xref: /freebsd/contrib/llvm-project/clang/lib/StaticAnalyzer/Checkers/NullabilityChecker.cpp (revision 63f537551380d2dab29fa402ad1269feae17e594)
1 //===-- NullabilityChecker.cpp - Nullability checker ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This checker tries to find nullability violations. There are several kinds of
10 // possible violations:
11 // * Null pointer is passed to a pointer which has a _Nonnull type.
12 // * Null pointer is returned from a function which has a _Nonnull return type.
13 // * Nullable pointer is passed to a pointer which has a _Nonnull type.
14 // * Nullable pointer is returned from a function which has a _Nonnull return
15 //   type.
16 // * Nullable pointer is dereferenced.
17 //
18 // This checker propagates the nullability information of the pointers and looks
19 // for the patterns that are described above. Explicit casts are trusted and are
20 // considered a way to suppress false positives for this checker. The other way
21 // to suppress warnings would be to add asserts or guarding if statements to the
22 // code. In addition to the nullability propagation this checker also uses some
23 // heuristics to suppress potential false positives.
24 //
25 //===----------------------------------------------------------------------===//
26 
27 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
28 
29 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
30 #include "clang/StaticAnalyzer/Core/Checker.h"
31 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
32 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerHelpers.h"
33 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
34 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
35 
36 #include "llvm/ADT/StringExtras.h"
37 #include "llvm/Support/Path.h"
38 
39 using namespace clang;
40 using namespace ento;
41 
42 namespace {
43 
44 /// Returns the most nullable nullability. This is used for message expressions
45 /// like [receiver method], where the nullability of this expression is either
46 /// the nullability of the receiver or the nullability of the return type of the
47 /// method, depending on which is more nullable. Contradicted is considered to
48 /// be the most nullable, to avoid false positive results.
49 Nullability getMostNullable(Nullability Lhs, Nullability Rhs) {
50   return static_cast<Nullability>(
51       std::min(static_cast<char>(Lhs), static_cast<char>(Rhs)));
52 }
53 
54 const char *getNullabilityString(Nullability Nullab) {
55   switch (Nullab) {
56   case Nullability::Contradicted:
57     return "contradicted";
58   case Nullability::Nullable:
59     return "nullable";
60   case Nullability::Unspecified:
61     return "unspecified";
62   case Nullability::Nonnull:
63     return "nonnull";
64   }
65   llvm_unreachable("Unexpected enumeration.");
66   return "";
67 }
68 
69 // These enums are used as an index to ErrorMessages array.
70 enum class ErrorKind : int {
71   NilAssignedToNonnull,
72   NilPassedToNonnull,
73   NilReturnedToNonnull,
74   NullableAssignedToNonnull,
75   NullableReturnedToNonnull,
76   NullableDereferenced,
77   NullablePassedToNonnull
78 };
79 
80 class NullabilityChecker
81     : public Checker<check::Bind, check::PreCall, check::PreStmt<ReturnStmt>,
82                      check::PostCall, check::PostStmt<ExplicitCastExpr>,
83                      check::PostObjCMessage, check::DeadSymbols, eval::Assume,
84                      check::Location, check::Event<ImplicitNullDerefEvent>> {
85 
86 public:
87   // If true, the checker will not diagnose nullabilility issues for calls
88   // to system headers. This option is motivated by the observation that large
89   // projects may have many nullability warnings. These projects may
90   // find warnings about nullability annotations that they have explicitly
91   // added themselves higher priority to fix than warnings on calls to system
92   // libraries.
93   bool NoDiagnoseCallsToSystemHeaders = false;
94 
95   void checkBind(SVal L, SVal V, const Stmt *S, CheckerContext &C) const;
96   void checkPostStmt(const ExplicitCastExpr *CE, CheckerContext &C) const;
97   void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const;
98   void checkPostObjCMessage(const ObjCMethodCall &M, CheckerContext &C) const;
99   void checkPostCall(const CallEvent &Call, CheckerContext &C) const;
100   void checkPreCall(const CallEvent &Call, CheckerContext &C) const;
101   void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const;
102   void checkEvent(ImplicitNullDerefEvent Event) const;
103   void checkLocation(SVal Location, bool IsLoad, const Stmt *S,
104                      CheckerContext &C) const;
105   ProgramStateRef evalAssume(ProgramStateRef State, SVal Cond,
106                              bool Assumption) const;
107 
108   void printState(raw_ostream &Out, ProgramStateRef State, const char *NL,
109                   const char *Sep) const override;
110 
111   enum CheckKind {
112     CK_NullPassedToNonnull,
113     CK_NullReturnedFromNonnull,
114     CK_NullableDereferenced,
115     CK_NullablePassedToNonnull,
116     CK_NullableReturnedFromNonnull,
117     CK_NumCheckKinds
118   };
119 
120   bool ChecksEnabled[CK_NumCheckKinds] = {false};
121   CheckerNameRef CheckNames[CK_NumCheckKinds];
122   mutable std::unique_ptr<BugType> BTs[CK_NumCheckKinds];
123 
124   const std::unique_ptr<BugType> &getBugType(CheckKind Kind) const {
125     if (!BTs[Kind])
126       BTs[Kind].reset(new BugType(CheckNames[Kind], "Nullability",
127                                   categories::MemoryError));
128     return BTs[Kind];
129   }
130 
131   // When set to false no nullability information will be tracked in
132   // NullabilityMap. It is possible to catch errors like passing a null pointer
133   // to a callee that expects nonnull argument without the information that is
134   // stored in the NullabilityMap. This is an optimization.
135   bool NeedTracking = false;
136 
137 private:
138   class NullabilityBugVisitor : public BugReporterVisitor {
139   public:
140     NullabilityBugVisitor(const MemRegion *M) : Region(M) {}
141 
142     void Profile(llvm::FoldingSetNodeID &ID) const override {
143       static int X = 0;
144       ID.AddPointer(&X);
145       ID.AddPointer(Region);
146     }
147 
148     PathDiagnosticPieceRef VisitNode(const ExplodedNode *N,
149                                      BugReporterContext &BRC,
150                                      PathSensitiveBugReport &BR) override;
151 
152   private:
153     // The tracked region.
154     const MemRegion *Region;
155   };
156 
157   /// When any of the nonnull arguments of the analyzed function is null, do not
158   /// report anything and turn off the check.
159   ///
160   /// When \p SuppressPath is set to true, no more bugs will be reported on this
161   /// path by this checker.
162   void reportBugIfInvariantHolds(StringRef Msg, ErrorKind Error, CheckKind CK,
163                                  ExplodedNode *N, const MemRegion *Region,
164                                  CheckerContext &C,
165                                  const Stmt *ValueExpr = nullptr,
166                                  bool SuppressPath = false) const;
167 
168   void reportBug(StringRef Msg, ErrorKind Error, CheckKind CK, ExplodedNode *N,
169                  const MemRegion *Region, BugReporter &BR,
170                  const Stmt *ValueExpr = nullptr) const {
171     const std::unique_ptr<BugType> &BT = getBugType(CK);
172     auto R = std::make_unique<PathSensitiveBugReport>(*BT, Msg, N);
173     if (Region) {
174       R->markInteresting(Region);
175       R->addVisitor<NullabilityBugVisitor>(Region);
176     }
177     if (ValueExpr) {
178       R->addRange(ValueExpr->getSourceRange());
179       if (Error == ErrorKind::NilAssignedToNonnull ||
180           Error == ErrorKind::NilPassedToNonnull ||
181           Error == ErrorKind::NilReturnedToNonnull)
182         if (const auto *Ex = dyn_cast<Expr>(ValueExpr))
183           bugreporter::trackExpressionValue(N, Ex, *R);
184     }
185     BR.emitReport(std::move(R));
186   }
187 
188   /// If an SVal wraps a region that should be tracked, it will return a pointer
189   /// to the wrapped region. Otherwise it will return a nullptr.
