1 //===- BuildTree.cpp ------------------------------------------*- C++ -*-=====// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 #include "clang/Tooling/Syntax/BuildTree.h" 9 #include "clang/AST/ASTFwd.h" 10 #include "clang/AST/Decl.h" 11 #include "clang/AST/DeclBase.h" 12 #include "clang/AST/DeclCXX.h" 13 #include "clang/AST/DeclarationName.h" 14 #include "clang/AST/Expr.h" 15 #include "clang/AST/ExprCXX.h" 16 #include "clang/AST/IgnoreExpr.h" 17 #include "clang/AST/OperationKinds.h" 18 #include "clang/AST/RecursiveASTVisitor.h" 19 #include "clang/AST/Stmt.h" 20 #include "clang/AST/TypeLoc.h" 21 #include "clang/AST/TypeLocVisitor.h" 22 #include "clang/Basic/LLVM.h" 23 #include "clang/Basic/SourceLocation.h" 24 #include "clang/Basic/SourceManager.h" 25 #include "clang/Basic/Specifiers.h" 26 #include "clang/Basic/TokenKinds.h" 27 #include "clang/Lex/Lexer.h" 28 #include "clang/Lex/LiteralSupport.h" 29 #include "clang/Tooling/Syntax/Nodes.h" 30 #include "clang/Tooling/Syntax/TokenBufferTokenManager.h" 31 #include "clang/Tooling/Syntax/Tokens.h" 32 #include "clang/Tooling/Syntax/Tree.h" 33 #include "llvm/ADT/ArrayRef.h" 34 #include "llvm/ADT/DenseMap.h" 35 #include "llvm/ADT/PointerUnion.h" 36 #include "llvm/ADT/STLExtras.h" 37 #include "llvm/ADT/ScopeExit.h" 38 #include "llvm/ADT/SmallVector.h" 39 #include "llvm/Support/Allocator.h" 40 #include "llvm/Support/Casting.h" 41 #include "llvm/Support/Compiler.h" 42 #include "llvm/Support/FormatVariadic.h" 43 #include "llvm/Support/MemoryBuffer.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include <cstddef> 46 #include <map> 47 48 using namespace clang; 49 50 // Ignores the implicit `CXXConstructExpr` for copy/move constructor calls 51 // generated by the compiler, as well as in implicit conversions like the one 52 // wrapping `1` in `X x = 1;`. 53 static Expr *IgnoreImplicitConstructorSingleStep(Expr *E) { 54 if (auto *C = dyn_cast<CXXConstructExpr>(E)) { 55 auto NumArgs = C->getNumArgs(); 56 if (NumArgs == 1 || (NumArgs > 1 && isa<CXXDefaultArgExpr>(C->getArg(1)))) { 57 Expr *A = C->getArg(0); 58 if (C->getParenOrBraceRange().isInvalid()) 59 return A; 60 } 61 } 62 return E; 63 } 64 65 // In: 66 // struct X { 67 // X(int) 68 // }; 69 // X x = X(1); 70 // Ignores the implicit `CXXFunctionalCastExpr` that wraps 71 // `CXXConstructExpr X(1)`. 72 static Expr *IgnoreCXXFunctionalCastExprWrappingConstructor(Expr *E) { 73 if (auto *F = dyn_cast<CXXFunctionalCastExpr>(E)) { 74 if (F->getCastKind() == CK_ConstructorConversion) 75 return F->getSubExpr(); 76 } 77 return E; 78 } 79 80 static Expr *IgnoreImplicit(Expr *E) { 81 return IgnoreExprNodes(E, IgnoreImplicitSingleStep, 82 IgnoreImplicitConstructorSingleStep, 83 IgnoreCXXFunctionalCastExprWrappingConstructor); 84 } 85 86 LLVM_ATTRIBUTE_UNUSED 87 static bool isImplicitExpr(Expr *E) { return IgnoreImplicit(E) != E; } 88 89 namespace { 90 /// Get start location of the Declarator from the TypeLoc. 91 /// E.g.: 92 /// loc of `(` in `int (a)` 93 /// loc of `*` in `int *(a)` 94 /// loc of the first `(` in `int (*a)(int)` 95 /// loc of the `*` in `int *(a)(int)` 96 /// loc of the first `*` in `const int *const *volatile a;` 97 /// 98 /// It is non-trivial to get the start location because TypeLocs are stored 99 /// inside out. In the example above `*volatile` is the TypeLoc returned 100 /// by `Decl.getTypeSourceInfo()`, and `*const` is what `.getPointeeLoc()` 101 /// returns. 102 struct GetStartLoc : TypeLocVisitor<GetStartLoc, SourceLocation> { 103 SourceLocation VisitParenTypeLoc(ParenTypeLoc T) { 104 auto L = Visit(T.getInnerLoc()); 105 if (L.isValid()) 106 return L; 107 return T.getLParenLoc(); 108 } 109 110 // Types spelled in the prefix part of the declarator. 111 SourceLocation VisitPointerTypeLoc(PointerTypeLoc T) { 112 return HandlePointer(T); 113 } 114 115 SourceLocation VisitMemberPointerTypeLoc(MemberPointerTypeLoc T) { 116 return HandlePointer(T); 117 } 118 119 SourceLocation VisitBlockPointerTypeLoc(BlockPointerTypeLoc T) { 120 return HandlePointer(T); 121 } 122 123 SourceLocation VisitReferenceTypeLoc(ReferenceTypeLoc T) { 124 return HandlePointer(T); 125 } 126 127 SourceLocation VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc T) { 128 return HandlePointer(T); 129 } 130 131 // All other cases are not important, as they are either part of declaration 132 // specifiers (e.g. inheritors of TypeSpecTypeLoc) or introduce modifiers on 133 // existing declarators (e.g. QualifiedTypeLoc). They cannot start the 134 // declarator themselves, but their underlying type can. 135 SourceLocation VisitTypeLoc(TypeLoc T) { 136 auto N = T.getNextTypeLoc(); 137 if (!N) 138 return SourceLocation(); 139 return Visit(N); 140 } 141 142 SourceLocation VisitFunctionProtoTypeLoc(FunctionProtoTypeLoc T) { 143 if (T.getTypePtr()->hasTrailingReturn()) 144 return SourceLocation(); // avoid recursing into the suffix of declarator. 145 return VisitTypeLoc(T); 146 } 147 148 private: 149 template <class PtrLoc> SourceLocation HandlePointer(PtrLoc T) { 150 auto L = Visit(T.getPointeeLoc()); 151 if (L.isValid()) 152 return L; 153 return T.getLocalSourceRange().getBegin(); 154 } 155 }; 156 } // namespace 157 158 static CallExpr::arg_range dropDefaultArgs(CallExpr::arg_range Args) { 159 auto FirstDefaultArg = 160 llvm::find_if(Args, [](auto It) { return isa<CXXDefaultArgExpr>(It); }); 161 return llvm::make_range(Args.begin(), FirstDefaultArg); 162 } 163 164 static syntax::NodeKind getOperatorNodeKind(const CXXOperatorCallExpr &E) { 165 switch (E.getOperator()) { 166 // Comparison 167 case OO_EqualEqual: 168 case OO_ExclaimEqual: 169 case OO_Greater: 170 case OO_GreaterEqual: 171 case OO_Less: 172 case OO_LessEqual: 173 case OO_Spaceship: 174 // Assignment 175 case OO_Equal: 176 case OO_SlashEqual: 177 case OO_PercentEqual: 178 case OO_CaretEqual: 179 case OO_PipeEqual: 180 case OO_LessLessEqual: 181 case OO_GreaterGreaterEqual: 182 case OO_PlusEqual: 183 case OO_MinusEqual: 184 case OO_StarEqual: 185 case OO_AmpEqual: 186 // Binary computation 187 case OO_Slash: 188 case OO_Percent: 189 case OO_Caret: 190 case OO_Pipe: 191 case OO_LessLess: 192 case OO_GreaterGreater: 193 case OO_AmpAmp: 194 case OO_PipePipe: 195 case OO_ArrowStar: 196 case OO_Comma: 197 return syntax::NodeKind::BinaryOperatorExpression; 198 case OO_Tilde: 199 case OO_Exclaim: 200 return syntax::NodeKind::PrefixUnaryOperatorExpression; 201 // Prefix/Postfix increment/decrement 202 case OO_PlusPlus: 203 case OO_MinusMinus: 204 switch (E.getNumArgs()) { 205 case 1: 206 return syntax::NodeKind::PrefixUnaryOperatorExpression; 207 case 2: 208 return syntax::NodeKind::PostfixUnaryOperatorExpression; 209 default: 210 llvm_unreachable("Invalid number of arguments for operator"); 211 } 212 // Operators that can be unary or binary 213 case OO_Plus: 214 case OO_Minus: 215 case OO_Star: 216 case OO_Amp: 217 switch (E.getNumArgs()) { 218 case 1: 219 return syntax::NodeKind::PrefixUnaryOperatorExpression; 220 case 2: 221 return syntax::NodeKind::BinaryOperatorExpression; 222 default: 223 llvm_unreachable("Invalid number of arguments for operator"); 224 } 225 return syntax::NodeKind::BinaryOperatorExpression; 226 // Not yet supported by SyntaxTree 227 case OO_New: 228 case OO_Delete: 229 case OO_Array_New: 230 case OO_Array_Delete: 231 case OO_Coawait: 232 case OO_Subscript: 233 case OO_Arrow: 234 return syntax::NodeKind::UnknownExpression; 235 case OO_Call: 236 return syntax::NodeKind::CallExpression; 237 case OO_Conditional: // not overloadable 238 case NUM_OVERLOADED_OPERATORS: 239 case OO_None: 240 llvm_unreachable("Not an overloadable operator"); 241 } 242 llvm_unreachable("Unknown OverloadedOperatorKind enum"); 243 } 244 245 /// Get the start of the qualified name. In the examples below it gives the 246 /// location of the `^`: 247 /// `int ^a;` 248 /// `int *^a;` 249 /// `int ^a::S::f(){}` 250 static SourceLocation getQualifiedNameStart(NamedDecl *D) { 251 assert((isa<DeclaratorDecl, TypedefNameDecl>(D)) && 252 "only DeclaratorDecl and TypedefNameDecl are supported."); 253 254 auto DN = D->getDeclName(); 255 bool IsAnonymous = DN.isIdentifier() && !DN.getAsIdentifierInfo(); 256 if (IsAnonymous) 257 return SourceLocation(); 258 259 if (const auto *DD = dyn_cast<DeclaratorDecl>(D)) { 260 if (DD->getQualifierLoc()) { 261 return DD->getQualifierLoc().getBeginLoc(); 262 } 263 } 264 265 return D->getLocation(); 266 } 267 268 /// Gets the range of the initializer inside an init-declarator C++ [dcl.decl]. 