1 //=== MallocChecker.cpp - A malloc/free checker -------------------*- C++ -*--// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines a variety of memory management related checkers, such as 10 // leak, double free, and use-after-free. 11 // 12 // The following checkers are defined here: 13 // 14 // * MallocChecker 15 // Despite its name, it models all sorts of memory allocations and 16 // de- or reallocation, including but not limited to malloc, free, 17 // relloc, new, delete. It also reports on a variety of memory misuse 18 // errors. 19 // Many other checkers interact very closely with this checker, in fact, 20 // most are merely options to this one. Other checkers may register 21 // MallocChecker, but do not enable MallocChecker's reports (more details 22 // to follow around its field, ChecksEnabled). 23 // It also has a boolean "Optimistic" checker option, which if set to true 24 // will cause the checker to model user defined memory management related 25 // functions annotated via the attribute ownership_takes, ownership_holds 26 // and ownership_returns. 27 // 28 // * NewDeleteChecker 29 // Enables the modeling of new, new[], delete, delete[] in MallocChecker, 30 // and checks for related double-free and use-after-free errors. 31 // 32 // * NewDeleteLeaksChecker 33 // Checks for leaks related to new, new[], delete, delete[]. 34 // Depends on NewDeleteChecker. 35 // 36 // * MismatchedDeallocatorChecker 37 // Enables checking whether memory is deallocated with the correspending 38 // allocation function in MallocChecker, such as malloc() allocated 39 // regions are only freed by free(), new by delete, new[] by delete[]. 40 // 41 // InnerPointerChecker interacts very closely with MallocChecker, but unlike 42 // the above checkers, it has it's own file, hence the many InnerPointerChecker 43 // related headers and non-static functions. 44 // 45 //===----------------------------------------------------------------------===// 46 47 #include "AllocationState.h" 48 #include "InterCheckerAPI.h" 49 #include "clang/AST/Attr.h" 50 #include "clang/AST/DeclCXX.h" 51 #include "clang/AST/DeclTemplate.h" 52 #include "clang/AST/Expr.h" 53 #include "clang/AST/ExprCXX.h" 54 #include "clang/AST/ParentMap.h" 55 #include "clang/ASTMatchers/ASTMatchFinder.h" 56 #include "clang/ASTMatchers/ASTMatchers.h" 57 #include "clang/Analysis/ProgramPoint.h" 58 #include "clang/Basic/LLVM.h" 59 #include "clang/Basic/SourceManager.h" 60 #include "clang/Basic/TargetInfo.h" 61 #include "clang/Lex/Lexer.h" 62 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" 63 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 64 #include "clang/StaticAnalyzer/Core/BugReporter/CommonBugCategories.h" 65 #include "clang/StaticAnalyzer/Core/Checker.h" 66 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 67 #include "clang/StaticAnalyzer/Core/PathSensitive/CallDescription.h" 68 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 69 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 70 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerHelpers.h" 71 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicExtent.h" 72 #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h" 73 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 74 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 75 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h" 76 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h" 77 #include "clang/StaticAnalyzer/Core/PathSensitive/StoreRef.h" 78 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h" 79 #include "llvm/ADT/STLExtras.h" 80 #include "llvm/ADT/SetOperations.h" 81 #include "llvm/ADT/SmallString.h" 82 #include "llvm/ADT/StringExtras.h" 83 #include "llvm/Support/Casting.h" 84 #include "llvm/Support/Compiler.h" 85 #include "llvm/Support/ErrorHandling.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include <climits> 88 #include <functional> 89 #include <utility> 90 91 using namespace clang; 92 using namespace ento; 93 using namespace std::placeholders; 94 95 //===----------------------------------------------------------------------===// 96 // The types of allocation we're modeling. This is used to check whether a 97 // dynamically allocated object is deallocated with the correct function, like 98 // not using operator delete on an object created by malloc(), or alloca regions 99 // aren't ever deallocated manually. 100 //===----------------------------------------------------------------------===// 101 102 namespace { 103 104 // Used to check correspondence between allocators and deallocators. 105 enum AllocationFamily { 106 AF_None, 107 AF_Malloc, 108 AF_CXXNew, 109 AF_CXXNewArray, 110 AF_IfNameIndex, 111 AF_Alloca, 112 AF_InnerBuffer 113 }; 114 115 } // end of anonymous namespace 116 117 /// Print names of allocators and deallocators. 118 /// 119 /// \returns true on success. 120 static bool printMemFnName(raw_ostream &os, CheckerContext &C, const Expr *E); 121 122 /// Print expected name of an allocator based on the deallocator's family 123 /// derived from the DeallocExpr. 124 static void printExpectedAllocName(raw_ostream &os, AllocationFamily Family); 125 126 /// Print expected name of a deallocator based on the allocator's 127 /// family. 128 static void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family); 129 130 //===----------------------------------------------------------------------===// 131 // The state of a symbol, in terms of memory management. 132 //===----------------------------------------------------------------------===// 133 134 namespace { 135 136 class RefState { 137 enum Kind { 138 // Reference to allocated memory. 139 Allocated, 140 // Reference to zero-allocated memory. 141 AllocatedOfSizeZero, 142 // Reference to released/freed memory. 143 Released, 144 // The responsibility for freeing resources has transferred from 145 // this reference. A relinquished symbol should not be freed. 146 Relinquished, 147 // We are no longer guaranteed to have observed all manipulations 148 // of this pointer/memory. For example, it could have been 149 // passed as a parameter to an opaque function. 150 Escaped 151 }; 152 153 const Stmt *S; 154 155 Kind K; 156 AllocationFamily Family; 157 158 RefState(Kind k, const Stmt *s, AllocationFamily family) 159 : S(s), K(k), Family(family) { 160 assert(family != AF_None); 161 } 162 163 public: 164 bool isAllocated() const { return K == Allocated; } 165 bool isAllocatedOfSizeZero() const { return K == AllocatedOfSizeZero; } 166 bool isReleased() const { return K == Released; } 167 bool isRelinquished() const { return K == Relinquished; } 168 bool isEscaped() const { return K == Escaped; } 169 AllocationFamily getAllocationFamily() const { return Family; } 170 const Stmt *getStmt() const { return S; } 171 172 bool operator==(const RefState &X) const { 173 return K == X.K && S == X.S && Family == X.Family; 174 } 175 176 static RefState getAllocated(AllocationFamily family, const Stmt *s) { 177 return RefState(Allocated, s, family); 178 } 179 static RefState getAllocatedOfSizeZero(const RefState *RS) { 180 return RefState(AllocatedOfSizeZero, RS->getStmt(), 181 RS->getAllocationFamily()); 182 } 183 static RefState getReleased(AllocationFamily family, const Stmt *s) { 184 return RefState(Released, s, family); 185 } 186 static RefState getRelinquished(AllocationFamily family, const Stmt *s) { 187 return RefState(Relinquished, s, family); 188 } 189 static RefState getEscaped(const RefState *RS) { 190 return RefState(Escaped, RS->getStmt(), RS->getAllocationFamily()); 191 } 192 193 void Profile(llvm::FoldingSetNodeID &ID) const { 194 ID.AddInteger(K); 195 ID.AddPointer(S); 196 ID.AddInteger(Family); 197 } 198 199 LLVM_DUMP_METHOD void dump(raw_ostream &OS) const { 200 switch (K) { 201 #define CASE(ID) case ID: OS << #ID; break; 202 CASE(Allocated) 203 CASE(AllocatedOfSizeZero) 204 CASE(Released) 205 CASE(Relinquished) 206 CASE(Escaped) 207 } 208 } 209 210 LLVM_DUMP_METHOD void dump() const { dump(llvm::errs()); } 211 }; 212 213 } // end of anonymous namespace 214 215 REGISTER_MAP_WITH_PROGRAMSTATE(RegionState, SymbolRef, RefState) 216 217 /// Check if the memory associated with this symbol was released. 218 static bool isReleased(SymbolRef Sym, CheckerContext &C); 219 220 /// Update the RefState to reflect the new memory allocation. 221 /// The optional \p RetVal parameter specifies the newly allocated pointer 222 /// value; if unspecified, the value of expression \p E is used. 223 static ProgramStateRef MallocUpdateRefState(CheckerContext &C, const Expr *E, 224 ProgramStateRef State, 225 AllocationFamily Family, 226 Optional<SVal> RetVal = None); 227 228 //===----------------------------------------------------------------------===// 229 // The modeling of memory reallocation. 230 // 231 // The terminology 'toPtr' and 'fromPtr' will be used: 232 // toPtr = realloc(fromPtr, 20); 233 //===----------------------------------------------------------------------===// 234 235 REGISTER_SET_WITH_PROGRAMSTATE(ReallocSizeZeroSymbols, SymbolRef) 236 237 namespace { 238 239 /// The state of 'fromPtr' after reallocation is known to have failed. 240 enum OwnershipAfterReallocKind { 241 // The symbol needs to be freed (e.g.: realloc) 242 OAR_ToBeFreedAfterFailure, 243 // The symbol has been freed (e.g.: reallocf) 244 OAR_FreeOnFailure, 245 // The symbol doesn't have to freed (e.g.: we aren't sure if, how and where 246 // 'fromPtr' was allocated: 247 // void Haha(int *ptr) { 248 // ptr = realloc(ptr, 67); 249 // // ... 250 // } 251 // ). 252 OAR_DoNotTrackAfterFailure 253 }; 254 255 /// Stores information about the 'fromPtr' symbol after reallocation. 256 /// 257 /// This is important because realloc may fail, and that needs special modeling. 258 /// Whether reallocation failed or not will not be known until later, so we'll 259 /// store whether upon failure 'fromPtr' will be freed, or needs to be freed 260 /// later, etc. 261 struct ReallocPair { 262 263 // The 'fromPtr'. 264 SymbolRef ReallocatedSym; 265 OwnershipAfterReallocKind Kind; 266 267 ReallocPair(SymbolRef S, OwnershipAfterReallocKind K) 268 : ReallocatedSym(S), Kind(K) {} 269 void Profile(llvm::FoldingSetNodeID &ID) const { 270 ID.AddInteger(Kind); 271 ID.AddPointer(ReallocatedSym); 272 } 273 bool operator==(const ReallocPair &X) const { 274 return ReallocatedSym == X.ReallocatedSym && 275 Kind == X.Kind; 276 } 277 }; 278 279 } // end of anonymous namespace 280 281 REGISTER_MAP_WITH_PROGRAMSTATE(ReallocPairs, SymbolRef, ReallocPair) 282 283 /// Tells if the callee is one of the builtin new/delete operators, including 284 /// placement operators and other standard overloads. 285 static bool isStandardNewDelete(const FunctionDecl *FD); 286 static bool isStandardNewDelete(const CallEvent &Call) { 287 if (!Call.getDecl() || !isa<FunctionDecl>(Call.getDecl())) 288 return false; 289 return isStandardNewDelete(cast<FunctionDecl>(Call.getDecl())); 290 } 291 292 //===----------------------------------------------------------------------===// 293 // Definition of the MallocChecker class. 294 //===----------------------------------------------------------------------===// 295 296 namespace { 297 298 class MallocChecker 299 : public Checker<check::DeadSymbols, check::PointerEscape, 300 check::ConstPointerEscape, check::PreStmt<ReturnStmt>, 301 check::EndFunction, check::PreCall, check::PostCall, 302 check::NewAllocator, check::PostStmt<BlockExpr>, 303 check::PostObjCMessage, check::Location, eval::Assume> { 304 public: 305 /// In pessimistic mode, the checker assumes that it does not know which 306 /// functions might free the memory. 307 /// In optimistic mode, the checker assumes that all user-defined functions 308 /// which might free a pointer are annotated. 309 bool ShouldIncludeOwnershipAnnotatedFunctions = false; 310 311 bool ShouldRegisterNoOwnershipChangeVisitor = false; 312 313 /// Many checkers are essentially built into this one, so enabling them will 314 /// make MallocChecker perform additional modeling and reporting. 315 enum CheckKind { 316 /// When a subchecker is enabled but MallocChecker isn't, model memory 317 /// management but do not emit warnings emitted with MallocChecker only 318 /// enabled. 319 CK_MallocChecker, 320 CK_NewDeleteChecker, 321 CK_NewDeleteLeaksChecker, 322 CK_MismatchedDeallocatorChecker, 323 CK_InnerPointerChecker, 324 CK_NumCheckKinds 325 }; 326 327 using LeakInfo = std::pair<const ExplodedNode *, const MemRegion *>; 328 329 bool ChecksEnabled[CK_NumCheckKinds] = {false}; 330 CheckerNameRef CheckNames[CK_NumCheckKinds]; 331 332 void checkPreCall(const CallEvent &Call, CheckerContext &C) const; 333 void checkPostCall(const CallEvent &Call, CheckerContext &C) const; 334 void checkNewAllocator(const CXXAllocatorCall &Call, CheckerContext &C) const; 335 void checkPostObjCMessage(const ObjCMethodCall &Call, CheckerContext &C) const; 336 void checkPostStmt(const BlockExpr *BE, CheckerContext &C) const; 337 void checkDeadSymbols(SymbolReaper &SymReaper, CheckerContext &C) const; 338 void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const; 339 void checkEndFunction(const ReturnStmt *S, CheckerContext &C) const; 340 ProgramStateRef evalAssume(ProgramStateRef state, SVal Cond, 341 bool Assumption) const; 342 void checkLocation(SVal l, bool isLoad, const Stmt *S, 343 CheckerContext &C) const; 344 345 ProgramStateRef checkPointerEscape(ProgramStateRef State, 346 const InvalidatedSymbols &Escaped, 347 const CallEvent *Call, 348 PointerEscapeKind Kind) const; 349 ProgramStateRef checkConstPointerEscape(ProgramStateRef State, 350 const InvalidatedSymbols &Escaped, 351 const CallEvent *Call, 352 PointerEscapeKind Kind) const; 353 354 void printState(raw_ostream &Out, ProgramStateRef State, 355 const char *NL, const char *Sep) const override; 356 357 private: 358 mutable std::unique_ptr<BugType> BT_DoubleFree[CK_NumCheckKinds]; 359 mutable std::unique_ptr<BugType> BT_DoubleDelete; 360 mutable std::unique_ptr<BugType> BT_Leak[CK_NumCheckKinds]; 361 mutable std::unique_ptr<BugType> BT_UseFree[CK_NumCheckKinds]; 362 mutable std::unique_ptr<BugType> BT_BadFree[CK_NumCheckKinds]; 363 mutable std::unique_ptr<BugType> BT_FreeAlloca[CK_NumCheckKinds]; 364 mutable std::unique_ptr<BugType> BT_MismatchedDealloc; 365 mutable std::unique_ptr<BugType> BT_OffsetFree[CK_NumCheckKinds]; 366 mutable std::unique_ptr<BugType> BT_UseZerroAllocated[CK_NumCheckKinds]; 367 368 #define CHECK_FN(NAME) \ 369 void NAME(const CallEvent &Call, CheckerContext &C) const; 370 371 CHECK_FN(checkFree) 372 CHECK_FN(checkIfNameIndex) 373 CHECK_FN(checkBasicAlloc) 374 CHECK_FN(checkKernelMalloc) 375 CHECK_FN(checkCalloc) 376 CHECK_FN(checkAlloca) 377 CHECK_FN(checkStrdup) 378 CHECK_FN(checkIfFreeNameIndex) 379 CHECK_FN(checkCXXNewOrCXXDelete) 380 CHECK_FN(checkGMalloc0) 