.size(), '=') << "\n"; 4713 4714 // If there is content, print that as well. 4715 const StringRef ContentStr = DocCategory->getValueAsString("Content"); 4716 // Trim leading and trailing newlines and spaces. 4717 OS << ContentStr.trim(); 4718 4719 OS << "\n\n"; 4720 } 4721 4722 static std::pair<std::string, SpellingList> 4723 GetAttributeHeadingAndSpellings(const Record &Documentation, 4724 const Record &Attribute, 4725 StringRef Cat) { 4726 // FIXME: there is no way to have a per-spelling category for the attribute 4727 // documentation. This may not be a limiting factor since the spellings 4728 // should generally be consistently applied across the category. 4729 4730 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attribute); 4731 if (Spellings.empty()) 4732 PrintFatalError(Attribute.getLoc(), 4733 "Attribute has no supported spellings; cannot be " 4734 "documented"); 4735 4736 // Determine the heading to be used for this attribute. 4737 std::string Heading = std::string(Documentation.getValueAsString("Heading")); 4738 if (Heading.empty()) { 4739 // If there's only one spelling, we can simply use that. 4740 if (Spellings.size() == 1) 4741 Heading = Spellings.begin()->name(); 4742 else { 4743 std::set<std::string> Uniques; 4744 for (auto I = Spellings.begin(), E = Spellings.end(); 4745 I != E; ++I) { 4746 std::string Spelling = 4747 std::string(NormalizeNameForSpellingComparison(I->name())); 4748 Uniques.insert(Spelling); 4749 } 4750 // If the semantic map has only one spelling, that is sufficient for our 4751 // needs. 4752 if (Uniques.size() == 1) 4753 Heading = *Uniques.begin(); 4754 // If it's in the undocumented category, just construct a header by 4755 // concatenating all the spellings. Might not be great, but better than 4756 // nothing. 4757 else if (Cat == "Undocumented") 4758 Heading = llvm::join(Uniques.begin(), Uniques.end(), ", "); 4759 } 4760 } 4761 4762 // If the heading is still empty, it is an error. 4763 if (Heading.empty()) 4764 PrintFatalError(Attribute.getLoc(), 4765 "This attribute requires a heading to be specified"); 4766 4767 SpellingList SupportedSpellings; 4768 for (const auto &I : Spellings) 4769 SupportedSpellings.add(Attribute, I); 4770 4771 return std::make_pair(std::move(Heading), std::move(SupportedSpellings)); 4772 } 4773 4774 static void WriteDocumentation(RecordKeeper &Records, 4775 const DocumentationData &Doc, raw_ostream &OS) { 4776 OS << Doc.Heading << "\n" << std::string(Doc.Heading.length(), '-') << "\n"; 4777 4778 // List what spelling syntaxes the attribute supports. 4779 // Note: "#pragma clang attribute" is handled outside the spelling kinds loop 4780 // so it must be last. 4781 OS << ".. csv-table:: Supported Syntaxes\n"; 4782 OS << " :header: \"GNU\", \"C++11\", \"C2x\", \"``__declspec``\","; 4783 OS << " \"Keyword\", \"``#pragma``\", \"HLSL Semantic\", \"``#pragma clang "; 4784 OS << "attribute``\"\n\n \""; 4785 for (size_t Kind = 0; Kind != NumSpellingKinds; ++Kind) { 4786 SpellingKind K = (SpellingKind)Kind; 4787 // TODO: List Microsoft (IDL-style attribute) spellings once we fully 4788 // support them. 4789 if (K == SpellingKind::Microsoft) 4790 continue; 4791 4792 bool PrintedAny = false; 4793 for (StringRef Spelling : Doc.SupportedSpellings[K]) { 4794 if (PrintedAny) 4795 OS << " |br| "; 4796 OS << "``" << Spelling << "``"; 4797 PrintedAny = true; 4798 } 4799 4800 OS << "\",\""; 4801 } 4802 4803 if (getPragmaAttributeSupport(Records).isAttributedSupported( 4804 *Doc.Attribute)) 4805 OS << "Yes"; 4806 OS << "\"\n\n"; 4807 4808 // If the attribute is deprecated, print a message about it, and possibly 4809 // provide a replacement attribute. 4810 if (!Doc.Documentation->isValueUnset("Deprecated")) { 4811 OS << "This attribute has been deprecated, and may be removed in a future " 4812 << "version of Clang."; 4813 const Record &Deprecated = *Doc.Documentation->getValueAsDef("Deprecated"); 4814 const StringRef Replacement = Deprecated.getValueAsString("Replacement"); 4815 if (!Replacement.empty()) 4816 OS << " This attribute has been superseded by ``" << Replacement 4817 << "``."; 4818 OS << "\n\n"; 4819 } 4820 4821 const StringRef ContentStr = Doc.Documentation->getValueAsString("Content"); 4822 // Trim leading and trailing newlines and spaces. 