1 //===- ASTDiff.cpp - AST differencing implementation-----------*- C++ -*- -===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains definitons for the AST differencing interface. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/Tooling/ASTDiff/ASTDiff.h" 14 15 #include "clang/AST/RecursiveASTVisitor.h" 16 #include "clang/Lex/Lexer.h" 17 #include "llvm/ADT/PriorityQueue.h" 18 19 #include <limits> 20 #include <memory> 21 #include <unordered_set> 22 23 using namespace llvm; 24 using namespace clang; 25 26 namespace clang { 27 namespace diff { 28 29 namespace { 30 /// Maps nodes of the left tree to ones on the right, and vice versa. 31 class Mapping { 32 public: 33 Mapping() = default; 34 Mapping(Mapping &&Other) = default; 35 Mapping &operator=(Mapping &&Other) = default; 36 37 Mapping(size_t Size) { 38 SrcToDst = std::make_unique<NodeId[]>(Size); 39 DstToSrc = std::make_unique<NodeId[]>(Size); 40 } 41 42 void link(NodeId Src, NodeId Dst) { 43 SrcToDst[Src] = Dst, DstToSrc[Dst] = Src; 44 } 45 46 NodeId getDst(NodeId Src) const { return SrcToDst[Src]; } 47 NodeId getSrc(NodeId Dst) const { return DstToSrc[Dst]; } 48 bool hasSrc(NodeId Src) const { return getDst(Src).isValid(); } 49 bool hasDst(NodeId Dst) const { return getSrc(Dst).isValid(); } 50 51 private: 52 std::unique_ptr<NodeId[]> SrcToDst, DstToSrc; 53 }; 54 } // end anonymous namespace 55 56 class ASTDiff::Impl { 57 public: 58 SyntaxTree::Impl &T1, &T2; 59 Mapping TheMapping; 60 61 Impl(SyntaxTree::Impl &T1, SyntaxTree::Impl &T2, 62 const ComparisonOptions &Options); 63 64 /// Matches nodes one-by-one based on their similarity. 65 void computeMapping(); 66 67 // Compute Change for each node based on similarity. 68 void computeChangeKinds(Mapping &M); 69 70 NodeId getMapped(const std::unique_ptr<SyntaxTree::Impl> &Tree, 71 NodeId Id) const { 72 if (&*Tree == &T1) 73 return TheMapping.getDst(Id); 74 assert(&*Tree == &T2 && "Invalid tree."); 75 return TheMapping.getSrc(Id); 76 } 77 78 private: 79 // Returns true if the two subtrees are identical. 80 bool identical(NodeId Id1, NodeId Id2) const; 81 82 // Returns false if the nodes must not be mached. 83 bool isMatchingPossible(NodeId Id1, NodeId Id2) const; 84 85 // Returns true if the nodes' parents are matched. 86 bool haveSameParents(const Mapping &M, NodeId Id1, NodeId Id2) const; 87 88 // Uses an optimal albeit slow algorithm to compute a mapping between two 89 // subtrees, but only if both have fewer nodes than MaxSize. 90 void addOptimalMapping(Mapping &M, NodeId Id1, NodeId Id2) const; 91 92 // Computes the ratio of common descendants between the two nodes. 93 // Descendants are only considered to be equal when they are mapped in M. 94 double getJaccardSimilarity(const Mapping &M, NodeId Id1, NodeId Id2) const; 95 96 // Returns the node that has the highest degree of similarity. 97 NodeId findCandidate(const Mapping &M, NodeId Id1) const; 98 99 // Returns a mapping of identical subtrees. 100 Mapping matchTopDown() const; 101 102 // Tries to match any yet unmapped nodes, in a bottom-up fashion. 103 void matchBottomUp(Mapping &M) const; 104 105 const ComparisonOptions &Options; 106 107 friend class ZhangShashaMatcher; 108 }; 109 110 /// Represents the AST of a TranslationUnit. 111 class SyntaxTree::Impl { 112 public: 113 Impl(SyntaxTree *Parent, ASTContext &AST); 114 /// Constructs a tree from an AST node. 115 Impl(SyntaxTree *Parent, Decl *N, ASTContext &AST); 116 Impl(SyntaxTree *Parent, Stmt *N, ASTContext &AST); 117 template <class T> 118 Impl(SyntaxTree *Parent, 119 typename std::enable_if<std::is_base_of<Stmt, T>::value, T>::type *Node, 120 ASTContext &AST) 121 : Impl(Parent, dyn_cast<Stmt>(Node), AST) {} 122 template <class T> 123 Impl(SyntaxTree *Parent, 124 typename std::enable_if<std::is_base_of<Decl, T>::value, T>::type *Node, 125 ASTContext &AST) 126 : Impl(Parent, dyn_cast<Decl>(Node), AST) {} 127 128 SyntaxTree *Parent; 129 ASTContext &AST; 130 PrintingPolicy TypePP; 131 /// Nodes in preorder. 