381 CHECK_FN(checkGMemdup) 382 CHECK_FN(checkGMallocN) 383 CHECK_FN(checkGMallocN0) 384 CHECK_FN(checkReallocN) 385 CHECK_FN(checkOwnershipAttr) 386 387 void checkRealloc(const CallEvent &Call, CheckerContext &C, 388 bool ShouldFreeOnFail) const; 389 390 using CheckFn = std::function<void(const MallocChecker *, 391 const CallEvent &Call, CheckerContext &C)>; 392 393 const CallDescriptionMap<CheckFn> FreeingMemFnMap{ 394 {{"free", 1}, &MallocChecker::checkFree}, 395 {{"if_freenameindex", 1}, &MallocChecker::checkIfFreeNameIndex}, 396 {{"kfree", 1}, &MallocChecker::checkFree}, 397 {{"g_free", 1}, &MallocChecker::checkFree}, 398 }; 399 400 bool isFreeingCall(const CallEvent &Call) const; 401 static bool isFreeingOwnershipAttrCall(const FunctionDecl *Func); 402 403 friend class NoOwnershipChangeVisitor; 404 405 CallDescriptionMap<CheckFn> AllocatingMemFnMap{ 406 {{"alloca", 1}, &MallocChecker::checkAlloca}, 407 {{"_alloca", 1}, &MallocChecker::checkAlloca}, 408 {{"malloc", 1}, &MallocChecker::checkBasicAlloc}, 409 {{"malloc", 3}, &MallocChecker::checkKernelMalloc}, 410 {{"calloc", 2}, &MallocChecker::checkCalloc}, 411 {{"valloc", 1}, &MallocChecker::checkBasicAlloc}, 412 {{CDF_MaybeBuiltin, "strndup", 2}, &MallocChecker::checkStrdup}, 413 {{CDF_MaybeBuiltin, "strdup", 1}, &MallocChecker::checkStrdup}, 414 {{"_strdup", 1}, &MallocChecker::checkStrdup}, 415 {{"kmalloc", 2}, &MallocChecker::checkKernelMalloc}, 416 {{"if_nameindex", 1}, &MallocChecker::checkIfNameIndex}, 417 {{CDF_MaybeBuiltin, "wcsdup", 1}, &MallocChecker::checkStrdup}, 418 {{CDF_MaybeBuiltin, "_wcsdup", 1}, &MallocChecker::checkStrdup}, 419 {{"g_malloc", 1}, &MallocChecker::checkBasicAlloc}, 420 {{"g_malloc0", 1}, &MallocChecker::checkGMalloc0}, 421 {{"g_try_malloc", 1}, &MallocChecker::checkBasicAlloc}, 422 {{"g_try_malloc0", 1}, &MallocChecker::checkGMalloc0}, 423 {{"g_memdup", 2}, &MallocChecker::checkGMemdup}, 424 {{"g_malloc_n", 2}, &MallocChecker::checkGMallocN}, 425 {{"g_malloc0_n", 2}, &MallocChecker::checkGMallocN0}, 426 {{"g_try_malloc_n", 2}, &MallocChecker::checkGMallocN}, 427 {{"g_try_malloc0_n", 2}, &MallocChecker::checkGMallocN0}, 428 }; 429 430 CallDescriptionMap<CheckFn> ReallocatingMemFnMap{ 431 {{"realloc", 2}, 432 std::bind(&MallocChecker::checkRealloc, _1, _2, _3, false)}, 433 {{"reallocf", 2}, 434 std::bind(&MallocChecker::checkRealloc, _1, _2, _3, true)}, 435 {{"g_realloc", 2}, 436 std::bind(&MallocChecker::checkRealloc, _1, _2, _3, false)}, 437 {{"g_try_realloc", 2}, 438 std::bind(&MallocChecker::checkRealloc, _1, _2, _3, false)}, 439 {{"g_realloc_n", 3}, &MallocChecker::checkReallocN}, 440 {{"g_try_realloc_n", 3}, &MallocChecker::checkReallocN}, 441 }; 442 443 bool isMemCall(const CallEvent &Call) const; 444 445 // TODO: Remove mutable by moving the initializtaion to the registry function. 446 mutable Optional<uint64_t> KernelZeroFlagVal; 447 448 using KernelZeroSizePtrValueTy = Optional<int>; 449 /// Store the value of macro called `ZERO_SIZE_PTR`. 450 /// The value is initialized at first use, before first use the outer 451 /// Optional is empty, afterwards it contains another Optional that indicates 452 /// if the macro value could be determined, and if yes the value itself. 453 mutable Optional<KernelZeroSizePtrValueTy> KernelZeroSizePtrValue; 454 455 /// Process C++ operator new()'s allocation, which is the part of C++ 456 /// new-expression that goes before the constructor. 457 LLVM_NODISCARD 458 ProgramStateRef processNewAllocation(const CXXAllocatorCall &Call, 459 CheckerContext &C, 460 AllocationFamily Family) const; 461 462 /// Perform a zero-allocation check. 463 /// 464 /// \param [in] Call The expression that allocates memory. 465 /// \param [in] IndexOfSizeArg Index of the argument that specifies the size 466 /// of the memory that needs to be allocated. E.g. for malloc, this would be 467 /// 0. 468 /// \param [in] RetVal Specifies the newly allocated pointer value; 469 /// if unspecified, the value of expression \p E is used. 470 LLVM_NODISCARD 471 static ProgramStateRef ProcessZeroAllocCheck(const CallEvent &Call, 472 const unsigned IndexOfSizeArg, 473 ProgramStateRef State, 474 Optional<SVal> RetVal = None); 475 476 /// Model functions with the ownership_returns attribute. 477 /// 478 /// User-defined function may have the ownership_returns attribute, which 479 /// annotates that the function returns with an object that was allocated on 480 /// the heap, and passes the ownertship to the callee. 481 /// 482 /// void __attribute((ownership_returns(malloc, 1))) *my_malloc(size_t); 483 /// 484 /// It has two parameters: 485 /// - first: name of the resource (e.g. 'malloc') 486 /// - (OPTIONAL) second: size of the allocated region 487 /// 488 /// \param [in] Call The expression that allocates memory. 489 /// \param [in] Att The ownership_returns attribute. 490 /// \param [in] State The \c ProgramState right before allocation. 491 /// \returns The ProgramState right after allocation. 492 LLVM_NODISCARD 493 ProgramStateRef MallocMemReturnsAttr(CheckerContext &C, const CallEvent &Call, 494 const OwnershipAttr *Att, 495 ProgramStateRef State) const; 496 497 /// Models memory allocation. 498 /// 499 /// \param [in] Call The expression that allocates memory. 500 /// \param [in] SizeEx Size of the memory that needs to be allocated. 501 /// \param [in] Init The value the allocated memory needs to be initialized. 502 /// with. For example, \c calloc initializes the allocated memory to 0, 503 /// malloc leaves it undefined. 504 /// \param [in] State The \c ProgramState right before allocation. 505 /// \returns The ProgramState right after allocation. 506 LLVM_NODISCARD 507 static ProgramStateRef MallocMemAux(CheckerContext &C, const CallEvent &Call, 508 const Expr *SizeEx, SVal Init, 509 ProgramStateRef State, 510 AllocationFamily Family); 511 512 /// Models memory allocation. 513 /// 514 /// \param [in] Call The expression that allocates memory. 515 /// \param [in] Size Size of the memory that needs to be allocated. 516 /// \param [in] Init The value the allocated memory needs to be initialized. 517 /// with. For example, \c calloc initializes the allocated memory to 0, 518 /// malloc leaves it undefined. 519 /// \param [in] State The \c ProgramState right before allocation. 520 /// \returns The ProgramState right after allocation. 521 LLVM_NODISCARD 522 static ProgramStateRef MallocMemAux(CheckerContext &C, const CallEvent &Call, 523 SVal Size, SVal Init, 524 ProgramStateRef State, 525 AllocationFamily Family); 526 527 // Check if this malloc() for special flags. At present that means M_ZERO or 528 // __GFP_ZERO (in which case, treat it like calloc). 529 LLVM_NODISCARD 530 llvm::Optional<ProgramStateRef> 531 performKernelMalloc(const CallEvent &Call, CheckerContext &C, 532 const ProgramStateRef &State) const; 533 534 /// Model functions with the ownership_takes and ownership_holds attributes. 535 /// 536 /// User-defined function may have the ownership_takes and/or ownership_holds 537 /// attributes, which annotates that the function frees the memory passed as a 538 /// parameter. 539 /// 540 /// void __attribute((ownership_takes(malloc, 1))) my_free(void *); 541 /// void __attribute((ownership_holds(malloc, 1))) my_hold(void *); 542 /// 543 /// They have two parameters: 544 /// - first: name of the resource (e.g. 'malloc') 545 /// - second: index of the parameter the attribute applies to 546 /// 547 /// \param [in] Call The expression that frees memory. 548 /// \param [in] Att The ownership_takes or ownership_holds attribute. 549 /// \param [in] State The \c ProgramState right before allocation. 550 /// \returns The ProgramState right after deallocation. 551 LLVM_NODISCARD 552 ProgramStateRef FreeMemAttr(CheckerContext &C, const CallEvent &Call, 553 const OwnershipAttr *Att, 554 ProgramStateRef State) const; 555 556 /// Models memory deallocation. 557 /// 558 /// \param [in] Call The expression that frees memory. 559 /// \param [in] State The \c ProgramState right before allocation. 560 /// \param [in] Num Index of the argument that needs to be freed. This is 561 /// normally 0, but for custom free functions it may be different. 562 /// \param [in] Hold Whether the parameter at \p Index has the ownership_holds 563 /// attribute. 564 /// \param [out] IsKnownToBeAllocated Whether the memory to be freed is known 565 /// to have been allocated, or in other words, the symbol to be freed was 566 /// registered as allocated by this checker. In the following case, \c ptr 567 /// isn't known to be allocated. 568 /// void Haha(int *ptr) { 569 /// ptr = realloc(ptr, 67); 570 /// // ... 571 /// } 572 /// \param [in] ReturnsNullOnFailure Whether the memory deallocation function 573 /// we're modeling returns with Null on failure. 574 /// \returns The ProgramState right after deallocation. 575 LLVM_NODISCARD 576 ProgramStateRef FreeMemAux(CheckerContext &C, const CallEvent &Call, 577 ProgramStateRef State, unsigned Num, bool Hold, 578 bool &IsKnownToBeAllocated, 579 AllocationFamily Family, 580 bool ReturnsNullOnFailure = false) const; 581 582 /// Models memory deallocation. 583 /// 584 /// \param [in] ArgExpr The variable who's pointee needs to be freed. 585 /// \param [in] Call The expression that frees the memory. 586 /// \param [in] State The \c ProgramState right before allocation. 587 /// normally 0, but for custom free functions it may be different. 588 /// \param [in] Hold Whether the parameter at \p Index has the ownership_holds 589 /// attribute. 590 /// \param [out] IsKnownToBeAllocated Whether the memory to be freed is known 591 /// to have been allocated, or in other words, the symbol to be freed was 592 /// registered as allocated by this checker. In the following case, \c ptr 593 /// isn't known to be allocated. 594 /// void Haha(int *ptr) { 595 /// ptr = realloc(ptr, 67); 596 /// // ... 597 /// } 598 /// \param [in] ReturnsNullOnFailure Whether the memory deallocation function 599 /// we're modeling returns with Null on failure. 600 /// \returns The ProgramState right after deallocation. 601 LLVM_NODISCARD 602 ProgramStateRef FreeMemAux(CheckerContext &C, const Expr *ArgExpr, 603 const CallEvent &Call, ProgramStateRef State, 604 bool Hold, bool &IsKnownToBeAllocated, 605 AllocationFamily Family, 606 bool ReturnsNullOnFailure = false) const; 607 608 // TODO: Needs some refactoring, as all other deallocation modeling 609 // functions are suffering from out parameters and messy code due to how 610 // realloc is handled. 611 // 612 /// Models memory reallocation. 613 /// 614 /// \param [in] Call The expression that reallocated memory 615 /// \param [in] ShouldFreeOnFail Whether if reallocation fails, the supplied 616 /// memory should be freed. 617 /// \param [in] State The \c ProgramState right before reallocation. 618 /// \param [in] SuffixWithN Whether the reallocation function we're modeling 619 /// has an '_n' suffix, such as g_realloc_n. 620 /// \returns The ProgramState right after reallocation. 621 LLVM_NODISCARD 622 ProgramStateRef ReallocMemAux(CheckerContext &C, const CallEvent &Call, 623 bool ShouldFreeOnFail, ProgramStateRef State, 624 AllocationFamily Family, 625 bool SuffixWithN = false) const; 626 627 /// Evaluates the buffer size that needs to be allocated. 628 /// 629 /// \param [in] Blocks The amount of blocks that needs to be allocated. 630 /// \param [in] BlockBytes The size of a block. 631 /// \returns The symbolic value of \p Blocks * \p BlockBytes. 632 LLVM_NODISCARD 633 static SVal evalMulForBufferSize(CheckerContext &C, const Expr *Blocks, 634 const Expr *BlockBytes); 635 636 /// Models zero initialized array allocation. 637 /// 638 /// \param [in] Call The expression that reallocated memory 639 /// \param [in] State The \c ProgramState right before reallocation. 640 /// \returns The ProgramState right after allocation. 641 LLVM_NODISCARD 642 static ProgramStateRef CallocMem(CheckerContext &C, const CallEvent &Call, 643 ProgramStateRef State); 644 645 /// See if deallocation happens in a suspicious context. If so, escape the 646 /// pointers that otherwise would have been deallocated and return true. 647 bool suppressDeallocationsInSuspiciousContexts(const CallEvent &Call, 648 CheckerContext &C) const; 649 650 /// If in \p S \p Sym is used, check whether \p Sym was already freed. 651 bool checkUseAfterFree(SymbolRef Sym, CheckerContext &C, const Stmt *S) const; 652 653 /// If in \p S \p Sym is used, check whether \p Sym was allocated as a zero 654 /// sized memory region. 655 void checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, 656 const Stmt *S) const; 657 658 /// If in \p S \p Sym is being freed, check whether \p Sym was already freed. 659 bool checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const; 660 661 /// Check if the function is known to free memory, or if it is 662 /// "interesting" and should be modeled explicitly. 663 /// 664 /// \param [out] EscapingSymbol A function might not free memory in general, 665 /// but could be known to free a particular symbol. In this case, false is 666 /// returned and the single escaping symbol is returned through the out 667 /// parameter. 668 /// 669 /// We assume that pointers do not escape through calls to system functions 670 /// not handled by this checker. 671 bool mayFreeAnyEscapedMemoryOrIsModeledExplicitly(const CallEvent *Call, 672 ProgramStateRef State, 673 SymbolRef &EscapingSymbol) const; 674 675 /// Implementation of the checkPointerEscape callbacks. 676 LLVM_NODISCARD 677 ProgramStateRef checkPointerEscapeAux(ProgramStateRef State, 678 const InvalidatedSymbols &Escaped, 679 const CallEvent *Call, 680 PointerEscapeKind Kind, 681 bool IsConstPointerEscape) const; 682 683 // Implementation of the checkPreStmt and checkEndFunction callbacks. 684 void checkEscapeOnReturn(const ReturnStmt *S, CheckerContext &C) const; 685 686 ///@{ 687 /// Tells if a given family/call/symbol is tracked by the current checker. 688 /// Sets CheckKind to the kind of the checker responsible for this 689 /// family/call/symbol. 