xref: /freebsd/contrib/llvm-project/clang/lib/Tooling/ASTDiff/ASTDiff.cpp (revision a3c35da61bb201168575f1d18f4ca3e96937d35c)
1  //===- ASTDiff.cpp - AST differencing implementation-----------*- C++ -*- -===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // This file contains definitons for the AST differencing interface.
10  //
11  //===----------------------------------------------------------------------===//
12  
13  #include "clang/Tooling/ASTDiff/ASTDiff.h"
14  
15  #include "clang/AST/RecursiveASTVisitor.h"
16  #include "clang/Lex/Lexer.h"
17  #include "llvm/ADT/PriorityQueue.h"
18  
19  #include <limits>
20  #include <memory>
21  #include <unordered_set>
22  
23  using namespace llvm;
24  using namespace clang;
25  
26  namespace clang {
27  namespace diff {
28  
29  namespace {
30  /// Maps nodes of the left tree to ones on the right, and vice versa.
31  class Mapping {
32  public:
33    Mapping() = default;
34    Mapping(Mapping &&Other) = default;
35    Mapping &operator=(Mapping &&Other) = default;
36  
37    Mapping(size_t Size) {
38      SrcToDst = llvm::make_unique<NodeId[]>(Size);
39      DstToSrc = llvm::make_unique<NodeId[]>(Size);
40    }
41  
42    void link(NodeId Src, NodeId Dst) {
43      SrcToDst[Src] = Dst, DstToSrc[Dst] = Src;
44    }
45  
46    NodeId getDst(NodeId Src) const { return SrcToDst[Src]; }
47    NodeId getSrc(NodeId Dst) const { return DstToSrc[Dst]; }
48    bool hasSrc(NodeId Src) const { return getDst(Src).isValid(); }
49    bool hasDst(NodeId Dst) const { return getSrc(Dst).isValid(); }
50  
51  private:
52    std::unique_ptr<NodeId[]> SrcToDst, DstToSrc;
53  };
54  } // end anonymous namespace
55  
56  class ASTDiff::Impl {
57  public:
58    SyntaxTree::Impl &T1, &T2;
59    Mapping TheMapping;
60  
61    Impl(SyntaxTree::Impl &T1, SyntaxTree::Impl &T2,
62         const ComparisonOptions &Options);
63  
64    /// Matches nodes one-by-one based on their similarity.
65    void computeMapping();
66  
67    // Compute Change for each node based on similarity.
68    void computeChangeKinds(Mapping &M);
69  
70    NodeId getMapped(const std::unique_ptr<SyntaxTree::Impl> &Tree,
71                     NodeId Id) const {
72      if (&*Tree == &T1)
73        return TheMapping.getDst(Id);
74      assert(&*Tree == &T2 && "Invalid tree.");
75      return TheMapping.getSrc(Id);
76    }
77  
78  private:
79    // Returns true if the two subtrees are identical.
80    bool identical(NodeId Id1, NodeId Id2) const;
81  
82    // Returns false if the nodes must not be mached.
83    bool isMatchingPossible(NodeId Id1, NodeId Id2) const;
84  
85    // Returns true if the nodes' parents are matched.
86    bool haveSameParents(const Mapping &M, NodeId Id1, NodeId Id2) const;
87  
88    // Uses an optimal albeit slow algorithm to compute a mapping between two
89    // subtrees, but only if both have fewer nodes than MaxSize.
90    void addOptimalMapping(Mapping &M, NodeId Id1, NodeId Id2) const;
91  
92    // Computes the ratio of common descendants between the two nodes.
93    // Descendants are only considered to be equal when they are mapped in M.
94    double getJaccardSimilarity(const Mapping &M, NodeId Id1, NodeId Id2) const;
95  
96    // Returns the node that has the highest degree of similarity.
97    NodeId findCandidate(const Mapping &M, NodeId Id1) const;
98  
99    // Returns a mapping of identical subtrees.
100    Mapping matchTopDown() const;
101  
102    // Tries to match any yet unmapped nodes, in a bottom-up fashion.
103    void matchBottomUp(Mapping &M) const;
104  
105    const ComparisonOptions &Options;
106  
107    friend class ZhangShashaMatcher;
108  };
109  
110  /// Represents the AST of a TranslationUnit.
111  class SyntaxTree::Impl {
112  public:
113    Impl(SyntaxTree *Parent, ASTContext &AST);
114    /// Constructs a tree from an AST node.
115    Impl(SyntaxTree *Parent, Decl *N, ASTContext &AST);
116    Impl(SyntaxTree *Parent, Stmt *N, ASTContext &AST);
117    template <class T>
118    Impl(SyntaxTree *Parent,
119         typename std::enable_if<std::is_base_of<Stmt, T>::value, T>::type *Node,
120         ASTContext &AST)
121        : Impl(Parent, dyn_cast<Stmt>(Node), AST) {}
122    template <class T>
123    Impl(SyntaxTree *Parent,
124         typename std::enable_if<std::is_base_of<Decl, T>::value, T>::type *Node,
125         ASTContext &AST)
126        : Impl(Parent, dyn_cast<Decl>(Node), AST) {}
127  
128    SyntaxTree *Parent;
129    ASTContext &AST;
130    PrintingPolicy TypePP;
131    /// Nodes in preorder.
132    std::vector<Node> Nodes;
133    std::vector<NodeId> Leaves;
134    // Maps preorder indices to postorder ones.
