xref: /freebsd/contrib/llvm-project/clang/lib/Tooling/ASTDiff/ASTDiff.cpp (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 //===- ASTDiff.cpp - AST differencing implementation-----------*- C++ -*- -===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains definitons for the AST differencing interface.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/Tooling/ASTDiff/ASTDiff.h"
14 #include "clang/AST/ParentMapContext.h"
15 #include "clang/AST/RecursiveASTVisitor.h"
16 #include "clang/Basic/SourceManager.h"
17 #include "clang/Lex/Lexer.h"
18 #include "llvm/ADT/PriorityQueue.h"
19 
20 #include <limits>
21 #include <memory>
22 #include <unordered_set>
23 
24 using namespace llvm;
25 using namespace clang;
26 
27 namespace clang {
28 namespace diff {
29 
30 namespace {
31 /// Maps nodes of the left tree to ones on the right, and vice versa.
32 class Mapping {
33 public:
34   Mapping() = default;
35   Mapping(Mapping &&Other) = default;
36   Mapping &operator=(Mapping &&Other) = default;
37 
38   Mapping(size_t Size) {
39     SrcToDst = std::make_unique<NodeId[]>(Size);
40     DstToSrc = std::make_unique<NodeId[]>(Size);
41   }
42 
43   void link(NodeId Src, NodeId Dst) {
44     SrcToDst[Src] = Dst, DstToSrc[Dst] = Src;
45   }
46 
47   NodeId getDst(NodeId Src) const { return SrcToDst[Src]; }
48   NodeId getSrc(NodeId Dst) const { return DstToSrc[Dst]; }
49   bool hasSrc(NodeId Src) const { return getDst(Src).isValid(); }
50   bool hasDst(NodeId Dst) const { return getSrc(Dst).isValid(); }
51 
52 private:
53   std::unique_ptr<NodeId[]> SrcToDst, DstToSrc;
54 };
55 } // end anonymous namespace
56 
57 class ASTDiff::Impl {
58 public:
59   SyntaxTree::Impl &T1, &T2;
60   Mapping TheMapping;
61 
62   Impl(SyntaxTree::Impl &T1, SyntaxTree::Impl &T2,
63        const ComparisonOptions &Options);
64 
65   /// Matches nodes one-by-one based on their similarity.
66   void computeMapping();
67 
68   // Compute Change for each node based on similarity.
69   void computeChangeKinds(Mapping &M);
70 
71   NodeId getMapped(const std::unique_ptr<SyntaxTree::Impl> &Tree,
72                    NodeId Id) const {
73     if (&*Tree == &T1)
74       return TheMapping.getDst(Id);
75     assert(&*Tree == &T2 && "Invalid tree.");
76     return TheMapping.getSrc(Id);
77   }
78 
79 private:
80   // Returns true if the two subtrees are identical.
81   bool identical(NodeId Id1, NodeId Id2) const;
82 
83   // Returns false if the nodes must not be mached.
84   bool isMatchingPossible(NodeId Id1, NodeId Id2) const;
85 
86   // Returns true if the nodes' parents are matched.
87   bool haveSameParents(const Mapping &M, NodeId Id1, NodeId Id2) const;
88 
89   // Uses an optimal albeit slow algorithm to compute a mapping between two
90   // subtrees, but only if both have fewer nodes than MaxSize.
91   void addOptimalMapping(Mapping &M, NodeId Id1, NodeId Id2) const;
92 
93   // Computes the ratio of common descendants between the two nodes.
94   // Descendants are only considered to be equal when they are mapped in M.
95   double getJaccardSimilarity(const Mapping &M, NodeId Id1, NodeId Id2) const;
96 
97   // Returns the node that has the highest degree of similarity.
98   NodeId findCandidate(const Mapping &M, NodeId Id1) const;
99 
100   // Returns a mapping of identical subtrees.
101   Mapping matchTopDown() const;
102 
103   // Tries to match any yet unmapped nodes, in a bottom-up fashion.
104   void matchBottomUp(Mapping &M) const;
105 
106   const ComparisonOptions &Options;
107 
108   friend class ZhangShashaMatcher;
109 };
110 
111 /// Represents the AST of a TranslationUnit.
112 class SyntaxTree::Impl {
113 public:
114   Impl(SyntaxTree *Parent, ASTContext &AST);
115   /// Constructs a tree from an AST node.
116   Impl(SyntaxTree *Parent, Decl *N, ASTContext &AST);
117   Impl(SyntaxTree *Parent, Stmt *N, ASTContext &AST);
118   template <class T>
119   Impl(SyntaxTree *Parent,
120        std::enable_if_t<std::is_base_of<Stmt, T>::value, T> *Node,
121        ASTContext &AST)
122       : Impl(Parent, dyn_cast<Stmt>(Node), AST) {}
123   template <class T>
124   Impl(SyntaxTree *Parent,
125        std::enable_if_t<std::is_base_of<Decl, T>::value, T> *Node,
126        ASTContext &AST)
127       : Impl(Parent, dyn_cast<Decl>(Node), AST) {}
128 
129   SyntaxTree *Parent;
130   ASTContext &AST;
131   PrintingPolicy TypePP;
132   /// Nodes in preorder.
133   std::vector<Node> Nodes;
134   std::vector<NodeId> Leaves;
135   // Maps preorder indices to postorder ones.
