xref: /freebsd/contrib/llvm-project/clang/lib/Tooling/ASTDiff/ASTDiff.cpp (revision 99282790b7d01ec3c4072621d46a0d7302517ad4)
1 //===- ASTDiff.cpp - AST differencing implementation-----------*- C++ -*- -===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains definitons for the AST differencing interface.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/Tooling/ASTDiff/ASTDiff.h"
14 
15 #include "clang/AST/RecursiveASTVisitor.h"
16 #include "clang/Lex/Lexer.h"
17 #include "llvm/ADT/PriorityQueue.h"
18 
19 #include <limits>
20 #include <memory>
21 #include <unordered_set>
22 
23 using namespace llvm;
24 using namespace clang;
25 
26 namespace clang {
27 namespace diff {
28 
29 namespace {
30 /// Maps nodes of the left tree to ones on the right, and vice versa.
31 class Mapping {
32 public:
33   Mapping() = default;
34   Mapping(Mapping &&Other) = default;
35   Mapping &operator=(Mapping &&Other) = default;
36 
37   Mapping(size_t Size) {
38     SrcToDst = std::make_unique<NodeId[]>(Size);
39     DstToSrc = std::make_unique<NodeId[]>(Size);
40   }
41 
42   void link(NodeId Src, NodeId Dst) {
43     SrcToDst[Src] = Dst, DstToSrc[Dst] = Src;
44   }
45 
46   NodeId getDst(NodeId Src) const { return SrcToDst[Src]; }
47   NodeId getSrc(NodeId Dst) const { return DstToSrc[Dst]; }
48   bool hasSrc(NodeId Src) const { return getDst(Src).isValid(); }
49   bool hasDst(NodeId Dst) const { return getSrc(Dst).isValid(); }
50 
51 private:
52   std::unique_ptr<NodeId[]> SrcToDst, DstToSrc;
53 };
54 } // end anonymous namespace
55 
56 class ASTDiff::Impl {
57 public:
58   SyntaxTree::Impl &T1, &T2;
59   Mapping TheMapping;
60 
61   Impl(SyntaxTree::Impl &T1, SyntaxTree::Impl &T2,
62        const ComparisonOptions &Options);
63 
64   /// Matches nodes one-by-one based on their similarity.
65   void computeMapping();
66 
67   // Compute Change for each node based on similarity.
68   void computeChangeKinds(Mapping &M);
69 
70   NodeId getMapped(const std::unique_ptr<SyntaxTree::Impl> &Tree,
71                    NodeId Id) const {
72     if (&*Tree == &T1)
73       return TheMapping.getDst(Id);
74     assert(&*Tree == &T2 && "Invalid tree.");
75     return TheMapping.getSrc(Id);
76   }
77 
78 private:
79   // Returns true if the two subtrees are identical.
80   bool identical(NodeId Id1, NodeId Id2) const;
81 
82   // Returns false if the nodes must not be mached.
83   bool isMatchingPossible(NodeId Id1, NodeId Id2) const;
84 
85   // Returns true if the nodes' parents are matched.
86   bool haveSameParents(const Mapping &M, NodeId Id1, NodeId Id2) const;
87 
88   // Uses an optimal albeit slow algorithm to compute a mapping between two
89   // subtrees, but only if both have fewer nodes than MaxSize.
90   void addOptimalMapping(Mapping &M, NodeId Id1, NodeId Id2) const;
91 
92   // Computes the ratio of common descendants between the two nodes.
93   // Descendants are only considered to be equal when they are mapped in M.
94   double getJaccardSimilarity(const Mapping &M, NodeId Id1, NodeId Id2) const;
95 
96   // Returns the node that has the highest degree of similarity.
97   NodeId findCandidate(const Mapping &M, NodeId Id1) const;
98 
99   // Returns a mapping of identical subtrees.
100   Mapping matchTopDown() const;
101 
102   // Tries to match any yet unmapped nodes, in a bottom-up fashion.
103   void matchBottomUp(Mapping &M) const;
104 
105   const ComparisonOptions &Options;
106 
107   friend class ZhangShashaMatcher;
108 };
109 
110 /// Represents the AST of a TranslationUnit.
111 class SyntaxTree::Impl {
112 public:
113   Impl(SyntaxTree *Parent, ASTContext &AST);
114   /// Constructs a tree from an AST node.
115   Impl(SyntaxTree *Parent, Decl *N, ASTContext &AST);
116   Impl(SyntaxTree *Parent, Stmt *N, ASTContext &AST);
117   template <class T>
118   Impl(SyntaxTree *Parent,
119        typename std::enable_if<std::is_base_of<Stmt, T>::value, T>::type *Node,
120        ASTContext &AST)
121       : Impl(Parent, dyn_cast<Stmt>(Node), AST) {}
122   template <class T>
123   Impl(SyntaxTree *Parent,
124        typename std::enable_if<std::is_base_of<Decl, T>::value, T>::type *Node,
125        ASTContext &AST)
126       : Impl(Parent, dyn_cast<Decl>(Node), AST) {}
127 
128   SyntaxTree *Parent;
129   ASTContext &AST;
130   PrintingPolicy TypePP;
131   /// Nodes in preorder.
132   std::vector<Node> Nodes;
133   std::vector<NodeId> Leaves;
134   // Maps preorder indices to postorder ones.