135    std::vector<int> PostorderIds;
136    std::vector<NodeId> NodesBfs;
137  
138    int getSize() const { return Nodes.size(); }
139    NodeId getRootId() const { return 0; }
140    PreorderIterator begin() const { return getRootId(); }
141    PreorderIterator end() const { return getSize(); }
142  
143    const Node &getNode(NodeId Id) const { return Nodes[Id]; }
144    Node &getMutableNode(NodeId Id) { return Nodes[Id]; }
145    bool isValidNodeId(NodeId Id) const { return Id >= 0 && Id < getSize(); }
146    void addNode(Node &N) { Nodes.push_back(N); }
147    int getNumberOfDescendants(NodeId Id) const;
148    bool isInSubtree(NodeId Id, NodeId SubtreeRoot) const;
149    int findPositionInParent(NodeId Id, bool Shifted = false) const;
150  
151    std::string getRelativeName(const NamedDecl *ND,
152                                const DeclContext *Context) const;
153    std::string getRelativeName(const NamedDecl *ND) const;
154  
155    std::string getNodeValue(NodeId Id) const;
156    std::string getNodeValue(const Node &Node) const;
157    std::string getDeclValue(const Decl *D) const;
158    std::string getStmtValue(const Stmt *S) const;
159  
160  private:
161    void initTree();
162    void setLeftMostDescendants();
163  };
164  
165  static bool isSpecializedNodeExcluded(const Decl *D) { return D->isImplicit(); }
166  static bool isSpecializedNodeExcluded(const Stmt *S) { return false; }
167  static bool isSpecializedNodeExcluded(CXXCtorInitializer *I) {
168    return !I->isWritten();
169  }
170  
171  template <class T>
172  static bool isNodeExcluded(const SourceManager &SrcMgr, T *N) {
173    if (!N)
174      return true;
175    SourceLocation SLoc = N->getSourceRange().getBegin();
176    if (SLoc.isValid()) {
177      // Ignore everything from other files.
178      if (!SrcMgr.isInMainFile(SLoc))
179        return true;
180      // Ignore macros.
181      if (SLoc != SrcMgr.getSpellingLoc(SLoc))
182        return true;
183    }
184    return isSpecializedNodeExcluded(N);
185  }
186  
187  namespace {
188  // Sets Height, Parent and Children for each node.
189  struct PreorderVisitor : public RecursiveASTVisitor<PreorderVisitor> {
190    int Id = 0, Depth = 0;
191    NodeId Parent;
192    SyntaxTree::Impl &Tree;
193  
194    PreorderVisitor(SyntaxTree::Impl &Tree) : Tree(Tree) {}
195  
196    template <class T> std::tuple<NodeId, NodeId> PreTraverse(T *ASTNode) {
197      NodeId MyId = Id;
198      Tree.Nodes.emplace_back();
199      Node &N = Tree.getMutableNode(MyId);
200      N.Parent = Parent;
201      N.Depth = Depth;
202      N.ASTNode = DynTypedNode::create(*ASTNode);
203      assert(!N.ASTNode.getNodeKind().isNone() &&
204             "Expected nodes to have a valid kind.");
205      if (Parent.isValid()) {
206        Node &P = Tree.getMutableNode(Parent);
207        P.Children.push_back(MyId);
208      }
209      Parent = MyId;
210      ++Id;
211      ++Depth;
212      return std::make_tuple(MyId, Tree.getNode(MyId).Parent);
213    }
214    void PostTraverse(std::tuple<NodeId, NodeId> State) {
215      NodeId MyId, PreviousParent;
216      std::tie(MyId, PreviousParent) = State;
217      assert(MyId.isValid() && "Expecting to only traverse valid nodes.");
218      Parent = PreviousParent;
219      --Depth;
220      Node &N = Tree.getMutableNode(MyId);
221      N.RightMostDescendant = Id - 1;
222      assert(N.RightMostDescendant >= 0 &&
223             N.RightMostDescendant < Tree.getSize() &&
224             "Rightmost descendant must be a valid tree node.");
225      if (N.isLeaf())
226        Tree.Leaves.push_back(MyId);
227      N.Height = 1;
228      for (NodeId Child : N.Children)
229        N.Height = std::max(N.Height, 1 + Tree.getNode(Child).Height);
230    }
231    bool TraverseDecl(Decl *D) {
232      if (isNodeExcluded(Tree.AST.getSourceManager(), D))
233        return true;
234      auto SavedState = PreTraverse(D);
235      RecursiveASTVisitor<PreorderVisitor>::TraverseDecl(D);
236      PostTraverse(SavedState);
237      return true;
238    }
239    bool TraverseStmt(Stmt *S) {
240      if (auto *E = dyn_cast_or_null<Expr>(S))
241        S = E->IgnoreImplicit();
242      if (isNodeExcluded(Tree.AST.getSourceManager(), S))
243        return true;
244      auto SavedState = PreTraverse(S);
245      RecursiveASTVisitor<PreorderVisitor>::TraverseStmt(S);
246      PostTraverse(SavedState);
247      return true;
248    }
249    bool TraverseType(QualType T) { return true; }
250    bool TraverseConstructorInitializer(CXXCtorInitializer *Init) {
251      if (isNodeExcluded(Tree.AST.getSourceManager(), Init))