690 Optional<CheckKind> getCheckIfTracked(AllocationFamily Family, 691 bool IsALeakCheck = false) const; 692 693 Optional<CheckKind> getCheckIfTracked(CheckerContext &C, SymbolRef Sym, 694 bool IsALeakCheck = false) const; 695 ///@} 696 static bool SummarizeValue(raw_ostream &os, SVal V); 697 static bool SummarizeRegion(raw_ostream &os, const MemRegion *MR); 698 699 void HandleNonHeapDealloc(CheckerContext &C, SVal ArgVal, SourceRange Range, 700 const Expr *DeallocExpr, 701 AllocationFamily Family) const; 702 703 void HandleFreeAlloca(CheckerContext &C, SVal ArgVal, 704 SourceRange Range) const; 705 706 void HandleMismatchedDealloc(CheckerContext &C, SourceRange Range, 707 const Expr *DeallocExpr, const RefState *RS, 708 SymbolRef Sym, bool OwnershipTransferred) const; 709 710 void HandleOffsetFree(CheckerContext &C, SVal ArgVal, SourceRange Range, 711 const Expr *DeallocExpr, AllocationFamily Family, 712 const Expr *AllocExpr = nullptr) const; 713 714 void HandleUseAfterFree(CheckerContext &C, SourceRange Range, 715 SymbolRef Sym) const; 716 717 void HandleDoubleFree(CheckerContext &C, SourceRange Range, bool Released, 718 SymbolRef Sym, SymbolRef PrevSym) const; 719 720 void HandleDoubleDelete(CheckerContext &C, SymbolRef Sym) const; 721 722 void HandleUseZeroAlloc(CheckerContext &C, SourceRange Range, 723 SymbolRef Sym) const; 724 725 void HandleFunctionPtrFree(CheckerContext &C, SVal ArgVal, SourceRange Range, 726 const Expr *FreeExpr, 727 AllocationFamily Family) const; 728 729 /// Find the location of the allocation for Sym on the path leading to the 730 /// exploded node N. 731 static LeakInfo getAllocationSite(const ExplodedNode *N, SymbolRef Sym, 732 CheckerContext &C); 733 734 void HandleLeak(SymbolRef Sym, ExplodedNode *N, CheckerContext &C) const; 735 736 /// Test if value in ArgVal equals to value in macro `ZERO_SIZE_PTR`. 737 bool isArgZERO_SIZE_PTR(ProgramStateRef State, CheckerContext &C, 738 SVal ArgVal) const; 739 }; 740 } // end anonymous namespace 741 742 //===----------------------------------------------------------------------===// 743 // Definition of NoOwnershipChangeVisitor. 744 //===----------------------------------------------------------------------===// 745 746 namespace { 747 class NoOwnershipChangeVisitor final : public NoStateChangeFuncVisitor { 748 // The symbol whose (lack of) ownership change we are interested in. 749 SymbolRef Sym; 750 const MallocChecker &Checker; 751 using OwnerSet = llvm::SmallPtrSet<const MemRegion *, 8>; 752 753 // Collect which entities point to the allocated memory, and could be 754 // responsible for deallocating it. 755 class OwnershipBindingsHandler : public StoreManager::BindingsHandler { 756 SymbolRef Sym; 757 OwnerSet &Owners; 758 759 public: 760 OwnershipBindingsHandler(SymbolRef Sym, OwnerSet &Owners) 761 : Sym(Sym), Owners(Owners) {} 762 763 bool HandleBinding(StoreManager &SMgr, Store Store, const MemRegion *Region, 764 SVal Val) override { 765 if (Val.getAsSymbol() == Sym) 766 Owners.insert(Region); 767 return true; 768 } 769 770 LLVM_DUMP_METHOD void dump() const { dumpToStream(llvm::errs()); } 771 LLVM_DUMP_METHOD void dumpToStream(llvm::raw_ostream &out) const { 772 out << "Owners: {\n"; 773 for (const MemRegion *Owner : Owners) { 774 out << " "; 775 Owner->dumpToStream(out); 776 out << ",\n"; 777 } 778 out << "}\n"; 779 } 780 }; 781 782 protected: 783 OwnerSet getOwnersAtNode(const ExplodedNode *N) { 784 OwnerSet Ret; 785 786 ProgramStateRef State = N->getState(); 787 OwnershipBindingsHandler Handler{Sym, Ret}; 788 State->getStateManager().getStoreManager().iterBindings(State->getStore(), 789 Handler); 790 return Ret; 791 } 792 793 LLVM_DUMP_METHOD static std::string 794 getFunctionName(const ExplodedNode *CallEnterN) { 795 if (const CallExpr *CE = llvm::dyn_cast_or_null<CallExpr>( 796 CallEnterN->getLocationAs<CallEnter>()->getCallExpr())) 797 if (const FunctionDecl *FD = CE->getDirectCallee()) 798 return FD->getQualifiedNameAsString(); 799 return ""; 800 } 801 802 /// Syntactically checks whether the callee is a deallocating function. Since 803 /// we have no path-sensitive information on this call (we would need a 804 /// CallEvent instead of a CallExpr for that), its possible that a 805 /// deallocation function was called indirectly through a function pointer, 806 /// but we are not able to tell, so this is a best effort analysis. 807 /// See namespace `memory_passed_to_fn_call_free_through_fn_ptr` in 808 /// clang/test/Analysis/NewDeleteLeaks.cpp. 809 bool isFreeingCallAsWritten(const CallExpr &Call) const { 810 if (Checker.FreeingMemFnMap.lookupAsWritten(Call) || 811 Checker.ReallocatingMemFnMap.lookupAsWritten(Call)) 812 return true; 813 814 if (const auto *Func = 815 llvm::dyn_cast_or_null<FunctionDecl>(Call.getCalleeDecl())) 816 return MallocChecker::isFreeingOwnershipAttrCall(Func); 817 818 return false; 819 } 820 821 /// Heuristically guess whether the callee intended to free memory. This is 822 /// done syntactically, because we are trying to argue about alternative 823 /// paths of execution, and as a consequence we don't have path-sensitive 824 /// information. 825 bool doesFnIntendToHandleOwnership(const Decl *Callee, ASTContext &ACtx) { 826 using namespace clang::ast_matchers; 827 const FunctionDecl *FD = dyn_cast<FunctionDecl>(Callee); 828 829 // Given that the stack frame was entered, the body should always be 830 // theoretically obtainable. In case of body farms, the synthesized body 831 // is not attached to declaration, thus triggering the '!FD->hasBody()' 832 // branch. That said, would a synthesized body ever intend to handle 833 // ownership? As of today they don't. And if they did, how would we 834 // put notes inside it, given that it doesn't match any source locations? 835 if (!FD || !FD->hasBody()) 836 return false; 837 838 auto Matches = match(findAll(stmt(anyOf(cxxDeleteExpr().bind("delete"), 839 callExpr().bind("call")))), 840 *FD->getBody(), ACtx); 841 for (BoundNodes Match : Matches) { 842 if (Match.getNodeAs<CXXDeleteExpr>("delete")) 843 return true; 844 845 if (const auto *Call = Match.getNodeAs<CallExpr>("call")) 846 if (isFreeingCallAsWritten(*Call)) 847 return true; 848 } 849 // TODO: Ownership might change with an attempt to store the allocated 850 // memory, not only through deallocation. Check for attempted stores as 851 // well. 852 return false; 853 } 854 855 bool wasModifiedInFunction(const ExplodedNode *CallEnterN, 856 const ExplodedNode *CallExitEndN) override { 857 if (!doesFnIntendToHandleOwnership( 858 CallExitEndN->getFirstPred()->getLocationContext()->getDecl(), 859 CallExitEndN->getState()->getAnalysisManager().getASTContext())) 860 return true; 861 862 if (CallEnterN->getState()->get<RegionState>(Sym) != 863 CallExitEndN->getState()->get<RegionState>(Sym)) 864 return true; 865 866 OwnerSet CurrOwners = getOwnersAtNode(CallEnterN); 867 OwnerSet ExitOwners = getOwnersAtNode(CallExitEndN); 868 869 // Owners in the current set may be purged from the analyzer later on. 870 // If a variable is dead (is not referenced directly or indirectly after 871 // some point), it will be removed from the Store before the end of its 872 // actual lifetime. 873 // This means that that if the ownership status didn't change, CurrOwners 874 // must be a superset of, but not necessarily equal to ExitOwners. 875 return !llvm::set_is_subset(ExitOwners, CurrOwners); 876 } 877 878 static PathDiagnosticPieceRef emitNote(const ExplodedNode *N) { 879 PathDiagnosticLocation L = PathDiagnosticLocation::create( 880 N->getLocation(), 881 N->getState()->getStateManager().getContext().getSourceManager()); 882 return std::make_shared<PathDiagnosticEventPiece>( 883 L, "Returning without deallocating memory or storing the pointer for " 884 "later deallocation"); 885 } 886 887 PathDiagnosticPieceRef 888 maybeEmitNoteForObjCSelf(PathSensitiveBugReport &R, 889 const ObjCMethodCall &Call, 890 const ExplodedNode *N) override { 891 // TODO: Implement. 892 return nullptr; 893 } 894 895 PathDiagnosticPieceRef 896 maybeEmitNoteForCXXThis(PathSensitiveBugReport &R, 897 const CXXConstructorCall &Call, 898 const ExplodedNode *N) override { 899 // TODO: Implement. 900 return nullptr; 901 } 902 903 PathDiagnosticPieceRef 904 maybeEmitNoteForParameters(PathSensitiveBugReport &R, const CallEvent &Call, 905 const ExplodedNode *N) override { 906 // TODO: Factor the logic of "what constitutes as an entity being passed 907 // into a function call" out by reusing the code in 908 // NoStoreFuncVisitor::maybeEmitNoteForParameters, maybe by incorporating 909 // the printing technology in UninitializedObject's FieldChainInfo. 910 ArrayRef<ParmVarDecl *> Parameters = Call.parameters(); 911 for (unsigned I = 0; I < Call.getNumArgs() && I < Parameters.size(); ++I) { 912 SVal V = Call.getArgSVal(I); 913 if (V.getAsSymbol() == Sym) 914 return emitNote(N); 915 } 916 return nullptr; 917 } 918 919 public: 920 NoOwnershipChangeVisitor(SymbolRef Sym, const MallocChecker *Checker) 921 : NoStateChangeFuncVisitor(bugreporter::TrackingKind::Thorough), Sym(Sym), 922 Checker(*Checker) {} 923 924 void Profile(llvm::FoldingSetNodeID &ID) const override { 925 static int Tag = 0; 926 ID.AddPointer(&Tag); 927 ID.AddPointer(Sym); 928 } 929 }; 930 931 } // end anonymous namespace 932 933 //===----------------------------------------------------------------------===// 934 // Definition of MallocBugVisitor. 935 //===----------------------------------------------------------------------===// 936 937 namespace { 938 /// The bug visitor which allows us to print extra diagnostics along the 939 /// BugReport path. For example, showing the allocation site of the leaked 940 /// region. 941 class MallocBugVisitor final : public BugReporterVisitor { 942 protected: 943 enum NotificationMode { Normal, ReallocationFailed }; 944 945 // The allocated region symbol tracked by the main analysis. 946 SymbolRef Sym; 947 948 // The mode we are in, i.e. what kind of diagnostics will be emitted. 949 NotificationMode Mode; 950 951 // A symbol from when the primary region should have been reallocated. 952 SymbolRef FailedReallocSymbol; 953 954 // A C++ destructor stack frame in which memory was released. Used for 955 // miscellaneous false positive suppression. 956 const StackFrameContext *ReleaseDestructorLC; 957 958 bool IsLeak; 959 960 public: 961 MallocBugVisitor(SymbolRef S, bool isLeak = false) 962 : Sym(S), Mode(Normal), FailedReallocSymbol(nullptr), 963 ReleaseDestructorLC(nullptr), IsLeak(isLeak) {} 964 965 static void *getTag() { 966 static int Tag = 0; 967 return &Tag; 968 } 969 970 void Profile(llvm::FoldingSetNodeID &ID) const override { 971 ID.AddPointer(getTag()); 972 ID.AddPointer(Sym); 973 } 974 975 /// Did not track -> allocated. Other state (released) -> allocated. 976 static inline bool isAllocated(const RefState *RSCurr, const RefState *RSPrev, 977 const Stmt *Stmt) { 978 return (isa_and_nonnull<CallExpr, CXXNewExpr>(Stmt) && 979 (RSCurr && 980 (RSCurr->isAllocated() || RSCurr->isAllocatedOfSizeZero())) && 981 (!RSPrev || 982 !(RSPrev->isAllocated() || RSPrev->isAllocatedOfSizeZero()))); 983 } 984 985 /// Did not track -> released. Other state (allocated) -> released. 986 /// The statement associated with the release might be missing. 987 static inline bool isReleased(const RefState *RSCurr, const RefState *RSPrev, 988 const Stmt *Stmt) { 989 bool IsReleased = 990 (RSCurr && RSCurr->isReleased()) && (!RSPrev || !RSPrev->isReleased()); 991 assert(!IsReleased || (isa_and_nonnull<CallExpr, CXXDeleteExpr>(Stmt)) || 992 (!Stmt && RSCurr->getAllocationFamily() == AF_InnerBuffer)); 993 return IsReleased; 994 } 995 996 /// Did not track -> relinquished. Other state (allocated) -> relinquished. 997 static inline bool isRelinquished(const RefState *RSCurr, 998 const RefState *RSPrev, const Stmt *Stmt) { 999 return ( 1000 isa_and_nonnull<CallExpr, ObjCMessageExpr, ObjCPropertyRefExpr>(Stmt) && 1001 (RSCurr && RSCurr->isRelinquished()) && 1002 (!RSPrev || !RSPrev->isRelinquished())); 1003 } 1004 1005 /// If the expression is not a call, and the state change is 1006 /// released -> allocated, it must be the realloc return value 1007 /// check. If we have to handle more cases here, it might be cleaner just 1008 /// to track this extra bit in the state itself. 1009 static inline bool hasReallocFailed(const RefState *RSCurr, 1010 const RefState *RSPrev, 1011 const Stmt *Stmt) { 1012 return ((!isa_and_nonnull<CallExpr>(Stmt)) && 1013 (RSCurr && 1014 (RSCurr->isAllocated() || RSCurr->isAllocatedOfSizeZero())) && 1015 (RSPrev && 1016 !(RSPrev->isAllocated() || RSPrev->isAllocatedOfSizeZero()))); 1017 } 1018 1019 PathDiagnosticPieceRef VisitNode(const ExplodedNode *N, 1020 BugReporterContext &BRC, 1021 PathSensitiveBugReport &BR) override; 1022 1023 PathDiagnosticPieceRef getEndPath(BugReporterContext &BRC, 1024 const ExplodedNode *EndPathNode, 1025 PathSensitiveBugReport &BR) override { 1026 if (!IsLeak) 1027 return nullptr; 1028 1029 PathDiagnosticLocation L = BR.getLocation(); 1030 // Do not add the statement itself as a range in case of leak. 1031 return std::make_shared<PathDiagnosticEventPiece>(L, BR.getDescription(), 1032 false); 1033 } 1034 1035 private: 1036 class StackHintGeneratorForReallocationFailed 1037 : public StackHintGeneratorForSymbol { 1038 public: 1039 StackHintGeneratorForReallocationFailed(SymbolRef S, StringRef M) 1040 : StackHintGeneratorForSymbol(S, M) {} 1041 1042 std::string getMessageForArg(const Expr *ArgE, unsigned ArgIndex) override { 1043 // Printed parameters start at 1, not 0. 1044 ++ArgIndex; 1045 1046 SmallString<200> buf; 1047 llvm::raw_svector_ostream os(buf); 1048 1049 os << "Reallocation of " << ArgIndex << llvm::getOrdinalSuffix(ArgIndex) 1050 << " parameter failed"; 1051 1052 return std::string(os.str()); 1053 } 1054 1055 std::string getMessageForReturn(const CallExpr *CallExpr) override { 1056 return "Reallocation of returned value failed"; 1057 } 1058 }; 1059 }; 1060 } // end anonymous namespace 1061 1062 // A map from the freed symbol to the symbol representing the return value of 1063 // the free function. 1064 REGISTER_MAP_WITH_PROGRAMSTATE(FreeReturnValue, SymbolRef, SymbolRef) 1065 1066 namespace { 1067 class StopTrackingCallback final : public SymbolVisitor { 1068 ProgramStateRef state; 1069 1070 public: 1071 StopTrackingCallback(ProgramStateRef st) : state(std::move(st)) {} 1072 ProgramStateRef getState() const { return state; } 1073 1074 bool VisitSymbol(SymbolRef sym) override { 1075 state = state->remove<RegionState>(sym); 1076 return true; 1077 } 1078 }; 1079 } // end anonymous namespace 1080 1081 static bool isStandardNewDelete(const FunctionDecl *FD) { 1082 if (!FD) 1083 return false; 1084 1085 OverloadedOperatorKind Kind = FD->getOverloadedOperator(); 1086 if (Kind != OO_New && Kind != OO_Array_New && Kind != OO_Delete && 1087 Kind != OO_Array_Delete) 1088 return false; 1089 1090 // This is standard if and only if it's not defined in a user file. 1091 SourceLocation L = FD->getLocation(); 1092 // If the header for operator delete is not included, it's still defined 1093 // in an invalid source location. Check to make sure we don't crash. 1094 return !L.isValid() || 1095 FD->getASTContext().getSourceManager().isInSystemHeader(L); 1096 } 1097 1098 //===----------------------------------------------------------------------===// 1099 // Methods of MallocChecker and MallocBugVisitor. 