xref: /freebsd/contrib/llvm-project/clang/lib/Tooling/Syntax/BuildTree.cpp (revision 05ab65497e06edd12683163480841aa9630b9d4c)
1 //===- BuildTree.cpp ------------------------------------------*- C++ -*-=====//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 #include "clang/Tooling/Syntax/BuildTree.h"
9 #include "clang/AST/Decl.h"
10 #include "clang/AST/DeclBase.h"
11 #include "clang/AST/RecursiveASTVisitor.h"
12 #include "clang/AST/Stmt.h"
13 #include "clang/Basic/LLVM.h"
14 #include "clang/Basic/SourceLocation.h"
15 #include "clang/Basic/SourceManager.h"
16 #include "clang/Basic/TokenKinds.h"
17 #include "clang/Lex/Lexer.h"
18 #include "clang/Tooling/Syntax/Nodes.h"
19 #include "clang/Tooling/Syntax/Tokens.h"
20 #include "clang/Tooling/Syntax/Tree.h"
21 #include "llvm/ADT/ArrayRef.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/Support/Allocator.h"
25 #include "llvm/Support/Casting.h"
26 #include "llvm/Support/Compiler.h"
27 #include "llvm/Support/FormatVariadic.h"
28 #include "llvm/Support/MemoryBuffer.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include <map>
31 
32 using namespace clang;
33 
34 LLVM_ATTRIBUTE_UNUSED
35 static bool isImplicitExpr(clang::Expr *E) { return E->IgnoreImplicit() != E; }
36 
37 /// A helper class for constructing the syntax tree while traversing a clang
38 /// AST.
39 ///
40 /// At each point of the traversal we maintain a list of pending nodes.
41 /// Initially all tokens are added as pending nodes. When processing a clang AST
42 /// node, the clients need to:
43 ///   - create a corresponding syntax node,
44 ///   - assign roles to all pending child nodes with 'markChild' and
45 ///     'markChildToken',
46 ///   - replace the child nodes with the new syntax node in the pending list
47 ///     with 'foldNode'.
48 ///
49 /// Note that all children are expected to be processed when building a node.
50 ///
51 /// Call finalize() to finish building the tree and consume the root node.
52 class syntax::TreeBuilder {
53 public:
54   TreeBuilder(syntax::Arena &Arena) : Arena(Arena), Pending(Arena) {
55     for (const auto &T : Arena.tokenBuffer().expandedTokens())
56       LocationToToken.insert({T.location().getRawEncoding(), &T});
57   }
58 
59   llvm::BumpPtrAllocator &allocator() { return Arena.allocator(); }
60 
61   /// Populate children for \p New node, assuming it covers tokens from \p
62   /// Range.
63   void foldNode(llvm::ArrayRef<syntax::Token> Range, syntax::Tree *New);
64 
65   /// Must be called with the range of each `DeclaratorDecl`. Ensures the
66   /// corresponding declarator nodes are covered by `SimpleDeclaration`.
67   void noticeDeclaratorRange(llvm::ArrayRef<syntax::Token> Range);
68 
69   /// Notifies that we should not consume trailing semicolon when computing
70   /// token range of \p D.
71   void noticeDeclaratorWithoutSemicolon(Decl *D);
72 
73   /// Mark the \p Child node with a corresponding \p Role. All marked children
74   /// should be consumed by foldNode.
75   /// (!) when called on expressions (clang::Expr is derived from clang::Stmt),
76   ///     wraps expressions into expression statement.
77   void markStmtChild(Stmt *Child, NodeRole Role);
78   /// Should be called for expressions in non-statement position to avoid
79   /// wrapping into expression statement.
80   void markExprChild(Expr *Child, NodeRole Role);
81 
82   /// Set role for a token starting at \p Loc.
83   void markChildToken(SourceLocation Loc, NodeRole R);
84 
85   /// Finish building the tree and consume the root node.
86   syntax::TranslationUnit *finalize() && {
87     auto Tokens = Arena.tokenBuffer().expandedTokens();
88     assert(!Tokens.empty());
89     assert(Tokens.back().kind() == tok::eof);
90 
91     // Build the root of the tree, consuming all the children.
