1 //=== MallocChecker.cpp - A malloc/free checker -------------------*- C++ -*--// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines a variety of memory management related checkers, such as 10 // leak, double free, and use-after-free. 11 // 12 // The following checkers are defined here: 13 // 14 // * MallocChecker 15 // Despite its name, it models all sorts of memory allocations and 16 // de- or reallocation, including but not limited to malloc, free, 17 // relloc, new, delete. It also reports on a variety of memory misuse 18 // errors. 19 // Many other checkers interact very closely with this checker, in fact, 20 // most are merely options to this one. Other checkers may register 21 // MallocChecker, but do not enable MallocChecker's reports (more details 22 // to follow around its field, ChecksEnabled). 23 // It also has a boolean "Optimistic" checker option, which if set to true 24 // will cause the checker to model user defined memory management related 25 // functions annotated via the attribute ownership_takes, ownership_holds 26 // and ownership_returns. 27 // 28 // * NewDeleteChecker 29 // Enables the modeling of new, new[], delete, delete[] in MallocChecker, 30 // and checks for related double-free and use-after-free errors. 31 // 32 // * NewDeleteLeaksChecker 33 // Checks for leaks related to new, new[], delete, delete[]. 34 // Depends on NewDeleteChecker. 35 // 36 // * MismatchedDeallocatorChecker 37 // Enables checking whether memory is deallocated with the correspending 38 // allocation function in MallocChecker, such as malloc() allocated 39 // regions are only freed by free(), new by delete, new[] by delete[]. 40 // 41 // InnerPointerChecker interacts very closely with MallocChecker, but unlike 42 // the above checkers, it has it's own file, hence the many InnerPointerChecker 43 // related headers and non-static functions. 44 // 45 //===----------------------------------------------------------------------===// 46 47 #include "AllocationState.h" 48 #include "InterCheckerAPI.h" 49 #include "clang/AST/Attr.h" 50 #include "clang/AST/DeclCXX.h" 51 #include "clang/AST/Expr.h" 52 #include "clang/AST/ExprCXX.h" 53 #include "clang/AST/ParentMap.h" 54 #include "clang/Basic/LLVM.h" 55 #include "clang/Basic/SourceManager.h" 56 #include "clang/Basic/TargetInfo.h" 57 #include "clang/Lex/Lexer.h" 58 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" 59 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 60 #include "clang/StaticAnalyzer/Core/BugReporter/CommonBugCategories.h" 61 #include "clang/StaticAnalyzer/Core/Checker.h" 62 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 63 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 64 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 65 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerHelpers.h" 66 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicSize.h" 67 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 68 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 69 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h" 70 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h" 71 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h" 72 #include "llvm/ADT/STLExtras.h" 73 #include "llvm/ADT/SmallString.h" 74 #include "llvm/ADT/StringExtras.h" 75 #include "llvm/Support/Compiler.h" 76 #include "llvm/Support/ErrorHandling.h" 77 #include <climits> 78 #include <functional> 79 #include <utility> 80 81 using namespace clang; 82 using namespace ento; 83 using namespace std::placeholders; 84 85 //===----------------------------------------------------------------------===// 86 // The types of allocation we're modeling. This is used to check whether a 87 // dynamically allocated object is deallocated with the correct function, like 88 // not using operator delete on an object created by malloc(), or alloca regions 89 // aren't ever deallocated manually. 90 //===----------------------------------------------------------------------===// 91 92 namespace { 93 94 // Used to check correspondence between allocators and deallocators. 95 enum AllocationFamily { 96 AF_None, 97 AF_Malloc, 98 AF_CXXNew, 99 AF_CXXNewArray, 100 AF_IfNameIndex, 101 AF_Alloca, 102 AF_InnerBuffer 103 }; 104 105 } // end of anonymous namespace 106 107 /// Print names of allocators and deallocators. 108 /// 109 /// \returns true on success. 110 static bool printMemFnName(raw_ostream &os, CheckerContext &C, const Expr *E); 111 112 /// Print expected name of an allocator based on the deallocator's family 113 /// derived from the DeallocExpr. 114 static void printExpectedAllocName(raw_ostream &os, AllocationFamily Family); 115 116 /// Print expected name of a deallocator based on the allocator's 117 /// family. 118 static void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family); 119 120 //===----------------------------------------------------------------------===// 121 // The state of a symbol, in terms of memory management. 122 //===----------------------------------------------------------------------===// 123 124 namespace { 125 126 class RefState { 127 enum Kind { 128 // Reference to allocated memory. 129 Allocated, 130 // Reference to zero-allocated memory. 131 AllocatedOfSizeZero, 132 // Reference to released/freed memory. 133 Released, 134 // The responsibility for freeing resources has transferred from 135 // this reference. A relinquished symbol should not be freed. 136 Relinquished, 137 // We are no longer guaranteed to have observed all manipulations 138 // of this pointer/memory. For example, it could have been 139 // passed as a parameter to an opaque function. 140 Escaped 141 }; 142 143 const Stmt *S; 144 145 Kind K; 146 AllocationFamily Family; 147 148 RefState(Kind k, const Stmt *s, AllocationFamily family) 149 : S(s), K(k), Family(family) { 150 assert(family != AF_None); 151 } 152 153 public: 154 bool isAllocated() const { return K == Allocated; } 155 bool isAllocatedOfSizeZero() const { return K == AllocatedOfSizeZero; } 156 bool isReleased() const { return K == Released; } 157 bool isRelinquished() const { return K == Relinquished; } 158 bool isEscaped() const { return K == Escaped; } 159 AllocationFamily getAllocationFamily() const { return Family; } 160 const Stmt *getStmt() const { return S; } 161 162 bool operator==(const RefState &X) const { 163 return K == X.K && S == X.S && Family == X.Family; 164 } 165 166 static RefState getAllocated(AllocationFamily family, const Stmt *s) { 167 return RefState(Allocated, s, family); 168 } 169 static RefState getAllocatedOfSizeZero(const RefState *RS) { 170 return RefState(AllocatedOfSizeZero, RS->getStmt(), 171 RS->getAllocationFamily()); 172 } 173 static RefState getReleased(AllocationFamily family, const Stmt *s) { 174 return RefState(Released, s, family); 175 } 176 static RefState getRelinquished(AllocationFamily family, const Stmt *s) { 177 return RefState(Relinquished, s, family); 178 } 179 static RefState getEscaped(const RefState *RS) { 180 return RefState(Escaped, RS->getStmt(), RS->getAllocationFamily()); 181 } 182 183 void Profile(llvm::FoldingSetNodeID &ID) const { 184 ID.AddInteger(K); 185 ID.AddPointer(S); 186 ID.AddInteger(Family); 187 } 188 189 LLVM_DUMP_METHOD void dump(raw_ostream &OS) const { 190 switch (K) { 191 #define CASE(ID) case ID: OS << #ID; break; 192 CASE(Allocated) 193 CASE(AllocatedOfSizeZero) 194 CASE(Released) 195 CASE(Relinquished) 196 CASE(Escaped) 197 } 198 } 199 200 LLVM_DUMP_METHOD void dump() const { dump(llvm::errs()); } 201 }; 202 203 } // end of anonymous namespace 204 205 REGISTER_MAP_WITH_PROGRAMSTATE(RegionState, SymbolRef, RefState) 206 207 /// Check if the memory associated with this symbol was released. 208 static bool isReleased(SymbolRef Sym, CheckerContext &C); 209 210 /// Update the RefState to reflect the new memory allocation. 211 /// The optional \p RetVal parameter specifies the newly allocated pointer 212 /// value; if unspecified, the value of expression \p E is used. 213 static ProgramStateRef MallocUpdateRefState(CheckerContext &C, const Expr *E, 214 ProgramStateRef State, 215 AllocationFamily Family, 216 Optional<SVal> RetVal = None); 217 218 //===----------------------------------------------------------------------===// 219 // The modeling of memory reallocation. 220 // 221 // The terminology 'toPtr' and 'fromPtr' will be used: 222 // toPtr = realloc(fromPtr, 20); 223 //===----------------------------------------------------------------------===// 224 225 REGISTER_SET_WITH_PROGRAMSTATE(ReallocSizeZeroSymbols, SymbolRef) 226 227 namespace { 228 229 /// The state of 'fromPtr' after reallocation is known to have failed. 230 enum OwnershipAfterReallocKind { 231 // The symbol needs to be freed (e.g.: realloc) 232 OAR_ToBeFreedAfterFailure, 233 // The symbol has been freed (e.g.: reallocf) 234 OAR_FreeOnFailure, 235 // The symbol doesn't have to freed (e.g.: we aren't sure if, how and where 236 // 'fromPtr' was allocated: 237 // void Haha(int *ptr) { 238 // ptr = realloc(ptr, 67); 239 // // ... 240 // } 241 // ). 242 OAR_DoNotTrackAfterFailure 243 }; 244 245 /// Stores information about the 'fromPtr' symbol after reallocation. 246 /// 247 /// This is important because realloc may fail, and that needs special modeling. 248 /// Whether reallocation failed or not will not be known until later, so we'll 249 /// store whether upon failure 'fromPtr' will be freed, or needs to be freed 250 /// later, etc. 251 struct ReallocPair { 252 253 // The 'fromPtr'. 254 SymbolRef ReallocatedSym; 255 OwnershipAfterReallocKind Kind; 256 257 ReallocPair(SymbolRef S, OwnershipAfterReallocKind K) 258 : ReallocatedSym(S), Kind(K) {} 259 void Profile(llvm::FoldingSetNodeID &ID) const { 260 ID.AddInteger(Kind); 261 ID.AddPointer(ReallocatedSym); 262 } 263 bool operator==(const ReallocPair &X) const { 264 return ReallocatedSym == X.ReallocatedSym && 265 Kind == X.Kind; 266 } 267 }; 268 269 } // end of anonymous namespace 270 271 REGISTER_MAP_WITH_PROGRAMSTATE(ReallocPairs, SymbolRef, ReallocPair) 272 273 /// Tells if the callee is one of the builtin new/delete operators, including 274 /// placement operators and other standard overloads. 275 static bool isStandardNewDelete(const FunctionDecl *FD); 276 static bool isStandardNewDelete(const CallEvent &Call) { 277 if (!Call.getDecl() || !isa<FunctionDecl>(Call.getDecl())) 278 return false; 279 return isStandardNewDelete(cast<FunctionDecl>(Call.getDecl())); 280 } 281 282 //===----------------------------------------------------------------------===// 283 // Definition of the MallocChecker class. 284 //===----------------------------------------------------------------------===// 285 286 namespace { 287 288 class MallocChecker 289 : public Checker<check::DeadSymbols, check::PointerEscape, 290 check::ConstPointerEscape, check::PreStmt<ReturnStmt>, 291 check::EndFunction, check::PreCall, check::PostCall, 292 check::NewAllocator, check::PostStmt<BlockExpr>, 293 check::PostObjCMessage, check::Location, eval::Assume> { 294 public: 295 /// In pessimistic mode, the checker assumes that it does not know which 296 /// functions might free the memory. 297 /// In optimistic mode, the checker assumes that all user-defined functions 298 /// which might free a pointer are annotated. 299 DefaultBool ShouldIncludeOwnershipAnnotatedFunctions; 300 301 /// Many checkers are essentially built into this one, so enabling them will 302 /// make MallocChecker perform additional modeling and reporting. 303 enum CheckKind { 304 /// When a subchecker is enabled but MallocChecker isn't, model memory 305 /// management but do not emit warnings emitted with MallocChecker only 306 /// enabled. 307 CK_MallocChecker, 308 CK_NewDeleteChecker, 309 CK_NewDeleteLeaksChecker, 310 CK_MismatchedDeallocatorChecker, 311 CK_InnerPointerChecker, 312 CK_NumCheckKinds 313 }; 314 315 using LeakInfo = std::pair<const ExplodedNode *, const MemRegion *>; 316 317 DefaultBool ChecksEnabled[CK_NumCheckKinds]; 318 CheckerNameRef CheckNames[CK_NumCheckKinds]; 319 320 void checkPreCall(const CallEvent &Call, CheckerContext &C) const; 321 void checkPostCall(const CallEvent &Call, CheckerContext &C) const; 322 void checkNewAllocator(const CXXAllocatorCall &Call, CheckerContext &C) const; 323 void checkPostObjCMessage(const ObjCMethodCall &Call, CheckerContext &C) const; 324 void checkPostStmt(const BlockExpr *BE, CheckerContext &C) const; 325 void checkDeadSymbols(SymbolReaper &SymReaper, CheckerContext &C) const; 326 void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const; 327 void checkEndFunction(const ReturnStmt *S, CheckerContext &C) const; 328 ProgramStateRef evalAssume(ProgramStateRef state, SVal Cond, 329 bool Assumption) const; 330 void checkLocation(SVal l, bool isLoad, const Stmt *S, 331 CheckerContext &C) const; 332 333 ProgramStateRef checkPointerEscape(ProgramStateRef State, 334 const InvalidatedSymbols &Escaped, 335 const CallEvent *Call, 336 PointerEscapeKind Kind) const; 337 ProgramStateRef checkConstPointerEscape(ProgramStateRef State, 338 const InvalidatedSymbols &Escaped, 339 const CallEvent *Call, 340 PointerEscapeKind Kind) const; 341 342 void printState(raw_ostream &Out, ProgramStateRef State, 343 const char *NL, const char *Sep) const override; 344 345 private: 346 mutable std::unique_ptr<BugType> BT_DoubleFree[CK_NumCheckKinds]; 347 mutable std::unique_ptr<BugType> BT_DoubleDelete; 348 mutable std::unique_ptr<BugType> BT_Leak[CK_NumCheckKinds]; 349 mutable std::unique_ptr<BugType> BT_UseFree[CK_NumCheckKinds]; 350 mutable std::unique_ptr<BugType> BT_BadFree[CK_NumCheckKinds]; 351 mutable std::unique_ptr<BugType> BT_FreeAlloca[CK_NumCheckKinds]; 352 mutable std::unique_ptr<BugType> BT_MismatchedDealloc; 353 mutable std::unique_ptr<BugType> BT_OffsetFree[CK_NumCheckKinds]; 354 mutable std::unique_ptr<BugType> BT_UseZerroAllocated[CK_NumCheckKinds]; 355 356 #define CHECK_FN(NAME) \ 357 void NAME(const CallEvent &Call, CheckerContext &C) const; 358 359 CHECK_FN(checkFree) 360 CHECK_FN(checkIfNameIndex) 361 CHECK_FN(checkBasicAlloc) 362 CHECK_FN(checkKernelMalloc) 363 CHECK_FN(checkCalloc) 364 CHECK_FN(checkAlloca) 365 CHECK_FN(checkStrdup) 366 CHECK_FN(checkIfFreeNameIndex) 367 CHECK_FN(checkCXXNewOrCXXDelete) 368 CHECK_FN(checkGMalloc0) 369 CHECK_FN(checkGMemdup) 370 CHECK_FN(checkGMallocN) 371 CHECK_FN(checkGMallocN0) 372 CHECK_FN(checkReallocN) 373 CHECK_FN(checkOwnershipAttr) 374 375 void checkRealloc(const CallEvent &Call, CheckerContext &C, 376 bool ShouldFreeOnFail) const; 377 378 using CheckFn = std::function<void(const MallocChecker *, 379 const CallEvent &Call, CheckerContext &C)>; 380 381 const CallDescriptionMap<CheckFn> FreeingMemFnMap{ 382 {{"free", 1}, &MallocChecker::checkFree}, 383 {{"if_freenameindex", 1}, &MallocChecker::checkIfFreeNameIndex}, 384 {{"kfree", 1}, &MallocChecker::checkFree}, 385 {{"g_free", 1}, &MallocChecker::checkFree}, 386 }; 387 388 bool isFreeingCall(const CallEvent &Call) const; 389 390 CallDescriptionMap<CheckFn> AllocatingMemFnMap{ 391 {{"alloca", 1}, &MallocChecker::checkAlloca}, 392 {{"_alloca", 1}, &MallocChecker::checkAlloca}, 393 {{"malloc", 1}, &MallocChecker::checkBasicAlloc}, 394 {{"malloc", 3}, &MallocChecker::checkKernelMalloc}, 395 {{"calloc", 2}, &MallocChecker::checkCalloc}, 396 {{"valloc", 1}, &MallocChecker::checkBasicAlloc}, 397 {{CDF_MaybeBuiltin, "strndup", 2}, &MallocChecker::checkStrdup}, 398 {{CDF_MaybeBuiltin, "strdup", 1}, &MallocChecker::checkStrdup}, 399 {{"_strdup", 1}, &MallocChecker::checkStrdup}, 400 {{"kmalloc", 2}, &MallocChecker::checkKernelMalloc}, 401 {{"if_nameindex", 1}, &MallocChecker::checkIfNameIndex}, 402 {{CDF_MaybeBuiltin, "wcsdup", 1}, &MallocChecker::checkStrdup}, 403 {{CDF_MaybeBuiltin, "_wcsdup", 1}, &MallocChecker::checkStrdup}, 404 {{"g_malloc", 1}, &MallocChecker::checkBasicAlloc}, 405 {{"g_malloc0", 1}, &MallocChecker::checkGMalloc0}, 406 {{"g_try_malloc", 1}, &MallocChecker::checkBasicAlloc}, 407 {{"g_try_malloc0", 1}, &MallocChecker::checkGMalloc0}, 408 {{"g_memdup", 2}, &MallocChecker::checkGMemdup}, 409 {{"g_malloc_n", 2}, &MallocChecker::checkGMallocN}, 410 {{"g_malloc0_n", 2}, &MallocChecker::checkGMallocN0}, 411 {{"g_try_malloc_n", 2}, &MallocChecker::checkGMallocN}, 412 {{"g_try_malloc0_n", 2}, &MallocChecker::checkGMallocN0}, 413 }; 414 415 CallDescriptionMap<CheckFn> ReallocatingMemFnMap{ 416 {{"realloc", 2}, 417 std::bind(&MallocChecker::checkRealloc, _1, _2, _3, false)}, 418 {{"reallocf", 2}, 419 std::bind(&MallocChecker::checkRealloc, _1, _2, _3, true)}, 420 {{"g_realloc", 2}, 421 std::bind(&MallocChecker::checkRealloc, _1, _2, _3, false)}, 422 {{"g_try_realloc", 2}, 423 std::bind(&MallocChecker::checkRealloc, _1, _2, _3, false)}, 424 {{"g_realloc_n", 3}, &MallocChecker::checkReallocN}, 425 {{"g_try_realloc_n", 3}, &MallocChecker::checkReallocN}, 426 }; 427 428 bool isMemCall(const CallEvent &Call) const; 429 430 // TODO: Remove mutable by moving the initializtaion to the registry function. 