1 //===-- NullabilityChecker.cpp - Nullability checker ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This checker tries to find nullability violations. There are several kinds of 10 // possible violations: 11 // * Null pointer is passed to a pointer which has a _Nonnull type. 12 // * Null pointer is returned from a function which has a _Nonnull return type. 13 // * Nullable pointer is passed to a pointer which has a _Nonnull type. 14 // * Nullable pointer is returned from a function which has a _Nonnull return 15 // type. 16 // * Nullable pointer is dereferenced. 17 // 18 // This checker propagates the nullability information of the pointers and looks 19 // for the patterns that are described above. Explicit casts are trusted and are 20 // considered a way to suppress false positives for this checker. The other way 21 // to suppress warnings would be to add asserts or guarding if statements to the 22 // code. In addition to the nullability propagation this checker also uses some 23 // heuristics to suppress potential false positives. 24 // 25 //===----------------------------------------------------------------------===// 26 27 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" 28 29 #include "clang/Analysis/AnyCall.h" 30 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 31 #include "clang/StaticAnalyzer/Core/Checker.h" 32 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 33 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 34 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 35 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerHelpers.h" 36 37 #include "llvm/ADT/STLExtras.h" 38 #include "llvm/ADT/StringExtras.h" 39 #include "llvm/Support/Path.h" 40 41 using namespace clang; 42 using namespace ento; 43 44 namespace { 45 46 /// Returns the most nullable nullability. This is used for message expressions 47 /// like [receiver method], where the nullability of this expression is either 48 /// the nullability of the receiver or the nullability of the return type of the 49 /// method, depending on which is more nullable. Contradicted is considered to 50 /// be the most nullable, to avoid false positive results. 51 Nullability getMostNullable(Nullability Lhs, Nullability Rhs) { 52 return static_cast<Nullability>( 53 std::min(static_cast<char>(Lhs), static_cast<char>(Rhs))); 54 } 55 56 const char *getNullabilityString(Nullability Nullab) { 57 switch (Nullab) { 58 case Nullability::Contradicted: 59 return "contradicted"; 60 case Nullability::Nullable: 61 return "nullable"; 62 case Nullability::Unspecified: 63 return "unspecified"; 64 case Nullability::Nonnull: 65 return "nonnull"; 66 } 67 llvm_unreachable("Unexpected enumeration."); 68 return ""; 69 } 70 71 // These enums are used as an index to ErrorMessages array. 72 enum class ErrorKind : int { 73 NilAssignedToNonnull, 74 NilPassedToNonnull, 75 NilReturnedToNonnull, 76 NullableAssignedToNonnull, 77 NullableReturnedToNonnull, 78 NullableDereferenced, 79 NullablePassedToNonnull 80 }; 81 82 class NullabilityChecker 83 : public Checker<check::Bind, check::PreCall, check::PreStmt<ReturnStmt>, 84 check::PostCall, check::PostStmt<ExplicitCastExpr>, 85 check::PostObjCMessage, check::DeadSymbols, eval::Assume, 86 check::Location, check::Event<ImplicitNullDerefEvent>, 87 check::BeginFunction> { 88 89 public: 90 // If true, the checker will not diagnose nullabilility issues for calls 91 // to system headers. This option is motivated by the observation that large 92 // projects may have many nullability warnings. These projects may 93 // find warnings about nullability annotations that they have explicitly 94 // added themselves higher priority to fix than warnings on calls to system 95 // libraries. 96 bool NoDiagnoseCallsToSystemHeaders = false; 97 98 void checkBind(SVal L, SVal V, const Stmt *S, CheckerContext &C) const; 99 void checkPostStmt(const ExplicitCastExpr *CE, CheckerContext &C) const; 100 void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const; 101 void checkPostObjCMessage(const ObjCMethodCall &M, CheckerContext &C) const; 102 void checkPostCall(const CallEvent &Call, CheckerContext &C) const; 103 void checkPreCall(const CallEvent &Call, CheckerContext &C) const; 104 void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const; 105 void checkEvent(ImplicitNullDerefEvent Event) const; 106 void checkLocation(SVal Location, bool IsLoad, const Stmt *S, 107 CheckerContext &C) const; 108 void checkBeginFunction(CheckerContext &Ctx) const; 109 ProgramStateRef evalAssume(ProgramStateRef State, SVal Cond, 110 bool Assumption) const; 111 112 void printState(raw_ostream &Out, ProgramStateRef State, const char *NL, 113 const char *Sep) const override; 114 115 enum CheckKind { 116 CK_NullPassedToNonnull, 117 CK_NullReturnedFromNonnull, 118 CK_NullableDereferenced, 119 CK_NullablePassedToNonnull, 120 CK_NullableReturnedFromNonnull, 121 CK_NumCheckKinds 122 }; 123 124 bool ChecksEnabled[CK_NumCheckKinds] = {false}; 125 CheckerNameRef CheckNames[CK_NumCheckKinds]; 126 mutable std::unique_ptr<BugType> BTs[CK_NumCheckKinds]; 127 128 const std::unique_ptr<BugType> &getBugType(CheckKind Kind) const { 129 if (!BTs[Kind]) 130 BTs[Kind].reset(new BugType(CheckNames[Kind], "Nullability", 131 categories::MemoryError)); 132 return BTs[Kind]; 133 } 134 135 // When set to false no nullability information will be tracked in 136 // NullabilityMap. It is possible to catch errors like passing a null pointer 137 // to a callee that expects nonnull argument without the information that is 138 // stored in the NullabilityMap. This is an optimization. 139 bool NeedTracking = false; 140 141 private: 142 class NullabilityBugVisitor : public BugReporterVisitor { 143 public: 144 NullabilityBugVisitor(const MemRegion *M) : Region(M) {} 145 146 void Profile(llvm::FoldingSetNodeID &ID) const override { 147 static int X = 0; 148 ID.AddPointer(&X); 149 ID.AddPointer(Region); 150 } 151 152 PathDiagnosticPieceRef VisitNode(const ExplodedNode *N, 153 BugReporterContext &BRC, 154 PathSensitiveBugReport &BR) override; 155 156 private: 157 // The tracked region. 158 const MemRegion *Region; 159 }; 160 161 /// When any of the nonnull arguments of the analyzed function is null, do not 162 /// report anything and turn off the check. 163 /// 164 /// When \p SuppressPath is set to true, no more bugs will be reported on this 165 /// path by this checker. 