135   std::vector<int> PostorderIds;
136   std::vector<NodeId> NodesBfs;
137 
138   int getSize() const { return Nodes.size(); }
139   NodeId getRootId() const { return 0; }
140   PreorderIterator begin() const { return getRootId(); }
141   PreorderIterator end() const { return getSize(); }
142 
143   const Node &getNode(NodeId Id) const { return Nodes[Id]; }
144   Node &getMutableNode(NodeId Id) { return Nodes[Id]; }
145   bool isValidNodeId(NodeId Id) const { return Id >= 0 && Id < getSize(); }
146   void addNode(Node &N) { Nodes.push_back(N); }
147   int getNumberOfDescendants(NodeId Id) const;
148   bool isInSubtree(NodeId Id, NodeId SubtreeRoot) const;
149   int findPositionInParent(NodeId Id, bool Shifted = false) const;
150 
151   std::string getRelativeName(const NamedDecl *ND,
152                               const DeclContext *Context) const;
153   std::string getRelativeName(const NamedDecl *ND) const;
154 
155   std::string getNodeValue(NodeId Id) const;
156   std::string getNodeValue(const Node &Node) const;
157   std::string getDeclValue(const Decl *D) const;
158   std::string getStmtValue(const Stmt *S) const;
159 
160 private:
161   void initTree();
162   void setLeftMostDescendants();
163 };
164 
165 static bool isSpecializedNodeExcluded(const Decl *D) { return D->isImplicit(); }
166 static bool isSpecializedNodeExcluded(const Stmt *S) { return false; }
167 static bool isSpecializedNodeExcluded(CXXCtorInitializer *I) {
168   return !I->isWritten();
169 }
170 
171 template <class T>
172 static bool isNodeExcluded(const SourceManager &SrcMgr, T *N) {
173   if (!N)
174     return true;
175   SourceLocation SLoc = N->getSourceRange().getBegin();
176   if (SLoc.isValid()) {
177     // Ignore everything from other files.
178     if (!SrcMgr.isInMainFile(SLoc))
179       return true;
180     // Ignore macros.
181     if (SLoc != SrcMgr.getSpellingLoc(SLoc))
182       return true;
183   }
184   return isSpecializedNodeExcluded(N);
185 }
186 
187 namespace {
188 // Sets Height, Parent and Children for each node.
189 struct PreorderVisitor : public RecursiveASTVisitor<PreorderVisitor> {
190   int Id = 0, Depth = 0;
191   NodeId Parent;
192   SyntaxTree::Impl &Tree;
193 
194   PreorderVisitor(SyntaxTree::Impl &Tree) : Tree(Tree) {}
195 
196   template <class T> std::tuple<NodeId, NodeId> PreTraverse(T *ASTNode) {
197     NodeId MyId = Id;
198     Tree.Nodes.emplace_back();
199     Node &N = Tree.getMutableNode(MyId);
200     N.Parent = Parent;
201     N.Depth = Depth;
202     N.ASTNode = DynTypedNode::create(*ASTNode);
203     assert(!N.ASTNode.getNodeKind().isNone() &&
204            "Expected nodes to have a valid kind.");
205     if (Parent.isValid()) {
206       Node &P = Tree.getMutableNode(Parent);
207       P.Children.push_back(MyId);
208     }
209     Parent = MyId;
210     ++Id;
211     ++Depth;
212     return std::make_tuple(MyId, Tree.getNode(MyId).Parent);
213   }
214   void PostTraverse(std::tuple<NodeId, NodeId> State) {
215     NodeId MyId, PreviousParent;
216     std::tie(MyId, PreviousParent) = State;
217     assert(MyId.isValid() && "Expecting to only traverse valid nodes.");
218     Parent = PreviousParent;
219     --Depth;
220     Node &N = Tree.getMutableNode(MyId);
221     N.RightMostDescendant = Id - 1;
222     assert(N.RightMostDescendant >= 0 &&
223            N.RightMostDescendant < Tree.getSize() &&
224            "Rightmost descendant must be a valid tree node.");
225     if (N.isLeaf())
226       Tree.Leaves.push_back(MyId);
227     N.Height = 1;
228     for (NodeId Child : N.Children)
229       N.Height = std::max(N.Height, 1 + Tree.getNode(Child).Height);
230   }
231   bool TraverseDecl(Decl *D) {
232     if (isNodeExcluded(Tree.AST.getSourceManager(), D))
233       return true;
234     auto SavedState = PreTraverse(D);
235     RecursiveASTVisitor<PreorderVisitor>::TraverseDecl(D);
236     PostTraverse(SavedState);
237     return true;
238   }
239   bool TraverseStmt(Stmt *S) {
240     if (auto *E = dyn_cast_or_null<Expr>(S))
241       S = E->IgnoreImplicit();
242     if (isNodeExcluded(Tree.AST.getSourceManager(), S))
243       return true;
244     auto SavedState = PreTraverse(S);
245     RecursiveASTVisitor<PreorderVisitor>::TraverseStmt(S);
246     PostTraverse(SavedState);
247     return true;
248   }
249   bool TraverseType(QualType T) { return true; }
250   bool TraverseConstructorInitializer(CXXCtorInitializer *Init) {
251     if (isNodeExcluded(Tree.AST.getSourceManager(), Init))
