xref: /freebsd/contrib/llvm-project/clang/tools/driver/cc1_main.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===-- cc1_main.cpp - Clang CC1 Compiler Frontend ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the entry point to the clang -cc1 functionality, which implements the
10 // core compiler functionality along with a number of additional tools for
11 // demonstration and testing purposes.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "clang/Basic/Stack.h"
16 #include "clang/Basic/TargetOptions.h"
17 #include "clang/CodeGen/ObjectFilePCHContainerOperations.h"
18 #include "clang/Config/config.h"
19 #include "clang/Driver/DriverDiagnostic.h"
20 #include "clang/Driver/Options.h"
21 #include "clang/Frontend/CompilerInstance.h"
22 #include "clang/Frontend/CompilerInvocation.h"
23 #include "clang/Frontend/FrontendDiagnostic.h"
24 #include "clang/Frontend/TextDiagnosticBuffer.h"
25 #include "clang/Frontend/TextDiagnosticPrinter.h"
26 #include "clang/Frontend/Utils.h"
27 #include "clang/FrontendTool/Utils.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/ADT/StringExtras.h"
30 #include "llvm/Config/llvm-config.h"
31 #include "llvm/LinkAllPasses.h"
32 #include "llvm/MC/MCSubtargetInfo.h"
33 #include "llvm/MC/TargetRegistry.h"
34 #include "llvm/Option/Arg.h"
35 #include "llvm/Option/ArgList.h"
36 #include "llvm/Option/OptTable.h"
37 #include "llvm/Support/BuryPointer.h"
38 #include "llvm/Support/Compiler.h"
39 #include "llvm/Support/ErrorHandling.h"
40 #include "llvm/Support/ManagedStatic.h"
41 #include "llvm/Support/Path.h"
42 #include "llvm/Support/Process.h"
43 #include "llvm/Support/Signals.h"
44 #include "llvm/Support/TargetSelect.h"
45 #include "llvm/Support/TimeProfiler.h"
46 #include "llvm/Support/Timer.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include "llvm/Target/TargetMachine.h"
49 #include "llvm/TargetParser/AArch64TargetParser.h"
50 #include "llvm/TargetParser/ARMTargetParser.h"
51 #include "llvm/TargetParser/RISCVISAInfo.h"
52 #include <cstdio>
53 
54 #ifdef CLANG_HAVE_RLIMITS
55 #include <sys/resource.h>
56 #endif
57 
58 using namespace clang;
59 using namespace llvm::opt;
60 
61 //===----------------------------------------------------------------------===//
62 // Main driver
63 //===----------------------------------------------------------------------===//
64 
65 static void LLVMErrorHandler(void *UserData, const char *Message,
66                              bool GenCrashDiag) {
67   DiagnosticsEngine &Diags = *static_cast<DiagnosticsEngine*>(UserData);
68 
69   Diags.Report(diag::err_fe_error_backend) << Message;
70 
71   // Run the interrupt handlers to make sure any special cleanups get done, in
72   // particular that we remove files registered with RemoveFileOnSignal.
73   llvm::sys::RunInterruptHandlers();
74 
75   // We cannot recover from llvm errors.  When reporting a fatal error, exit
76   // with status 70 to generate crash diagnostics.  For BSD systems this is
77   // defined as an internal software error.  Otherwise, exit with status 1.
78   llvm::sys::Process::Exit(GenCrashDiag ? 70 : 1);
79 }
80 
81 #ifdef CLANG_HAVE_RLIMITS
82 /// Attempt to ensure that we have at least 8MiB of usable stack space.
83 static void ensureSufficientStack() {
84   struct rlimit rlim;
85   if (getrlimit(RLIMIT_STACK, &rlim) != 0)
86     return;
87 
88   // Increase the soft stack limit to our desired level, if necessary and
89   // possible.
90   if (rlim.rlim_cur != RLIM_INFINITY &&
91       rlim.rlim_cur < rlim_t(DesiredStackSize)) {
92     // Try to allocate sufficient stack.
93     if (rlim.rlim_max == RLIM_INFINITY ||
94         rlim.rlim_max >= rlim_t(DesiredStackSize))
95       rlim.rlim_cur = DesiredStackSize;
96     else if (rlim.rlim_cur == rlim.rlim_max)
97       return;
98     else
99       rlim.rlim_cur = rlim.rlim_max;
100 
101     if (setrlimit(RLIMIT_STACK, &rlim) != 0 ||
102         rlim.rlim_cur != DesiredStackSize)
103       return;
104   }
105 }
106 #else
107 static void ensureSufficientStack() {}
108 #endif
109 
110 /// Print supported cpus of the given target.