252        return true;
253      auto SavedState = PreTraverse(Init);
254      RecursiveASTVisitor<PreorderVisitor>::TraverseConstructorInitializer(Init);
255      PostTraverse(SavedState);
256      return true;
257    }
258  };
259  } // end anonymous namespace
260  
261  SyntaxTree::Impl::Impl(SyntaxTree *Parent, ASTContext &AST)
262      : Parent(Parent), AST(AST), TypePP(AST.getLangOpts()) {
263    TypePP.AnonymousTagLocations = false;
264  }
265  
266  SyntaxTree::Impl::Impl(SyntaxTree *Parent, Decl *N, ASTContext &AST)
267      : Impl(Parent, AST) {
268    PreorderVisitor PreorderWalker(*this);
269    PreorderWalker.TraverseDecl(N);
270    initTree();
271  }
272  
273  SyntaxTree::Impl::Impl(SyntaxTree *Parent, Stmt *N, ASTContext &AST)
274      : Impl(Parent, AST) {
275    PreorderVisitor PreorderWalker(*this);
276    PreorderWalker.TraverseStmt(N);
277    initTree();
278  }
279  
280  static std::vector<NodeId> getSubtreePostorder(const SyntaxTree::Impl &Tree,
281                                                 NodeId Root) {
282    std::vector<NodeId> Postorder;
283    std::function<void(NodeId)> Traverse = [&](NodeId Id) {
284      const Node &N = Tree.getNode(Id);
285      for (NodeId Child : N.Children)
286        Traverse(Child);
287      Postorder.push_back(Id);
288    };
289    Traverse(Root);
290    return Postorder;
291  }
292  
293  static std::vector<NodeId> getSubtreeBfs(const SyntaxTree::Impl &Tree,
294                                           NodeId Root) {
295    std::vector<NodeId> Ids;
296    size_t Expanded = 0;
297    Ids.push_back(Root);
298    while (Expanded < Ids.size())
299      for (NodeId Child : Tree.getNode(Ids[Expanded++]).Children)
300        Ids.push_back(Child);
301    return Ids;
302  }
303  
304  void SyntaxTree::Impl::initTree() {
305    setLeftMostDescendants();
306    int PostorderId = 0;
307    PostorderIds.resize(getSize());
308    std::function<void(NodeId)> PostorderTraverse = [&](NodeId Id) {
309      for (NodeId Child : getNode(Id).Children)
310        PostorderTraverse(Child);
311      PostorderIds[Id] = PostorderId;
312      ++PostorderId;
313    };
314    PostorderTraverse(getRootId());
315    NodesBfs = getSubtreeBfs(*this, getRootId());
316  }
317  
318  void SyntaxTree::Impl::setLeftMostDescendants() {
319    for (NodeId Leaf : Leaves) {
320      getMutableNode(Leaf).LeftMostDescendant = Leaf;
321      NodeId Parent, Cur = Leaf;
322      while ((Parent = getNode(Cur).Parent).isValid() &&
323             getNode(Parent).Children[0] == Cur) {
324        Cur = Parent;
325        getMutableNode(Cur).LeftMostDescendant = Leaf;
326      }
327    }
328  }
329  
330  int SyntaxTree::Impl::getNumberOfDescendants(NodeId Id) const {
331    return getNode(Id).RightMostDescendant - Id + 1;
332  }
333  
334  bool SyntaxTree::Impl::isInSubtree(NodeId Id, NodeId SubtreeRoot) const {
335    return Id >= SubtreeRoot && Id <= getNode(SubtreeRoot).RightMostDescendant;
336  }
337  
338  int SyntaxTree::Impl::findPositionInParent(NodeId Id, bool Shifted) const {
339    NodeId Parent = getNode(Id).Parent;
340    if (Parent.isInvalid())
341      return 0;
342    const auto &Siblings = getNode(Parent).Children;
343    int Position = 0;
344    for (size_t I = 0, E = Siblings.size(); I < E; ++I) {
345      if (Shifted)
346        Position += getNode(Siblings[I]).Shift;
347      if (Siblings[I] == Id) {
348        Position += I;
349        return Position;
350      }
351    }
352    llvm_unreachable("Node not found in parent's children.");
353  }
354  
355  // Returns the qualified name of ND. If it is subordinate to Context,
356  // then the prefix of the latter is removed from the returned value.
357  std::string
358  SyntaxTree::Impl::getRelativeName(const NamedDecl *ND,
359                                    const DeclContext *Context) const {
360    std::string Val = ND->getQualifiedNameAsString();
361    std::string ContextPrefix;
362    if (!Context)
363      return Val;
364    if (auto *Namespace = dyn_cast<NamespaceDecl>(Context))
365      ContextPrefix = Namespace->getQualifiedNameAsString();
366    else if (auto *Record = dyn_cast<RecordDecl>(Context))
367      ContextPrefix = Record->getQualifiedNameAsString();
368    else if (AST.getLangOpts().CPlusPlus11)
369      if (auto *Tag = dyn_cast<TagDecl>(Context))
370        ContextPrefix = Tag->getQualifiedNameAsString();
371    // Strip the qualifier, if Val refers to something in the current scope.
372    // But leave one leading ':' in place, so that we know that this is a
373    // relative path.