431 mutable Optional<uint64_t> KernelZeroFlagVal; 432 433 using KernelZeroSizePtrValueTy = Optional<int>; 434 /// Store the value of macro called `ZERO_SIZE_PTR`. 435 /// The value is initialized at first use, before first use the outer 436 /// Optional is empty, afterwards it contains another Optional that indicates 437 /// if the macro value could be determined, and if yes the value itself. 438 mutable Optional<KernelZeroSizePtrValueTy> KernelZeroSizePtrValue; 439 440 /// Process C++ operator new()'s allocation, which is the part of C++ 441 /// new-expression that goes before the constructor. 442 LLVM_NODISCARD 443 ProgramStateRef processNewAllocation(const CXXAllocatorCall &Call, 444 CheckerContext &C, 445 AllocationFamily Family) const; 446 447 /// Perform a zero-allocation check. 448 /// 449 /// \param [in] Call The expression that allocates memory. 450 /// \param [in] IndexOfSizeArg Index of the argument that specifies the size 451 /// of the memory that needs to be allocated. E.g. for malloc, this would be 452 /// 0. 453 /// \param [in] RetVal Specifies the newly allocated pointer value; 454 /// if unspecified, the value of expression \p E is used. 455 LLVM_NODISCARD 456 static ProgramStateRef ProcessZeroAllocCheck(const CallEvent &Call, 457 const unsigned IndexOfSizeArg, 458 ProgramStateRef State, 459 Optional<SVal> RetVal = None); 460 461 /// Model functions with the ownership_returns attribute. 462 /// 463 /// User-defined function may have the ownership_returns attribute, which 464 /// annotates that the function returns with an object that was allocated on 465 /// the heap, and passes the ownertship to the callee. 466 /// 467 /// void __attribute((ownership_returns(malloc, 1))) *my_malloc(size_t); 468 /// 469 /// It has two parameters: 470 /// - first: name of the resource (e.g. 'malloc') 471 /// - (OPTIONAL) second: size of the allocated region 472 /// 473 /// \param [in] Call The expression that allocates memory. 474 /// \param [in] Att The ownership_returns attribute. 475 /// \param [in] State The \c ProgramState right before allocation. 476 /// \returns The ProgramState right after allocation. 477 LLVM_NODISCARD 478 ProgramStateRef MallocMemReturnsAttr(CheckerContext &C, const CallEvent &Call, 479 const OwnershipAttr *Att, 480 ProgramStateRef State) const; 481 482 /// Models memory allocation. 483 /// 484 /// \param [in] Call The expression that allocates memory. 485 /// \param [in] SizeEx Size of the memory that needs to be allocated. 486 /// \param [in] Init The value the allocated memory needs to be initialized. 487 /// with. For example, \c calloc initializes the allocated memory to 0, 488 /// malloc leaves it undefined. 489 /// \param [in] State The \c ProgramState right before allocation. 490 /// \returns The ProgramState right after allocation. 491 LLVM_NODISCARD 492 static ProgramStateRef MallocMemAux(CheckerContext &C, const CallEvent &Call, 493 const Expr *SizeEx, SVal Init, 494 ProgramStateRef State, 495 AllocationFamily Family); 496 497 /// Models memory allocation. 498 /// 499 /// \param [in] Call The expression that allocates memory. 500 /// \param [in] Size Size of the memory that needs to be allocated. 501 /// \param [in] Init The value the allocated memory needs to be initialized. 502 /// with. For example, \c calloc initializes the allocated memory to 0, 503 /// malloc leaves it undefined. 504 /// \param [in] State The \c ProgramState right before allocation. 505 /// \returns The ProgramState right after allocation. 506 LLVM_NODISCARD 507 static ProgramStateRef MallocMemAux(CheckerContext &C, const CallEvent &Call, 508 SVal Size, SVal Init, 509 ProgramStateRef State, 510 AllocationFamily Family); 511 512 LLVM_NODISCARD 513 static ProgramStateRef addExtentSize(CheckerContext &C, const CXXNewExpr *NE, 514 ProgramStateRef State, SVal Target); 515 516 // Check if this malloc() for special flags. At present that means M_ZERO or 517 // __GFP_ZERO (in which case, treat it like calloc). 518 LLVM_NODISCARD 519 llvm::Optional<ProgramStateRef> 520 performKernelMalloc(const CallEvent &Call, CheckerContext &C, 521 const ProgramStateRef &State) const; 522 523 /// Model functions with the ownership_takes and ownership_holds attributes. 524 /// 525 /// User-defined function may have the ownership_takes and/or ownership_holds 526 /// attributes, which annotates that the function frees the memory passed as a 527 /// parameter. 528 /// 529 /// void __attribute((ownership_takes(malloc, 1))) my_free(void *); 530 /// void __attribute((ownership_holds(malloc, 1))) my_hold(void *); 531 /// 532 /// They have two parameters: 533 /// - first: name of the resource (e.g. 'malloc') 534 /// - second: index of the parameter the attribute applies to 535 /// 536 /// \param [in] Call The expression that frees memory. 537 /// \param [in] Att The ownership_takes or ownership_holds attribute. 538 /// \param [in] State The \c ProgramState right before allocation. 539 /// \returns The ProgramState right after deallocation. 540 LLVM_NODISCARD 541 ProgramStateRef FreeMemAttr(CheckerContext &C, const CallEvent &Call, 542 const OwnershipAttr *Att, 543 ProgramStateRef State) const; 544 545 /// Models memory deallocation. 546 /// 547 /// \param [in] Call The expression that frees memory. 548 /// \param [in] State The \c ProgramState right before allocation. 549 /// \param [in] Num Index of the argument that needs to be freed. This is 550 /// normally 0, but for custom free functions it may be different. 551 /// \param [in] Hold Whether the parameter at \p Index has the ownership_holds 552 /// attribute. 553 /// \param [out] IsKnownToBeAllocated Whether the memory to be freed is known 554 /// to have been allocated, or in other words, the symbol to be freed was 555 /// registered as allocated by this checker. In the following case, \c ptr 556 /// isn't known to be allocated. 557 /// void Haha(int *ptr) { 558 /// ptr = realloc(ptr, 67); 559 /// // ... 560 /// } 561 /// \param [in] ReturnsNullOnFailure Whether the memory deallocation function 562 /// we're modeling returns with Null on failure. 563 /// \returns The ProgramState right after deallocation. 564 LLVM_NODISCARD 565 ProgramStateRef FreeMemAux(CheckerContext &C, const CallEvent &Call, 566 ProgramStateRef State, unsigned Num, bool Hold, 567 bool &IsKnownToBeAllocated, 568 AllocationFamily Family, 569 bool ReturnsNullOnFailure = false) const; 570 571 /// Models memory deallocation. 572 /// 573 /// \param [in] ArgExpr The variable who's pointee needs to be freed. 574 /// \param [in] Call The expression that frees the memory. 575 /// \param [in] State The \c ProgramState right before allocation. 576 /// normally 0, but for custom free functions it may be different. 577 /// \param [in] Hold Whether the parameter at \p Index has the ownership_holds 578 /// attribute. 579 /// \param [out] IsKnownToBeAllocated Whether the memory to be freed is known 580 /// to have been allocated, or in other words, the symbol to be freed was 581 /// registered as allocated by this checker. In the following case, \c ptr 582 /// isn't known to be allocated. 583 /// void Haha(int *ptr) { 584 /// ptr = realloc(ptr, 67); 585 /// // ... 586 /// } 587 /// \param [in] ReturnsNullOnFailure Whether the memory deallocation function 588 /// we're modeling returns with Null on failure. 589 /// \returns The ProgramState right after deallocation. 590 LLVM_NODISCARD 591 ProgramStateRef FreeMemAux(CheckerContext &C, const Expr *ArgExpr, 592 const CallEvent &Call, ProgramStateRef State, 593 bool Hold, bool &IsKnownToBeAllocated, 594 AllocationFamily Family, 595 bool ReturnsNullOnFailure = false) const; 596 597 // TODO: Needs some refactoring, as all other deallocation modeling 598 // functions are suffering from out parameters and messy code due to how 599 // realloc is handled. 600 // 601 /// Models memory reallocation. 602 /// 603 /// \param [in] Call The expression that reallocated memory 604 /// \param [in] ShouldFreeOnFail Whether if reallocation fails, the supplied 605 /// memory should be freed. 606 /// \param [in] State The \c ProgramState right before reallocation. 607 /// \param [in] SuffixWithN Whether the reallocation function we're modeling 608 /// has an '_n' suffix, such as g_realloc_n. 609 /// \returns The ProgramState right after reallocation. 610 LLVM_NODISCARD 611 ProgramStateRef ReallocMemAux(CheckerContext &C, const CallEvent &Call, 612 bool ShouldFreeOnFail, ProgramStateRef State, 613 AllocationFamily Family, 614 bool SuffixWithN = false) const; 615 616 /// Evaluates the buffer size that needs to be allocated. 617 /// 618 /// \param [in] Blocks The amount of blocks that needs to be allocated. 619 /// \param [in] BlockBytes The size of a block. 620 /// \returns The symbolic value of \p Blocks * \p BlockBytes. 621 LLVM_NODISCARD 622 static SVal evalMulForBufferSize(CheckerContext &C, const Expr *Blocks, 623 const Expr *BlockBytes); 624 625 /// Models zero initialized array allocation. 626 /// 627 /// \param [in] Call The expression that reallocated memory 628 /// \param [in] State The \c ProgramState right before reallocation. 629 /// \returns The ProgramState right after allocation. 630 LLVM_NODISCARD 631 static ProgramStateRef CallocMem(CheckerContext &C, const CallEvent &Call, 632 ProgramStateRef State); 633 634 /// See if deallocation happens in a suspicious context. If so, escape the 635 /// pointers that otherwise would have been deallocated and return true. 636 bool suppressDeallocationsInSuspiciousContexts(const CallEvent &Call, 637 CheckerContext &C) const; 638 639 /// If in \p S \p Sym is used, check whether \p Sym was already freed. 640 bool checkUseAfterFree(SymbolRef Sym, CheckerContext &C, const Stmt *S) const; 641 642 /// If in \p S \p Sym is used, check whether \p Sym was allocated as a zero 643 /// sized memory region. 644 void checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, 645 const Stmt *S) const; 646 647 /// If in \p S \p Sym is being freed, check whether \p Sym was already freed. 648 bool checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const; 649 650 /// Check if the function is known to free memory, or if it is 651 /// "interesting" and should be modeled explicitly. 652 /// 653 /// \param [out] EscapingSymbol A function might not free memory in general, 654 /// but could be known to free a particular symbol. In this case, false is 655 /// returned and the single escaping symbol is returned through the out 656 /// parameter. 657 /// 658 /// We assume that pointers do not escape through calls to system functions 659 /// not handled by this checker. 660 bool mayFreeAnyEscapedMemoryOrIsModeledExplicitly(const CallEvent *Call, 661 ProgramStateRef State, 662 SymbolRef &EscapingSymbol) const; 663 664 /// Implementation of the checkPointerEscape callbacks. 665 LLVM_NODISCARD 666 ProgramStateRef checkPointerEscapeAux(ProgramStateRef State, 667 const InvalidatedSymbols &Escaped, 668 const CallEvent *Call, 669 PointerEscapeKind Kind, 670 bool IsConstPointerEscape) const; 671 672 // Implementation of the checkPreStmt and checkEndFunction callbacks. 673 void checkEscapeOnReturn(const ReturnStmt *S, CheckerContext &C) const; 674 675 ///@{ 676 /// Tells if a given family/call/symbol is tracked by the current checker. 677 /// Sets CheckKind to the kind of the checker responsible for this 678 /// family/call/symbol. 679 Optional<CheckKind> getCheckIfTracked(AllocationFamily Family, 680 bool IsALeakCheck = false) const; 681 682 Optional<CheckKind> getCheckIfTracked(CheckerContext &C, SymbolRef Sym, 683 bool IsALeakCheck = false) const; 684 ///@} 685 static bool SummarizeValue(raw_ostream &os, SVal V); 686 static bool SummarizeRegion(raw_ostream &os, const MemRegion *MR); 687 688 void HandleNonHeapDealloc(CheckerContext &C, SVal ArgVal, SourceRange Range, 689 const Expr *DeallocExpr, 690 AllocationFamily Family) const; 691 692 void HandleFreeAlloca(CheckerContext &C, SVal ArgVal, 693 SourceRange Range) const; 694 695 void HandleMismatchedDealloc(CheckerContext &C, SourceRange Range, 696 const Expr *DeallocExpr, const RefState *RS, 697 SymbolRef Sym, bool OwnershipTransferred) const; 698 699 void HandleOffsetFree(CheckerContext &C, SVal ArgVal, SourceRange Range, 700 const Expr *DeallocExpr, AllocationFamily Family, 701 const Expr *AllocExpr = nullptr) const; 702 703 void HandleUseAfterFree(CheckerContext &C, SourceRange Range, 704 SymbolRef Sym) const; 705 706 void HandleDoubleFree(CheckerContext &C, SourceRange Range, bool Released, 707 SymbolRef Sym, SymbolRef PrevSym) const; 708 709 void HandleDoubleDelete(CheckerContext &C, SymbolRef Sym) const; 710 711 void HandleUseZeroAlloc(CheckerContext &C, SourceRange Range, 712 SymbolRef Sym) const; 713 714 void HandleFunctionPtrFree(CheckerContext &C, SVal ArgVal, SourceRange Range, 715 const Expr *FreeExpr, 716 AllocationFamily Family) const; 717 718 /// Find the location of the allocation for Sym on the path leading to the 719 /// exploded node N. 720 static LeakInfo getAllocationSite(const ExplodedNode *N, SymbolRef Sym, 721 CheckerContext &C); 722 723 void HandleLeak(SymbolRef Sym, ExplodedNode *N, CheckerContext &C) const; 724 725 /// Test if value in ArgVal equals to value in macro `ZERO_SIZE_PTR`. 726 bool isArgZERO_SIZE_PTR(ProgramStateRef State, CheckerContext &C, 727 SVal ArgVal) const; 728 }; 729 730 //===----------------------------------------------------------------------===// 731 // Definition of MallocBugVisitor. 732 //===----------------------------------------------------------------------===// 733 734 /// The bug visitor which allows us to print extra diagnostics along the 735 /// BugReport path. For example, showing the allocation site of the leaked 736 /// region. 737 class MallocBugVisitor final : public BugReporterVisitor { 738 protected: 739 enum NotificationMode { Normal, ReallocationFailed }; 740 741 // The allocated region symbol tracked by the main analysis. 742 SymbolRef Sym; 743 744 // The mode we are in, i.e. what kind of diagnostics will be emitted. 745 NotificationMode Mode; 746 747 // A symbol from when the primary region should have been reallocated. 748 SymbolRef FailedReallocSymbol; 749 750 // A C++ destructor stack frame in which memory was released. Used for 751 // miscellaneous false positive suppression. 752 const StackFrameContext *ReleaseDestructorLC; 753 754 bool IsLeak; 755 756 public: 757 MallocBugVisitor(SymbolRef S, bool isLeak = false) 758 : Sym(S), Mode(Normal), FailedReallocSymbol(nullptr), 759 ReleaseDestructorLC(nullptr), IsLeak(isLeak) {} 760 761 static void *getTag() { 762 static int Tag = 0; 763 return &Tag; 764 } 765 766 void Profile(llvm::FoldingSetNodeID &ID) const override { 767 ID.AddPointer(getTag()); 768 ID.AddPointer(Sym); 769 } 770 771 /// Did not track -> allocated. Other state (released) -> allocated. 