132 std::vector<Node> Nodes; 133 std::vector<NodeId> Leaves; 134 // Maps preorder indices to postorder ones. 135 std::vector<int> PostorderIds; 136 std::vector<NodeId> NodesBfs; 137 138 int getSize() const { return Nodes.size(); } 139 NodeId getRootId() const { return 0; } 140 PreorderIterator begin() const { return getRootId(); } 141 PreorderIterator end() const { return getSize(); } 142 143 const Node &getNode(NodeId Id) const { return Nodes[Id]; } 144 Node &getMutableNode(NodeId Id) { return Nodes[Id]; } 145 bool isValidNodeId(NodeId Id) const { return Id >= 0 && Id < getSize(); } 146 void addNode(Node &N) { Nodes.push_back(N); } 147 int getNumberOfDescendants(NodeId Id) const; 148 bool isInSubtree(NodeId Id, NodeId SubtreeRoot) const; 149 int findPositionInParent(NodeId Id, bool Shifted = false) const; 150 151 std::string getRelativeName(const NamedDecl *ND, 152 const DeclContext *Context) const; 153 std::string getRelativeName(const NamedDecl *ND) const; 154 155 std::string getNodeValue(NodeId Id) const; 156 std::string getNodeValue(const Node &Node) const; 157 std::string getDeclValue(const Decl *D) const; 158 std::string getStmtValue(const Stmt *S) const; 159 160 private: 161 void initTree(); 162 void setLeftMostDescendants(); 163 }; 164 165 static bool isSpecializedNodeExcluded(const Decl *D) { return D->isImplicit(); } 166 static bool isSpecializedNodeExcluded(const Stmt *S) { return false; } 167 static bool isSpecializedNodeExcluded(CXXCtorInitializer *I) { 168 return !I->isWritten(); 169 } 170 171 template <class T> 172 static bool isNodeExcluded(const SourceManager &SrcMgr, T *N) { 173 if (!N) 174 return true; 175 SourceLocation SLoc = N->getSourceRange().getBegin(); 176 if (SLoc.isValid()) { 177 // Ignore everything from other files. 178 if (!SrcMgr.isInMainFile(SLoc)) 179 return true; 180 // Ignore macros. 181 if (SLoc != SrcMgr.getSpellingLoc(SLoc)) 182 return true; 183 } 184 return isSpecializedNodeExcluded(N); 185 } 186 187 namespace { 188 // Sets Height, Parent and Children for each node. 189 struct PreorderVisitor : public RecursiveASTVisitor<PreorderVisitor> { 190 int Id = 0, Depth = 0; 191 NodeId Parent; 192 SyntaxTree::Impl &Tree; 193 194 PreorderVisitor(SyntaxTree::Impl &Tree) : Tree(Tree) {} 195 196 template <class T> std::tuple<NodeId, NodeId> PreTraverse(T *ASTNode) { 197 NodeId MyId = Id; 198 Tree.Nodes.emplace_back(); 199 Node &N = Tree.getMutableNode(MyId); 200 N.Parent = Parent; 201 N.Depth = Depth; 202 N.ASTNode = DynTypedNode::create(*ASTNode); 203 assert(!N.ASTNode.getNodeKind().isNone() && 204 "Expected nodes to have a valid kind."); 205 if (Parent.isValid()) { 206 Node &P = Tree.getMutableNode(Parent); 207 P.Children.push_back(MyId); 208 } 209 Parent = MyId; 210 ++Id; 211 ++Depth; 212 return std::make_tuple(MyId, Tree.getNode(MyId).Parent); 213 } 214 void PostTraverse(std::tuple<NodeId, NodeId> State) { 215 NodeId MyId, PreviousParent; 216 std::tie(MyId, PreviousParent) = State; 217 assert(MyId.isValid() && "Expecting to only traverse valid nodes."); 218 Parent = PreviousParent; 219 --Depth; 220 Node &N = Tree.getMutableNode(MyId); 221 N.RightMostDescendant = Id - 1; 222 assert(N.RightMostDescendant >= 0 && 223 N.RightMostDescendant < Tree.getSize() && 224 "Rightmost descendant must be a valid tree node."); 225 if (N.isLeaf()) 226 Tree.Leaves.push_back(MyId); 227 N.Height = 1; 228 for (NodeId Child : N.Children) 229 N.Height = std::max(N.Height, 1 + Tree.getNode(Child).Height); 230 } 231 bool TraverseDecl(Decl *D) { 232 if (isNodeExcluded(Tree.AST.getSourceManager(), D)) 233 return true; 234 auto SavedState = PreTraverse(D); 235 RecursiveASTVisitor<PreorderVisitor>::TraverseDecl(D); 236 PostTraverse(SavedState); 237 return true; 238 } 239 bool TraverseStmt(Stmt *S) { 240 if (auto *E = dyn_cast_or_null<Expr>(S)) 241 S = E->IgnoreImplicit(); 242 if (isNodeExcluded(Tree.AST.getSourceManager(), S)) 243 return true; 244 auto SavedState = PreTraverse(S); 245 RecursiveASTVisitor<PreorderVisitor>::TraverseStmt(S); 246 PostTraverse(SavedState); 247 return true; 248 } 249 bool TraverseType(QualType T) { return true; } 250 bool TraverseConstructorInitializer(CXXCtorInitializer *Init) { 251 if (isNodeExcluded(Tree.AST.getSourceManager(), Init)) 252 return true; 253 auto SavedState = PreTraverse(Init); 254 RecursiveASTVisitor<PreorderVisitor>::TraverseConstructorInitializer(Init); 