374    if (!ContextPrefix.empty() && StringRef(Val).startswith(ContextPrefix))
375      Val = Val.substr(ContextPrefix.size() + 1);
376    return Val;
377  }
378  
379  std::string SyntaxTree::Impl::getRelativeName(const NamedDecl *ND) const {
380    return getRelativeName(ND, ND->getDeclContext());
381  }
382  
383  static const DeclContext *getEnclosingDeclContext(ASTContext &AST,
384                                                    const Stmt *S) {
385    while (S) {
386      const auto &Parents = AST.getParents(*S);
387      if (Parents.empty())
388        return nullptr;
389      const auto &P = Parents[0];
390      if (const auto *D = P.get<Decl>())
391        return D->getDeclContext();
392      S = P.get<Stmt>();
393    }
394    return nullptr;
395  }
396  
397  static std::string getInitializerValue(const CXXCtorInitializer *Init,
398                                         const PrintingPolicy &TypePP) {
399    if (Init->isAnyMemberInitializer())
400      return Init->getAnyMember()->getName();
401    if (Init->isBaseInitializer())
402      return QualType(Init->getBaseClass(), 0).getAsString(TypePP);
403    if (Init->isDelegatingInitializer())
404      return Init->getTypeSourceInfo()->getType().getAsString(TypePP);
405    llvm_unreachable("Unknown initializer type");
406  }
407  
408  std::string SyntaxTree::Impl::getNodeValue(NodeId Id) const {
409    return getNodeValue(getNode(Id));
410  }
411  
412  std::string SyntaxTree::Impl::getNodeValue(const Node &N) const {
413    const DynTypedNode &DTN = N.ASTNode;
414    if (auto *S = DTN.get<Stmt>())
415      return getStmtValue(S);
416    if (auto *D = DTN.get<Decl>())
417      return getDeclValue(D);
418    if (auto *Init = DTN.get<CXXCtorInitializer>())
419      return getInitializerValue(Init, TypePP);
420    llvm_unreachable("Fatal: unhandled AST node.\n");
421  }
422  
423  std::string SyntaxTree::Impl::getDeclValue(const Decl *D) const {
424    std::string Value;
425    if (auto *V = dyn_cast<ValueDecl>(D))
426      return getRelativeName(V) + "(" + V->getType().getAsString(TypePP) + ")";
427    if (auto *N = dyn_cast<NamedDecl>(D))
428      Value += getRelativeName(N) + ";";
429    if (auto *T = dyn_cast<TypedefNameDecl>(D))
430      return Value + T->getUnderlyingType().getAsString(TypePP) + ";";
431    if (auto *T = dyn_cast<TypeDecl>(D))
432      if (T->getTypeForDecl())
433        Value +=
434            T->getTypeForDecl()->getCanonicalTypeInternal().getAsString(TypePP) +
435            ";";
436    if (auto *U = dyn_cast<UsingDirectiveDecl>(D))
437      return U->getNominatedNamespace()->getName();
438    if (auto *A = dyn_cast<AccessSpecDecl>(D)) {
439      CharSourceRange Range(A->getSourceRange(), false);
440      return Lexer::getSourceText(Range, AST.getSourceManager(),
441                                  AST.getLangOpts());
442    }
443    return Value;
444  }
445  
446  std::string SyntaxTree::Impl::getStmtValue(const Stmt *S) const {
447    if (auto *U = dyn_cast<UnaryOperator>(S))
448      return UnaryOperator::getOpcodeStr(U->getOpcode());
449    if (auto *B = dyn_cast<BinaryOperator>(S))
450      return B->getOpcodeStr();
451    if (auto *M = dyn_cast<MemberExpr>(S))
452      return getRelativeName(M->getMemberDecl());
453    if (auto *I = dyn_cast<IntegerLiteral>(S)) {
454      SmallString<256> Str;
455      I->getValue().toString(Str, /*Radix=*/10, /*Signed=*/false);
456      return Str.str();
457    }
458    if (auto *F = dyn_cast<FloatingLiteral>(S)) {
459      SmallString<256> Str;
460      F->getValue().toString(Str);
461      return Str.str();
462    }
463    if (auto *D = dyn_cast<DeclRefExpr>(S))
464      return getRelativeName(D->getDecl(), getEnclosingDeclContext(AST, S));
465    if (auto *String = dyn_cast<StringLiteral>(S))
466      return String->getString();
467    if (auto *B = dyn_cast<CXXBoolLiteralExpr>(S))
468      return B->getValue() ? "true" : "false";
469    return "";
470  }
471  
472  /// Identifies a node in a subtree by its postorder offset, starting at 1.
473  struct SNodeId {
474    int Id = 0;
475  
476    explicit SNodeId(int Id) : Id(Id) {}
477    explicit SNodeId() = default;
478  
479    operator int() const { return Id; }
480    SNodeId &operator++() { return ++Id, *this; }
481    SNodeId &operator--() { return --Id, *this; }
482    SNodeId operator+(int Other) const { return SNodeId(Id + Other); }
483  };
484  
485  class Subtree {
486  private:
487    /// The parent tree.
488    const SyntaxTree::Impl &Tree;
489    /// Maps SNodeIds to original ids.
490    std::vector<NodeId> RootIds;
491    /// Maps subtree nodes to their leftmost descendants wtihin the subtree.
492    std::vector<SNodeId> LeftMostDescendants;
493  
494  public:
495    std::vector<SNodeId> KeyRoots;
496  
497    Subtree(const SyntaxTree::Impl &Tree, NodeId SubtreeRoot) : Tree(Tree) {
498      RootIds = getSubtreePostorder(Tree, SubtreeRoot);
499      int NumLeaves = setLeftMostDescendants();
500      computeKeyRoots(NumLeaves);
501    }
502    int getSize() const { return RootIds.size(); }
503    NodeId getIdInRoot(SNodeId Id) const {
504      assert(Id > 0 && Id <= getSize() && "Invalid subtree node index.");
505      return RootIds[Id - 1];
506    }
507    const Node &getNode(SNodeId Id) const {
508      return Tree.getNode(getIdInRoot(Id));
509    }
510    SNodeId getLeftMostDescendant(SNodeId Id) const {
511      assert(Id > 0 && Id <= getSize() && "Invalid subtree node index.");
512      return LeftMostDescendants[Id - 1];
513    }
514    /// Returns the postorder index of the leftmost descendant in the subtree.