136   std::vector<int> PostorderIds;
137   std::vector<NodeId> NodesBfs;
138 
139   int getSize() const { return Nodes.size(); }
140   NodeId getRootId() const { return 0; }
141   PreorderIterator begin() const { return getRootId(); }
142   PreorderIterator end() const { return getSize(); }
143 
144   const Node &getNode(NodeId Id) const { return Nodes[Id]; }
145   Node &getMutableNode(NodeId Id) { return Nodes[Id]; }
146   bool isValidNodeId(NodeId Id) const { return Id >= 0 && Id < getSize(); }
147   void addNode(Node &N) { Nodes.push_back(N); }
148   int getNumberOfDescendants(NodeId Id) const;
149   bool isInSubtree(NodeId Id, NodeId SubtreeRoot) const;
150   int findPositionInParent(NodeId Id, bool Shifted = false) const;
151 
152   std::string getRelativeName(const NamedDecl *ND,
153                               const DeclContext *Context) const;
154   std::string getRelativeName(const NamedDecl *ND) const;
155 
156   std::string getNodeValue(NodeId Id) const;
157   std::string getNodeValue(const Node &Node) const;
158   std::string getDeclValue(const Decl *D) const;
159   std::string getStmtValue(const Stmt *S) const;
160 
161 private:
162   void initTree();
163   void setLeftMostDescendants();
164 };
165 
166 static bool isSpecializedNodeExcluded(const Decl *D) { return D->isImplicit(); }
167 static bool isSpecializedNodeExcluded(const Stmt *S) { return false; }
168 static bool isSpecializedNodeExcluded(CXXCtorInitializer *I) {
169   return !I->isWritten();
170 }
171 
172 template <class T>
173 static bool isNodeExcluded(const SourceManager &SrcMgr, T *N) {
174   if (!N)
175     return true;
176   SourceLocation SLoc = N->getSourceRange().getBegin();
177   if (SLoc.isValid()) {
178     // Ignore everything from other files.
179     if (!SrcMgr.isInMainFile(SLoc))
180       return true;
181     // Ignore macros.
182     if (SLoc != SrcMgr.getSpellingLoc(SLoc))
183       return true;
184   }
185   return isSpecializedNodeExcluded(N);
186 }
187 
188 namespace {
189 // Sets Height, Parent and Children for each node.
190 struct PreorderVisitor : public RecursiveASTVisitor<PreorderVisitor> {
191   int Id = 0, Depth = 0;
192   NodeId Parent;
193   SyntaxTree::Impl &Tree;
194 
195   PreorderVisitor(SyntaxTree::Impl &Tree) : Tree(Tree) {}
196 
197   template <class T> std::tuple<NodeId, NodeId> PreTraverse(T *ASTNode) {
198     NodeId MyId = Id;
199     Tree.Nodes.emplace_back();
200     Node &N = Tree.getMutableNode(MyId);
201     N.Parent = Parent;
202     N.Depth = Depth;
203     N.ASTNode = DynTypedNode::create(*ASTNode);
204     assert(!N.ASTNode.getNodeKind().isNone() &&
205            "Expected nodes to have a valid kind.");
206     if (Parent.isValid()) {
207       Node &P = Tree.getMutableNode(Parent);
208       P.Children.push_back(MyId);
209     }
210     Parent = MyId;
211     ++Id;
212     ++Depth;
213     return std::make_tuple(MyId, Tree.getNode(MyId).Parent);
214   }
215   void PostTraverse(std::tuple<NodeId, NodeId> State) {
216     NodeId MyId, PreviousParent;
217     std::tie(MyId, PreviousParent) = State;
218     assert(MyId.isValid() && "Expecting to only traverse valid nodes.");
219     Parent = PreviousParent;
220     --Depth;
221     Node &N = Tree.getMutableNode(MyId);
222     N.RightMostDescendant = Id - 1;
223     assert(N.RightMostDescendant >= 0 &&
224            N.RightMostDescendant < Tree.getSize() &&
225            "Rightmost descendant must be a valid tree node.");
226     if (N.isLeaf())
227       Tree.Leaves.push_back(MyId);
228     N.Height = 1;
229     for (NodeId Child : N.Children)
230       N.Height = std::max(N.Height, 1 + Tree.getNode(Child).Height);
231   }
232   bool TraverseDecl(Decl *D) {
233     if (isNodeExcluded(Tree.AST.getSourceManager(), D))
234       return true;
235     auto SavedState = PreTraverse(D);
236     RecursiveASTVisitor<PreorderVisitor>::TraverseDecl(D);
237     PostTraverse(SavedState);
238     return true;
239   }
240   bool TraverseStmt(Stmt *S) {
241     if (auto *E = dyn_cast_or_null<Expr>(S))
242       S = E->IgnoreImplicit();
243     if (isNodeExcluded(Tree.AST.getSourceManager(), S))
244       return true;
245     auto SavedState = PreTraverse(S);
246     RecursiveASTVisitor<PreorderVisitor>::TraverseStmt(S);
247     PostTraverse(SavedState);
248     return true;
249   }
250   bool TraverseType(QualType T) { return true; }
251   bool TraverseConstructorInitializer(CXXCtorInitializer *Init) {
252     if (isNodeExcluded(Tree.AST.getSourceManager(), Init))