1100 //===----------------------------------------------------------------------===// 1101 1102 bool MallocChecker::isFreeingOwnershipAttrCall(const FunctionDecl *Func) { 1103 if (Func->hasAttrs()) { 1104 for (const auto *I : Func->specific_attrs<OwnershipAttr>()) { 1105 OwnershipAttr::OwnershipKind OwnKind = I->getOwnKind(); 1106 if (OwnKind == OwnershipAttr::Takes || OwnKind == OwnershipAttr::Holds) 1107 return true; 1108 } 1109 } 1110 return false; 1111 } 1112 1113 bool MallocChecker::isFreeingCall(const CallEvent &Call) const { 1114 if (FreeingMemFnMap.lookup(Call) || ReallocatingMemFnMap.lookup(Call)) 1115 return true; 1116 1117 if (const auto *Func = dyn_cast_or_null<FunctionDecl>(Call.getDecl())) 1118 return isFreeingOwnershipAttrCall(Func); 1119 1120 return false; 1121 } 1122 1123 bool MallocChecker::isMemCall(const CallEvent &Call) const { 1124 if (FreeingMemFnMap.lookup(Call) || AllocatingMemFnMap.lookup(Call) || 1125 ReallocatingMemFnMap.lookup(Call)) 1126 return true; 1127 1128 if (!ShouldIncludeOwnershipAnnotatedFunctions) 1129 return false; 1130 1131 const auto *Func = dyn_cast<FunctionDecl>(Call.getDecl()); 1132 return Func && Func->hasAttr<OwnershipAttr>(); 1133 } 1134 1135 llvm::Optional<ProgramStateRef> 1136 MallocChecker::performKernelMalloc(const CallEvent &Call, CheckerContext &C, 1137 const ProgramStateRef &State) const { 1138 // 3-argument malloc(), as commonly used in {Free,Net,Open}BSD Kernels: 1139 // 1140 // void *malloc(unsigned long size, struct malloc_type *mtp, int flags); 1141 // 1142 // One of the possible flags is M_ZERO, which means 'give me back an 1143 // allocation which is already zeroed', like calloc. 1144 1145 // 2-argument kmalloc(), as used in the Linux kernel: 1146 // 1147 // void *kmalloc(size_t size, gfp_t flags); 1148 // 1149 // Has the similar flag value __GFP_ZERO. 1150 1151 // This logic is largely cloned from O_CREAT in UnixAPIChecker, maybe some 1152 // code could be shared. 1153 1154 ASTContext &Ctx = C.getASTContext(); 1155 llvm::Triple::OSType OS = Ctx.getTargetInfo().getTriple().getOS(); 1156 1157 if (!KernelZeroFlagVal) { 1158 if (OS == llvm::Triple::FreeBSD) 1159 KernelZeroFlagVal = 0x0100; 1160 else if (OS == llvm::Triple::NetBSD) 1161 KernelZeroFlagVal = 0x0002; 1162 else if (OS == llvm::Triple::OpenBSD) 1163 KernelZeroFlagVal = 0x0008; 1164 else if (OS == llvm::Triple::Linux) 1165 // __GFP_ZERO 1166 KernelZeroFlagVal = 0x8000; 1167 else 1168 // FIXME: We need a more general way of getting the M_ZERO value. 1169 // See also: O_CREAT in UnixAPIChecker.cpp. 1170 1171 // Fall back to normal malloc behavior on platforms where we don't 1172 // know M_ZERO. 1173 return None; 1174 } 1175 1176 // We treat the last argument as the flags argument, and callers fall-back to 1177 // normal malloc on a None return. This works for the FreeBSD kernel malloc 1178 // as well as Linux kmalloc. 1179 if (Call.getNumArgs() < 2) 1180 return None; 1181 1182 const Expr *FlagsEx = Call.getArgExpr(Call.getNumArgs() - 1); 1183 const SVal V = C.getSVal(FlagsEx); 1184 if (!isa<NonLoc>(V)) { 1185 // The case where 'V' can be a location can only be due to a bad header, 1186 // so in this case bail out. 1187 return None; 1188 } 1189 1190 NonLoc Flags = V.castAs<NonLoc>(); 1191 NonLoc ZeroFlag = 1192 C.getSValBuilder() 1193 .makeIntVal(KernelZeroFlagVal.value(), FlagsEx->getType()) 1194 .castAs<NonLoc>(); 1195 SVal MaskedFlagsUC = C.getSValBuilder().evalBinOpNN(State, BO_And, 1196 Flags, ZeroFlag, 1197 FlagsEx->getType()); 1198 if (MaskedFlagsUC.isUnknownOrUndef()) 1199 return None; 1200 DefinedSVal MaskedFlags = MaskedFlagsUC.castAs<DefinedSVal>(); 1201 1202 // Check if maskedFlags is non-zero. 1203 ProgramStateRef TrueState, FalseState; 1204 std::tie(TrueState, FalseState) = State->assume(MaskedFlags); 1205 1206 // If M_ZERO is set, treat this like calloc (initialized). 1207 if (TrueState && !FalseState) { 1208 SVal ZeroVal = C.getSValBuilder().makeZeroVal(Ctx.CharTy); 1209 return MallocMemAux(C, Call, Call.getArgExpr(0), ZeroVal, TrueState, 1210 AF_Malloc); 1211 } 1212 1213 return None; 1214 } 1215 1216 SVal MallocChecker::evalMulForBufferSize(CheckerContext &C, const Expr *Blocks, 1217 const Expr *BlockBytes) { 1218 SValBuilder &SB = C.getSValBuilder(); 1219 SVal BlocksVal = C.getSVal(Blocks); 1220 SVal BlockBytesVal = C.getSVal(BlockBytes); 1221 ProgramStateRef State = C.getState(); 1222 SVal TotalSize = SB.evalBinOp(State, BO_Mul, BlocksVal, BlockBytesVal, 1223 SB.getContext().getSizeType()); 1224 return TotalSize; 1225 } 1226 1227 void MallocChecker::checkBasicAlloc(const CallEvent &Call, 1228 CheckerContext &C) const { 1229 ProgramStateRef State = C.getState(); 1230 State = MallocMemAux(C, Call, Call.getArgExpr(0), UndefinedVal(), State, 1231 AF_Malloc); 1232 State = ProcessZeroAllocCheck(Call, 0, State); 1233 C.addTransition(State); 1234 } 1235 1236 void MallocChecker::checkKernelMalloc(const CallEvent &Call, 1237 CheckerContext &C) const { 1238 ProgramStateRef State = C.getState(); 1239 llvm::Optional<ProgramStateRef> MaybeState = 1240 performKernelMalloc(Call, C, State); 1241 if (MaybeState) 1242 State = MaybeState.value(); 1243 else 1244 State = MallocMemAux(C, Call, Call.getArgExpr(0), UndefinedVal(), State, 1245 AF_Malloc); 1246 C.addTransition(State); 1247 } 1248 1249 static bool isStandardRealloc(const CallEvent &Call) { 1250 const FunctionDecl *FD = dyn_cast<FunctionDecl>(Call.getDecl()); 1251 assert(FD); 1252 ASTContext &AC = FD->getASTContext(); 1253 1254 if (isa<CXXMethodDecl>(FD)) 1255 return false; 1256 1257 return FD->getDeclaredReturnType().getDesugaredType(AC) == AC.VoidPtrTy && 1258 FD->getParamDecl(0)->getType().getDesugaredType(AC) == AC.VoidPtrTy && 1259 FD->getParamDecl(1)->getType().getDesugaredType(AC) == 1260 AC.getSizeType(); 1261 } 1262 1263 static bool isGRealloc(const CallEvent &Call) { 1264 const FunctionDecl *FD = dyn_cast<FunctionDecl>(Call.getDecl()); 1265 assert(FD); 1266 ASTContext &AC = FD->getASTContext(); 1267 1268 if (isa<CXXMethodDecl>(FD)) 1269 return false; 1270 1271 return FD->getDeclaredReturnType().getDesugaredType(AC) == AC.VoidPtrTy && 1272 FD->getParamDecl(0)->getType().getDesugaredType(AC) == AC.VoidPtrTy && 1273 FD->getParamDecl(1)->getType().getDesugaredType(AC) == 1274 AC.UnsignedLongTy; 1275 } 1276 1277 void MallocChecker::checkRealloc(const CallEvent &Call, CheckerContext &C, 1278 bool ShouldFreeOnFail) const { 1279 // HACK: CallDescription currently recognizes non-standard realloc functions 1280 // as standard because it doesn't check the type, or wether its a non-method 1281 // function. This should be solved by making CallDescription smarter. 1282 // Mind that this came from a bug report, and all other functions suffer from 1283 // this. 1284 // https://bugs.llvm.org/show_bug.cgi?id=46253 1285 if (!isStandardRealloc(Call) && !isGRealloc(Call)) 1286 return; 1287 ProgramStateRef State = C.getState(); 1288 State = ReallocMemAux(C, Call, ShouldFreeOnFail, State, AF_Malloc); 1289 State = ProcessZeroAllocCheck(Call, 1, State); 1290 C.addTransition(State); 1291 } 1292 1293 void MallocChecker::checkCalloc(const CallEvent &Call, 1294 CheckerContext &C) const { 1295 ProgramStateRef State = C.getState(); 1296 State = CallocMem(C, Call, State); 1297 State = ProcessZeroAllocCheck(Call, 0, State); 1298 State = ProcessZeroAllocCheck(Call, 1, State); 1299 C.addTransition(State); 1300 } 1301 1302 void MallocChecker::checkFree(const CallEvent &Call, CheckerContext &C) const { 1303 ProgramStateRef State = C.getState(); 1304 bool IsKnownToBeAllocatedMemory = false; 1305 if (suppressDeallocationsInSuspiciousContexts(Call, C)) 1306 return; 1307 State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory, 1308 AF_Malloc); 1309 C.addTransition(State); 1310 } 1311 1312 void MallocChecker::checkAlloca(const CallEvent &Call, 1313 CheckerContext &C) const { 1314 ProgramStateRef State = C.getState(); 1315 State = MallocMemAux(C, Call, Call.getArgExpr(0), UndefinedVal(), State, 1316 AF_Alloca); 1317 State = ProcessZeroAllocCheck(Call, 0, State); 1318 C.addTransition(State); 1319 } 1320 1321 void MallocChecker::checkStrdup(const CallEvent &Call, 1322 CheckerContext &C) const { 1323 ProgramStateRef State = C.getState(); 1324 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); 1325 if (!CE) 1326 return; 1327 State = MallocUpdateRefState(C, CE, State, AF_Malloc); 1328 1329 C.addTransition(State); 1330 } 1331 1332 void MallocChecker::checkIfNameIndex(const CallEvent &Call, 1333 CheckerContext &C) const { 1334 ProgramStateRef State = C.getState(); 1335 // Should we model this differently? We can allocate a fixed number of 1336 // elements with zeros in the last one. 1337 State = 1338 MallocMemAux(C, Call, UnknownVal(), UnknownVal(), State, AF_IfNameIndex); 1339 1340 C.addTransition(State); 1341 } 1342 1343 void MallocChecker::checkIfFreeNameIndex(const CallEvent &Call, 1344 CheckerContext &C) const { 1345 ProgramStateRef State = C.getState(); 1346 bool IsKnownToBeAllocatedMemory = false; 1347 State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory, 1348 AF_IfNameIndex); 1349 C.addTransition(State); 1350 } 1351 1352 void MallocChecker::checkCXXNewOrCXXDelete(const CallEvent &Call, 1353 CheckerContext &C) const { 1354 ProgramStateRef State = C.getState(); 1355 bool IsKnownToBeAllocatedMemory = false; 1356 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); 1357 if (!CE) 1358 return; 1359 1360 assert(isStandardNewDelete(Call)); 1361 1362 // Process direct calls to operator new/new[]/delete/delete[] functions 1363 // as distinct from new/new[]/delete/delete[] expressions that are 1364 // processed by the checkPostStmt callbacks for CXXNewExpr and 1365 // CXXDeleteExpr. 1366 const FunctionDecl *FD = C.getCalleeDecl(CE); 1367 switch (FD->getOverloadedOperator()) { 1368 case OO_New: 1369 State = 1370 MallocMemAux(C, Call, CE->getArg(0), UndefinedVal(), State, AF_CXXNew); 1371 State = ProcessZeroAllocCheck(Call, 0, State); 1372 break; 1373 case OO_Array_New: 1374 State = MallocMemAux(C, Call, CE->getArg(0), UndefinedVal(), State, 1375 AF_CXXNewArray); 1376 State = ProcessZeroAllocCheck(Call, 0, State); 1377 break; 1378 case OO_Delete: 1379 State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory, 1380 AF_CXXNew); 1381 break; 1382 case OO_Array_Delete: 1383 State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory, 1384 AF_CXXNewArray); 1385 break; 1386 default: 1387 llvm_unreachable("not a new/delete operator"); 1388 } 1389 1390 C.addTransition(State); 1391 } 1392 1393 void MallocChecker::checkGMalloc0(const CallEvent &Call, 1394 CheckerContext &C) const { 1395 ProgramStateRef State = C.getState(); 1396 SValBuilder &svalBuilder = C.getSValBuilder(); 1397 SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy); 1398 State = MallocMemAux(C, Call, Call.getArgExpr(0), zeroVal, State, AF_Malloc); 1399 State = ProcessZeroAllocCheck(Call, 0, State); 1400 C.addTransition(State); 1401 } 1402 1403 void MallocChecker::checkGMemdup(const CallEvent &Call, 1404 CheckerContext &C) const { 1405 ProgramStateRef State = C.getState(); 1406 State = 1407 MallocMemAux(C, Call, Call.getArgExpr(1), UnknownVal(), State, AF_Malloc); 1408 State = ProcessZeroAllocCheck(Call, 1, State); 1409 C.addTransition(State); 1410 } 1411 1412 void MallocChecker::checkGMallocN(const CallEvent &Call, 1413 CheckerContext &C) const { 1414 ProgramStateRef State = C.getState(); 1415 SVal Init = UndefinedVal(); 1416 SVal TotalSize = evalMulForBufferSize(C, Call.getArgExpr(0), Call.getArgExpr(1)); 1417 State = MallocMemAux(C, Call, TotalSize, Init, State, AF_Malloc); 1418 State = ProcessZeroAllocCheck(Call, 0, State); 1419 State = ProcessZeroAllocCheck(Call, 1, State); 1420 C.addTransition(State); 1421 } 1422 1423 void MallocChecker::checkGMallocN0(const CallEvent &Call, 1424 CheckerContext &C) const { 1425 ProgramStateRef State = C.getState(); 1426 SValBuilder &SB = C.getSValBuilder(); 1427 SVal Init = SB.makeZeroVal(SB.getContext().CharTy); 1428 SVal TotalSize = evalMulForBufferSize(C, Call.getArgExpr(0), Call.getArgExpr(1)); 1429 State = MallocMemAux(C, Call, TotalSize, Init, State, AF_Malloc); 1430 State = ProcessZeroAllocCheck(Call, 0, State); 1431 State = ProcessZeroAllocCheck(Call, 1, State); 1432 C.addTransition(State); 1433 } 1434 1435 void MallocChecker::checkReallocN(const CallEvent &Call, 1436 CheckerContext &C) const { 1437 ProgramStateRef State = C.getState(); 1438 State = ReallocMemAux(C, Call, /*ShouldFreeOnFail=*/false, State, AF_Malloc, 1439 /*SuffixWithN=*/true); 1440 State = ProcessZeroAllocCheck(Call, 1, State); 1441 State = ProcessZeroAllocCheck(Call, 2, State); 1442 C.addTransition(State); 1443 } 1444 1445 void MallocChecker::checkOwnershipAttr(const CallEvent &Call, 1446 CheckerContext &C) const { 1447 ProgramStateRef State = C.getState(); 1448 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); 1449 if (!CE) 1450 return; 1451 const FunctionDecl *FD = C.getCalleeDecl(CE); 1452 if (!FD) 1453 return; 1454 if (ShouldIncludeOwnershipAnnotatedFunctions || 1455 ChecksEnabled[CK_MismatchedDeallocatorChecker]) { 1456 // Check all the attributes, if there are any. 1457 // There can be multiple of these attributes. 1458 if (FD->hasAttrs()) 1459 for (const auto *I : FD->specific_attrs<OwnershipAttr>()) { 1460 switch (I->getOwnKind()) { 1461 case OwnershipAttr::Returns: 1462 State = MallocMemReturnsAttr(C, Call, I, State); 1463 break; 1464 case OwnershipAttr::Takes: 1465 case OwnershipAttr::Holds: 1466 State = FreeMemAttr(C, Call, I, State); 1467 break; 1468 } 1469 } 1470 } 1471 C.addTransition(State); 1472 } 1473 1474 void MallocChecker::checkPostCall(const CallEvent &Call, 1475 CheckerContext &C) const { 1476 if (C.wasInlined) 1477 return; 1478 if (!Call.getOriginExpr()) 1479 return; 1480 1481 ProgramStateRef State = C.getState(); 1482 1483 if (const CheckFn *Callback = FreeingMemFnMap.lookup(Call)) { 1484 (*Callback)(this, Call, C); 1485 return; 1486 } 1487 1488 if (const CheckFn *Callback = AllocatingMemFnMap.lookup(Call)) { 1489 (*Callback)(this, Call, C); 1490 return; 1491 } 1492 1493 if (const CheckFn *Callback = ReallocatingMemFnMap.lookup(Call)) { 1494 (*Callback)(this, Call, C); 1495 return; 1496 } 1497 1498 if (isStandardNewDelete(Call)) { 1499 checkCXXNewOrCXXDelete(Call, C); 1500 return; 1501 } 1502 1503 checkOwnershipAttr(Call, C); 1504 } 1505 1506 // Performs a 0-sized allocations check. 1507 ProgramStateRef MallocChecker::ProcessZeroAllocCheck( 1508 const CallEvent &Call, const unsigned IndexOfSizeArg, ProgramStateRef State, 1509 Optional<SVal> RetVal) { 1510 if (!State) 1511 return nullptr; 1512 1513 if (!RetVal) 1514 RetVal = Call.getReturnValue(); 1515 1516 const Expr *Arg = nullptr; 1517 1518 if (const CallExpr *CE = dyn_cast<CallExpr>(Call.getOriginExpr())) { 1519 Arg = CE->getArg(IndexOfSizeArg); 1520 } else if (const CXXNewExpr *NE = 1521 dyn_cast<CXXNewExpr>(Call.getOriginExpr())) { 1522 if (NE->isArray()) { 1523 Arg = *NE->getArraySize(); 1524 } else { 1525 return State; 1526 } 1527 } else 1528 llvm_unreachable("not a CallExpr or CXXNewExpr"); 1529 1530 assert(Arg); 1531 1532 auto DefArgVal = 1533 State->getSVal(Arg, Call.getLocationContext()).getAs<DefinedSVal>(); 1534 1535 if (!DefArgVal) 1536 return State; 1537 1538 // Check if the allocation size is 0. 