166 void reportBugIfInvariantHolds(StringRef Msg, ErrorKind Error, CheckKind CK, 167 ExplodedNode *N, const MemRegion *Region, 168 CheckerContext &C, 169 const Stmt *ValueExpr = nullptr, 170 bool SuppressPath = false) const; 171 172 void reportBug(StringRef Msg, ErrorKind Error, CheckKind CK, ExplodedNode *N, 173 const MemRegion *Region, BugReporter &BR, 174 const Stmt *ValueExpr = nullptr) const { 175 const std::unique_ptr<BugType> &BT = getBugType(CK); 176 auto R = std::make_unique<PathSensitiveBugReport>(*BT, Msg, N); 177 if (Region) { 178 R->markInteresting(Region); 179 R->addVisitor<NullabilityBugVisitor>(Region); 180 } 181 if (ValueExpr) { 182 R->addRange(ValueExpr->getSourceRange()); 183 if (Error == ErrorKind::NilAssignedToNonnull || 184 Error == ErrorKind::NilPassedToNonnull || 185 Error == ErrorKind::NilReturnedToNonnull) 186 if (const auto *Ex = dyn_cast<Expr>(ValueExpr)) 187 bugreporter::trackExpressionValue(N, Ex, *R); 188 } 189 BR.emitReport(std::move(R)); 190 } 191 192 /// If an SVal wraps a region that should be tracked, it will return a pointer 193 /// to the wrapped region. Otherwise it will return a nullptr. 194 const SymbolicRegion *getTrackRegion(SVal Val, 195 bool CheckSuperRegion = false) const; 196 197 /// Returns true if the call is diagnosable in the current analyzer 198 /// configuration. 199 bool isDiagnosableCall(const CallEvent &Call) const { 200 if (NoDiagnoseCallsToSystemHeaders && Call.isInSystemHeader()) 201 return false; 202 203 return true; 204 } 205 }; 206 207 class NullabilityState { 208 public: 209 NullabilityState(Nullability Nullab, const Stmt *Source = nullptr) 210 : Nullab(Nullab), Source(Source) {} 211 212 const Stmt *getNullabilitySource() const { return Source; } 213 214 Nullability getValue() const { return Nullab; } 215 216 void Profile(llvm::FoldingSetNodeID &ID) const { 217 ID.AddInteger(static_cast<char>(Nullab)); 218 ID.AddPointer(Source); 219 } 220 221 void print(raw_ostream &Out) const { 222 Out << getNullabilityString(Nullab) << "\n"; 223 } 224 225 private: 226 Nullability Nullab; 227 // Source is the expression which determined the nullability. For example in a 228 // message like [nullable nonnull_returning] has nullable nullability, because 229 // the receiver is nullable. Here the receiver will be the source of the 230 // nullability. This is useful information when the diagnostics are generated. 231 const Stmt *Source; 232 }; 233 234 bool operator==(NullabilityState Lhs, NullabilityState Rhs) { 235 return Lhs.getValue() == Rhs.getValue() && 236 Lhs.getNullabilitySource() == Rhs.getNullabilitySource(); 237 } 238 239 // For the purpose of tracking historical property accesses, the key for lookup 240 // is an object pointer (could be an instance or a class) paired with the unique 241 // identifier for the property being invoked on that object. 242 using ObjectPropPair = std::pair<const MemRegion *, const IdentifierInfo *>; 243 244 // Metadata associated with the return value from a recorded property access. 245 struct ConstrainedPropertyVal { 246 // This will reference the conjured return SVal for some call 247 // of the form [object property] 248 DefinedOrUnknownSVal Value; 249 250 // If the SVal has been determined to be nonnull, that is recorded here 251 bool isConstrainedNonnull; 252 253 ConstrainedPropertyVal(DefinedOrUnknownSVal SV) 254 : Value(SV), isConstrainedNonnull(false) {} 255 256 void Profile(llvm::FoldingSetNodeID &ID) const { 257 Value.Profile(ID); 258 ID.AddInteger(isConstrainedNonnull ? 1 : 0); 259 } 260 }; 261 262 bool operator==(const ConstrainedPropertyVal &Lhs, 263 const ConstrainedPropertyVal &Rhs) { 264 return Lhs.Value == Rhs.Value && 265 Lhs.isConstrainedNonnull == Rhs.isConstrainedNonnull; 266 } 267 268 } // end anonymous namespace 269 270 REGISTER_MAP_WITH_PROGRAMSTATE(NullabilityMap, const MemRegion *, 271 NullabilityState) 272 REGISTER_MAP_WITH_PROGRAMSTATE(PropertyAccessesMap, ObjectPropPair, 273 ConstrainedPropertyVal) 274 275 // We say "the nullability type invariant is violated" when a location with a 276 // non-null type contains NULL or a function with a non-null return type returns 277 // NULL. Violations of the nullability type invariant can be detected either 278 // directly (for example, when NULL is passed as an argument to a nonnull 279 // parameter) or indirectly (for example, when, inside a function, the 280 // programmer defensively checks whether a nonnull parameter contains NULL and 281 // finds that it does). 282 // 283 // As a matter of policy, the nullability checker typically warns on direct 284 // violations of the nullability invariant (although it uses various 285 // heuristics to suppress warnings in some cases) but will not warn if the 286 // invariant has already been violated along the path (either directly or 287 // indirectly). As a practical matter, this prevents the analyzer from 288 // (1) warning on defensive code paths where a nullability precondition is 289 // determined to have been violated, (2) warning additional times after an 290 // initial direct violation has been discovered, and (3) warning after a direct 291 // violation that has been implicitly or explicitly suppressed (for 292 // example, with a cast of NULL to _Nonnull). In essence, once an invariant 293 // violation is detected on a path, this checker will be essentially turned off 294 // for the rest of the analysis 295 // 296 // The analyzer takes this approach (rather than generating a sink node) to 297 // ensure coverage of defensive paths, which may be important for backwards 298 // compatibility in codebases that were developed without nullability in mind. 299 REGISTER_TRAIT_WITH_PROGRAMSTATE(InvariantViolated, bool) 300 301 enum class NullConstraint { IsNull, IsNotNull, Unknown }; 302 303 static NullConstraint getNullConstraint(DefinedOrUnknownSVal Val, 304 ProgramStateRef State) { 305 ConditionTruthVal Nullness = State->isNull(Val); 306 if (Nullness.isConstrainedFalse()) 307 return NullConstraint::IsNotNull; 308 if (Nullness.isConstrainedTrue()) 309 return NullConstraint::IsNull; 310 return NullConstraint::Unknown; 311 } 312 313 static bool isValidPointerType(QualType T) { 314 return T->isAnyPointerType() || T->isBlockPointerType(); 315 } 316 317 const SymbolicRegion * 318 NullabilityChecker::getTrackRegion(SVal Val, bool CheckSuperRegion) const { 319 if (!NeedTracking) 320 return nullptr; 321 322 auto RegionSVal = Val.getAs<loc::MemRegionVal>(); 323 if (!RegionSVal) 324 return nullptr; 325 326 const MemRegion *Region = RegionSVal->getRegion(); 327 328 if (CheckSuperRegion) { 329 if (const SubRegion *FieldReg = Region->getAs<FieldRegion>()) { 330 if (const auto *ER = dyn_cast<ElementRegion>(FieldReg->getSuperRegion())) 331 FieldReg = ER; 332 return dyn_cast<SymbolicRegion>(FieldReg->getSuperRegion()); 333 } 334 if (auto ElementReg = Region->getAs<ElementRegion>()) 335 return dyn_cast<SymbolicRegion>(ElementReg->getSuperRegion()); 336 } 337 338 return dyn_cast<SymbolicRegion>(Region); 339 } 340 341 PathDiagnosticPieceRef NullabilityChecker::NullabilityBugVisitor::VisitNode( 342 const ExplodedNode *N, BugReporterContext &BRC, 343 PathSensitiveBugReport &BR) { 344 ProgramStateRef State = N->getState(); 345 ProgramStateRef StatePrev = N->getFirstPred()->getState(); 346 347 const NullabilityState *TrackedNullab = State->get<NullabilityMap>(Region); 348 const NullabilityState *TrackedNullabPrev = 349 StatePrev->get<NullabilityMap>(Region); 350 if (!TrackedNullab) 351 return nullptr; 352 353 if (TrackedNullabPrev && 354 TrackedNullabPrev->getValue() == TrackedNullab->getValue()) 355 return nullptr; 356 357 // Retrieve the associated statement. 