255 PostTraverse(SavedState); 256 return true; 257 } 258 }; 259 } // end anonymous namespace 260 261 SyntaxTree::Impl::Impl(SyntaxTree *Parent, ASTContext &AST) 262 : Parent(Parent), AST(AST), TypePP(AST.getLangOpts()) { 263 TypePP.AnonymousTagLocations = false; 264 } 265 266 SyntaxTree::Impl::Impl(SyntaxTree *Parent, Decl *N, ASTContext &AST) 267 : Impl(Parent, AST) { 268 PreorderVisitor PreorderWalker(*this); 269 PreorderWalker.TraverseDecl(N); 270 initTree(); 271 } 272 273 SyntaxTree::Impl::Impl(SyntaxTree *Parent, Stmt *N, ASTContext &AST) 274 : Impl(Parent, AST) { 275 PreorderVisitor PreorderWalker(*this); 276 PreorderWalker.TraverseStmt(N); 277 initTree(); 278 } 279 280 static std::vector<NodeId> getSubtreePostorder(const SyntaxTree::Impl &Tree, 281 NodeId Root) { 282 std::vector<NodeId> Postorder; 283 std::function<void(NodeId)> Traverse = [&](NodeId Id) { 284 const Node &N = Tree.getNode(Id); 285 for (NodeId Child : N.Children) 286 Traverse(Child); 287 Postorder.push_back(Id); 288 }; 289 Traverse(Root); 290 return Postorder; 291 } 292 293 static std::vector<NodeId> getSubtreeBfs(const SyntaxTree::Impl &Tree, 294 NodeId Root) { 295 std::vector<NodeId> Ids; 296 size_t Expanded = 0; 297 Ids.push_back(Root); 298 while (Expanded < Ids.size()) 299 for (NodeId Child : Tree.getNode(Ids[Expanded++]).Children) 300 Ids.push_back(Child); 301 return Ids; 302 } 303 304 void SyntaxTree::Impl::initTree() { 305 setLeftMostDescendants(); 306 int PostorderId = 0; 307 PostorderIds.resize(getSize()); 308 std::function<void(NodeId)> PostorderTraverse = [&](NodeId Id) { 309 for (NodeId Child : getNode(Id).Children) 310 PostorderTraverse(Child); 311 PostorderIds[Id] = PostorderId; 312 ++PostorderId; 313 }; 314 PostorderTraverse(getRootId()); 315 NodesBfs = getSubtreeBfs(*this, getRootId()); 316 } 317 318 void SyntaxTree::Impl::setLeftMostDescendants() { 319 for (NodeId Leaf : Leaves) { 320 getMutableNode(Leaf).LeftMostDescendant = Leaf; 321 NodeId Parent, Cur = Leaf; 322 while ((Parent = getNode(Cur).Parent).isValid() && 323 getNode(Parent).Children[0] == Cur) { 324 Cur = Parent; 325 getMutableNode(Cur).LeftMostDescendant = Leaf; 326 } 327 } 328 } 329 330 int SyntaxTree::Impl::getNumberOfDescendants(NodeId Id) const { 331 return getNode(Id).RightMostDescendant - Id + 1; 332 } 333 334 bool SyntaxTree::Impl::isInSubtree(NodeId Id, NodeId SubtreeRoot) const { 335 return Id >= SubtreeRoot && Id <= getNode(SubtreeRoot).RightMostDescendant; 336 } 337 338 int SyntaxTree::Impl::findPositionInParent(NodeId Id, bool Shifted) const { 339 NodeId Parent = getNode(Id).Parent; 340 if (Parent.isInvalid()) 341 return 0; 342 const auto &Siblings = getNode(Parent).Children; 343 int Position = 0; 344 for (size_t I = 0, E = Siblings.size(); I < E; ++I) { 345 if (Shifted) 346 Position += getNode(Siblings[I]).Shift; 347 if (Siblings[I] == Id) { 348 Position += I; 349 return Position; 350 } 351 } 352 llvm_unreachable("Node not found in parent's children."); 353 } 354 355 // Returns the qualified name of ND. If it is subordinate to Context, 356 // then the prefix of the latter is removed from the returned value. 357 std::string 358 SyntaxTree::Impl::getRelativeName(const NamedDecl *ND, 359 const DeclContext *Context) const { 360 std::string Val = ND->getQualifiedNameAsString(); 361 std::string ContextPrefix; 362 if (!Context) 363 return Val; 364 if (auto *Namespace = dyn_cast<NamespaceDecl>(Context)) 365 ContextPrefix = Namespace->getQualifiedNameAsString(); 366 else if (auto *Record = dyn_cast<RecordDecl>(Context)) 367 ContextPrefix = Record->getQualifiedNameAsString(); 368 else if (AST.getLangOpts().CPlusPlus11) 369 if (auto *Tag = dyn_cast<TagDecl>(Context)) 370 ContextPrefix = Tag->getQualifiedNameAsString(); 371 // Strip the qualifier, if Val refers to something in the current scope. 