772 static inline bool isAllocated(const RefState *RSCurr, const RefState *RSPrev, 773 const Stmt *Stmt) { 774 return (Stmt && (isa<CallExpr>(Stmt) || isa<CXXNewExpr>(Stmt)) && 775 (RSCurr && 776 (RSCurr->isAllocated() || RSCurr->isAllocatedOfSizeZero())) && 777 (!RSPrev || 778 !(RSPrev->isAllocated() || RSPrev->isAllocatedOfSizeZero()))); 779 } 780 781 /// Did not track -> released. Other state (allocated) -> released. 782 /// The statement associated with the release might be missing. 783 static inline bool isReleased(const RefState *RSCurr, const RefState *RSPrev, 784 const Stmt *Stmt) { 785 bool IsReleased = 786 (RSCurr && RSCurr->isReleased()) && (!RSPrev || !RSPrev->isReleased()); 787 assert(!IsReleased || 788 (Stmt && (isa<CallExpr>(Stmt) || isa<CXXDeleteExpr>(Stmt))) || 789 (!Stmt && RSCurr->getAllocationFamily() == AF_InnerBuffer)); 790 return IsReleased; 791 } 792 793 /// Did not track -> relinquished. Other state (allocated) -> relinquished. 794 static inline bool isRelinquished(const RefState *RSCurr, 795 const RefState *RSPrev, const Stmt *Stmt) { 796 return (Stmt && 797 (isa<CallExpr>(Stmt) || isa<ObjCMessageExpr>(Stmt) || 798 isa<ObjCPropertyRefExpr>(Stmt)) && 799 (RSCurr && RSCurr->isRelinquished()) && 800 (!RSPrev || !RSPrev->isRelinquished())); 801 } 802 803 /// If the expression is not a call, and the state change is 804 /// released -> allocated, it must be the realloc return value 805 /// check. If we have to handle more cases here, it might be cleaner just 806 /// to track this extra bit in the state itself. 807 static inline bool hasReallocFailed(const RefState *RSCurr, 808 const RefState *RSPrev, 809 const Stmt *Stmt) { 810 return ((!Stmt || !isa<CallExpr>(Stmt)) && 811 (RSCurr && 812 (RSCurr->isAllocated() || RSCurr->isAllocatedOfSizeZero())) && 813 (RSPrev && 814 !(RSPrev->isAllocated() || RSPrev->isAllocatedOfSizeZero()))); 815 } 816 817 PathDiagnosticPieceRef VisitNode(const ExplodedNode *N, 818 BugReporterContext &BRC, 819 PathSensitiveBugReport &BR) override; 820 821 PathDiagnosticPieceRef getEndPath(BugReporterContext &BRC, 822 const ExplodedNode *EndPathNode, 823 PathSensitiveBugReport &BR) override { 824 if (!IsLeak) 825 return nullptr; 826 827 PathDiagnosticLocation L = BR.getLocation(); 828 // Do not add the statement itself as a range in case of leak. 829 return std::make_shared<PathDiagnosticEventPiece>(L, BR.getDescription(), 830 false); 831 } 832 833 private: 834 class StackHintGeneratorForReallocationFailed 835 : public StackHintGeneratorForSymbol { 836 public: 837 StackHintGeneratorForReallocationFailed(SymbolRef S, StringRef M) 838 : StackHintGeneratorForSymbol(S, M) {} 839 840 std::string getMessageForArg(const Expr *ArgE, unsigned ArgIndex) override { 841 // Printed parameters start at 1, not 0. 842 ++ArgIndex; 843 844 SmallString<200> buf; 845 llvm::raw_svector_ostream os(buf); 846 847 os << "Reallocation of " << ArgIndex << llvm::getOrdinalSuffix(ArgIndex) 848 << " parameter failed"; 849 850 return std::string(os.str()); 851 } 852 853 std::string getMessageForReturn(const CallExpr *CallExpr) override { 854 return "Reallocation of returned value failed"; 855 } 856 }; 857 }; 858 859 } // end anonymous namespace 860 861 // A map from the freed symbol to the symbol representing the return value of 862 // the free function. 863 REGISTER_MAP_WITH_PROGRAMSTATE(FreeReturnValue, SymbolRef, SymbolRef) 864 865 namespace { 866 class StopTrackingCallback final : public SymbolVisitor { 867 ProgramStateRef state; 868 869 public: 870 StopTrackingCallback(ProgramStateRef st) : state(std::move(st)) {} 871 ProgramStateRef getState() const { return state; } 872 873 bool VisitSymbol(SymbolRef sym) override { 874 state = state->remove<RegionState>(sym); 875 return true; 876 } 877 }; 878 } // end anonymous namespace 879 880 static bool isStandardNewDelete(const FunctionDecl *FD) { 881 if (!FD) 882 return false; 883 884 OverloadedOperatorKind Kind = FD->getOverloadedOperator(); 885 if (Kind != OO_New && Kind != OO_Array_New && Kind != OO_Delete && 886 Kind != OO_Array_Delete) 887 return false; 888 889 // This is standard if and only if it's not defined in a user file. 890 SourceLocation L = FD->getLocation(); 891 // If the header for operator delete is not included, it's still defined 892 // in an invalid source location. Check to make sure we don't crash. 893 return !L.isValid() || 894 FD->getASTContext().getSourceManager().isInSystemHeader(L); 895 } 896 897 //===----------------------------------------------------------------------===// 898 // Methods of MallocChecker and MallocBugVisitor. 899 //===----------------------------------------------------------------------===// 900 901 bool MallocChecker::isFreeingCall(const CallEvent &Call) const { 902 if (FreeingMemFnMap.lookup(Call) || ReallocatingMemFnMap.lookup(Call)) 903 return true; 904 905 const auto *Func = dyn_cast<FunctionDecl>(Call.getDecl()); 906 if (Func && Func->hasAttrs()) { 907 for (const auto *I : Func->specific_attrs<OwnershipAttr>()) { 908 OwnershipAttr::OwnershipKind OwnKind = I->getOwnKind(); 909 if (OwnKind == OwnershipAttr::Takes || OwnKind == OwnershipAttr::Holds) 910 return true; 911 } 912 } 913 return false; 914 } 915 916 bool MallocChecker::isMemCall(const CallEvent &Call) const { 917 if (FreeingMemFnMap.lookup(Call) || AllocatingMemFnMap.lookup(Call) || 918 ReallocatingMemFnMap.lookup(Call)) 919 return true; 920 921 if (!ShouldIncludeOwnershipAnnotatedFunctions) 922 return false; 923 924 const auto *Func = dyn_cast<FunctionDecl>(Call.getDecl()); 925 return Func && Func->hasAttr<OwnershipAttr>(); 926 } 927 928 llvm::Optional<ProgramStateRef> 929 MallocChecker::performKernelMalloc(const CallEvent &Call, CheckerContext &C, 930 const ProgramStateRef &State) const { 931 // 3-argument malloc(), as commonly used in {Free,Net,Open}BSD Kernels: 932 // 933 // void *malloc(unsigned long size, struct malloc_type *mtp, int flags); 934 // 935 // One of the possible flags is M_ZERO, which means 'give me back an 936 // allocation which is already zeroed', like calloc. 937 938 // 2-argument kmalloc(), as used in the Linux kernel: 939 // 940 // void *kmalloc(size_t size, gfp_t flags); 941 // 942 // Has the similar flag value __GFP_ZERO. 943 944 // This logic is largely cloned from O_CREAT in UnixAPIChecker, maybe some 945 // code could be shared. 946 947 ASTContext &Ctx = C.getASTContext(); 948 llvm::Triple::OSType OS = Ctx.getTargetInfo().getTriple().getOS(); 949 950 if (!KernelZeroFlagVal.hasValue()) { 951 if (OS == llvm::Triple::FreeBSD) 952 KernelZeroFlagVal = 0x0100; 953 else if (OS == llvm::Triple::NetBSD) 954 KernelZeroFlagVal = 0x0002; 955 else if (OS == llvm::Triple::OpenBSD) 956 KernelZeroFlagVal = 0x0008; 957 else if (OS == llvm::Triple::Linux) 958 // __GFP_ZERO 959 KernelZeroFlagVal = 0x8000; 960 else 961 // FIXME: We need a more general way of getting the M_ZERO value. 962 // See also: O_CREAT in UnixAPIChecker.cpp. 963 964 // Fall back to normal malloc behavior on platforms where we don't 965 // know M_ZERO. 966 return None; 967 } 968 969 // We treat the last argument as the flags argument, and callers fall-back to 970 // normal malloc on a None return. This works for the FreeBSD kernel malloc 971 // as well as Linux kmalloc. 972 if (Call.getNumArgs() < 2) 973 return None; 974 975 const Expr *FlagsEx = Call.getArgExpr(Call.getNumArgs() - 1); 976 const SVal V = C.getSVal(FlagsEx); 977 if (!V.getAs<NonLoc>()) { 978 // The case where 'V' can be a location can only be due to a bad header, 979 // so in this case bail out. 980 return None; 981 } 982 983 NonLoc Flags = V.castAs<NonLoc>(); 984 NonLoc ZeroFlag = C.getSValBuilder() 985 .makeIntVal(KernelZeroFlagVal.getValue(), FlagsEx->getType()) 986 .castAs<NonLoc>(); 987 SVal MaskedFlagsUC = C.getSValBuilder().evalBinOpNN(State, BO_And, 988 Flags, ZeroFlag, 989 FlagsEx->getType()); 990 if (MaskedFlagsUC.isUnknownOrUndef()) 991 return None; 992 DefinedSVal MaskedFlags = MaskedFlagsUC.castAs<DefinedSVal>(); 993 994 // Check if maskedFlags is non-zero. 995 ProgramStateRef TrueState, FalseState; 996 std::tie(TrueState, FalseState) = State->assume(MaskedFlags); 997 998 // If M_ZERO is set, treat this like calloc (initialized). 999 if (TrueState && !FalseState) { 1000 SVal ZeroVal = C.getSValBuilder().makeZeroVal(Ctx.CharTy); 1001 return MallocMemAux(C, Call, Call.getArgExpr(0), ZeroVal, TrueState, 1002 AF_Malloc); 1003 } 1004 1005 return None; 1006 } 1007 1008 SVal MallocChecker::evalMulForBufferSize(CheckerContext &C, const Expr *Blocks, 1009 const Expr *BlockBytes) { 1010 SValBuilder &SB = C.getSValBuilder(); 1011 SVal BlocksVal = C.getSVal(Blocks); 1012 SVal BlockBytesVal = C.getSVal(BlockBytes); 1013 ProgramStateRef State = C.getState(); 1014 SVal TotalSize = SB.evalBinOp(State, BO_Mul, BlocksVal, BlockBytesVal, 1015 SB.getContext().getSizeType()); 1016 return TotalSize; 1017 } 1018 1019 void MallocChecker::checkBasicAlloc(const CallEvent &Call, 1020 CheckerContext &C) const { 1021 ProgramStateRef State = C.getState(); 1022 State = MallocMemAux(C, Call, Call.getArgExpr(0), UndefinedVal(), State, 1023 AF_Malloc); 1024 State = ProcessZeroAllocCheck(Call, 0, State); 1025 C.addTransition(State); 1026 } 1027 1028 void MallocChecker::checkKernelMalloc(const CallEvent &Call, 1029 CheckerContext &C) const { 1030 ProgramStateRef State = C.getState(); 1031 llvm::Optional<ProgramStateRef> MaybeState = 1032 performKernelMalloc(Call, C, State); 1033 if (MaybeState.hasValue()) 1034 State = MaybeState.getValue(); 1035 else 1036 State = MallocMemAux(C, Call, Call.getArgExpr(0), UndefinedVal(), State, 1037 AF_Malloc); 1038 C.addTransition(State); 1039 } 1040 1041 static bool isStandardRealloc(const CallEvent &Call) { 1042 const FunctionDecl *FD = dyn_cast<FunctionDecl>(Call.getDecl()); 1043 assert(FD); 1044 ASTContext &AC = FD->getASTContext(); 1045 1046 if (isa<CXXMethodDecl>(FD)) 1047 return false; 1048 1049 return FD->getDeclaredReturnType().getDesugaredType(AC) == AC.VoidPtrTy && 1050 FD->getParamDecl(0)->getType().getDesugaredType(AC) == AC.VoidPtrTy && 1051 FD->getParamDecl(1)->getType().getDesugaredType(AC) == 1052 AC.getSizeType(); 1053 } 1054 1055 static bool isGRealloc(const CallEvent &Call) { 1056 const FunctionDecl *FD = dyn_cast<FunctionDecl>(Call.getDecl()); 1057 assert(FD); 1058 ASTContext &AC = FD->getASTContext(); 1059 1060 if (isa<CXXMethodDecl>(FD)) 1061 return false; 1062 1063 return FD->getDeclaredReturnType().getDesugaredType(AC) == AC.VoidPtrTy && 1064 FD->getParamDecl(0)->getType().getDesugaredType(AC) == AC.VoidPtrTy && 1065 FD->getParamDecl(1)->getType().getDesugaredType(AC) == 1066 AC.UnsignedLongTy; 1067 } 1068 1069 void MallocChecker::checkRealloc(const CallEvent &Call, CheckerContext &C, 1070 bool ShouldFreeOnFail) const { 1071 // HACK: CallDescription currently recognizes non-standard realloc functions 1072 // as standard because it doesn't check the type, or wether its a non-method 1073 // function. This should be solved by making CallDescription smarter. 1074 // Mind that this came from a bug report, and all other functions suffer from 1075 // this. 1076 // https://bugs.llvm.org/show_bug.cgi?id=46253 1077 if (!isStandardRealloc(Call) && !isGRealloc(Call)) 1078 return; 1079 ProgramStateRef State = C.getState(); 1080 State = ReallocMemAux(C, Call, ShouldFreeOnFail, State, AF_Malloc); 1081 State = ProcessZeroAllocCheck(Call, 1, State); 1082 C.addTransition(State); 1083 } 1084 1085 void MallocChecker::checkCalloc(const CallEvent &Call, 1086 CheckerContext &C) const { 1087 ProgramStateRef State = C.getState(); 1088 State = CallocMem(C, Call, State); 1089 State = ProcessZeroAllocCheck(Call, 0, State); 1090 State = ProcessZeroAllocCheck(Call, 1, State); 1091 C.addTransition(State); 1092 } 1093 1094 void MallocChecker::checkFree(const CallEvent &Call, CheckerContext &C) const { 1095 ProgramStateRef State = C.getState(); 1096 bool IsKnownToBeAllocatedMemory = false; 1097 if (suppressDeallocationsInSuspiciousContexts(Call, C)) 1098 return; 1099 State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory, 1100 AF_Malloc); 1101 C.addTransition(State); 1102 } 1103 1104 void MallocChecker::checkAlloca(const CallEvent &Call, 1105 CheckerContext &C) const { 1106 ProgramStateRef State = C.getState(); 1107 State = MallocMemAux(C, Call, Call.getArgExpr(0), UndefinedVal(), State, 1108 AF_Alloca); 1109 State = ProcessZeroAllocCheck(Call, 0, State); 1110 C.addTransition(State); 1111 } 1112 1113 void MallocChecker::checkStrdup(const CallEvent &Call, 1114 CheckerContext &C) const { 1115 ProgramStateRef State = C.getState(); 1116 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); 1117 if (!CE) 1118 return; 1119 State = MallocUpdateRefState(C, CE, State, AF_Malloc); 1120 1121 C.addTransition(State); 1122 } 1123 1124 void MallocChecker::checkIfNameIndex(const CallEvent &Call, 1125 CheckerContext &C) const { 1126 ProgramStateRef State = C.getState(); 1127 // Should we model this differently? We can allocate a fixed number of 1128 // elements with zeros in the last one. 1129 State = 1130 MallocMemAux(C, Call, UnknownVal(), UnknownVal(), State, AF_IfNameIndex); 1131 1132 C.addTransition(State); 1133 } 1134 1135 void MallocChecker::checkIfFreeNameIndex(const CallEvent &Call, 1136 CheckerContext &C) const { 1137 ProgramStateRef State = C.getState(); 1138 bool IsKnownToBeAllocatedMemory = false; 1139 State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory, 1140 AF_IfNameIndex); 1141 C.addTransition(State); 1142 } 1143 1144 void MallocChecker::checkCXXNewOrCXXDelete(const CallEvent &Call, 1145 CheckerContext &C) const { 1146 ProgramStateRef State = C.getState(); 1147 bool IsKnownToBeAllocatedMemory = false; 1148 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); 1149 if (!CE) 1150 return; 1151 1152 assert(isStandardNewDelete(Call)); 1153 1154 // Process direct calls to operator new/new[]/delete/delete[] functions 1155 // as distinct from new/new[]/delete/delete[] expressions that are 1156 // processed by the checkPostStmt callbacks for CXXNewExpr and 1157 // CXXDeleteExpr. 