358 const Stmt *S = TrackedNullab->getNullabilitySource(); 359 if (!S || S->getBeginLoc().isInvalid()) { 360 S = N->getStmtForDiagnostics(); 361 } 362 363 if (!S) 364 return nullptr; 365 366 std::string InfoText = 367 (llvm::Twine("Nullability '") + 368 getNullabilityString(TrackedNullab->getValue()) + "' is inferred") 369 .str(); 370 371 // Generate the extra diagnostic. 372 PathDiagnosticLocation Pos(S, BRC.getSourceManager(), 373 N->getLocationContext()); 374 return std::make_shared<PathDiagnosticEventPiece>(Pos, InfoText, true); 375 } 376 377 /// Returns true when the value stored at the given location has been 378 /// constrained to null after being passed through an object of nonnnull type. 379 static bool checkValueAtLValForInvariantViolation(ProgramStateRef State, 380 SVal LV, QualType T) { 381 if (getNullabilityAnnotation(T) != Nullability::Nonnull) 382 return false; 383 384 auto RegionVal = LV.getAs<loc::MemRegionVal>(); 385 if (!RegionVal) 386 return false; 387 388 // If the value was constrained to null *after* it was passed through that 389 // location, it could not have been a concrete pointer *when* it was passed. 390 // In that case we would have handled the situation when the value was 391 // bound to that location, by emitting (or not emitting) a report. 392 // Therefore we are only interested in symbolic regions that can be either 393 // null or non-null depending on the value of their respective symbol. 394 auto StoredVal = State->getSVal(*RegionVal).getAs<loc::MemRegionVal>(); 395 if (!StoredVal || !isa<SymbolicRegion>(StoredVal->getRegion())) 396 return false; 397 398 if (getNullConstraint(*StoredVal, State) == NullConstraint::IsNull) 399 return true; 400 401 return false; 402 } 403 404 static bool 405 checkParamsForPreconditionViolation(ArrayRef<ParmVarDecl *> Params, 406 ProgramStateRef State, 407 const LocationContext *LocCtxt) { 408 for (const auto *ParamDecl : Params) { 409 if (ParamDecl->isParameterPack()) 410 break; 411 412 SVal LV = State->getLValue(ParamDecl, LocCtxt); 413 if (checkValueAtLValForInvariantViolation(State, LV, 414 ParamDecl->getType())) { 415 return true; 416 } 417 } 418 return false; 419 } 420 421 static bool 422 checkSelfIvarsForInvariantViolation(ProgramStateRef State, 423 const LocationContext *LocCtxt) { 424 auto *MD = dyn_cast<ObjCMethodDecl>(LocCtxt->getDecl()); 425 if (!MD || !MD->isInstanceMethod()) 426 return false; 427 428 const ImplicitParamDecl *SelfDecl = LocCtxt->getSelfDecl(); 429 if (!SelfDecl) 430 return false; 431 432 SVal SelfVal = State->getSVal(State->getRegion(SelfDecl, LocCtxt)); 433 434 const ObjCObjectPointerType *SelfType = 435 dyn_cast<ObjCObjectPointerType>(SelfDecl->getType()); 436 if (!SelfType) 437 return false; 438 439 const ObjCInterfaceDecl *ID = SelfType->getInterfaceDecl(); 440 if (!ID) 441 return false; 442 443 for (const auto *IvarDecl : ID->ivars()) { 444 SVal LV = State->getLValue(IvarDecl, SelfVal); 445 if (checkValueAtLValForInvariantViolation(State, LV, IvarDecl->getType())) { 446 return true; 447 } 448 } 449 return false; 450 } 451 452 static bool checkInvariantViolation(ProgramStateRef State, ExplodedNode *N, 453 CheckerContext &C) { 454 if (State->get<InvariantViolated>()) 455 return true; 456 457 const LocationContext *LocCtxt = C.getLocationContext(); 458 const Decl *D = LocCtxt->getDecl(); 459 if (!D) 460 return false; 461 462 ArrayRef<ParmVarDecl*> Params; 463 if (const auto *BD = dyn_cast<BlockDecl>(D)) 464 Params = BD->parameters(); 465 else if (const auto *FD = dyn_cast<FunctionDecl>(D)) 466 Params = FD->parameters(); 467 else if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) 468 Params = MD->parameters(); 469 else 470 return false; 471 472 if (checkParamsForPreconditionViolation(Params, State, LocCtxt) || 473 checkSelfIvarsForInvariantViolation(State, LocCtxt)) { 474 if (!N->isSink()) 475 C.addTransition(State->set<InvariantViolated>(true), N); 476 return true; 477 } 478 return false; 479 } 480 481 void NullabilityChecker::reportBugIfInvariantHolds( 482 StringRef Msg, ErrorKind Error, CheckKind CK, ExplodedNode *N, 483 const MemRegion *Region, CheckerContext &C, const Stmt *ValueExpr, 484 bool SuppressPath) const { 485 ProgramStateRef OriginalState = N->getState(); 486 487 if (checkInvariantViolation(OriginalState, N, C)) 488 return; 489 if (SuppressPath) { 490 OriginalState = OriginalState->set<InvariantViolated>(true); 491 N = C.addTransition(OriginalState, N); 492 } 493 494 reportBug(Msg, Error, CK, N, Region, C.getBugReporter(), ValueExpr); 495 } 496 497 /// Cleaning up the program state. 498 void NullabilityChecker::checkDeadSymbols(SymbolReaper &SR, 499 CheckerContext &C) const { 500 ProgramStateRef State = C.getState(); 501 NullabilityMapTy Nullabilities = State->get<NullabilityMap>(); 502 for (const MemRegion *Reg : llvm::make_first_range(Nullabilities)) { 503 const auto *Region = Reg->getAs<SymbolicRegion>(); 504 assert(Region && "Non-symbolic region is tracked."); 505 if (SR.isDead(Region->getSymbol())) { 506 State = State->remove<NullabilityMap>(Reg); 507 } 508 } 509 510 // When an object goes out of scope, we can free the history associated 511 // with any property accesses on that object 512 PropertyAccessesMapTy PropertyAccesses = State->get<PropertyAccessesMap>(); 513 for (ObjectPropPair PropKey : llvm::make_first_range(PropertyAccesses)) { 514 const MemRegion *ReceiverRegion = PropKey.first; 515 if (!SR.isLiveRegion(ReceiverRegion)) { 516 State = State->remove<PropertyAccessesMap>(PropKey); 517 } 518 } 519 520 // When one of the nonnull arguments are constrained to be null, nullability 521 // preconditions are violated. It is not enough to check this only when we 522 // actually report an error, because at that time interesting symbols might be 523 // reaped. 524 if (checkInvariantViolation(State, C.getPredecessor(), C)) 525 return; 526 C.addTransition(State); 527 } 528 529 /// This callback triggers when a pointer is dereferenced and the analyzer does 530 /// not know anything about the value of that pointer. When that pointer is 531 /// nullable, this code emits a warning. 