269 /// `int a;` -> range of ``, 270 /// `int *a = nullptr` -> range of `= nullptr`. 271 /// `int a{}` -> range of `{}`. 272 /// `int a()` -> range of `()`. 273 static SourceRange getInitializerRange(Decl *D) { 274 if (auto *V = dyn_cast<VarDecl>(D)) { 275 auto *I = V->getInit(); 276 // Initializers in range-based-for are not part of the declarator 277 if (I && !V->isCXXForRangeDecl()) 278 return I->getSourceRange(); 279 } 280 281 return SourceRange(); 282 } 283 284 /// Gets the range of declarator as defined by the C++ grammar. E.g. 285 /// `int a;` -> range of `a`, 286 /// `int *a;` -> range of `*a`, 287 /// `int a[10];` -> range of `a[10]`, 288 /// `int a[1][2][3];` -> range of `a[1][2][3]`, 289 /// `int *a = nullptr` -> range of `*a = nullptr`. 290 /// `int S::f(){}` -> range of `S::f()`. 291 /// FIXME: \p Name must be a source range. 292 static SourceRange getDeclaratorRange(const SourceManager &SM, TypeLoc T, 293 SourceLocation Name, 294 SourceRange Initializer) { 295 SourceLocation Start = GetStartLoc().Visit(T); 296 SourceLocation End = T.getEndLoc(); 297 if (Name.isValid()) { 298 if (Start.isInvalid()) 299 Start = Name; 300 // End of TypeLoc could be invalid if the type is invalid, fallback to the 301 // NameLoc. 302 if (End.isInvalid() || SM.isBeforeInTranslationUnit(End, Name)) 303 End = Name; 304 } 305 if (Initializer.isValid()) { 306 auto InitializerEnd = Initializer.getEnd(); 307 assert(SM.isBeforeInTranslationUnit(End, InitializerEnd) || 308 End == InitializerEnd); 309 End = InitializerEnd; 310 } 311 return SourceRange(Start, End); 312 } 313 314 namespace { 315 /// All AST hierarchy roots that can be represented as pointers. 316 using ASTPtr = llvm::PointerUnion<Stmt *, Decl *>; 317 /// Maintains a mapping from AST to syntax tree nodes. This class will get more 318 /// complicated as we support more kinds of AST nodes, e.g. TypeLocs. 319 /// FIXME: expose this as public API. 320 class ASTToSyntaxMapping { 321 public: 322 void add(ASTPtr From, syntax::Tree *To) { 323 assert(To != nullptr); 324 assert(!From.isNull()); 325 326 bool Added = Nodes.insert({From, To}).second; 327 (void)Added; 328 assert(Added && "mapping added twice"); 329 } 330 331 void add(NestedNameSpecifierLoc From, syntax::Tree *To) { 332 assert(To != nullptr); 333 assert(From.hasQualifier()); 334 335 bool Added = NNSNodes.insert({From, To}).second; 336 (void)Added; 337 assert(Added && "mapping added twice"); 338 } 339 340 syntax::Tree *find(ASTPtr P) const { return Nodes.lookup(P); } 341 342 syntax::Tree *find(NestedNameSpecifierLoc P) const { 343 return NNSNodes.lookup(P); 344 } 345 346 private: 347 llvm::DenseMap<ASTPtr, syntax::Tree *> Nodes; 348 llvm::DenseMap<NestedNameSpecifierLoc, syntax::Tree *> NNSNodes; 349 }; 350 } // namespace 351 352 /// A helper class for constructing the syntax tree while traversing a clang 353 /// AST. 354 /// 355 /// At each point of the traversal we maintain a list of pending nodes. 356 /// Initially all tokens are added as pending nodes. When processing a clang AST 357 /// node, the clients need to: 358 /// - create a corresponding syntax node, 359 /// - assign roles to all pending child nodes with 'markChild' and 360 /// 'markChildToken', 361 /// - replace the child nodes with the new syntax node in the pending list 362 /// with 'foldNode'. 363 /// 364 /// Note that all children are expected to be processed when building a node. 365 /// 366 /// Call finalize() to finish building the tree and consume the root node. 367 class syntax::TreeBuilder { 368 public: 369 TreeBuilder(syntax::Arena &Arena, TokenBufferTokenManager& TBTM) 370 : Arena(Arena), 371 TBTM(TBTM), 372 Pending(Arena, TBTM.tokenBuffer()) { 373 for (const auto &T : TBTM.tokenBuffer().expandedTokens()) 374 LocationToToken.insert({T.location(), &T}); 375 } 376 377 llvm::BumpPtrAllocator &allocator() { return Arena.getAllocator(); } 378 const SourceManager &sourceManager() const { 379 return TBTM.sourceManager(); 380 } 381 382 /// Populate children for \p New node, assuming it covers tokens from \p 383 /// Range. 384 void foldNode(ArrayRef<syntax::Token> Range, syntax::Tree *New, ASTPtr From) { 385 assert(New); 386 Pending.foldChildren(TBTM.tokenBuffer(), Range, New); 387 if (From) 388 Mapping.add(From, New); 389 } 390 391 void foldNode(ArrayRef<syntax::Token> Range, syntax::Tree *New, TypeLoc L) { 392 // FIXME: add mapping for TypeLocs 393 foldNode(Range, New, nullptr); 394 } 395 396 void foldNode(llvm::ArrayRef<syntax::Token> Range, syntax::Tree *New, 397 NestedNameSpecifierLoc From) { 398 assert(New); 399 Pending.foldChildren(TBTM.tokenBuffer(), Range, New); 400 if (From) 401 Mapping.add(From, New); 402 } 403 404 /// Populate children for \p New list, assuming it covers tokens from a 405 /// subrange of \p SuperRange. 406 void foldList(ArrayRef<syntax::Token> SuperRange, syntax::List *New, 407 ASTPtr From) { 408 assert(New); 409 auto ListRange = Pending.shrinkToFitList(SuperRange); 410 Pending.foldChildren(TBTM.tokenBuffer(), ListRange, New); 411 if (From) 412 Mapping.add(From, New); 413 } 414 415 /// Notifies that we should not consume trailing semicolon when computing 416 /// token range of \p D. 417 void noticeDeclWithoutSemicolon(Decl *D); 418 419 /// Mark the \p Child node with a corresponding \p Role. All marked children 420 /// should be consumed by foldNode. 421 /// When called on expressions (clang::Expr is derived from clang::Stmt), 422 /// wraps expressions into expression statement. 423 void markStmtChild(Stmt *Child, NodeRole Role); 424 /// Should be called for expressions in non-statement position to avoid 425 /// wrapping into expression statement. 426 void markExprChild(Expr *Child, NodeRole Role); 427 /// Set role for a token starting at \p Loc. 428 void markChildToken(SourceLocation Loc, NodeRole R); 429 /// Set role for \p T. 430 void markChildToken(const syntax::Token *T, NodeRole R); 431 432 /// Set role for \p N. 433 void markChild(syntax::Node *N, NodeRole R); 434 /// Set role for the syntax node matching \p N. 435 void markChild(ASTPtr N, NodeRole R); 436 /// Set role for the syntax node matching \p N. 437 void markChild(NestedNameSpecifierLoc N, NodeRole R); 438 439 /// Finish building the tree and consume the root node. 440 syntax::TranslationUnit *finalize() && { 441 auto Tokens = TBTM.tokenBuffer().expandedTokens(); 442 assert(!Tokens.empty()); 443 assert(Tokens.back().kind() == tok::eof); 444 445 // Build the root of the tree, consuming all the children. 446 Pending.foldChildren(TBTM.tokenBuffer(), Tokens.drop_back(), 447 new (Arena.getAllocator()) syntax::TranslationUnit); 448 449 auto *TU = cast<syntax::TranslationUnit>(std::move(Pending).finalize()); 450 TU->assertInvariantsRecursive(); 451 return TU; 452 } 453 454 /// Finds a token starting at \p L. The token must exist if \p L is valid. 455 const syntax::Token *findToken(SourceLocation L) const; 456 457 /// Finds the syntax tokens corresponding to the \p SourceRange. 458 ArrayRef<syntax::Token> getRange(SourceRange Range) const { 459 assert(Range.isValid()); 460 return getRange(Range.getBegin(), Range.getEnd()); 461 } 462 463 /// Finds the syntax tokens corresponding to the passed source locations. 464 /// \p First is the start position of the first token and \p Last is the start 465 /// position of the last token. 466 ArrayRef<syntax::Token> getRange(SourceLocation First, 467 SourceLocation Last) const { 468 assert(First.isValid()); 469 assert(Last.isValid()); 470 assert(First == Last || 471 TBTM.sourceManager().isBeforeInTranslationUnit(First, Last)); 472 return llvm::ArrayRef(findToken(First), std::next(findToken(Last))); 473 } 474 475 ArrayRef<syntax::Token> 476 getTemplateRange(const ClassTemplateSpecializationDecl *D) const { 477 auto Tokens = getRange(D->getSourceRange()); 478 return maybeAppendSemicolon(Tokens, D); 479 } 480 481 /// Returns true if \p D is the last declarator in a chain and is thus 482 /// reponsible for creating SimpleDeclaration for the whole chain. 