190   const SymbolicRegion *getTrackRegion(SVal Val,
191                                        bool CheckSuperRegion = false) const;
192 
193   /// Returns true if the call is diagnosable in the current analyzer
194   /// configuration.
195   bool isDiagnosableCall(const CallEvent &Call) const {
196     if (NoDiagnoseCallsToSystemHeaders && Call.isInSystemHeader())
197       return false;
198 
199     return true;
200   }
201 };
202 
203 class NullabilityState {
204 public:
205   NullabilityState(Nullability Nullab, const Stmt *Source = nullptr)
206       : Nullab(Nullab), Source(Source) {}
207 
208   const Stmt *getNullabilitySource() const { return Source; }
209 
210   Nullability getValue() const { return Nullab; }
211 
212   void Profile(llvm::FoldingSetNodeID &ID) const {
213     ID.AddInteger(static_cast<char>(Nullab));
214     ID.AddPointer(Source);
215   }
216 
217   void print(raw_ostream &Out) const {
218     Out << getNullabilityString(Nullab) << "\n";
219   }
220 
221 private:
222   Nullability Nullab;
223   // Source is the expression which determined the nullability. For example in a
224   // message like [nullable nonnull_returning] has nullable nullability, because
225   // the receiver is nullable. Here the receiver will be the source of the
226   // nullability. This is useful information when the diagnostics are generated.
227   const Stmt *Source;
228 };
229 
230 bool operator==(NullabilityState Lhs, NullabilityState Rhs) {
231   return Lhs.getValue() == Rhs.getValue() &&
232          Lhs.getNullabilitySource() == Rhs.getNullabilitySource();
233 }
234 
235 // For the purpose of tracking historical property accesses, the key for lookup
236 // is an object pointer (could be an instance or a class) paired with the unique
237 // identifier for the property being invoked on that object.
238 using ObjectPropPair = std::pair<const MemRegion *, const IdentifierInfo *>;
239 
240 // Metadata associated with the return value from a recorded property access.
241 struct ConstrainedPropertyVal {
242   // This will reference the conjured return SVal for some call
243   // of the form [object property]
244   DefinedOrUnknownSVal Value;
245 
246   // If the SVal has been determined to be nonnull, that is recorded here
247   bool isConstrainedNonnull;
248 
249   ConstrainedPropertyVal(DefinedOrUnknownSVal SV)
250       : Value(SV), isConstrainedNonnull(false) {}
251 
252   void Profile(llvm::FoldingSetNodeID &ID) const {
253     Value.Profile(ID);
254     ID.AddInteger(isConstrainedNonnull ? 1 : 0);
255   }
256 };
257 
258 bool operator==(const ConstrainedPropertyVal &Lhs,
259                 const ConstrainedPropertyVal &Rhs) {
260   return Lhs.Value == Rhs.Value &&
261          Lhs.isConstrainedNonnull == Rhs.isConstrainedNonnull;
262 }
263 
264 } // end anonymous namespace
265 
266 REGISTER_MAP_WITH_PROGRAMSTATE(NullabilityMap, const MemRegion *,
267                                NullabilityState)
268 REGISTER_MAP_WITH_PROGRAMSTATE(PropertyAccessesMap, ObjectPropPair,
269                                ConstrainedPropertyVal)
270 
271 // We say "the nullability type invariant is violated" when a location with a
272 // non-null type contains NULL or a function with a non-null return type returns
273 // NULL. Violations of the nullability type invariant can be detected either
274 // directly (for example, when NULL is passed as an argument to a nonnull
275 // parameter) or indirectly (for example, when, inside a function, the
276 // programmer defensively checks whether a nonnull parameter contains NULL and
277 // finds that it does).
278 //
279 // As a matter of policy, the nullability checker typically warns on direct
280 // violations of the nullability invariant (although it uses various
281 // heuristics to suppress warnings in some cases) but will not warn if the
282 // invariant has already been violated along the path (either directly or
283 // indirectly). As a practical matter, this prevents the analyzer from
284 // (1) warning on defensive code paths where a nullability precondition is
285 // determined to have been violated, (2) warning additional times after an
286 // initial direct violation has been discovered, and (3) warning after a direct
287 // violation that has been implicitly or explicitly suppressed (for
288 // example, with a cast of NULL to _Nonnull). In essence, once an invariant
289 // violation is detected on a path, this checker will be essentially turned off
290 // for the rest of the analysis
291 //
292 // The analyzer takes this approach (rather than generating a sink node) to
293 // ensure coverage of defensive paths, which may be important for backwards
294 // compatibility in codebases that were developed without nullability in mind.
295 REGISTER_TRAIT_WITH_PROGRAMSTATE(InvariantViolated, bool)
296 
297 enum class NullConstraint { IsNull, IsNotNull, Unknown };
298 
299 static NullConstraint getNullConstraint(DefinedOrUnknownSVal Val,
300                                         ProgramStateRef State) {
301   ConditionTruthVal Nullness = State->isNull(Val);
302   if (Nullness.isConstrainedFalse())
303     return NullConstraint::IsNotNull;
304   if (Nullness.isConstrainedTrue())
305     return NullConstraint::IsNull;
306   return NullConstraint::Unknown;
307 }
308 
309 const SymbolicRegion *
310 NullabilityChecker::getTrackRegion(SVal Val, bool CheckSuperRegion) const {
311   if (!NeedTracking)
312     return nullptr;
313 
314   auto RegionSVal = Val.getAs<loc::MemRegionVal>();
315   if (!RegionSVal)
316     return nullptr;
317 
318   const MemRegion *Region = RegionSVal->getRegion();
319 
320   if (CheckSuperRegion) {
321     if (const SubRegion *FieldReg = Region->getAs<FieldRegion>()) {
322       if (const auto *ER = dyn_cast<ElementRegion>(FieldReg->getSuperRegion()))
323         FieldReg = ER;
324       return dyn_cast<SymbolicRegion>(FieldReg->getSuperRegion());
325     }
326     if (auto ElementReg = Region->getAs<ElementRegion>())
327       return dyn_cast<SymbolicRegion>(ElementReg->getSuperRegion());
328   }
329 
330   return dyn_cast<SymbolicRegion>(Region);
331 }
332 
333 PathDiagnosticPieceRef NullabilityChecker::NullabilityBugVisitor::VisitNode(
334     const ExplodedNode *N, BugReporterContext &BRC,
335     PathSensitiveBugReport &BR) {
336   ProgramStateRef State = N->getState();
337   ProgramStateRef StatePrev = N->getFirstPred()->getState();
338 
339   const NullabilityState *TrackedNullab = State->get<NullabilityMap>(Region);
340   const NullabilityState *TrackedNullabPrev =
341       StatePrev->get<NullabilityMap>(Region);
342   if (!TrackedNullab)
343     return nullptr;
344 
345   if (TrackedNullabPrev &&
346       TrackedNullabPrev->getValue() == TrackedNullab->getValue())
347     return nullptr;
348 
349   // Retrieve the associated statement.