4823 OS << ContentStr.trim(); 4824 4825 OS << "\n\n\n"; 4826 } 4827 4828 void EmitClangAttrDocs(RecordKeeper &Records, raw_ostream &OS) { 4829 // Get the documentation introduction paragraph. 4830 const Record *Documentation = Records.getDef("GlobalDocumentation"); 4831 if (!Documentation) { 4832 PrintFatalError("The Documentation top-level definition is missing, " 4833 "no documentation will be generated."); 4834 return; 4835 } 4836 4837 OS << Documentation->getValueAsString("Intro") << "\n"; 4838 4839 // Gather the Documentation lists from each of the attributes, based on the 4840 // category provided. 4841 std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr"); 4842 struct CategoryLess { 4843 bool operator()(const Record *L, const Record *R) const { 4844 return L->getValueAsString("Name") < R->getValueAsString("Name"); 4845 } 4846 }; 4847 std::map<const Record *, std::vector<DocumentationData>, CategoryLess> 4848 SplitDocs; 4849 for (const auto *A : Attrs) { 4850 const Record &Attr = *A; 4851 std::vector<Record *> Docs = Attr.getValueAsListOfDefs("Documentation"); 4852 for (const auto *D : Docs) { 4853 const Record &Doc = *D; 4854 const Record *Category = Doc.getValueAsDef("Category"); 4855 // If the category is "InternalOnly", then there cannot be any other 4856 // documentation categories (otherwise, the attribute would be 4857 // emitted into the docs). 4858 const StringRef Cat = Category->getValueAsString("Name"); 4859 bool InternalOnly = Cat == "InternalOnly"; 4860 if (InternalOnly && Docs.size() > 1) 4861 PrintFatalError(Doc.getLoc(), 4862 "Attribute is \"InternalOnly\", but has multiple " 4863 "documentation categories"); 4864 4865 if (!InternalOnly) 4866 SplitDocs[Category].push_back(DocumentationData( 4867 Doc, Attr, GetAttributeHeadingAndSpellings(Doc, Attr, Cat))); 4868 } 4869 } 4870 4871 // Having split the attributes out based on what documentation goes where, 4872 // we can begin to generate sections of documentation. 4873 for (auto &I : SplitDocs) { 4874 WriteCategoryHeader(I.first, OS); 4875 4876 llvm::sort(I.second, 4877 [](const DocumentationData &D1, const DocumentationData &D2) { 4878 return D1.Heading < D2.Heading; 4879 }); 4880 4881 // Walk over each of the attributes in the category and write out their 4882 // documentation. 4883 for (const auto &Doc : I.second) 4884 WriteDocumentation(Records, Doc, OS); 4885 } 4886 } 4887 4888 void EmitTestPragmaAttributeSupportedAttributes(RecordKeeper &Records, 4889 raw_ostream &OS) { 4890 PragmaClangAttributeSupport Support = getPragmaAttributeSupport(Records); 4891 ParsedAttrMap Attrs = getParsedAttrList(Records); 4892 OS << "#pragma clang attribute supports the following attributes:\n"; 4893 for (const auto &I : Attrs) { 4894 if (!Support.isAttributedSupported(*I.second)) 4895 continue; 4896 OS << I.first; 4897 if (I.second->isValueUnset("Subjects")) { 4898 OS << " ()\n"; 4899 continue; 4900 } 4901 const Record *SubjectObj = I.second->getValueAsDef("Subjects"); 4902 std::vector<Record *> Subjects = 4903 SubjectObj->getValueAsListOfDefs("Subjects"); 4904 OS << " ("; 4905 bool PrintComma = false; 4906 for (const auto &Subject : llvm::enumerate(Subjects)) { 4907 if (!isSupportedPragmaClangAttributeSubject(*Subject.value())) 4908 continue; 4909 if (PrintComma) 4910 OS << ", "; 4911 PrintComma = true; 4912 PragmaClangAttributeSupport::RuleOrAggregateRuleSet &RuleSet = 4913 Support.SubjectsToRules.find(Subject.value())->getSecond(); 4914 if (RuleSet.isRule()) { 4915 OS << RuleSet.getRule().getEnumValueName(); 4916 continue; 4917 } 4918 OS << "("; 4919 for (const auto &Rule : llvm::enumerate(RuleSet.getAggregateRuleSet())) { 4920 if (Rule.index()) 4921 OS << ", "; 4922 OS << Rule.value().getEnumValueName(); 4923 } 4924 OS << ")"; 4925 } 4926 OS << ")\n"; 4927 } 4928 OS << "End of supported attributes.\n"; 4929 } 4930 4931 } // end namespace clang 4932