483 bool isResponsibleForCreatingDeclaration(const Decl *D) const { 484 assert((isa<DeclaratorDecl, TypedefNameDecl>(D)) && 485 "only DeclaratorDecl and TypedefNameDecl are supported."); 486 487 const Decl *Next = D->getNextDeclInContext(); 488 489 // There's no next sibling, this one is responsible. 490 if (Next == nullptr) { 491 return true; 492 } 493 494 // Next sibling is not the same type, this one is responsible. 495 if (D->getKind() != Next->getKind()) { 496 return true; 497 } 498 // Next sibling doesn't begin at the same loc, it must be a different 499 // declaration, so this declarator is responsible. 500 if (Next->getBeginLoc() != D->getBeginLoc()) { 501 return true; 502 } 503 504 // NextT is a member of the same declaration, and we need the last member to 505 // create declaration. This one is not responsible. 506 return false; 507 } 508 509 ArrayRef<syntax::Token> getDeclarationRange(Decl *D) { 510 ArrayRef<syntax::Token> Tokens; 511 // We want to drop the template parameters for specializations. 512 if (const auto *S = dyn_cast<TagDecl>(D)) 513 Tokens = getRange(S->TypeDecl::getBeginLoc(), S->getEndLoc()); 514 else 515 Tokens = getRange(D->getSourceRange()); 516 return maybeAppendSemicolon(Tokens, D); 517 } 518 519 ArrayRef<syntax::Token> getExprRange(const Expr *E) const { 520 return getRange(E->getSourceRange()); 521 } 522 523 /// Find the adjusted range for the statement, consuming the trailing 524 /// semicolon when needed. 525 ArrayRef<syntax::Token> getStmtRange(const Stmt *S) const { 526 auto Tokens = getRange(S->getSourceRange()); 527 if (isa<CompoundStmt>(S)) 528 return Tokens; 529 530 // Some statements miss a trailing semicolon, e.g. 'return', 'continue' and 531 // all statements that end with those. Consume this semicolon here. 532 if (Tokens.back().kind() == tok::semi) 533 return Tokens; 534 return withTrailingSemicolon(Tokens); 535 } 536 537 private: 538 ArrayRef<syntax::Token> maybeAppendSemicolon(ArrayRef<syntax::Token> Tokens, 539 const Decl *D) const { 540 if (isa<NamespaceDecl>(D)) 541 return Tokens; 542 if (DeclsWithoutSemicolons.count(D)) 543 return Tokens; 544 // FIXME: do not consume trailing semicolon on function definitions. 545 // Most declarations own a semicolon in syntax trees, but not in clang AST. 546 return withTrailingSemicolon(Tokens); 547 } 548 549 ArrayRef<syntax::Token> 550 withTrailingSemicolon(ArrayRef<syntax::Token> Tokens) const { 551 assert(!Tokens.empty()); 552 assert(Tokens.back().kind() != tok::eof); 553 // We never consume 'eof', so looking at the next token is ok. 554 if (Tokens.back().kind() != tok::semi && Tokens.end()->kind() == tok::semi) 555 return llvm::ArrayRef(Tokens.begin(), Tokens.end() + 1); 556 return Tokens; 557 } 558 559 void setRole(syntax::Node *N, NodeRole R) { 560 assert(N->getRole() == NodeRole::Detached); 561 N->setRole(R); 562 } 563 564 /// A collection of trees covering the input tokens. 565 /// When created, each tree corresponds to a single token in the file. 566 /// Clients call 'foldChildren' to attach one or more subtrees to a parent 567 /// node and update the list of trees accordingly. 568 /// 569 /// Ensures that added nodes properly nest and cover the whole token stream. 570 struct Forest { 571 Forest(syntax::Arena &A, const syntax::TokenBuffer &TB) { 572 assert(!TB.expandedTokens().empty()); 573 assert(TB.expandedTokens().back().kind() == tok::eof); 574 // Create all leaf nodes. 575 // Note that we do not have 'eof' in the tree. 576 for (const auto &T : TB.expandedTokens().drop_back()) { 577 auto *L = new (A.getAllocator()) 578 syntax::Leaf(reinterpret_cast<TokenManager::Key>(&T)); 579 L->Original = true; 580 L->CanModify = TB.spelledForExpanded(T).has_value(); 581 Trees.insert(Trees.end(), {&T, L}); 582 } 583 } 584 585 void assignRole(ArrayRef<syntax::Token> Range, syntax::NodeRole Role) { 586 assert(!Range.empty()); 587 auto It = Trees.lower_bound(Range.begin()); 588 assert(It != Trees.end() && "no node found"); 589 assert(It->first == Range.begin() && "no child with the specified range"); 590 assert((std::next(It) == Trees.end() || 591 std::next(It)->first == Range.end()) && 592 "no child with the specified range"); 593 assert(It->second->getRole() == NodeRole::Detached && 594 "re-assigning role for a child"); 595 It->second->setRole(Role); 596 } 597 598 /// Shrink \p Range to a subrange that only contains tokens of a list. 599 /// List elements and delimiters should already have correct roles. 600 ArrayRef<syntax::Token> shrinkToFitList(ArrayRef<syntax::Token> Range) { 601 auto BeginChildren = Trees.lower_bound(Range.begin()); 602 assert((BeginChildren == Trees.end() || 603 BeginChildren->first == Range.begin()) && 604 "Range crosses boundaries of existing subtrees"); 605 606 auto EndChildren = Trees.lower_bound(Range.end()); 607 assert( 608 (EndChildren == Trees.end() || EndChildren->first == Range.end()) && 609 "Range crosses boundaries of existing subtrees"); 610 611 auto BelongsToList = [](decltype(Trees)::value_type KV) { 612 auto Role = KV.second->getRole(); 613 return Role == syntax::NodeRole::ListElement || 614 Role == syntax::NodeRole::ListDelimiter; 615 }; 616 617 auto BeginListChildren = 618 std::find_if(BeginChildren, EndChildren, BelongsToList); 619 620 auto EndListChildren = 621 std::find_if_not(BeginListChildren, EndChildren, BelongsToList); 622 623 return ArrayRef<syntax::Token>(BeginListChildren->first, 624 EndListChildren->first); 625 } 626 627 /// Add \p Node to the forest and attach child nodes based on \p Tokens. 628 void foldChildren(const syntax::TokenBuffer &TB, 629 ArrayRef<syntax::Token> Tokens, syntax::Tree *Node) { 630 // Attach children to `Node`. 631 assert(Node->getFirstChild() == nullptr && "node already has children"); 632 633 auto *FirstToken = Tokens.begin(); 634 auto BeginChildren = Trees.lower_bound(FirstToken); 635 636 assert((BeginChildren == Trees.end() || 637 BeginChildren->first == FirstToken) && 638 "fold crosses boundaries of existing subtrees"); 639 auto EndChildren = Trees.lower_bound(Tokens.end()); 640 assert( 641 (EndChildren == Trees.end() || EndChildren->first == Tokens.end()) && 642 "fold crosses boundaries of existing subtrees"); 643 644 for (auto It = BeginChildren; It != EndChildren; ++It) { 645 auto *C = It->second; 646 if (C->getRole() == NodeRole::Detached) 647 C->setRole(NodeRole::Unknown); 648 Node->appendChildLowLevel(C); 649 } 650 651 // Mark that this node came from the AST and is backed by the source code. 652 Node->Original = true; 653 Node->CanModify = 654 TB.spelledForExpanded(Tokens).has_value(); 655 656 Trees.erase(BeginChildren, EndChildren); 657 Trees.insert({FirstToken, Node}); 658 } 659 660 // EXPECTS: all tokens were consumed and are owned by a single root node. 661 syntax::Node *finalize() && { 662 assert(Trees.size() == 1); 663 auto *Root = Trees.begin()->second; 664 Trees = {}; 665 return Root; 666 } 667 668 std::string str(const syntax::TokenBufferTokenManager &STM) const { 669 std::string R; 670 for (auto It = Trees.begin(); It != Trees.end(); ++It) { 671 unsigned CoveredTokens = 672 It != Trees.end() 673 ? (std::next(It)->first - It->first) 674 : STM.tokenBuffer().expandedTokens().end() - It->first; 675 676 R += std::string( 677 formatv("- '{0}' covers '{1}'+{2} tokens\n", It->second->getKind(), 678 It->first->text(STM.sourceManager()), CoveredTokens)); 679 R += It->second->dump(STM); 680 } 681 return R; 682 } 683 684 private: 685 /// Maps from the start token to a subtree starting at that token. 686 /// Keys in the map are pointers into the array of expanded tokens, so 687 /// pointer order corresponds to the order of preprocessor tokens. 688 std::map<const syntax::Token *, syntax::Node *> Trees; 689 }; 690 691 /// For debugging purposes. 692 std::string str() { return Pending.str(TBTM); } 693 694 syntax::Arena &Arena; 695 TokenBufferTokenManager& TBTM; 696 /// To quickly find tokens by their start location. 