372 // But leave one leading ':' in place, so that we know that this is a 373 // relative path. 374 if (!ContextPrefix.empty() && StringRef(Val).startswith(ContextPrefix)) 375 Val = Val.substr(ContextPrefix.size() + 1); 376 return Val; 377 } 378 379 std::string SyntaxTree::Impl::getRelativeName(const NamedDecl *ND) const { 380 return getRelativeName(ND, ND->getDeclContext()); 381 } 382 383 static const DeclContext *getEnclosingDeclContext(ASTContext &AST, 384 const Stmt *S) { 385 while (S) { 386 const auto &Parents = AST.getParents(*S); 387 if (Parents.empty()) 388 return nullptr; 389 const auto &P = Parents[0]; 390 if (const auto *D = P.get<Decl>()) 391 return D->getDeclContext(); 392 S = P.get<Stmt>(); 393 } 394 return nullptr; 395 } 396 397 static std::string getInitializerValue(const CXXCtorInitializer *Init, 398 const PrintingPolicy &TypePP) { 399 if (Init->isAnyMemberInitializer()) 400 return Init->getAnyMember()->getName(); 401 if (Init->isBaseInitializer()) 402 return QualType(Init->getBaseClass(), 0).getAsString(TypePP); 403 if (Init->isDelegatingInitializer()) 404 return Init->getTypeSourceInfo()->getType().getAsString(TypePP); 405 llvm_unreachable("Unknown initializer type"); 406 } 407 408 std::string SyntaxTree::Impl::getNodeValue(NodeId Id) const { 409 return getNodeValue(getNode(Id)); 410 } 411 412 std::string SyntaxTree::Impl::getNodeValue(const Node &N) const { 413 const DynTypedNode &DTN = N.ASTNode; 414 if (auto *S = DTN.get<Stmt>()) 415 return getStmtValue(S); 416 if (auto *D = DTN.get<Decl>()) 417 return getDeclValue(D); 418 if (auto *Init = DTN.get<CXXCtorInitializer>()) 419 return getInitializerValue(Init, TypePP); 420 llvm_unreachable("Fatal: unhandled AST node.\n"); 421 } 422 423 std::string SyntaxTree::Impl::getDeclValue(const Decl *D) const { 424 std::string Value; 425 if (auto *V = dyn_cast<ValueDecl>(D)) 426 return getRelativeName(V) + "(" + V->getType().getAsString(TypePP) + ")"; 427 if (auto *N = dyn_cast<NamedDecl>(D)) 428 Value += getRelativeName(N) + ";"; 429 if (auto *T = dyn_cast<TypedefNameDecl>(D)) 430 return Value + T->getUnderlyingType().getAsString(TypePP) + ";"; 431 if (auto *T = dyn_cast<TypeDecl>(D)) 432 if (T->getTypeForDecl()) 433 Value += 434 T->getTypeForDecl()->getCanonicalTypeInternal().getAsString(TypePP) + 435 ";"; 436 if (auto *U = dyn_cast<UsingDirectiveDecl>(D)) 437 return U->getNominatedNamespace()->getName(); 438 if (auto *A = dyn_cast<AccessSpecDecl>(D)) { 439 CharSourceRange Range(A->getSourceRange(), false); 440 return Lexer::getSourceText(Range, AST.getSourceManager(), 441 AST.getLangOpts()); 442 } 443 return Value; 444 } 445 446 std::string SyntaxTree::Impl::getStmtValue(const Stmt *S) const { 447 if (auto *U = dyn_cast<UnaryOperator>(S)) 448 return UnaryOperator::getOpcodeStr(U->getOpcode()); 449 if (auto *B = dyn_cast<BinaryOperator>(S)) 450 return B->getOpcodeStr(); 451 if (auto *M = dyn_cast<MemberExpr>(S)) 452 return getRelativeName(M->getMemberDecl()); 453 if (auto *I = dyn_cast<IntegerLiteral>(S)) { 454 SmallString<256> Str; 455 I->getValue().toString(Str, /*Radix=*/10, /*Signed=*/false); 456 return Str.str(); 457 } 458 if (auto *F = dyn_cast<FloatingLiteral>(S)) { 459 SmallString<256> Str; 460 F->getValue().toString(Str); 461 return Str.str(); 462 } 463 if (auto *D = dyn_cast<DeclRefExpr>(S)) 464 return getRelativeName(D->getDecl(), getEnclosingDeclContext(AST, S)); 465 if (auto *String = dyn_cast<StringLiteral>(S)) 466 return String->getString(); 467 if (auto *B = dyn_cast<CXXBoolLiteralExpr>(S)) 468 return B->getValue() ? "true" : "false"; 469 return ""; 470 } 471 472 /// Identifies a node in a subtree by its postorder offset, starting at 1. 473 struct SNodeId { 474 int Id = 0; 475 476 explicit SNodeId(int Id) : Id(Id) {} 477 explicit SNodeId() = default; 478 479 operator int() const { return Id; } 480 SNodeId &operator++() { return ++Id, *this; } 481 SNodeId &operator--() { return --Id, *this; } 482 SNodeId operator+(int Other) const { return SNodeId(Id + Other); } 483 }; 484 485 class Subtree { 486 private: 487 /// The parent tree. 488 const SyntaxTree::Impl &Tree; 489 /// Maps SNodeIds to original ids. 490 std::vector<NodeId> RootIds; 491 /// Maps subtree nodes to their leftmost descendants wtihin the subtree. 