111 static int PrintSupportedCPUs(std::string TargetStr) {
112   std::string Error;
113   const llvm::Target *TheTarget =
114       llvm::TargetRegistry::lookupTarget(TargetStr, Error);
115   if (!TheTarget) {
116     llvm::errs() << Error;
117     return 1;
118   }
119 
120   // the target machine will handle the mcpu printing
121   llvm::TargetOptions Options;
122   std::unique_ptr<llvm::TargetMachine> TheTargetMachine(
123       TheTarget->createTargetMachine(TargetStr, "", "+cpuhelp", Options,
124                                      std::nullopt));
125   return 0;
126 }
127 
128 static int PrintSupportedExtensions(std::string TargetStr) {
129   std::string Error;
130   const llvm::Target *TheTarget =
131       llvm::TargetRegistry::lookupTarget(TargetStr, Error);
132   if (!TheTarget) {
133     llvm::errs() << Error;
134     return 1;
135   }
136 
137   llvm::TargetOptions Options;
138   std::unique_ptr<llvm::TargetMachine> TheTargetMachine(
139       TheTarget->createTargetMachine(TargetStr, "", "", Options, std::nullopt));
140   const llvm::Triple &MachineTriple = TheTargetMachine->getTargetTriple();
141   const llvm::MCSubtargetInfo *MCInfo = TheTargetMachine->getMCSubtargetInfo();
142   const llvm::ArrayRef<llvm::SubtargetFeatureKV> Features =
143     MCInfo->getAllProcessorFeatures();
144 
145   llvm::StringMap<llvm::StringRef> DescMap;
146   for (const llvm::SubtargetFeatureKV &feature : Features)
147     DescMap.insert({feature.Key, feature.Desc});
148 
149   if (MachineTriple.isRISCV())
150     llvm::RISCVISAInfo::printSupportedExtensions(DescMap);
151   else if (MachineTriple.isAArch64())
152     llvm::AArch64::PrintSupportedExtensions();
153   else if (MachineTriple.isARM())
154     llvm::ARM::PrintSupportedExtensions(DescMap);
155   else {
156     // The option was already checked in Driver::HandleImmediateArgs,
157     // so we do not expect to get here if we are not a supported architecture.
158     assert(0 && "Unhandled triple for --print-supported-extensions option.");
159     return 1;
160   }
161 
162   return 0;
163 }
164 
165 static int PrintEnabledExtensions(const TargetOptions& TargetOpts) {
166   std::string Error;
167   const llvm::Target *TheTarget =
168       llvm::TargetRegistry::lookupTarget(TargetOpts.Triple, Error);
169   if (!TheTarget) {
170     llvm::errs() << Error;
171     return 1;
172   }
173 
174   // Create a target machine using the input features, the triple information
175   // and a dummy instance of llvm::TargetOptions. Note that this is _not_ the
176   // same as the `clang::TargetOptions` instance we have access to here.
177   llvm::TargetOptions BackendOptions;
178   std::string FeaturesStr = llvm::join(TargetOpts.FeaturesAsWritten, ",");
179   std::unique_ptr<llvm::TargetMachine> TheTargetMachine(
180       TheTarget->createTargetMachine(TargetOpts.Triple, TargetOpts.CPU, FeaturesStr, BackendOptions, std::nullopt));
181   const llvm::Triple &MachineTriple = TheTargetMachine->getTargetTriple();
182   const llvm::MCSubtargetInfo *MCInfo = TheTargetMachine->getMCSubtargetInfo();
183 
184   // Extract the feature names that are enabled for the given target.
185   // We do that by capturing the key from the set of SubtargetFeatureKV entries
186   // provided by MCSubtargetInfo, which match the '-target-feature' values.
187   const std::vector<llvm::SubtargetFeatureKV> Features =
188     MCInfo->getEnabledProcessorFeatures();
189   std::set<llvm::StringRef> EnabledFeatureNames;
190   for (const llvm::SubtargetFeatureKV &feature : Features)
191     EnabledFeatureNames.insert(feature.Key);
192 
193   if (MachineTriple.isAArch64())
194     llvm::AArch64::printEnabledExtensions(EnabledFeatureNames);
195   else if (MachineTriple.isRISCV()) {
196     llvm::StringMap<llvm::StringRef> DescMap;
197     for (const llvm::SubtargetFeatureKV &feature : Features)
198       DescMap.insert({feature.Key, feature.Desc});
199     llvm::RISCVISAInfo::printEnabledExtensions(MachineTriple.isArch64Bit(),
200                                                EnabledFeatureNames, DescMap);
201   } else {
202     // The option was already checked in Driver::HandleImmediateArgs,
203     // so we do not expect to get here if we are not a supported architecture.
204     assert(0 && "Unhandled triple for --print-enabled-extensions option.");
205     return 1;
206   }
207 
208   return 0;
209 }
210 
211 int cc1_main(ArrayRef<const char *> Argv, const char *Argv0, void *MainAddr) {
212   ensureSufficientStack();
213 
214   std::unique_ptr<CompilerInstance> Clang(new CompilerInstance());
215   IntrusiveRefCntPtr<DiagnosticIDs> DiagID(new DiagnosticIDs());
216 
217   // Register the support for object-file-wrapped Clang modules.
218   auto PCHOps = Clang->getPCHContainerOperations();
219   PCHOps->registerWriter(std::make_unique<ObjectFilePCHContainerWriter>());
220   PCHOps->registerReader(std::make_unique<ObjectFilePCHContainerReader>());
221 
222   // Initialize targets first, so that --version shows registered targets.