515    NodeId getPostorderOffset() const {
516      return Tree.PostorderIds[getIdInRoot(SNodeId(1))];
517    }
518    std::string getNodeValue(SNodeId Id) const {
519      return Tree.getNodeValue(getIdInRoot(Id));
520    }
521  
522  private:
523    /// Returns the number of leafs in the subtree.
524    int setLeftMostDescendants() {
525      int NumLeaves = 0;
526      LeftMostDescendants.resize(getSize());
527      for (int I = 0; I < getSize(); ++I) {
528        SNodeId SI(I + 1);
529        const Node &N = getNode(SI);
530        NumLeaves += N.isLeaf();
531        assert(I == Tree.PostorderIds[getIdInRoot(SI)] - getPostorderOffset() &&
532               "Postorder traversal in subtree should correspond to traversal in "
533               "the root tree by a constant offset.");
534        LeftMostDescendants[I] = SNodeId(Tree.PostorderIds[N.LeftMostDescendant] -
535                                         getPostorderOffset());
536      }
537      return NumLeaves;
538    }
539    void computeKeyRoots(int Leaves) {
540      KeyRoots.resize(Leaves);
541      std::unordered_set<int> Visited;
542      int K = Leaves - 1;
543      for (SNodeId I(getSize()); I > 0; --I) {
544        SNodeId LeftDesc = getLeftMostDescendant(I);
545        if (Visited.count(LeftDesc))
546          continue;
547        assert(K >= 0 && "K should be non-negative");
548        KeyRoots[K] = I;
549        Visited.insert(LeftDesc);
550        --K;
551      }
552    }
553  };
554  
555  /// Implementation of Zhang and Shasha's Algorithm for tree edit distance.
556  /// Computes an optimal mapping between two trees using only insertion,
557  /// deletion and update as edit actions (similar to the Levenshtein distance).
558  class ZhangShashaMatcher {
559    const ASTDiff::Impl &DiffImpl;
560    Subtree S1;
561    Subtree S2;
562    std::unique_ptr<std::unique_ptr<double[]>[]> TreeDist, ForestDist;
563  
564  public:
565    ZhangShashaMatcher(const ASTDiff::Impl &DiffImpl, const SyntaxTree::Impl &T1,
566                       const SyntaxTree::Impl &T2, NodeId Id1, NodeId Id2)
567        : DiffImpl(DiffImpl), S1(T1, Id1), S2(T2, Id2) {
568      TreeDist = llvm::make_unique<std::unique_ptr<double[]>[]>(
569          size_t(S1.getSize()) + 1);
570      ForestDist = llvm::make_unique<std::unique_ptr<double[]>[]>(
571          size_t(S1.getSize()) + 1);
572      for (int I = 0, E = S1.getSize() + 1; I < E; ++I) {
573        TreeDist[I] = llvm::make_unique<double[]>(size_t(S2.getSize()) + 1);
574        ForestDist[I] = llvm::make_unique<double[]>(size_t(S2.getSize()) + 1);
575      }
576    }
577  
578    std::vector<std::pair<NodeId, NodeId>> getMatchingNodes() {
579      std::vector<std::pair<NodeId, NodeId>> Matches;
580      std::vector<std::pair<SNodeId, SNodeId>> TreePairs;
581  
582      computeTreeDist();
583  
584      bool RootNodePair = true;
585  
586      TreePairs.emplace_back(SNodeId(S1.getSize()), SNodeId(S2.getSize()));
587  
588      while (!TreePairs.empty()) {
589        SNodeId LastRow, LastCol, FirstRow, FirstCol, Row, Col;
590        std::tie(LastRow, LastCol) = TreePairs.back();
591        TreePairs.pop_back();
592  
593        if (!RootNodePair) {
594          computeForestDist(LastRow, LastCol);
595        }
596  
597        RootNodePair = false;
598  
599        FirstRow = S1.getLeftMostDescendant(LastRow);
600        FirstCol = S2.getLeftMostDescendant(LastCol);
601  
602        Row = LastRow;
603        Col = LastCol;
604  
605        while (Row > FirstRow || Col > FirstCol) {
606          if (Row > FirstRow &&
607              ForestDist[Row - 1][Col] + 1 == ForestDist[Row][Col]) {
608            --Row;
609          } else if (Col > FirstCol &&
610                     ForestDist[Row][Col - 1] + 1 == ForestDist[Row][Col]) {
611            --Col;
612          } else {
613            SNodeId LMD1 = S1.getLeftMostDescendant(Row);
614            SNodeId LMD2 = S2.getLeftMostDescendant(Col);
615            if (LMD1 == S1.getLeftMostDescendant(LastRow) &&
616                LMD2 == S2.getLeftMostDescendant(LastCol)) {
617              NodeId Id1 = S1.getIdInRoot(Row);
618              NodeId Id2 = S2.getIdInRoot(Col);
619              assert(DiffImpl.isMatchingPossible(Id1, Id2) &&
620                     "These nodes must not be matched.");
621              Matches.emplace_back(Id1, Id2);
622              --Row;
623              --Col;
624            } else {
625              TreePairs.emplace_back(Row, Col);
626              Row = LMD1;
627              Col = LMD2;
628            }
629          }
630        }
631      }
632      return Matches;
633    }
634  
635  private:
636    /// We use a simple cost model for edit actions, which seems good enough.
637    /// Simple cost model for edit actions. This seems to make the matching
638    /// algorithm perform reasonably well.
639    /// The values range between 0 and 1, or infinity if this edit action should
640    /// always be avoided.