350   const Stmt *S = TrackedNullab->getNullabilitySource();
351   if (!S || S->getBeginLoc().isInvalid()) {
352     S = N->getStmtForDiagnostics();
353   }
354 
355   if (!S)
356     return nullptr;
357 
358   std::string InfoText =
359       (llvm::Twine("Nullability '") +
360        getNullabilityString(TrackedNullab->getValue()) + "' is inferred")
361           .str();
362 
363   // Generate the extra diagnostic.
364   PathDiagnosticLocation Pos(S, BRC.getSourceManager(),
365                              N->getLocationContext());
366   return std::make_shared<PathDiagnosticEventPiece>(Pos, InfoText, true);
367 }
368 
369 /// Returns true when the value stored at the given location has been
370 /// constrained to null after being passed through an object of nonnnull type.
371 static bool checkValueAtLValForInvariantViolation(ProgramStateRef State,
372                                                   SVal LV, QualType T) {
373   if (getNullabilityAnnotation(T) != Nullability::Nonnull)
374     return false;
375 
376   auto RegionVal = LV.getAs<loc::MemRegionVal>();
377   if (!RegionVal)
378     return false;
379 
380   // If the value was constrained to null *after* it was passed through that
381   // location, it could not have been a concrete pointer *when* it was passed.
382   // In that case we would have handled the situation when the value was
383   // bound to that location, by emitting (or not emitting) a report.
384   // Therefore we are only interested in symbolic regions that can be either
385   // null or non-null depending on the value of their respective symbol.
386   auto StoredVal = State->getSVal(*RegionVal).getAs<loc::MemRegionVal>();
387   if (!StoredVal || !isa<SymbolicRegion>(StoredVal->getRegion()))
388     return false;
389 
390   if (getNullConstraint(*StoredVal, State) == NullConstraint::IsNull)
391     return true;
392 
393   return false;
394 }
395 
396 static bool
397 checkParamsForPreconditionViolation(ArrayRef<ParmVarDecl *> Params,
398                                     ProgramStateRef State,
399                                     const LocationContext *LocCtxt) {
400   for (const auto *ParamDecl : Params) {
401     if (ParamDecl->isParameterPack())
402       break;
403 
404     SVal LV = State->getLValue(ParamDecl, LocCtxt);
405     if (checkValueAtLValForInvariantViolation(State, LV,
406                                               ParamDecl->getType())) {
407       return true;
408     }
409   }
410   return false;
411 }
412 
413 static bool
414 checkSelfIvarsForInvariantViolation(ProgramStateRef State,
415                                     const LocationContext *LocCtxt) {
416   auto *MD = dyn_cast<ObjCMethodDecl>(LocCtxt->getDecl());
417   if (!MD || !MD->isInstanceMethod())
418     return false;
419 
420   const ImplicitParamDecl *SelfDecl = LocCtxt->getSelfDecl();
421   if (!SelfDecl)
422     return false;
423 
424   SVal SelfVal = State->getSVal(State->getRegion(SelfDecl, LocCtxt));
425 
426   const ObjCObjectPointerType *SelfType =
427       dyn_cast<ObjCObjectPointerType>(SelfDecl->getType());
428   if (!SelfType)
429     return false;
430 
431   const ObjCInterfaceDecl *ID = SelfType->getInterfaceDecl();
432   if (!ID)
433     return false;
434 
435   for (const auto *IvarDecl : ID->ivars()) {
436     SVal LV = State->getLValue(IvarDecl, SelfVal);
437     if (checkValueAtLValForInvariantViolation(State, LV, IvarDecl->getType())) {
438       return true;
439     }
440   }
441   return false;
442 }
443 
444 static bool checkInvariantViolation(ProgramStateRef State, ExplodedNode *N,
445                                     CheckerContext &C) {
446   if (State->get<InvariantViolated>())
447     return true;
448 
449   const LocationContext *LocCtxt = C.getLocationContext();
450   const Decl *D = LocCtxt->getDecl();
451   if (!D)
452     return false;
453 
454   ArrayRef<ParmVarDecl*> Params;
455   if (const auto *BD = dyn_cast<BlockDecl>(D))
456     Params = BD->parameters();
457   else if (const auto *FD = dyn_cast<FunctionDecl>(D))
458     Params = FD->parameters();
459   else if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
460     Params = MD->parameters();
461   else
462     return false;
463 
464   if (checkParamsForPreconditionViolation(Params, State, LocCtxt) ||
465       checkSelfIvarsForInvariantViolation(State, LocCtxt)) {
466     if (!N->isSink())
467       C.addTransition(State->set<InvariantViolated>(true), N);
468     return true;
469   }
470   return false;
471 }
472 
473 void NullabilityChecker::reportBugIfInvariantHolds(
474     StringRef Msg, ErrorKind Error, CheckKind CK, ExplodedNode *N,
475     const MemRegion *Region, CheckerContext &C, const Stmt *ValueExpr,
476     bool SuppressPath) const {
477   ProgramStateRef OriginalState = N->getState();
478 
479   if (checkInvariantViolation(OriginalState, N, C))
480     return;
481   if (SuppressPath) {
482     OriginalState = OriginalState->set<InvariantViolated>(true);
483     N = C.addTransition(OriginalState, N);
484   }
485 
486   reportBug(Msg, Error, CK, N, Region, C.getBugReporter(), ValueExpr);
487 }
488 
489 /// Cleaning up the program state.
490 void NullabilityChecker::checkDeadSymbols(SymbolReaper &SR,
491                                           CheckerContext &C) const {
492   ProgramStateRef State = C.getState();
493   NullabilityMapTy Nullabilities = State->get<NullabilityMap>();
494   for (NullabilityMapTy::iterator I = Nullabilities.begin(),
495                                   E = Nullabilities.end();
496        I != E; ++I) {
497     const auto *Region = I->first->getAs<SymbolicRegion>();
498     assert(Region && "Non-symbolic region is tracked.");
499     if (SR.isDead(Region->getSymbol())) {
500       State = State->remove<NullabilityMap>(I->first);
501     }
502   }
503 
504   // When an object goes out of scope, we can free the history associated
505   // with any property accesses on that object
506   PropertyAccessesMapTy PropertyAccesses = State->get<PropertyAccessesMap>();
507   for (PropertyAccessesMapTy::iterator I = PropertyAccesses.begin(),
508                                        E = PropertyAccesses.end();
509        I != E; ++I) {
510     const MemRegion *ReceiverRegion = I->first.first;
511     if (!SR.isLiveRegion(ReceiverRegion)) {
512       State = State->remove<PropertyAccessesMap>(I->first);
513     }
514   }
515 
516   // When one of the nonnull arguments are constrained to be null, nullability
517   // preconditions are violated. It is not enough to check this only when we
518   // actually report an error, because at that time interesting symbols might be
519   // reaped.
520   if (checkInvariantViolation(State, C.getPredecessor(), C))
521     return;
522   C.addTransition(State);
523 }
524 
525 /// This callback triggers when a pointer is dereferenced and the analyzer does
526 /// not know anything about the value of that pointer. When that pointer is
527 /// nullable, this code emits a warning.