252       return true;
253     auto SavedState = PreTraverse(Init);
254     RecursiveASTVisitor<PreorderVisitor>::TraverseConstructorInitializer(Init);
255     PostTraverse(SavedState);
256     return true;
257   }
258 };
259 } // end anonymous namespace
260 
261 SyntaxTree::Impl::Impl(SyntaxTree *Parent, ASTContext &AST)
262     : Parent(Parent), AST(AST), TypePP(AST.getLangOpts()) {
263   TypePP.AnonymousTagLocations = false;
264 }
265 
266 SyntaxTree::Impl::Impl(SyntaxTree *Parent, Decl *N, ASTContext &AST)
267     : Impl(Parent, AST) {
268   PreorderVisitor PreorderWalker(*this);
269   PreorderWalker.TraverseDecl(N);
270   initTree();
271 }
272 
273 SyntaxTree::Impl::Impl(SyntaxTree *Parent, Stmt *N, ASTContext &AST)
274     : Impl(Parent, AST) {
275   PreorderVisitor PreorderWalker(*this);
276   PreorderWalker.TraverseStmt(N);
277   initTree();
278 }
279 
280 static std::vector<NodeId> getSubtreePostorder(const SyntaxTree::Impl &Tree,
281                                                NodeId Root) {
282   std::vector<NodeId> Postorder;
283   std::function<void(NodeId)> Traverse = [&](NodeId Id) {
284     const Node &N = Tree.getNode(Id);
285     for (NodeId Child : N.Children)
286       Traverse(Child);
287     Postorder.push_back(Id);
288   };
289   Traverse(Root);
290   return Postorder;
291 }
292 
293 static std::vector<NodeId> getSubtreeBfs(const SyntaxTree::Impl &Tree,
294                                          NodeId Root) {
295   std::vector<NodeId> Ids;
296   size_t Expanded = 0;
297   Ids.push_back(Root);
298   while (Expanded < Ids.size())
299     for (NodeId Child : Tree.getNode(Ids[Expanded++]).Children)
300       Ids.push_back(Child);
301   return Ids;
302 }
303 
304 void SyntaxTree::Impl::initTree() {
305   setLeftMostDescendants();
306   int PostorderId = 0;
307   PostorderIds.resize(getSize());
308   std::function<void(NodeId)> PostorderTraverse = [&](NodeId Id) {
309     for (NodeId Child : getNode(Id).Children)
310       PostorderTraverse(Child);
311     PostorderIds[Id] = PostorderId;
312     ++PostorderId;
313   };
314   PostorderTraverse(getRootId());
315   NodesBfs = getSubtreeBfs(*this, getRootId());
316 }
317 
318 void SyntaxTree::Impl::setLeftMostDescendants() {
319   for (NodeId Leaf : Leaves) {
320     getMutableNode(Leaf).LeftMostDescendant = Leaf;
321     NodeId Parent, Cur = Leaf;
322     while ((Parent = getNode(Cur).Parent).isValid() &&
323            getNode(Parent).Children[0] == Cur) {
324       Cur = Parent;
325       getMutableNode(Cur).LeftMostDescendant = Leaf;
326     }
327   }
328 }
329 
330 int SyntaxTree::Impl::getNumberOfDescendants(NodeId Id) const {
331   return getNode(Id).RightMostDescendant - Id + 1;
332 }
333 
334 bool SyntaxTree::Impl::isInSubtree(NodeId Id, NodeId SubtreeRoot) const {
335   return Id >= SubtreeRoot && Id <= getNode(SubtreeRoot).RightMostDescendant;
336 }
337 
338 int SyntaxTree::Impl::findPositionInParent(NodeId Id, bool Shifted) const {
339   NodeId Parent = getNode(Id).Parent;
340   if (Parent.isInvalid())
341     return 0;
342   const auto &Siblings = getNode(Parent).Children;
343   int Position = 0;
344   for (size_t I = 0, E = Siblings.size(); I < E; ++I) {
345     if (Shifted)
346       Position += getNode(Siblings[I]).Shift;
347     if (Siblings[I] == Id) {
348       Position += I;
349       return Position;
350     }
351   }
352   llvm_unreachable("Node not found in parent's children.");
353 }
354 
355 // Returns the qualified name of ND. If it is subordinate to Context,
356 // then the prefix of the latter is removed from the returned value.
357 std::string
358 SyntaxTree::Impl::getRelativeName(const NamedDecl *ND,
359                                   const DeclContext *Context) const {
360   std::string Val = ND->getQualifiedNameAsString();
361   std::string ContextPrefix;
362   if (!Context)
363     return Val;
364   if (auto *Namespace = dyn_cast<NamespaceDecl>(Context))
365     ContextPrefix = Namespace->getQualifiedNameAsString();
366   else if (auto *Record = dyn_cast<RecordDecl>(Context))
367     ContextPrefix = Record->getQualifiedNameAsString();
368   else if (AST.getLangOpts().CPlusPlus11)
369     if (auto *Tag = dyn_cast<TagDecl>(Context))
370       ContextPrefix = Tag->getQualifiedNameAsString();
371   // Strip the qualifier, if Val refers to something in the current scope.
372   // But leave one leading ':' in place, so that we know that this is a
373   // relative path.