697 llvm::DenseMap<SourceLocation, const syntax::Token *> LocationToToken; 698 Forest Pending; 699 llvm::DenseSet<Decl *> DeclsWithoutSemicolons; 700 ASTToSyntaxMapping Mapping; 701 }; 702 703 namespace { 704 class BuildTreeVisitor : public RecursiveASTVisitor<BuildTreeVisitor> { 705 public: 706 explicit BuildTreeVisitor(ASTContext &Context, syntax::TreeBuilder &Builder) 707 : Builder(Builder), Context(Context) {} 708 709 bool shouldTraversePostOrder() const { return true; } 710 711 bool WalkUpFromDeclaratorDecl(DeclaratorDecl *DD) { 712 return processDeclaratorAndDeclaration(DD); 713 } 714 715 bool WalkUpFromTypedefNameDecl(TypedefNameDecl *TD) { 716 return processDeclaratorAndDeclaration(TD); 717 } 718 719 bool VisitDecl(Decl *D) { 720 assert(!D->isImplicit()); 721 Builder.foldNode(Builder.getDeclarationRange(D), 722 new (allocator()) syntax::UnknownDeclaration(), D); 723 return true; 724 } 725 726 // RAV does not call WalkUpFrom* on explicit instantiations, so we have to 727 // override Traverse. 728 // FIXME: make RAV call WalkUpFrom* instead. 729 bool 730 TraverseClassTemplateSpecializationDecl(ClassTemplateSpecializationDecl *C) { 731 if (!RecursiveASTVisitor::TraverseClassTemplateSpecializationDecl(C)) 732 return false; 733 if (C->isExplicitSpecialization()) 734 return true; // we are only interested in explicit instantiations. 735 auto *Declaration = 736 cast<syntax::SimpleDeclaration>(handleFreeStandingTagDecl(C)); 737 foldExplicitTemplateInstantiation( 738 Builder.getTemplateRange(C), 739 Builder.findToken(C->getExternKeywordLoc()), 740 Builder.findToken(C->getTemplateKeywordLoc()), Declaration, C); 741 return true; 742 } 743 744 bool WalkUpFromTemplateDecl(TemplateDecl *S) { 745 foldTemplateDeclaration( 746 Builder.getDeclarationRange(S), 747 Builder.findToken(S->getTemplateParameters()->getTemplateLoc()), 748 Builder.getDeclarationRange(S->getTemplatedDecl()), S); 749 return true; 750 } 751 752 bool WalkUpFromTagDecl(TagDecl *C) { 753 // FIXME: build the ClassSpecifier node. 754 if (!C->isFreeStanding()) { 755 assert(C->getNumTemplateParameterLists() == 0); 756 return true; 757 } 758 handleFreeStandingTagDecl(C); 759 return true; 760 } 761 762 syntax::Declaration *handleFreeStandingTagDecl(TagDecl *C) { 763 assert(C->isFreeStanding()); 764 // Class is a declaration specifier and needs a spanning declaration node. 765 auto DeclarationRange = Builder.getDeclarationRange(C); 766 syntax::Declaration *Result = new (allocator()) syntax::SimpleDeclaration; 767 Builder.foldNode(DeclarationRange, Result, nullptr); 768 769 // Build TemplateDeclaration nodes if we had template parameters. 770 auto ConsumeTemplateParameters = [&](const TemplateParameterList &L) { 771 const auto *TemplateKW = Builder.findToken(L.getTemplateLoc()); 772 auto R = llvm::ArrayRef(TemplateKW, DeclarationRange.end()); 773 Result = 774 foldTemplateDeclaration(R, TemplateKW, DeclarationRange, nullptr); 775 DeclarationRange = R; 776 }; 777 if (auto *S = dyn_cast<ClassTemplatePartialSpecializationDecl>(C)) 778 ConsumeTemplateParameters(*S->getTemplateParameters()); 779 for (unsigned I = C->getNumTemplateParameterLists(); 0 < I; --I) 780 ConsumeTemplateParameters(*C->getTemplateParameterList(I - 1)); 781 return Result; 782 } 783 784 bool WalkUpFromTranslationUnitDecl(TranslationUnitDecl *TU) { 785 // We do not want to call VisitDecl(), the declaration for translation 786 // unit is built by finalize(). 787 return true; 788 } 789 790 bool WalkUpFromCompoundStmt(CompoundStmt *S) { 791 using NodeRole = syntax::NodeRole; 792 793 Builder.markChildToken(S->getLBracLoc(), NodeRole::OpenParen); 794 for (auto *Child : S->body()) 795 Builder.markStmtChild(Child, NodeRole::Statement); 796 Builder.markChildToken(S->getRBracLoc(), NodeRole::CloseParen); 797 798 Builder.foldNode(Builder.getStmtRange(S), 799 new (allocator()) syntax::CompoundStatement, S); 800 return true; 801 } 802 803 // Some statements are not yet handled by syntax trees. 804 bool WalkUpFromStmt(Stmt *S) { 805 Builder.foldNode(Builder.getStmtRange(S), 806 new (allocator()) syntax::UnknownStatement, S); 807 return true; 808 } 809 810 bool TraverseIfStmt(IfStmt *S) { 811 bool Result = [&, this]() { 812 if (S->getInit() && !TraverseStmt(S->getInit())) { 813 return false; 814 } 815 // In cases where the condition is an initialized declaration in a 816 // statement, we want to preserve the declaration and ignore the 817 // implicit condition expression in the syntax tree. 818 if (S->hasVarStorage()) { 819 if (!TraverseStmt(S->getConditionVariableDeclStmt())) 820 return false; 821 } else if (S->getCond() && !TraverseStmt(S->getCond())) 822 return false; 823 824 if (S->getThen() && !TraverseStmt(S->getThen())) 825 return false; 826 if (S->getElse() && !TraverseStmt(S->getElse())) 827 return false; 828 return true; 829 }(); 830 WalkUpFromIfStmt(S); 831 return Result; 832 } 833 834 bool TraverseCXXForRangeStmt(CXXForRangeStmt *S) { 835 // We override to traverse range initializer as VarDecl. 836 // RAV traverses it as a statement, we produce invalid node kinds in that 837 // case. 838 // FIXME: should do this in RAV instead? 839 bool Result = [&, this]() { 840 if (S->getInit() && !TraverseStmt(S->getInit())) 841 return false; 842 if (S->getLoopVariable() && !TraverseDecl(S->getLoopVariable())) 843 return false; 844 if (S->getRangeInit() && !TraverseStmt(S->getRangeInit())) 845 return false; 846 if (S->getBody() && !TraverseStmt(S->getBody())) 847 return false; 848 return true; 849 }(); 850 WalkUpFromCXXForRangeStmt(S); 851 return Result; 852 } 853 854 bool TraverseStmt(Stmt *S) { 855 if (auto *DS = dyn_cast_or_null<DeclStmt>(S)) { 856 // We want to consume the semicolon, make sure SimpleDeclaration does not. 857 for (auto *D : DS->decls()) 858 Builder.noticeDeclWithoutSemicolon(D); 859 } else if (auto *E = dyn_cast_or_null<Expr>(S)) { 860 return RecursiveASTVisitor::TraverseStmt(IgnoreImplicit(E)); 861 } 862 return RecursiveASTVisitor::TraverseStmt(S); 863 } 864 865 bool TraverseOpaqueValueExpr(OpaqueValueExpr *VE) { 866 // OpaqueValue doesn't correspond to concrete syntax, ignore it. 867 return true; 868 } 869 870 // Some expressions are not yet handled by syntax trees. 871 bool WalkUpFromExpr(Expr *E) { 872 assert(!isImplicitExpr(E) && "should be handled by TraverseStmt"); 873 Builder.foldNode(Builder.getExprRange(E), 874 new (allocator()) syntax::UnknownExpression, E); 875 return true; 876 } 877 878 bool TraverseUserDefinedLiteral(UserDefinedLiteral *S) { 879 // The semantic AST node `UserDefinedLiteral` (UDL) may have one child node 880 // referencing the location of the UDL suffix (`_w` in `1.2_w`). The 881 // UDL suffix location does not point to the beginning of a token, so we 882 // can't represent the UDL suffix as a separate syntax tree node. 883 884 return WalkUpFromUserDefinedLiteral(S); 885 } 886 887 syntax::UserDefinedLiteralExpression * 888 buildUserDefinedLiteral(UserDefinedLiteral *S) { 889 switch (S->getLiteralOperatorKind()) { 890 case UserDefinedLiteral::LOK_Integer: 891 return new (allocator()) syntax::IntegerUserDefinedLiteralExpression; 892 case UserDefinedLiteral::LOK_Floating: 893 return new (allocator()) syntax::FloatUserDefinedLiteralExpression; 894 case UserDefinedLiteral::LOK_Character: 895 return new (allocator()) syntax::CharUserDefinedLiteralExpression; 896 case UserDefinedLiteral::LOK_String: 897 return new (allocator()) syntax::StringUserDefinedLiteralExpression; 898 case UserDefinedLiteral::LOK_Raw: 899 case UserDefinedLiteral::LOK_Template: 900 // For raw literal operator and numeric literal operator template we 901 // cannot get the type of the operand in the semantic AST. We get this 902 // information from the token. As integer and floating point have the same 903 // token kind, we run `NumericLiteralParser` again to distinguish them. 904 auto TokLoc = S->getBeginLoc(); 905 auto TokSpelling = 906 Builder.findToken(TokLoc)->text(Context.getSourceManager()); 907 auto Literal = 908 NumericLiteralParser(TokSpelling, TokLoc, Context.getSourceManager(), 909 Context.getLangOpts(), Context.getTargetInfo(), 910 Context.getDiagnostics()); 911 if (Literal.isIntegerLiteral()) 912 return new (allocator()) syntax::IntegerUserDefinedLiteralExpression; 913 else { 914 assert(Literal.isFloatingLiteral()); 915 return new (allocator()) syntax::FloatUserDefinedLiteralExpression; 916 } 917 } 918 llvm_unreachable("Unknown literal operator kind."); 919 } 920 921 bool WalkUpFromUserDefinedLiteral(UserDefinedLiteral *S) { 922 Builder.markChildToken(S->getBeginLoc(), syntax::NodeRole::LiteralToken); 923 Builder.foldNode(Builder.getExprRange(S), buildUserDefinedLiteral(S), S); 924 return true; 925 } 926 927 // FIXME: Fix `NestedNameSpecifierLoc::getLocalSourceRange` for the 928 // `DependentTemplateSpecializationType` case. 929 /// Given a nested-name-specifier return the range for the last name 930 /// specifier. 