528 void NullabilityChecker::checkEvent(ImplicitNullDerefEvent Event) const {
529   if (Event.SinkNode->getState()->get<InvariantViolated>())
530     return;
531 
532   const MemRegion *Region =
533       getTrackRegion(Event.Location, /*CheckSuperRegion=*/true);
534   if (!Region)
535     return;
536 
537   ProgramStateRef State = Event.SinkNode->getState();
538   const NullabilityState *TrackedNullability =
539       State->get<NullabilityMap>(Region);
540 
541   if (!TrackedNullability)
542     return;
543 
544   if (ChecksEnabled[CK_NullableDereferenced] &&
545       TrackedNullability->getValue() == Nullability::Nullable) {
546     BugReporter &BR = *Event.BR;
547     // Do not suppress errors on defensive code paths, because dereferencing
548     // a nullable pointer is always an error.
549     if (Event.IsDirectDereference)
550       reportBug("Nullable pointer is dereferenced",
551                 ErrorKind::NullableDereferenced, CK_NullableDereferenced,
552                 Event.SinkNode, Region, BR);
553     else {
554       reportBug("Nullable pointer is passed to a callee that requires a "
555                 "non-null",
556                 ErrorKind::NullablePassedToNonnull, CK_NullableDereferenced,
557                 Event.SinkNode, Region, BR);
558     }
559   }
560 }
561 
562 // Whenever we see a load from a typed memory region that's been annotated as
563 // 'nonnull', we want to trust the user on that and assume that it is is indeed
564 // non-null.
565 //
566 // We do so even if the value is known to have been assigned to null.
567 // The user should be warned on assigning the null value to a non-null pointer
568 // as opposed to warning on the later dereference of this pointer.
569 //
570 // \code
571 //   int * _Nonnull var = 0; // we want to warn the user here...
572 //   // . . .
573 //   *var = 42;              // ...and not here
574 // \endcode
575 void NullabilityChecker::checkLocation(SVal Location, bool IsLoad,
576                                        const Stmt *S,
577                                        CheckerContext &Context) const {
578   // We should care only about loads.
579   // The main idea is to add a constraint whenever we're loading a value from
580   // an annotated pointer type.
581   if (!IsLoad)
582     return;
583 
584   // Annotations that we want to consider make sense only for types.
585   const auto *Region =
586       dyn_cast_or_null<TypedValueRegion>(Location.getAsRegion());
587   if (!Region)
588     return;
589 
590   ProgramStateRef State = Context.getState();
591 
592   auto StoredVal = State->getSVal(Region).getAs<loc::MemRegionVal>();
593   if (!StoredVal)
594     return;
595 
596   Nullability NullabilityOfTheLoadedValue =
597       getNullabilityAnnotation(Region->getValueType());
598 
599   if (NullabilityOfTheLoadedValue == Nullability::Nonnull) {
600     // It doesn't matter what we think about this particular pointer, it should
601     // be considered non-null as annotated by the developer.
602     if (ProgramStateRef NewState = State->assume(*StoredVal, true)) {
603       Context.addTransition(NewState);
604     }
605   }
606 }
607 
608 /// Find the outermost subexpression of E that is not an implicit cast.
609 /// This looks through the implicit casts to _Nonnull that ARC adds to
610 /// return expressions of ObjC types when the return type of the function or
611 /// method is non-null but the express is not.
612 static const Expr *lookThroughImplicitCasts(const Expr *E) {
613   return E->IgnoreImpCasts();
614 }
615 
616 /// This method check when nullable pointer or null value is returned from a
617 /// function that has nonnull return type.
618 void NullabilityChecker::checkPreStmt(const ReturnStmt *S,
619                                       CheckerContext &C) const {
620   auto RetExpr = S->getRetValue();
621   if (!RetExpr)
622     return;
623 
624   if (!RetExpr->getType()->isAnyPointerType())
625     return;
626 
627   ProgramStateRef State = C.getState();
628   if (State->get<InvariantViolated>())
629     return;
630 
631   auto RetSVal = C.getSVal(S).getAs<DefinedOrUnknownSVal>();
632   if (!RetSVal)
633     return;
634 
635   bool InSuppressedMethodFamily = false;
636 
637   QualType RequiredRetType;
638   AnalysisDeclContext *DeclCtxt =
639       C.getLocationContext()->getAnalysisDeclContext();
640   const Decl *D = DeclCtxt->getDecl();
641   if (auto *MD = dyn_cast<ObjCMethodDecl>(D)) {
642     // HACK: This is a big hammer to avoid warning when there are defensive
643     // nil checks in -init and -copy methods. We should add more sophisticated
644     // logic here to suppress on common defensive idioms but still
645     // warn when there is a likely problem.
646     ObjCMethodFamily Family = MD->getMethodFamily();
647     if (OMF_init == Family || OMF_copy == Family || OMF_mutableCopy == Family)
648       InSuppressedMethodFamily = true;
649 
650     RequiredRetType = MD->getReturnType();
651   } else if (auto *FD = dyn_cast<FunctionDecl>(D)) {
652     RequiredRetType = FD->getReturnType();
653   } else {
654     return;
655   }
656 
657   NullConstraint Nullness = getNullConstraint(*RetSVal, State);
658 
659   Nullability RequiredNullability = getNullabilityAnnotation(RequiredRetType);
660 
661   // If the returned value is null but the type of the expression
662   // generating it is nonnull then we will suppress the diagnostic.
663   // This enables explicit suppression when returning a nil literal in a
664   // function with a _Nonnull return type:
665   //    return (NSString * _Nonnull)0;
666   Nullability RetExprTypeLevelNullability =
667         getNullabilityAnnotation(lookThroughImplicitCasts(RetExpr)->getType());
668 
669   bool NullReturnedFromNonNull = (RequiredNullability == Nullability::Nonnull &&
670                                   Nullness == NullConstraint::IsNull);
671   if (ChecksEnabled[CK_NullReturnedFromNonnull] && NullReturnedFromNonNull &&
672       RetExprTypeLevelNullability != Nullability::Nonnull &&
673       !InSuppressedMethodFamily && C.getLocationContext()->inTopFrame()) {
674     static CheckerProgramPointTag Tag(this, "NullReturnedFromNonnull");
675     ExplodedNode *N = C.generateErrorNode(State, &Tag);
676     if (!N)
677       return;
678 
679     SmallString<256> SBuf;
680     llvm::raw_svector_ostream OS(SBuf);
681     OS << (RetExpr->getType()->isObjCObjectPointerType() ? "nil" : "Null");
682     OS << " returned from a " << C.getDeclDescription(D) <<
683           " that is expected to return a non-null value";
684     reportBugIfInvariantHolds(OS.str(), ErrorKind::NilReturnedToNonnull,
685                               CK_NullReturnedFromNonnull, N, nullptr, C,
686                               RetExpr);
687     return;
688   }
689 
690   // If null was returned from a non-null function, mark the nullability
691   // invariant as violated even if the diagnostic was suppressed.