641    static constexpr double DeletionCost = 1;
642    static constexpr double InsertionCost = 1;
643  
644    double getUpdateCost(SNodeId Id1, SNodeId Id2) {
645      if (!DiffImpl.isMatchingPossible(S1.getIdInRoot(Id1), S2.getIdInRoot(Id2)))
646        return std::numeric_limits<double>::max();
647      return S1.getNodeValue(Id1) != S2.getNodeValue(Id2);
648    }
649  
650    void computeTreeDist() {
651      for (SNodeId Id1 : S1.KeyRoots)
652        for (SNodeId Id2 : S2.KeyRoots)
653          computeForestDist(Id1, Id2);
654    }
655  
656    void computeForestDist(SNodeId Id1, SNodeId Id2) {
657      assert(Id1 > 0 && Id2 > 0 && "Expecting offsets greater than 0.");
658      SNodeId LMD1 = S1.getLeftMostDescendant(Id1);
659      SNodeId LMD2 = S2.getLeftMostDescendant(Id2);
660  
661      ForestDist[LMD1][LMD2] = 0;
662      for (SNodeId D1 = LMD1 + 1; D1 <= Id1; ++D1) {
663        ForestDist[D1][LMD2] = ForestDist[D1 - 1][LMD2] + DeletionCost;
664        for (SNodeId D2 = LMD2 + 1; D2 <= Id2; ++D2) {
665          ForestDist[LMD1][D2] = ForestDist[LMD1][D2 - 1] + InsertionCost;
666          SNodeId DLMD1 = S1.getLeftMostDescendant(D1);
667          SNodeId DLMD2 = S2.getLeftMostDescendant(D2);
668          if (DLMD1 == LMD1 && DLMD2 == LMD2) {
669            double UpdateCost = getUpdateCost(D1, D2);
670            ForestDist[D1][D2] =
671                std::min({ForestDist[D1 - 1][D2] + DeletionCost,
672                          ForestDist[D1][D2 - 1] + InsertionCost,
673                          ForestDist[D1 - 1][D2 - 1] + UpdateCost});
674            TreeDist[D1][D2] = ForestDist[D1][D2];
675          } else {
676            ForestDist[D1][D2] =
677                std::min({ForestDist[D1 - 1][D2] + DeletionCost,
678                          ForestDist[D1][D2 - 1] + InsertionCost,
679                          ForestDist[DLMD1][DLMD2] + TreeDist[D1][D2]});
680          }
681        }
682      }
683    }
684  };
685  
686  ast_type_traits::ASTNodeKind Node::getType() const {
687    return ASTNode.getNodeKind();
688  }
689  
690  StringRef Node::getTypeLabel() const { return getType().asStringRef(); }
691  
692  llvm::Optional<std::string> Node::getQualifiedIdentifier() const {
693    if (auto *ND = ASTNode.get<NamedDecl>()) {
694      if (ND->getDeclName().isIdentifier())
695        return ND->getQualifiedNameAsString();
696    }
697    return llvm::None;
698  }
699  
700  llvm::Optional<StringRef> Node::getIdentifier() const {
701    if (auto *ND = ASTNode.get<NamedDecl>()) {
702      if (ND->getDeclName().isIdentifier())
703        return ND->getName();
704    }
705    return llvm::None;
706  }
707  
708  namespace {
709  // Compares nodes by their depth.
710  struct HeightLess {
711    const SyntaxTree::Impl &Tree;
712    HeightLess(const SyntaxTree::Impl &Tree) : Tree(Tree) {}
713    bool operator()(NodeId Id1, NodeId Id2) const {
714      return Tree.getNode(Id1).Height < Tree.getNode(Id2).Height;
715    }
716  };
717  } // end anonymous namespace
718  
719  namespace {
720  // Priority queue for nodes, sorted descendingly by their height.
721  class PriorityList {
722    const SyntaxTree::Impl &Tree;
723    HeightLess Cmp;
724    std::vector<NodeId> Container;
725    PriorityQueue<NodeId, std::vector<NodeId>, HeightLess> List;
726  
727  public:
728    PriorityList(const SyntaxTree::Impl &Tree)
729        : Tree(Tree), Cmp(Tree), List(Cmp, Container) {}
730  
731    void push(NodeId id) { List.push(id); }
732  
733    std::vector<NodeId> pop() {
734      int Max = peekMax();
735      std::vector<NodeId> Result;
736      if (Max == 0)
737        return Result;
738      while (peekMax() == Max) {
739        Result.push_back(List.top());
740        List.pop();
741      }
742      // TODO this is here to get a stable output, not a good heuristic
743      llvm::sort(Result);
744      return Result;
745    }
746    int peekMax() const {
747      if (List.empty())
748        return 0;
749      return Tree.getNode(List.top()).Height;
750    }
751    void open(NodeId Id) {
752      for (NodeId Child : Tree.getNode(Id).Children)
753        push(Child);
754    }
755  };
756  } // end anonymous namespace
757  
758  bool ASTDiff::Impl::identical(NodeId Id1, NodeId Id2) const {
759    const Node &N1 = T1.getNode(Id1);
760    const Node &N2 = T2.getNode(Id2);
761    if (N1.Children.size() != N2.Children.size() ||
762        !isMatchingPossible(Id1, Id2) ||
763        T1.getNodeValue(Id1) != T2.getNodeValue(Id2))
764      return false;
765    for (size_t Id = 0, E = N1.Children.size(); Id < E; ++Id)