374   if (!ContextPrefix.empty() && StringRef(Val).startswith(ContextPrefix))
375     Val = Val.substr(ContextPrefix.size() + 1);
376   return Val;
377 }
378 
379 std::string SyntaxTree::Impl::getRelativeName(const NamedDecl *ND) const {
380   return getRelativeName(ND, ND->getDeclContext());
381 }
382 
383 static const DeclContext *getEnclosingDeclContext(ASTContext &AST,
384                                                   const Stmt *S) {
385   while (S) {
386     const auto &Parents = AST.getParents(*S);
387     if (Parents.empty())
388       return nullptr;
389     const auto &P = Parents[0];
390     if (const auto *D = P.get<Decl>())
391       return D->getDeclContext();
392     S = P.get<Stmt>();
393   }
394   return nullptr;
395 }
396 
397 static std::string getInitializerValue(const CXXCtorInitializer *Init,
398                                        const PrintingPolicy &TypePP) {
399   if (Init->isAnyMemberInitializer())
400     return Init->getAnyMember()->getName();
401   if (Init->isBaseInitializer())
402     return QualType(Init->getBaseClass(), 0).getAsString(TypePP);
403   if (Init->isDelegatingInitializer())
404     return Init->getTypeSourceInfo()->getType().getAsString(TypePP);
405   llvm_unreachable("Unknown initializer type");
406 }
407 
408 std::string SyntaxTree::Impl::getNodeValue(NodeId Id) const {
409   return getNodeValue(getNode(Id));
410 }
411 
412 std::string SyntaxTree::Impl::getNodeValue(const Node &N) const {
413   const DynTypedNode &DTN = N.ASTNode;
414   if (auto *S = DTN.get<Stmt>())
415     return getStmtValue(S);
416   if (auto *D = DTN.get<Decl>())
417     return getDeclValue(D);
418   if (auto *Init = DTN.get<CXXCtorInitializer>())
419     return getInitializerValue(Init, TypePP);
420   llvm_unreachable("Fatal: unhandled AST node.\n");
421 }
422 
423 std::string SyntaxTree::Impl::getDeclValue(const Decl *D) const {
424   std::string Value;
425   if (auto *V = dyn_cast<ValueDecl>(D))
426     return getRelativeName(V) + "(" + V->getType().getAsString(TypePP) + ")";
427   if (auto *N = dyn_cast<NamedDecl>(D))
428     Value += getRelativeName(N) + ";";
429   if (auto *T = dyn_cast<TypedefNameDecl>(D))
430     return Value + T->getUnderlyingType().getAsString(TypePP) + ";";
431   if (auto *T = dyn_cast<TypeDecl>(D))
432     if (T->getTypeForDecl())
433       Value +=
434           T->getTypeForDecl()->getCanonicalTypeInternal().getAsString(TypePP) +
435           ";";
436   if (auto *U = dyn_cast<UsingDirectiveDecl>(D))
437     return U->getNominatedNamespace()->getName();
438   if (auto *A = dyn_cast<AccessSpecDecl>(D)) {
439     CharSourceRange Range(A->getSourceRange(), false);
440     return Lexer::getSourceText(Range, AST.getSourceManager(),
441                                 AST.getLangOpts());
442   }
443   return Value;
444 }
445 
446 std::string SyntaxTree::Impl::getStmtValue(const Stmt *S) const {
447   if (auto *U = dyn_cast<UnaryOperator>(S))
448     return UnaryOperator::getOpcodeStr(U->getOpcode());
449   if (auto *B = dyn_cast<BinaryOperator>(S))
450     return B->getOpcodeStr();
451   if (auto *M = dyn_cast<MemberExpr>(S))
452     return getRelativeName(M->getMemberDecl());
453   if (auto *I = dyn_cast<IntegerLiteral>(S)) {
454     SmallString<256> Str;
455     I->getValue().toString(Str, /*Radix=*/10, /*Signed=*/false);
456     return Str.str();
457   }
458   if (auto *F = dyn_cast<FloatingLiteral>(S)) {
459     SmallString<256> Str;
460     F->getValue().toString(Str);
461     return Str.str();
462   }
463   if (auto *D = dyn_cast<DeclRefExpr>(S))
464     return getRelativeName(D->getDecl(), getEnclosingDeclContext(AST, S));
465   if (auto *String = dyn_cast<StringLiteral>(S))
466     return String->getString();
467   if (auto *B = dyn_cast<CXXBoolLiteralExpr>(S))
468     return B->getValue() ? "true" : "false";
469   return "";
470 }
471 
472 /// Identifies a node in a subtree by its postorder offset, starting at 1.
473 struct SNodeId {
474   int Id = 0;
475 
476   explicit SNodeId(int Id) : Id(Id) {}
477   explicit SNodeId() = default;
478 
479   operator int() const { return Id; }
480   SNodeId &operator++() { return ++Id, *this; }
481   SNodeId &operator--() { return --Id, *this; }
482   SNodeId operator+(int Other) const { return SNodeId(Id + Other); }
483 };
484 
485 class Subtree {
486 private:
487   /// The parent tree.
488   const SyntaxTree::Impl &Tree;
489   /// Maps SNodeIds to original ids.
490   std::vector<NodeId> RootIds;
491   /// Maps subtree nodes to their leftmost descendants wtihin the subtree.
492   std::vector<SNodeId> LeftMostDescendants;
493 
494 public:
495   std::vector<SNodeId> KeyRoots;
496 
497   Subtree(const SyntaxTree::Impl &Tree, NodeId SubtreeRoot) : Tree(Tree) {
498     RootIds = getSubtreePostorder(Tree, SubtreeRoot);
499     int NumLeaves = setLeftMostDescendants();
500     computeKeyRoots(NumLeaves);
501   }
502   int getSize() const { return RootIds.size(); }
503   NodeId getIdInRoot(SNodeId Id) const {
504     assert(Id > 0 && Id <= getSize() && "Invalid subtree node index.");
505     return RootIds[Id - 1];
506   }
507   const Node &getNode(SNodeId Id) const {
508     return Tree.getNode(getIdInRoot(Id));
509   }
510   SNodeId getLeftMostDescendant(SNodeId Id) const {
511     assert(Id > 0 && Id <= getSize() && "Invalid subtree node index.");
512     return LeftMostDescendants[Id - 1];
513   }
514   /// Returns the postorder index of the leftmost descendant in the subtree.