692   if (NullReturnedFromNonNull) {
693     State = State->set<InvariantViolated>(true);
694     C.addTransition(State);
695     return;
696   }
697 
698   const MemRegion *Region = getTrackRegion(*RetSVal);
699   if (!Region)
700     return;
701 
702   const NullabilityState *TrackedNullability =
703       State->get<NullabilityMap>(Region);
704   if (TrackedNullability) {
705     Nullability TrackedNullabValue = TrackedNullability->getValue();
706     if (ChecksEnabled[CK_NullableReturnedFromNonnull] &&
707         Nullness != NullConstraint::IsNotNull &&
708         TrackedNullabValue == Nullability::Nullable &&
709         RequiredNullability == Nullability::Nonnull) {
710       static CheckerProgramPointTag Tag(this, "NullableReturnedFromNonnull");
711       ExplodedNode *N = C.addTransition(State, C.getPredecessor(), &Tag);
712 
713       SmallString<256> SBuf;
714       llvm::raw_svector_ostream OS(SBuf);
715       OS << "Nullable pointer is returned from a " << C.getDeclDescription(D) <<
716             " that is expected to return a non-null value";
717 
718       reportBugIfInvariantHolds(OS.str(), ErrorKind::NullableReturnedToNonnull,
719                                 CK_NullableReturnedFromNonnull, N, Region, C);
720     }
721     return;
722   }
723   if (RequiredNullability == Nullability::Nullable) {
724     State = State->set<NullabilityMap>(Region,
725                                        NullabilityState(RequiredNullability,
726                                                         S));
727     C.addTransition(State);
728   }
729 }
730 
731 /// This callback warns when a nullable pointer or a null value is passed to a
732 /// function that expects its argument to be nonnull.
733 void NullabilityChecker::checkPreCall(const CallEvent &Call,
734                                       CheckerContext &C) const {
735   if (!Call.getDecl())
736     return;
737 
738   ProgramStateRef State = C.getState();
739   if (State->get<InvariantViolated>())
740     return;
741 
742   ProgramStateRef OrigState = State;
743 
744   unsigned Idx = 0;
745   for (const ParmVarDecl *Param : Call.parameters()) {
746     if (Param->isParameterPack())
747       break;
748 
749     if (Idx >= Call.getNumArgs())
750       break;
751 
752     const Expr *ArgExpr = Call.getArgExpr(Idx);
753     auto ArgSVal = Call.getArgSVal(Idx++).getAs<DefinedOrUnknownSVal>();
754     if (!ArgSVal)
755       continue;
756 
757     if (!Param->getType()->isAnyPointerType() &&
758         !Param->getType()->isReferenceType())
759       continue;
760 
761     NullConstraint Nullness = getNullConstraint(*ArgSVal, State);
762 
763     Nullability RequiredNullability =
764         getNullabilityAnnotation(Param->getType());
765     Nullability ArgExprTypeLevelNullability =
766         getNullabilityAnnotation(ArgExpr->getType());
767 
768     unsigned ParamIdx = Param->getFunctionScopeIndex() + 1;
769 
770     if (ChecksEnabled[CK_NullPassedToNonnull] &&
771         Nullness == NullConstraint::IsNull &&
772         ArgExprTypeLevelNullability != Nullability::Nonnull &&
773         RequiredNullability == Nullability::Nonnull &&
774         isDiagnosableCall(Call)) {
775       ExplodedNode *N = C.generateErrorNode(State);
776       if (!N)
777         return;
778 
779       SmallString<256> SBuf;
780       llvm::raw_svector_ostream OS(SBuf);
781       OS << (Param->getType()->isObjCObjectPointerType() ? "nil" : "Null");
782       OS << " passed to a callee that requires a non-null " << ParamIdx
783          << llvm::getOrdinalSuffix(ParamIdx) << " parameter";
784       reportBugIfInvariantHolds(OS.str(), ErrorKind::NilPassedToNonnull,
785                                 CK_NullPassedToNonnull, N, nullptr, C, ArgExpr,
786                                 /*SuppressPath=*/false);
787       return;
788     }
789 
790     const MemRegion *Region = getTrackRegion(*ArgSVal);
791     if (!Region)
792       continue;
793 
794     const NullabilityState *TrackedNullability =
795         State->get<NullabilityMap>(Region);
796 
797     if (TrackedNullability) {
798       if (Nullness == NullConstraint::IsNotNull ||
799           TrackedNullability->getValue() != Nullability::Nullable)
800         continue;
801 
802       if (ChecksEnabled[CK_NullablePassedToNonnull] &&
803           RequiredNullability == Nullability::Nonnull &&
804           isDiagnosableCall(Call)) {
805         ExplodedNode *N = C.addTransition(State);
806         SmallString<256> SBuf;
807         llvm::raw_svector_ostream OS(SBuf);
808         OS << "Nullable pointer is passed to a callee that requires a non-null "
809            << ParamIdx << llvm::getOrdinalSuffix(ParamIdx) << " parameter";
810         reportBugIfInvariantHolds(OS.str(), ErrorKind::NullablePassedToNonnull,
811                                   CK_NullablePassedToNonnull, N, Region, C,
812                                   ArgExpr, /*SuppressPath=*/true);
813         return;
814       }
815       if (ChecksEnabled[CK_NullableDereferenced] &&
816           Param->getType()->isReferenceType()) {
817         ExplodedNode *N = C.addTransition(State);
818         reportBugIfInvariantHolds("Nullable pointer is dereferenced",
819                                   ErrorKind::NullableDereferenced,
820                                   CK_NullableDereferenced, N, Region, C,
821                                   ArgExpr, /*SuppressPath=*/true);
822         return;
823       }
824       continue;
825     }
826   }
827   if (State != OrigState)
828     C.addTransition(State);
829 }
830 
831 /// Suppress the nullability warnings for some functions.
832 void NullabilityChecker::checkPostCall(const CallEvent &Call,
833                                        CheckerContext &C) const {
834   auto Decl = Call.getDecl();
835   if (!Decl)
836     return;
837   // ObjC Messages handles in a different callback.
838   if (Call.getKind() == CE_ObjCMessage)
839     return;
840   const FunctionType *FuncType = Decl->getFunctionType();
841   if (!FuncType)
842     return;
843   QualType ReturnType = FuncType->getReturnType();
844   if (!ReturnType->isAnyPointerType())
845     return;
846   ProgramStateRef State = C.getState();
847   if (State->get<InvariantViolated>())
848     return;
849 
850   const MemRegion *Region = getTrackRegion(Call.getReturnValue());
851   if (!Region)
852     return;
853 
854   // CG headers are misannotated. Do not warn for symbols that are the results
855   // of CG calls.
856   const SourceManager &SM = C.getSourceManager();
857   StringRef FilePath = SM.getFilename(SM.getSpellingLoc(Decl->getBeginLoc()));
858   if (llvm::sys::path::filename(FilePath).startswith("CG")) {
859     State = State->set<NullabilityMap>(Region, Nullability::Contradicted);
860     C.addTransition(State);
861     return;
862   }
863 
864   const NullabilityState *TrackedNullability =
865       State->get<NullabilityMap>(Region);
866 
867   if (!TrackedNullability &&
868       getNullabilityAnnotation(ReturnType) == Nullability::Nullable) {
869     State = State->set<NullabilityMap>(Region, Nullability::Nullable);
870     C.addTransition(State);
871   }
872 }
873 
874 static Nullability getReceiverNullability(const ObjCMethodCall &M,
875                                           ProgramStateRef State) {
876   if (M.isReceiverSelfOrSuper()) {
877     // For super and super class receivers we assume that the receiver is
878     // nonnull.
879     return Nullability::Nonnull;
880   }
881   // Otherwise look up nullability in the state.
882   SVal Receiver = M.getReceiverSVal();
883   if (auto DefOrUnknown = Receiver.getAs<DefinedOrUnknownSVal>()) {
884     // If the receiver is constrained to be nonnull, assume that it is nonnull
885     // regardless of its type.