532 void NullabilityChecker::checkEvent(ImplicitNullDerefEvent Event) const { 533 if (Event.SinkNode->getState()->get<InvariantViolated>()) 534 return; 535 536 const MemRegion *Region = 537 getTrackRegion(Event.Location, /*CheckSuperRegion=*/true); 538 if (!Region) 539 return; 540 541 ProgramStateRef State = Event.SinkNode->getState(); 542 const NullabilityState *TrackedNullability = 543 State->get<NullabilityMap>(Region); 544 545 if (!TrackedNullability) 546 return; 547 548 if (ChecksEnabled[CK_NullableDereferenced] && 549 TrackedNullability->getValue() == Nullability::Nullable) { 550 BugReporter &BR = *Event.BR; 551 // Do not suppress errors on defensive code paths, because dereferencing 552 // a nullable pointer is always an error. 553 if (Event.IsDirectDereference) 554 reportBug("Nullable pointer is dereferenced", 555 ErrorKind::NullableDereferenced, CK_NullableDereferenced, 556 Event.SinkNode, Region, BR); 557 else { 558 reportBug("Nullable pointer is passed to a callee that requires a " 559 "non-null", 560 ErrorKind::NullablePassedToNonnull, CK_NullableDereferenced, 561 Event.SinkNode, Region, BR); 562 } 563 } 564 } 565 566 void NullabilityChecker::checkBeginFunction(CheckerContext &C) const { 567 if (!C.inTopFrame()) 568 return; 569 570 const LocationContext *LCtx = C.getLocationContext(); 571 auto AbstractCall = AnyCall::forDecl(LCtx->getDecl()); 572 if (!AbstractCall || AbstractCall->parameters().empty()) 573 return; 574 575 ProgramStateRef State = C.getState(); 576 for (const ParmVarDecl *Param : AbstractCall->parameters()) { 577 if (!isValidPointerType(Param->getType())) 578 continue; 579 580 Nullability RequiredNullability = 581 getNullabilityAnnotation(Param->getType()); 582 if (RequiredNullability != Nullability::Nullable) 583 continue; 584 585 const VarRegion *ParamRegion = State->getRegion(Param, LCtx); 586 const MemRegion *ParamPointeeRegion = 587 State->getSVal(ParamRegion).getAsRegion(); 588 if (!ParamPointeeRegion) 589 continue; 590 591 State = State->set<NullabilityMap>(ParamPointeeRegion, 592 NullabilityState(RequiredNullability)); 593 } 594 C.addTransition(State); 595 } 596 597 // Whenever we see a load from a typed memory region that's been annotated as 598 // 'nonnull', we want to trust the user on that and assume that it is is indeed 599 // non-null. 600 // 601 // We do so even if the value is known to have been assigned to null. 602 // The user should be warned on assigning the null value to a non-null pointer 603 // as opposed to warning on the later dereference of this pointer. 604 // 605 // \code 606 // int * _Nonnull var = 0; // we want to warn the user here... 607 // // . . . 608 // *var = 42; // ...and not here 609 // \endcode 610 void NullabilityChecker::checkLocation(SVal Location, bool IsLoad, 611 const Stmt *S, 612 CheckerContext &Context) const { 613 // We should care only about loads. 614 // The main idea is to add a constraint whenever we're loading a value from 615 // an annotated pointer type. 616 if (!IsLoad) 617 return; 618 619 // Annotations that we want to consider make sense only for types. 620 const auto *Region = 621 dyn_cast_or_null<TypedValueRegion>(Location.getAsRegion()); 622 if (!Region) 623 return; 624 625 ProgramStateRef State = Context.getState(); 626 627 auto StoredVal = State->getSVal(Region).getAs<loc::MemRegionVal>(); 628 if (!StoredVal) 629 return; 630 631 Nullability NullabilityOfTheLoadedValue = 632 getNullabilityAnnotation(Region->getValueType()); 633 634 if (NullabilityOfTheLoadedValue == Nullability::Nonnull) { 635 // It doesn't matter what we think about this particular pointer, it should 636 // be considered non-null as annotated by the developer. 637 if (ProgramStateRef NewState = State->assume(*StoredVal, true)) { 638 Context.addTransition(NewState); 639 } 640 } 641 } 642 643 /// Find the outermost subexpression of E that is not an implicit cast. 644 /// This looks through the implicit casts to _Nonnull that ARC adds to 645 /// return expressions of ObjC types when the return type of the function or 646 /// method is non-null but the express is not. 647 static const Expr *lookThroughImplicitCasts(const Expr *E) { 648 return E->IgnoreImpCasts(); 649 } 650 651 /// This method check when nullable pointer or null value is returned from a 652 /// function that has nonnull return type. 653 void NullabilityChecker::checkPreStmt(const ReturnStmt *S, 654 CheckerContext &C) const { 655 auto RetExpr = S->getRetValue(); 656 if (!RetExpr) 657 return; 658 659 if (!isValidPointerType(RetExpr->getType())) 660 return; 661 662 ProgramStateRef State = C.getState(); 663 if (State->get<InvariantViolated>()) 664 return; 665 666 auto RetSVal = C.getSVal(S).getAs<DefinedOrUnknownSVal>(); 667 if (!RetSVal) 668 return; 669 670 bool InSuppressedMethodFamily = false; 671 672 QualType RequiredRetType; 673 AnalysisDeclContext *DeclCtxt = 674 C.getLocationContext()->getAnalysisDeclContext(); 675 const Decl *D = DeclCtxt->getDecl(); 676 if (auto *MD = dyn_cast<ObjCMethodDecl>(D)) { 677 // HACK: This is a big hammer to avoid warning when there are defensive 678 // nil checks in -init and -copy methods. We should add more sophisticated 679 // logic here to suppress on common defensive idioms but still 680 // warn when there is a likely problem. 681 ObjCMethodFamily Family = MD->getMethodFamily(); 682 if (OMF_init == Family || OMF_copy == Family || OMF_mutableCopy == Family) 683 InSuppressedMethodFamily = true; 684 685 RequiredRetType = MD->getReturnType(); 686 } else if (auto *FD = dyn_cast<FunctionDecl>(D)) { 687 RequiredRetType = FD->getReturnType(); 688 } else { 689 return; 690 } 691 692 NullConstraint Nullness = getNullConstraint(*RetSVal, State); 693 694 Nullability RequiredNullability = getNullabilityAnnotation(RequiredRetType); 695 696 // If the returned value is null but the type of the expression 697 // generating it is nonnull then we will suppress the diagnostic. 698 // This enables explicit suppression when returning a nil literal in a 699 // function with a _Nonnull return type: 700 // return (NSString * _Nonnull)0; 701 Nullability RetExprTypeLevelNullability = 702 getNullabilityAnnotation(lookThroughImplicitCasts(RetExpr)->getType()); 703 704 bool NullReturnedFromNonNull = (RequiredNullability == Nullability::Nonnull && 705 Nullness == NullConstraint::IsNull); 706 if (ChecksEnabled[CK_NullReturnedFromNonnull] && NullReturnedFromNonNull && 707 RetExprTypeLevelNullability != Nullability::Nonnull && 708 !InSuppressedMethodFamily && C.getLocationContext()->inTopFrame()) { 709 static CheckerProgramPointTag Tag(this, "NullReturnedFromNonnull"); 710 ExplodedNode *N = C.generateErrorNode(State, &Tag); 711 if (!N) 712 return; 713 714 SmallString<256> SBuf; 715 llvm::raw_svector_ostream OS(SBuf); 716 OS << (RetExpr->getType()->isObjCObjectPointerType() ? "nil" : "Null"); 717 OS << " returned from a " << C.getDeclDescription(D) << 718 " that is expected to return a non-null value"; 719 reportBugIfInvariantHolds(OS.str(), ErrorKind::NilReturnedToNonnull, 720 CK_NullReturnedFromNonnull, N, nullptr, C, 721 RetExpr); 722 return; 723 } 724 725 // If null was returned from a non-null function, mark the nullability 726 // invariant as violated even if the diagnostic was suppressed. 