515   NodeId getPostorderOffset() const {
516     return Tree.PostorderIds[getIdInRoot(SNodeId(1))];
517   }
518   std::string getNodeValue(SNodeId Id) const {
519     return Tree.getNodeValue(getIdInRoot(Id));
520   }
521 
522 private:
523   /// Returns the number of leafs in the subtree.
524   int setLeftMostDescendants() {
525     int NumLeaves = 0;
526     LeftMostDescendants.resize(getSize());
527     for (int I = 0; I < getSize(); ++I) {
528       SNodeId SI(I + 1);
529       const Node &N = getNode(SI);
530       NumLeaves += N.isLeaf();
531       assert(I == Tree.PostorderIds[getIdInRoot(SI)] - getPostorderOffset() &&
532              "Postorder traversal in subtree should correspond to traversal in "
533              "the root tree by a constant offset.");
534       LeftMostDescendants[I] = SNodeId(Tree.PostorderIds[N.LeftMostDescendant] -
535                                        getPostorderOffset());
536     }
537     return NumLeaves;
538   }
539   void computeKeyRoots(int Leaves) {
540     KeyRoots.resize(Leaves);
541     std::unordered_set<int> Visited;
542     int K = Leaves - 1;
543     for (SNodeId I(getSize()); I > 0; --I) {
544       SNodeId LeftDesc = getLeftMostDescendant(I);
545       if (Visited.count(LeftDesc))
546         continue;
547       assert(K >= 0 && "K should be non-negative");
548       KeyRoots[K] = I;
549       Visited.insert(LeftDesc);
550       --K;
551     }
552   }
553 };
554 
555 /// Implementation of Zhang and Shasha's Algorithm for tree edit distance.
556 /// Computes an optimal mapping between two trees using only insertion,
557 /// deletion and update as edit actions (similar to the Levenshtein distance).
558 class ZhangShashaMatcher {
559   const ASTDiff::Impl &DiffImpl;
560   Subtree S1;
561   Subtree S2;
562   std::unique_ptr<std::unique_ptr<double[]>[]> TreeDist, ForestDist;
563 
564 public:
565   ZhangShashaMatcher(const ASTDiff::Impl &DiffImpl, const SyntaxTree::Impl &T1,
566                      const SyntaxTree::Impl &T2, NodeId Id1, NodeId Id2)
567       : DiffImpl(DiffImpl), S1(T1, Id1), S2(T2, Id2) {
568     TreeDist = std::make_unique<std::unique_ptr<double[]>[]>(
569         size_t(S1.getSize()) + 1);
570     ForestDist = std::make_unique<std::unique_ptr<double[]>[]>(
571         size_t(S1.getSize()) + 1);
572     for (int I = 0, E = S1.getSize() + 1; I < E; ++I) {
573       TreeDist[I] = std::make_unique<double[]>(size_t(S2.getSize()) + 1);
574       ForestDist[I] = std::make_unique<double[]>(size_t(S2.getSize()) + 1);
575     }
576   }
577 
578   std::vector<std::pair<NodeId, NodeId>> getMatchingNodes() {
579     std::vector<std::pair<NodeId, NodeId>> Matches;
580     std::vector<std::pair<SNodeId, SNodeId>> TreePairs;
581 
582     computeTreeDist();
583 
584     bool RootNodePair = true;
585 
586     TreePairs.emplace_back(SNodeId(S1.getSize()), SNodeId(S2.getSize()));
587 
588     while (!TreePairs.empty()) {
589       SNodeId LastRow, LastCol, FirstRow, FirstCol, Row, Col;
590       std::tie(LastRow, LastCol) = TreePairs.back();
591       TreePairs.pop_back();
592 
593       if (!RootNodePair) {
594         computeForestDist(LastRow, LastCol);
595       }
596 
597       RootNodePair = false;
598 
599       FirstRow = S1.getLeftMostDescendant(LastRow);
600       FirstCol = S2.getLeftMostDescendant(LastCol);
601 
602       Row = LastRow;
603       Col = LastCol;
604 
605       while (Row > FirstRow || Col > FirstCol) {
606         if (Row > FirstRow &&
607             ForestDist[Row - 1][Col] + 1 == ForestDist[Row][Col]) {
608           --Row;
609         } else if (Col > FirstCol &&
610                    ForestDist[Row][Col - 1] + 1 == ForestDist[Row][Col]) {
611           --Col;
612         } else {
613           SNodeId LMD1 = S1.getLeftMostDescendant(Row);
614           SNodeId LMD2 = S2.getLeftMostDescendant(Col);
615           if (LMD1 == S1.getLeftMostDescendant(LastRow) &&
616               LMD2 == S2.getLeftMostDescendant(LastCol)) {
617             NodeId Id1 = S1.getIdInRoot(Row);
618             NodeId Id2 = S2.getIdInRoot(Col);
619             assert(DiffImpl.isMatchingPossible(Id1, Id2) &&
620                    "These nodes must not be matched.");
621             Matches.emplace_back(Id1, Id2);
622             --Row;
623             --Col;
624           } else {
625             TreePairs.emplace_back(Row, Col);
626             Row = LMD1;
627             Col = LMD2;
628           }
629         }
630       }
631     }
632     return Matches;
633   }
634 
635 private:
636   /// We use a simple cost model for edit actions, which seems good enough.
637   /// Simple cost model for edit actions. This seems to make the matching
638   /// algorithm perform reasonably well.
639   /// The values range between 0 and 1, or infinity if this edit action should
640   /// always be avoided.