886     NullConstraint Nullness = getNullConstraint(*DefOrUnknown, State);
887     if (Nullness == NullConstraint::IsNotNull)
888       return Nullability::Nonnull;
889   }
890   auto ValueRegionSVal = Receiver.getAs<loc::MemRegionVal>();
891   if (ValueRegionSVal) {
892     const MemRegion *SelfRegion = ValueRegionSVal->getRegion();
893     assert(SelfRegion);
894 
895     const NullabilityState *TrackedSelfNullability =
896         State->get<NullabilityMap>(SelfRegion);
897     if (TrackedSelfNullability)
898       return TrackedSelfNullability->getValue();
899   }
900   return Nullability::Unspecified;
901 }
902 
903 // The return value of a property access is typically a temporary value which
904 // will not be tracked in a persistent manner by the analyzer.  We use
905 // evalAssume() in order to immediately record constraints on those temporaries
906 // at the time they are imposed (e.g. by a nil-check conditional).
907 ProgramStateRef NullabilityChecker::evalAssume(ProgramStateRef State, SVal Cond,
908                                                bool Assumption) const {
909   PropertyAccessesMapTy PropertyAccesses = State->get<PropertyAccessesMap>();
910   for (PropertyAccessesMapTy::iterator I = PropertyAccesses.begin(),
911                                        E = PropertyAccesses.end();
912        I != E; ++I) {
913     if (!I->second.isConstrainedNonnull) {
914       ConditionTruthVal IsNonNull = State->isNonNull(I->second.Value);
915       if (IsNonNull.isConstrainedTrue()) {
916         ConstrainedPropertyVal Replacement = I->second;
917         Replacement.isConstrainedNonnull = true;
918         State = State->set<PropertyAccessesMap>(I->first, Replacement);
919       } else if (IsNonNull.isConstrainedFalse()) {
920         // Space optimization: no point in tracking constrained-null cases
921         State = State->remove<PropertyAccessesMap>(I->first);
922       }
923     }
924   }
925 
926   return State;
927 }
928 
929 /// Calculate the nullability of the result of a message expr based on the
930 /// nullability of the receiver, the nullability of the return value, and the
931 /// constraints.
932 void NullabilityChecker::checkPostObjCMessage(const ObjCMethodCall &M,
933                                               CheckerContext &C) const {
934   auto Decl = M.getDecl();
935   if (!Decl)
936     return;
937   QualType RetType = Decl->getReturnType();
938   if (!RetType->isAnyPointerType())
939     return;
940 
941   ProgramStateRef State = C.getState();
942   if (State->get<InvariantViolated>())
943     return;
944 
945   const MemRegion *ReturnRegion = getTrackRegion(M.getReturnValue());
946   if (!ReturnRegion)
947     return;
948 
949   auto Interface = Decl->getClassInterface();
950   auto Name = Interface ? Interface->getName() : "";
951   // In order to reduce the noise in the diagnostics generated by this checker,
952   // some framework and programming style based heuristics are used. These
953   // heuristics are for Cocoa APIs which have NS prefix.
954   if (Name.startswith("NS")) {
955     // Developers rely on dynamic invariants such as an item should be available
956     // in a collection, or a collection is not empty often. Those invariants can
957     // not be inferred by any static analysis tool. To not to bother the users
958     // with too many false positives, every item retrieval function should be
959     // ignored for collections. The instance methods of dictionaries in Cocoa
960     // are either item retrieval related or not interesting nullability wise.
961     // Using this fact, to keep the code easier to read just ignore the return
962     // value of every instance method of dictionaries.
963     if (M.isInstanceMessage() && Name.contains("Dictionary")) {
964       State =
965           State->set<NullabilityMap>(ReturnRegion, Nullability::Contradicted);
966       C.addTransition(State);
967       return;
968     }
969     // For similar reasons ignore some methods of Cocoa arrays.
970     StringRef FirstSelectorSlot = M.getSelector().getNameForSlot(0);
971     if (Name.contains("Array") &&
972         (FirstSelectorSlot == "firstObject" ||
973          FirstSelectorSlot == "lastObject")) {
974       State =
975           State->set<NullabilityMap>(ReturnRegion, Nullability::Contradicted);
976       C.addTransition(State);
977       return;
978     }
979 
980     // Encoding related methods of string should not fail when lossless
981     // encodings are used. Using lossless encodings is so frequent that ignoring
982     // this class of methods reduced the emitted diagnostics by about 30% on
983     // some projects (and all of that was false positives).
984     if (Name.contains("String")) {
985       for (auto *Param : M.parameters()) {
986         if (Param->getName() == "encoding") {
987           State = State->set<NullabilityMap>(ReturnRegion,
988                                              Nullability::Contradicted);
989           C.addTransition(State);
990           return;
991         }
992       }
993     }
994   }
995 
996   const ObjCMessageExpr *Message = M.getOriginExpr();
997   Nullability SelfNullability = getReceiverNullability(M, State);
998 
999   const NullabilityState *NullabilityOfReturn =
1000       State->get<NullabilityMap>(ReturnRegion);
1001 
1002   if (NullabilityOfReturn) {
1003     // When we have a nullability tracked for the return value, the nullability
1004     // of the expression will be the most nullable of the receiver and the
1005     // return value.
1006     Nullability RetValTracked = NullabilityOfReturn->getValue();
1007     Nullability ComputedNullab =
1008         getMostNullable(RetValTracked, SelfNullability);
1009     if (ComputedNullab != RetValTracked &&
1010         ComputedNullab != Nullability::Unspecified) {
1011       const Stmt *NullabilitySource =
1012           ComputedNullab == RetValTracked
1013               ? NullabilityOfReturn->getNullabilitySource()
1014               : Message->getInstanceReceiver();
1015       State = State->set<NullabilityMap>(
1016           ReturnRegion, NullabilityState(ComputedNullab, NullabilitySource));
1017       C.addTransition(State);
1018     }
1019     return;
1020   }
1021 
1022   // No tracked information. Use static type information for return value.
1023   Nullability RetNullability = getNullabilityAnnotation(RetType);
1024 
1025   // Properties might be computed, which means the property value could
1026   // theoretically change between calls even in commonly-observed cases like
1027   // this:
1028   //
1029   //     if (foo.prop) {    // ok, it's nonnull here...
1030   //         [bar doStuffWithNonnullVal:foo.prop];     // ...but what about
1031   //         here?
1032   //     }
1033   //
1034   // If the property is nullable-annotated, a naive analysis would lead to many
1035   // false positives despite the presence of probably-correct nil-checks.  To
1036   // reduce the false positive rate, we maintain a history of the most recently
1037   // observed property value.  For each property access, if the prior value has
1038   // been constrained to be not nil then we will conservatively assume that the
1039   // next access can be inferred as nonnull.