727 if (NullReturnedFromNonNull) { 728 State = State->set<InvariantViolated>(true); 729 C.addTransition(State); 730 return; 731 } 732 733 const MemRegion *Region = getTrackRegion(*RetSVal); 734 if (!Region) 735 return; 736 737 const NullabilityState *TrackedNullability = 738 State->get<NullabilityMap>(Region); 739 if (TrackedNullability) { 740 Nullability TrackedNullabValue = TrackedNullability->getValue(); 741 if (ChecksEnabled[CK_NullableReturnedFromNonnull] && 742 Nullness != NullConstraint::IsNotNull && 743 TrackedNullabValue == Nullability::Nullable && 744 RequiredNullability == Nullability::Nonnull) { 745 static CheckerProgramPointTag Tag(this, "NullableReturnedFromNonnull"); 746 ExplodedNode *N = C.addTransition(State, C.getPredecessor(), &Tag); 747 748 SmallString<256> SBuf; 749 llvm::raw_svector_ostream OS(SBuf); 750 OS << "Nullable pointer is returned from a " << C.getDeclDescription(D) << 751 " that is expected to return a non-null value"; 752 753 reportBugIfInvariantHolds(OS.str(), ErrorKind::NullableReturnedToNonnull, 754 CK_NullableReturnedFromNonnull, N, Region, C); 755 } 756 return; 757 } 758 if (RequiredNullability == Nullability::Nullable) { 759 State = State->set<NullabilityMap>(Region, 760 NullabilityState(RequiredNullability, 761 S)); 762 C.addTransition(State); 763 } 764 } 765 766 /// This callback warns when a nullable pointer or a null value is passed to a 767 /// function that expects its argument to be nonnull. 768 void NullabilityChecker::checkPreCall(const CallEvent &Call, 769 CheckerContext &C) const { 770 if (!Call.getDecl()) 771 return; 772 773 ProgramStateRef State = C.getState(); 774 if (State->get<InvariantViolated>()) 775 return; 776 777 ProgramStateRef OrigState = State; 778 779 unsigned Idx = 0; 780 for (const ParmVarDecl *Param : Call.parameters()) { 781 if (Param->isParameterPack()) 782 break; 783 784 if (Idx >= Call.getNumArgs()) 785 break; 786 787 const Expr *ArgExpr = Call.getArgExpr(Idx); 788 auto ArgSVal = Call.getArgSVal(Idx++).getAs<DefinedOrUnknownSVal>(); 789 if (!ArgSVal) 790 continue; 791 792 if (!isValidPointerType(Param->getType()) && 793 !Param->getType()->isReferenceType()) 794 continue; 795 796 NullConstraint Nullness = getNullConstraint(*ArgSVal, State); 797 798 Nullability RequiredNullability = 799 getNullabilityAnnotation(Param->getType()); 800 Nullability ArgExprTypeLevelNullability = 801 getNullabilityAnnotation(lookThroughImplicitCasts(ArgExpr)->getType()); 802 803 unsigned ParamIdx = Param->getFunctionScopeIndex() + 1; 804 805 if (ChecksEnabled[CK_NullPassedToNonnull] && 806 Nullness == NullConstraint::IsNull && 807 ArgExprTypeLevelNullability != Nullability::Nonnull && 808 RequiredNullability == Nullability::Nonnull && 809 isDiagnosableCall(Call)) { 810 ExplodedNode *N = C.generateErrorNode(State); 811 if (!N) 812 return; 813 814 SmallString<256> SBuf; 815 llvm::raw_svector_ostream OS(SBuf); 816 OS << (Param->getType()->isObjCObjectPointerType() ? "nil" : "Null"); 817 OS << " passed to a callee that requires a non-null " << ParamIdx 818 << llvm::getOrdinalSuffix(ParamIdx) << " parameter"; 819 reportBugIfInvariantHolds(OS.str(), ErrorKind::NilPassedToNonnull, 820 CK_NullPassedToNonnull, N, nullptr, C, ArgExpr, 821 /*SuppressPath=*/false); 822 return; 823 } 824 825 const MemRegion *Region = getTrackRegion(*ArgSVal); 826 if (!Region) 827 continue; 828 829 const NullabilityState *TrackedNullability = 830 State->get<NullabilityMap>(Region); 831 832 if (TrackedNullability) { 833 if (Nullness == NullConstraint::IsNotNull || 834 TrackedNullability->getValue() != Nullability::Nullable) 835 continue; 836 837 if (ChecksEnabled[CK_NullablePassedToNonnull] && 838 RequiredNullability == Nullability::Nonnull && 839 isDiagnosableCall(Call)) { 840 ExplodedNode *N = C.addTransition(State); 841 SmallString<256> SBuf; 842 llvm::raw_svector_ostream OS(SBuf); 843 OS << "Nullable pointer is passed to a callee that requires a non-null " 844 << ParamIdx << llvm::getOrdinalSuffix(ParamIdx) << " parameter"; 845 reportBugIfInvariantHolds(OS.str(), ErrorKind::NullablePassedToNonnull, 846 CK_NullablePassedToNonnull, N, Region, C, 847 ArgExpr, /*SuppressPath=*/true); 848 return; 849 } 850 if (ChecksEnabled[CK_NullableDereferenced] && 851 Param->getType()->isReferenceType()) { 852 ExplodedNode *N = C.addTransition(State); 853 reportBugIfInvariantHolds("Nullable pointer is dereferenced", 854 ErrorKind::NullableDereferenced, 855 CK_NullableDereferenced, N, Region, C, 856 ArgExpr, /*SuppressPath=*/true); 857 return; 858 } 859 continue; 860 } 861 } 862 if (State != OrigState) 863 C.addTransition(State); 864 } 865 866 /// Suppress the nullability warnings for some functions. 867 void NullabilityChecker::checkPostCall(const CallEvent &Call, 868 CheckerContext &C) const { 869 auto Decl = Call.getDecl(); 870 if (!Decl) 871 return; 872 // ObjC Messages handles in a different callback. 873 if (Call.getKind() == CE_ObjCMessage) 874 return; 875 const FunctionType *FuncType = Decl->getFunctionType(); 876 if (!FuncType) 877 return; 878 QualType ReturnType = FuncType->getReturnType(); 879 if (!isValidPointerType(ReturnType)) 880 return; 881 ProgramStateRef State = C.getState(); 882 if (State->get<InvariantViolated>()) 883 return; 884 885 const MemRegion *Region = getTrackRegion(Call.getReturnValue()); 886 if (!Region) 887 return; 888 889 // CG headers are misannotated. Do not warn for symbols that are the results 890 // of CG calls. 891 const SourceManager &SM = C.getSourceManager(); 892 StringRef FilePath = SM.getFilename(SM.getSpellingLoc(Decl->getBeginLoc())); 893 if (llvm::sys::path::filename(FilePath).starts_with("CG")) { 894 State = State->set<NullabilityMap>(Region, Nullability::Contradicted); 895 C.addTransition(State); 896 return; 897 } 898 899 const NullabilityState *TrackedNullability = 900 State->get<NullabilityMap>(Region); 901 902 // ObjCMessageExpr gets the actual type through 903 // Sema::getMessageSendResultType, instead of using the return type of 904 // MethodDecl directly. The final type is generated by considering the 905 // nullability of receiver and MethodDecl together. Thus, The type of 906 // ObjCMessageExpr is prefer. 