641   static constexpr double DeletionCost = 1;
642   static constexpr double InsertionCost = 1;
643 
644   double getUpdateCost(SNodeId Id1, SNodeId Id2) {
645     if (!DiffImpl.isMatchingPossible(S1.getIdInRoot(Id1), S2.getIdInRoot(Id2)))
646       return std::numeric_limits<double>::max();
647     return S1.getNodeValue(Id1) != S2.getNodeValue(Id2);
648   }
649 
650   void computeTreeDist() {
651     for (SNodeId Id1 : S1.KeyRoots)
652       for (SNodeId Id2 : S2.KeyRoots)
653         computeForestDist(Id1, Id2);
654   }
655 
656   void computeForestDist(SNodeId Id1, SNodeId Id2) {
657     assert(Id1 > 0 && Id2 > 0 && "Expecting offsets greater than 0.");
658     SNodeId LMD1 = S1.getLeftMostDescendant(Id1);
659     SNodeId LMD2 = S2.getLeftMostDescendant(Id2);
660 
661     ForestDist[LMD1][LMD2] = 0;
662     for (SNodeId D1 = LMD1 + 1; D1 <= Id1; ++D1) {
663       ForestDist[D1][LMD2] = ForestDist[D1 - 1][LMD2] + DeletionCost;
664       for (SNodeId D2 = LMD2 + 1; D2 <= Id2; ++D2) {
665         ForestDist[LMD1][D2] = ForestDist[LMD1][D2 - 1] + InsertionCost;
666         SNodeId DLMD1 = S1.getLeftMostDescendant(D1);
667         SNodeId DLMD2 = S2.getLeftMostDescendant(D2);
668         if (DLMD1 == LMD1 && DLMD2 == LMD2) {
669           double UpdateCost = getUpdateCost(D1, D2);
670           ForestDist[D1][D2] =
671               std::min({ForestDist[D1 - 1][D2] + DeletionCost,
672                         ForestDist[D1][D2 - 1] + InsertionCost,
673                         ForestDist[D1 - 1][D2 - 1] + UpdateCost});
674           TreeDist[D1][D2] = ForestDist[D1][D2];
675         } else {
676           ForestDist[D1][D2] =
677               std::min({ForestDist[D1 - 1][D2] + DeletionCost,
678                         ForestDist[D1][D2 - 1] + InsertionCost,
679                         ForestDist[DLMD1][DLMD2] + TreeDist[D1][D2]});
680         }
681       }
682     }
683   }
684 };
685 
686 ast_type_traits::ASTNodeKind Node::getType() const {
687   return ASTNode.getNodeKind();
688 }
689 
690 StringRef Node::getTypeLabel() const { return getType().asStringRef(); }
691 
692 llvm::Optional<std::string> Node::getQualifiedIdentifier() const {
693   if (auto *ND = ASTNode.get<NamedDecl>()) {
694     if (ND->getDeclName().isIdentifier())
695       return ND->getQualifiedNameAsString();
696   }
697   return llvm::None;
698 }
699 
700 llvm::Optional<StringRef> Node::getIdentifier() const {
701   if (auto *ND = ASTNode.get<NamedDecl>()) {
702     if (ND->getDeclName().isIdentifier())
703       return ND->getName();
704   }
705   return llvm::None;
706 }
707 
708 namespace {
709 // Compares nodes by their depth.
710 struct HeightLess {
711   const SyntaxTree::Impl &Tree;
712   HeightLess(const SyntaxTree::Impl &Tree) : Tree(Tree) {}
713   bool operator()(NodeId Id1, NodeId Id2) const {
714     return Tree.getNode(Id1).Height < Tree.getNode(Id2).Height;
715   }
716 };
717 } // end anonymous namespace
718 
719 namespace {
720 // Priority queue for nodes, sorted descendingly by their height.
721 class PriorityList {
722   const SyntaxTree::Impl &Tree;
723   HeightLess Cmp;
724   std::vector<NodeId> Container;
725   PriorityQueue<NodeId, std::vector<NodeId>, HeightLess> List;
726 
727 public:
728   PriorityList(const SyntaxTree::Impl &Tree)
729       : Tree(Tree), Cmp(Tree), List(Cmp, Container) {}
730 
731   void push(NodeId id) { List.push(id); }
732 
733   std::vector<NodeId> pop() {
734     int Max = peekMax();
735     std::vector<NodeId> Result;
736     if (Max == 0)
737       return Result;
738     while (peekMax() == Max) {
739       Result.push_back(List.top());
740       List.pop();
741     }
742     // TODO this is here to get a stable output, not a good heuristic
743     llvm::sort(Result);
744     return Result;
745   }
746   int peekMax() const {
747     if (List.empty())
748       return 0;
749     return Tree.getNode(List.top()).Height;
750   }
751   void open(NodeId Id) {
752     for (NodeId Child : Tree.getNode(Id).Children)
753       push(Child);
754   }
755 };
756 } // end anonymous namespace
757 
758 bool ASTDiff::Impl::identical(NodeId Id1, NodeId Id2) const {
759   const Node &N1 = T1.getNode(Id1);
760   const Node &N2 = T2.getNode(Id2);
761   if (N1.Children.size() != N2.Children.size() ||
762       !isMatchingPossible(Id1, Id2) ||
763       T1.getNodeValue(Id1) != T2.getNodeValue(Id2))
764     return false;
765   for (size_t Id = 0, E = N1.Children.size(); Id < E; ++Id)