253       return true;
254     auto SavedState = PreTraverse(Init);
255     RecursiveASTVisitor<PreorderVisitor>::TraverseConstructorInitializer(Init);
256     PostTraverse(SavedState);
257     return true;
258   }
259 };
260 } // end anonymous namespace
261 
262 SyntaxTree::Impl::Impl(SyntaxTree *Parent, ASTContext &AST)
263     : Parent(Parent), AST(AST), TypePP(AST.getLangOpts()) {
264   TypePP.AnonymousTagLocations = false;
265 }
266 
267 SyntaxTree::Impl::Impl(SyntaxTree *Parent, Decl *N, ASTContext &AST)
268     : Impl(Parent, AST) {
269   PreorderVisitor PreorderWalker(*this);
270   PreorderWalker.TraverseDecl(N);
271   initTree();
272 }
273 
274 SyntaxTree::Impl::Impl(SyntaxTree *Parent, Stmt *N, ASTContext &AST)
275     : Impl(Parent, AST) {
276   PreorderVisitor PreorderWalker(*this);
277   PreorderWalker.TraverseStmt(N);
278   initTree();
279 }
280 
281 static std::vector<NodeId> getSubtreePostorder(const SyntaxTree::Impl &Tree,
282                                                NodeId Root) {
283   std::vector<NodeId> Postorder;
284   std::function<void(NodeId)> Traverse = [&](NodeId Id) {
285     const Node &N = Tree.getNode(Id);
286     for (NodeId Child : N.Children)
287       Traverse(Child);
288     Postorder.push_back(Id);
289   };
290   Traverse(Root);
291   return Postorder;
292 }
293 
294 static std::vector<NodeId> getSubtreeBfs(const SyntaxTree::Impl &Tree,
295                                          NodeId Root) {
296   std::vector<NodeId> Ids;
297   size_t Expanded = 0;
298   Ids.push_back(Root);
299   while (Expanded < Ids.size())
300     for (NodeId Child : Tree.getNode(Ids[Expanded++]).Children)
301       Ids.push_back(Child);
302   return Ids;
303 }
304 
305 void SyntaxTree::Impl::initTree() {
306   setLeftMostDescendants();
307   int PostorderId = 0;
308   PostorderIds.resize(getSize());
309   std::function<void(NodeId)> PostorderTraverse = [&](NodeId Id) {
310     for (NodeId Child : getNode(Id).Children)
311       PostorderTraverse(Child);
312     PostorderIds[Id] = PostorderId;
313     ++PostorderId;
314   };
315   PostorderTraverse(getRootId());
316   NodesBfs = getSubtreeBfs(*this, getRootId());
317 }
318 
319 void SyntaxTree::Impl::setLeftMostDescendants() {
320   for (NodeId Leaf : Leaves) {
321     getMutableNode(Leaf).LeftMostDescendant = Leaf;
322     NodeId Parent, Cur = Leaf;
323     while ((Parent = getNode(Cur).Parent).isValid() &&
324            getNode(Parent).Children[0] == Cur) {
325       Cur = Parent;
326       getMutableNode(Cur).LeftMostDescendant = Leaf;
327     }
328   }
329 }
330 
331 int SyntaxTree::Impl::getNumberOfDescendants(NodeId Id) const {
332   return getNode(Id).RightMostDescendant - Id + 1;
333 }
334 
335 bool SyntaxTree::Impl::isInSubtree(NodeId Id, NodeId SubtreeRoot) const {
336   return Id >= SubtreeRoot && Id <= getNode(SubtreeRoot).RightMostDescendant;
337 }
338 
339 int SyntaxTree::Impl::findPositionInParent(NodeId Id, bool Shifted) const {
340   NodeId Parent = getNode(Id).Parent;
341   if (Parent.isInvalid())
342     return 0;
343   const auto &Siblings = getNode(Parent).Children;
344   int Position = 0;
345   for (size_t I = 0, E = Siblings.size(); I < E; ++I) {
346     if (Shifted)
347       Position += getNode(Siblings[I]).Shift;
348     if (Siblings[I] == Id) {
349       Position += I;
350       return Position;
351     }
352   }
353   llvm_unreachable("Node not found in parent's children.");
354 }
355 
356 // Returns the qualified name of ND. If it is subordinate to Context,
357 // then the prefix of the latter is removed from the returned value.
358 std::string
359 SyntaxTree::Impl::getRelativeName(const NamedDecl *ND,
360                                   const DeclContext *Context) const {
361   std::string Val = ND->getQualifiedNameAsString();
362   std::string ContextPrefix;
363   if (!Context)
364     return Val;
365   if (auto *Namespace = dyn_cast<NamespaceDecl>(Context))
366     ContextPrefix = Namespace->getQualifiedNameAsString();
367   else if (auto *Record = dyn_cast<RecordDecl>(Context))
368     ContextPrefix = Record->getQualifiedNameAsString();
369   else if (AST.getLangOpts().CPlusPlus11)
370     if (auto *Tag = dyn_cast<TagDecl>(Context))
371       ContextPrefix = Tag->getQualifiedNameAsString();
372   // Strip the qualifier, if Val refers to something in the current scope.
373   // But leave one leading ':' in place, so that we know that this is a
374   // relative path.