907 if (const Expr *E = Call.getOriginExpr()) 908 ReturnType = E->getType(); 909 910 if (!TrackedNullability && 911 getNullabilityAnnotation(ReturnType) == Nullability::Nullable) { 912 State = State->set<NullabilityMap>(Region, Nullability::Nullable); 913 C.addTransition(State); 914 } 915 } 916 917 static Nullability getReceiverNullability(const ObjCMethodCall &M, 918 ProgramStateRef State) { 919 if (M.isReceiverSelfOrSuper()) { 920 // For super and super class receivers we assume that the receiver is 921 // nonnull. 922 return Nullability::Nonnull; 923 } 924 // Otherwise look up nullability in the state. 925 SVal Receiver = M.getReceiverSVal(); 926 if (auto DefOrUnknown = Receiver.getAs<DefinedOrUnknownSVal>()) { 927 // If the receiver is constrained to be nonnull, assume that it is nonnull 928 // regardless of its type. 929 NullConstraint Nullness = getNullConstraint(*DefOrUnknown, State); 930 if (Nullness == NullConstraint::IsNotNull) 931 return Nullability::Nonnull; 932 } 933 auto ValueRegionSVal = Receiver.getAs<loc::MemRegionVal>(); 934 if (ValueRegionSVal) { 935 const MemRegion *SelfRegion = ValueRegionSVal->getRegion(); 936 assert(SelfRegion); 937 938 const NullabilityState *TrackedSelfNullability = 939 State->get<NullabilityMap>(SelfRegion); 940 if (TrackedSelfNullability) 941 return TrackedSelfNullability->getValue(); 942 } 943 return Nullability::Unspecified; 944 } 945 946 // The return value of a property access is typically a temporary value which 947 // will not be tracked in a persistent manner by the analyzer. We use 948 // evalAssume() in order to immediately record constraints on those temporaries 949 // at the time they are imposed (e.g. by a nil-check conditional). 950 ProgramStateRef NullabilityChecker::evalAssume(ProgramStateRef State, SVal Cond, 951 bool Assumption) const { 952 PropertyAccessesMapTy PropertyAccesses = State->get<PropertyAccessesMap>(); 953 for (auto [PropKey, PropVal] : PropertyAccesses) { 954 if (!PropVal.isConstrainedNonnull) { 955 ConditionTruthVal IsNonNull = State->isNonNull(PropVal.Value); 956 if (IsNonNull.isConstrainedTrue()) { 957 ConstrainedPropertyVal Replacement = PropVal; 958 Replacement.isConstrainedNonnull = true; 959 State = State->set<PropertyAccessesMap>(PropKey, Replacement); 960 } else if (IsNonNull.isConstrainedFalse()) { 961 // Space optimization: no point in tracking constrained-null cases 962 State = State->remove<PropertyAccessesMap>(PropKey); 963 } 964 } 965 } 966 967 return State; 968 } 969 970 /// Calculate the nullability of the result of a message expr based on the 971 /// nullability of the receiver, the nullability of the return value, and the 972 /// constraints. 973 void NullabilityChecker::checkPostObjCMessage(const ObjCMethodCall &M, 974 CheckerContext &C) const { 975 auto Decl = M.getDecl(); 976 if (!Decl) 977 return; 978 QualType RetType = Decl->getReturnType(); 979 if (!isValidPointerType(RetType)) 980 return; 981 982 ProgramStateRef State = C.getState(); 983 if (State->get<InvariantViolated>()) 984 return; 985 986 const MemRegion *ReturnRegion = getTrackRegion(M.getReturnValue()); 987 if (!ReturnRegion) 988 return; 989 990 auto Interface = Decl->getClassInterface(); 991 auto Name = Interface ? Interface->getName() : ""; 992 // In order to reduce the noise in the diagnostics generated by this checker, 993 // some framework and programming style based heuristics are used. These 994 // heuristics are for Cocoa APIs which have NS prefix. 995 if (Name.starts_with("NS")) { 996 // Developers rely on dynamic invariants such as an item should be available 997 // in a collection, or a collection is not empty often. Those invariants can 998 // not be inferred by any static analysis tool. To not to bother the users 999 // with too many false positives, every item retrieval function should be 1000 // ignored for collections. The instance methods of dictionaries in Cocoa 1001 // are either item retrieval related or not interesting nullability wise. 1002 // Using this fact, to keep the code easier to read just ignore the return 1003 // value of every instance method of dictionaries. 1004 if (M.isInstanceMessage() && Name.contains("Dictionary")) { 1005 State = 1006 State->set<NullabilityMap>(ReturnRegion, Nullability::Contradicted); 1007 C.addTransition(State); 1008 return; 1009 } 1010 // For similar reasons ignore some methods of Cocoa arrays. 1011 StringRef FirstSelectorSlot = M.getSelector().getNameForSlot(0); 1012 if (Name.contains("Array") && 1013 (FirstSelectorSlot == "firstObject" || 1014 FirstSelectorSlot == "lastObject")) { 1015 State = 1016 State->set<NullabilityMap>(ReturnRegion, Nullability::Contradicted); 1017 C.addTransition(State); 1018 return; 1019 } 1020 1021 // Encoding related methods of string should not fail when lossless 1022 // encodings are used. Using lossless encodings is so frequent that ignoring 1023 // this class of methods reduced the emitted diagnostics by about 30% on 1024 // some projects (and all of that was false positives). 1025 if (Name.contains("String")) { 1026 for (auto *Param : M.parameters()) { 1027 if (Param->getName() == "encoding") { 1028 State = State->set<NullabilityMap>(ReturnRegion, 1029 Nullability::Contradicted); 1030 C.addTransition(State); 1031 return; 1032 } 1033 } 1034 } 1035 } 1036 1037 const ObjCMessageExpr *Message = M.getOriginExpr(); 1038 Nullability SelfNullability = getReceiverNullability(M, State); 1039 1040 const NullabilityState *NullabilityOfReturn = 1041 State->get<NullabilityMap>(ReturnRegion); 1042 1043 if (NullabilityOfReturn) { 1044 // When we have a nullability tracked for the return value, the nullability 1045 // of the expression will be the most nullable of the receiver and the 1046 // return value. 1047 Nullability RetValTracked = NullabilityOfReturn->getValue(); 1048 Nullability ComputedNullab = 1049 getMostNullable(RetValTracked, SelfNullability); 1050 if (ComputedNullab != RetValTracked && 1051 ComputedNullab != Nullability::Unspecified) { 1052 const Stmt *NullabilitySource = 1053 ComputedNullab == RetValTracked 1054 ? NullabilityOfReturn->getNullabilitySource() 1055 : Message->getInstanceReceiver(); 1056 State = State->set<NullabilityMap>( 1057 ReturnRegion, NullabilityState(ComputedNullab, NullabilitySource)); 1058 C.addTransition(State); 1059 } 1060 return; 1061 } 1062 1063 // No tracked information. Use static type information for return value. 