1158 const FunctionDecl *FD = C.getCalleeDecl(CE); 1159 switch (FD->getOverloadedOperator()) { 1160 case OO_New: 1161 State = 1162 MallocMemAux(C, Call, CE->getArg(0), UndefinedVal(), State, AF_CXXNew); 1163 State = ProcessZeroAllocCheck(Call, 0, State); 1164 break; 1165 case OO_Array_New: 1166 State = MallocMemAux(C, Call, CE->getArg(0), UndefinedVal(), State, 1167 AF_CXXNewArray); 1168 State = ProcessZeroAllocCheck(Call, 0, State); 1169 break; 1170 case OO_Delete: 1171 State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory, 1172 AF_CXXNew); 1173 break; 1174 case OO_Array_Delete: 1175 State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory, 1176 AF_CXXNewArray); 1177 break; 1178 default: 1179 llvm_unreachable("not a new/delete operator"); 1180 } 1181 1182 C.addTransition(State); 1183 } 1184 1185 void MallocChecker::checkGMalloc0(const CallEvent &Call, 1186 CheckerContext &C) const { 1187 ProgramStateRef State = C.getState(); 1188 SValBuilder &svalBuilder = C.getSValBuilder(); 1189 SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy); 1190 State = MallocMemAux(C, Call, Call.getArgExpr(0), zeroVal, State, AF_Malloc); 1191 State = ProcessZeroAllocCheck(Call, 0, State); 1192 C.addTransition(State); 1193 } 1194 1195 void MallocChecker::checkGMemdup(const CallEvent &Call, 1196 CheckerContext &C) const { 1197 ProgramStateRef State = C.getState(); 1198 State = MallocMemAux(C, Call, Call.getArgExpr(1), UndefinedVal(), State, 1199 AF_Malloc); 1200 State = ProcessZeroAllocCheck(Call, 1, State); 1201 C.addTransition(State); 1202 } 1203 1204 void MallocChecker::checkGMallocN(const CallEvent &Call, 1205 CheckerContext &C) const { 1206 ProgramStateRef State = C.getState(); 1207 SVal Init = UndefinedVal(); 1208 SVal TotalSize = evalMulForBufferSize(C, Call.getArgExpr(0), Call.getArgExpr(1)); 1209 State = MallocMemAux(C, Call, TotalSize, Init, State, AF_Malloc); 1210 State = ProcessZeroAllocCheck(Call, 0, State); 1211 State = ProcessZeroAllocCheck(Call, 1, State); 1212 C.addTransition(State); 1213 } 1214 1215 void MallocChecker::checkGMallocN0(const CallEvent &Call, 1216 CheckerContext &C) const { 1217 ProgramStateRef State = C.getState(); 1218 SValBuilder &SB = C.getSValBuilder(); 1219 SVal Init = SB.makeZeroVal(SB.getContext().CharTy); 1220 SVal TotalSize = evalMulForBufferSize(C, Call.getArgExpr(0), Call.getArgExpr(1)); 1221 State = MallocMemAux(C, Call, TotalSize, Init, State, AF_Malloc); 1222 State = ProcessZeroAllocCheck(Call, 0, State); 1223 State = ProcessZeroAllocCheck(Call, 1, State); 1224 C.addTransition(State); 1225 } 1226 1227 void MallocChecker::checkReallocN(const CallEvent &Call, 1228 CheckerContext &C) const { 1229 ProgramStateRef State = C.getState(); 1230 State = ReallocMemAux(C, Call, /*ShouldFreeOnFail=*/false, State, AF_Malloc, 1231 /*SuffixWithN=*/true); 1232 State = ProcessZeroAllocCheck(Call, 1, State); 1233 State = ProcessZeroAllocCheck(Call, 2, State); 1234 C.addTransition(State); 1235 } 1236 1237 void MallocChecker::checkOwnershipAttr(const CallEvent &Call, 1238 CheckerContext &C) const { 1239 ProgramStateRef State = C.getState(); 1240 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); 1241 if (!CE) 1242 return; 1243 const FunctionDecl *FD = C.getCalleeDecl(CE); 1244 if (!FD) 1245 return; 1246 if (ShouldIncludeOwnershipAnnotatedFunctions || 1247 ChecksEnabled[CK_MismatchedDeallocatorChecker]) { 1248 // Check all the attributes, if there are any. 1249 // There can be multiple of these attributes. 1250 if (FD->hasAttrs()) 1251 for (const auto *I : FD->specific_attrs<OwnershipAttr>()) { 1252 switch (I->getOwnKind()) { 1253 case OwnershipAttr::Returns: 1254 State = MallocMemReturnsAttr(C, Call, I, State); 1255 break; 1256 case OwnershipAttr::Takes: 1257 case OwnershipAttr::Holds: 1258 State = FreeMemAttr(C, Call, I, State); 1259 break; 1260 } 1261 } 1262 } 1263 C.addTransition(State); 1264 } 1265 1266 void MallocChecker::checkPostCall(const CallEvent &Call, 1267 CheckerContext &C) const { 1268 if (C.wasInlined) 1269 return; 1270 if (!Call.getOriginExpr()) 1271 return; 1272 1273 ProgramStateRef State = C.getState(); 1274 1275 if (const CheckFn *Callback = FreeingMemFnMap.lookup(Call)) { 1276 (*Callback)(this, Call, C); 1277 return; 1278 } 1279 1280 if (const CheckFn *Callback = AllocatingMemFnMap.lookup(Call)) { 1281 (*Callback)(this, Call, C); 1282 return; 1283 } 1284 1285 if (const CheckFn *Callback = ReallocatingMemFnMap.lookup(Call)) { 1286 (*Callback)(this, Call, C); 1287 return; 1288 } 1289 1290 if (isStandardNewDelete(Call)) { 1291 checkCXXNewOrCXXDelete(Call, C); 1292 return; 1293 } 1294 1295 checkOwnershipAttr(Call, C); 1296 } 1297 1298 // Performs a 0-sized allocations check. 1299 ProgramStateRef MallocChecker::ProcessZeroAllocCheck( 1300 const CallEvent &Call, const unsigned IndexOfSizeArg, ProgramStateRef State, 1301 Optional<SVal> RetVal) { 1302 if (!State) 1303 return nullptr; 1304 1305 if (!RetVal) 1306 RetVal = Call.getReturnValue(); 1307 1308 const Expr *Arg = nullptr; 1309 1310 if (const CallExpr *CE = dyn_cast<CallExpr>(Call.getOriginExpr())) { 1311 Arg = CE->getArg(IndexOfSizeArg); 1312 } else if (const CXXNewExpr *NE = 1313 dyn_cast<CXXNewExpr>(Call.getOriginExpr())) { 1314 if (NE->isArray()) { 1315 Arg = *NE->getArraySize(); 1316 } else { 1317 return State; 1318 } 1319 } else 1320 llvm_unreachable("not a CallExpr or CXXNewExpr"); 1321 1322 assert(Arg); 1323 1324 auto DefArgVal = 1325 State->getSVal(Arg, Call.getLocationContext()).getAs<DefinedSVal>(); 1326 1327 if (!DefArgVal) 1328 return State; 1329 1330 // Check if the allocation size is 0. 1331 ProgramStateRef TrueState, FalseState; 1332 SValBuilder &SvalBuilder = State->getStateManager().getSValBuilder(); 1333 DefinedSVal Zero = 1334 SvalBuilder.makeZeroVal(Arg->getType()).castAs<DefinedSVal>(); 1335 1336 std::tie(TrueState, FalseState) = 1337 State->assume(SvalBuilder.evalEQ(State, *DefArgVal, Zero)); 1338 1339 if (TrueState && !FalseState) { 1340 SymbolRef Sym = RetVal->getAsLocSymbol(); 1341 if (!Sym) 1342 return State; 1343 1344 const RefState *RS = State->get<RegionState>(Sym); 1345 if (RS) { 1346 if (RS->isAllocated()) 1347 return TrueState->set<RegionState>(Sym, 1348 RefState::getAllocatedOfSizeZero(RS)); 1349 else 1350 return State; 1351 } else { 1352 // Case of zero-size realloc. Historically 'realloc(ptr, 0)' is treated as 1353 // 'free(ptr)' and the returned value from 'realloc(ptr, 0)' is not 1354 // tracked. Add zero-reallocated Sym to the state to catch references 1355 // to zero-allocated memory. 1356 return TrueState->add<ReallocSizeZeroSymbols>(Sym); 1357 } 1358 } 1359 1360 // Assume the value is non-zero going forward. 1361 assert(FalseState); 1362 return FalseState; 1363 } 1364 1365 static QualType getDeepPointeeType(QualType T) { 1366 QualType Result = T, PointeeType = T->getPointeeType(); 1367 while (!PointeeType.isNull()) { 1368 Result = PointeeType; 1369 PointeeType = PointeeType->getPointeeType(); 1370 } 1371 return Result; 1372 } 1373 1374 /// \returns true if the constructor invoked by \p NE has an argument of a 1375 /// pointer/reference to a record type. 1376 static bool hasNonTrivialConstructorCall(const CXXNewExpr *NE) { 1377 1378 const CXXConstructExpr *ConstructE = NE->getConstructExpr(); 1379 if (!ConstructE) 1380 return false; 1381 1382 if (!NE->getAllocatedType()->getAsCXXRecordDecl()) 1383 return false; 1384 1385 const CXXConstructorDecl *CtorD = ConstructE->getConstructor(); 1386 1387 // Iterate over the constructor parameters. 1388 for (const auto *CtorParam : CtorD->parameters()) { 1389 1390 QualType CtorParamPointeeT = CtorParam->getType()->getPointeeType(); 1391 if (CtorParamPointeeT.isNull()) 1392 continue; 1393 1394 CtorParamPointeeT = getDeepPointeeType(CtorParamPointeeT); 1395 1396 if (CtorParamPointeeT->getAsCXXRecordDecl()) 1397 return true; 1398 } 1399 1400 return false; 1401 } 1402 1403 ProgramStateRef 1404 MallocChecker::processNewAllocation(const CXXAllocatorCall &Call, 1405 CheckerContext &C, 1406 AllocationFamily Family) const { 1407 if (!isStandardNewDelete(Call)) 1408 return nullptr; 1409 1410 const CXXNewExpr *NE = Call.getOriginExpr(); 1411 const ParentMap &PM = C.getLocationContext()->getParentMap(); 1412 ProgramStateRef State = C.getState(); 1413 1414 // Non-trivial constructors have a chance to escape 'this', but marking all 1415 // invocations of trivial constructors as escaped would cause too great of 1416 // reduction of true positives, so let's just do that for constructors that 1417 // have an argument of a pointer-to-record type. 1418 if (!PM.isConsumedExpr(NE) && hasNonTrivialConstructorCall(NE)) 1419 return State; 1420 1421 // The return value from operator new is bound to a specified initialization 1422 // value (if any) and we don't want to loose this value. So we call 1423 // MallocUpdateRefState() instead of MallocMemAux() which breaks the 1424 // existing binding. 1425 SVal Target = Call.getObjectUnderConstruction(); 1426 State = MallocUpdateRefState(C, NE, State, Family, Target); 1427 State = addExtentSize(C, NE, State, Target); 1428 State = ProcessZeroAllocCheck(Call, 0, State, Target); 1429 return State; 1430 } 1431 1432 void MallocChecker::checkNewAllocator(const CXXAllocatorCall &Call, 1433 CheckerContext &C) const { 1434 if (!C.wasInlined) { 1435 ProgramStateRef State = processNewAllocation( 1436 Call, C, 1437 (Call.getOriginExpr()->isArray() ? AF_CXXNewArray : AF_CXXNew)); 1438 C.addTransition(State); 1439 } 1440 } 1441 1442 // Sets the extent value of the MemRegion allocated by 1443 // new expression NE to its size in Bytes. 1444 // 1445 ProgramStateRef MallocChecker::addExtentSize(CheckerContext &C, 1446 const CXXNewExpr *NE, 1447 ProgramStateRef State, 1448 SVal Target) { 1449 if (!State) 1450 return nullptr; 1451 SValBuilder &svalBuilder = C.getSValBuilder(); 1452 SVal ElementCount; 1453 const SubRegion *Region; 1454 if (NE->isArray()) { 1455 const Expr *SizeExpr = *NE->getArraySize(); 1456 ElementCount = C.getSVal(SizeExpr); 1457 // Store the extent size for the (symbolic)region 1458 // containing the elements. 1459 Region = Target.getAsRegion() 1460 ->castAs<SubRegion>() 1461 ->StripCasts() 1462 ->castAs<SubRegion>(); 1463 } else { 1464 ElementCount = svalBuilder.makeIntVal(1, true); 1465 Region = Target.getAsRegion()->castAs<SubRegion>(); 1466 } 1467 1468 // Set the region's extent equal to the Size in Bytes. 1469 QualType ElementType = NE->getAllocatedType(); 1470 ASTContext &AstContext = C.getASTContext(); 1471 CharUnits TypeSize = AstContext.getTypeSizeInChars(ElementType); 1472 1473 if (ElementCount.getAs<NonLoc>()) { 1474 DefinedOrUnknownSVal DynSize = getDynamicSize(State, Region, svalBuilder); 1475 1476 // size in Bytes = ElementCount*TypeSize 1477 SVal SizeInBytes = svalBuilder.evalBinOpNN( 1478 State, BO_Mul, ElementCount.castAs<NonLoc>(), 1479 svalBuilder.makeArrayIndex(TypeSize.getQuantity()), 1480 svalBuilder.getArrayIndexType()); 1481 DefinedOrUnknownSVal DynSizeMatchesSize = svalBuilder.evalEQ( 1482 State, DynSize, SizeInBytes.castAs<DefinedOrUnknownSVal>()); 1483 State = State->assume(DynSizeMatchesSize, true); 1484 } 1485 return State; 1486 } 1487 1488 static bool isKnownDeallocObjCMethodName(const ObjCMethodCall &Call) { 1489 // If the first selector piece is one of the names below, assume that the 1490 // object takes ownership of the memory, promising to eventually deallocate it 1491 // with free(). 1492 // Ex: [NSData dataWithBytesNoCopy:bytes length:10]; 1493 // (...unless a 'freeWhenDone' parameter is false, but that's checked later.) 1494 StringRef FirstSlot = Call.getSelector().getNameForSlot(0); 1495 return FirstSlot == "dataWithBytesNoCopy" || 1496 FirstSlot == "initWithBytesNoCopy" || 1497 FirstSlot == "initWithCharactersNoCopy"; 1498 } 1499 1500 static Optional<bool> getFreeWhenDoneArg(const ObjCMethodCall &Call) { 1501 Selector S = Call.getSelector(); 1502 1503 // FIXME: We should not rely on fully-constrained symbols being folded. 1504 for (unsigned i = 1; i < S.getNumArgs(); ++i) 1505 if (S.getNameForSlot(i).equals("freeWhenDone")) 1506 return !Call.getArgSVal(i).isZeroConstant(); 1507 1508 return None; 1509 } 1510 1511 void MallocChecker::checkPostObjCMessage(const ObjCMethodCall &Call, 1512 CheckerContext &C) const { 1513 if (C.wasInlined) 1514 return; 1515 1516 if (!isKnownDeallocObjCMethodName(Call)) 1517 return; 1518 1519 if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(Call)) 1520 if (!*FreeWhenDone) 1521 return; 1522 1523 if (Call.hasNonZeroCallbackArg()) 1524 return; 1525 1526 bool IsKnownToBeAllocatedMemory; 1527 ProgramStateRef State = 1528 FreeMemAux(C, Call.getArgExpr(0), Call, C.getState(), 1529 /*Hold=*/true, IsKnownToBeAllocatedMemory, AF_Malloc, 1530 /*RetNullOnFailure=*/true); 1531 1532 C.addTransition(State); 1533 } 1534 1535 ProgramStateRef 1536 MallocChecker::MallocMemReturnsAttr(CheckerContext &C, const CallEvent &Call, 1537 const OwnershipAttr *Att, 1538 ProgramStateRef State) const { 1539 if (!State) 1540 return nullptr; 1541 1542 if (Att->getModule()->getName() != "malloc") 1543 return nullptr; 1544 1545 OwnershipAttr::args_iterator I = Att->args_begin(), E = Att->args_end(); 1546 if (I != E) { 1547 return MallocMemAux(C, Call, Call.getArgExpr(I->getASTIndex()), 1548 UndefinedVal(), State, AF_Malloc); 1549 } 1550 return MallocMemAux(C, Call, UnknownVal(), UndefinedVal(), State, AF_Malloc); 1551 } 1552 1553 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, 1554 const CallEvent &Call, 1555 const Expr *SizeEx, SVal Init, 1556 ProgramStateRef State, 1557 AllocationFamily Family) { 1558 if (!State) 1559 return nullptr; 1560 1561 assert(SizeEx); 1562 return MallocMemAux(C, Call, C.getSVal(SizeEx), Init, State, Family); 1563 } 1564 1565 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, 1566 const CallEvent &Call, SVal Size, 1567 SVal Init, ProgramStateRef State, 1568 AllocationFamily Family) { 1569 if (!State) 1570 return nullptr; 1571 1572 const Expr *CE = Call.getOriginExpr(); 1573 1574 // We expect the malloc functions to return a pointer. 1575 if (!Loc::isLocType(CE->getType())) 1576 return nullptr; 1577 1578 // Bind the return value to the symbolic value from the heap region. 1579 // TODO: We could rewrite post visit to eval call; 'malloc' does not have 1580 // side effects other than what we model here. 1581 unsigned Count = C.blockCount(); 1582 SValBuilder &svalBuilder = C.getSValBuilder(); 1583 const LocationContext *LCtx = C.getPredecessor()->getLocationContext(); 1584 DefinedSVal RetVal = svalBuilder.getConjuredHeapSymbolVal(CE, LCtx, Count) 1585 .castAs<DefinedSVal>(); 1586 State = State->BindExpr(CE, C.getLocationContext(), RetVal); 1587 1588 // Fill the region with the initialization value. 1589 State = State->bindDefaultInitial(RetVal, Init, LCtx); 1590 1591 // Set the region's extent equal to the Size parameter. 1592 const SymbolicRegion *R = 1593 dyn_cast_or_null<SymbolicRegion>(RetVal.getAsRegion()); 1594 if (!R) 1595 return nullptr; 1596 if (Optional<DefinedOrUnknownSVal> DefinedSize = 1597 Size.getAs<DefinedOrUnknownSVal>()) { 1598 DefinedOrUnknownSVal DynSize = getDynamicSize(State, R, svalBuilder); 1599 1600 DefinedOrUnknownSVal DynSizeMatchesSize = 1601 svalBuilder.evalEQ(State, DynSize, *DefinedSize); 1602 1603 State = State->assume(DynSizeMatchesSize, true); 1604 assert(State); 1605 } 1606 1607 return MallocUpdateRefState(C, CE, State, Family); 1608 } 1609 1610 static ProgramStateRef MallocUpdateRefState(CheckerContext &C, const Expr *E, 1611 ProgramStateRef State, 1612 AllocationFamily Family, 1613 Optional<SVal> RetVal) { 1614 if (!State) 1615 return nullptr; 1616 1617 // Get the return value. 1618 if (!RetVal) 1619 RetVal = C.getSVal(E); 1620 1621 // We expect the malloc functions to return a pointer. 1622 if (!RetVal->getAs<Loc>()) 1623 return nullptr; 1624 1625 SymbolRef Sym = RetVal->getAsLocSymbol(); 1626 // This is a return value of a function that was not inlined, such as malloc() 1627 // or new(). We've checked that in the caller. Therefore, it must be a symbol. 1628 assert(Sym); 1629 1630 // Set the symbol's state to Allocated. 1631 return State->set<RegionState>(Sym, RefState::getAllocated(Family, E)); 1632 } 1633 1634 ProgramStateRef MallocChecker::FreeMemAttr(CheckerContext &C, 1635 const CallEvent &Call, 1636 const OwnershipAttr *Att, 1637 ProgramStateRef State) const { 1638 if (!State) 1639 return nullptr; 1640 1641 if (Att->getModule()->getName() != "malloc") 1642 return nullptr; 1643 1644 bool IsKnownToBeAllocated = false; 1645 1646 for (const auto &Arg : Att->args()) { 1647 ProgramStateRef StateI = 1648 FreeMemAux(C, Call, State, Arg.getASTIndex(), 1649 Att->getOwnKind() == OwnershipAttr::Holds, 1650 IsKnownToBeAllocated, AF_Malloc); 1651 if (StateI) 1652 State = StateI; 1653 } 1654 return State; 1655 } 1656 1657 ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C, 1658 const CallEvent &Call, 1659 ProgramStateRef State, unsigned Num, 1660 bool Hold, bool &IsKnownToBeAllocated, 1661 AllocationFamily Family, 1662 bool ReturnsNullOnFailure) const { 1663 if (!State) 1664 return nullptr; 1665 1666 if (Call.getNumArgs() < (Num + 1)) 1667 return nullptr; 1668 1669 return FreeMemAux(C, Call.getArgExpr(Num), Call, State, Hold, 1670 IsKnownToBeAllocated, Family, ReturnsNullOnFailure); 1671 } 1672 1673 /// Checks if the previous call to free on the given symbol failed - if free 1674 /// failed, returns true. Also, returns the corresponding return value symbol. 