223   llvm::InitializeAllTargets();
224   llvm::InitializeAllTargetMCs();
225   llvm::InitializeAllAsmPrinters();
226   llvm::InitializeAllAsmParsers();
227 
228   // Buffer diagnostics from argument parsing so that we can output them using a
229   // well formed diagnostic object.
230   IntrusiveRefCntPtr<DiagnosticOptions> DiagOpts = new DiagnosticOptions();
231   TextDiagnosticBuffer *DiagsBuffer = new TextDiagnosticBuffer;
232   DiagnosticsEngine Diags(DiagID, &*DiagOpts, DiagsBuffer);
233 
234   // Setup round-trip remarks for the DiagnosticsEngine used in CreateFromArgs.
235   if (find(Argv, StringRef("-Rround-trip-cc1-args")) != Argv.end())
236     Diags.setSeverity(diag::remark_cc1_round_trip_generated,
237                       diag::Severity::Remark, {});
238 
239   bool Success = CompilerInvocation::CreateFromArgs(Clang->getInvocation(),
240                                                     Argv, Diags, Argv0);
241 
242   if (!Clang->getFrontendOpts().TimeTracePath.empty()) {
243     llvm::timeTraceProfilerInitialize(
244         Clang->getFrontendOpts().TimeTraceGranularity, Argv0,
245         Clang->getFrontendOpts().TimeTraceVerbose);
246   }
247   // --print-supported-cpus takes priority over the actual compilation.
248   if (Clang->getFrontendOpts().PrintSupportedCPUs)
249     return PrintSupportedCPUs(Clang->getTargetOpts().Triple);
250 
251   // --print-supported-extensions takes priority over the actual compilation.
252   if (Clang->getFrontendOpts().PrintSupportedExtensions)
253     return PrintSupportedExtensions(Clang->getTargetOpts().Triple);
254 
255   // --print-enabled-extensions takes priority over the actual compilation.
256   if (Clang->getFrontendOpts().PrintEnabledExtensions)
257     return PrintEnabledExtensions(Clang->getTargetOpts());
258 
259   // Infer the builtin include path if unspecified.
260   if (Clang->getHeaderSearchOpts().UseBuiltinIncludes &&
261       Clang->getHeaderSearchOpts().ResourceDir.empty())
262     Clang->getHeaderSearchOpts().ResourceDir =
263       CompilerInvocation::GetResourcesPath(Argv0, MainAddr);
264 
265   // Create the actual diagnostics engine.
266   Clang->createDiagnostics();
267   if (!Clang->hasDiagnostics())
268     return 1;
269 
270   // Set an error handler, so that any LLVM backend diagnostics go through our
271   // error handler.
272   llvm::install_fatal_error_handler(LLVMErrorHandler,
273                                   static_cast<void*>(&Clang->getDiagnostics()));
274 
275   DiagsBuffer->FlushDiagnostics(Clang->getDiagnostics());
276   if (!Success) {
277     Clang->getDiagnosticClient().finish();
278     return 1;
279   }
280 
281   // Execute the frontend actions.
282   {
283     llvm::TimeTraceScope TimeScope("ExecuteCompiler");
284     Success = ExecuteCompilerInvocation(Clang.get());
285   }
286 
287   // If any timers were active but haven't been destroyed yet, print their
288   // results now.  This happens in -disable-free mode.
289   llvm::TimerGroup::printAll(llvm::errs());
290   llvm::TimerGroup::clearAll();
291 
292   if (llvm::timeTraceProfilerEnabled()) {
293     // It is possible that the compiler instance doesn't own a file manager here
294     // if we're compiling a module unit. Since the file manager are owned by AST
295     // when we're compiling a module unit. So the file manager may be invalid
296     // here.
297     //
298     // It should be fine to create file manager here since the file system
299     // options are stored in the compiler invocation and we can recreate the VFS
300     // from the compiler invocation.
301     if (!Clang->hasFileManager())
302       Clang->createFileManager(createVFSFromCompilerInvocation(
303           Clang->getInvocation(), Clang->getDiagnostics()));
304 
305     if (auto profilerOutput = Clang->createOutputFile(
306             Clang->getFrontendOpts().TimeTracePath, /*Binary=*/false,
307             /*RemoveFileOnSignal=*/false,
308             /*useTemporary=*/false)) {
309       llvm::timeTraceProfilerWrite(*profilerOutput);
310       profilerOutput.reset();
311       llvm::timeTraceProfilerCleanup();
312       Clang->clearOutputFiles(false);
313     }
314   }
315 
316   // Our error handler depends on the Diagnostics object, which we're
317   // potentially about to delete. Uninstall the handler now so that any
318   // later errors use the default handling behavior instead.
319   llvm::remove_fatal_error_handler();
320 
321   // When running with -disable-free, don't do any destruction or shutdown.
322   if (Clang->getFrontendOpts().DisableFree) {
323     llvm::BuryPointer(std::move(Clang));
324     return !Success;
325   }
326 
327   return !Success;
328 }
329