931 /// 932 /// e.g. `std::T::template X<U>::` => `template X<U>::` 933 SourceRange getLocalSourceRange(const NestedNameSpecifierLoc &NNSLoc) { 934 auto SR = NNSLoc.getLocalSourceRange(); 935 936 // The method `NestedNameSpecifierLoc::getLocalSourceRange` *should* 937 // return the desired `SourceRange`, but there is a corner case. For a 938 // `DependentTemplateSpecializationType` this method returns its 939 // qualifiers as well, in other words in the example above this method 940 // returns `T::template X<U>::` instead of only `template X<U>::` 941 if (auto TL = NNSLoc.getTypeLoc()) { 942 if (auto DependentTL = 943 TL.getAs<DependentTemplateSpecializationTypeLoc>()) { 944 // The 'template' keyword is always present in dependent template 945 // specializations. Except in the case of incorrect code 946 // TODO: Treat the case of incorrect code. 947 SR.setBegin(DependentTL.getTemplateKeywordLoc()); 948 } 949 } 950 951 return SR; 952 } 953 954 syntax::NodeKind getNameSpecifierKind(const NestedNameSpecifier &NNS) { 955 switch (NNS.getKind()) { 956 case NestedNameSpecifier::Global: 957 return syntax::NodeKind::GlobalNameSpecifier; 958 case NestedNameSpecifier::Namespace: 959 case NestedNameSpecifier::NamespaceAlias: 960 case NestedNameSpecifier::Identifier: 961 return syntax::NodeKind::IdentifierNameSpecifier; 962 case NestedNameSpecifier::TypeSpecWithTemplate: 963 return syntax::NodeKind::SimpleTemplateNameSpecifier; 964 case NestedNameSpecifier::TypeSpec: { 965 const auto *NNSType = NNS.getAsType(); 966 assert(NNSType); 967 if (isa<DecltypeType>(NNSType)) 968 return syntax::NodeKind::DecltypeNameSpecifier; 969 if (isa<TemplateSpecializationType, DependentTemplateSpecializationType>( 970 NNSType)) 971 return syntax::NodeKind::SimpleTemplateNameSpecifier; 972 return syntax::NodeKind::IdentifierNameSpecifier; 973 } 974 default: 975 // FIXME: Support Microsoft's __super 976 llvm::report_fatal_error("We don't yet support the __super specifier", 977 true); 978 } 979 } 980 981 syntax::NameSpecifier * 982 buildNameSpecifier(const NestedNameSpecifierLoc &NNSLoc) { 983 assert(NNSLoc.hasQualifier()); 984 auto NameSpecifierTokens = 985 Builder.getRange(getLocalSourceRange(NNSLoc)).drop_back(); 986 switch (getNameSpecifierKind(*NNSLoc.getNestedNameSpecifier())) { 987 case syntax::NodeKind::GlobalNameSpecifier: 988 return new (allocator()) syntax::GlobalNameSpecifier; 989 case syntax::NodeKind::IdentifierNameSpecifier: { 990 assert(NameSpecifierTokens.size() == 1); 991 Builder.markChildToken(NameSpecifierTokens.begin(), 992 syntax::NodeRole::Unknown); 993 auto *NS = new (allocator()) syntax::IdentifierNameSpecifier; 994 Builder.foldNode(NameSpecifierTokens, NS, nullptr); 995 return NS; 996 } 997 case syntax::NodeKind::SimpleTemplateNameSpecifier: { 998 // TODO: Build `SimpleTemplateNameSpecifier` children and implement 999 // accessors to them. 1000 // Be aware, we cannot do that simply by calling `TraverseTypeLoc`, 1001 // some `TypeLoc`s have inside them the previous name specifier and 1002 // we want to treat them independently. 1003 auto *NS = new (allocator()) syntax::SimpleTemplateNameSpecifier; 1004 Builder.foldNode(NameSpecifierTokens, NS, nullptr); 1005 return NS; 1006 } 1007 case syntax::NodeKind::DecltypeNameSpecifier: { 1008 const auto TL = NNSLoc.getTypeLoc().castAs<DecltypeTypeLoc>(); 1009 if (!RecursiveASTVisitor::TraverseDecltypeTypeLoc(TL)) 1010 return nullptr; 1011 auto *NS = new (allocator()) syntax::DecltypeNameSpecifier; 1012 // TODO: Implement accessor to `DecltypeNameSpecifier` inner 1013 // `DecltypeTypeLoc`. 1014 // For that add mapping from `TypeLoc` to `syntax::Node*` then: 1015 // Builder.markChild(TypeLoc, syntax::NodeRole); 1016 Builder.foldNode(NameSpecifierTokens, NS, nullptr); 1017 return NS; 1018 } 1019 default: 1020 llvm_unreachable("getChildKind() does not return this value"); 1021 } 1022 } 1023 1024 // To build syntax tree nodes for NestedNameSpecifierLoc we override 1025 // Traverse instead of WalkUpFrom because we want to traverse the children 1026 // ourselves and build a list instead of a nested tree of name specifier 1027 // prefixes. 1028 bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc QualifierLoc) { 1029 if (!QualifierLoc) 1030 return true; 1031 for (auto It = QualifierLoc; It; It = It.getPrefix()) { 1032 auto *NS = buildNameSpecifier(It); 1033 if (!NS) 1034 return false; 1035 Builder.markChild(NS, syntax::NodeRole::ListElement); 1036 Builder.markChildToken(It.getEndLoc(), syntax::NodeRole::ListDelimiter); 1037 } 1038 Builder.foldNode(Builder.getRange(QualifierLoc.getSourceRange()), 1039 new (allocator()) syntax::NestedNameSpecifier, 1040 QualifierLoc); 1041 return true; 1042 } 1043 1044 syntax::IdExpression *buildIdExpression(NestedNameSpecifierLoc QualifierLoc, 1045 SourceLocation TemplateKeywordLoc, 1046 SourceRange UnqualifiedIdLoc, 1047 ASTPtr From) { 1048 if (QualifierLoc) { 1049 Builder.markChild(QualifierLoc, syntax::NodeRole::Qualifier); 1050 if (TemplateKeywordLoc.isValid()) 1051 Builder.markChildToken(TemplateKeywordLoc, 1052 syntax::NodeRole::TemplateKeyword); 1053 } 1054 1055 auto *TheUnqualifiedId = new (allocator()) syntax::UnqualifiedId; 1056 Builder.foldNode(Builder.getRange(UnqualifiedIdLoc), TheUnqualifiedId, 1057 nullptr); 1058 Builder.markChild(TheUnqualifiedId, syntax::NodeRole::UnqualifiedId); 1059 1060 auto IdExpressionBeginLoc = 1061 QualifierLoc ? QualifierLoc.getBeginLoc() : UnqualifiedIdLoc.getBegin(); 1062 1063 auto *TheIdExpression = new (allocator()) syntax::IdExpression; 1064 Builder.foldNode( 1065 Builder.getRange(IdExpressionBeginLoc, UnqualifiedIdLoc.getEnd()), 1066 TheIdExpression, From); 1067 1068 return TheIdExpression; 1069 } 1070 1071 bool WalkUpFromMemberExpr(MemberExpr *S) { 1072 // For `MemberExpr` with implicit `this->` we generate a simple 1073 // `id-expression` syntax node, beacuse an implicit `member-expression` is 1074 // syntactically undistinguishable from an `id-expression` 1075 if (S->isImplicitAccess()) { 1076 buildIdExpression(S->getQualifierLoc(), S->getTemplateKeywordLoc(), 1077 SourceRange(S->getMemberLoc(), S->getEndLoc()), S); 1078 return true; 1079 } 1080 1081 auto *TheIdExpression = buildIdExpression( 1082 S->getQualifierLoc(), S->getTemplateKeywordLoc(), 1083 SourceRange(S->getMemberLoc(), S->getEndLoc()), nullptr); 1084 1085 Builder.markChild(TheIdExpression, syntax::NodeRole::Member); 1086 1087 Builder.markExprChild(S->getBase(), syntax::NodeRole::Object); 1088 Builder.markChildToken(S->getOperatorLoc(), syntax::NodeRole::AccessToken); 1089 1090 Builder.foldNode(Builder.getExprRange(S), 1091 new (allocator()) syntax::MemberExpression, S); 1092 return true; 1093 } 1094 1095 bool WalkUpFromDeclRefExpr(DeclRefExpr *S) { 1096 buildIdExpression(S->getQualifierLoc(), S->getTemplateKeywordLoc(), 1097 SourceRange(S->getLocation(), S->getEndLoc()), S); 1098 1099 return true; 1100 } 1101 1102 // Same logic as DeclRefExpr. 