1675 static bool didPreviousFreeFail(ProgramStateRef State, 1676 SymbolRef Sym, SymbolRef &RetStatusSymbol) { 1677 const SymbolRef *Ret = State->get<FreeReturnValue>(Sym); 1678 if (Ret) { 1679 assert(*Ret && "We should not store the null return symbol"); 1680 ConstraintManager &CMgr = State->getConstraintManager(); 1681 ConditionTruthVal FreeFailed = CMgr.isNull(State, *Ret); 1682 RetStatusSymbol = *Ret; 1683 return FreeFailed.isConstrainedTrue(); 1684 } 1685 return false; 1686 } 1687 1688 static bool printMemFnName(raw_ostream &os, CheckerContext &C, const Expr *E) { 1689 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { 1690 // FIXME: This doesn't handle indirect calls. 1691 const FunctionDecl *FD = CE->getDirectCallee(); 1692 if (!FD) 1693 return false; 1694 1695 os << *FD; 1696 if (!FD->isOverloadedOperator()) 1697 os << "()"; 1698 return true; 1699 } 1700 1701 if (const ObjCMessageExpr *Msg = dyn_cast<ObjCMessageExpr>(E)) { 1702 if (Msg->isInstanceMessage()) 1703 os << "-"; 1704 else 1705 os << "+"; 1706 Msg->getSelector().print(os); 1707 return true; 1708 } 1709 1710 if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) { 1711 os << "'" 1712 << getOperatorSpelling(NE->getOperatorNew()->getOverloadedOperator()) 1713 << "'"; 1714 return true; 1715 } 1716 1717 if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(E)) { 1718 os << "'" 1719 << getOperatorSpelling(DE->getOperatorDelete()->getOverloadedOperator()) 1720 << "'"; 1721 return true; 1722 } 1723 1724 return false; 1725 } 1726 1727 static void printExpectedAllocName(raw_ostream &os, AllocationFamily Family) { 1728 1729 switch(Family) { 1730 case AF_Malloc: os << "malloc()"; return; 1731 case AF_CXXNew: os << "'new'"; return; 1732 case AF_CXXNewArray: os << "'new[]'"; return; 1733 case AF_IfNameIndex: os << "'if_nameindex()'"; return; 1734 case AF_InnerBuffer: os << "container-specific allocator"; return; 1735 case AF_Alloca: 1736 case AF_None: llvm_unreachable("not a deallocation expression"); 1737 } 1738 } 1739 1740 static void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family) { 1741 switch(Family) { 1742 case AF_Malloc: os << "free()"; return; 1743 case AF_CXXNew: os << "'delete'"; return; 1744 case AF_CXXNewArray: os << "'delete[]'"; return; 1745 case AF_IfNameIndex: os << "'if_freenameindex()'"; return; 1746 case AF_InnerBuffer: os << "container-specific deallocator"; return; 1747 case AF_Alloca: 1748 case AF_None: llvm_unreachable("suspicious argument"); 1749 } 1750 } 1751 1752 ProgramStateRef MallocChecker::FreeMemAux( 1753 CheckerContext &C, const Expr *ArgExpr, const CallEvent &Call, 1754 ProgramStateRef State, bool Hold, bool &IsKnownToBeAllocated, 1755 AllocationFamily Family, bool ReturnsNullOnFailure) const { 1756 1757 if (!State) 1758 return nullptr; 1759 1760 SVal ArgVal = C.getSVal(ArgExpr); 1761 if (!ArgVal.getAs<DefinedOrUnknownSVal>()) 1762 return nullptr; 1763 DefinedOrUnknownSVal location = ArgVal.castAs<DefinedOrUnknownSVal>(); 1764 1765 // Check for null dereferences. 1766 if (!location.getAs<Loc>()) 1767 return nullptr; 1768 1769 // The explicit NULL case, no operation is performed. 1770 ProgramStateRef notNullState, nullState; 1771 std::tie(notNullState, nullState) = State->assume(location); 1772 if (nullState && !notNullState) 1773 return nullptr; 1774 1775 // Unknown values could easily be okay 1776 // Undefined values are handled elsewhere 1777 if (ArgVal.isUnknownOrUndef()) 1778 return nullptr; 1779 1780 const MemRegion *R = ArgVal.getAsRegion(); 1781 const Expr *ParentExpr = Call.getOriginExpr(); 1782 1783 // NOTE: We detected a bug, but the checker under whose name we would emit the 1784 // error could be disabled. Generally speaking, the MallocChecker family is an 1785 // integral part of the Static Analyzer, and disabling any part of it should 1786 // only be done under exceptional circumstances, such as frequent false 1787 // positives. If this is the case, we can reasonably believe that there are 1788 // serious faults in our understanding of the source code, and even if we 1789 // don't emit an warning, we should terminate further analysis with a sink 1790 // node. 1791 1792 // Nonlocs can't be freed, of course. 1793 // Non-region locations (labels and fixed addresses) also shouldn't be freed. 1794 if (!R) { 1795 // Exception: 1796 // If the macro ZERO_SIZE_PTR is defined, this could be a kernel source 1797 // code. In that case, the ZERO_SIZE_PTR defines a special value used for a 1798 // zero-sized memory block which is allowed to be freed, despite not being a 1799 // null pointer. 1800 if (Family != AF_Malloc || !isArgZERO_SIZE_PTR(State, C, ArgVal)) 1801 HandleNonHeapDealloc(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 1802 Family); 1803 return nullptr; 1804 } 1805 1806 R = R->StripCasts(); 1807 1808 // Blocks might show up as heap data, but should not be free()d 1809 if (isa<BlockDataRegion>(R)) { 1810 HandleNonHeapDealloc(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 1811 Family); 1812 return nullptr; 1813 } 1814 1815 const MemSpaceRegion *MS = R->getMemorySpace(); 1816 1817 // Parameters, locals, statics, globals, and memory returned by 1818 // __builtin_alloca() shouldn't be freed. 1819 if (!(isa<UnknownSpaceRegion>(MS) || isa<HeapSpaceRegion>(MS))) { 1820 // FIXME: at the time this code was written, malloc() regions were 1821 // represented by conjured symbols, which are all in UnknownSpaceRegion. 1822 // This means that there isn't actually anything from HeapSpaceRegion 1823 // that should be freed, even though we allow it here. 1824 // Of course, free() can work on memory allocated outside the current 1825 // function, so UnknownSpaceRegion is always a possibility. 1826 // False negatives are better than false positives. 1827 1828 if (isa<AllocaRegion>(R)) 1829 HandleFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); 1830 else 1831 HandleNonHeapDealloc(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 1832 Family); 1833 1834 return nullptr; 1835 } 1836 1837 const SymbolicRegion *SrBase = dyn_cast<SymbolicRegion>(R->getBaseRegion()); 1838 // Various cases could lead to non-symbol values here. 1839 // For now, ignore them. 1840 if (!SrBase) 1841 return nullptr; 1842 1843 SymbolRef SymBase = SrBase->getSymbol(); 1844 const RefState *RsBase = State->get<RegionState>(SymBase); 1845 SymbolRef PreviousRetStatusSymbol = nullptr; 1846 1847 IsKnownToBeAllocated = 1848 RsBase && (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero()); 1849 1850 if (RsBase) { 1851 1852 // Memory returned by alloca() shouldn't be freed. 1853 if (RsBase->getAllocationFamily() == AF_Alloca) { 1854 HandleFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); 1855 return nullptr; 1856 } 1857 1858 // Check for double free first. 1859 if ((RsBase->isReleased() || RsBase->isRelinquished()) && 1860 !didPreviousFreeFail(State, SymBase, PreviousRetStatusSymbol)) { 1861 HandleDoubleFree(C, ParentExpr->getSourceRange(), RsBase->isReleased(), 1862 SymBase, PreviousRetStatusSymbol); 1863 return nullptr; 1864 1865 // If the pointer is allocated or escaped, but we are now trying to free it, 1866 // check that the call to free is proper. 1867 } else if (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero() || 1868 RsBase->isEscaped()) { 1869 1870 // Check if an expected deallocation function matches the real one. 1871 bool DeallocMatchesAlloc = RsBase->getAllocationFamily() == Family; 1872 if (!DeallocMatchesAlloc) { 1873 HandleMismatchedDealloc(C, ArgExpr->getSourceRange(), ParentExpr, 1874 RsBase, SymBase, Hold); 1875 return nullptr; 1876 } 1877 1878 // Check if the memory location being freed is the actual location 1879 // allocated, or an offset. 1880 RegionOffset Offset = R->getAsOffset(); 1881 if (Offset.isValid() && 1882 !Offset.hasSymbolicOffset() && 1883 Offset.getOffset() != 0) { 1884 const Expr *AllocExpr = cast<Expr>(RsBase->getStmt()); 1885 HandleOffsetFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 1886 Family, AllocExpr); 1887 return nullptr; 1888 } 1889 } 1890 } 1891 1892 if (SymBase->getType()->isFunctionPointerType()) { 1893 HandleFunctionPtrFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 1894 Family); 1895 return nullptr; 1896 } 1897 1898 // Clean out the info on previous call to free return info. 1899 State = State->remove<FreeReturnValue>(SymBase); 1900 1901 // Keep track of the return value. If it is NULL, we will know that free 1902 // failed. 1903 if (ReturnsNullOnFailure) { 1904 SVal RetVal = C.getSVal(ParentExpr); 1905 SymbolRef RetStatusSymbol = RetVal.getAsSymbol(); 1906 if (RetStatusSymbol) { 1907 C.getSymbolManager().addSymbolDependency(SymBase, RetStatusSymbol); 1908 State = State->set<FreeReturnValue>(SymBase, RetStatusSymbol); 1909 } 1910 } 1911 1912 // If we don't know anything about this symbol, a free on it may be totally 1913 // valid. If this is the case, lets assume that the allocation family of the 1914 // freeing function is the same as the symbols allocation family, and go with 1915 // that. 1916 assert(!RsBase || (RsBase && RsBase->getAllocationFamily() == Family)); 1917 1918 // Normal free. 1919 if (Hold) 1920 return State->set<RegionState>(SymBase, 1921 RefState::getRelinquished(Family, 1922 ParentExpr)); 1923 1924 return State->set<RegionState>(SymBase, 1925 RefState::getReleased(Family, ParentExpr)); 1926 } 1927 1928 Optional<MallocChecker::CheckKind> 1929 MallocChecker::getCheckIfTracked(AllocationFamily Family, 1930 bool IsALeakCheck) const { 1931 switch (Family) { 1932 case AF_Malloc: 1933 case AF_Alloca: 1934 case AF_IfNameIndex: { 1935 if (ChecksEnabled[CK_MallocChecker]) 1936 return CK_MallocChecker; 1937 return None; 1938 } 1939 case AF_CXXNew: 1940 case AF_CXXNewArray: { 1941 if (IsALeakCheck) { 1942 if (ChecksEnabled[CK_NewDeleteLeaksChecker]) 1943 return CK_NewDeleteLeaksChecker; 1944 } 1945 else { 1946 if (ChecksEnabled[CK_NewDeleteChecker]) 1947 return CK_NewDeleteChecker; 1948 } 1949 return None; 1950 } 1951 case AF_InnerBuffer: { 1952 if (ChecksEnabled[CK_InnerPointerChecker]) 1953 return CK_InnerPointerChecker; 1954 return None; 1955 } 1956 case AF_None: { 1957 llvm_unreachable("no family"); 1958 } 1959 } 1960 llvm_unreachable("unhandled family"); 1961 } 1962 1963 Optional<MallocChecker::CheckKind> 1964 MallocChecker::getCheckIfTracked(CheckerContext &C, SymbolRef Sym, 1965 bool IsALeakCheck) const { 1966 if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) 1967 return CK_MallocChecker; 1968 1969 const RefState *RS = C.getState()->get<RegionState>(Sym); 1970 assert(RS); 1971 return getCheckIfTracked(RS->getAllocationFamily(), IsALeakCheck); 1972 } 1973 1974 bool MallocChecker::SummarizeValue(raw_ostream &os, SVal V) { 1975 if (Optional<nonloc::ConcreteInt> IntVal = V.getAs<nonloc::ConcreteInt>()) 1976 os << "an integer (" << IntVal->getValue() << ")"; 1977 else if (Optional<loc::ConcreteInt> ConstAddr = V.getAs<loc::ConcreteInt>()) 1978 os << "a constant address (" << ConstAddr->getValue() << ")"; 1979 else if (Optional<loc::GotoLabel> Label = V.getAs<loc::GotoLabel>()) 1980 os << "the address of the label '" << Label->getLabel()->getName() << "'"; 1981 else 1982 return false; 1983 1984 return true; 1985 } 1986 1987 bool MallocChecker::SummarizeRegion(raw_ostream &os, 1988 const MemRegion *MR) { 1989 switch (MR->getKind()) { 1990 case MemRegion::FunctionCodeRegionKind: { 1991 const NamedDecl *FD = cast<FunctionCodeRegion>(MR)->getDecl(); 1992 if (FD) 1993 os << "the address of the function '" << *FD << '\''; 1994 else 1995 os << "the address of a function"; 1996 return true; 1997 } 1998 case MemRegion::BlockCodeRegionKind: 1999 os << "block text"; 2000 return true; 2001 case MemRegion::BlockDataRegionKind: 2002 // FIXME: where the block came from? 2003 os << "a block"; 2004 return true; 2005 default: { 2006 const MemSpaceRegion *MS = MR->getMemorySpace(); 2007 2008 if (isa<StackLocalsSpaceRegion>(MS)) { 2009 const VarRegion *VR = dyn_cast<VarRegion>(MR); 2010 const VarDecl *VD; 2011 if (VR) 2012 VD = VR->getDecl(); 2013 else 2014 VD = nullptr; 2015 2016 if (VD) 2017 os << "the address of the local variable '" << VD->getName() << "'"; 2018 else 2019 os << "the address of a local stack variable"; 2020 return true; 2021 } 2022 2023 if (isa<StackArgumentsSpaceRegion>(MS)) { 2024 const VarRegion *VR = dyn_cast<VarRegion>(MR); 2025 const VarDecl *VD; 2026 if (VR) 2027 VD = VR->getDecl(); 2028 else 2029 VD = nullptr; 2030 2031 if (VD) 2032 os << "the address of the parameter '" << VD->getName() << "'"; 2033 else 2034 os << "the address of a parameter"; 2035 return true; 2036 } 2037 2038 if (isa<GlobalsSpaceRegion>(MS)) { 2039 const VarRegion *VR = dyn_cast<VarRegion>(MR); 2040 const VarDecl *VD; 2041 if (VR) 2042 VD = VR->getDecl(); 2043 else 2044 VD = nullptr; 2045 2046 if (VD) { 2047 if (VD->isStaticLocal()) 2048 os << "the address of the static variable '" << VD->getName() << "'"; 2049 else 2050 os << "the address of the global variable '" << VD->getName() << "'"; 2051 } else 2052 os << "the address of a global variable"; 2053 return true; 2054 } 2055 2056 return false; 2057 } 2058 } 2059 } 2060 2061 void MallocChecker::HandleNonHeapDealloc(CheckerContext &C, SVal ArgVal, 2062 SourceRange Range, 2063 const Expr *DeallocExpr, 2064 AllocationFamily Family) const { 2065 2066 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) { 2067 C.addSink(); 2068 return; 2069 } 2070 2071 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 2072 if (!CheckKind.hasValue()) 2073 return; 2074 2075 if (ExplodedNode *N = C.generateErrorNode()) { 2076 if (!BT_BadFree[*CheckKind]) 2077 BT_BadFree[*CheckKind].reset(new BugType( 2078 CheckNames[*CheckKind], "Bad free", categories::MemoryError)); 2079 2080 SmallString<100> buf; 2081 llvm::raw_svector_ostream os(buf); 2082 2083 const MemRegion *MR = ArgVal.getAsRegion(); 2084 while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR)) 2085 MR = ER->getSuperRegion(); 2086 2087 os << "Argument to "; 2088 if (!printMemFnName(os, C, DeallocExpr)) 2089 os << "deallocator"; 2090 2091 os << " is "; 2092 bool Summarized = MR ? SummarizeRegion(os, MR) 2093 : SummarizeValue(os, ArgVal); 2094 if (Summarized) 2095 os << ", which is not memory allocated by "; 2096 else 2097 os << "not memory allocated by "; 2098 2099 printExpectedAllocName(os, Family); 2100 2101 auto R = std::make_unique<PathSensitiveBugReport>(*BT_BadFree[*CheckKind], 2102 os.str(), N); 2103 R->markInteresting(MR); 2104 R->addRange(Range); 2105 C.emitReport(std::move(R)); 2106 } 2107 } 2108 2109 void MallocChecker::HandleFreeAlloca(CheckerContext &C, SVal ArgVal, 2110 SourceRange Range) const { 2111 2112 Optional<MallocChecker::CheckKind> CheckKind; 2113 2114 if (ChecksEnabled[CK_MallocChecker]) 2115 CheckKind = CK_MallocChecker; 2116 else if (ChecksEnabled[CK_MismatchedDeallocatorChecker]) 2117 CheckKind = CK_MismatchedDeallocatorChecker; 2118 else { 2119 C.addSink(); 2120 return; 2121 } 2122 2123 if (ExplodedNode *N = C.generateErrorNode()) { 2124 if (!BT_FreeAlloca[*CheckKind]) 2125 BT_FreeAlloca[*CheckKind].reset(new BugType( 2126 CheckNames[*CheckKind], "Free alloca()", categories::MemoryError)); 2127 2128 auto R = std::make_unique<PathSensitiveBugReport>( 2129 *BT_FreeAlloca[*CheckKind], 2130 "Memory allocated by alloca() should not be deallocated", N); 2131 R->markInteresting(ArgVal.getAsRegion()); 2132 R->addRange(Range); 2133 C.emitReport(std::move(R)); 2134 } 2135 } 2136 2137 void MallocChecker::HandleMismatchedDealloc(CheckerContext &C, 2138 SourceRange Range, 2139 const Expr *DeallocExpr, 2140 const RefState *RS, SymbolRef Sym, 2141 bool OwnershipTransferred) const { 2142 2143 if (!ChecksEnabled[CK_MismatchedDeallocatorChecker]) { 2144 C.addSink(); 2145 return; 2146 } 2147 2148 if (ExplodedNode *N = C.generateErrorNode()) { 2149 if (!BT_MismatchedDealloc) 2150 BT_MismatchedDealloc.reset( 2151 new BugType(CheckNames[CK_MismatchedDeallocatorChecker], 2152 "Bad deallocator", categories::MemoryError)); 