92     Pending.foldChildren(Arena, Tokens.drop_back(),
93                          new (Arena.allocator()) syntax::TranslationUnit);
94 
95     auto *TU = cast<syntax::TranslationUnit>(std::move(Pending).finalize());
96     TU->assertInvariantsRecursive();
97     return TU;
98   }
99 
100   /// getRange() finds the syntax tokens corresponding to the passed source
101   /// locations.
102   /// \p First is the start position of the first token and \p Last is the start
103   /// position of the last token.
104   llvm::ArrayRef<syntax::Token> getRange(SourceLocation First,
105                                          SourceLocation Last) const {
106     assert(First.isValid());
107     assert(Last.isValid());
108     assert(First == Last ||
109            Arena.sourceManager().isBeforeInTranslationUnit(First, Last));
110     return llvm::makeArrayRef(findToken(First), std::next(findToken(Last)));
111   }
112   llvm::ArrayRef<syntax::Token> getRange(const Decl *D) const {
113     auto Tokens = getRange(D->getBeginLoc(), D->getEndLoc());
114     if (llvm::isa<NamespaceDecl>(D))
115       return Tokens;
116     if (DeclsWithoutSemicolons.count(D))
117       return Tokens;
118     // FIXME: do not consume trailing semicolon on function definitions.
119     // Most declarations own a semicolon in syntax trees, but not in clang AST.
120     return withTrailingSemicolon(Tokens);
121   }
122   llvm::ArrayRef<syntax::Token> getExprRange(const Expr *E) const {
123     return getRange(E->getBeginLoc(), E->getEndLoc());
124   }
125   /// Find the adjusted range for the statement, consuming the trailing
126   /// semicolon when needed.
127   llvm::ArrayRef<syntax::Token> getStmtRange(const Stmt *S) const {
128     auto Tokens = getRange(S->getBeginLoc(), S->getEndLoc());
129     if (isa<CompoundStmt>(S))
130       return Tokens;
131 
132     // Some statements miss a trailing semicolon, e.g. 'return', 'continue' and
133     // all statements that end with those. Consume this semicolon here.
134     if (Tokens.back().kind() == tok::semi)
135       return Tokens;
136     return withTrailingSemicolon(Tokens);
137   }
138 
139 private:
140   llvm::ArrayRef<syntax::Token>
141   withTrailingSemicolon(llvm::ArrayRef<syntax::Token> Tokens) const {
142     assert(!Tokens.empty());
143     assert(Tokens.back().kind() != tok::eof);
144     // (!) we never consume 'eof', so looking at the next token is ok.
145     if (Tokens.back().kind() != tok::semi && Tokens.end()->kind() == tok::semi)
146       return llvm::makeArrayRef(Tokens.begin(), Tokens.end() + 1);
147     return Tokens;
148   }
149 
150   /// Finds a token starting at \p L. The token must exist.
151   const syntax::Token *findToken(SourceLocation L) const;
152 
153   /// A collection of trees covering the input tokens.
154   /// When created, each tree corresponds to a single token in the file.
155   /// Clients call 'foldChildren' to attach one or more subtrees to a parent
156   /// node and update the list of trees accordingly.
157   ///
158   /// Ensures that added nodes properly nest and cover the whole token stream.
159   struct Forest {
160     Forest(syntax::Arena &A) {
161       assert(!A.tokenBuffer().expandedTokens().empty());
162       assert(A.tokenBuffer().expandedTokens().back().kind() == tok::eof);
163       // Create all leaf nodes.
164       // Note that we do not have 'eof' in the tree.
165       for (auto &T : A.tokenBuffer().expandedTokens().drop_back()) {
166         auto *L = new (A.allocator()) syntax::Leaf(&T);
167         L->Original = true;
168         L->CanModify = A.tokenBuffer().spelledForExpanded(T).hasValue();
169         Trees.insert(Trees.end(), {&T, NodeAndRole{L}});
170       }
171     }
172 
173     ~Forest() { assert(DelayedFolds.empty()); }
174 
175     void assignRole(llvm::ArrayRef<syntax::Token> Range,
176                     syntax::NodeRole Role) {
177       assert(!Range.empty());
178       auto It = Trees.lower_bound(Range.begin());
179       assert(It != Trees.end() && "no node found");
180       assert(It->first == Range.begin() && "no child with the specified range");
181       assert((std::next(It) == Trees.end() ||
182               std::next(It)->first == Range.end()) &&
183              "no child with the specified range");
184       It->second.Role = Role;
185     }
186 
187     /// Add \p Node to the forest and attach child nodes based on \p Tokens.