1103 bool WalkUpFromDependentScopeDeclRefExpr(DependentScopeDeclRefExpr *S) { 1104 buildIdExpression(S->getQualifierLoc(), S->getTemplateKeywordLoc(), 1105 SourceRange(S->getLocation(), S->getEndLoc()), S); 1106 1107 return true; 1108 } 1109 1110 bool WalkUpFromCXXThisExpr(CXXThisExpr *S) { 1111 if (!S->isImplicit()) { 1112 Builder.markChildToken(S->getLocation(), 1113 syntax::NodeRole::IntroducerKeyword); 1114 Builder.foldNode(Builder.getExprRange(S), 1115 new (allocator()) syntax::ThisExpression, S); 1116 } 1117 return true; 1118 } 1119 1120 bool WalkUpFromParenExpr(ParenExpr *S) { 1121 Builder.markChildToken(S->getLParen(), syntax::NodeRole::OpenParen); 1122 Builder.markExprChild(S->getSubExpr(), syntax::NodeRole::SubExpression); 1123 Builder.markChildToken(S->getRParen(), syntax::NodeRole::CloseParen); 1124 Builder.foldNode(Builder.getExprRange(S), 1125 new (allocator()) syntax::ParenExpression, S); 1126 return true; 1127 } 1128 1129 bool WalkUpFromIntegerLiteral(IntegerLiteral *S) { 1130 Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken); 1131 Builder.foldNode(Builder.getExprRange(S), 1132 new (allocator()) syntax::IntegerLiteralExpression, S); 1133 return true; 1134 } 1135 1136 bool WalkUpFromCharacterLiteral(CharacterLiteral *S) { 1137 Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken); 1138 Builder.foldNode(Builder.getExprRange(S), 1139 new (allocator()) syntax::CharacterLiteralExpression, S); 1140 return true; 1141 } 1142 1143 bool WalkUpFromFloatingLiteral(FloatingLiteral *S) { 1144 Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken); 1145 Builder.foldNode(Builder.getExprRange(S), 1146 new (allocator()) syntax::FloatingLiteralExpression, S); 1147 return true; 1148 } 1149 1150 bool WalkUpFromStringLiteral(StringLiteral *S) { 1151 Builder.markChildToken(S->getBeginLoc(), syntax::NodeRole::LiteralToken); 1152 Builder.foldNode(Builder.getExprRange(S), 1153 new (allocator()) syntax::StringLiteralExpression, S); 1154 return true; 1155 } 1156 1157 bool WalkUpFromCXXBoolLiteralExpr(CXXBoolLiteralExpr *S) { 1158 Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken); 1159 Builder.foldNode(Builder.getExprRange(S), 1160 new (allocator()) syntax::BoolLiteralExpression, S); 1161 return true; 1162 } 1163 1164 bool WalkUpFromCXXNullPtrLiteralExpr(CXXNullPtrLiteralExpr *S) { 1165 Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken); 1166 Builder.foldNode(Builder.getExprRange(S), 1167 new (allocator()) syntax::CxxNullPtrExpression, S); 1168 return true; 1169 } 1170 1171 bool WalkUpFromUnaryOperator(UnaryOperator *S) { 1172 Builder.markChildToken(S->getOperatorLoc(), 1173 syntax::NodeRole::OperatorToken); 1174 Builder.markExprChild(S->getSubExpr(), syntax::NodeRole::Operand); 1175 1176 if (S->isPostfix()) 1177 Builder.foldNode(Builder.getExprRange(S), 1178 new (allocator()) syntax::PostfixUnaryOperatorExpression, 1179 S); 1180 else 1181 Builder.foldNode(Builder.getExprRange(S), 1182 new (allocator()) syntax::PrefixUnaryOperatorExpression, 1183 S); 1184 1185 return true; 1186 } 1187 1188 bool WalkUpFromBinaryOperator(BinaryOperator *S) { 1189 Builder.markExprChild(S->getLHS(), syntax::NodeRole::LeftHandSide); 1190 Builder.markChildToken(S->getOperatorLoc(), 1191 syntax::NodeRole::OperatorToken); 1192 Builder.markExprChild(S->getRHS(), syntax::NodeRole::RightHandSide); 1193 Builder.foldNode(Builder.getExprRange(S), 1194 new (allocator()) syntax::BinaryOperatorExpression, S); 1195 return true; 1196 } 1197 1198 /// Builds `CallArguments` syntax node from arguments that appear in source 1199 /// code, i.e. not default arguments. 1200 syntax::CallArguments * 1201 buildCallArguments(CallExpr::arg_range ArgsAndDefaultArgs) { 1202 auto Args = dropDefaultArgs(ArgsAndDefaultArgs); 1203 for (auto *Arg : Args) { 1204 Builder.markExprChild(Arg, syntax::NodeRole::ListElement); 1205 const auto *DelimiterToken = 1206 std::next(Builder.findToken(Arg->getEndLoc())); 1207 if (DelimiterToken->kind() == clang::tok::TokenKind::comma) 1208 Builder.markChildToken(DelimiterToken, syntax::NodeRole::ListDelimiter); 1209 } 1210 1211 auto *Arguments = new (allocator()) syntax::CallArguments; 1212 if (!Args.empty()) 1213 Builder.foldNode(Builder.getRange((*Args.begin())->getBeginLoc(), 1214 (*(Args.end() - 1))->getEndLoc()), 1215 Arguments, nullptr); 1216 1217 return Arguments; 1218 } 1219 1220 bool WalkUpFromCallExpr(CallExpr *S) { 1221 Builder.markExprChild(S->getCallee(), syntax::NodeRole::Callee); 1222 1223 const auto *LParenToken = 1224 std::next(Builder.findToken(S->getCallee()->getEndLoc())); 1225 // FIXME: Assert that `LParenToken` is indeed a `l_paren` once we have fixed 1226 // the test on decltype desctructors. 1227 if (LParenToken->kind() == clang::tok::l_paren) 1228 Builder.markChildToken(LParenToken, syntax::NodeRole::OpenParen); 1229 1230 Builder.markChild(buildCallArguments(S->arguments()), 1231 syntax::NodeRole::Arguments); 1232 1233 Builder.markChildToken(S->getRParenLoc(), syntax::NodeRole::CloseParen); 1234 1235 Builder.foldNode(Builder.getRange(S->getSourceRange()), 1236 new (allocator()) syntax::CallExpression, S); 1237 return true; 1238 } 1239 1240 bool WalkUpFromCXXConstructExpr(CXXConstructExpr *S) { 1241 // Ignore the implicit calls to default constructors. 1242 if ((S->getNumArgs() == 0 || isa<CXXDefaultArgExpr>(S->getArg(0))) && 1243 S->getParenOrBraceRange().isInvalid()) 1244 return true; 1245 return RecursiveASTVisitor::WalkUpFromCXXConstructExpr(S); 1246 } 1247 1248 bool TraverseCXXOperatorCallExpr(CXXOperatorCallExpr *S) { 1249 // To construct a syntax tree of the same shape for calls to built-in and 1250 // user-defined operators, ignore the `DeclRefExpr` that refers to the 1251 // operator and treat it as a simple token. Do that by traversing 1252 // arguments instead of children. 1253 for (auto *child : S->arguments()) { 1254 // A postfix unary operator is declared as taking two operands. The 1255 // second operand is used to distinguish from its prefix counterpart. In 1256 // the semantic AST this "phantom" operand is represented as a 1257 // `IntegerLiteral` with invalid `SourceLocation`. We skip visiting this 1258 // operand because it does not correspond to anything written in source 1259 // code. 1260 if (child->getSourceRange().isInvalid()) { 1261 assert(getOperatorNodeKind(*S) == 1262 syntax::NodeKind::PostfixUnaryOperatorExpression); 1263 continue; 1264 } 1265 if (!TraverseStmt(child)) 1266 return false; 1267 } 1268 return WalkUpFromCXXOperatorCallExpr(S); 1269 } 1270 1271 bool WalkUpFromCXXOperatorCallExpr(CXXOperatorCallExpr *S) { 1272 switch (getOperatorNodeKind(*S)) { 1273 case syntax::NodeKind::BinaryOperatorExpression: 1274 Builder.markExprChild(S->getArg(0), syntax::NodeRole::LeftHandSide); 1275 Builder.markChildToken(S->getOperatorLoc(), 1276 syntax::NodeRole::OperatorToken); 1277 Builder.markExprChild(S->getArg(1), syntax::NodeRole::RightHandSide); 1278 Builder.foldNode(Builder.getExprRange(S), 1279 new (allocator()) syntax::BinaryOperatorExpression, S); 1280 return true; 1281 case syntax::NodeKind::PrefixUnaryOperatorExpression: 1282 Builder.markChildToken(S->getOperatorLoc(), 1283 syntax::NodeRole::OperatorToken); 1284 Builder.markExprChild(S->getArg(0), syntax::NodeRole::Operand); 1285 Builder.foldNode(Builder.getExprRange(S), 1286 new (allocator()) syntax::PrefixUnaryOperatorExpression, 1287 S); 1288 return true; 1289 case syntax::NodeKind::PostfixUnaryOperatorExpression: 1290 Builder.markChildToken(S->getOperatorLoc(), 1291 syntax::NodeRole::OperatorToken); 1292 Builder.markExprChild(S->getArg(0), syntax::NodeRole::Operand); 1293 Builder.foldNode(Builder.getExprRange(S), 1294 new (allocator()) syntax::PostfixUnaryOperatorExpression, 1295 S); 1296 return true; 1297 case syntax::NodeKind::CallExpression: { 1298 Builder.markExprChild(S->getArg(0), syntax::NodeRole::Callee); 1299 1300 const auto *LParenToken = 1301 std::next(Builder.findToken(S->getArg(0)->getEndLoc())); 1302 // FIXME: Assert that `LParenToken` is indeed a `l_paren` once we have 1303 // fixed the test on decltype desctructors. 1304 if (LParenToken->kind() == clang::tok::l_paren) 1305 Builder.markChildToken(LParenToken, syntax::NodeRole::OpenParen); 1306 1307 Builder.markChild(buildCallArguments(CallExpr::arg_range( 1308 S->arg_begin() + 1, S->arg_end())), 1309 syntax::NodeRole::Arguments); 1310 1311 Builder.markChildToken(S->getRParenLoc(), syntax::NodeRole::CloseParen); 1312 1313 Builder.foldNode(Builder.getRange(S->getSourceRange()), 1314 new (allocator()) syntax::CallExpression, S); 1315 return true; 1316 } 1317 case syntax::NodeKind::UnknownExpression: 1318 return WalkUpFromExpr(S); 1319 default: 1320 llvm_unreachable("getOperatorNodeKind() does not return this value"); 1321 } 1322 } 1323 1324 bool WalkUpFromCXXDefaultArgExpr(CXXDefaultArgExpr *S) { return true; } 1325 1326 bool WalkUpFromNamespaceDecl(NamespaceDecl *S) { 1327 auto Tokens = Builder.getDeclarationRange(S); 1328 if (Tokens.front().kind() == tok::coloncolon) { 1329 // Handle nested namespace definitions. Those start at '::' token, e.g. 1330 // namespace a^::b {} 1331 // FIXME: build corresponding nodes for the name of this namespace. 