492 std::vector<SNodeId> LeftMostDescendants; 493 494 public: 495 std::vector<SNodeId> KeyRoots; 496 497 Subtree(const SyntaxTree::Impl &Tree, NodeId SubtreeRoot) : Tree(Tree) { 498 RootIds = getSubtreePostorder(Tree, SubtreeRoot); 499 int NumLeaves = setLeftMostDescendants(); 500 computeKeyRoots(NumLeaves); 501 } 502 int getSize() const { return RootIds.size(); } 503 NodeId getIdInRoot(SNodeId Id) const { 504 assert(Id > 0 && Id <= getSize() && "Invalid subtree node index."); 505 return RootIds[Id - 1]; 506 } 507 const Node &getNode(SNodeId Id) const { 508 return Tree.getNode(getIdInRoot(Id)); 509 } 510 SNodeId getLeftMostDescendant(SNodeId Id) const { 511 assert(Id > 0 && Id <= getSize() && "Invalid subtree node index."); 512 return LeftMostDescendants[Id - 1]; 513 } 514 /// Returns the postorder index of the leftmost descendant in the subtree. 515 NodeId getPostorderOffset() const { 516 return Tree.PostorderIds[getIdInRoot(SNodeId(1))]; 517 } 518 std::string getNodeValue(SNodeId Id) const { 519 return Tree.getNodeValue(getIdInRoot(Id)); 520 } 521 522 private: 523 /// Returns the number of leafs in the subtree. 524 int setLeftMostDescendants() { 525 int NumLeaves = 0; 526 LeftMostDescendants.resize(getSize()); 527 for (int I = 0; I < getSize(); ++I) { 528 SNodeId SI(I + 1); 529 const Node &N = getNode(SI); 530 NumLeaves += N.isLeaf(); 531 assert(I == Tree.PostorderIds[getIdInRoot(SI)] - getPostorderOffset() && 532 "Postorder traversal in subtree should correspond to traversal in " 533 "the root tree by a constant offset."); 534 LeftMostDescendants[I] = SNodeId(Tree.PostorderIds[N.LeftMostDescendant] - 535 getPostorderOffset()); 536 } 537 return NumLeaves; 538 } 539 void computeKeyRoots(int Leaves) { 540 KeyRoots.resize(Leaves); 541 std::unordered_set<int> Visited; 542 int K = Leaves - 1; 543 for (SNodeId I(getSize()); I > 0; --I) { 544 SNodeId LeftDesc = getLeftMostDescendant(I); 545 if (Visited.count(LeftDesc)) 546 continue; 547 assert(K >= 0 && "K should be non-negative"); 548 KeyRoots[K] = I; 549 Visited.insert(LeftDesc); 550 --K; 551 } 552 } 553 }; 554 555 /// Implementation of Zhang and Shasha's Algorithm for tree edit distance. 556 /// Computes an optimal mapping between two trees using only insertion, 557 /// deletion and update as edit actions (similar to the Levenshtein distance). 558 class ZhangShashaMatcher { 559 const ASTDiff::Impl &DiffImpl; 560 Subtree S1; 561 Subtree S2; 562 std::unique_ptr<std::unique_ptr<double[]>[]> TreeDist, ForestDist; 563 564 public: 565 ZhangShashaMatcher(const ASTDiff::Impl &DiffImpl, const SyntaxTree::Impl &T1, 566 const SyntaxTree::Impl &T2, NodeId Id1, NodeId Id2) 567 : DiffImpl(DiffImpl), S1(T1, Id1), S2(T2, Id2) { 568 TreeDist = std::make_unique<std::unique_ptr<double[]>[]>( 569 size_t(S1.getSize()) + 1); 570 ForestDist = std::make_unique<std::unique_ptr<double[]>[]>( 571 size_t(S1.getSize()) + 1); 572 for (int I = 0, E = S1.getSize() + 1; I < E; ++I) { 573 TreeDist[I] = std::make_unique<double[]>(size_t(S2.getSize()) + 1); 574 ForestDist[I] = std::make_unique<double[]>(size_t(S2.getSize()) + 1); 575 } 576 } 577 578 std::vector<std::pair<NodeId, NodeId>> getMatchingNodes() { 579 std::vector<std::pair<NodeId, NodeId>> Matches; 580 std::vector<std::pair<SNodeId, SNodeId>> TreePairs; 581 582 computeTreeDist(); 583 584 bool RootNodePair = true; 585 586 TreePairs.emplace_back(SNodeId(S1.getSize()), SNodeId(S2.getSize())); 587 588 while (!TreePairs.empty()) { 589 SNodeId LastRow, LastCol, FirstRow, FirstCol, Row, Col; 590 std::tie(LastRow, LastCol) = TreePairs.back(); 591 TreePairs.pop_back(); 592 593 if (!RootNodePair) { 594 computeForestDist(LastRow, LastCol); 595 } 596 597 RootNodePair = false; 598 599 FirstRow = S1.getLeftMostDescendant(LastRow); 600 FirstCol = S2.getLeftMostDescendant(LastCol); 601 602 Row = LastRow; 603 Col = LastCol; 604 605 while (Row > FirstRow || Col > FirstCol) { 606 if (Row > FirstRow && 607 ForestDist[Row - 1][Col] + 1 == ForestDist[Row][Col]) { 608 --Row; 609 } else if (Col > FirstCol && 610 ForestDist[Row][Col - 1] + 1 == ForestDist[Row][Col]) { 611 --Col; 612 } else { 613 SNodeId LMD1 = S1.getLeftMostDescendant(Row); 614 SNodeId LMD2 = S2.getLeftMostDescendant(Col); 615 if (LMD1 == S1.getLeftMostDescendant(LastRow) && 616 LMD2 == S2.getLeftMostDescendant(LastCol)) { 617 NodeId Id1 = S1.getIdInRoot(Row); 618 NodeId Id2 = S2.getIdInRoot(Col); 619 assert(DiffImpl.isMatchingPossible(Id1, Id2) && 620 "These nodes must not be matched."); 621 Matches.emplace_back(Id1, Id2); 622 --Row; 623 --Col; 624 } else { 625 TreePairs.emplace_back(Row, Col); 626 Row = LMD1; 627 Col = LMD2; 628 } 629 } 630 } 631 } 632 return Matches; 633 } 634 635 private: 636 /// We use a simple cost model for edit actions, which seems good enough. 