2153 2154 SmallString<100> buf; 2155 llvm::raw_svector_ostream os(buf); 2156 2157 const Expr *AllocExpr = cast<Expr>(RS->getStmt()); 2158 SmallString<20> AllocBuf; 2159 llvm::raw_svector_ostream AllocOs(AllocBuf); 2160 SmallString<20> DeallocBuf; 2161 llvm::raw_svector_ostream DeallocOs(DeallocBuf); 2162 2163 if (OwnershipTransferred) { 2164 if (printMemFnName(DeallocOs, C, DeallocExpr)) 2165 os << DeallocOs.str() << " cannot"; 2166 else 2167 os << "Cannot"; 2168 2169 os << " take ownership of memory"; 2170 2171 if (printMemFnName(AllocOs, C, AllocExpr)) 2172 os << " allocated by " << AllocOs.str(); 2173 } else { 2174 os << "Memory"; 2175 if (printMemFnName(AllocOs, C, AllocExpr)) 2176 os << " allocated by " << AllocOs.str(); 2177 2178 os << " should be deallocated by "; 2179 printExpectedDeallocName(os, RS->getAllocationFamily()); 2180 2181 if (printMemFnName(DeallocOs, C, DeallocExpr)) 2182 os << ", not " << DeallocOs.str(); 2183 } 2184 2185 auto R = std::make_unique<PathSensitiveBugReport>(*BT_MismatchedDealloc, 2186 os.str(), N); 2187 R->markInteresting(Sym); 2188 R->addRange(Range); 2189 R->addVisitor(std::make_unique<MallocBugVisitor>(Sym)); 2190 C.emitReport(std::move(R)); 2191 } 2192 } 2193 2194 void MallocChecker::HandleOffsetFree(CheckerContext &C, SVal ArgVal, 2195 SourceRange Range, const Expr *DeallocExpr, 2196 AllocationFamily Family, 2197 const Expr *AllocExpr) const { 2198 2199 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) { 2200 C.addSink(); 2201 return; 2202 } 2203 2204 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 2205 if (!CheckKind.hasValue()) 2206 return; 2207 2208 ExplodedNode *N = C.generateErrorNode(); 2209 if (!N) 2210 return; 2211 2212 if (!BT_OffsetFree[*CheckKind]) 2213 BT_OffsetFree[*CheckKind].reset(new BugType( 2214 CheckNames[*CheckKind], "Offset free", categories::MemoryError)); 2215 2216 SmallString<100> buf; 2217 llvm::raw_svector_ostream os(buf); 2218 SmallString<20> AllocNameBuf; 2219 llvm::raw_svector_ostream AllocNameOs(AllocNameBuf); 2220 2221 const MemRegion *MR = ArgVal.getAsRegion(); 2222 assert(MR && "Only MemRegion based symbols can have offset free errors"); 2223 2224 RegionOffset Offset = MR->getAsOffset(); 2225 assert((Offset.isValid() && 2226 !Offset.hasSymbolicOffset() && 2227 Offset.getOffset() != 0) && 2228 "Only symbols with a valid offset can have offset free errors"); 2229 2230 int offsetBytes = Offset.getOffset() / C.getASTContext().getCharWidth(); 2231 2232 os << "Argument to "; 2233 if (!printMemFnName(os, C, DeallocExpr)) 2234 os << "deallocator"; 2235 os << " is offset by " 2236 << offsetBytes 2237 << " " 2238 << ((abs(offsetBytes) > 1) ? "bytes" : "byte") 2239 << " from the start of "; 2240 if (AllocExpr && printMemFnName(AllocNameOs, C, AllocExpr)) 2241 os << "memory allocated by " << AllocNameOs.str(); 2242 else 2243 os << "allocated memory"; 2244 2245 auto R = std::make_unique<PathSensitiveBugReport>(*BT_OffsetFree[*CheckKind], 2246 os.str(), N); 2247 R->markInteresting(MR->getBaseRegion()); 2248 R->addRange(Range); 2249 C.emitReport(std::move(R)); 2250 } 2251 2252 void MallocChecker::HandleUseAfterFree(CheckerContext &C, SourceRange Range, 2253 SymbolRef Sym) const { 2254 2255 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker] && 2256 !ChecksEnabled[CK_InnerPointerChecker]) { 2257 C.addSink(); 2258 return; 2259 } 2260 2261 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2262 if (!CheckKind.hasValue()) 2263 return; 2264 2265 if (ExplodedNode *N = C.generateErrorNode()) { 2266 if (!BT_UseFree[*CheckKind]) 2267 BT_UseFree[*CheckKind].reset(new BugType( 2268 CheckNames[*CheckKind], "Use-after-free", categories::MemoryError)); 2269 2270 AllocationFamily AF = 2271 C.getState()->get<RegionState>(Sym)->getAllocationFamily(); 2272 2273 auto R = std::make_unique<PathSensitiveBugReport>( 2274 *BT_UseFree[*CheckKind], 2275 AF == AF_InnerBuffer 2276 ? "Inner pointer of container used after re/deallocation" 2277 : "Use of memory after it is freed", 2278 N); 2279 2280 R->markInteresting(Sym); 2281 R->addRange(Range); 2282 R->addVisitor(std::make_unique<MallocBugVisitor>(Sym)); 2283 2284 if (AF == AF_InnerBuffer) 2285 R->addVisitor(allocation_state::getInnerPointerBRVisitor(Sym)); 2286 2287 C.emitReport(std::move(R)); 2288 } 2289 } 2290 2291 void MallocChecker::HandleDoubleFree(CheckerContext &C, SourceRange Range, 2292 bool Released, SymbolRef Sym, 2293 SymbolRef PrevSym) const { 2294 2295 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) { 2296 C.addSink(); 2297 return; 2298 } 2299 2300 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2301 if (!CheckKind.hasValue()) 2302 return; 2303 2304 if (ExplodedNode *N = C.generateErrorNode()) { 2305 if (!BT_DoubleFree[*CheckKind]) 2306 BT_DoubleFree[*CheckKind].reset(new BugType( 2307 CheckNames[*CheckKind], "Double free", categories::MemoryError)); 2308 2309 auto R = std::make_unique<PathSensitiveBugReport>( 2310 *BT_DoubleFree[*CheckKind], 2311 (Released ? "Attempt to free released memory" 2312 : "Attempt to free non-owned memory"), 2313 N); 2314 R->addRange(Range); 2315 R->markInteresting(Sym); 2316 if (PrevSym) 2317 R->markInteresting(PrevSym); 2318 R->addVisitor(std::make_unique<MallocBugVisitor>(Sym)); 2319 C.emitReport(std::move(R)); 2320 } 2321 } 2322 2323 void MallocChecker::HandleDoubleDelete(CheckerContext &C, SymbolRef Sym) const { 2324 2325 if (!ChecksEnabled[CK_NewDeleteChecker]) { 2326 C.addSink(); 2327 return; 2328 } 2329 2330 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2331 if (!CheckKind.hasValue()) 2332 return; 2333 2334 if (ExplodedNode *N = C.generateErrorNode()) { 2335 if (!BT_DoubleDelete) 2336 BT_DoubleDelete.reset(new BugType(CheckNames[CK_NewDeleteChecker], 2337 "Double delete", 2338 categories::MemoryError)); 2339 2340 auto R = std::make_unique<PathSensitiveBugReport>( 2341 *BT_DoubleDelete, "Attempt to delete released memory", N); 2342 2343 R->markInteresting(Sym); 2344 R->addVisitor(std::make_unique<MallocBugVisitor>(Sym)); 2345 C.emitReport(std::move(R)); 2346 } 2347 } 2348 2349 void MallocChecker::HandleUseZeroAlloc(CheckerContext &C, SourceRange Range, 2350 SymbolRef Sym) const { 2351 2352 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) { 2353 C.addSink(); 2354 return; 2355 } 2356 2357 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2358 2359 if (!CheckKind.hasValue()) 2360 return; 2361 2362 if (ExplodedNode *N = C.generateErrorNode()) { 2363 if (!BT_UseZerroAllocated[*CheckKind]) 2364 BT_UseZerroAllocated[*CheckKind].reset( 2365 new BugType(CheckNames[*CheckKind], "Use of zero allocated", 2366 categories::MemoryError)); 2367 2368 auto R = std::make_unique<PathSensitiveBugReport>( 2369 *BT_UseZerroAllocated[*CheckKind], "Use of zero-allocated memory", N); 2370 2371 R->addRange(Range); 2372 if (Sym) { 2373 R->markInteresting(Sym); 2374 R->addVisitor(std::make_unique<MallocBugVisitor>(Sym)); 2375 } 2376 C.emitReport(std::move(R)); 2377 } 2378 } 2379 2380 void MallocChecker::HandleFunctionPtrFree(CheckerContext &C, SVal ArgVal, 2381 SourceRange Range, 2382 const Expr *FreeExpr, 2383 AllocationFamily Family) const { 2384 if (!ChecksEnabled[CK_MallocChecker]) { 2385 C.addSink(); 2386 return; 2387 } 2388 2389 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 2390 if (!CheckKind.hasValue()) 2391 return; 2392 2393 if (ExplodedNode *N = C.generateErrorNode()) { 2394 if (!BT_BadFree[*CheckKind]) 2395 BT_BadFree[*CheckKind].reset(new BugType( 2396 CheckNames[*CheckKind], "Bad free", categories::MemoryError)); 2397 2398 SmallString<100> Buf; 2399 llvm::raw_svector_ostream Os(Buf); 2400 2401 const MemRegion *MR = ArgVal.getAsRegion(); 2402 while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR)) 2403 MR = ER->getSuperRegion(); 2404 2405 Os << "Argument to "; 2406 if (!printMemFnName(Os, C, FreeExpr)) 2407 Os << "deallocator"; 2408 2409 Os << " is a function pointer"; 2410 2411 auto R = std::make_unique<PathSensitiveBugReport>(*BT_BadFree[*CheckKind], 2412 Os.str(), N); 2413 R->markInteresting(MR); 2414 R->addRange(Range); 2415 C.emitReport(std::move(R)); 2416 } 2417 } 2418 2419 ProgramStateRef 2420 MallocChecker::ReallocMemAux(CheckerContext &C, const CallEvent &Call, 2421 bool ShouldFreeOnFail, ProgramStateRef State, 2422 AllocationFamily Family, bool SuffixWithN) const { 2423 if (!State) 2424 return nullptr; 2425 2426 const CallExpr *CE = cast<CallExpr>(Call.getOriginExpr()); 2427 2428 if (SuffixWithN && CE->getNumArgs() < 3) 2429 return nullptr; 2430 else if (CE->getNumArgs() < 2) 2431 return nullptr; 2432 2433 const Expr *arg0Expr = CE->getArg(0); 2434 SVal Arg0Val = C.getSVal(arg0Expr); 2435 if (!Arg0Val.getAs<DefinedOrUnknownSVal>()) 2436 return nullptr; 2437 DefinedOrUnknownSVal arg0Val = Arg0Val.castAs<DefinedOrUnknownSVal>(); 2438 2439 SValBuilder &svalBuilder = C.getSValBuilder(); 2440 2441 DefinedOrUnknownSVal PtrEQ = 2442 svalBuilder.evalEQ(State, arg0Val, svalBuilder.makeNull()); 2443 2444 // Get the size argument. 2445 const Expr *Arg1 = CE->getArg(1); 2446 2447 // Get the value of the size argument. 2448 SVal TotalSize = C.getSVal(Arg1); 2449 if (SuffixWithN) 2450 TotalSize = evalMulForBufferSize(C, Arg1, CE->getArg(2)); 2451 if (!TotalSize.getAs<DefinedOrUnknownSVal>()) 2452 return nullptr; 2453 2454 // Compare the size argument to 0. 2455 DefinedOrUnknownSVal SizeZero = 2456 svalBuilder.evalEQ(State, TotalSize.castAs<DefinedOrUnknownSVal>(), 2457 svalBuilder.makeIntValWithPtrWidth(0, false)); 2458 2459 ProgramStateRef StatePtrIsNull, StatePtrNotNull; 2460 std::tie(StatePtrIsNull, StatePtrNotNull) = State->assume(PtrEQ); 2461 ProgramStateRef StateSizeIsZero, StateSizeNotZero; 2462 std::tie(StateSizeIsZero, StateSizeNotZero) = State->assume(SizeZero); 2463 // We only assume exceptional states if they are definitely true; if the 2464 // state is under-constrained, assume regular realloc behavior. 2465 bool PrtIsNull = StatePtrIsNull && !StatePtrNotNull; 2466 bool SizeIsZero = StateSizeIsZero && !StateSizeNotZero; 2467 2468 // If the ptr is NULL and the size is not 0, the call is equivalent to 2469 // malloc(size). 2470 if (PrtIsNull && !SizeIsZero) { 2471 ProgramStateRef stateMalloc = MallocMemAux( 2472 C, Call, TotalSize, UndefinedVal(), StatePtrIsNull, Family); 2473 return stateMalloc; 2474 } 2475 2476 if (PrtIsNull && SizeIsZero) 2477 return State; 2478 2479 assert(!PrtIsNull); 2480 2481 bool IsKnownToBeAllocated = false; 2482 2483 // If the size is 0, free the memory. 2484 if (SizeIsZero) 2485 // The semantics of the return value are: 2486 // If size was equal to 0, either NULL or a pointer suitable to be passed 2487 // to free() is returned. We just free the input pointer and do not add 2488 // any constrains on the output pointer. 2489 if (ProgramStateRef stateFree = FreeMemAux( 2490 C, Call, StateSizeIsZero, 0, false, IsKnownToBeAllocated, Family)) 2491 return stateFree; 2492 2493 // Default behavior. 2494 if (ProgramStateRef stateFree = 2495 FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocated, Family)) { 2496 2497 ProgramStateRef stateRealloc = 2498 MallocMemAux(C, Call, TotalSize, UnknownVal(), stateFree, Family); 2499 if (!stateRealloc) 2500 return nullptr; 2501 2502 OwnershipAfterReallocKind Kind = OAR_ToBeFreedAfterFailure; 2503 if (ShouldFreeOnFail) 2504 Kind = OAR_FreeOnFailure; 2505 else if (!IsKnownToBeAllocated) 2506 Kind = OAR_DoNotTrackAfterFailure; 2507 2508 // Get the from and to pointer symbols as in toPtr = realloc(fromPtr, size). 2509 SymbolRef FromPtr = arg0Val.getLocSymbolInBase(); 2510 SVal RetVal = C.getSVal(CE); 2511 SymbolRef ToPtr = RetVal.getAsSymbol(); 2512 assert(FromPtr && ToPtr && 2513 "By this point, FreeMemAux and MallocMemAux should have checked " 2514 "whether the argument or the return value is symbolic!"); 2515 2516 // Record the info about the reallocated symbol so that we could properly 2517 // process failed reallocation. 2518 stateRealloc = stateRealloc->set<ReallocPairs>(ToPtr, 2519 ReallocPair(FromPtr, Kind)); 2520 // The reallocated symbol should stay alive for as long as the new symbol. 2521 C.getSymbolManager().addSymbolDependency(ToPtr, FromPtr); 2522 return stateRealloc; 2523 } 2524 return nullptr; 2525 } 2526 2527 ProgramStateRef MallocChecker::CallocMem(CheckerContext &C, 2528 const CallEvent &Call, 2529 ProgramStateRef State) { 2530 if (!State) 2531 return nullptr; 2532 2533 if (Call.getNumArgs() < 2) 2534 return nullptr; 2535 2536 SValBuilder &svalBuilder = C.getSValBuilder(); 2537 SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy); 2538 SVal TotalSize = 2539 evalMulForBufferSize(C, Call.getArgExpr(0), Call.getArgExpr(1)); 2540 2541 return MallocMemAux(C, Call, TotalSize, zeroVal, State, AF_Malloc); 2542 } 2543 2544 MallocChecker::LeakInfo MallocChecker::getAllocationSite(const ExplodedNode *N, 2545 SymbolRef Sym, 2546 CheckerContext &C) { 2547 const LocationContext *LeakContext = N->getLocationContext(); 2548 // Walk the ExplodedGraph backwards and find the first node that referred to 2549 // the tracked symbol. 2550 const ExplodedNode *AllocNode = N; 2551 const MemRegion *ReferenceRegion = nullptr; 2552 2553 while (N) { 2554 ProgramStateRef State = N->getState(); 2555 if (!State->get<RegionState>(Sym)) 2556 break; 2557 2558 // Find the most recent expression bound to the symbol in the current 2559 // context. 2560 if (!ReferenceRegion) { 2561 if (const MemRegion *MR = C.getLocationRegionIfPostStore(N)) { 2562 SVal Val = State->getSVal(MR); 2563 if (Val.getAsLocSymbol() == Sym) { 2564 const VarRegion *VR = MR->getBaseRegion()->getAs<VarRegion>(); 2565 // Do not show local variables belonging to a function other than 2566 // where the error is reported. 2567 if (!VR || (VR->getStackFrame() == LeakContext->getStackFrame())) 2568 ReferenceRegion = MR; 2569 } 2570 } 2571 } 2572 2573 // Allocation node, is the last node in the current or parent context in 2574 // which the symbol was tracked. 2575 const LocationContext *NContext = N->getLocationContext(); 2576 if (NContext == LeakContext || 2577 NContext->isParentOf(LeakContext)) 2578 AllocNode = N; 2579 N = N->pred_empty() ? nullptr : *(N->pred_begin()); 2580 } 2581 2582 return LeakInfo(AllocNode, ReferenceRegion); 2583 } 2584 2585 void MallocChecker::HandleLeak(SymbolRef Sym, ExplodedNode *N, 2586 CheckerContext &C) const { 2587 2588 if (!ChecksEnabled[CK_MallocChecker] && 2589 !ChecksEnabled[CK_NewDeleteLeaksChecker]) 2590 return; 2591 2592 const RefState *RS = C.getState()->get<RegionState>(Sym); 2593 assert(RS && "cannot leak an untracked symbol"); 2594 AllocationFamily Family = RS->getAllocationFamily(); 2595 2596 if (Family == AF_Alloca) 2597 return; 2598 2599 Optional<MallocChecker::CheckKind> 2600 CheckKind = getCheckIfTracked(Family, true); 2601 2602 if (!CheckKind.hasValue()) 2603 return; 2604 2605 assert(N); 2606 if (!BT_Leak[*CheckKind]) { 2607 // Leaks should not be reported if they are post-dominated by a sink: 2608 // (1) Sinks are higher importance bugs. 2609 // (2) NoReturnFunctionChecker uses sink nodes to represent paths ending 2610 // with __noreturn functions such as assert() or exit(). We choose not 2611 // to report leaks on such paths. 2612 BT_Leak[*CheckKind].reset(new BugType(CheckNames[*CheckKind], "Memory leak", 2613 categories::MemoryError, 2614 /*SuppressOnSink=*/true)); 2615 } 2616 2617 // Most bug reports are cached at the location where they occurred. 