1539 ProgramStateRef TrueState, FalseState; 1540 SValBuilder &SvalBuilder = State->getStateManager().getSValBuilder(); 1541 DefinedSVal Zero = 1542 SvalBuilder.makeZeroVal(Arg->getType()).castAs<DefinedSVal>(); 1543 1544 std::tie(TrueState, FalseState) = 1545 State->assume(SvalBuilder.evalEQ(State, *DefArgVal, Zero)); 1546 1547 if (TrueState && !FalseState) { 1548 SymbolRef Sym = RetVal->getAsLocSymbol(); 1549 if (!Sym) 1550 return State; 1551 1552 const RefState *RS = State->get<RegionState>(Sym); 1553 if (RS) { 1554 if (RS->isAllocated()) 1555 return TrueState->set<RegionState>(Sym, 1556 RefState::getAllocatedOfSizeZero(RS)); 1557 else 1558 return State; 1559 } else { 1560 // Case of zero-size realloc. Historically 'realloc(ptr, 0)' is treated as 1561 // 'free(ptr)' and the returned value from 'realloc(ptr, 0)' is not 1562 // tracked. Add zero-reallocated Sym to the state to catch references 1563 // to zero-allocated memory. 1564 return TrueState->add<ReallocSizeZeroSymbols>(Sym); 1565 } 1566 } 1567 1568 // Assume the value is non-zero going forward. 1569 assert(FalseState); 1570 return FalseState; 1571 } 1572 1573 static QualType getDeepPointeeType(QualType T) { 1574 QualType Result = T, PointeeType = T->getPointeeType(); 1575 while (!PointeeType.isNull()) { 1576 Result = PointeeType; 1577 PointeeType = PointeeType->getPointeeType(); 1578 } 1579 return Result; 1580 } 1581 1582 /// \returns true if the constructor invoked by \p NE has an argument of a 1583 /// pointer/reference to a record type. 1584 static bool hasNonTrivialConstructorCall(const CXXNewExpr *NE) { 1585 1586 const CXXConstructExpr *ConstructE = NE->getConstructExpr(); 1587 if (!ConstructE) 1588 return false; 1589 1590 if (!NE->getAllocatedType()->getAsCXXRecordDecl()) 1591 return false; 1592 1593 const CXXConstructorDecl *CtorD = ConstructE->getConstructor(); 1594 1595 // Iterate over the constructor parameters. 1596 for (const auto *CtorParam : CtorD->parameters()) { 1597 1598 QualType CtorParamPointeeT = CtorParam->getType()->getPointeeType(); 1599 if (CtorParamPointeeT.isNull()) 1600 continue; 1601 1602 CtorParamPointeeT = getDeepPointeeType(CtorParamPointeeT); 1603 1604 if (CtorParamPointeeT->getAsCXXRecordDecl()) 1605 return true; 1606 } 1607 1608 return false; 1609 } 1610 1611 ProgramStateRef 1612 MallocChecker::processNewAllocation(const CXXAllocatorCall &Call, 1613 CheckerContext &C, 1614 AllocationFamily Family) const { 1615 if (!isStandardNewDelete(Call)) 1616 return nullptr; 1617 1618 const CXXNewExpr *NE = Call.getOriginExpr(); 1619 const ParentMap &PM = C.getLocationContext()->getParentMap(); 1620 ProgramStateRef State = C.getState(); 1621 1622 // Non-trivial constructors have a chance to escape 'this', but marking all 1623 // invocations of trivial constructors as escaped would cause too great of 1624 // reduction of true positives, so let's just do that for constructors that 1625 // have an argument of a pointer-to-record type. 1626 if (!PM.isConsumedExpr(NE) && hasNonTrivialConstructorCall(NE)) 1627 return State; 1628 1629 // The return value from operator new is bound to a specified initialization 1630 // value (if any) and we don't want to loose this value. So we call 1631 // MallocUpdateRefState() instead of MallocMemAux() which breaks the 1632 // existing binding. 1633 SVal Target = Call.getObjectUnderConstruction(); 1634 State = MallocUpdateRefState(C, NE, State, Family, Target); 1635 State = ProcessZeroAllocCheck(Call, 0, State, Target); 1636 return State; 1637 } 1638 1639 void MallocChecker::checkNewAllocator(const CXXAllocatorCall &Call, 1640 CheckerContext &C) const { 1641 if (!C.wasInlined) { 1642 ProgramStateRef State = processNewAllocation( 1643 Call, C, 1644 (Call.getOriginExpr()->isArray() ? AF_CXXNewArray : AF_CXXNew)); 1645 C.addTransition(State); 1646 } 1647 } 1648 1649 static bool isKnownDeallocObjCMethodName(const ObjCMethodCall &Call) { 1650 // If the first selector piece is one of the names below, assume that the 1651 // object takes ownership of the memory, promising to eventually deallocate it 1652 // with free(). 1653 // Ex: [NSData dataWithBytesNoCopy:bytes length:10]; 1654 // (...unless a 'freeWhenDone' parameter is false, but that's checked later.) 1655 StringRef FirstSlot = Call.getSelector().getNameForSlot(0); 1656 return FirstSlot == "dataWithBytesNoCopy" || 1657 FirstSlot == "initWithBytesNoCopy" || 1658 FirstSlot == "initWithCharactersNoCopy"; 1659 } 1660 1661 static Optional<bool> getFreeWhenDoneArg(const ObjCMethodCall &Call) { 1662 Selector S = Call.getSelector(); 1663 1664 // FIXME: We should not rely on fully-constrained symbols being folded. 1665 for (unsigned i = 1; i < S.getNumArgs(); ++i) 1666 if (S.getNameForSlot(i).equals("freeWhenDone")) 1667 return !Call.getArgSVal(i).isZeroConstant(); 1668 1669 return None; 1670 } 1671 1672 void MallocChecker::checkPostObjCMessage(const ObjCMethodCall &Call, 1673 CheckerContext &C) const { 1674 if (C.wasInlined) 1675 return; 1676 1677 if (!isKnownDeallocObjCMethodName(Call)) 1678 return; 1679 1680 if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(Call)) 1681 if (!*FreeWhenDone) 1682 return; 1683 1684 if (Call.hasNonZeroCallbackArg()) 1685 return; 1686 1687 bool IsKnownToBeAllocatedMemory; 1688 ProgramStateRef State = 1689 FreeMemAux(C, Call.getArgExpr(0), Call, C.getState(), 1690 /*Hold=*/true, IsKnownToBeAllocatedMemory, AF_Malloc, 1691 /*ReturnsNullOnFailure=*/true); 1692 1693 C.addTransition(State); 1694 } 1695 1696 ProgramStateRef 1697 MallocChecker::MallocMemReturnsAttr(CheckerContext &C, const CallEvent &Call, 1698 const OwnershipAttr *Att, 1699 ProgramStateRef State) const { 1700 if (!State) 1701 return nullptr; 1702 1703 if (Att->getModule()->getName() != "malloc") 1704 return nullptr; 1705 1706 OwnershipAttr::args_iterator I = Att->args_begin(), E = Att->args_end(); 1707 if (I != E) { 1708 return MallocMemAux(C, Call, Call.getArgExpr(I->getASTIndex()), 1709 UndefinedVal(), State, AF_Malloc); 1710 } 1711 return MallocMemAux(C, Call, UnknownVal(), UndefinedVal(), State, AF_Malloc); 1712 } 1713 1714 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, 1715 const CallEvent &Call, 1716 const Expr *SizeEx, SVal Init, 1717 ProgramStateRef State, 1718 AllocationFamily Family) { 1719 if (!State) 1720 return nullptr; 1721 1722 assert(SizeEx); 1723 return MallocMemAux(C, Call, C.getSVal(SizeEx), Init, State, Family); 1724 } 1725 1726 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, 1727 const CallEvent &Call, SVal Size, 1728 SVal Init, ProgramStateRef State, 1729 AllocationFamily Family) { 1730 if (!State) 1731 return nullptr; 1732 1733 const Expr *CE = Call.getOriginExpr(); 1734 1735 // We expect the malloc functions to return a pointer. 1736 if (!Loc::isLocType(CE->getType())) 1737 return nullptr; 1738 1739 // Bind the return value to the symbolic value from the heap region. 1740 // TODO: We could rewrite post visit to eval call; 'malloc' does not have 1741 // side effects other than what we model here. 1742 unsigned Count = C.blockCount(); 1743 SValBuilder &svalBuilder = C.getSValBuilder(); 1744 const LocationContext *LCtx = C.getPredecessor()->getLocationContext(); 1745 DefinedSVal RetVal = svalBuilder.getConjuredHeapSymbolVal(CE, LCtx, Count) 1746 .castAs<DefinedSVal>(); 1747 State = State->BindExpr(CE, C.getLocationContext(), RetVal); 1748 1749 // Fill the region with the initialization value. 1750 State = State->bindDefaultInitial(RetVal, Init, LCtx); 1751 1752 // Set the region's extent. 1753 State = setDynamicExtent(State, RetVal.getAsRegion(), 1754 Size.castAs<DefinedOrUnknownSVal>(), svalBuilder); 1755 1756 return MallocUpdateRefState(C, CE, State, Family); 1757 } 1758 1759 static ProgramStateRef MallocUpdateRefState(CheckerContext &C, const Expr *E, 1760 ProgramStateRef State, 1761 AllocationFamily Family, 1762 Optional<SVal> RetVal) { 1763 if (!State) 1764 return nullptr; 1765 1766 // Get the return value. 1767 if (!RetVal) 1768 RetVal = C.getSVal(E); 1769 1770 // We expect the malloc functions to return a pointer. 1771 if (!RetVal->getAs<Loc>()) 1772 return nullptr; 1773 1774 SymbolRef Sym = RetVal->getAsLocSymbol(); 1775 // This is a return value of a function that was not inlined, such as malloc() 1776 // or new(). We've checked that in the caller. Therefore, it must be a symbol. 1777 assert(Sym); 1778 1779 // Set the symbol's state to Allocated. 1780 return State->set<RegionState>(Sym, RefState::getAllocated(Family, E)); 1781 } 1782 1783 ProgramStateRef MallocChecker::FreeMemAttr(CheckerContext &C, 1784 const CallEvent &Call, 1785 const OwnershipAttr *Att, 1786 ProgramStateRef State) const { 1787 if (!State) 1788 return nullptr; 1789 1790 if (Att->getModule()->getName() != "malloc") 1791 return nullptr; 1792 1793 bool IsKnownToBeAllocated = false; 1794 1795 for (const auto &Arg : Att->args()) { 1796 ProgramStateRef StateI = 1797 FreeMemAux(C, Call, State, Arg.getASTIndex(), 1798 Att->getOwnKind() == OwnershipAttr::Holds, 1799 IsKnownToBeAllocated, AF_Malloc); 1800 if (StateI) 1801 State = StateI; 1802 } 1803 return State; 1804 } 1805 1806 ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C, 1807 const CallEvent &Call, 1808 ProgramStateRef State, unsigned Num, 1809 bool Hold, bool &IsKnownToBeAllocated, 1810 AllocationFamily Family, 1811 bool ReturnsNullOnFailure) const { 1812 if (!State) 1813 return nullptr; 1814 1815 if (Call.getNumArgs() < (Num + 1)) 1816 return nullptr; 1817 1818 return FreeMemAux(C, Call.getArgExpr(Num), Call, State, Hold, 1819 IsKnownToBeAllocated, Family, ReturnsNullOnFailure); 1820 } 1821 1822 /// Checks if the previous call to free on the given symbol failed - if free 1823 /// failed, returns true. Also, returns the corresponding return value symbol. 1824 static bool didPreviousFreeFail(ProgramStateRef State, 1825 SymbolRef Sym, SymbolRef &RetStatusSymbol) { 1826 const SymbolRef *Ret = State->get<FreeReturnValue>(Sym); 1827 if (Ret) { 1828 assert(*Ret && "We should not store the null return symbol"); 1829 ConstraintManager &CMgr = State->getConstraintManager(); 1830 ConditionTruthVal FreeFailed = CMgr.isNull(State, *Ret); 1831 RetStatusSymbol = *Ret; 1832 return FreeFailed.isConstrainedTrue(); 1833 } 1834 return false; 1835 } 1836 1837 static bool printMemFnName(raw_ostream &os, CheckerContext &C, const Expr *E) { 1838 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { 1839 // FIXME: This doesn't handle indirect calls. 1840 const FunctionDecl *FD = CE->getDirectCallee(); 1841 if (!FD) 1842 return false; 1843 1844 os << *FD; 1845 if (!FD->isOverloadedOperator()) 1846 os << "()"; 1847 return true; 1848 } 1849 1850 if (const ObjCMessageExpr *Msg = dyn_cast<ObjCMessageExpr>(E)) { 1851 if (Msg->isInstanceMessage()) 1852 os << "-"; 1853 else 1854 os << "+"; 1855 Msg->getSelector().print(os); 1856 return true; 1857 } 1858 1859 if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) { 1860 os << "'" 1861 << getOperatorSpelling(NE->getOperatorNew()->getOverloadedOperator()) 1862 << "'"; 1863 return true; 1864 } 1865 1866 if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(E)) { 1867 os << "'" 1868 << getOperatorSpelling(DE->getOperatorDelete()->getOverloadedOperator()) 1869 << "'"; 1870 return true; 1871 } 1872 1873 return false; 1874 } 1875 1876 static void printExpectedAllocName(raw_ostream &os, AllocationFamily Family) { 1877 1878 switch(Family) { 1879 case AF_Malloc: os << "malloc()"; return; 1880 case AF_CXXNew: os << "'new'"; return; 1881 case AF_CXXNewArray: os << "'new[]'"; return; 1882 case AF_IfNameIndex: os << "'if_nameindex()'"; return; 1883 case AF_InnerBuffer: os << "container-specific allocator"; return; 1884 case AF_Alloca: 1885 case AF_None: llvm_unreachable("not a deallocation expression"); 1886 } 1887 } 1888 1889 static void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family) { 1890 switch(Family) { 1891 case AF_Malloc: os << "free()"; return; 1892 case AF_CXXNew: os << "'delete'"; return; 1893 case AF_CXXNewArray: os << "'delete[]'"; return; 1894 case AF_IfNameIndex: os << "'if_freenameindex()'"; return; 1895 case AF_InnerBuffer: os << "container-specific deallocator"; return; 1896 case AF_Alloca: 1897 case AF_None: llvm_unreachable("suspicious argument"); 1898 } 1899 } 1900 1901 ProgramStateRef MallocChecker::FreeMemAux( 1902 CheckerContext &C, const Expr *ArgExpr, const CallEvent &Call, 1903 ProgramStateRef State, bool Hold, bool &IsKnownToBeAllocated, 1904 AllocationFamily Family, bool ReturnsNullOnFailure) const { 1905 1906 if (!State) 1907 return nullptr; 1908 1909 SVal ArgVal = C.getSVal(ArgExpr); 1910 if (!isa<DefinedOrUnknownSVal>(ArgVal)) 1911 return nullptr; 1912 DefinedOrUnknownSVal location = ArgVal.castAs<DefinedOrUnknownSVal>(); 1913 1914 // Check for null dereferences. 1915 if (!isa<Loc>(location)) 1916 return nullptr; 1917 1918 // The explicit NULL case, no operation is performed. 1919 ProgramStateRef notNullState, nullState; 1920 std::tie(notNullState, nullState) = State->assume(location); 1921 if (nullState && !notNullState) 1922 return nullptr; 1923 1924 // Unknown values could easily be okay 1925 // Undefined values are handled elsewhere 1926 if (ArgVal.isUnknownOrUndef()) 1927 return nullptr; 1928 1929 const MemRegion *R = ArgVal.getAsRegion(); 1930 const Expr *ParentExpr = Call.getOriginExpr(); 1931 1932 // NOTE: We detected a bug, but the checker under whose name we would emit the 1933 // error could be disabled. Generally speaking, the MallocChecker family is an 1934 // integral part of the Static Analyzer, and disabling any part of it should 1935 // only be done under exceptional circumstances, such as frequent false 1936 // positives. If this is the case, we can reasonably believe that there are 1937 // serious faults in our understanding of the source code, and even if we 1938 // don't emit an warning, we should terminate further analysis with a sink 1939 // node. 1940 1941 // Nonlocs can't be freed, of course. 1942 // Non-region locations (labels and fixed addresses) also shouldn't be freed. 1943 if (!R) { 1944 // Exception: 1945 // If the macro ZERO_SIZE_PTR is defined, this could be a kernel source 1946 // code. In that case, the ZERO_SIZE_PTR defines a special value used for a 1947 // zero-sized memory block which is allowed to be freed, despite not being a 1948 // null pointer. 