637 /// Simple cost model for edit actions. This seems to make the matching 638 /// algorithm perform reasonably well. 639 /// The values range between 0 and 1, or infinity if this edit action should 640 /// always be avoided. 641 static constexpr double DeletionCost = 1; 642 static constexpr double InsertionCost = 1; 643 644 double getUpdateCost(SNodeId Id1, SNodeId Id2) { 645 if (!DiffImpl.isMatchingPossible(S1.getIdInRoot(Id1), S2.getIdInRoot(Id2))) 646 return std::numeric_limits<double>::max(); 647 return S1.getNodeValue(Id1) != S2.getNodeValue(Id2); 648 } 649 650 void computeTreeDist() { 651 for (SNodeId Id1 : S1.KeyRoots) 652 for (SNodeId Id2 : S2.KeyRoots) 653 computeForestDist(Id1, Id2); 654 } 655 656 void computeForestDist(SNodeId Id1, SNodeId Id2) { 657 assert(Id1 > 0 && Id2 > 0 && "Expecting offsets greater than 0."); 658 SNodeId LMD1 = S1.getLeftMostDescendant(Id1); 659 SNodeId LMD2 = S2.getLeftMostDescendant(Id2); 660 661 ForestDist[LMD1][LMD2] = 0; 662 for (SNodeId D1 = LMD1 + 1; D1 <= Id1; ++D1) { 663 ForestDist[D1][LMD2] = ForestDist[D1 - 1][LMD2] + DeletionCost; 664 for (SNodeId D2 = LMD2 + 1; D2 <= Id2; ++D2) { 665 ForestDist[LMD1][D2] = ForestDist[LMD1][D2 - 1] + InsertionCost; 666 SNodeId DLMD1 = S1.getLeftMostDescendant(D1); 667 SNodeId DLMD2 = S2.getLeftMostDescendant(D2); 668 if (DLMD1 == LMD1 && DLMD2 == LMD2) { 669 double UpdateCost = getUpdateCost(D1, D2); 670 ForestDist[D1][D2] = 671 std::min({ForestDist[D1 - 1][D2] + DeletionCost, 672 ForestDist[D1][D2 - 1] + InsertionCost, 673 ForestDist[D1 - 1][D2 - 1] + UpdateCost}); 674 TreeDist[D1][D2] = ForestDist[D1][D2]; 675 } else { 676 ForestDist[D1][D2] = 677 std::min({ForestDist[D1 - 1][D2] + DeletionCost, 678 ForestDist[D1][D2 - 1] + InsertionCost, 679 ForestDist[DLMD1][DLMD2] + TreeDist[D1][D2]}); 680 } 681 } 682 } 683 } 684 }; 685 686 ast_type_traits::ASTNodeKind Node::getType() const { 687 return ASTNode.getNodeKind(); 688 } 689 690 StringRef Node::getTypeLabel() const { return getType().asStringRef(); } 691 692 llvm::Optional<std::string> Node::getQualifiedIdentifier() const { 693 if (auto *ND = ASTNode.get<NamedDecl>()) { 694 if (ND->getDeclName().isIdentifier()) 695 return ND->getQualifiedNameAsString(); 696 } 697 return llvm::None; 698 } 699 700 llvm::Optional<StringRef> Node::getIdentifier() const { 701 if (auto *ND = ASTNode.get<NamedDecl>()) { 702 if (ND->getDeclName().isIdentifier()) 703 return ND->getName(); 704 } 705 return llvm::None; 706 } 707 708 namespace { 709 // Compares nodes by their depth. 710 struct HeightLess { 711 const SyntaxTree::Impl &Tree; 712 HeightLess(const SyntaxTree::Impl &Tree) : Tree(Tree) {} 713 bool operator()(NodeId Id1, NodeId Id2) const { 714 return Tree.getNode(Id1).Height < Tree.getNode(Id2).Height; 715 } 716 }; 717 } // end anonymous namespace 718 719 namespace { 720 // Priority queue for nodes, sorted descendingly by their height. 721 class PriorityList { 722 const SyntaxTree::Impl &Tree; 723 HeightLess Cmp; 724 std::vector<NodeId> Container; 725 PriorityQueue<NodeId, std::vector<NodeId>, HeightLess> List; 726 727 public: 728 PriorityList(const SyntaxTree::Impl &Tree) 729 : Tree(Tree), Cmp(Tree), List(Cmp, Container) {} 730 731 void push(NodeId id) { List.push(id); } 732 733 std::vector<NodeId> pop() { 734 int Max = peekMax(); 735 std::vector<NodeId> Result; 736 if (Max == 0) 737 return Result; 738 while (peekMax() == Max) { 739 Result.push_back(List.top()); 740 List.pop(); 741 } 742 // TODO this is here to get a stable output, not a good heuristic 743 llvm::sort(Result); 744 return Result; 745 } 746 int peekMax() const { 747 if (List.empty()) 748 return 0; 749 return Tree.getNode(List.top()).Height; 750 } 751 void open(NodeId Id) { 752 for (NodeId Child : Tree.getNode(Id).Children) 753 push(Child); 754 } 755 }; 756 } // end anonymous namespace 757 