375   if (!ContextPrefix.empty() && StringRef(Val).startswith(ContextPrefix))
376     Val = Val.substr(ContextPrefix.size() + 1);
377   return Val;
378 }
379 
380 std::string SyntaxTree::Impl::getRelativeName(const NamedDecl *ND) const {
381   return getRelativeName(ND, ND->getDeclContext());
382 }
383 
384 static const DeclContext *getEnclosingDeclContext(ASTContext &AST,
385                                                   const Stmt *S) {
386   while (S) {
387     const auto &Parents = AST.getParents(*S);
388     if (Parents.empty())
389       return nullptr;
390     const auto &P = Parents[0];
391     if (const auto *D = P.get<Decl>())
392       return D->getDeclContext();
393     S = P.get<Stmt>();
394   }
395   return nullptr;
396 }
397 
398 static std::string getInitializerValue(const CXXCtorInitializer *Init,
399                                        const PrintingPolicy &TypePP) {
400   if (Init->isAnyMemberInitializer())
401     return std::string(Init->getAnyMember()->getName());
402   if (Init->isBaseInitializer())
403     return QualType(Init->getBaseClass(), 0).getAsString(TypePP);
404   if (Init->isDelegatingInitializer())
405     return Init->getTypeSourceInfo()->getType().getAsString(TypePP);
406   llvm_unreachable("Unknown initializer type");
407 }
408 
409 std::string SyntaxTree::Impl::getNodeValue(NodeId Id) const {
410   return getNodeValue(getNode(Id));
411 }
412 
413 std::string SyntaxTree::Impl::getNodeValue(const Node &N) const {
414   const DynTypedNode &DTN = N.ASTNode;
415   if (auto *S = DTN.get<Stmt>())
416     return getStmtValue(S);
417   if (auto *D = DTN.get<Decl>())
418     return getDeclValue(D);
419   if (auto *Init = DTN.get<CXXCtorInitializer>())
420     return getInitializerValue(Init, TypePP);
421   llvm_unreachable("Fatal: unhandled AST node.\n");
422 }
423 
424 std::string SyntaxTree::Impl::getDeclValue(const Decl *D) const {
425   std::string Value;
426   if (auto *V = dyn_cast<ValueDecl>(D))
427     return getRelativeName(V) + "(" + V->getType().getAsString(TypePP) + ")";
428   if (auto *N = dyn_cast<NamedDecl>(D))
429     Value += getRelativeName(N) + ";";
430   if (auto *T = dyn_cast<TypedefNameDecl>(D))
431     return Value + T->getUnderlyingType().getAsString(TypePP) + ";";
432   if (auto *T = dyn_cast<TypeDecl>(D))
433     if (T->getTypeForDecl())
434       Value +=
435           T->getTypeForDecl()->getCanonicalTypeInternal().getAsString(TypePP) +
436           ";";
437   if (auto *U = dyn_cast<UsingDirectiveDecl>(D))
438     return std::string(U->getNominatedNamespace()->getName());
439   if (auto *A = dyn_cast<AccessSpecDecl>(D)) {
440     CharSourceRange Range(A->getSourceRange(), false);
441     return std::string(
442         Lexer::getSourceText(Range, AST.getSourceManager(), AST.getLangOpts()));
443   }
444   return Value;
445 }
446 
447 std::string SyntaxTree::Impl::getStmtValue(const Stmt *S) const {
448   if (auto *U = dyn_cast<UnaryOperator>(S))
449     return std::string(UnaryOperator::getOpcodeStr(U->getOpcode()));
450   if (auto *B = dyn_cast<BinaryOperator>(S))
451     return std::string(B->getOpcodeStr());
452   if (auto *M = dyn_cast<MemberExpr>(S))
453     return getRelativeName(M->getMemberDecl());
454   if (auto *I = dyn_cast<IntegerLiteral>(S)) {
455     SmallString<256> Str;
456     I->getValue().toString(Str, /*Radix=*/10, /*Signed=*/false);
457     return std::string(Str.str());
458   }
459   if (auto *F = dyn_cast<FloatingLiteral>(S)) {
460     SmallString<256> Str;
461     F->getValue().toString(Str);
462     return std::string(Str.str());
463   }
464   if (auto *D = dyn_cast<DeclRefExpr>(S))
465     return getRelativeName(D->getDecl(), getEnclosingDeclContext(AST, S));
466   if (auto *String = dyn_cast<StringLiteral>(S))
467     return std::string(String->getString());
468   if (auto *B = dyn_cast<CXXBoolLiteralExpr>(S))
469     return B->getValue() ? "true" : "false";
470   return "";
471 }
472 
473 /// Identifies a node in a subtree by its postorder offset, starting at 1.
474 struct SNodeId {
475   int Id = 0;
476 
477   explicit SNodeId(int Id) : Id(Id) {}
478   explicit SNodeId() = default;
479 
480   operator int() const { return Id; }
481   SNodeId &operator++() { return ++Id, *this; }
482   SNodeId &operator--() { return --Id, *this; }
483   SNodeId operator+(int Other) const { return SNodeId(Id + Other); }
484 };
485 
486 class Subtree {
487 private:
488   /// The parent tree.
489   const SyntaxTree::Impl &Tree;
490   /// Maps SNodeIds to original ids.
491   std::vector<NodeId> RootIds;
492   /// Maps subtree nodes to their leftmost descendants wtihin the subtree.
493   std::vector<SNodeId> LeftMostDescendants;
494 
495 public:
496   std::vector<SNodeId> KeyRoots;
497 
498   Subtree(const SyntaxTree::Impl &Tree, NodeId SubtreeRoot) : Tree(Tree) {
499     RootIds = getSubtreePostorder(Tree, SubtreeRoot);
500     int NumLeaves = setLeftMostDescendants();
501     computeKeyRoots(NumLeaves);
502   }
503   int getSize() const { return RootIds.size(); }
504   NodeId getIdInRoot(SNodeId Id) const {
505     assert(Id > 0 && Id <= getSize() && "Invalid subtree node index.");
506     return RootIds[Id - 1];
507   }
508   const Node &getNode(SNodeId Id) const {
509     return Tree.getNode(getIdInRoot(Id));
510   }
511   SNodeId getLeftMostDescendant(SNodeId Id) const {
512     assert(Id > 0 && Id <= getSize() && "Invalid subtree node index.");
513     return LeftMostDescendants[Id - 1];
514   }
515   /// Returns the postorder index of the leftmost descendant in the subtree.