188     void foldChildren(const syntax::Arena &A,
189                       llvm::ArrayRef<syntax::Token> Tokens,
190                       syntax::Tree *Node) {
191       // Execute delayed folds inside `Tokens`.
192       auto BeginExecuted = DelayedFolds.lower_bound(Tokens.begin());
193       auto It = BeginExecuted;
194       for (; It != DelayedFolds.end() && It->second.End <= Tokens.end(); ++It)
195         foldChildrenEager(A, llvm::makeArrayRef(It->first, It->second.End),
196                           It->second.Node);
197       DelayedFolds.erase(BeginExecuted, It);
198 
199       // Attach children to `Node`.
200       foldChildrenEager(A, Tokens, Node);
201     }
202 
203     /// Schedule a call to `foldChildren` that will only be executed when
204     /// containing node is folded. The range of delayed nodes can be extended by
205     /// calling `extendDelayedFold`. Only one delayed node for each starting
206     /// token is allowed.
207     void foldChildrenDelayed(llvm::ArrayRef<syntax::Token> Tokens,
208                              syntax::Tree *Node) {
209       assert(!Tokens.empty());
210       bool Inserted =
211           DelayedFolds.insert({Tokens.begin(), DelayedFold{Tokens.end(), Node}})
212               .second;
213       (void)Inserted;
214       assert(Inserted && "Multiple delayed folds start at the same token");
215     }
216 
217     /// If there a delayed fold, starting at `ExtendedRange.begin()`, extends
218     /// its endpoint to `ExtendedRange.end()` and returns true.
219     /// Otherwise, returns false.
220     bool extendDelayedFold(llvm::ArrayRef<syntax::Token> ExtendedRange) {
221       assert(!ExtendedRange.empty());
222       auto It = DelayedFolds.find(ExtendedRange.data());
223       if (It == DelayedFolds.end())
224         return false;
225       assert(It->second.End <= ExtendedRange.end());
226       It->second.End = ExtendedRange.end();
227       return true;
228     }
229 
230     // EXPECTS: all tokens were consumed and are owned by a single root node.
231     syntax::Node *finalize() && {
232       assert(Trees.size() == 1);
233       auto *Root = Trees.begin()->second.Node;
234       Trees = {};
235       return Root;
236     }
237 
238     std::string str(const syntax::Arena &A) const {
239       std::string R;
240       for (auto It = Trees.begin(); It != Trees.end(); ++It) {
241         unsigned CoveredTokens =
242             It != Trees.end()
243                 ? (std::next(It)->first - It->first)
244                 : A.tokenBuffer().expandedTokens().end() - It->first;
245 
246         R += llvm::formatv("- '{0}' covers '{1}'+{2} tokens\n",
247                            It->second.Node->kind(),
248                            It->first->text(A.sourceManager()), CoveredTokens);
249         R += It->second.Node->dump(A);
250       }
251       return R;
252     }
253 
254   private:
255     /// Implementation detail of `foldChildren`, does acutal folding ignoring
256     /// delayed folds.
257     void foldChildrenEager(const syntax::Arena &A,
258                            llvm::ArrayRef<syntax::Token> Tokens,
259                            syntax::Tree *Node) {
260       assert(Node->firstChild() == nullptr && "node already has children");
261 
262       auto *FirstToken = Tokens.begin();
263       auto BeginChildren = Trees.lower_bound(FirstToken);
264       assert((BeginChildren == Trees.end() ||
265               BeginChildren->first == FirstToken) &&
266              "fold crosses boundaries of existing subtrees");
267       auto EndChildren = Trees.lower_bound(Tokens.end());
268       assert(
269           (EndChildren == Trees.end() || EndChildren->first == Tokens.end()) &&
270           "fold crosses boundaries of existing subtrees");
271 
272       // (!) we need to go in reverse order, because we can only prepend.
273       for (auto It = EndChildren; It != BeginChildren; --It)
274         Node->prependChildLowLevel(std::prev(It)->second.Node,
275                                    std::prev(It)->second.Role);
276 
277       // Mark that this node came from the AST and is backed by the source code.