1949 if (Family != AF_Malloc || !isArgZERO_SIZE_PTR(State, C, ArgVal)) 1950 HandleNonHeapDealloc(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 1951 Family); 1952 return nullptr; 1953 } 1954 1955 R = R->StripCasts(); 1956 1957 // Blocks might show up as heap data, but should not be free()d 1958 if (isa<BlockDataRegion>(R)) { 1959 HandleNonHeapDealloc(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 1960 Family); 1961 return nullptr; 1962 } 1963 1964 const MemSpaceRegion *MS = R->getMemorySpace(); 1965 1966 // Parameters, locals, statics, globals, and memory returned by 1967 // __builtin_alloca() shouldn't be freed. 1968 if (!isa<UnknownSpaceRegion, HeapSpaceRegion>(MS)) { 1969 // FIXME: at the time this code was written, malloc() regions were 1970 // represented by conjured symbols, which are all in UnknownSpaceRegion. 1971 // This means that there isn't actually anything from HeapSpaceRegion 1972 // that should be freed, even though we allow it here. 1973 // Of course, free() can work on memory allocated outside the current 1974 // function, so UnknownSpaceRegion is always a possibility. 1975 // False negatives are better than false positives. 1976 1977 if (isa<AllocaRegion>(R)) 1978 HandleFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); 1979 else 1980 HandleNonHeapDealloc(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 1981 Family); 1982 1983 return nullptr; 1984 } 1985 1986 const SymbolicRegion *SrBase = dyn_cast<SymbolicRegion>(R->getBaseRegion()); 1987 // Various cases could lead to non-symbol values here. 1988 // For now, ignore them. 1989 if (!SrBase) 1990 return nullptr; 1991 1992 SymbolRef SymBase = SrBase->getSymbol(); 1993 const RefState *RsBase = State->get<RegionState>(SymBase); 1994 SymbolRef PreviousRetStatusSymbol = nullptr; 1995 1996 IsKnownToBeAllocated = 1997 RsBase && (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero()); 1998 1999 if (RsBase) { 2000 2001 // Memory returned by alloca() shouldn't be freed. 2002 if (RsBase->getAllocationFamily() == AF_Alloca) { 2003 HandleFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); 2004 return nullptr; 2005 } 2006 2007 // Check for double free first. 2008 if ((RsBase->isReleased() || RsBase->isRelinquished()) && 2009 !didPreviousFreeFail(State, SymBase, PreviousRetStatusSymbol)) { 2010 HandleDoubleFree(C, ParentExpr->getSourceRange(), RsBase->isReleased(), 2011 SymBase, PreviousRetStatusSymbol); 2012 return nullptr; 2013 2014 // If the pointer is allocated or escaped, but we are now trying to free it, 2015 // check that the call to free is proper. 2016 } else if (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero() || 2017 RsBase->isEscaped()) { 2018 2019 // Check if an expected deallocation function matches the real one. 2020 bool DeallocMatchesAlloc = RsBase->getAllocationFamily() == Family; 2021 if (!DeallocMatchesAlloc) { 2022 HandleMismatchedDealloc(C, ArgExpr->getSourceRange(), ParentExpr, 2023 RsBase, SymBase, Hold); 2024 return nullptr; 2025 } 2026 2027 // Check if the memory location being freed is the actual location 2028 // allocated, or an offset. 2029 RegionOffset Offset = R->getAsOffset(); 2030 if (Offset.isValid() && 2031 !Offset.hasSymbolicOffset() && 2032 Offset.getOffset() != 0) { 2033 const Expr *AllocExpr = cast<Expr>(RsBase->getStmt()); 2034 HandleOffsetFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 2035 Family, AllocExpr); 2036 return nullptr; 2037 } 2038 } 2039 } 2040 2041 if (SymBase->getType()->isFunctionPointerType()) { 2042 HandleFunctionPtrFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 2043 Family); 2044 return nullptr; 2045 } 2046 2047 // Clean out the info on previous call to free return info. 2048 State = State->remove<FreeReturnValue>(SymBase); 2049 2050 // Keep track of the return value. If it is NULL, we will know that free 2051 // failed. 2052 if (ReturnsNullOnFailure) { 2053 SVal RetVal = C.getSVal(ParentExpr); 2054 SymbolRef RetStatusSymbol = RetVal.getAsSymbol(); 2055 if (RetStatusSymbol) { 2056 C.getSymbolManager().addSymbolDependency(SymBase, RetStatusSymbol); 2057 State = State->set<FreeReturnValue>(SymBase, RetStatusSymbol); 2058 } 2059 } 2060 2061 // If we don't know anything about this symbol, a free on it may be totally 2062 // valid. If this is the case, lets assume that the allocation family of the 2063 // freeing function is the same as the symbols allocation family, and go with 2064 // that. 2065 assert(!RsBase || (RsBase && RsBase->getAllocationFamily() == Family)); 2066 2067 // Normal free. 2068 if (Hold) 2069 return State->set<RegionState>(SymBase, 2070 RefState::getRelinquished(Family, 2071 ParentExpr)); 2072 2073 return State->set<RegionState>(SymBase, 2074 RefState::getReleased(Family, ParentExpr)); 2075 } 2076 2077 Optional<MallocChecker::CheckKind> 2078 MallocChecker::getCheckIfTracked(AllocationFamily Family, 2079 bool IsALeakCheck) const { 2080 switch (Family) { 2081 case AF_Malloc: 2082 case AF_Alloca: 2083 case AF_IfNameIndex: { 2084 if (ChecksEnabled[CK_MallocChecker]) 2085 return CK_MallocChecker; 2086 return None; 2087 } 2088 case AF_CXXNew: 2089 case AF_CXXNewArray: { 2090 if (IsALeakCheck) { 2091 if (ChecksEnabled[CK_NewDeleteLeaksChecker]) 2092 return CK_NewDeleteLeaksChecker; 2093 } 2094 else { 2095 if (ChecksEnabled[CK_NewDeleteChecker]) 2096 return CK_NewDeleteChecker; 2097 } 2098 return None; 2099 } 2100 case AF_InnerBuffer: { 2101 if (ChecksEnabled[CK_InnerPointerChecker]) 2102 return CK_InnerPointerChecker; 2103 return None; 2104 } 2105 case AF_None: { 2106 llvm_unreachable("no family"); 2107 } 2108 } 2109 llvm_unreachable("unhandled family"); 2110 } 2111 2112 Optional<MallocChecker::CheckKind> 2113 MallocChecker::getCheckIfTracked(CheckerContext &C, SymbolRef Sym, 2114 bool IsALeakCheck) const { 2115 if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) 2116 return CK_MallocChecker; 2117 2118 const RefState *RS = C.getState()->get<RegionState>(Sym); 2119 assert(RS); 2120 return getCheckIfTracked(RS->getAllocationFamily(), IsALeakCheck); 2121 } 2122 2123 bool MallocChecker::SummarizeValue(raw_ostream &os, SVal V) { 2124 if (Optional<nonloc::ConcreteInt> IntVal = V.getAs<nonloc::ConcreteInt>()) 2125 os << "an integer (" << IntVal->getValue() << ")"; 2126 else if (Optional<loc::ConcreteInt> ConstAddr = V.getAs<loc::ConcreteInt>()) 2127 os << "a constant address (" << ConstAddr->getValue() << ")"; 2128 else if (Optional<loc::GotoLabel> Label = V.getAs<loc::GotoLabel>()) 2129 os << "the address of the label '" << Label->getLabel()->getName() << "'"; 2130 else 2131 return false; 2132 2133 return true; 2134 } 2135 2136 bool MallocChecker::SummarizeRegion(raw_ostream &os, 2137 const MemRegion *MR) { 2138 switch (MR->getKind()) { 2139 case MemRegion::FunctionCodeRegionKind: { 2140 const NamedDecl *FD = cast<FunctionCodeRegion>(MR)->getDecl(); 2141 if (FD) 2142 os << "the address of the function '" << *FD << '\''; 2143 else 2144 os << "the address of a function"; 2145 return true; 2146 } 2147 case MemRegion::BlockCodeRegionKind: 2148 os << "block text"; 2149 return true; 2150 case MemRegion::BlockDataRegionKind: 2151 // FIXME: where the block came from? 2152 os << "a block"; 2153 return true; 2154 default: { 2155 const MemSpaceRegion *MS = MR->getMemorySpace(); 2156 2157 if (isa<StackLocalsSpaceRegion>(MS)) { 2158 const VarRegion *VR = dyn_cast<VarRegion>(MR); 2159 const VarDecl *VD; 2160 if (VR) 2161 VD = VR->getDecl(); 2162 else 2163 VD = nullptr; 2164 2165 if (VD) 2166 os << "the address of the local variable '" << VD->getName() << "'"; 2167 else 2168 os << "the address of a local stack variable"; 2169 return true; 2170 } 2171 2172 if (isa<StackArgumentsSpaceRegion>(MS)) { 2173 const VarRegion *VR = dyn_cast<VarRegion>(MR); 2174 const VarDecl *VD; 2175 if (VR) 2176 VD = VR->getDecl(); 2177 else 2178 VD = nullptr; 2179 2180 if (VD) 2181 os << "the address of the parameter '" << VD->getName() << "'"; 2182 else 2183 os << "the address of a parameter"; 2184 return true; 2185 } 2186 2187 if (isa<GlobalsSpaceRegion>(MS)) { 2188 const VarRegion *VR = dyn_cast<VarRegion>(MR); 2189 const VarDecl *VD; 2190 if (VR) 2191 VD = VR->getDecl(); 2192 else 2193 VD = nullptr; 2194 2195 if (VD) { 2196 if (VD->isStaticLocal()) 2197 os << "the address of the static variable '" << VD->getName() << "'"; 2198 else 2199 os << "the address of the global variable '" << VD->getName() << "'"; 2200 } else 2201 os << "the address of a global variable"; 2202 return true; 2203 } 2204 2205 return false; 2206 } 2207 } 2208 } 2209 2210 void MallocChecker::HandleNonHeapDealloc(CheckerContext &C, SVal ArgVal, 2211 SourceRange Range, 2212 const Expr *DeallocExpr, 2213 AllocationFamily Family) const { 2214 2215 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) { 2216 C.addSink(); 2217 return; 2218 } 2219 2220 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 2221 if (!CheckKind) 2222 return; 2223 2224 if (ExplodedNode *N = C.generateErrorNode()) { 2225 if (!BT_BadFree[*CheckKind]) 2226 BT_BadFree[*CheckKind].reset(new BugType( 2227 CheckNames[*CheckKind], "Bad free", categories::MemoryError)); 2228 2229 SmallString<100> buf; 2230 llvm::raw_svector_ostream os(buf); 2231 2232 const MemRegion *MR = ArgVal.getAsRegion(); 2233 while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR)) 2234 MR = ER->getSuperRegion(); 2235 2236 os << "Argument to "; 2237 if (!printMemFnName(os, C, DeallocExpr)) 2238 os << "deallocator"; 2239 2240 os << " is "; 2241 bool Summarized = MR ? SummarizeRegion(os, MR) 2242 : SummarizeValue(os, ArgVal); 2243 if (Summarized) 2244 os << ", which is not memory allocated by "; 2245 else 2246 os << "not memory allocated by "; 2247 2248 printExpectedAllocName(os, Family); 2249 2250 auto R = std::make_unique<PathSensitiveBugReport>(*BT_BadFree[*CheckKind], 2251 os.str(), N); 2252 R->markInteresting(MR); 2253 R->addRange(Range); 2254 C.emitReport(std::move(R)); 2255 } 2256 } 2257 2258 void MallocChecker::HandleFreeAlloca(CheckerContext &C, SVal ArgVal, 2259 SourceRange Range) const { 2260 2261 Optional<MallocChecker::CheckKind> CheckKind; 2262 2263 if (ChecksEnabled[CK_MallocChecker]) 2264 CheckKind = CK_MallocChecker; 2265 else if (ChecksEnabled[CK_MismatchedDeallocatorChecker]) 2266 CheckKind = CK_MismatchedDeallocatorChecker; 2267 else { 2268 C.addSink(); 2269 return; 2270 } 2271 2272 if (ExplodedNode *N = C.generateErrorNode()) { 2273 if (!BT_FreeAlloca[*CheckKind]) 2274 BT_FreeAlloca[*CheckKind].reset(new BugType( 2275 CheckNames[*CheckKind], "Free alloca()", categories::MemoryError)); 2276 2277 auto R = std::make_unique<PathSensitiveBugReport>( 2278 *BT_FreeAlloca[*CheckKind], 2279 "Memory allocated by alloca() should not be deallocated", N); 2280 R->markInteresting(ArgVal.getAsRegion()); 2281 R->addRange(Range); 2282 C.emitReport(std::move(R)); 2283 } 2284 } 2285 2286 void MallocChecker::HandleMismatchedDealloc(CheckerContext &C, 2287 SourceRange Range, 2288 const Expr *DeallocExpr, 2289 const RefState *RS, SymbolRef Sym, 2290 bool OwnershipTransferred) const { 2291 2292 if (!ChecksEnabled[CK_MismatchedDeallocatorChecker]) { 2293 C.addSink(); 2294 return; 2295 } 2296 2297 if (ExplodedNode *N = C.generateErrorNode()) { 2298 if (!BT_MismatchedDealloc) 2299 BT_MismatchedDealloc.reset( 2300 new BugType(CheckNames[CK_MismatchedDeallocatorChecker], 2301 "Bad deallocator", categories::MemoryError)); 2302 2303 SmallString<100> buf; 2304 llvm::raw_svector_ostream os(buf); 2305 2306 const Expr *AllocExpr = cast<Expr>(RS->getStmt()); 2307 SmallString<20> AllocBuf; 2308 llvm::raw_svector_ostream AllocOs(AllocBuf); 2309 SmallString<20> DeallocBuf; 2310 llvm::raw_svector_ostream DeallocOs(DeallocBuf); 2311 2312 if (OwnershipTransferred) { 2313 if (printMemFnName(DeallocOs, C, DeallocExpr)) 2314 os << DeallocOs.str() << " cannot"; 2315 else 2316 os << "Cannot"; 2317 2318 os << " take ownership of memory"; 2319 2320 if (printMemFnName(AllocOs, C, AllocExpr)) 2321 os << " allocated by " << AllocOs.str(); 2322 } else { 2323 os << "Memory"; 2324 if (printMemFnName(AllocOs, C, AllocExpr)) 2325 os << " allocated by " << AllocOs.str(); 2326 2327 os << " should be deallocated by "; 2328 printExpectedDeallocName(os, RS->getAllocationFamily()); 2329 2330 if (printMemFnName(DeallocOs, C, DeallocExpr)) 2331 os << ", not " << DeallocOs.str(); 2332 } 2333 2334 auto R = std::make_unique<PathSensitiveBugReport>(*BT_MismatchedDealloc, 2335 os.str(), N); 2336 R->markInteresting(Sym); 2337 R->addRange(Range); 2338 R->addVisitor<MallocBugVisitor>(Sym); 2339 C.emitReport(std::move(R)); 2340 } 2341 } 2342 2343 void MallocChecker::HandleOffsetFree(CheckerContext &C, SVal ArgVal, 2344 SourceRange Range, const Expr *DeallocExpr, 2345 AllocationFamily Family, 2346 const Expr *AllocExpr) const { 2347 2348 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) { 2349 C.addSink(); 2350 return; 2351 } 2352 2353 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 2354 if (!CheckKind) 2355 return; 2356 2357 ExplodedNode *N = C.generateErrorNode(); 2358 if (!N) 2359 return; 2360 2361 if (!BT_OffsetFree[*CheckKind]) 2362 BT_OffsetFree[*CheckKind].reset(new BugType( 2363 CheckNames[*CheckKind], "Offset free", categories::MemoryError)); 2364 2365 SmallString<100> buf; 2366 llvm::raw_svector_ostream os(buf); 2367 SmallString<20> AllocNameBuf; 2368 llvm::raw_svector_ostream AllocNameOs(AllocNameBuf); 2369 2370 const MemRegion *MR = ArgVal.getAsRegion(); 2371 assert(MR && "Only MemRegion based symbols can have offset free errors"); 2372 2373 RegionOffset Offset = MR->getAsOffset(); 2374 assert((Offset.isValid() && 2375 !Offset.hasSymbolicOffset() && 2376 Offset.getOffset() != 0) && 2377 "Only symbols with a valid offset can have offset free errors"); 2378 2379 int offsetBytes = Offset.getOffset() / C.getASTContext().getCharWidth(); 2380 2381 os << "Argument to "; 2382 if (!printMemFnName(os, C, DeallocExpr)) 2383 os << "deallocator"; 2384 os << " is offset by " 2385 << offsetBytes 2386 << " " 2387 << ((abs(offsetBytes) > 1) ? "bytes" : "byte") 2388 << " from the start of "; 2389 if (AllocExpr && printMemFnName(AllocNameOs, C, AllocExpr)) 2390 os << "memory allocated by " << AllocNameOs.str(); 2391 else 2392 os << "allocated memory"; 2393 2394 auto R = std::make_unique<PathSensitiveBugReport>(*BT_OffsetFree[*CheckKind], 2395 os.str(), N); 2396 R->markInteresting(MR->getBaseRegion()); 2397 R->addRange(Range); 2398 C.emitReport(std::move(R)); 2399 } 2400 2401 void MallocChecker::HandleUseAfterFree(CheckerContext &C, SourceRange Range, 2402 SymbolRef Sym) const { 2403 2404 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker] && 2405 !ChecksEnabled[CK_InnerPointerChecker]) { 2406 C.addSink(); 2407 return; 2408 } 2409 2410 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2411 if (!CheckKind) 2412 return; 2413 2414 if (ExplodedNode *N = C.generateErrorNode()) { 2415 if (!BT_UseFree[*CheckKind]) 2416 BT_UseFree[*CheckKind].reset(new BugType( 2417 