758 bool ASTDiff::Impl::identical(NodeId Id1, NodeId Id2) const { 759 const Node &N1 = T1.getNode(Id1); 760 const Node &N2 = T2.getNode(Id2); 761 if (N1.Children.size() != N2.Children.size() || 762 !isMatchingPossible(Id1, Id2) || 763 T1.getNodeValue(Id1) != T2.getNodeValue(Id2)) 764 return false; 765 for (size_t Id = 0, E = N1.Children.size(); Id < E; ++Id) 766 if (!identical(N1.Children[Id], N2.Children[Id])) 767 return false; 768 return true; 769 } 770 771 bool ASTDiff::Impl::isMatchingPossible(NodeId Id1, NodeId Id2) const { 772 return Options.isMatchingAllowed(T1.getNode(Id1), T2.getNode(Id2)); 773 } 774 775 bool ASTDiff::Impl::haveSameParents(const Mapping &M, NodeId Id1, 776 NodeId Id2) const { 777 NodeId P1 = T1.getNode(Id1).Parent; 778 NodeId P2 = T2.getNode(Id2).Parent; 779 return (P1.isInvalid() && P2.isInvalid()) || 780 (P1.isValid() && P2.isValid() && M.getDst(P1) == P2); 781 } 782 783 void ASTDiff::Impl::addOptimalMapping(Mapping &M, NodeId Id1, 784 NodeId Id2) const { 785 if (std::max(T1.getNumberOfDescendants(Id1), T2.getNumberOfDescendants(Id2)) > 786 Options.MaxSize) 787 return; 788 ZhangShashaMatcher Matcher(*this, T1, T2, Id1, Id2); 789 std::vector<std::pair<NodeId, NodeId>> R = Matcher.getMatchingNodes(); 790 for (const auto &Tuple : R) { 791 NodeId Src = Tuple.first; 792 NodeId Dst = Tuple.second; 793 if (!M.hasSrc(Src) && !M.hasDst(Dst)) 794 M.link(Src, Dst); 795 } 796 } 797 798 double ASTDiff::Impl::getJaccardSimilarity(const Mapping &M, NodeId Id1, 799 NodeId Id2) const { 800 int CommonDescendants = 0; 801 const Node &N1 = T1.getNode(Id1); 802 // Count the common descendants, excluding the subtree root. 803 for (NodeId Src = Id1 + 1; Src <= N1.RightMostDescendant; ++Src) { 804 NodeId Dst = M.getDst(Src); 805 CommonDescendants += int(Dst.isValid() && T2.isInSubtree(Dst, Id2)); 806 } 807 // We need to subtract 1 to get the number of descendants excluding the root. 808 double Denominator = T1.getNumberOfDescendants(Id1) - 1 + 809 T2.getNumberOfDescendants(Id2) - 1 - CommonDescendants; 810 // CommonDescendants is less than the size of one subtree. 811 assert(Denominator >= 0 && "Expected non-negative denominator."); 812 if (Denominator == 0) 813 return 0; 814 return CommonDescendants / Denominator; 815 } 816 817 NodeId ASTDiff::Impl::findCandidate(const Mapping &M, NodeId Id1) const { 818 NodeId Candidate; 819 double HighestSimilarity = 0.0; 820 for (NodeId Id2 : T2) { 821 if (!isMatchingPossible(Id1, Id2)) 822 continue; 823 if (M.hasDst(Id2)) 824 continue; 825 double Similarity = getJaccardSimilarity(M, Id1, Id2); 826 if (Similarity >= Options.MinSimilarity && Similarity > HighestSimilarity) { 827 HighestSimilarity = Similarity; 828 Candidate = Id2; 829 } 830 } 831 return Candidate; 832 } 833 834 void ASTDiff::Impl::matchBottomUp(Mapping &M) const { 835 std::vector<NodeId> Postorder = getSubtreePostorder(T1, T1.getRootId()); 836 for (NodeId Id1 : Postorder) { 837 if (Id1 == T1.getRootId() && !M.hasSrc(T1.getRootId()) && 838 !M.hasDst(T2.getRootId())) { 839 if (isMatchingPossible(T1.getRootId(), T2.getRootId())) { 840 M.link(T1.getRootId(), T2.getRootId()); 841 addOptimalMapping(M, T1.getRootId(), T2.getRootId()); 842 } 843 break; 844 } 845 bool Matched = M.hasSrc(Id1); 846 const Node &N1 = T1.getNode(Id1); 847 bool MatchedChildren = llvm::any_of( 848 N1.Children, [&](NodeId Child) { return M.hasSrc(Child); }); 849 if (Matched || !MatchedChildren) 850 continue; 851 NodeId Id2 = findCandidate(M, Id1); 852 if (Id2.isValid()) { 853 M.link(Id1, Id2); 854 addOptimalMapping(M, Id1, Id2); 855 } 856 } 857 } 858 859 Mapping ASTDiff::Impl::matchTopDown() const { 860 PriorityList L1(T1); 861 PriorityList L2(T2); 862 863 Mapping M(T1.getSize() + T2.getSize()); 864 865 L1.push(T1.getRootId()); 866 L2.push(T2.getRootId()); 867 868 int Max1, Max2; 869 while (std::min(Max1 = L1.peekMax(), Max2 = L2.peekMax()) > 870 Options.MinHeight) { 871 if (Max1 > Max2) { 872 for (NodeId Id : L1.pop()) 873 L1.open(Id); 874 continue; 875 } 876 if (Max2 > Max1) { 877 for (NodeId Id : L2.pop()) 878 L2.open(Id); 879 continue; 880 } 881 std::vector<NodeId> H1, H2; 882 H1 = L1.pop(); 883 H2 = L2.pop(); 884 for (NodeId