516   NodeId getPostorderOffset() const {
517     return Tree.PostorderIds[getIdInRoot(SNodeId(1))];
518   }
519   std::string getNodeValue(SNodeId Id) const {
520     return Tree.getNodeValue(getIdInRoot(Id));
521   }
522 
523 private:
524   /// Returns the number of leafs in the subtree.
525   int setLeftMostDescendants() {
526     int NumLeaves = 0;
527     LeftMostDescendants.resize(getSize());
528     for (int I = 0; I < getSize(); ++I) {
529       SNodeId SI(I + 1);
530       const Node &N = getNode(SI);
531       NumLeaves += N.isLeaf();
532       assert(I == Tree.PostorderIds[getIdInRoot(SI)] - getPostorderOffset() &&
533              "Postorder traversal in subtree should correspond to traversal in "
534              "the root tree by a constant offset.");
535       LeftMostDescendants[I] = SNodeId(Tree.PostorderIds[N.LeftMostDescendant] -
536                                        getPostorderOffset());
537     }
538     return NumLeaves;
539   }
540   void computeKeyRoots(int Leaves) {
541     KeyRoots.resize(Leaves);
542     std::unordered_set<int> Visited;
543     int K = Leaves - 1;
544     for (SNodeId I(getSize()); I > 0; --I) {
545       SNodeId LeftDesc = getLeftMostDescendant(I);
546       if (Visited.count(LeftDesc))
547         continue;
548       assert(K >= 0 && "K should be non-negative");
549       KeyRoots[K] = I;
550       Visited.insert(LeftDesc);
551       --K;
552     }
553   }
554 };
555 
556 /// Implementation of Zhang and Shasha's Algorithm for tree edit distance.
557 /// Computes an optimal mapping between two trees using only insertion,
558 /// deletion and update as edit actions (similar to the Levenshtein distance).
559 class ZhangShashaMatcher {
560   const ASTDiff::Impl &DiffImpl;
561   Subtree S1;
562   Subtree S2;
563   std::unique_ptr<std::unique_ptr<double[]>[]> TreeDist, ForestDist;
564 
565 public:
566   ZhangShashaMatcher(const ASTDiff::Impl &DiffImpl, const SyntaxTree::Impl &T1,
567                      const SyntaxTree::Impl &T2, NodeId Id1, NodeId Id2)
568       : DiffImpl(DiffImpl), S1(T1, Id1), S2(T2, Id2) {
569     TreeDist = std::make_unique<std::unique_ptr<double[]>[]>(
570         size_t(S1.getSize()) + 1);
571     ForestDist = std::make_unique<std::unique_ptr<double[]>[]>(
572         size_t(S1.getSize()) + 1);
573     for (int I = 0, E = S1.getSize() + 1; I < E; ++I) {
574       TreeDist[I] = std::make_unique<double[]>(size_t(S2.getSize()) + 1);
575       ForestDist[I] = std::make_unique<double[]>(size_t(S2.getSize()) + 1);
576     }
577   }
578 
579   std::vector<std::pair<NodeId, NodeId>> getMatchingNodes() {
580     std::vector<std::pair<NodeId, NodeId>> Matches;
581     std::vector<std::pair<SNodeId, SNodeId>> TreePairs;
582 
583     computeTreeDist();
584 
585     bool RootNodePair = true;
586 
587     TreePairs.emplace_back(SNodeId(S1.getSize()), SNodeId(S2.getSize()));
588 
589     while (!TreePairs.empty()) {
590       SNodeId LastRow, LastCol, FirstRow, FirstCol, Row, Col;
591       std::tie(LastRow, LastCol) = TreePairs.back();
592       TreePairs.pop_back();
593 
594       if (!RootNodePair) {
595         computeForestDist(LastRow, LastCol);
596       }
597 
598       RootNodePair = false;
599 
600       FirstRow = S1.getLeftMostDescendant(LastRow);
601       FirstCol = S2.getLeftMostDescendant(LastCol);
602 
603       Row = LastRow;
604       Col = LastCol;
605 
606       while (Row > FirstRow || Col > FirstCol) {
607         if (Row > FirstRow &&
608             ForestDist[Row - 1][Col] + 1 == ForestDist[Row][Col]) {
609           --Row;
610         } else if (Col > FirstCol &&
611                    ForestDist[Row][Col - 1] + 1 == ForestDist[Row][Col]) {
612           --Col;
613         } else {
614           SNodeId LMD1 = S1.getLeftMostDescendant(Row);
615           SNodeId LMD2 = S2.getLeftMostDescendant(Col);
616           if (LMD1 == S1.getLeftMostDescendant(LastRow) &&
617               LMD2 == S2.getLeftMostDescendant(LastCol)) {
618             NodeId Id1 = S1.getIdInRoot(Row);
619             NodeId Id2 = S2.getIdInRoot(Col);
620             assert(DiffImpl.isMatchingPossible(Id1, Id2) &&
621                    "These nodes must not be matched.");
622             Matches.emplace_back(Id1, Id2);
623             --Row;
624             --Col;
625           } else {
626             TreePairs.emplace_back(Row, Col);
627             Row = LMD1;
628             Col = LMD2;
629           }
630         }
631       }
632     }
633     return Matches;
634   }
635 
636 private:
637   /// We use a simple cost model for edit actions, which seems good enough.
638   /// Simple cost model for edit actions. This seems to make the matching
639   /// algorithm perform reasonably well.
640   /// The values range between 0 and 1, or infinity if this edit action should
641   /// always be avoided.