2618 // With leaks, we want to unique them by the location where they were 2619 // allocated, and only report a single path. 2620 PathDiagnosticLocation LocUsedForUniqueing; 2621 const ExplodedNode *AllocNode = nullptr; 2622 const MemRegion *Region = nullptr; 2623 std::tie(AllocNode, Region) = getAllocationSite(N, Sym, C); 2624 2625 const Stmt *AllocationStmt = AllocNode->getStmtForDiagnostics(); 2626 if (AllocationStmt) 2627 LocUsedForUniqueing = PathDiagnosticLocation::createBegin(AllocationStmt, 2628 C.getSourceManager(), 2629 AllocNode->getLocationContext()); 2630 2631 SmallString<200> buf; 2632 llvm::raw_svector_ostream os(buf); 2633 if (Region && Region->canPrintPretty()) { 2634 os << "Potential leak of memory pointed to by "; 2635 Region->printPretty(os); 2636 } else { 2637 os << "Potential memory leak"; 2638 } 2639 2640 auto R = std::make_unique<PathSensitiveBugReport>( 2641 *BT_Leak[*CheckKind], os.str(), N, LocUsedForUniqueing, 2642 AllocNode->getLocationContext()->getDecl()); 2643 R->markInteresting(Sym); 2644 R->addVisitor(std::make_unique<MallocBugVisitor>(Sym, true)); 2645 C.emitReport(std::move(R)); 2646 } 2647 2648 void MallocChecker::checkDeadSymbols(SymbolReaper &SymReaper, 2649 CheckerContext &C) const 2650 { 2651 ProgramStateRef state = C.getState(); 2652 RegionStateTy OldRS = state->get<RegionState>(); 2653 RegionStateTy::Factory &F = state->get_context<RegionState>(); 2654 2655 RegionStateTy RS = OldRS; 2656 SmallVector<SymbolRef, 2> Errors; 2657 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 2658 if (SymReaper.isDead(I->first)) { 2659 if (I->second.isAllocated() || I->second.isAllocatedOfSizeZero()) 2660 Errors.push_back(I->first); 2661 // Remove the dead symbol from the map. 2662 RS = F.remove(RS, I->first); 2663 } 2664 } 2665 2666 if (RS == OldRS) { 2667 // We shouldn't have touched other maps yet. 2668 assert(state->get<ReallocPairs>() == 2669 C.getState()->get<ReallocPairs>()); 2670 assert(state->get<FreeReturnValue>() == 2671 C.getState()->get<FreeReturnValue>()); 2672 return; 2673 } 2674 2675 // Cleanup the Realloc Pairs Map. 2676 ReallocPairsTy RP = state->get<ReallocPairs>(); 2677 for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) { 2678 if (SymReaper.isDead(I->first) || 2679 SymReaper.isDead(I->second.ReallocatedSym)) { 2680 state = state->remove<ReallocPairs>(I->first); 2681 } 2682 } 2683 2684 // Cleanup the FreeReturnValue Map. 2685 FreeReturnValueTy FR = state->get<FreeReturnValue>(); 2686 for (FreeReturnValueTy::iterator I = FR.begin(), E = FR.end(); I != E; ++I) { 2687 if (SymReaper.isDead(I->first) || 2688 SymReaper.isDead(I->second)) { 2689 state = state->remove<FreeReturnValue>(I->first); 2690 } 2691 } 2692 2693 // Generate leak node. 2694 ExplodedNode *N = C.getPredecessor(); 2695 if (!Errors.empty()) { 2696 static CheckerProgramPointTag Tag("MallocChecker", "DeadSymbolsLeak"); 2697 N = C.generateNonFatalErrorNode(C.getState(), &Tag); 2698 if (N) { 2699 for (SmallVectorImpl<SymbolRef>::iterator 2700 I = Errors.begin(), E = Errors.end(); I != E; ++I) { 2701 HandleLeak(*I, N, C); 2702 } 2703 } 2704 } 2705 2706 C.addTransition(state->set<RegionState>(RS), N); 2707 } 2708 2709 void MallocChecker::checkPreCall(const CallEvent &Call, 2710 CheckerContext &C) const { 2711 2712 if (const auto *DC = dyn_cast<CXXDeallocatorCall>(&Call)) { 2713 const CXXDeleteExpr *DE = DC->getOriginExpr(); 2714 2715 if (!ChecksEnabled[CK_NewDeleteChecker]) 2716 if (SymbolRef Sym = C.getSVal(DE->getArgument()).getAsSymbol()) 2717 checkUseAfterFree(Sym, C, DE->getArgument()); 2718 2719 if (!isStandardNewDelete(DC->getDecl())) 2720 return; 2721 2722 ProgramStateRef State = C.getState(); 2723 bool IsKnownToBeAllocated; 2724 State = FreeMemAux(C, DE->getArgument(), Call, State, 2725 /*Hold*/ false, IsKnownToBeAllocated, 2726 (DE->isArrayForm() ? AF_CXXNewArray : AF_CXXNew)); 2727 2728 C.addTransition(State); 2729 return; 2730 } 2731 2732 if (const auto *DC = dyn_cast<CXXDestructorCall>(&Call)) { 2733 SymbolRef Sym = DC->getCXXThisVal().getAsSymbol(); 2734 if (!Sym || checkDoubleDelete(Sym, C)) 2735 return; 2736 } 2737 2738 // We will check for double free in the post visit. 2739 if (const AnyFunctionCall *FC = dyn_cast<AnyFunctionCall>(&Call)) { 2740 const FunctionDecl *FD = FC->getDecl(); 2741 if (!FD) 2742 return; 2743 2744 if (ChecksEnabled[CK_MallocChecker] && isFreeingCall(Call)) 2745 return; 2746 } 2747 2748 // Check if the callee of a method is deleted. 2749 if (const CXXInstanceCall *CC = dyn_cast<CXXInstanceCall>(&Call)) { 2750 SymbolRef Sym = CC->getCXXThisVal().getAsSymbol(); 2751 if (!Sym || checkUseAfterFree(Sym, C, CC->getCXXThisExpr())) 2752 return; 2753 } 2754 2755 // Check arguments for being used after free. 2756 for (unsigned I = 0, E = Call.getNumArgs(); I != E; ++I) { 2757 SVal ArgSVal = Call.getArgSVal(I); 2758 if (ArgSVal.getAs<Loc>()) { 2759 SymbolRef Sym = ArgSVal.getAsSymbol(); 2760 if (!Sym) 2761 continue; 2762 if (checkUseAfterFree(Sym, C, Call.getArgExpr(I))) 2763 return; 2764 } 2765 } 2766 } 2767 2768 void MallocChecker::checkPreStmt(const ReturnStmt *S, 2769 CheckerContext &C) const { 2770 checkEscapeOnReturn(S, C); 2771 } 2772 2773 // In the CFG, automatic destructors come after the return statement. 2774 // This callback checks for returning memory that is freed by automatic 2775 // destructors, as those cannot be reached in checkPreStmt(). 2776 void MallocChecker::checkEndFunction(const ReturnStmt *S, 2777 CheckerContext &C) const { 2778 checkEscapeOnReturn(S, C); 2779 } 2780 2781 void MallocChecker::checkEscapeOnReturn(const ReturnStmt *S, 2782 CheckerContext &C) const { 2783 if (!S) 2784 return; 2785 2786 const Expr *E = S->getRetValue(); 2787 if (!E) 2788 return; 2789 2790 // Check if we are returning a symbol. 2791 ProgramStateRef State = C.getState(); 2792 SVal RetVal = C.getSVal(E); 2793 SymbolRef Sym = RetVal.getAsSymbol(); 2794 if (!Sym) 2795 // If we are returning a field of the allocated struct or an array element, 2796 // the callee could still free the memory. 2797 // TODO: This logic should be a part of generic symbol escape callback. 2798 if (const MemRegion *MR = RetVal.getAsRegion()) 2799 if (isa<FieldRegion>(MR) || isa<ElementRegion>(MR)) 2800 if (const SymbolicRegion *BMR = 2801 dyn_cast<SymbolicRegion>(MR->getBaseRegion())) 2802 Sym = BMR->getSymbol(); 2803 2804 // Check if we are returning freed memory. 2805 if (Sym) 2806 checkUseAfterFree(Sym, C, E); 2807 } 2808 2809 // TODO: Blocks should be either inlined or should call invalidate regions 2810 // upon invocation. After that's in place, special casing here will not be 2811 // needed. 2812 void MallocChecker::checkPostStmt(const BlockExpr *BE, 2813 CheckerContext &C) const { 2814 2815 // Scan the BlockDecRefExprs for any object the retain count checker 2816 // may be tracking. 2817 if (!BE->getBlockDecl()->hasCaptures()) 2818 return; 2819 2820 ProgramStateRef state = C.getState(); 2821 const BlockDataRegion *R = 2822 cast<BlockDataRegion>(C.getSVal(BE).getAsRegion()); 2823 2824 BlockDataRegion::referenced_vars_iterator I = R->referenced_vars_begin(), 2825 E = R->referenced_vars_end(); 2826 2827 if (I == E) 2828 return; 2829 2830 SmallVector<const MemRegion*, 10> Regions; 2831 const LocationContext *LC = C.getLocationContext(); 2832 MemRegionManager &MemMgr = C.getSValBuilder().getRegionManager(); 2833 2834 for ( ; I != E; ++I) { 2835 const VarRegion *VR = I.getCapturedRegion(); 2836 if (VR->getSuperRegion() == R) { 2837 VR = MemMgr.getVarRegion(VR->getDecl(), LC); 2838 } 2839 Regions.push_back(VR); 2840 } 2841 2842 state = 2843 state->scanReachableSymbols<StopTrackingCallback>(Regions).getState(); 2844 C.addTransition(state); 2845 } 2846 2847 static bool isReleased(SymbolRef Sym, CheckerContext &C) { 2848 assert(Sym); 2849 const RefState *RS = C.getState()->get<RegionState>(Sym); 2850 return (RS && RS->isReleased()); 2851 } 2852 2853 bool MallocChecker::suppressDeallocationsInSuspiciousContexts( 2854 const CallEvent &Call, CheckerContext &C) const { 2855 if (Call.getNumArgs() == 0) 2856 return false; 2857 2858 StringRef FunctionStr = ""; 2859 if (const auto *FD = dyn_cast<FunctionDecl>(C.getStackFrame()->getDecl())) 2860 if (const Stmt *Body = FD->getBody()) 2861 if (Body->getBeginLoc().isValid()) 2862 FunctionStr = 2863 Lexer::getSourceText(CharSourceRange::getTokenRange( 2864 {FD->getBeginLoc(), Body->getBeginLoc()}), 2865 C.getSourceManager(), C.getLangOpts()); 2866 2867 // We do not model the Integer Set Library's retain-count based allocation. 2868 if (!FunctionStr.contains("__isl_")) 2869 return false; 2870 2871 ProgramStateRef State = C.getState(); 2872 2873 for (const Expr *Arg : cast<CallExpr>(Call.getOriginExpr())->arguments()) 2874 if (SymbolRef Sym = C.getSVal(Arg).getAsSymbol()) 2875 if (const RefState *RS = State->get<RegionState>(Sym)) 2876 State = State->set<RegionState>(Sym, RefState::getEscaped(RS)); 2877 2878 C.addTransition(State); 2879 return true; 2880 } 2881 2882 bool MallocChecker::checkUseAfterFree(SymbolRef Sym, CheckerContext &C, 2883 const Stmt *S) const { 2884 2885 if (isReleased(Sym, C)) { 2886 HandleUseAfterFree(C, S->getSourceRange(), Sym); 2887 return true; 2888 } 2889 2890 return false; 2891 } 2892 2893 void MallocChecker::checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, 2894 const Stmt *S) const { 2895 assert(Sym); 2896 2897 if (const RefState *RS = C.getState()->get<RegionState>(Sym)) { 2898 if (RS->isAllocatedOfSizeZero()) 2899 HandleUseZeroAlloc(C, RS->getStmt()->getSourceRange(), Sym); 2900 } 2901 else if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) { 2902 HandleUseZeroAlloc(C, S->getSourceRange(), Sym); 2903 } 2904 } 2905 2906 bool MallocChecker::checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const { 2907 2908 if (isReleased(Sym, C)) { 2909 HandleDoubleDelete(C, Sym); 2910 return true; 2911 } 2912 return false; 2913 } 2914 2915 // Check if the location is a freed symbolic region. 2916 void MallocChecker::checkLocation(SVal l, bool isLoad, const Stmt *S, 2917 CheckerContext &C) const { 2918 SymbolRef Sym = l.getLocSymbolInBase(); 2919 if (Sym) { 2920 checkUseAfterFree(Sym, C, S); 2921 checkUseZeroAllocated(Sym, C, S); 2922 } 2923 } 2924 2925 // If a symbolic region is assumed to NULL (or another constant), stop tracking 2926 // it - assuming that allocation failed on this path. 2927 ProgramStateRef MallocChecker::evalAssume(ProgramStateRef state, 2928 SVal Cond, 2929 bool Assumption) const { 2930 RegionStateTy RS = state->get<RegionState>(); 2931 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 2932 // If the symbol is assumed to be NULL, remove it from consideration. 2933 ConstraintManager &CMgr = state->getConstraintManager(); 2934 ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey()); 2935 if (AllocFailed.isConstrainedTrue()) 2936 state = state->remove<RegionState>(I.getKey()); 2937 } 2938 2939 // Realloc returns 0 when reallocation fails, which means that we should 2940 // restore the state of the pointer being reallocated. 2941 ReallocPairsTy RP = state->get<ReallocPairs>(); 2942 for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) { 2943 // If the symbol is assumed to be NULL, remove it from consideration. 2944 ConstraintManager &CMgr = state->getConstraintManager(); 2945 ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey()); 2946 if (!AllocFailed.isConstrainedTrue()) 2947 continue; 2948 2949 SymbolRef ReallocSym = I.getData().ReallocatedSym; 2950 if (const RefState *RS = state->get<RegionState>(ReallocSym)) { 2951 if (RS->isReleased()) { 2952 switch (I.getData().Kind) { 2953 case OAR_ToBeFreedAfterFailure: 2954 state = state->set<RegionState>(ReallocSym, 2955 RefState::getAllocated(RS->getAllocationFamily(), RS->getStmt())); 2956 break; 2957 case OAR_DoNotTrackAfterFailure: 2958 state = state->remove<RegionState>(ReallocSym); 2959 break; 2960 default: 2961 assert(I.getData().Kind == OAR_FreeOnFailure); 2962 } 2963 } 2964 } 2965 state = state->remove<ReallocPairs>(I.getKey()); 2966 } 2967 2968 return state; 2969 } 2970 2971 bool MallocChecker::mayFreeAnyEscapedMemoryOrIsModeledExplicitly( 2972 const CallEvent *Call, 2973 ProgramStateRef State, 2974 SymbolRef &EscapingSymbol) const { 2975 assert(Call); 2976 EscapingSymbol = nullptr; 2977 2978 // For now, assume that any C++ or block call can free memory. 2979 // TODO: If we want to be more optimistic here, we'll need to make sure that 2980 // regions escape to C++ containers. They seem to do that even now, but for 2981 // mysterious reasons. 2982 if (!(isa<SimpleFunctionCall>(Call) || isa<ObjCMethodCall>(Call))) 2983 return true; 2984 2985 // Check Objective-C messages by selector name. 2986 if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Call)) { 2987 // If it's not a framework call, or if it takes a callback, assume it 2988 // can free memory. 2989 if (!Call->isInSystemHeader() || Call->argumentsMayEscape()) 2990 return true; 2991 2992 // If it's a method we know about, handle it explicitly post-call. 2993 // This should happen before the "freeWhenDone" check below. 2994 if (isKnownDeallocObjCMethodName(*Msg)) 2995 return false; 2996 2997 // If there's a "freeWhenDone" parameter, but the method isn't one we know 2998 // about, we can't be sure that the object will use free() to deallocate the 2999 // memory, so we can't model it explicitly. The best we can do is use it to 3000 // decide whether the pointer escapes. 3001 if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(*Msg)) 3002 return *FreeWhenDone; 3003 3004 // If the first selector piece ends with "NoCopy", and there is no 3005 // "freeWhenDone" parameter set to zero, we know ownership is being 3006 // transferred. Again, though, we can't be sure that the object will use 3007 // free() to deallocate the memory, so we can't model it explicitly. 3008 StringRef FirstSlot = Msg->getSelector().getNameForSlot(0); 3009 if (FirstSlot.endswith("NoCopy")) 3010 return true; 3011 3012 // If the first selector starts with addPointer, insertPointer, 3013 // or replacePointer, assume we are dealing with NSPointerArray or similar. 3014 // This is similar to C++ containers (vector); we still might want to check 3015 // that the pointers get freed by following the container itself. 3016 if (FirstSlot.startswith("addPointer") || 3017 FirstSlot.startswith("insertPointer") || 3018 FirstSlot.startswith("replacePointer") || 3019 FirstSlot.equals("valueWithPointer")) { 3020 return true; 3021 } 3022 3023 // We should escape receiver on call to 'init'. This is especially relevant 3024 // to the receiver, as the corresponding symbol is usually not referenced 3025 // after the call. 3026 if (Msg->getMethodFamily() == OMF_init) { 3027 EscapingSymbol = Msg->getReceiverSVal().getAsSymbol(); 3028 return true; 3029 } 3030 3031 // Otherwise, assume that the method does not free memory. 3032 // Most framework methods do not free memory. 3033 return false; 3034 } 3035 3036 // At this point the only thing left to handle is straight function calls. 3037 const FunctionDecl *FD = cast<SimpleFunctionCall>(Call)->getDecl(); 3038 if (!FD) 3039 return true; 3040 3041 // If it's one of the allocation functions we can reason about, we model 3042 // its behavior explicitly. 3043 if (isMemCall(*Call)) 3044 return false; 3045 3046 // If it's not a system call, assume it frees memory. 3047 if (!Call->isInSystemHeader()) 3048 return true; 3049 3050 // White list the system functions whose arguments escape. 3051 const IdentifierInfo *II = FD->getIdentifier(); 3052 if (!II) 3053 return true; 3054 StringRef FName = II->getName(); 3055 3056 // White list the 'XXXNoCopy' CoreFoundation functions. 3057 // We specifically check these before 3058 if (FName.endswith("NoCopy")) { 3059 // Look for the deallocator argument. We know that the memory ownership 3060 // is not transferred only if the deallocator argument is 3061 // 'kCFAllocatorNull'. 3062 for (unsigned i = 1; i < Call->getNumArgs(); ++i) { 3063 const Expr *ArgE = Call->getArgExpr(i)->IgnoreParenCasts(); 3064 if (const DeclRefExpr *DE = dyn_cast<DeclRefExpr>(ArgE)) { 3065 StringRef DeallocatorName = DE->getFoundDecl()->getName(); 3066 if (DeallocatorName == "kCFAllocatorNull") 3067 return false; 3068 } 3069 } 3070 return true; 3071 } 3072 3073 // Associating streams with malloced buffers. The pointer can escape if 3074 // 'closefn' is specified (and if that function does free memory), 3075 // but it will not if closefn is not specified. 