766      if (!identical(N1.Children[Id], N2.Children[Id]))
767        return false;
768    return true;
769  }
770  
771  bool ASTDiff::Impl::isMatchingPossible(NodeId Id1, NodeId Id2) const {
772    return Options.isMatchingAllowed(T1.getNode(Id1), T2.getNode(Id2));
773  }
774  
775  bool ASTDiff::Impl::haveSameParents(const Mapping &M, NodeId Id1,
776                                      NodeId Id2) const {
777    NodeId P1 = T1.getNode(Id1).Parent;
778    NodeId P2 = T2.getNode(Id2).Parent;
779    return (P1.isInvalid() && P2.isInvalid()) ||
780           (P1.isValid() && P2.isValid() && M.getDst(P1) == P2);
781  }
782  
783  void ASTDiff::Impl::addOptimalMapping(Mapping &M, NodeId Id1,
784                                        NodeId Id2) const {
785    if (std::max(T1.getNumberOfDescendants(Id1), T2.getNumberOfDescendants(Id2)) >
786        Options.MaxSize)
787      return;
788    ZhangShashaMatcher Matcher(*this, T1, T2, Id1, Id2);
789    std::vector<std::pair<NodeId, NodeId>> R = Matcher.getMatchingNodes();
790    for (const auto Tuple : R) {
791      NodeId Src = Tuple.first;
792      NodeId Dst = Tuple.second;
793      if (!M.hasSrc(Src) && !M.hasDst(Dst))
794        M.link(Src, Dst);
795    }
796  }
797  
798  double ASTDiff::Impl::getJaccardSimilarity(const Mapping &M, NodeId Id1,
799                                             NodeId Id2) const {
800    int CommonDescendants = 0;
801    const Node &N1 = T1.getNode(Id1);
802    // Count the common descendants, excluding the subtree root.
803    for (NodeId Src = Id1 + 1; Src <= N1.RightMostDescendant; ++Src) {
804      NodeId Dst = M.getDst(Src);
805      CommonDescendants += int(Dst.isValid() && T2.isInSubtree(Dst, Id2));
806    }
807    // We need to subtract 1 to get the number of descendants excluding the root.
808    double Denominator = T1.getNumberOfDescendants(Id1) - 1 +
809                         T2.getNumberOfDescendants(Id2) - 1 - CommonDescendants;
810    // CommonDescendants is less than the size of one subtree.
811    assert(Denominator >= 0 && "Expected non-negative denominator.");
812    if (Denominator == 0)
813      return 0;
814    return CommonDescendants / Denominator;
815  }
816  
817  NodeId ASTDiff::Impl::findCandidate(const Mapping &M, NodeId Id1) const {
818    NodeId Candidate;
819    double HighestSimilarity = 0.0;
820    for (NodeId Id2 : T2) {
821      if (!isMatchingPossible(Id1, Id2))
822        continue;
823      if (M.hasDst(Id2))
824        continue;
825      double Similarity = getJaccardSimilarity(M, Id1, Id2);
826      if (Similarity >= Options.MinSimilarity && Similarity > HighestSimilarity) {
827        HighestSimilarity = Similarity;
828        Candidate = Id2;
829      }
830    }
831    return Candidate;
832  }
833  
834  void ASTDiff::Impl::matchBottomUp(Mapping &M) const {
835    std::vector<NodeId> Postorder = getSubtreePostorder(T1, T1.getRootId());
836    for (NodeId Id1 : Postorder) {
837      if (Id1 == T1.getRootId() && !M.hasSrc(T1.getRootId()) &&
838          !M.hasDst(T2.getRootId())) {
839        if (isMatchingPossible(T1.getRootId(), T2.getRootId())) {
840          M.link(T1.getRootId(), T2.getRootId());
841          addOptimalMapping(M, T1.getRootId(), T2.getRootId());
842        }
843        break;
844      }
845      bool Matched = M.hasSrc(Id1);
846      const Node &N1 = T1.getNode(Id1);
847      bool MatchedChildren = llvm::any_of(
848          N1.Children, [&](NodeId Child) { return M.hasSrc(Child); });
849      if (Matched || !MatchedChildren)
850        continue;
851      NodeId Id2 = findCandidate(M, Id1);
852      if (Id2.isValid()) {
853        M.link(Id1, Id2);
854        addOptimalMapping(M, Id1, Id2);
855      }
856    }
857  }
858  
859  Mapping ASTDiff::Impl::matchTopDown() const {
860    PriorityList L1(T1);
861    PriorityList L2(T2);
862  
863    Mapping M(T1.getSize() + T2.getSize());
864  
865    L1.push(T1.getRootId());
866    L2.push(T2.getRootId());
867  
868    int Max1, Max2;
869    while (std::min(Max1 = L1.peekMax(), Max2 = L2.peekMax()) >
870           Options.MinHeight) {
871      if (Max1 > Max2) {
872        for (NodeId Id : L1.pop())
873          L1.open(Id);
874        continue;
875      }
876      if (Max2 > Max1) {
877        for (NodeId Id : L2.pop())
878          L2.open(Id);
879        continue;
880      }
881      std::vector<NodeId> H1, H2;
882      H1 = L1.pop();
883      H2 = L2.pop();
884      for (NodeId Id1 : H1) {
885        for (NodeId Id2 : H2) {
886          if (identical(Id1, Id2) && !M.hasSrc(Id1) && !M.hasDst(Id2)) {