278       Node->Original = true;
279       Node->CanModify = A.tokenBuffer().spelledForExpanded(Tokens).hasValue();
280 
281       Trees.erase(BeginChildren, EndChildren);
282       Trees.insert({FirstToken, NodeAndRole(Node)});
283     }
284     /// A with a role that should be assigned to it when adding to a parent.
285     struct NodeAndRole {
286       explicit NodeAndRole(syntax::Node *Node)
287           : Node(Node), Role(NodeRole::Unknown) {}
288 
289       syntax::Node *Node;
290       NodeRole Role;
291     };
292 
293     /// Maps from the start token to a subtree starting at that token.
294     /// Keys in the map are pointers into the array of expanded tokens, so
295     /// pointer order corresponds to the order of preprocessor tokens.
296     /// FIXME: storing the end tokens is redundant.
297     /// FIXME: the key of a map is redundant, it is also stored in NodeForRange.
298     std::map<const syntax::Token *, NodeAndRole> Trees;
299 
300     /// See documentation of `foldChildrenDelayed` for details.
301     struct DelayedFold {
302       const syntax::Token *End = nullptr;
303       syntax::Tree *Node = nullptr;
304     };
305     std::map<const syntax::Token *, DelayedFold> DelayedFolds;
306   };
307 
308   /// For debugging purposes.
309   std::string str() { return Pending.str(Arena); }
310 
311   syntax::Arena &Arena;
312   /// To quickly find tokens by their start location.
313   llvm::DenseMap</*SourceLocation*/ unsigned, const syntax::Token *>
314       LocationToToken;
315   Forest Pending;
316   llvm::DenseSet<Decl *> DeclsWithoutSemicolons;
317 };
318 
319 namespace {
320 class BuildTreeVisitor : public RecursiveASTVisitor<BuildTreeVisitor> {
321 public:
322   explicit BuildTreeVisitor(ASTContext &Ctx, syntax::TreeBuilder &Builder)
323       : Builder(Builder), LangOpts(Ctx.getLangOpts()) {}
324 
325   bool shouldTraversePostOrder() const { return true; }
326 
327   bool WalkUpFromDeclaratorDecl(DeclaratorDecl *D) {
328     // Ensure declarators are covered by SimpleDeclaration.
329     Builder.noticeDeclaratorRange(Builder.getRange(D));
330     // FIXME: build nodes for the declarator too.
331     return true;
332   }
333   bool WalkUpFromTypedefNameDecl(TypedefNameDecl *D) {
334     // Also a declarator.
335     Builder.noticeDeclaratorRange(Builder.getRange(D));
336     // FIXME: build nodes for the declarator too.
337     return true;
338   }
339 
340   bool VisitDecl(Decl *D) {
341     assert(!D->isImplicit());
342     Builder.foldNode(Builder.getRange(D),
343                      new (allocator()) syntax::UnknownDeclaration());
344     return true;
345   }
346 
347   bool WalkUpFromTagDecl(TagDecl *C) {
348     // FIXME: build the ClassSpecifier node.
349     if (C->isFreeStanding()) {
350       // Class is a declaration specifier and needs a spanning declaration node.
351       Builder.foldNode(Builder.getRange(C),
352                        new (allocator()) syntax::SimpleDeclaration);
353       return true;
354     }
355     return true;
356   }
357 
358   bool WalkUpFromTranslationUnitDecl(TranslationUnitDecl *TU) {
359     // (!) we do not want to call VisitDecl(), the declaration for translation
360     // unit is built by finalize().
361     return true;
362   }
363 
364   bool WalkUpFromCompoundStmt(CompoundStmt *S) {
365     using NodeRole = syntax::NodeRole;
366 
367     Builder.markChildToken(S->getLBracLoc(), NodeRole::OpenParen);
368     for (auto *Child : S->body())
369       Builder.markStmtChild(Child, NodeRole::CompoundStatement_statement);
370     Builder.markChildToken(S->getRBracLoc(), NodeRole::CloseParen);
371 
372     Builder.foldNode(Builder.getStmtRange(S),
373                      new (allocator()) syntax::CompoundStatement);
374     return true;
375   }
376 
377   // Some statements are not yet handled by syntax trees.