642   static constexpr double DeletionCost = 1;
643   static constexpr double InsertionCost = 1;
644 
645   double getUpdateCost(SNodeId Id1, SNodeId Id2) {
646     if (!DiffImpl.isMatchingPossible(S1.getIdInRoot(Id1), S2.getIdInRoot(Id2)))
647       return std::numeric_limits<double>::max();
648     return S1.getNodeValue(Id1) != S2.getNodeValue(Id2);
649   }
650 
651   void computeTreeDist() {
652     for (SNodeId Id1 : S1.KeyRoots)
653       for (SNodeId Id2 : S2.KeyRoots)
654         computeForestDist(Id1, Id2);
655   }
656 
657   void computeForestDist(SNodeId Id1, SNodeId Id2) {
658     assert(Id1 > 0 && Id2 > 0 && "Expecting offsets greater than 0.");
659     SNodeId LMD1 = S1.getLeftMostDescendant(Id1);
660     SNodeId LMD2 = S2.getLeftMostDescendant(Id2);
661 
662     ForestDist[LMD1][LMD2] = 0;
663     for (SNodeId D1 = LMD1 + 1; D1 <= Id1; ++D1) {
664       ForestDist[D1][LMD2] = ForestDist[D1 - 1][LMD2] + DeletionCost;
665       for (SNodeId D2 = LMD2 + 1; D2 <= Id2; ++D2) {
666         ForestDist[LMD1][D2] = ForestDist[LMD1][D2 - 1] + InsertionCost;
667         SNodeId DLMD1 = S1.getLeftMostDescendant(D1);
668         SNodeId DLMD2 = S2.getLeftMostDescendant(D2);
669         if (DLMD1 == LMD1 && DLMD2 == LMD2) {
670           double UpdateCost = getUpdateCost(D1, D2);
671           ForestDist[D1][D2] =
672               std::min({ForestDist[D1 - 1][D2] + DeletionCost,
673                         ForestDist[D1][D2 - 1] + InsertionCost,
674                         ForestDist[D1 - 1][D2 - 1] + UpdateCost});
675           TreeDist[D1][D2] = ForestDist[D1][D2];
676         } else {
677           ForestDist[D1][D2] =
678               std::min({ForestDist[D1 - 1][D2] + DeletionCost,
679                         ForestDist[D1][D2 - 1] + InsertionCost,
680                         ForestDist[DLMD1][DLMD2] + TreeDist[D1][D2]});
681         }
682       }
683     }
684   }
685 };
686 
687 ASTNodeKind Node::getType() const { return ASTNode.getNodeKind(); }
688 
689 StringRef Node::getTypeLabel() const { return getType().asStringRef(); }
690 
691 llvm::Optional<std::string> Node::getQualifiedIdentifier() const {
692   if (auto *ND = ASTNode.get<NamedDecl>()) {
693     if (ND->getDeclName().isIdentifier())
694       return ND->getQualifiedNameAsString();
695   }
696   return llvm::None;
697 }
698 
699 llvm::Optional<StringRef> Node::getIdentifier() const {
700   if (auto *ND = ASTNode.get<NamedDecl>()) {
701     if (ND->getDeclName().isIdentifier())
702       return ND->getName();
703   }
704   return llvm::None;
705 }
706 
707 namespace {
708 // Compares nodes by their depth.
709 struct HeightLess {
710   const SyntaxTree::Impl &Tree;
711   HeightLess(const SyntaxTree::Impl &Tree) : Tree(Tree) {}
712   bool operator()(NodeId Id1, NodeId Id2) const {
713     return Tree.getNode(Id1).Height < Tree.getNode(Id2).Height;
714   }
715 };
716 } // end anonymous namespace
717 
718 namespace {
719 // Priority queue for nodes, sorted descendingly by their height.
720 class PriorityList {
721   const SyntaxTree::Impl &Tree;
722   HeightLess Cmp;
723   std::vector<NodeId> Container;
724   PriorityQueue<NodeId, std::vector<NodeId>, HeightLess> List;
725 
726 public:
727   PriorityList(const SyntaxTree::Impl &Tree)
728       : Tree(Tree), Cmp(Tree), List(Cmp, Container) {}
729 
730   void push(NodeId id) { List.push(id); }
731 
732   std::vector<NodeId> pop() {
733     int Max = peekMax();
734     std::vector<NodeId> Result;
735     if (Max == 0)
736       return Result;
737     while (peekMax() == Max) {
738       Result.push_back(List.top());
739       List.pop();
740     }
741     // TODO this is here to get a stable output, not a good heuristic
742     llvm::sort(Result);
743     return Result;
744   }
745   int peekMax() const {
746     if (List.empty())
747       return 0;
748     return Tree.getNode(List.top()).Height;
749   }
750   void open(NodeId Id) {
751     for (NodeId Child : Tree.getNode(Id).Children)
752       push(Child);
753   }
754 };
755 } // end anonymous namespace
756 
757 bool ASTDiff::Impl::identical(NodeId Id1, NodeId Id2) const {
758   const Node &N1 = T1.getNode(Id1);
759   const Node &N2 = T2.getNode(Id2);
760   if (N1.Children.size() != N2.Children.size() ||
761       !isMatchingPossible(Id1, Id2) ||
762       T1.getNodeValue(Id1) != T2.getNodeValue(Id2))
763     return false;
764   for (size_t Id = 0, E = N1.Children.size(); Id < E; ++Id)