766     if (!identical(N1.Children[Id], N2.Children[Id]))
767       return false;
768   return true;
769 }
770 
771 bool ASTDiff::Impl::isMatchingPossible(NodeId Id1, NodeId Id2) const {
772   return Options.isMatchingAllowed(T1.getNode(Id1), T2.getNode(Id2));
773 }
774 
775 bool ASTDiff::Impl::haveSameParents(const Mapping &M, NodeId Id1,
776                                     NodeId Id2) const {
777   NodeId P1 = T1.getNode(Id1).Parent;
778   NodeId P2 = T2.getNode(Id2).Parent;
779   return (P1.isInvalid() && P2.isInvalid()) ||
780          (P1.isValid() && P2.isValid() && M.getDst(P1) == P2);
781 }
782 
783 void ASTDiff::Impl::addOptimalMapping(Mapping &M, NodeId Id1,
784                                       NodeId Id2) const {
785   if (std::max(T1.getNumberOfDescendants(Id1), T2.getNumberOfDescendants(Id2)) >
786       Options.MaxSize)
787     return;
788   ZhangShashaMatcher Matcher(*this, T1, T2, Id1, Id2);
789   std::vector<std::pair<NodeId, NodeId>> R = Matcher.getMatchingNodes();
790   for (const auto &Tuple : R) {
791     NodeId Src = Tuple.first;
792     NodeId Dst = Tuple.second;
793     if (!M.hasSrc(Src) && !M.hasDst(Dst))
794       M.link(Src, Dst);
795   }
796 }
797 
798 double ASTDiff::Impl::getJaccardSimilarity(const Mapping &M, NodeId Id1,
799                                            NodeId Id2) const {
800   int CommonDescendants = 0;
801   const Node &N1 = T1.getNode(Id1);
802   // Count the common descendants, excluding the subtree root.
803   for (NodeId Src = Id1 + 1; Src <= N1.RightMostDescendant; ++Src) {
804     NodeId Dst = M.getDst(Src);
805     CommonDescendants += int(Dst.isValid() && T2.isInSubtree(Dst, Id2));
806   }
807   // We need to subtract 1 to get the number of descendants excluding the root.
808   double Denominator = T1.getNumberOfDescendants(Id1) - 1 +
809                        T2.getNumberOfDescendants(Id2) - 1 - CommonDescendants;
810   // CommonDescendants is less than the size of one subtree.
811   assert(Denominator >= 0 && "Expected non-negative denominator.");
812   if (Denominator == 0)
813     return 0;
814   return CommonDescendants / Denominator;
815 }
816 
817 NodeId ASTDiff::Impl::findCandidate(const Mapping &M, NodeId Id1) const {
818   NodeId Candidate;
819   double HighestSimilarity = 0.0;
820   for (NodeId Id2 : T2) {
821     if (!isMatchingPossible(Id1, Id2))
822       continue;
823     if (M.hasDst(Id2))
824       continue;
825     double Similarity = getJaccardSimilarity(M, Id1, Id2);
826     if (Similarity >= Options.MinSimilarity && Similarity > HighestSimilarity) {
827       HighestSimilarity = Similarity;
828       Candidate = Id2;
829     }
830   }
831   return Candidate;
832 }
833 
834 void ASTDiff::Impl::matchBottomUp(Mapping &M) const {
835   std::vector<NodeId> Postorder = getSubtreePostorder(T1, T1.getRootId());
836   for (NodeId Id1 : Postorder) {
837     if (Id1 == T1.getRootId() && !M.hasSrc(T1.getRootId()) &&
838         !M.hasDst(T2.getRootId())) {
839       if (isMatchingPossible(T1.getRootId(), T2.getRootId())) {
840         M.link(T1.getRootId(), T2.getRootId());
841         addOptimalMapping(M, T1.getRootId(), T2.getRootId());
842       }
843       break;
844     }
845     bool Matched = M.hasSrc(Id1);
846     const Node &N1 = T1.getNode(Id1);
847     bool MatchedChildren = llvm::any_of(
848         N1.Children, [&](NodeId Child) { return M.hasSrc(Child); });
849     if (Matched || !MatchedChildren)
850       continue;
851     NodeId Id2 = findCandidate(M, Id1);
852     if (Id2.isValid()) {
853       M.link(Id1, Id2);
854       addOptimalMapping(M, Id1, Id2);
855     }
856   }
857 }
858 
859 Mapping ASTDiff::Impl::matchTopDown() const {
860   PriorityList L1(T1);
861   PriorityList L2(T2);
862 
863   Mapping M(T1.getSize() + T2.getSize());
864 
865   L1.push(T1.getRootId());
866   L2.push(T2.getRootId());
867 
868   int Max1, Max2;
869   while (std::min(Max1 = L1.peekMax(), Max2 = L2.peekMax()) >
870          Options.MinHeight) {
871     if (Max1 > Max2) {
872       for (NodeId Id : L1.pop())
873         L1.open(Id);
874       continue;
875     }
876     if (Max2 > Max1) {
877       for (NodeId Id : L2.pop())
878         L2.open(Id);
879       continue;
880     }
881     std::vector<NodeId> H1, H2;
882     H1 = L1.pop();
883     H2 = L2.pop();
884     for (NodeId Id1 : H1) {
885       for (NodeId Id2 : H2) {
886         if (identical(Id1, Id2) && !M.hasSrc(Id1) && !M.hasDst(Id2)) {