Id1 : H1) { 885 for (NodeId Id2 : H2) { 886 if (identical(Id1, Id2) && !M.hasSrc(Id1) && !M.hasDst(Id2)) { 887 for (int I = 0, E = T1.getNumberOfDescendants(Id1); I < E; ++I) 888 M.link(Id1 + I, Id2 + I); 889 } 890 } 891 } 892 for (NodeId Id1 : H1) { 893 if (!M.hasSrc(Id1)) 894 L1.open(Id1); 895 } 896 for (NodeId Id2 : H2) { 897 if (!M.hasDst(Id2)) 898 L2.open(Id2); 899 } 900 } 901 return M; 902 } 903 904 ASTDiff::Impl::Impl(SyntaxTree::Impl &T1, SyntaxTree::Impl &T2, 905 const ComparisonOptions &Options) 906 : T1(T1), T2(T2), Options(Options) { 907 computeMapping(); 908 computeChangeKinds(TheMapping); 909 } 910 911 void ASTDiff::Impl::computeMapping() { 912 TheMapping = matchTopDown(); 913 if (Options.StopAfterTopDown) 914 return; 915 matchBottomUp(TheMapping); 916 } 917 918 void ASTDiff::Impl::computeChangeKinds(Mapping &M) { 919 for (NodeId Id1 : T1) { 920 if (!M.hasSrc(Id1)) { 921 T1.getMutableNode(Id1).Change = Delete; 922 T1.getMutableNode(Id1).Shift -= 1; 923 } 924 } 925 for (NodeId Id2 : T2) { 926 if (!M.hasDst(Id2)) { 927 T2.getMutableNode(Id2).Change = Insert; 928 T2.getMutableNode(Id2).Shift -= 1; 929 } 930 } 931 for (NodeId Id1 : T1.NodesBfs) { 932 NodeId Id2 = M.getDst(Id1); 933 if (Id2.isInvalid()) 934 continue; 935 if (!haveSameParents(M, Id1, Id2) || 936 T1.findPositionInParent(Id1, true) != 937 T2.findPositionInParent(Id2, true)) { 938 T1.getMutableNode(Id1).Shift -= 1; 939 T2.getMutableNode(Id2).Shift -= 1; 940 } 941 } 942 for (NodeId Id2 : T2.NodesBfs) { 943 NodeId Id1 = M.getSrc(Id2); 944 if (Id1.isInvalid()) 945 continue; 946 Node &N1 = T1.getMutableNode(Id1); 947 Node &N2 = T2.getMutableNode(Id2); 948 if (Id1.isInvalid()) 949 continue; 950 if (!haveSameParents(M, Id1, Id2) || 951 T1.findPositionInParent(Id1, true) != 952 T2.findPositionInParent(Id2, true)) { 953 N1.Change = N2.Change = Move; 954 } 955 if (T1.getNodeValue(Id1) != T2.getNodeValue(Id2)) { 956 N1.Change = N2.Change = (N1.Change == Move ? UpdateMove : Update); 957 } 958 } 959 } 960 961 ASTDiff::ASTDiff(SyntaxTree &T1, SyntaxTree &T2, 962 const ComparisonOptions &Options) 963 : DiffImpl(std::make_unique<Impl>(*T1.TreeImpl, *T2.TreeImpl, Options)) {} 964 965 ASTDiff::~ASTDiff() = default; 966 967 NodeId ASTDiff::getMapped(const SyntaxTree &SourceTree, NodeId Id) const { 968 return DiffImpl->getMapped(SourceTree.TreeImpl, Id); 969 } 970 971 SyntaxTree::SyntaxTree(ASTContext &AST) 972 : TreeImpl(std::make_unique<SyntaxTree::Impl>( 973 this, AST.getTranslationUnitDecl(), AST)) {} 974 975 SyntaxTree::~SyntaxTree() = default; 976 977 const ASTContext &SyntaxTree::getASTContext() const { return TreeImpl->AST; } 978 979 const Node &SyntaxTree::getNode(NodeId Id) const { 980 return TreeImpl->getNode(Id); 981 } 982 983 int SyntaxTree::getSize() const { return TreeImpl->getSize(); } 984 NodeId SyntaxTree::getRootId() const { return TreeImpl->getRootId(); } 985 SyntaxTree::PreorderIterator SyntaxTree::begin() const { 986 return TreeImpl->begin(); 987 } 988 SyntaxTree::PreorderIterator SyntaxTree::end() const { return TreeImpl->end(); } 989 990 int SyntaxTree::findPositionInParent(NodeId Id) const { 991 return TreeImpl->findPositionInParent(Id); 992 } 993 994 std::pair<unsigned, unsigned> 995 SyntaxTree::getSourceRangeOffsets(const Node &N) const { 996 const SourceManager &SrcMgr = TreeImpl->AST.getSourceManager(); 997 SourceRange Range = N.ASTNode.getSourceRange(); 998 SourceLocation BeginLoc = Range.getBegin(); 999 SourceLocation EndLoc = Lexer::getLocForEndOfToken( 1000 Range.getEnd(), /*Offset=*/0, SrcMgr, TreeImpl->AST.getLangOpts()); 1001 if (auto *ThisExpr = N.ASTNode.get<CXXThisExpr>()) { 1002 if (ThisExpr->isImplicit()) 1003 EndLoc = BeginLoc; 1004 } 1005 unsigned Begin = SrcMgr.getFileOffset(SrcMgr.getExpansionLoc(BeginLoc)); 1006 unsigned End = SrcMgr.getFileOffset(SrcMgr.getExpansionLoc(EndLoc)); 1007 return {Begin, End}; 1008 } 1009 1010 std::string SyntaxTree::getNodeValue(NodeId Id) const { 1011 return TreeImpl->getNodeValue(Id); 1012 } 1013 1014 std::string SyntaxTree::getNodeValue(const Node &N) const { 1015 return TreeImpl->getNodeValue(N); 1016 } 1017 1018 } // end namespace diff 1019 } // end namespace clang 1020