1332 return true; 1333 } 1334 Builder.foldNode(Tokens, new (allocator()) syntax::NamespaceDefinition, S); 1335 return true; 1336 } 1337 1338 // FIXME: Deleting the `TraverseParenTypeLoc` override doesn't change test 1339 // results. Find test coverage or remove it. 1340 bool TraverseParenTypeLoc(ParenTypeLoc L) { 1341 // We reverse order of traversal to get the proper syntax structure. 1342 if (!WalkUpFromParenTypeLoc(L)) 1343 return false; 1344 return TraverseTypeLoc(L.getInnerLoc()); 1345 } 1346 1347 bool WalkUpFromParenTypeLoc(ParenTypeLoc L) { 1348 Builder.markChildToken(L.getLParenLoc(), syntax::NodeRole::OpenParen); 1349 Builder.markChildToken(L.getRParenLoc(), syntax::NodeRole::CloseParen); 1350 Builder.foldNode(Builder.getRange(L.getLParenLoc(), L.getRParenLoc()), 1351 new (allocator()) syntax::ParenDeclarator, L); 1352 return true; 1353 } 1354 1355 // Declarator chunks, they are produced by type locs and some clang::Decls. 1356 bool WalkUpFromArrayTypeLoc(ArrayTypeLoc L) { 1357 Builder.markChildToken(L.getLBracketLoc(), syntax::NodeRole::OpenParen); 1358 Builder.markExprChild(L.getSizeExpr(), syntax::NodeRole::Size); 1359 Builder.markChildToken(L.getRBracketLoc(), syntax::NodeRole::CloseParen); 1360 Builder.foldNode(Builder.getRange(L.getLBracketLoc(), L.getRBracketLoc()), 1361 new (allocator()) syntax::ArraySubscript, L); 1362 return true; 1363 } 1364 1365 syntax::ParameterDeclarationList * 1366 buildParameterDeclarationList(ArrayRef<ParmVarDecl *> Params) { 1367 for (auto *P : Params) { 1368 Builder.markChild(P, syntax::NodeRole::ListElement); 1369 const auto *DelimiterToken = std::next(Builder.findToken(P->getEndLoc())); 1370 if (DelimiterToken->kind() == clang::tok::TokenKind::comma) 1371 Builder.markChildToken(DelimiterToken, syntax::NodeRole::ListDelimiter); 1372 } 1373 auto *Parameters = new (allocator()) syntax::ParameterDeclarationList; 1374 if (!Params.empty()) 1375 Builder.foldNode(Builder.getRange(Params.front()->getBeginLoc(), 1376 Params.back()->getEndLoc()), 1377 Parameters, nullptr); 1378 return Parameters; 1379 } 1380 1381 bool WalkUpFromFunctionTypeLoc(FunctionTypeLoc L) { 1382 Builder.markChildToken(L.getLParenLoc(), syntax::NodeRole::OpenParen); 1383 1384 Builder.markChild(buildParameterDeclarationList(L.getParams()), 1385 syntax::NodeRole::Parameters); 1386 1387 Builder.markChildToken(L.getRParenLoc(), syntax::NodeRole::CloseParen); 1388 Builder.foldNode(Builder.getRange(L.getLParenLoc(), L.getEndLoc()), 1389 new (allocator()) syntax::ParametersAndQualifiers, L); 1390 return true; 1391 } 1392 1393 bool WalkUpFromFunctionProtoTypeLoc(FunctionProtoTypeLoc L) { 1394 if (!L.getTypePtr()->hasTrailingReturn()) 1395 return WalkUpFromFunctionTypeLoc(L); 1396 1397 auto *TrailingReturnTokens = buildTrailingReturn(L); 1398 // Finish building the node for parameters. 1399 Builder.markChild(TrailingReturnTokens, syntax::NodeRole::TrailingReturn); 1400 return WalkUpFromFunctionTypeLoc(L); 1401 } 1402 1403 bool TraverseMemberPointerTypeLoc(MemberPointerTypeLoc L) { 1404 // In the source code "void (Y::*mp)()" `MemberPointerTypeLoc` corresponds 1405 // to "Y::*" but it points to a `ParenTypeLoc` that corresponds to 1406 // "(Y::*mp)" We thus reverse the order of traversal to get the proper 1407 // syntax structure. 1408 if (!WalkUpFromMemberPointerTypeLoc(L)) 1409 return false; 1410 return TraverseTypeLoc(L.getPointeeLoc()); 1411 } 1412 1413 bool WalkUpFromMemberPointerTypeLoc(MemberPointerTypeLoc L) { 1414 auto SR = L.getLocalSourceRange(); 1415 Builder.foldNode(Builder.getRange(SR), 1416 new (allocator()) syntax::MemberPointer, L); 1417 return true; 1418 } 1419 1420 // The code below is very regular, it could even be generated with some 1421 // preprocessor magic. We merely assign roles to the corresponding children 1422 // and fold resulting nodes. 1423 bool WalkUpFromDeclStmt(DeclStmt *S) { 1424 Builder.foldNode(Builder.getStmtRange(S), 1425 new (allocator()) syntax::DeclarationStatement, S); 1426 return true; 1427 } 1428 1429 bool WalkUpFromNullStmt(NullStmt *S) { 1430 Builder.foldNode(Builder.getStmtRange(S), 1431 new (allocator()) syntax::EmptyStatement, S); 1432 return true; 1433 } 1434 1435 bool WalkUpFromSwitchStmt(SwitchStmt *S) { 1436 Builder.markChildToken(S->getSwitchLoc(), 1437 syntax::NodeRole::IntroducerKeyword); 1438 Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement); 1439 Builder.foldNode(Builder.getStmtRange(S), 1440 new (allocator()) syntax::SwitchStatement, S); 1441 return true; 1442 } 1443 1444 bool WalkUpFromCaseStmt(CaseStmt *S) { 1445 Builder.markChildToken(S->getKeywordLoc(), 1446 syntax::NodeRole::IntroducerKeyword); 1447 Builder.markExprChild(S->getLHS(), syntax::NodeRole::CaseValue); 1448 Builder.markStmtChild(S->getSubStmt(), syntax::NodeRole::BodyStatement); 1449 Builder.foldNode(Builder.getStmtRange(S), 1450 new (allocator()) syntax::CaseStatement, S); 1451 return true; 1452 } 1453 1454 bool WalkUpFromDefaultStmt(DefaultStmt *S) { 1455 Builder.markChildToken(S->getKeywordLoc(), 1456 syntax::NodeRole::IntroducerKeyword); 1457 Builder.markStmtChild(S->getSubStmt(), syntax::NodeRole::BodyStatement); 1458 Builder.foldNode(Builder.getStmtRange(S), 1459 new (allocator()) syntax::DefaultStatement, S); 1460 return true; 1461 } 1462 1463 bool WalkUpFromIfStmt(IfStmt *S) { 1464 Builder.markChildToken(S->getIfLoc(), syntax::NodeRole::IntroducerKeyword); 1465 Stmt *ConditionStatement = S->getCond(); 1466 if (S->hasVarStorage()) 1467 ConditionStatement = S->getConditionVariableDeclStmt(); 1468 Builder.markStmtChild(ConditionStatement, syntax::NodeRole::Condition); 1469 Builder.markStmtChild(S->getThen(), syntax::NodeRole::ThenStatement); 1470 Builder.markChildToken(S->getElseLoc(), syntax::NodeRole::ElseKeyword); 1471 Builder.markStmtChild(S->getElse(), syntax::NodeRole::ElseStatement); 1472 Builder.foldNode(Builder.getStmtRange(S), 1473 new (allocator()) syntax::IfStatement, S); 1474 return true; 1475 } 1476 1477 bool WalkUpFromForStmt(ForStmt *S) { 1478 Builder.markChildToken(S->getForLoc(), syntax::NodeRole::IntroducerKeyword); 1479 Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement); 1480 Builder.foldNode(Builder.getStmtRange(S), 1481 new (allocator()) syntax::ForStatement, S); 1482 return true; 1483 } 1484 1485 bool WalkUpFromWhileStmt(WhileStmt *S) { 1486 Builder.markChildToken(S->getWhileLoc(), 1487 syntax::NodeRole::IntroducerKeyword); 1488 Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement); 1489 Builder.foldNode(Builder.getStmtRange(S), 1490 new (allocator()) syntax::WhileStatement, S); 1491 return true; 1492 } 1493 1494 bool WalkUpFromContinueStmt(ContinueStmt *S) { 1495 Builder.markChildToken(S->getContinueLoc(), 1496 syntax::NodeRole::IntroducerKeyword); 1497 Builder.foldNode(Builder.getStmtRange(S), 1498 new (allocator()) syntax::ContinueStatement, S); 1499 return true; 1500 } 1501 1502 bool WalkUpFromBreakStmt(BreakStmt *S) { 1503 Builder.markChildToken(S->getBreakLoc(), 1504 syntax::NodeRole::IntroducerKeyword); 1505 Builder.foldNode(Builder.getStmtRange(S), 1506 new (allocator()) syntax::BreakStatement, S); 1507 return true; 1508 } 1509 1510 bool WalkUpFromReturnStmt(ReturnStmt *S) { 1511 Builder.markChildToken(S->getReturnLoc(), 1512 syntax::NodeRole::IntroducerKeyword); 1513 Builder.markExprChild(S->getRetValue(), syntax::NodeRole::ReturnValue); 1514 Builder.foldNode(Builder.getStmtRange(S), 1515 new (allocator()) syntax::ReturnStatement, S); 1516 return true; 1517 } 1518 1519 bool WalkUpFromCXXForRangeStmt(CXXForRangeStmt *S) { 1520 Builder.markChildToken(S->getForLoc(), syntax::NodeRole::IntroducerKeyword); 1521 Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement); 1522 Builder.foldNode(Builder.getStmtRange(S), 1523 new (allocator()) syntax::RangeBasedForStatement, S); 1524 return true; 1525 } 1526 1527 bool WalkUpFromEmptyDecl(EmptyDecl *S) { 1528 Builder.foldNode(Builder.getDeclarationRange(S), 1529 new (allocator()) syntax::EmptyDeclaration, S); 1530 return true; 1531 } 1532 1533 bool WalkUpFromStaticAssertDecl(StaticAssertDecl *S) { 1534 Builder.markExprChild(S->getAssertExpr(), syntax::NodeRole::Condition); 1535 Builder.markExprChild(S->getMessage(), syntax::NodeRole::Message); 1536 Builder.foldNode(Builder.getDeclarationRange(S), 1537 new (allocator()) syntax::StaticAssertDeclaration, S); 1538 return true; 1539 } 1540 1541 bool