1040   if (RetNullability != Nullability::Nonnull &&
1041       M.getMessageKind() == OCM_PropertyAccess && !C.wasInlined) {
1042     bool LookupResolved = false;
1043     if (const MemRegion *ReceiverRegion = getTrackRegion(M.getReceiverSVal())) {
1044       if (IdentifierInfo *Ident = M.getSelector().getIdentifierInfoForSlot(0)) {
1045         LookupResolved = true;
1046         ObjectPropPair Key = std::make_pair(ReceiverRegion, Ident);
1047         const ConstrainedPropertyVal *PrevPropVal =
1048             State->get<PropertyAccessesMap>(Key);
1049         if (PrevPropVal && PrevPropVal->isConstrainedNonnull) {
1050           RetNullability = Nullability::Nonnull;
1051         } else {
1052           // If a previous property access was constrained as nonnull, we hold
1053           // on to that constraint (effectively inferring that all subsequent
1054           // accesses on that code path can be inferred as nonnull).  If the
1055           // previous property access was *not* constrained as nonnull, then
1056           // let's throw it away in favor of keeping the SVal associated with
1057           // this more recent access.
1058           if (auto ReturnSVal =
1059                   M.getReturnValue().getAs<DefinedOrUnknownSVal>()) {
1060             State = State->set<PropertyAccessesMap>(
1061                 Key, ConstrainedPropertyVal(*ReturnSVal));
1062           }
1063         }
1064       }
1065     }
1066 
1067     if (!LookupResolved) {
1068       // Fallback: err on the side of suppressing the false positive.
1069       RetNullability = Nullability::Nonnull;
1070     }
1071   }
1072 
1073   Nullability ComputedNullab = getMostNullable(RetNullability, SelfNullability);
1074   if (ComputedNullab == Nullability::Nullable) {
1075     const Stmt *NullabilitySource = ComputedNullab == RetNullability
1076                                         ? Message
1077                                         : Message->getInstanceReceiver();
1078     State = State->set<NullabilityMap>(
1079         ReturnRegion, NullabilityState(ComputedNullab, NullabilitySource));
1080     C.addTransition(State);
1081   }
1082 }
1083 
1084 /// Explicit casts are trusted. If there is a disagreement in the nullability
1085 /// annotations in the destination and the source or '0' is casted to nonnull
1086 /// track the value as having contraditory nullability. This will allow users to
1087 /// suppress warnings.
1088 void NullabilityChecker::checkPostStmt(const ExplicitCastExpr *CE,
1089                                        CheckerContext &C) const {
1090   QualType OriginType = CE->getSubExpr()->getType();
1091   QualType DestType = CE->getType();
1092   if (!OriginType->isAnyPointerType())
1093     return;
1094   if (!DestType->isAnyPointerType())
1095     return;
1096 
1097   ProgramStateRef State = C.getState();
1098   if (State->get<InvariantViolated>())
1099     return;
1100 
1101   Nullability DestNullability = getNullabilityAnnotation(DestType);
1102 
1103   // No explicit nullability in the destination type, so this cast does not
1104   // change the nullability.
1105   if (DestNullability == Nullability::Unspecified)
1106     return;
1107 
1108   auto RegionSVal = C.getSVal(CE).getAs<DefinedOrUnknownSVal>();
1109   const MemRegion *Region = getTrackRegion(*RegionSVal);
1110   if (!Region)
1111     return;
1112 
1113   // When 0 is converted to nonnull mark it as contradicted.
1114   if (DestNullability == Nullability::Nonnull) {
1115     NullConstraint Nullness = getNullConstraint(*RegionSVal, State);
1116     if (Nullness == NullConstraint::IsNull) {
1117       State = State->set<NullabilityMap>(Region, Nullability::Contradicted);
1118       C.addTransition(State);
1119       return;
1120     }
1121   }
1122 
1123   const NullabilityState *TrackedNullability =
1124       State->get<NullabilityMap>(Region);
1125 
1126   if (!TrackedNullability) {
1127     if (DestNullability != Nullability::Nullable)
1128       return;
1129     State = State->set<NullabilityMap>(Region,
1130                                        NullabilityState(DestNullability, CE));
1131     C.addTransition(State);
1132     return;
1133   }
1134 
1135   if (TrackedNullability->getValue() != DestNullability &&
1136       TrackedNullability->getValue() != Nullability::Contradicted) {
1137     State = State->set<NullabilityMap>(Region, Nullability::Contradicted);
1138     C.addTransition(State);
1139   }
1140 }
1141 
1142 /// For a given statement performing a bind, attempt to syntactically
1143 /// match the expression resulting in the bound value.
1144 static const Expr * matchValueExprForBind(const Stmt *S) {
1145   // For `x = e` the value expression is the right-hand side.
1146   if (auto *BinOp = dyn_cast<BinaryOperator>(S)) {
1147     if (BinOp->getOpcode() == BO_Assign)
1148       return BinOp->getRHS();
1149   }
1150 
1151   // For `int x = e` the value expression is the initializer.
1152   if (auto *DS = dyn_cast<DeclStmt>(S))  {
1153     if (DS->isSingleDecl()) {
1154       auto *VD = dyn_cast<VarDecl>(DS->getSingleDecl());
1155       if (!VD)
1156         return nullptr;
1157 
1158       if (const Expr *Init = VD->getInit())
1159         return Init;
1160     }
1161   }
1162 
1163   return nullptr;
1164 }
1165 
1166 /// Returns true if \param S is a DeclStmt for a local variable that
1167 /// ObjC automated reference counting initialized with zero.
1168 static bool isARCNilInitializedLocal(CheckerContext &C, const Stmt *S) {
1169   // We suppress diagnostics for ARC zero-initialized _Nonnull locals. This
1170   // prevents false positives when a _Nonnull local variable cannot be
1171   // initialized with an initialization expression:
1172   //    NSString * _Nonnull s; // no-warning
1173   //    @autoreleasepool {
1174   //      s = ...
1175   //    }
1176   //
1177   // FIXME: We should treat implicitly zero-initialized _Nonnull locals as
1178   // uninitialized in Sema's UninitializedValues analysis to warn when a use of
1179   // the zero-initialized definition will unexpectedly yield nil.
1180 
1181   // Locals are only zero-initialized when automated reference counting
1182   // is turned on.
1183   if (!C.getASTContext().getLangOpts().ObjCAutoRefCount)
1184     return false;
1185 
1186   auto *DS = dyn_cast<DeclStmt>(S);
1187   if (!DS || !DS->isSingleDecl())
1188     return false;
1189 
1190   auto *VD = dyn_cast<VarDecl>(DS->getSingleDecl());
1191   if (!VD)
1192     return false;
1193 
1194   // Sema only zero-initializes locals with ObjCLifetimes.
1195   if(!VD->getType().getQualifiers().hasObjCLifetime())
1196     return false;
1197 
1198   const Expr *Init = VD->getInit();
1199   assert(Init && "ObjC local under ARC without initializer");
1200 
1201   // Return false if the local is explicitly initialized (e.g., with '= nil').
1202   if (!isa<ImplicitValueInitExpr>(Init))
1203     return false;
1204 
1205   return true;
1206 }
1207 
1208 /// Propagate the nullability information through binds and warn when nullable
1209 /// pointer or null symbol is assigned to a pointer with a nonnull type.