378   bool WalkUpFromStmt(Stmt *S) {
379     Builder.foldNode(Builder.getStmtRange(S),
380                      new (allocator()) syntax::UnknownStatement);
381     return true;
382   }
383 
384   bool TraverseCXXForRangeStmt(CXXForRangeStmt *S) {
385     // We override to traverse range initializer as VarDecl.
386     // RAV traverses it as a statement, we produce invalid node kinds in that
387     // case.
388     // FIXME: should do this in RAV instead?
389     if (S->getInit() && !TraverseStmt(S->getInit()))
390       return false;
391     if (S->getLoopVariable() && !TraverseDecl(S->getLoopVariable()))
392       return false;
393     if (S->getRangeInit() && !TraverseStmt(S->getRangeInit()))
394       return false;
395     if (S->getBody() && !TraverseStmt(S->getBody()))
396       return false;
397     return true;
398   }
399 
400   bool TraverseStmt(Stmt *S) {
401     if (auto *DS = llvm::dyn_cast_or_null<DeclStmt>(S)) {
402       // We want to consume the semicolon, make sure SimpleDeclaration does not.
403       for (auto *D : DS->decls())
404         Builder.noticeDeclaratorWithoutSemicolon(D);
405     } else if (auto *E = llvm::dyn_cast_or_null<Expr>(S)) {
406       // (!) do not recurse into subexpressions.
407       // we do not have syntax trees for expressions yet, so we only want to see
408       // the first top-level expression.
409       return WalkUpFromExpr(E->IgnoreImplicit());
410     }
411     return RecursiveASTVisitor::TraverseStmt(S);
412   }
413 
414   // Some expressions are not yet handled by syntax trees.
415   bool WalkUpFromExpr(Expr *E) {
416     assert(!isImplicitExpr(E) && "should be handled by TraverseStmt");
417     Builder.foldNode(Builder.getExprRange(E),
418                      new (allocator()) syntax::UnknownExpression);
419     return true;
420   }
421 
422   bool WalkUpFromNamespaceDecl(NamespaceDecl *S) {
423     auto Tokens = Builder.getRange(S);
424     if (Tokens.front().kind() == tok::coloncolon) {
425       // Handle nested namespace definitions. Those start at '::' token, e.g.
426       // namespace a^::b {}
427       // FIXME: build corresponding nodes for the name of this namespace.
428       return true;
429     }
430     Builder.foldNode(Tokens, new (allocator()) syntax::NamespaceDefinition);
431     return true;
432   }
433 
434   // The code below is very regular, it could even be generated with some
435   // preprocessor magic. We merely assign roles to the corresponding children
436   // and fold resulting nodes.
437   bool WalkUpFromDeclStmt(DeclStmt *S) {
438     Builder.foldNode(Builder.getStmtRange(S),
439                      new (allocator()) syntax::DeclarationStatement);
440     return true;
441   }
442 
443   bool WalkUpFromNullStmt(NullStmt *S) {
444     Builder.foldNode(Builder.getStmtRange(S),
445                      new (allocator()) syntax::EmptyStatement);
446     return true;
447   }
448 
449   bool WalkUpFromSwitchStmt(SwitchStmt *S) {
450     Builder.markChildToken(S->getSwitchLoc(),
451                            syntax::NodeRole::IntroducerKeyword);
452     Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
453     Builder.foldNode(Builder.getStmtRange(S),
454                      new (allocator()) syntax::SwitchStatement);
455     return true;
456   }
457 
458   bool WalkUpFromCaseStmt(CaseStmt *S) {
459     Builder.markChildToken(S->getKeywordLoc(),
460                            syntax::NodeRole::IntroducerKeyword);
461     Builder.markExprChild(S->getLHS(), syntax::NodeRole::CaseStatement_value);
462     Builder.markStmtChild(S->getSubStmt(), syntax::NodeRole::BodyStatement);
463     Builder.foldNode(Builder.getStmtRange(S),
464                      new (allocator()) syntax::CaseStatement);
465     return true;
466   }
467 
468   bool WalkUpFromDefaultStmt(DefaultStmt *S) {
469     Builder.markChildToken(S->getKeywordLoc(),