765     if (!identical(N1.Children[Id], N2.Children[Id]))
766       return false;
767   return true;
768 }
769 
770 bool ASTDiff::Impl::isMatchingPossible(NodeId Id1, NodeId Id2) const {
771   return Options.isMatchingAllowed(T1.getNode(Id1), T2.getNode(Id2));
772 }
773 
774 bool ASTDiff::Impl::haveSameParents(const Mapping &M, NodeId Id1,
775                                     NodeId Id2) const {
776   NodeId P1 = T1.getNode(Id1).Parent;
777   NodeId P2 = T2.getNode(Id2).Parent;
778   return (P1.isInvalid() && P2.isInvalid()) ||
779          (P1.isValid() && P2.isValid() && M.getDst(P1) == P2);
780 }
781 
782 void ASTDiff::Impl::addOptimalMapping(Mapping &M, NodeId Id1,
783                                       NodeId Id2) const {
784   if (std::max(T1.getNumberOfDescendants(Id1), T2.getNumberOfDescendants(Id2)) >
785       Options.MaxSize)
786     return;
787   ZhangShashaMatcher Matcher(*this, T1, T2, Id1, Id2);
788   std::vector<std::pair<NodeId, NodeId>> R = Matcher.getMatchingNodes();
789   for (const auto &Tuple : R) {
790     NodeId Src = Tuple.first;
791     NodeId Dst = Tuple.second;
792     if (!M.hasSrc(Src) && !M.hasDst(Dst))
793       M.link(Src, Dst);
794   }
795 }
796 
797 double ASTDiff::Impl::getJaccardSimilarity(const Mapping &M, NodeId Id1,
798                                            NodeId Id2) const {
799   int CommonDescendants = 0;
800   const Node &N1 = T1.getNode(Id1);
801   // Count the common descendants, excluding the subtree root.
802   for (NodeId Src = Id1 + 1; Src <= N1.RightMostDescendant; ++Src) {
803     NodeId Dst = M.getDst(Src);
804     CommonDescendants += int(Dst.isValid() && T2.isInSubtree(Dst, Id2));
805   }
806   // We need to subtract 1 to get the number of descendants excluding the root.
807   double Denominator = T1.getNumberOfDescendants(Id1) - 1 +
808                        T2.getNumberOfDescendants(Id2) - 1 - CommonDescendants;
809   // CommonDescendants is less than the size of one subtree.
810   assert(Denominator >= 0 && "Expected non-negative denominator.");
811   if (Denominator == 0)
812     return 0;
813   return CommonDescendants / Denominator;
814 }
815 
816 NodeId ASTDiff::Impl::findCandidate(const Mapping &M, NodeId Id1) const {
817   NodeId Candidate;
818   double HighestSimilarity = 0.0;
819   for (NodeId Id2 : T2) {
820     if (!isMatchingPossible(Id1, Id2))
821       continue;
822     if (M.hasDst(Id2))
823       continue;
824     double Similarity = getJaccardSimilarity(M, Id1, Id2);
825     if (Similarity >= Options.MinSimilarity && Similarity > HighestSimilarity) {
826       HighestSimilarity = Similarity;
827       Candidate = Id2;
828     }
829   }
830   return Candidate;
831 }
832 
833 void ASTDiff::Impl::matchBottomUp(Mapping &M) const {
834   std::vector<NodeId> Postorder = getSubtreePostorder(T1, T1.getRootId());
835   for (NodeId Id1 : Postorder) {
836     if (Id1 == T1.getRootId() && !M.hasSrc(T1.getRootId()) &&
837         !M.hasDst(T2.getRootId())) {
838       if (isMatchingPossible(T1.getRootId(), T2.getRootId())) {
839         M.link(T1.getRootId(), T2.getRootId());
840         addOptimalMapping(M, T1.getRootId(), T2.getRootId());
841       }
842       break;
843     }
844     bool Matched = M.hasSrc(Id1);
845     const Node &N1 = T1.getNode(Id1);
846     bool MatchedChildren = llvm::any_of(
847         N1.Children, [&](NodeId Child) { return M.hasSrc(Child); });
848     if (Matched || !MatchedChildren)
849       continue;
850     NodeId Id2 = findCandidate(M, Id1);
851     if (Id2.isValid()) {
852       M.link(Id1, Id2);
853       addOptimalMapping(M, Id1, Id2);
854     }
855   }
856 }
857 
858 Mapping ASTDiff::Impl::matchTopDown() const {
859   PriorityList L1(T1);
860   PriorityList L2(T2);
861 
862   Mapping M(T1.getSize() + T2.getSize());
863 
864   L1.push(T1.getRootId());
865   L2.push(T2.getRootId());
866 
867   int Max1, Max2;
868   while (std::min(Max1 = L1.peekMax(), Max2 = L2.peekMax()) >
869          Options.MinHeight) {
870     if (Max1 > Max2) {
871       for (NodeId Id : L1.pop())
872         L1.open(Id);
873       continue;
874     }
875     if (Max2 > Max1) {
876       for (NodeId Id : L2.pop())
877         L2.open(Id);
878       continue;
879     }
880     std::vector<NodeId> H1, H2;
881     H1 = L1.pop();
882     H2 = L2.pop();
883     for (NodeId Id1 : H1) {
884       for (NodeId Id2 : H2) {
885         if (identical(Id1, Id2) && !M.hasSrc(Id1) && !M.hasDst(Id2)) {