CheckNames[*CheckKind], "Use-after-free", categories::MemoryError)); 2418 2419 AllocationFamily AF = 2420 C.getState()->get<RegionState>(Sym)->getAllocationFamily(); 2421 2422 auto R = std::make_unique<PathSensitiveBugReport>( 2423 *BT_UseFree[*CheckKind], 2424 AF == AF_InnerBuffer 2425 ? "Inner pointer of container used after re/deallocation" 2426 : "Use of memory after it is freed", 2427 N); 2428 2429 R->markInteresting(Sym); 2430 R->addRange(Range); 2431 R->addVisitor<MallocBugVisitor>(Sym); 2432 2433 if (AF == AF_InnerBuffer) 2434 R->addVisitor(allocation_state::getInnerPointerBRVisitor(Sym)); 2435 2436 C.emitReport(std::move(R)); 2437 } 2438 } 2439 2440 void MallocChecker::HandleDoubleFree(CheckerContext &C, SourceRange Range, 2441 bool Released, SymbolRef Sym, 2442 SymbolRef PrevSym) const { 2443 2444 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) { 2445 C.addSink(); 2446 return; 2447 } 2448 2449 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2450 if (!CheckKind) 2451 return; 2452 2453 if (ExplodedNode *N = C.generateErrorNode()) { 2454 if (!BT_DoubleFree[*CheckKind]) 2455 BT_DoubleFree[*CheckKind].reset(new BugType( 2456 CheckNames[*CheckKind], "Double free", categories::MemoryError)); 2457 2458 auto R = std::make_unique<PathSensitiveBugReport>( 2459 *BT_DoubleFree[*CheckKind], 2460 (Released ? "Attempt to free released memory" 2461 : "Attempt to free non-owned memory"), 2462 N); 2463 R->addRange(Range); 2464 R->markInteresting(Sym); 2465 if (PrevSym) 2466 R->markInteresting(PrevSym); 2467 R->addVisitor<MallocBugVisitor>(Sym); 2468 C.emitReport(std::move(R)); 2469 } 2470 } 2471 2472 void MallocChecker::HandleDoubleDelete(CheckerContext &C, SymbolRef Sym) const { 2473 2474 if (!ChecksEnabled[CK_NewDeleteChecker]) { 2475 C.addSink(); 2476 return; 2477 } 2478 2479 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2480 if (!CheckKind) 2481 return; 2482 2483 if (ExplodedNode *N = C.generateErrorNode()) { 2484 if (!BT_DoubleDelete) 2485 BT_DoubleDelete.reset(new BugType(CheckNames[CK_NewDeleteChecker], 2486 "Double delete", 2487 categories::MemoryError)); 2488 2489 auto R = std::make_unique<PathSensitiveBugReport>( 2490 *BT_DoubleDelete, "Attempt to delete released memory", N); 2491 2492 R->markInteresting(Sym); 2493 R->addVisitor<MallocBugVisitor>(Sym); 2494 C.emitReport(std::move(R)); 2495 } 2496 } 2497 2498 void MallocChecker::HandleUseZeroAlloc(CheckerContext &C, SourceRange Range, 2499 SymbolRef Sym) const { 2500 2501 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) { 2502 C.addSink(); 2503 return; 2504 } 2505 2506 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2507 2508 if (!CheckKind) 2509 return; 2510 2511 if (ExplodedNode *N = C.generateErrorNode()) { 2512 if (!BT_UseZerroAllocated[*CheckKind]) 2513 BT_UseZerroAllocated[*CheckKind].reset( 2514 new BugType(CheckNames[*CheckKind], "Use of zero allocated", 2515 categories::MemoryError)); 2516 2517 auto R = std::make_unique<PathSensitiveBugReport>( 2518 *BT_UseZerroAllocated[*CheckKind], 2519 "Use of memory allocated with size zero", N); 2520 2521 R->addRange(Range); 2522 if (Sym) { 2523 R->markInteresting(Sym); 2524 R->addVisitor<MallocBugVisitor>(Sym); 2525 } 2526 C.emitReport(std::move(R)); 2527 } 2528 } 2529 2530 void MallocChecker::HandleFunctionPtrFree(CheckerContext &C, SVal ArgVal, 2531 SourceRange Range, 2532 const Expr *FreeExpr, 2533 AllocationFamily Family) const { 2534 if (!ChecksEnabled[CK_MallocChecker]) { 2535 C.addSink(); 2536 return; 2537 } 2538 2539 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 2540 if (!CheckKind) 2541 return; 2542 2543 if (ExplodedNode *N = C.generateErrorNode()) { 2544 if (!BT_BadFree[*CheckKind]) 2545 BT_BadFree[*CheckKind].reset(new BugType( 2546 CheckNames[*CheckKind], "Bad free", categories::MemoryError)); 2547 2548 SmallString<100> Buf; 2549 llvm::raw_svector_ostream Os(Buf); 2550 2551 const MemRegion *MR = ArgVal.getAsRegion(); 2552 while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR)) 2553 MR = ER->getSuperRegion(); 2554 2555 Os << "Argument to "; 2556 if (!printMemFnName(Os, C, FreeExpr)) 2557 Os << "deallocator"; 2558 2559 Os << " is a function pointer"; 2560 2561 auto R = std::make_unique<PathSensitiveBugReport>(*BT_BadFree[*CheckKind], 2562 Os.str(), N); 2563 R->markInteresting(MR); 2564 R->addRange(Range); 2565 C.emitReport(std::move(R)); 2566 } 2567 } 2568 2569 ProgramStateRef 2570 MallocChecker::ReallocMemAux(CheckerContext &C, const CallEvent &Call, 2571 bool ShouldFreeOnFail, ProgramStateRef State, 2572 AllocationFamily Family, bool SuffixWithN) const { 2573 if (!State) 2574 return nullptr; 2575 2576 const CallExpr *CE = cast<CallExpr>(Call.getOriginExpr()); 2577 2578 if (SuffixWithN && CE->getNumArgs() < 3) 2579 return nullptr; 2580 else if (CE->getNumArgs() < 2) 2581 return nullptr; 2582 2583 const Expr *arg0Expr = CE->getArg(0); 2584 SVal Arg0Val = C.getSVal(arg0Expr); 2585 if (!isa<DefinedOrUnknownSVal>(Arg0Val)) 2586 return nullptr; 2587 DefinedOrUnknownSVal arg0Val = Arg0Val.castAs<DefinedOrUnknownSVal>(); 2588 2589 SValBuilder &svalBuilder = C.getSValBuilder(); 2590 2591 DefinedOrUnknownSVal PtrEQ = svalBuilder.evalEQ( 2592 State, arg0Val, svalBuilder.makeNullWithType(arg0Expr->getType())); 2593 2594 // Get the size argument. 2595 const Expr *Arg1 = CE->getArg(1); 2596 2597 // Get the value of the size argument. 2598 SVal TotalSize = C.getSVal(Arg1); 2599 if (SuffixWithN) 2600 TotalSize = evalMulForBufferSize(C, Arg1, CE->getArg(2)); 2601 if (!isa<DefinedOrUnknownSVal>(TotalSize)) 2602 return nullptr; 2603 2604 // Compare the size argument to 0. 2605 DefinedOrUnknownSVal SizeZero = 2606 svalBuilder.evalEQ(State, TotalSize.castAs<DefinedOrUnknownSVal>(), 2607 svalBuilder.makeIntValWithWidth( 2608 svalBuilder.getContext().getSizeType(), 0)); 2609 2610 ProgramStateRef StatePtrIsNull, StatePtrNotNull; 2611 std::tie(StatePtrIsNull, StatePtrNotNull) = State->assume(PtrEQ); 2612 ProgramStateRef StateSizeIsZero, StateSizeNotZero; 2613 std::tie(StateSizeIsZero, StateSizeNotZero) = State->assume(SizeZero); 2614 // We only assume exceptional states if they are definitely true; if the 2615 // state is under-constrained, assume regular realloc behavior. 2616 bool PrtIsNull = StatePtrIsNull && !StatePtrNotNull; 2617 bool SizeIsZero = StateSizeIsZero && !StateSizeNotZero; 2618 2619 // If the ptr is NULL and the size is not 0, the call is equivalent to 2620 // malloc(size). 2621 if (PrtIsNull && !SizeIsZero) { 2622 ProgramStateRef stateMalloc = MallocMemAux( 2623 C, Call, TotalSize, UndefinedVal(), StatePtrIsNull, Family); 2624 return stateMalloc; 2625 } 2626 2627 if (PrtIsNull && SizeIsZero) 2628 return State; 2629 2630 assert(!PrtIsNull); 2631 2632 bool IsKnownToBeAllocated = false; 2633 2634 // If the size is 0, free the memory. 2635 if (SizeIsZero) 2636 // The semantics of the return value are: 2637 // If size was equal to 0, either NULL or a pointer suitable to be passed 2638 // to free() is returned. We just free the input pointer and do not add 2639 // any constrains on the output pointer. 2640 if (ProgramStateRef stateFree = FreeMemAux( 2641 C, Call, StateSizeIsZero, 0, false, IsKnownToBeAllocated, Family)) 2642 return stateFree; 2643 2644 // Default behavior. 2645 if (ProgramStateRef stateFree = 2646 FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocated, Family)) { 2647 2648 ProgramStateRef stateRealloc = 2649 MallocMemAux(C, Call, TotalSize, UnknownVal(), stateFree, Family); 2650 if (!stateRealloc) 2651 return nullptr; 2652 2653 OwnershipAfterReallocKind Kind = OAR_ToBeFreedAfterFailure; 2654 if (ShouldFreeOnFail) 2655 Kind = OAR_FreeOnFailure; 2656 else if (!IsKnownToBeAllocated) 2657 Kind = OAR_DoNotTrackAfterFailure; 2658 2659 // Get the from and to pointer symbols as in toPtr = realloc(fromPtr, size). 2660 SymbolRef FromPtr = arg0Val.getLocSymbolInBase(); 2661 SVal RetVal = C.getSVal(CE); 2662 SymbolRef ToPtr = RetVal.getAsSymbol(); 2663 assert(FromPtr && ToPtr && 2664 "By this point, FreeMemAux and MallocMemAux should have checked " 2665 "whether the argument or the return value is symbolic!"); 2666 2667 // Record the info about the reallocated symbol so that we could properly 2668 // process failed reallocation. 2669 stateRealloc = stateRealloc->set<ReallocPairs>(ToPtr, 2670 ReallocPair(FromPtr, Kind)); 2671 // The reallocated symbol should stay alive for as long as the new symbol. 2672 C.getSymbolManager().addSymbolDependency(ToPtr, FromPtr); 2673 return stateRealloc; 2674 } 2675 return nullptr; 2676 } 2677 2678 ProgramStateRef MallocChecker::CallocMem(CheckerContext &C, 2679 const CallEvent &Call, 2680 ProgramStateRef State) { 2681 if (!State) 2682 return nullptr; 2683 2684 if (Call.getNumArgs() < 2) 2685 return nullptr; 2686 2687 SValBuilder &svalBuilder = C.getSValBuilder(); 2688 SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy); 2689 SVal TotalSize = 2690 evalMulForBufferSize(C, Call.getArgExpr(0), Call.getArgExpr(1)); 2691 2692 return MallocMemAux(C, Call, TotalSize, zeroVal, State, AF_Malloc); 2693 } 2694 2695 MallocChecker::LeakInfo MallocChecker::getAllocationSite(const ExplodedNode *N, 2696 SymbolRef Sym, 2697 CheckerContext &C) { 2698 const LocationContext *LeakContext = N->getLocationContext(); 2699 // Walk the ExplodedGraph backwards and find the first node that referred to 2700 // the tracked symbol. 2701 const ExplodedNode *AllocNode = N; 2702 const MemRegion *ReferenceRegion = nullptr; 2703 2704 while (N) { 2705 ProgramStateRef State = N->getState(); 2706 if (!State->get<RegionState>(Sym)) 2707 break; 2708 2709 // Find the most recent expression bound to the symbol in the current 2710 // context. 2711 if (!ReferenceRegion) { 2712 if (const MemRegion *MR = C.getLocationRegionIfPostStore(N)) { 2713 SVal Val = State->getSVal(MR); 2714 if (Val.getAsLocSymbol() == Sym) { 2715 const VarRegion *VR = MR->getBaseRegion()->getAs<VarRegion>(); 2716 // Do not show local variables belonging to a function other than 2717 // where the error is reported. 2718 if (!VR || (VR->getStackFrame() == LeakContext->getStackFrame())) 2719 ReferenceRegion = MR; 2720 } 2721 } 2722 } 2723 2724 // Allocation node, is the last node in the current or parent context in 2725 // which the symbol was tracked. 2726 const LocationContext *NContext = N->getLocationContext(); 2727 if (NContext == LeakContext || 2728 NContext->isParentOf(LeakContext)) 2729 AllocNode = N; 2730 N = N->pred_empty() ? nullptr : *(N->pred_begin()); 2731 } 2732 2733 return LeakInfo(AllocNode, ReferenceRegion); 2734 } 2735 2736 void MallocChecker::HandleLeak(SymbolRef Sym, ExplodedNode *N, 2737 CheckerContext &C) const { 2738 2739 if (!ChecksEnabled[CK_MallocChecker] && 2740 !ChecksEnabled[CK_NewDeleteLeaksChecker]) 2741 return; 2742 2743 const RefState *RS = C.getState()->get<RegionState>(Sym); 2744 assert(RS && "cannot leak an untracked symbol"); 2745 AllocationFamily Family = RS->getAllocationFamily(); 2746 2747 if (Family == AF_Alloca) 2748 return; 2749 2750 Optional<MallocChecker::CheckKind> 2751 CheckKind = getCheckIfTracked(Family, true); 2752 2753 if (!CheckKind) 2754 return; 2755 2756 assert(N); 2757 if (!BT_Leak[*CheckKind]) { 2758 // Leaks should not be reported if they are post-dominated by a sink: 2759 // (1) Sinks are higher importance bugs. 2760 // (2) NoReturnFunctionChecker uses sink nodes to represent paths ending 2761 // with __noreturn functions such as assert() or exit(). We choose not 2762 // to report leaks on such paths. 2763 BT_Leak[*CheckKind].reset(new BugType(CheckNames[*CheckKind], "Memory leak", 2764 categories::MemoryError, 2765 /*SuppressOnSink=*/true)); 2766 } 2767 2768 // Most bug reports are cached at the location where they occurred. 2769 // With leaks, we want to unique them by the location where they were 2770 // allocated, and only report a single path. 2771 PathDiagnosticLocation LocUsedForUniqueing; 2772 const ExplodedNode *AllocNode = nullptr; 2773 const MemRegion *Region = nullptr; 2774 std::tie(AllocNode, Region) = getAllocationSite(N, Sym, C); 2775 2776 const Stmt *AllocationStmt = AllocNode->getStmtForDiagnostics(); 2777 if (AllocationStmt) 2778 LocUsedForUniqueing = PathDiagnosticLocation::createBegin(AllocationStmt, 2779 C.getSourceManager(), 2780 AllocNode->getLocationContext()); 2781 2782 SmallString<200> buf; 2783 llvm::raw_svector_ostream os(buf); 2784 if (Region && Region->canPrintPretty()) { 2785 os << "Potential leak of memory pointed to by "; 2786 Region->printPretty(os); 2787 } else { 2788 os << "Potential memory leak"; 2789 } 2790 2791 auto R = std::make_unique<PathSensitiveBugReport>( 2792 *BT_Leak[*CheckKind], os.str(), N, LocUsedForUniqueing, 2793 AllocNode->getLocationContext()->getDecl()); 2794 R->markInteresting(Sym); 2795 R->addVisitor<MallocBugVisitor>(Sym, true); 2796 if (ShouldRegisterNoOwnershipChangeVisitor) 2797 R->addVisitor<NoOwnershipChangeVisitor>(Sym, this); 2798 C.emitReport(std::move(R)); 2799 } 2800 2801 void MallocChecker::checkDeadSymbols(SymbolReaper &SymReaper, 2802 CheckerContext &C) const 2803 { 2804 ProgramStateRef state = C.getState(); 2805 RegionStateTy OldRS = state->get<RegionState>(); 2806 RegionStateTy::Factory &F = state->get_context<RegionState>(); 2807 2808 RegionStateTy RS = OldRS; 2809 SmallVector<SymbolRef, 2> Errors; 2810 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 2811 if (SymReaper.isDead(I->first)) { 2812 if (I->second.isAllocated() || I->second.isAllocatedOfSizeZero()) 2813 Errors.push_back(I->first); 2814 // Remove the dead symbol from the map. 2815 RS = F.remove(RS, I->first); 2816 } 2817 } 2818 2819 if (RS == OldRS) { 2820 // We shouldn't have touched other maps yet. 2821 assert(state->get<ReallocPairs>() == 2822 C.getState()->get<ReallocPairs>()); 2823 assert(state->get<FreeReturnValue>() == 2824 C.getState()->get<FreeReturnValue>()); 2825 return; 2826 } 2827 2828 // Cleanup the Realloc Pairs Map. 2829 ReallocPairsTy RP = state->get<ReallocPairs>(); 2830 for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) { 2831 if (SymReaper.isDead(I->first) || 2832 SymReaper.isDead(I->second.ReallocatedSym)) { 2833 state = state->remove<ReallocPairs>(I->first); 2834 } 2835 } 2836 2837 // Cleanup the FreeReturnValue Map. 2838 FreeReturnValueTy FR = state->get<FreeReturnValue>(); 2839 for (FreeReturnValueTy::iterator I = FR.begin(), E = FR.end(); I != E; ++I) { 2840 if (SymReaper.isDead(I->first) || 2841 SymReaper.isDead(I->second)) { 2842 state = state->remove<FreeReturnValue>(I->first); 2843 } 2844 } 2845 2846 // Generate leak node. 2847 ExplodedNode *N = C.getPredecessor(); 2848 if (!Errors.empty()) { 2849 static CheckerProgramPointTag Tag("MallocChecker", "DeadSymbolsLeak"); 2850 N = C.generateNonFatalErrorNode(C.getState(), &Tag); 2851 if (N) { 2852 for (SmallVectorImpl<SymbolRef>::iterator 2853 I = Errors.begin(), E = Errors.end(); I != E; ++I) { 2854 HandleLeak(*I, N, C); 2855 } 2856 } 2857 } 2858 2859 C.addTransition(state->set<RegionState>(RS), N); 2860 } 2861 2862 void MallocChecker::checkPreCall(const CallEvent &Call, 2863 CheckerContext &C) const { 2864 2865 if (const auto *DC = dyn_cast<CXXDeallocatorCall>(&Call)) { 2866 const CXXDeleteExpr *DE = DC->getOriginExpr(); 2867 2868 if (!ChecksEnabled[CK_NewDeleteChecker]) 2869 if (SymbolRef Sym = C.getSVal(DE->getArgument()).getAsSymbol()) 2870 checkUseAfterFree(Sym, C, DE->getArgument()); 2871 2872 if (!isStandardNewDelete(DC->getDecl())) 2873 return; 2874 2875 ProgramStateRef State = C.getState(); 2876 bool IsKnownToBeAllocated; 2877 State = FreeMemAux(C, DE->getArgument(), Call, State, 2878 /*Hold*/ false, IsKnownToBeAllocated, 2879 (DE->isArrayForm() ? AF_CXXNewArray : AF_CXXNew)); 2880 2881 C.addTransition(State); 2882 return; 2883 } 2884 2885 if (const auto *DC = dyn_cast<CXXDestructorCall>(&Call)) { 2886 SymbolRef Sym = DC->getCXXThisVal().getAsSymbol(); 2887 if (!Sym || checkDoubleDelete(Sym, C)) 2888 return; 2889 } 2890 2891 // We will check for double free in the post visit. 