470                            syntax::NodeRole::IntroducerKeyword);
471     Builder.markStmtChild(S->getSubStmt(), syntax::NodeRole::BodyStatement);
472     Builder.foldNode(Builder.getStmtRange(S),
473                      new (allocator()) syntax::DefaultStatement);
474     return true;
475   }
476 
477   bool WalkUpFromIfStmt(IfStmt *S) {
478     Builder.markChildToken(S->getIfLoc(), syntax::NodeRole::IntroducerKeyword);
479     Builder.markStmtChild(S->getThen(),
480                           syntax::NodeRole::IfStatement_thenStatement);
481     Builder.markChildToken(S->getElseLoc(),
482                            syntax::NodeRole::IfStatement_elseKeyword);
483     Builder.markStmtChild(S->getElse(),
484                           syntax::NodeRole::IfStatement_elseStatement);
485     Builder.foldNode(Builder.getStmtRange(S),
486                      new (allocator()) syntax::IfStatement);
487     return true;
488   }
489 
490   bool WalkUpFromForStmt(ForStmt *S) {
491     Builder.markChildToken(S->getForLoc(), syntax::NodeRole::IntroducerKeyword);
492     Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
493     Builder.foldNode(Builder.getStmtRange(S),
494                      new (allocator()) syntax::ForStatement);
495     return true;
496   }
497 
498   bool WalkUpFromWhileStmt(WhileStmt *S) {
499     Builder.markChildToken(S->getWhileLoc(),
500                            syntax::NodeRole::IntroducerKeyword);
501     Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
502     Builder.foldNode(Builder.getStmtRange(S),
503                      new (allocator()) syntax::WhileStatement);
504     return true;
505   }
506 
507   bool WalkUpFromContinueStmt(ContinueStmt *S) {
508     Builder.markChildToken(S->getContinueLoc(),
509                            syntax::NodeRole::IntroducerKeyword);
510     Builder.foldNode(Builder.getStmtRange(S),
511                      new (allocator()) syntax::ContinueStatement);
512     return true;
513   }
514 
515   bool WalkUpFromBreakStmt(BreakStmt *S) {
516     Builder.markChildToken(S->getBreakLoc(),
517                            syntax::NodeRole::IntroducerKeyword);
518     Builder.foldNode(Builder.getStmtRange(S),
519                      new (allocator()) syntax::BreakStatement);
520     return true;
521   }
522 
523   bool WalkUpFromReturnStmt(ReturnStmt *S) {
524     Builder.markChildToken(S->getReturnLoc(),
525                            syntax::NodeRole::IntroducerKeyword);
526     Builder.markExprChild(S->getRetValue(),
527                           syntax::NodeRole::ReturnStatement_value);
528     Builder.foldNode(Builder.getStmtRange(S),
529                      new (allocator()) syntax::ReturnStatement);
530     return true;
531   }
532 
533   bool WalkUpFromCXXForRangeStmt(CXXForRangeStmt *S) {
534     Builder.markChildToken(S->getForLoc(), syntax::NodeRole::IntroducerKeyword);
535     Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
536     Builder.foldNode(Builder.getStmtRange(S),
537                      new (allocator()) syntax::RangeBasedForStatement);
538     return true;
539   }
540 
541   bool WalkUpFromEmptyDecl(EmptyDecl *S) {
542     Builder.foldNode(Builder.getRange(S),
543                      new (allocator()) syntax::EmptyDeclaration);
544     return true;
545   }
546 
547   bool WalkUpFromStaticAssertDecl(StaticAssertDecl *S) {
548     Builder.markExprChild(S->getAssertExpr(),
549                           syntax::NodeRole::StaticAssertDeclaration_condition);
550     Builder.markExprChild(S->getMessage(),
551                           syntax::NodeRole::StaticAssertDeclaration_message);
552     Builder.foldNode(Builder.getRange(S),
553                      new (allocator()) syntax::StaticAssertDeclaration);
554     return true;
555   }
556 
557   bool WalkUpFromLinkageSpecDecl(LinkageSpecDecl *S) {