3076 // Currently, we do not inspect the 'closefn' function (PR12101). 3077 if (FName == "funopen") 3078 if (Call->getNumArgs() >= 4 && Call->getArgSVal(4).isConstant(0)) 3079 return false; 3080 3081 // Do not warn on pointers passed to 'setbuf' when used with std streams, 3082 // these leaks might be intentional when setting the buffer for stdio. 3083 // http://stackoverflow.com/questions/2671151/who-frees-setvbuf-buffer 3084 if (FName == "setbuf" || FName =="setbuffer" || 3085 FName == "setlinebuf" || FName == "setvbuf") { 3086 if (Call->getNumArgs() >= 1) { 3087 const Expr *ArgE = Call->getArgExpr(0)->IgnoreParenCasts(); 3088 if (const DeclRefExpr *ArgDRE = dyn_cast<DeclRefExpr>(ArgE)) 3089 if (const VarDecl *D = dyn_cast<VarDecl>(ArgDRE->getDecl())) 3090 if (D->getCanonicalDecl()->getName().find("std") != StringRef::npos) 3091 return true; 3092 } 3093 } 3094 3095 // A bunch of other functions which either take ownership of a pointer or 3096 // wrap the result up in a struct or object, meaning it can be freed later. 3097 // (See RetainCountChecker.) Not all the parameters here are invalidated, 3098 // but the Malloc checker cannot differentiate between them. The right way 3099 // of doing this would be to implement a pointer escapes callback. 3100 if (FName == "CGBitmapContextCreate" || 3101 FName == "CGBitmapContextCreateWithData" || 3102 FName == "CVPixelBufferCreateWithBytes" || 3103 FName == "CVPixelBufferCreateWithPlanarBytes" || 3104 FName == "OSAtomicEnqueue") { 3105 return true; 3106 } 3107 3108 if (FName == "postEvent" && 3109 FD->getQualifiedNameAsString() == "QCoreApplication::postEvent") { 3110 return true; 3111 } 3112 3113 if (FName == "connectImpl" && 3114 FD->getQualifiedNameAsString() == "QObject::connectImpl") { 3115 return true; 3116 } 3117 3118 // Handle cases where we know a buffer's /address/ can escape. 3119 // Note that the above checks handle some special cases where we know that 3120 // even though the address escapes, it's still our responsibility to free the 3121 // buffer. 3122 if (Call->argumentsMayEscape()) 3123 return true; 3124 3125 // Otherwise, assume that the function does not free memory. 3126 // Most system calls do not free the memory. 3127 return false; 3128 } 3129 3130 ProgramStateRef MallocChecker::checkPointerEscape(ProgramStateRef State, 3131 const InvalidatedSymbols &Escaped, 3132 const CallEvent *Call, 3133 PointerEscapeKind Kind) const { 3134 return checkPointerEscapeAux(State, Escaped, Call, Kind, 3135 /*IsConstPointerEscape*/ false); 3136 } 3137 3138 ProgramStateRef MallocChecker::checkConstPointerEscape(ProgramStateRef State, 3139 const InvalidatedSymbols &Escaped, 3140 const CallEvent *Call, 3141 PointerEscapeKind Kind) const { 3142 // If a const pointer escapes, it may not be freed(), but it could be deleted. 3143 return checkPointerEscapeAux(State, Escaped, Call, Kind, 3144 /*IsConstPointerEscape*/ true); 3145 } 3146 3147 static bool checkIfNewOrNewArrayFamily(const RefState *RS) { 3148 return (RS->getAllocationFamily() == AF_CXXNewArray || 3149 RS->getAllocationFamily() == AF_CXXNew); 3150 } 3151 3152 ProgramStateRef MallocChecker::checkPointerEscapeAux( 3153 ProgramStateRef State, const InvalidatedSymbols &Escaped, 3154 const CallEvent *Call, PointerEscapeKind Kind, 3155 bool IsConstPointerEscape) const { 3156 // If we know that the call does not free memory, or we want to process the 3157 // call later, keep tracking the top level arguments. 3158 SymbolRef EscapingSymbol = nullptr; 3159 if (Kind == PSK_DirectEscapeOnCall && 3160 !mayFreeAnyEscapedMemoryOrIsModeledExplicitly(Call, State, 3161 EscapingSymbol) && 3162 !EscapingSymbol) { 3163 return State; 3164 } 3165 3166 for (InvalidatedSymbols::const_iterator I = Escaped.begin(), 3167 E = Escaped.end(); 3168 I != E; ++I) { 3169 SymbolRef sym = *I; 3170 3171 if (EscapingSymbol && EscapingSymbol != sym) 3172 continue; 3173 3174 if (const RefState *RS = State->get<RegionState>(sym)) 3175 if (RS->isAllocated() || RS->isAllocatedOfSizeZero()) 3176 if (!IsConstPointerEscape || checkIfNewOrNewArrayFamily(RS)) 3177 State = State->set<RegionState>(sym, RefState::getEscaped(RS)); 3178 } 3179 return State; 3180 } 3181 3182 bool MallocChecker::isArgZERO_SIZE_PTR(ProgramStateRef State, CheckerContext &C, 3183 SVal ArgVal) const { 3184 if (!KernelZeroSizePtrValue) 3185 KernelZeroSizePtrValue = 3186 tryExpandAsInteger("ZERO_SIZE_PTR", C.getPreprocessor()); 3187 3188 const llvm::APSInt *ArgValKnown = 3189 C.getSValBuilder().getKnownValue(State, ArgVal); 3190 return ArgValKnown && *KernelZeroSizePtrValue && 3191 ArgValKnown->getSExtValue() == **KernelZeroSizePtrValue; 3192 } 3193 3194 static SymbolRef findFailedReallocSymbol(ProgramStateRef currState, 3195 ProgramStateRef prevState) { 3196 ReallocPairsTy currMap = currState->get<ReallocPairs>(); 3197 ReallocPairsTy prevMap = prevState->get<ReallocPairs>(); 3198 3199 for (const ReallocPairsTy::value_type &Pair : prevMap) { 3200 SymbolRef sym = Pair.first; 3201 if (!currMap.lookup(sym)) 3202 return sym; 3203 } 3204 3205 return nullptr; 3206 } 3207 3208 static bool isReferenceCountingPointerDestructor(const CXXDestructorDecl *DD) { 3209 if (const IdentifierInfo *II = DD->getParent()->getIdentifier()) { 3210 StringRef N = II->getName(); 3211 if (N.contains_lower("ptr") || N.contains_lower("pointer")) { 3212 if (N.contains_lower("ref") || N.contains_lower("cnt") || 3213 N.contains_lower("intrusive") || N.contains_lower("shared")) { 3214 return true; 3215 } 3216 } 3217 } 3218 return false; 3219 } 3220 3221 PathDiagnosticPieceRef MallocBugVisitor::VisitNode(const ExplodedNode *N, 3222 BugReporterContext &BRC, 3223 PathSensitiveBugReport &BR) { 3224 ProgramStateRef state = N->getState(); 3225 ProgramStateRef statePrev = N->getFirstPred()->getState(); 3226 3227 const RefState *RSCurr = state->get<RegionState>(Sym); 3228 const RefState *RSPrev = statePrev->get<RegionState>(Sym); 3229 3230 const Stmt *S = N->getStmtForDiagnostics(); 3231 // When dealing with containers, we sometimes want to give a note 3232 // even if the statement is missing. 3233 if (!S && (!RSCurr || RSCurr->getAllocationFamily() != AF_InnerBuffer)) 3234 return nullptr; 3235 3236 const LocationContext *CurrentLC = N->getLocationContext(); 3237 3238 // If we find an atomic fetch_add or fetch_sub within the destructor in which 3239 // the pointer was released (before the release), this is likely a destructor 3240 // of a shared pointer. 3241 // Because we don't model atomics, and also because we don't know that the 3242 // original reference count is positive, we should not report use-after-frees 3243 // on objects deleted in such destructors. This can probably be improved 3244 // through better shared pointer modeling. 3245 if (ReleaseDestructorLC) { 3246 if (const auto *AE = dyn_cast<AtomicExpr>(S)) { 3247 AtomicExpr::AtomicOp Op = AE->getOp(); 3248 if (Op == AtomicExpr::AO__c11_atomic_fetch_add || 3249 Op == AtomicExpr::AO__c11_atomic_fetch_sub) { 3250 if (ReleaseDestructorLC == CurrentLC || 3251 ReleaseDestructorLC->isParentOf(CurrentLC)) { 3252 BR.markInvalid(getTag(), S); 3253 } 3254 } 3255 } 3256 } 3257 3258 // FIXME: We will eventually need to handle non-statement-based events 3259 // (__attribute__((cleanup))). 3260 3261 // Find out if this is an interesting point and what is the kind. 3262 StringRef Msg; 3263 std::unique_ptr<StackHintGeneratorForSymbol> StackHint = nullptr; 3264 SmallString<256> Buf; 3265 llvm::raw_svector_ostream OS(Buf); 3266 3267 if (Mode == Normal) { 3268 if (isAllocated(RSCurr, RSPrev, S)) { 3269 Msg = "Memory is allocated"; 3270 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3271 Sym, "Returned allocated memory"); 3272 } else if (isReleased(RSCurr, RSPrev, S)) { 3273 const auto Family = RSCurr->getAllocationFamily(); 3274 switch (Family) { 3275 case AF_Alloca: 3276 case AF_Malloc: 3277 case AF_CXXNew: 3278 case AF_CXXNewArray: 3279 case AF_IfNameIndex: 3280 Msg = "Memory is released"; 3281 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3282 Sym, "Returning; memory was released"); 3283 break; 3284 case AF_InnerBuffer: { 3285 const MemRegion *ObjRegion = 3286 allocation_state::getContainerObjRegion(statePrev, Sym); 3287 const auto *TypedRegion = cast<TypedValueRegion>(ObjRegion); 3288 QualType ObjTy = TypedRegion->getValueType(); 3289 OS << "Inner buffer of '" << ObjTy.getAsString() << "' "; 3290 3291 if (N->getLocation().getKind() == ProgramPoint::PostImplicitCallKind) { 3292 OS << "deallocated by call to destructor"; 3293 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3294 Sym, "Returning; inner buffer was deallocated"); 3295 } else { 3296 OS << "reallocated by call to '"; 3297 const Stmt *S = RSCurr->getStmt(); 3298 if (const auto *MemCallE = dyn_cast<CXXMemberCallExpr>(S)) { 3299 OS << MemCallE->getMethodDecl()->getDeclName(); 3300 } else if (const auto *OpCallE = dyn_cast<CXXOperatorCallExpr>(S)) { 3301 OS << OpCallE->getDirectCallee()->getDeclName(); 3302 } else if (const auto *CallE = dyn_cast<CallExpr>(S)) { 3303 auto &CEMgr = BRC.getStateManager().getCallEventManager(); 3304 CallEventRef<> Call = CEMgr.getSimpleCall(CallE, state, CurrentLC); 3305 if (const auto *D = dyn_cast_or_null<NamedDecl>(Call->getDecl())) 3306 OS << D->getDeclName(); 3307 else 3308 OS << "unknown"; 3309 } 3310 OS << "'"; 3311 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3312 Sym, "Returning; inner buffer was reallocated"); 3313 } 3314 Msg = OS.str(); 3315 break; 3316 } 3317 case AF_None: 3318 llvm_unreachable("Unhandled allocation family!"); 3319 } 3320 3321 // See if we're releasing memory while inlining a destructor 3322 // (or one of its callees). This turns on various common 3323 // false positive suppressions. 3324 bool FoundAnyDestructor = false; 3325 for (const LocationContext *LC = CurrentLC; LC; LC = LC->getParent()) { 3326 if (const auto *DD = dyn_cast<CXXDestructorDecl>(LC->getDecl())) { 3327 if (isReferenceCountingPointerDestructor(DD)) { 3328 // This immediately looks like a reference-counting destructor. 3329 // We're bad at guessing the original reference count of the object, 3330 // so suppress the report for now. 3331 BR.markInvalid(getTag(), DD); 3332 } else if (!FoundAnyDestructor) { 3333 assert(!ReleaseDestructorLC && 3334 "There can be only one release point!"); 3335 // Suspect that it's a reference counting pointer destructor. 3336 // On one of the next nodes might find out that it has atomic 3337 // reference counting operations within it (see the code above), 3338 // and if so, we'd conclude that it likely is a reference counting 3339 // pointer destructor. 3340 ReleaseDestructorLC = LC->getStackFrame(); 3341 // It is unlikely that releasing memory is delegated to a destructor 3342 // inside a destructor of a shared pointer, because it's fairly hard 3343 // to pass the information that the pointer indeed needs to be 3344 // released into it. So we're only interested in the innermost 3345 // destructor. 3346 FoundAnyDestructor = true; 3347 } 3348 } 3349 } 3350 } else if (isRelinquished(RSCurr, RSPrev, S)) { 3351 Msg = "Memory ownership is transferred"; 3352 StackHint = std::make_unique<StackHintGeneratorForSymbol>(Sym, ""); 3353 } else if (hasReallocFailed(RSCurr, RSPrev, S)) { 3354 Mode = ReallocationFailed; 3355 Msg = "Reallocation failed"; 3356 StackHint = std::make_unique<StackHintGeneratorForReallocationFailed>( 3357 Sym, "Reallocation failed"); 3358 3359 if (SymbolRef sym = findFailedReallocSymbol(state, statePrev)) { 3360 // Is it possible to fail two reallocs WITHOUT testing in between? 3361 assert((!FailedReallocSymbol || FailedReallocSymbol == sym) && 3362 "We only support one failed realloc at a time."); 3363 BR.markInteresting(sym); 3364 FailedReallocSymbol = sym; 3365 } 3366 } 3367 3368 // We are in a special mode if a reallocation failed later in the path. 3369 } else if (Mode == ReallocationFailed) { 3370 assert(FailedReallocSymbol && "No symbol to look for."); 3371 3372 // Is this is the first appearance of the reallocated symbol? 3373 if (!statePrev->get<RegionState>(FailedReallocSymbol)) { 3374 // We're at the reallocation point. 3375 Msg = "Attempt to reallocate memory"; 3376 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3377 Sym, "Returned reallocated memory"); 3378 FailedReallocSymbol = nullptr; 3379 Mode = Normal; 3380 } 3381 } 3382 3383 if (Msg.empty()) { 3384 assert(!StackHint); 3385 return nullptr; 3386 } 3387 3388 assert(StackHint); 3389 3390 // Generate the extra diagnostic. 3391 PathDiagnosticLocation Pos; 3392 if (!S) { 3393 assert(RSCurr->getAllocationFamily() == AF_InnerBuffer); 3394 auto PostImplCall = N->getLocation().getAs<PostImplicitCall>(); 3395 if (!PostImplCall) 3396 return nullptr; 3397 Pos = PathDiagnosticLocation(PostImplCall->getLocation(), 3398 BRC.getSourceManager()); 3399 } else { 3400 Pos = PathDiagnosticLocation(S, BRC.getSourceManager(), 3401 N->getLocationContext()); 3402 } 3403 3404 auto P = std::make_shared<PathDiagnosticEventPiece>(Pos, Msg, true); 3405 BR.addCallStackHint(P, std::move(StackHint)); 3406 return P; 3407 } 3408 3409 void MallocChecker::printState(raw_ostream &Out, ProgramStateRef State, 3410 const char *NL, const char *Sep) const { 3411 3412 RegionStateTy RS = State->get<RegionState>(); 3413 3414 if (!RS.isEmpty()) { 3415 Out << Sep << "MallocChecker :" << NL; 3416 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 3417 const RefState *RefS = State->get<RegionState>(I.getKey()); 3418 AllocationFamily Family = RefS->getAllocationFamily(); 3419 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 3420 if (!CheckKind.hasValue()) 3421 CheckKind = getCheckIfTracked(Family, true); 3422 3423 I.getKey()->dumpToStream(Out); 3424 Out << " : "; 3425 I.getData().dump(Out); 3426 if (CheckKind.hasValue()) 3427 Out << " (" << CheckNames[*CheckKind].getName() << ")"; 3428 Out << NL; 3429 } 3430 } 3431 } 3432 3433 namespace clang { 3434 namespace ento { 3435 namespace allocation_state { 3436 3437 ProgramStateRef 3438 markReleased(ProgramStateRef State, SymbolRef Sym, const Expr *Origin) { 3439 AllocationFamily Family = AF_InnerBuffer; 3440 return State->set<RegionState>(Sym, RefState::getReleased(Family, Origin)); 3441 } 3442 3443 } // end namespace allocation_state 3444 } // end namespace ento 3445 } // end namespace clang 3446 3447 // Intended to be used in InnerPointerChecker to register the part of 3448 // MallocChecker connected to it. 3449 void ento::registerInnerPointerCheckerAux(CheckerManager &mgr) { 3450 MallocChecker *checker = mgr.getChecker<MallocChecker>(); 3451 checker->ChecksEnabled[MallocChecker::CK_InnerPointerChecker] = true; 3452 checker->CheckNames[MallocChecker::CK_InnerPointerChecker] = 3453 mgr.getCurrentCheckerName(); 3454 } 3455 3456 void ento::registerDynamicMemoryModeling(CheckerManager &mgr) { 3457 auto *checker = mgr.registerChecker<MallocChecker>(); 3458 checker->ShouldIncludeOwnershipAnnotatedFunctions = 3459 mgr.getAnalyzerOptions().getCheckerBooleanOption(checker, "Optimistic"); 3460 } 3461 3462 bool ento::shouldRegisterDynamicMemoryModeling(const CheckerManager &mgr) { 3463 return true; 3464 } 3465 3466 #define REGISTER_CHECKER(name) \ 3467 void ento::register##name(CheckerManager &mgr) { \ 3468 MallocChecker *checker = mgr.getChecker<MallocChecker>(); \ 3469 checker->ChecksEnabled[MallocChecker::CK_##name] = true; \ 3470 checker->CheckNames[MallocChecker::CK_##name] = \ 3471 mgr.getCurrentCheckerName(); \ 3472 } \ 3473 \ 3474 bool ento::shouldRegister##name(const CheckerManager &mgr) { return true; } 3475 3476 REGISTER_CHECKER(MallocChecker) 3477 REGISTER_CHECKER(NewDeleteChecker) 3478 REGISTER_CHECKER(NewDeleteLeaksChecker) 3479 REGISTER_CHECKER(MismatchedDeallocatorChecker) 3480