1064 Nullability RetNullability = getNullabilityAnnotation(Message->getType()); 1065 1066 // Properties might be computed, which means the property value could 1067 // theoretically change between calls even in commonly-observed cases like 1068 // this: 1069 // 1070 // if (foo.prop) { // ok, it's nonnull here... 1071 // [bar doStuffWithNonnullVal:foo.prop]; // ...but what about 1072 // here? 1073 // } 1074 // 1075 // If the property is nullable-annotated, a naive analysis would lead to many 1076 // false positives despite the presence of probably-correct nil-checks. To 1077 // reduce the false positive rate, we maintain a history of the most recently 1078 // observed property value. For each property access, if the prior value has 1079 // been constrained to be not nil then we will conservatively assume that the 1080 // next access can be inferred as nonnull. 1081 if (RetNullability != Nullability::Nonnull && 1082 M.getMessageKind() == OCM_PropertyAccess && !C.wasInlined) { 1083 bool LookupResolved = false; 1084 if (const MemRegion *ReceiverRegion = getTrackRegion(M.getReceiverSVal())) { 1085 if (IdentifierInfo *Ident = M.getSelector().getIdentifierInfoForSlot(0)) { 1086 LookupResolved = true; 1087 ObjectPropPair Key = std::make_pair(ReceiverRegion, Ident); 1088 const ConstrainedPropertyVal *PrevPropVal = 1089 State->get<PropertyAccessesMap>(Key); 1090 if (PrevPropVal && PrevPropVal->isConstrainedNonnull) { 1091 RetNullability = Nullability::Nonnull; 1092 } else { 1093 // If a previous property access was constrained as nonnull, we hold 1094 // on to that constraint (effectively inferring that all subsequent 1095 // accesses on that code path can be inferred as nonnull). If the 1096 // previous property access was *not* constrained as nonnull, then 1097 // let's throw it away in favor of keeping the SVal associated with 1098 // this more recent access. 1099 if (auto ReturnSVal = 1100 M.getReturnValue().getAs<DefinedOrUnknownSVal>()) { 1101 State = State->set<PropertyAccessesMap>( 1102 Key, ConstrainedPropertyVal(*ReturnSVal)); 1103 } 1104 } 1105 } 1106 } 1107 1108 if (!LookupResolved) { 1109 // Fallback: err on the side of suppressing the false positive. 1110 RetNullability = Nullability::Nonnull; 1111 } 1112 } 1113 1114 Nullability ComputedNullab = getMostNullable(RetNullability, SelfNullability); 1115 if (ComputedNullab == Nullability::Nullable) { 1116 const Stmt *NullabilitySource = ComputedNullab == RetNullability 1117 ? Message 1118 : Message->getInstanceReceiver(); 1119 State = State->set<NullabilityMap>( 1120 ReturnRegion, NullabilityState(ComputedNullab, NullabilitySource)); 1121 C.addTransition(State); 1122 } 1123 } 1124 1125 /// Explicit casts are trusted. If there is a disagreement in the nullability 1126 /// annotations in the destination and the source or '0' is casted to nonnull 1127 /// track the value as having contraditory nullability. This will allow users to 1128 /// suppress warnings. 1129 void NullabilityChecker::checkPostStmt(const ExplicitCastExpr *CE, 1130 CheckerContext &C) const { 1131 QualType OriginType = CE->getSubExpr()->getType(); 1132 QualType DestType = CE->getType(); 1133 if (!isValidPointerType(OriginType)) 1134 return; 1135 if (!isValidPointerType(DestType)) 1136 return; 1137 1138 ProgramStateRef State = C.getState(); 1139 if (State->get<InvariantViolated>()) 1140 return; 1141 1142 Nullability DestNullability = getNullabilityAnnotation(DestType); 1143 1144 // No explicit nullability in the destination type, so this cast does not 1145 // change the nullability. 1146 if (DestNullability == Nullability::Unspecified) 1147 return; 1148 1149 auto RegionSVal = C.getSVal(CE).getAs<DefinedOrUnknownSVal>(); 1150 const MemRegion *Region = getTrackRegion(*RegionSVal); 1151 if (!Region) 1152 return; 1153 1154 // When 0 is converted to nonnull mark it as contradicted. 1155 if (DestNullability == Nullability::Nonnull) { 1156 NullConstraint Nullness = getNullConstraint(*RegionSVal, State); 1157 if (Nullness == NullConstraint::IsNull) { 1158 State = State->set<NullabilityMap>(Region, Nullability::Contradicted); 1159 C.addTransition(State); 1160 return; 1161 } 1162 } 1163 1164 const NullabilityState *TrackedNullability = 1165 State->get<NullabilityMap>(Region); 1166 1167 if (!TrackedNullability) { 1168 if (DestNullability != Nullability::Nullable) 1169 return; 1170 State = State->set<NullabilityMap>(Region, 1171 NullabilityState(DestNullability, CE)); 1172 C.addTransition(State); 1173 return; 1174 } 1175 1176 if (TrackedNullability->getValue() != DestNullability && 1177 TrackedNullability->getValue() != Nullability::Contradicted) { 1178 State = State->set<NullabilityMap>(Region, Nullability::Contradicted); 1179 C.addTransition(State); 1180 } 1181 } 1182 1183 /// For a given statement performing a bind, attempt to syntactically 1184 /// match the expression resulting in the bound value. 1185 static const Expr * matchValueExprForBind(const Stmt *S) { 1186 // For `x = e` the value expression is the right-hand side. 1187 if (auto *BinOp = dyn_cast<BinaryOperator>(S)) { 1188 if (BinOp->getOpcode() == BO_Assign) 1189 return BinOp->getRHS(); 1190 } 1191 1192 // For `int x = e` the value expression is the initializer. 1193 if (auto *DS = dyn_cast<DeclStmt>(S)) { 1194 if (DS->isSingleDecl()) { 1195 auto *VD = dyn_cast<VarDecl>(DS->getSingleDecl()); 1196 if (!VD) 1197 return nullptr; 1198 1199 if (const Expr *Init = VD->getInit()) 1200 return Init; 1201 } 1202 } 1203 1204 return nullptr; 1205 } 1206 1207 /// Returns true if \param S is a DeclStmt for a local variable that 1208 /// ObjC automated reference counting initialized with zero. 1209 static bool isARCNilInitializedLocal(CheckerContext &C, const Stmt *S) { 1210 // We suppress diagnostics for ARC zero-initialized _Nonnull locals. This 1211 // prevents false positives when a _Nonnull local variable cannot be 1212 // initialized with an initialization expression: 1213 // NSString * _Nonnull s; // no-warning 1214 // @autoreleasepool { 1215 // s = ... 1216 // } 1217 // 1218 // FIXME: We should treat implicitly zero-initialized _Nonnull locals as 1219 // uninitialized in Sema's UninitializedValues analysis to warn when a use of 1220 // the zero-initialized definition will unexpectedly yield nil. 1221 1222 // Locals are only zero-initialized when automated reference counting 1223 // is turned on. 1224 if (!C.getASTContext().getLangOpts().ObjCAutoRefCount) 1225 return false; 1226 1227 auto *DS = dyn_cast<DeclStmt>(S); 1228 if (!DS || !DS->isSingleDecl()) 1229 return false; 1230 1231 auto *VD = dyn_cast<VarDecl>(DS->getSingleDecl()); 1232 if (!VD) 1233 return false; 1234 1235 // Sema only zero-initializes locals with ObjCLifetimes. 1236 if(!VD->getType().getQualifiers().hasObjCLifetime()) 1237 return false; 1238 1239 const Expr *Init = VD->getInit(); 1240 assert(Init && "ObjC local under ARC without initializer"); 1241 1242 // Return false if the local is explicitly initialized (e.g., with '= nil'). 