887            for (int I = 0, E = T1.getNumberOfDescendants(Id1); I < E; ++I)
888              M.link(Id1 + I, Id2 + I);
889          }
890        }
891      }
892      for (NodeId Id1 : H1) {
893        if (!M.hasSrc(Id1))
894          L1.open(Id1);
895      }
896      for (NodeId Id2 : H2) {
897        if (!M.hasDst(Id2))
898          L2.open(Id2);
899      }
900    }
901    return M;
902  }
903  
904  ASTDiff::Impl::Impl(SyntaxTree::Impl &T1, SyntaxTree::Impl &T2,
905                      const ComparisonOptions &Options)
906      : T1(T1), T2(T2), Options(Options) {
907    computeMapping();
908    computeChangeKinds(TheMapping);
909  }
910  
911  void ASTDiff::Impl::computeMapping() {
912    TheMapping = matchTopDown();
913    if (Options.StopAfterTopDown)
914      return;
915    matchBottomUp(TheMapping);
916  }
917  
918  void ASTDiff::Impl::computeChangeKinds(Mapping &M) {
919    for (NodeId Id1 : T1) {
920      if (!M.hasSrc(Id1)) {
921        T1.getMutableNode(Id1).Change = Delete;
922        T1.getMutableNode(Id1).Shift -= 1;
923      }
924    }
925    for (NodeId Id2 : T2) {
926      if (!M.hasDst(Id2)) {
927        T2.getMutableNode(Id2).Change = Insert;
928        T2.getMutableNode(Id2).Shift -= 1;
929      }
930    }
931    for (NodeId Id1 : T1.NodesBfs) {
932      NodeId Id2 = M.getDst(Id1);
933      if (Id2.isInvalid())
934        continue;
935      if (!haveSameParents(M, Id1, Id2) ||
936          T1.findPositionInParent(Id1, true) !=
937              T2.findPositionInParent(Id2, true)) {
938        T1.getMutableNode(Id1).Shift -= 1;
939        T2.getMutableNode(Id2).Shift -= 1;
940      }
941    }
942    for (NodeId Id2 : T2.NodesBfs) {
943      NodeId Id1 = M.getSrc(Id2);
944      if (Id1.isInvalid())
945        continue;
946      Node &N1 = T1.getMutableNode(Id1);
947      Node &N2 = T2.getMutableNode(Id2);
948      if (Id1.isInvalid())
949        continue;
950      if (!haveSameParents(M, Id1, Id2) ||
951          T1.findPositionInParent(Id1, true) !=
952              T2.findPositionInParent(Id2, true)) {
953        N1.Change = N2.Change = Move;
954      }
955      if (T1.getNodeValue(Id1) != T2.getNodeValue(Id2)) {
956        N1.Change = N2.Change = (N1.Change == Move ? UpdateMove : Update);
957      }
958    }
959  }
960  
961  ASTDiff::ASTDiff(SyntaxTree &T1, SyntaxTree &T2,
962                   const ComparisonOptions &Options)
963      : DiffImpl(llvm::make_unique<Impl>(*T1.TreeImpl, *T2.TreeImpl, Options)) {}
964  
965  ASTDiff::~ASTDiff() = default;
966  
967  NodeId ASTDiff::getMapped(const SyntaxTree &SourceTree, NodeId Id) const {
968    return DiffImpl->getMapped(SourceTree.TreeImpl, Id);
969  }
970  
971  SyntaxTree::SyntaxTree(ASTContext &AST)
972      : TreeImpl(llvm::make_unique<SyntaxTree::Impl>(
973            this, AST.getTranslationUnitDecl(), AST)) {}
974  
975  SyntaxTree::~SyntaxTree() = default;
976  
977  const ASTContext &SyntaxTree::getASTContext() const { return TreeImpl->AST; }
978  
979  const Node &SyntaxTree::getNode(NodeId Id) const {
980    return TreeImpl->getNode(Id);
981  }
982  
983  int SyntaxTree::getSize() const { return TreeImpl->getSize(); }
984  NodeId SyntaxTree::getRootId() const { return TreeImpl->getRootId(); }
985  SyntaxTree::PreorderIterator SyntaxTree::begin() const {
986    return TreeImpl->begin();
987  }
988  SyntaxTree::PreorderIterator SyntaxTree::end() const { return TreeImpl->end(); }
989  
990  int SyntaxTree::findPositionInParent(NodeId Id) const {
991    return TreeImpl->findPositionInParent(Id);
992  }
993  
994  std::pair<unsigned, unsigned>
995  SyntaxTree::getSourceRangeOffsets(const Node &N) const {
996    const SourceManager &SrcMgr = TreeImpl->AST.getSourceManager();
997    SourceRange Range = N.ASTNode.getSourceRange();
998    SourceLocation BeginLoc = Range.getBegin();
999    SourceLocation EndLoc = Lexer::getLocForEndOfToken(
1000        Range.getEnd(), /*Offset=*/0, SrcMgr, TreeImpl->AST.getLangOpts());
1001    if (auto *ThisExpr = N.ASTNode.get<CXXThisExpr>()) {
1002      if (ThisExpr->isImplicit())
1003        EndLoc = BeginLoc;
1004    }
1005    unsigned Begin = SrcMgr.getFileOffset(SrcMgr.getExpansionLoc(BeginLoc));
1006    unsigned End = SrcMgr.getFileOffset(SrcMgr.getExpansionLoc(EndLoc));
1007    return {Begin, End};
1008  }
1009  
1010  std::string SyntaxTree::getNodeValue(NodeId Id) const {
1011    return TreeImpl->getNodeValue(Id);
1012  }
1013  
1014  std::string SyntaxTree::getNodeValue(const Node &N) const {
1015    return TreeImpl->getNodeValue(N);
1016  }
1017  
1018  } // end namespace diff
1019  } // end namespace clang
1020