1210 void NullabilityChecker::checkBind(SVal L, SVal V, const Stmt *S,
1211                                    CheckerContext &C) const {
1212   const TypedValueRegion *TVR =
1213       dyn_cast_or_null<TypedValueRegion>(L.getAsRegion());
1214   if (!TVR)
1215     return;
1216 
1217   QualType LocType = TVR->getValueType();
1218   if (!LocType->isAnyPointerType())
1219     return;
1220 
1221   ProgramStateRef State = C.getState();
1222   if (State->get<InvariantViolated>())
1223     return;
1224 
1225   auto ValDefOrUnknown = V.getAs<DefinedOrUnknownSVal>();
1226   if (!ValDefOrUnknown)
1227     return;
1228 
1229   NullConstraint RhsNullness = getNullConstraint(*ValDefOrUnknown, State);
1230 
1231   Nullability ValNullability = Nullability::Unspecified;
1232   if (SymbolRef Sym = ValDefOrUnknown->getAsSymbol())
1233     ValNullability = getNullabilityAnnotation(Sym->getType());
1234 
1235   Nullability LocNullability = getNullabilityAnnotation(LocType);
1236 
1237   // If the type of the RHS expression is nonnull, don't warn. This
1238   // enables explicit suppression with a cast to nonnull.
1239   Nullability ValueExprTypeLevelNullability = Nullability::Unspecified;
1240   const Expr *ValueExpr = matchValueExprForBind(S);
1241   if (ValueExpr) {
1242     ValueExprTypeLevelNullability =
1243       getNullabilityAnnotation(lookThroughImplicitCasts(ValueExpr)->getType());
1244   }
1245 
1246   bool NullAssignedToNonNull = (LocNullability == Nullability::Nonnull &&
1247                                 RhsNullness == NullConstraint::IsNull);
1248   if (ChecksEnabled[CK_NullPassedToNonnull] && NullAssignedToNonNull &&
1249       ValNullability != Nullability::Nonnull &&
1250       ValueExprTypeLevelNullability != Nullability::Nonnull &&
1251       !isARCNilInitializedLocal(C, S)) {
1252     static CheckerProgramPointTag Tag(this, "NullPassedToNonnull");
1253     ExplodedNode *N = C.generateErrorNode(State, &Tag);
1254     if (!N)
1255       return;
1256 
1257 
1258     const Stmt *ValueStmt = S;
1259     if (ValueExpr)
1260       ValueStmt = ValueExpr;
1261 
1262     SmallString<256> SBuf;
1263     llvm::raw_svector_ostream OS(SBuf);
1264     OS << (LocType->isObjCObjectPointerType() ? "nil" : "Null");
1265     OS << " assigned to a pointer which is expected to have non-null value";
1266     reportBugIfInvariantHolds(OS.str(), ErrorKind::NilAssignedToNonnull,
1267                               CK_NullPassedToNonnull, N, nullptr, C, ValueStmt);
1268     return;
1269   }
1270 
1271   // If null was returned from a non-null function, mark the nullability
1272   // invariant as violated even if the diagnostic was suppressed.
1273   if (NullAssignedToNonNull) {
1274     State = State->set<InvariantViolated>(true);
1275     C.addTransition(State);
1276     return;
1277   }
1278 
1279   // Intentionally missing case: '0' is bound to a reference. It is handled by
1280   // the DereferenceChecker.
1281 
1282   const MemRegion *ValueRegion = getTrackRegion(*ValDefOrUnknown);
1283   if (!ValueRegion)
1284     return;
1285 
1286   const NullabilityState *TrackedNullability =
1287       State->get<NullabilityMap>(ValueRegion);
1288 
1289   if (TrackedNullability) {
1290     if (RhsNullness == NullConstraint::IsNotNull ||
1291         TrackedNullability->getValue() != Nullability::Nullable)
1292       return;
1293     if (ChecksEnabled[CK_NullablePassedToNonnull] &&
1294         LocNullability == Nullability::Nonnull) {
1295       static CheckerProgramPointTag Tag(this, "NullablePassedToNonnull");
1296       ExplodedNode *N = C.addTransition(State, C.getPredecessor(), &Tag);
1297       reportBugIfInvariantHolds("Nullable pointer is assigned to a pointer "
1298                                 "which is expected to have non-null value",
1299                                 ErrorKind::NullableAssignedToNonnull,
1300                                 CK_NullablePassedToNonnull, N, ValueRegion, C);
1301     }
1302     return;
1303   }
1304 
1305   const auto *BinOp = dyn_cast<BinaryOperator>(S);
1306 
1307   if (ValNullability == Nullability::Nullable) {
1308     // Trust the static information of the value more than the static
1309     // information on the location.
1310     const Stmt *NullabilitySource = BinOp ? BinOp->getRHS() : S;
1311     State = State->set<NullabilityMap>(
1312         ValueRegion, NullabilityState(ValNullability, NullabilitySource));
1313     C.addTransition(State);
1314     return;
1315   }
1316 
1317   if (LocNullability == Nullability::Nullable) {
1318     const Stmt *NullabilitySource = BinOp ? BinOp->getLHS() : S;
1319     State = State->set<NullabilityMap>(
1320         ValueRegion, NullabilityState(LocNullability, NullabilitySource));
1321     C.addTransition(State);
1322   }
1323 }
1324 
1325 void NullabilityChecker::printState(raw_ostream &Out, ProgramStateRef State,
1326                                     const char *NL, const char *Sep) const {
1327 
1328   NullabilityMapTy B = State->get<NullabilityMap>();
1329 
1330   if (State->get<InvariantViolated>())
1331     Out << Sep << NL
1332         << "Nullability invariant was violated, warnings suppressed." << NL;
1333 
1334   if (B.isEmpty())
1335     return;
1336 
1337   if (!State->get<InvariantViolated>())
1338     Out << Sep << NL;
1339 
1340   for (NullabilityMapTy::iterator I = B.begin(), E = B.end(); I != E; ++I) {
1341     Out << I->first << " : ";
1342     I->second.print(Out);
1343     Out << NL;
1344   }
1345 }
1346 
1347 void ento::registerNullabilityBase(CheckerManager &mgr) {
1348   mgr.registerChecker<NullabilityChecker>();
1349 }
1350 
1351 bool ento::shouldRegisterNullabilityBase(const CheckerManager &mgr) {
1352   return true;
1353 }
1354 
1355 #define REGISTER_CHECKER(name, trackingRequired)                               \
1356   void ento::register##name##Checker(CheckerManager &mgr) {                    \
1357     NullabilityChecker *checker = mgr.getChecker<NullabilityChecker>();        \
1358     checker->ChecksEnabled[NullabilityChecker::CK_##name] = true;              \
1359     checker->CheckNames[NullabilityChecker::CK_##name] =                       \
1360         mgr.getCurrentCheckerName();                                           \
1361     checker->NeedTracking = checker->NeedTracking || trackingRequired;         \
1362     checker->NoDiagnoseCallsToSystemHeaders =                                  \
1363         checker->NoDiagnoseCallsToSystemHeaders ||                             \
1364         mgr.getAnalyzerOptions().getCheckerBooleanOption(                      \
1365             checker, "NoDiagnoseCallsToSystemHeaders", true);                  \
1366   }                                                                            \
1367                                                                                \
1368   bool ento::shouldRegister##name##Checker(const CheckerManager &mgr) {        \
1369     return true;                                                               \
1370   }
1371 
1372 // The checks are likely to be turned on by default and it is possible to do
1373 // them without tracking any nullability related information. As an optimization
1374 // no nullability information will be tracked when only these two checks are
1375 // enables.
1376 REGISTER_CHECKER(NullPassedToNonnull, false)
1377 REGISTER_CHECKER(NullReturnedFromNonnull, false)
1378 
1379 REGISTER_CHECKER(NullableDereferenced, true)
1380 REGISTER_CHECKER(NullablePassedToNonnull, true)
1381 REGISTER_CHECKER(NullableReturnedFromNonnull, true)
1382