1243 if (!isa<ImplicitValueInitExpr>(Init)) 1244 return false; 1245 1246 return true; 1247 } 1248 1249 /// Propagate the nullability information through binds and warn when nullable 1250 /// pointer or null symbol is assigned to a pointer with a nonnull type. 1251 void NullabilityChecker::checkBind(SVal L, SVal V, const Stmt *S, 1252 CheckerContext &C) const { 1253 const TypedValueRegion *TVR = 1254 dyn_cast_or_null<TypedValueRegion>(L.getAsRegion()); 1255 if (!TVR) 1256 return; 1257 1258 QualType LocType = TVR->getValueType(); 1259 if (!isValidPointerType(LocType)) 1260 return; 1261 1262 ProgramStateRef State = C.getState(); 1263 if (State->get<InvariantViolated>()) 1264 return; 1265 1266 auto ValDefOrUnknown = V.getAs<DefinedOrUnknownSVal>(); 1267 if (!ValDefOrUnknown) 1268 return; 1269 1270 NullConstraint RhsNullness = getNullConstraint(*ValDefOrUnknown, State); 1271 1272 Nullability ValNullability = Nullability::Unspecified; 1273 if (SymbolRef Sym = ValDefOrUnknown->getAsSymbol()) 1274 ValNullability = getNullabilityAnnotation(Sym->getType()); 1275 1276 Nullability LocNullability = getNullabilityAnnotation(LocType); 1277 1278 // If the type of the RHS expression is nonnull, don't warn. This 1279 // enables explicit suppression with a cast to nonnull. 1280 Nullability ValueExprTypeLevelNullability = Nullability::Unspecified; 1281 const Expr *ValueExpr = matchValueExprForBind(S); 1282 if (ValueExpr) { 1283 ValueExprTypeLevelNullability = 1284 getNullabilityAnnotation(lookThroughImplicitCasts(ValueExpr)->getType()); 1285 } 1286 1287 bool NullAssignedToNonNull = (LocNullability == Nullability::Nonnull && 1288 RhsNullness == NullConstraint::IsNull); 1289 if (ChecksEnabled[CK_NullPassedToNonnull] && NullAssignedToNonNull && 1290 ValNullability != Nullability::Nonnull && 1291 ValueExprTypeLevelNullability != Nullability::Nonnull && 1292 !isARCNilInitializedLocal(C, S)) { 1293 static CheckerProgramPointTag Tag(this, "NullPassedToNonnull"); 1294 ExplodedNode *N = C.generateErrorNode(State, &Tag); 1295 if (!N) 1296 return; 1297 1298 1299 const Stmt *ValueStmt = S; 1300 if (ValueExpr) 1301 ValueStmt = ValueExpr; 1302 1303 SmallString<256> SBuf; 1304 llvm::raw_svector_ostream OS(SBuf); 1305 OS << (LocType->isObjCObjectPointerType() ? "nil" : "Null"); 1306 OS << " assigned to a pointer which is expected to have non-null value"; 1307 reportBugIfInvariantHolds(OS.str(), ErrorKind::NilAssignedToNonnull, 1308 CK_NullPassedToNonnull, N, nullptr, C, ValueStmt); 1309 return; 1310 } 1311 1312 // If null was returned from a non-null function, mark the nullability 1313 // invariant as violated even if the diagnostic was suppressed. 1314 if (NullAssignedToNonNull) { 1315 State = State->set<InvariantViolated>(true); 1316 C.addTransition(State); 1317 return; 1318 } 1319 1320 // Intentionally missing case: '0' is bound to a reference. It is handled by 1321 // the DereferenceChecker. 1322 1323 const MemRegion *ValueRegion = getTrackRegion(*ValDefOrUnknown); 1324 if (!ValueRegion) 1325 return; 1326 1327 const NullabilityState *TrackedNullability = 1328 State->get<NullabilityMap>(ValueRegion); 1329 1330 if (TrackedNullability) { 1331 if (RhsNullness == NullConstraint::IsNotNull || 1332 TrackedNullability->getValue() != Nullability::Nullable) 1333 return; 1334 if (ChecksEnabled[CK_NullablePassedToNonnull] && 1335 LocNullability == Nullability::Nonnull) { 1336 static CheckerProgramPointTag Tag(this, "NullablePassedToNonnull"); 1337 ExplodedNode *N = C.addTransition(State, C.getPredecessor(), &Tag); 1338 reportBugIfInvariantHolds("Nullable pointer is assigned to a pointer " 1339 "which is expected to have non-null value", 1340 ErrorKind::NullableAssignedToNonnull, 1341 CK_NullablePassedToNonnull, N, ValueRegion, C); 1342 } 1343 return; 1344 } 1345 1346 const auto *BinOp = dyn_cast<BinaryOperator>(S); 1347 1348 if (ValNullability == Nullability::Nullable) { 1349 // Trust the static information of the value more than the static 1350 // information on the location. 1351 const Stmt *NullabilitySource = BinOp ? BinOp->getRHS() : S; 1352 State = State->set<NullabilityMap>( 1353 ValueRegion, NullabilityState(ValNullability, NullabilitySource)); 1354 C.addTransition(State); 1355 return; 1356 } 1357 1358 if (LocNullability == Nullability::Nullable) { 1359 const Stmt *NullabilitySource = BinOp ? BinOp->getLHS() : S; 1360 State = State->set<NullabilityMap>( 1361 ValueRegion, NullabilityState(LocNullability, NullabilitySource)); 1362 C.addTransition(State); 1363 } 1364 } 1365 1366 void NullabilityChecker::printState(raw_ostream &Out, ProgramStateRef State, 1367 const char *NL, const char *Sep) const { 1368 1369 NullabilityMapTy B = State->get<NullabilityMap>(); 1370 1371 if (State->get<InvariantViolated>()) 1372 Out << Sep << NL 1373 << "Nullability invariant was violated, warnings suppressed." << NL; 1374 1375 if (B.isEmpty()) 1376 return; 1377 1378 if (!State->get<InvariantViolated>()) 1379 Out << Sep << NL; 1380 1381 for (auto [Region, State] : B) { 1382 Out << Region << " : "; 1383 State.print(Out); 1384 Out << NL; 1385 } 1386 } 1387 1388 void ento::registerNullabilityBase(CheckerManager &mgr) { 1389 mgr.registerChecker<NullabilityChecker>(); 1390 } 1391 1392 bool ento::shouldRegisterNullabilityBase(const CheckerManager &mgr) { 1393 return true; 1394 } 1395 1396 #define REGISTER_CHECKER(name, trackingRequired) \ 1397 void ento::register##name##Checker(CheckerManager &mgr) { \ 1398 NullabilityChecker *checker = mgr.getChecker<NullabilityChecker>(); \ 1399 checker->ChecksEnabled[NullabilityChecker::CK_##name] = true; \ 1400 checker->CheckNames[NullabilityChecker::CK_##name] = \ 1401 mgr.getCurrentCheckerName(); \ 1402 checker->NeedTracking = checker->NeedTracking || trackingRequired; \ 1403 checker->NoDiagnoseCallsToSystemHeaders = \ 1404 checker->NoDiagnoseCallsToSystemHeaders || \ 1405 mgr.getAnalyzerOptions().getCheckerBooleanOption( \ 1406 checker, "NoDiagnoseCallsToSystemHeaders", true); \ 1407 } \ 1408 \ 1409 bool ento::shouldRegister##name##Checker(const CheckerManager &mgr) { \ 1410 return true; \ 1411 } 1412 1413 // The checks are likely to be turned on by default and it is possible to do 1414 // them without tracking any nullability related information. As an optimization 1415 // no nullability information will be tracked when only these two checks are 1416 // enables. 1417 REGISTER_CHECKER(NullPassedToNonnull, false) 1418 REGISTER_CHECKER(NullReturnedFromNonnull, false) 1419 1420 REGISTER_CHECKER(NullableDereferenced, true) 1421 REGISTER_CHECKER(NullablePassedToNonnull, true) 1422 REGISTER_CHECKER(NullableReturnedFromNonnull, true) 1423