886           for (int I = 0, E = T1.getNumberOfDescendants(Id1); I < E; ++I)
887             M.link(Id1 + I, Id2 + I);
888         }
889       }
890     }
891     for (NodeId Id1 : H1) {
892       if (!M.hasSrc(Id1))
893         L1.open(Id1);
894     }
895     for (NodeId Id2 : H2) {
896       if (!M.hasDst(Id2))
897         L2.open(Id2);
898     }
899   }
900   return M;
901 }
902 
903 ASTDiff::Impl::Impl(SyntaxTree::Impl &T1, SyntaxTree::Impl &T2,
904                     const ComparisonOptions &Options)
905     : T1(T1), T2(T2), Options(Options) {
906   computeMapping();
907   computeChangeKinds(TheMapping);
908 }
909 
910 void ASTDiff::Impl::computeMapping() {
911   TheMapping = matchTopDown();
912   if (Options.StopAfterTopDown)
913     return;
914   matchBottomUp(TheMapping);
915 }
916 
917 void ASTDiff::Impl::computeChangeKinds(Mapping &M) {
918   for (NodeId Id1 : T1) {
919     if (!M.hasSrc(Id1)) {
920       T1.getMutableNode(Id1).Change = Delete;
921       T1.getMutableNode(Id1).Shift -= 1;
922     }
923   }
924   for (NodeId Id2 : T2) {
925     if (!M.hasDst(Id2)) {
926       T2.getMutableNode(Id2).Change = Insert;
927       T2.getMutableNode(Id2).Shift -= 1;
928     }
929   }
930   for (NodeId Id1 : T1.NodesBfs) {
931     NodeId Id2 = M.getDst(Id1);
932     if (Id2.isInvalid())
933       continue;
934     if (!haveSameParents(M, Id1, Id2) ||
935         T1.findPositionInParent(Id1, true) !=
936             T2.findPositionInParent(Id2, true)) {
937       T1.getMutableNode(Id1).Shift -= 1;
938       T2.getMutableNode(Id2).Shift -= 1;
939     }
940   }
941   for (NodeId Id2 : T2.NodesBfs) {
942     NodeId Id1 = M.getSrc(Id2);
943     if (Id1.isInvalid())
944       continue;
945     Node &N1 = T1.getMutableNode(Id1);
946     Node &N2 = T2.getMutableNode(Id2);
947     if (Id1.isInvalid())
948       continue;
949     if (!haveSameParents(M, Id1, Id2) ||
950         T1.findPositionInParent(Id1, true) !=
951             T2.findPositionInParent(Id2, true)) {
952       N1.Change = N2.Change = Move;
953     }
954     if (T1.getNodeValue(Id1) != T2.getNodeValue(Id2)) {
955       N1.Change = N2.Change = (N1.Change == Move ? UpdateMove : Update);
956     }
957   }
958 }
959 
960 ASTDiff::ASTDiff(SyntaxTree &T1, SyntaxTree &T2,
961                  const ComparisonOptions &Options)
962     : DiffImpl(std::make_unique<Impl>(*T1.TreeImpl, *T2.TreeImpl, Options)) {}
963 
964 ASTDiff::~ASTDiff() = default;
965 
966 NodeId ASTDiff::getMapped(const SyntaxTree &SourceTree, NodeId Id) const {
967   return DiffImpl->getMapped(SourceTree.TreeImpl, Id);
968 }
969 
970 SyntaxTree::SyntaxTree(ASTContext &AST)
971     : TreeImpl(std::make_unique<SyntaxTree::Impl>(
972           this, AST.getTranslationUnitDecl(), AST)) {}
973 
974 SyntaxTree::~SyntaxTree() = default;
975 
976 const ASTContext &SyntaxTree::getASTContext() const { return TreeImpl->AST; }
977 
978 const Node &SyntaxTree::getNode(NodeId Id) const {
979   return TreeImpl->getNode(Id);
980 }
981 
982 int SyntaxTree::getSize() const { return TreeImpl->getSize(); }
983 NodeId SyntaxTree::getRootId() const { return TreeImpl->getRootId(); }
984 SyntaxTree::PreorderIterator SyntaxTree::begin() const {
985   return TreeImpl->begin();
986 }
987 SyntaxTree::PreorderIterator SyntaxTree::end() const { return TreeImpl->end(); }
988 
989 int SyntaxTree::findPositionInParent(NodeId Id) const {
990   return TreeImpl->findPositionInParent(Id);
991 }
992 
993 std::pair<unsigned, unsigned>
994 SyntaxTree::getSourceRangeOffsets(const Node &N) const {
995   const SourceManager &SrcMgr = TreeImpl->AST.getSourceManager();
996   SourceRange Range = N.ASTNode.getSourceRange();
997   SourceLocation BeginLoc = Range.getBegin();
998   SourceLocation EndLoc = Lexer::getLocForEndOfToken(
999       Range.getEnd(), /*Offset=*/0, SrcMgr, TreeImpl->AST.getLangOpts());
1000   if (auto *ThisExpr = N.ASTNode.get<CXXThisExpr>()) {
1001     if (ThisExpr->isImplicit())
1002       EndLoc = BeginLoc;
1003   }
1004   unsigned Begin = SrcMgr.getFileOffset(SrcMgr.getExpansionLoc(BeginLoc));
1005   unsigned End = SrcMgr.getFileOffset(SrcMgr.getExpansionLoc(EndLoc));
1006   return {Begin, End};
1007 }
1008 
1009 std::string SyntaxTree::getNodeValue(NodeId Id) const {
1010   return TreeImpl->getNodeValue(Id);
1011 }
1012 
1013 std::string SyntaxTree::getNodeValue(const Node &N) const {
1014   return TreeImpl->getNodeValue(N);
1015 }
1016 
1017 } // end namespace diff
1018 } // end namespace clang
1019