887           for (int I = 0, E = T1.getNumberOfDescendants(Id1); I < E; ++I)
888             M.link(Id1 + I, Id2 + I);
889         }
890       }
891     }
892     for (NodeId Id1 : H1) {
893       if (!M.hasSrc(Id1))
894         L1.open(Id1);
895     }
896     for (NodeId Id2 : H2) {
897       if (!M.hasDst(Id2))
898         L2.open(Id2);
899     }
900   }
901   return M;
902 }
903 
904 ASTDiff::Impl::Impl(SyntaxTree::Impl &T1, SyntaxTree::Impl &T2,
905                     const ComparisonOptions &Options)
906     : T1(T1), T2(T2), Options(Options) {
907   computeMapping();
908   computeChangeKinds(TheMapping);
909 }
910 
911 void ASTDiff::Impl::computeMapping() {
912   TheMapping = matchTopDown();
913   if (Options.StopAfterTopDown)
914     return;
915   matchBottomUp(TheMapping);
916 }
917 
918 void ASTDiff::Impl::computeChangeKinds(Mapping &M) {
919   for (NodeId Id1 : T1) {
920     if (!M.hasSrc(Id1)) {
921       T1.getMutableNode(Id1).Change = Delete;
922       T1.getMutableNode(Id1).Shift -= 1;
923     }
924   }
925   for (NodeId Id2 : T2) {
926     if (!M.hasDst(Id2)) {
927       T2.getMutableNode(Id2).Change = Insert;
928       T2.getMutableNode(Id2).Shift -= 1;
929     }
930   }
931   for (NodeId Id1 : T1.NodesBfs) {
932     NodeId Id2 = M.getDst(Id1);
933     if (Id2.isInvalid())
934       continue;
935     if (!haveSameParents(M, Id1, Id2) ||
936         T1.findPositionInParent(Id1, true) !=
937             T2.findPositionInParent(Id2, true)) {
938       T1.getMutableNode(Id1).Shift -= 1;
939       T2.getMutableNode(Id2).Shift -= 1;
940     }
941   }
942   for (NodeId Id2 : T2.NodesBfs) {
943     NodeId Id1 = M.getSrc(Id2);
944     if (Id1.isInvalid())
945       continue;
946     Node &N1 = T1.getMutableNode(Id1);
947     Node &N2 = T2.getMutableNode(Id2);
948     if (Id1.isInvalid())
949       continue;
950     if (!haveSameParents(M, Id1, Id2) ||
951         T1.findPositionInParent(Id1, true) !=
952             T2.findPositionInParent(Id2, true)) {
953       N1.Change = N2.Change = Move;
954     }
955     if (T1.getNodeValue(Id1) != T2.getNodeValue(Id2)) {
956       N1.Change = N2.Change = (N1.Change == Move ? UpdateMove : Update);
957     }
958   }
959 }
960 
961 ASTDiff::ASTDiff(SyntaxTree &T1, SyntaxTree &T2,
962                  const ComparisonOptions &Options)
963     : DiffImpl(std::make_unique<Impl>(*T1.TreeImpl, *T2.TreeImpl, Options)) {}
964 
965 ASTDiff::~ASTDiff() = default;
966 
967 NodeId ASTDiff::getMapped(const SyntaxTree &SourceTree, NodeId Id) const {
968   return DiffImpl->getMapped(SourceTree.TreeImpl, Id);
969 }
970 
971 SyntaxTree::SyntaxTree(ASTContext &AST)
972     : TreeImpl(std::make_unique<SyntaxTree::Impl>(
973           this, AST.getTranslationUnitDecl(), AST)) {}
974 
975 SyntaxTree::~SyntaxTree() = default;
976 
977 const ASTContext &SyntaxTree::getASTContext() const { return TreeImpl->AST; }
978 
979 const Node &SyntaxTree::getNode(NodeId Id) const {
980   return TreeImpl->getNode(Id);
981 }
982 
983 int SyntaxTree::getSize() const { return TreeImpl->getSize(); }
984 NodeId SyntaxTree::getRootId() const { return TreeImpl->getRootId(); }
985 SyntaxTree::PreorderIterator SyntaxTree::begin() const {
986   return TreeImpl->begin();
987 }
988 SyntaxTree::PreorderIterator SyntaxTree::end() const { return TreeImpl->end(); }
989 
990 int SyntaxTree::findPositionInParent(NodeId Id) const {
991   return TreeImpl->findPositionInParent(Id);
992 }
993 
994 std::pair<unsigned, unsigned>
995 SyntaxTree::getSourceRangeOffsets(const Node &N) const {
996   const SourceManager &SrcMgr = TreeImpl->AST.getSourceManager();
997   SourceRange Range = N.ASTNode.getSourceRange();
998   SourceLocation BeginLoc = Range.getBegin();
999   SourceLocation EndLoc = Lexer::getLocForEndOfToken(
1000       Range.getEnd(), /*Offset=*/0, SrcMgr, TreeImpl->AST.getLangOpts());
1001   if (auto *ThisExpr = N.ASTNode.get<CXXThisExpr>()) {
1002     if (ThisExpr->isImplicit())
1003       EndLoc = BeginLoc;
1004   }
1005   unsigned Begin = SrcMgr.getFileOffset(SrcMgr.getExpansionLoc(BeginLoc));
1006   unsigned End = SrcMgr.getFileOffset(SrcMgr.getExpansionLoc(EndLoc));
1007   return {Begin, End};
1008 }
1009 
1010 std::string SyntaxTree::getNodeValue(NodeId Id) const {
1011   return TreeImpl->getNodeValue(Id);
1012 }
1013 
1014 std::string SyntaxTree::getNodeValue(const Node &N) const {
1015   return TreeImpl->getNodeValue(N);
1016 }
1017 
1018 } // end namespace diff
1019 } // end namespace clang
1020