558     Builder.foldNode(Builder.getRange(S),
559                      new (allocator()) syntax::LinkageSpecificationDeclaration);
560     return true;
561   }
562 
563   bool WalkUpFromNamespaceAliasDecl(NamespaceAliasDecl *S) {
564     Builder.foldNode(Builder.getRange(S),
565                      new (allocator()) syntax::NamespaceAliasDefinition);
566     return true;
567   }
568 
569   bool WalkUpFromUsingDirectiveDecl(UsingDirectiveDecl *S) {
570     Builder.foldNode(Builder.getRange(S),
571                      new (allocator()) syntax::UsingNamespaceDirective);
572     return true;
573   }
574 
575   bool WalkUpFromUsingDecl(UsingDecl *S) {
576     Builder.foldNode(Builder.getRange(S),
577                      new (allocator()) syntax::UsingDeclaration);
578     return true;
579   }
580 
581   bool WalkUpFromUnresolvedUsingValueDecl(UnresolvedUsingValueDecl *S) {
582     Builder.foldNode(Builder.getRange(S),
583                      new (allocator()) syntax::UsingDeclaration);
584     return true;
585   }
586 
587   bool WalkUpFromUnresolvedUsingTypenameDecl(UnresolvedUsingTypenameDecl *S) {
588     Builder.foldNode(Builder.getRange(S),
589                      new (allocator()) syntax::UsingDeclaration);
590     return true;
591   }
592 
593   bool WalkUpFromTypeAliasDecl(TypeAliasDecl *S) {
594     Builder.foldNode(Builder.getRange(S),
595                      new (allocator()) syntax::TypeAliasDeclaration);
596     return true;
597   }
598 
599 private:
600   /// A small helper to save some typing.
601   llvm::BumpPtrAllocator &allocator() { return Builder.allocator(); }
602 
603   syntax::TreeBuilder &Builder;
604   const LangOptions &LangOpts;
605 };
606 } // namespace
607 
608 void syntax::TreeBuilder::foldNode(llvm::ArrayRef<syntax::Token> Range,
609                                    syntax::Tree *New) {
610   Pending.foldChildren(Arena, Range, New);
611 }
612 
613 void syntax::TreeBuilder::noticeDeclaratorRange(
614     llvm::ArrayRef<syntax::Token> Range) {
615   if (Pending.extendDelayedFold(Range))
616     return;
617   Pending.foldChildrenDelayed(Range,
618                               new (allocator()) syntax::SimpleDeclaration);
619 }
620 
621 void syntax::TreeBuilder::noticeDeclaratorWithoutSemicolon(Decl *D) {
622   DeclsWithoutSemicolons.insert(D);
623 }
624 
625 void syntax::TreeBuilder::markChildToken(SourceLocation Loc, NodeRole Role) {
626   if (Loc.isInvalid())
627     return;
628   Pending.assignRole(*findToken(Loc), Role);
629 }
630 
631 void syntax::TreeBuilder::markStmtChild(Stmt *Child, NodeRole Role) {
632   if (!Child)
633     return;
634 
635   auto Range = getStmtRange(Child);
636   // This is an expression in a statement position, consume the trailing
637   // semicolon and form an 'ExpressionStatement' node.
638   if (auto *E = dyn_cast<Expr>(Child)) {
639     Pending.assignRole(getExprRange(E),
640                        NodeRole::ExpressionStatement_expression);
641     // (!) 'getRange(Stmt)' ensures this already covers a trailing semicolon.
642     Pending.foldChildren(Arena, Range,
643                          new (allocator()) syntax::ExpressionStatement);
644   }
645   Pending.assignRole(Range, Role);
646 }
647 
648 void syntax::TreeBuilder::markExprChild(Expr *Child, NodeRole Role) {
649   if (!Child)
650     return;
651 
652   Pending.assignRole(getExprRange(Child), Role);
653 }
654 
655 const syntax::Token *syntax::TreeBuilder::findToken(SourceLocation L) const {
656   auto It = LocationToToken.find(L.getRawEncoding());
657   assert(It != LocationToToken.end());
658   return It->second;
659 }
660 
661 syntax::TranslationUnit *
662 syntax::buildSyntaxTree(Arena &A, const TranslationUnitDecl &TU) {
663   TreeBuilder Builder(A);
664   BuildTreeVisitor(TU.getASTContext(), Builder).TraverseAST(TU.getASTContext());
665   return std::move(Builder).finalize();
666 }
667