WalkUpFromLinkageSpecDecl(LinkageSpecDecl *S) { 1542 Builder.foldNode(Builder.getDeclarationRange(S), 1543 new (allocator()) syntax::LinkageSpecificationDeclaration, 1544 S); 1545 return true; 1546 } 1547 1548 bool WalkUpFromNamespaceAliasDecl(NamespaceAliasDecl *S) { 1549 Builder.foldNode(Builder.getDeclarationRange(S), 1550 new (allocator()) syntax::NamespaceAliasDefinition, S); 1551 return true; 1552 } 1553 1554 bool WalkUpFromUsingDirectiveDecl(UsingDirectiveDecl *S) { 1555 Builder.foldNode(Builder.getDeclarationRange(S), 1556 new (allocator()) syntax::UsingNamespaceDirective, S); 1557 return true; 1558 } 1559 1560 bool WalkUpFromUsingDecl(UsingDecl *S) { 1561 Builder.foldNode(Builder.getDeclarationRange(S), 1562 new (allocator()) syntax::UsingDeclaration, S); 1563 return true; 1564 } 1565 1566 bool WalkUpFromUnresolvedUsingValueDecl(UnresolvedUsingValueDecl *S) { 1567 Builder.foldNode(Builder.getDeclarationRange(S), 1568 new (allocator()) syntax::UsingDeclaration, S); 1569 return true; 1570 } 1571 1572 bool WalkUpFromUnresolvedUsingTypenameDecl(UnresolvedUsingTypenameDecl *S) { 1573 Builder.foldNode(Builder.getDeclarationRange(S), 1574 new (allocator()) syntax::UsingDeclaration, S); 1575 return true; 1576 } 1577 1578 bool WalkUpFromTypeAliasDecl(TypeAliasDecl *S) { 1579 Builder.foldNode(Builder.getDeclarationRange(S), 1580 new (allocator()) syntax::TypeAliasDeclaration, S); 1581 return true; 1582 } 1583 1584 private: 1585 /// Folds SimpleDeclarator node (if present) and in case this is the last 1586 /// declarator in the chain it also folds SimpleDeclaration node. 1587 template <class T> bool processDeclaratorAndDeclaration(T *D) { 1588 auto Range = getDeclaratorRange( 1589 Builder.sourceManager(), D->getTypeSourceInfo()->getTypeLoc(), 1590 getQualifiedNameStart(D), getInitializerRange(D)); 1591 1592 // There doesn't have to be a declarator (e.g. `void foo(int)` only has 1593 // declaration, but no declarator). 1594 if (!Range.getBegin().isValid()) { 1595 Builder.markChild(new (allocator()) syntax::DeclaratorList, 1596 syntax::NodeRole::Declarators); 1597 Builder.foldNode(Builder.getDeclarationRange(D), 1598 new (allocator()) syntax::SimpleDeclaration, D); 1599 return true; 1600 } 1601 1602 auto *N = new (allocator()) syntax::SimpleDeclarator; 1603 Builder.foldNode(Builder.getRange(Range), N, nullptr); 1604 Builder.markChild(N, syntax::NodeRole::ListElement); 1605 1606 if (!Builder.isResponsibleForCreatingDeclaration(D)) { 1607 // If this is not the last declarator in the declaration we expect a 1608 // delimiter after it. 1609 const auto *DelimiterToken = std::next(Builder.findToken(Range.getEnd())); 1610 if (DelimiterToken->kind() == clang::tok::TokenKind::comma) 1611 Builder.markChildToken(DelimiterToken, syntax::NodeRole::ListDelimiter); 1612 } else { 1613 auto *DL = new (allocator()) syntax::DeclaratorList; 1614 auto DeclarationRange = Builder.getDeclarationRange(D); 1615 Builder.foldList(DeclarationRange, DL, nullptr); 1616 1617 Builder.markChild(DL, syntax::NodeRole::Declarators); 1618 Builder.foldNode(DeclarationRange, 1619 new (allocator()) syntax::SimpleDeclaration, D); 1620 } 1621 return true; 1622 } 1623 1624 /// Returns the range of the built node. 1625 syntax::TrailingReturnType *buildTrailingReturn(FunctionProtoTypeLoc L) { 1626 assert(L.getTypePtr()->hasTrailingReturn()); 1627 1628 auto ReturnedType = L.getReturnLoc(); 1629 // Build node for the declarator, if any. 1630 auto ReturnDeclaratorRange = SourceRange(GetStartLoc().Visit(ReturnedType), 1631 ReturnedType.getEndLoc()); 1632 syntax::SimpleDeclarator *ReturnDeclarator = nullptr; 1633 if (ReturnDeclaratorRange.isValid()) { 1634 ReturnDeclarator = new (allocator()) syntax::SimpleDeclarator; 1635 Builder.foldNode(Builder.getRange(ReturnDeclaratorRange), 1636 ReturnDeclarator, nullptr); 1637 } 1638 1639 // Build node for trailing return type. 1640 auto Return = Builder.getRange(ReturnedType.getSourceRange()); 1641 const auto *Arrow = Return.begin() - 1; 1642 assert(Arrow->kind() == tok::arrow); 1643 auto Tokens = llvm::ArrayRef(Arrow, Return.end()); 1644 Builder.markChildToken(Arrow, syntax::NodeRole::ArrowToken); 1645 if (ReturnDeclarator) 1646 Builder.markChild(ReturnDeclarator, syntax::NodeRole::Declarator); 1647 auto *R = new (allocator()) syntax::TrailingReturnType; 1648 Builder.foldNode(Tokens, R, L); 1649 return R; 1650 } 1651 1652 void foldExplicitTemplateInstantiation( 1653 ArrayRef<syntax::Token> Range, const syntax::Token *ExternKW, 1654 const syntax::Token *TemplateKW, 1655 syntax::SimpleDeclaration *InnerDeclaration, Decl *From) { 1656 assert(!ExternKW || ExternKW->kind() == tok::kw_extern); 1657 assert(TemplateKW && TemplateKW->kind() == tok::kw_template); 1658 Builder.markChildToken(ExternKW, syntax::NodeRole::ExternKeyword); 1659 Builder.markChildToken(TemplateKW, syntax::NodeRole::IntroducerKeyword); 1660 Builder.markChild(InnerDeclaration, syntax::NodeRole::Declaration); 1661 Builder.foldNode( 1662 Range, new (allocator()) syntax::ExplicitTemplateInstantiation, From); 1663 } 1664 1665 syntax::TemplateDeclaration *foldTemplateDeclaration( 1666 ArrayRef<syntax::Token> Range, const syntax::Token *TemplateKW, 1667 ArrayRef<syntax::Token> TemplatedDeclaration, Decl *From) { 1668 assert(TemplateKW && TemplateKW->kind() == tok::kw_template); 1669 Builder.markChildToken(TemplateKW, syntax::NodeRole::IntroducerKeyword); 1670 1671 auto *N = new (allocator()) syntax::TemplateDeclaration; 1672 Builder.foldNode(Range, N, From); 1673 Builder.markChild(N, syntax::NodeRole::Declaration); 1674 return N; 1675 } 1676 1677 /// A small helper to save some typing. 1678 llvm::BumpPtrAllocator &allocator() { return Builder.allocator(); } 1679 1680 syntax::TreeBuilder &Builder; 1681 const ASTContext &Context; 1682 }; 1683 } // namespace 1684 1685 void syntax::TreeBuilder::noticeDeclWithoutSemicolon(Decl *D) { 1686 DeclsWithoutSemicolons.insert(D); 1687 } 1688 1689 void syntax::TreeBuilder::markChildToken(SourceLocation Loc, NodeRole Role) { 1690 if (Loc.isInvalid()) 1691 return; 1692 Pending.assignRole(*findToken(Loc), Role); 1693 } 1694 1695 void syntax::TreeBuilder::markChildToken(const syntax::Token *T, NodeRole R) { 1696 if (!T) 1697 return; 1698 Pending.assignRole(*T, R); 1699 } 1700 1701 void syntax::TreeBuilder::markChild(syntax::Node *N, NodeRole R) { 1702 assert(N); 1703 setRole(N, R); 1704 } 1705 1706 void syntax::TreeBuilder::markChild(ASTPtr N, NodeRole R) { 1707 auto *SN = Mapping.find(N); 1708 assert(SN != nullptr); 1709 setRole(SN, R); 1710 } 1711 void syntax::TreeBuilder::markChild(NestedNameSpecifierLoc NNSLoc, NodeRole R) { 1712 auto *SN = Mapping.find(NNSLoc); 1713 assert(SN != nullptr); 1714 setRole(SN, R); 1715 } 1716 1717 void syntax::TreeBuilder::markStmtChild(Stmt *Child, NodeRole Role) { 1718 if (!Child) 1719 return; 1720 1721 syntax::Tree *ChildNode; 1722 if (Expr *ChildExpr = dyn_cast<Expr>(Child)) { 1723 // This is an expression in a statement position, consume the trailing 1724 // semicolon and form an 'ExpressionStatement' node. 1725 markExprChild(ChildExpr, NodeRole::Expression); 1726 ChildNode = new (allocator()) syntax::ExpressionStatement; 1727 // (!) 'getStmtRange()' ensures this covers a trailing semicolon. 1728 Pending.foldChildren(TBTM.tokenBuffer(), getStmtRange(Child), ChildNode); 1729 } else { 1730 ChildNode = Mapping.find(Child); 1731 } 1732 assert(ChildNode != nullptr); 1733 setRole(ChildNode, Role); 1734 } 1735 1736 void syntax::TreeBuilder::markExprChild(Expr *Child, NodeRole Role) { 1737 if (!Child) 1738 return; 1739 Child = IgnoreImplicit(Child); 1740 1741 syntax::Tree *ChildNode = Mapping.find(Child); 1742 assert(ChildNode != nullptr); 1743 setRole(ChildNode, Role); 1744 } 1745 1746 const syntax::Token *syntax::TreeBuilder::findToken(SourceLocation L) const { 1747 if (L.isInvalid()) 1748 return nullptr; 1749 auto It = LocationToToken.find(L); 1750 assert(It != LocationToToken.end()); 1751 return It->second; 1752 } 1753 1754 syntax::TranslationUnit *syntax::buildSyntaxTree(Arena &A, 1755 TokenBufferTokenManager& TBTM, 1756 ASTContext &Context) { 1757 TreeBuilder Builder(A, TBTM); 1758 BuildTreeVisitor(Context, Builder).TraverseAST(Context); 1759 return std::move(Builder).finalize(); 1760 } 1761