2892 if (const AnyFunctionCall *FC = dyn_cast<AnyFunctionCall>(&Call)) { 2893 const FunctionDecl *FD = FC->getDecl(); 2894 if (!FD) 2895 return; 2896 2897 if (ChecksEnabled[CK_MallocChecker] && isFreeingCall(Call)) 2898 return; 2899 } 2900 2901 // Check if the callee of a method is deleted. 2902 if (const CXXInstanceCall *CC = dyn_cast<CXXInstanceCall>(&Call)) { 2903 SymbolRef Sym = CC->getCXXThisVal().getAsSymbol(); 2904 if (!Sym || checkUseAfterFree(Sym, C, CC->getCXXThisExpr())) 2905 return; 2906 } 2907 2908 // Check arguments for being used after free. 2909 for (unsigned I = 0, E = Call.getNumArgs(); I != E; ++I) { 2910 SVal ArgSVal = Call.getArgSVal(I); 2911 if (isa<Loc>(ArgSVal)) { 2912 SymbolRef Sym = ArgSVal.getAsSymbol(); 2913 if (!Sym) 2914 continue; 2915 if (checkUseAfterFree(Sym, C, Call.getArgExpr(I))) 2916 return; 2917 } 2918 } 2919 } 2920 2921 void MallocChecker::checkPreStmt(const ReturnStmt *S, 2922 CheckerContext &C) const { 2923 checkEscapeOnReturn(S, C); 2924 } 2925 2926 // In the CFG, automatic destructors come after the return statement. 2927 // This callback checks for returning memory that is freed by automatic 2928 // destructors, as those cannot be reached in checkPreStmt(). 2929 void MallocChecker::checkEndFunction(const ReturnStmt *S, 2930 CheckerContext &C) const { 2931 checkEscapeOnReturn(S, C); 2932 } 2933 2934 void MallocChecker::checkEscapeOnReturn(const ReturnStmt *S, 2935 CheckerContext &C) const { 2936 if (!S) 2937 return; 2938 2939 const Expr *E = S->getRetValue(); 2940 if (!E) 2941 return; 2942 2943 // Check if we are returning a symbol. 2944 ProgramStateRef State = C.getState(); 2945 SVal RetVal = C.getSVal(E); 2946 SymbolRef Sym = RetVal.getAsSymbol(); 2947 if (!Sym) 2948 // If we are returning a field of the allocated struct or an array element, 2949 // the callee could still free the memory. 2950 // TODO: This logic should be a part of generic symbol escape callback. 2951 if (const MemRegion *MR = RetVal.getAsRegion()) 2952 if (isa<FieldRegion, ElementRegion>(MR)) 2953 if (const SymbolicRegion *BMR = 2954 dyn_cast<SymbolicRegion>(MR->getBaseRegion())) 2955 Sym = BMR->getSymbol(); 2956 2957 // Check if we are returning freed memory. 2958 if (Sym) 2959 checkUseAfterFree(Sym, C, E); 2960 } 2961 2962 // TODO: Blocks should be either inlined or should call invalidate regions 2963 // upon invocation. After that's in place, special casing here will not be 2964 // needed. 2965 void MallocChecker::checkPostStmt(const BlockExpr *BE, 2966 CheckerContext &C) const { 2967 2968 // Scan the BlockDecRefExprs for any object the retain count checker 2969 // may be tracking. 2970 if (!BE->getBlockDecl()->hasCaptures()) 2971 return; 2972 2973 ProgramStateRef state = C.getState(); 2974 const BlockDataRegion *R = 2975 cast<BlockDataRegion>(C.getSVal(BE).getAsRegion()); 2976 2977 BlockDataRegion::referenced_vars_iterator I = R->referenced_vars_begin(), 2978 E = R->referenced_vars_end(); 2979 2980 if (I == E) 2981 return; 2982 2983 SmallVector<const MemRegion*, 10> Regions; 2984 const LocationContext *LC = C.getLocationContext(); 2985 MemRegionManager &MemMgr = C.getSValBuilder().getRegionManager(); 2986 2987 for ( ; I != E; ++I) { 2988 const VarRegion *VR = I.getCapturedRegion(); 2989 if (VR->getSuperRegion() == R) { 2990 VR = MemMgr.getVarRegion(VR->getDecl(), LC); 2991 } 2992 Regions.push_back(VR); 2993 } 2994 2995 state = 2996 state->scanReachableSymbols<StopTrackingCallback>(Regions).getState(); 2997 C.addTransition(state); 2998 } 2999 3000 static bool isReleased(SymbolRef Sym, CheckerContext &C) { 3001 assert(Sym); 3002 const RefState *RS = C.getState()->get<RegionState>(Sym); 3003 return (RS && RS->isReleased()); 3004 } 3005 3006 bool MallocChecker::suppressDeallocationsInSuspiciousContexts( 3007 const CallEvent &Call, CheckerContext &C) const { 3008 if (Call.getNumArgs() == 0) 3009 return false; 3010 3011 StringRef FunctionStr = ""; 3012 if (const auto *FD = dyn_cast<FunctionDecl>(C.getStackFrame()->getDecl())) 3013 if (const Stmt *Body = FD->getBody()) 3014 if (Body->getBeginLoc().isValid()) 3015 FunctionStr = 3016 Lexer::getSourceText(CharSourceRange::getTokenRange( 3017 {FD->getBeginLoc(), Body->getBeginLoc()}), 3018 C.getSourceManager(), C.getLangOpts()); 3019 3020 // We do not model the Integer Set Library's retain-count based allocation. 3021 if (!FunctionStr.contains("__isl_")) 3022 return false; 3023 3024 ProgramStateRef State = C.getState(); 3025 3026 for (const Expr *Arg : cast<CallExpr>(Call.getOriginExpr())->arguments()) 3027 if (SymbolRef Sym = C.getSVal(Arg).getAsSymbol()) 3028 if (const RefState *RS = State->get<RegionState>(Sym)) 3029 State = State->set<RegionState>(Sym, RefState::getEscaped(RS)); 3030 3031 C.addTransition(State); 3032 return true; 3033 } 3034 3035 bool MallocChecker::checkUseAfterFree(SymbolRef Sym, CheckerContext &C, 3036 const Stmt *S) const { 3037 3038 if (isReleased(Sym, C)) { 3039 HandleUseAfterFree(C, S->getSourceRange(), Sym); 3040 return true; 3041 } 3042 3043 return false; 3044 } 3045 3046 void MallocChecker::checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, 3047 const Stmt *S) const { 3048 assert(Sym); 3049 3050 if (const RefState *RS = C.getState()->get<RegionState>(Sym)) { 3051 if (RS->isAllocatedOfSizeZero()) 3052 HandleUseZeroAlloc(C, RS->getStmt()->getSourceRange(), Sym); 3053 } 3054 else if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) { 3055 HandleUseZeroAlloc(C, S->getSourceRange(), Sym); 3056 } 3057 } 3058 3059 bool MallocChecker::checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const { 3060 3061 if (isReleased(Sym, C)) { 3062 HandleDoubleDelete(C, Sym); 3063 return true; 3064 } 3065 return false; 3066 } 3067 3068 // Check if the location is a freed symbolic region. 3069 void MallocChecker::checkLocation(SVal l, bool isLoad, const Stmt *S, 3070 CheckerContext &C) const { 3071 SymbolRef Sym = l.getLocSymbolInBase(); 3072 if (Sym) { 3073 checkUseAfterFree(Sym, C, S); 3074 checkUseZeroAllocated(Sym, C, S); 3075 } 3076 } 3077 3078 // If a symbolic region is assumed to NULL (or another constant), stop tracking 3079 // it - assuming that allocation failed on this path. 3080 ProgramStateRef MallocChecker::evalAssume(ProgramStateRef state, 3081 SVal Cond, 3082 bool Assumption) const { 3083 RegionStateTy RS = state->get<RegionState>(); 3084 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 3085 // If the symbol is assumed to be NULL, remove it from consideration. 3086 ConstraintManager &CMgr = state->getConstraintManager(); 3087 ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey()); 3088 if (AllocFailed.isConstrainedTrue()) 3089 state = state->remove<RegionState>(I.getKey()); 3090 } 3091 3092 // Realloc returns 0 when reallocation fails, which means that we should 3093 // restore the state of the pointer being reallocated. 3094 ReallocPairsTy RP = state->get<ReallocPairs>(); 3095 for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) { 3096 // If the symbol is assumed to be NULL, remove it from consideration. 3097 ConstraintManager &CMgr = state->getConstraintManager(); 3098 ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey()); 3099 if (!AllocFailed.isConstrainedTrue()) 3100 continue; 3101 3102 SymbolRef ReallocSym = I.getData().ReallocatedSym; 3103 if (const RefState *RS = state->get<RegionState>(ReallocSym)) { 3104 if (RS->isReleased()) { 3105 switch (I.getData().Kind) { 3106 case OAR_ToBeFreedAfterFailure: 3107 state = state->set<RegionState>(ReallocSym, 3108 RefState::getAllocated(RS->getAllocationFamily(), RS->getStmt())); 3109 break; 3110 case OAR_DoNotTrackAfterFailure: 3111 state = state->remove<RegionState>(ReallocSym); 3112 break; 3113 default: 3114 assert(I.getData().Kind == OAR_FreeOnFailure); 3115 } 3116 } 3117 } 3118 state = state->remove<ReallocPairs>(I.getKey()); 3119 } 3120 3121 return state; 3122 } 3123 3124 bool MallocChecker::mayFreeAnyEscapedMemoryOrIsModeledExplicitly( 3125 const CallEvent *Call, 3126 ProgramStateRef State, 3127 SymbolRef &EscapingSymbol) const { 3128 assert(Call); 3129 EscapingSymbol = nullptr; 3130 3131 // For now, assume that any C++ or block call can free memory. 3132 // TODO: If we want to be more optimistic here, we'll need to make sure that 3133 // regions escape to C++ containers. They seem to do that even now, but for 3134 // mysterious reasons. 3135 if (!isa<SimpleFunctionCall, ObjCMethodCall>(Call)) 3136 return true; 3137 3138 // Check Objective-C messages by selector name. 3139 if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Call)) { 3140 // If it's not a framework call, or if it takes a callback, assume it 3141 // can free memory. 3142 if (!Call->isInSystemHeader() || Call->argumentsMayEscape()) 3143 return true; 3144 3145 // If it's a method we know about, handle it explicitly post-call. 3146 // This should happen before the "freeWhenDone" check below. 3147 if (isKnownDeallocObjCMethodName(*Msg)) 3148 return false; 3149 3150 // If there's a "freeWhenDone" parameter, but the method isn't one we know 3151 // about, we can't be sure that the object will use free() to deallocate the 3152 // memory, so we can't model it explicitly. The best we can do is use it to 3153 // decide whether the pointer escapes. 3154 if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(*Msg)) 3155 return *FreeWhenDone; 3156 3157 // If the first selector piece ends with "NoCopy", and there is no 3158 // "freeWhenDone" parameter set to zero, we know ownership is being 3159 // transferred. Again, though, we can't be sure that the object will use 3160 // free() to deallocate the memory, so we can't model it explicitly. 3161 StringRef FirstSlot = Msg->getSelector().getNameForSlot(0); 3162 if (FirstSlot.endswith("NoCopy")) 3163 return true; 3164 3165 // If the first selector starts with addPointer, insertPointer, 3166 // or replacePointer, assume we are dealing with NSPointerArray or similar. 3167 // This is similar to C++ containers (vector); we still might want to check 3168 // that the pointers get freed by following the container itself. 3169 if (FirstSlot.startswith("addPointer") || 3170 FirstSlot.startswith("insertPointer") || 3171 FirstSlot.startswith("replacePointer") || 3172 FirstSlot.equals("valueWithPointer")) { 3173 return true; 3174 } 3175 3176 // We should escape receiver on call to 'init'. This is especially relevant 3177 // to the receiver, as the corresponding symbol is usually not referenced 3178 // after the call. 3179 if (Msg->getMethodFamily() == OMF_init) { 3180 EscapingSymbol = Msg->getReceiverSVal().getAsSymbol(); 3181 return true; 3182 } 3183 3184 // Otherwise, assume that the method does not free memory. 3185 // Most framework methods do not free memory. 3186 return false; 3187 } 3188 3189 // At this point the only thing left to handle is straight function calls. 3190 const FunctionDecl *FD = cast<SimpleFunctionCall>(Call)->getDecl(); 3191 if (!FD) 3192 return true; 3193 3194 // If it's one of the allocation functions we can reason about, we model 3195 // its behavior explicitly. 3196 if (isMemCall(*Call)) 3197 return false; 3198 3199 // If it's not a system call, assume it frees memory. 3200 if (!Call->isInSystemHeader()) 3201 return true; 3202 3203 // White list the system functions whose arguments escape. 3204 const IdentifierInfo *II = FD->getIdentifier(); 3205 if (!II) 3206 return true; 3207 StringRef FName = II->getName(); 3208 3209 // White list the 'XXXNoCopy' CoreFoundation functions. 3210 // We specifically check these before 3211 if (FName.endswith("NoCopy")) { 3212 // Look for the deallocator argument. We know that the memory ownership 3213 // is not transferred only if the deallocator argument is 3214 // 'kCFAllocatorNull'. 3215 for (unsigned i = 1; i < Call->getNumArgs(); ++i) { 3216 const Expr *ArgE = Call->getArgExpr(i)->IgnoreParenCasts(); 3217 if (const DeclRefExpr *DE = dyn_cast<DeclRefExpr>(ArgE)) { 3218 StringRef DeallocatorName = DE->getFoundDecl()->getName(); 3219 if (DeallocatorName == "kCFAllocatorNull") 3220 return false; 3221 } 3222 } 3223 return true; 3224 } 3225 3226 // Associating streams with malloced buffers. The pointer can escape if 3227 // 'closefn' is specified (and if that function does free memory), 3228 // but it will not if closefn is not specified. 3229 // Currently, we do not inspect the 'closefn' function (PR12101). 3230 if (FName == "funopen") 3231 if (Call->getNumArgs() >= 4 && Call->getArgSVal(4).isConstant(0)) 3232 return false; 3233 3234 // Do not warn on pointers passed to 'setbuf' when used with std streams, 3235 // these leaks might be intentional when setting the buffer for stdio. 3236 // http://stackoverflow.com/questions/2671151/who-frees-setvbuf-buffer 3237 if (FName == "setbuf" || FName =="setbuffer" || 3238 FName == "setlinebuf" || FName == "setvbuf") { 3239 if (Call->getNumArgs() >= 1) { 3240 const Expr *ArgE = Call->getArgExpr(0)->IgnoreParenCasts(); 3241 if (const DeclRefExpr *ArgDRE = dyn_cast<DeclRefExpr>(ArgE)) 3242 if (const VarDecl *D = dyn_cast<VarDecl>(ArgDRE->getDecl())) 3243 if (D->getCanonicalDecl()->getName().contains("std")) 3244 return true; 3245 } 3246 } 3247 3248 // A bunch of other functions which either take ownership of a pointer or 3249 // wrap the result up in a struct or object, meaning it can be freed later. 3250 // (See RetainCountChecker.) Not all the parameters here are invalidated, 3251 // but the Malloc checker cannot differentiate between them. The right way 3252 // of doing this would be to implement a pointer escapes callback. 3253 if (FName == "CGBitmapContextCreate" || 3254 FName == "CGBitmapContextCreateWithData" || 3255 FName == "CVPixelBufferCreateWithBytes" || 3256 FName == "CVPixelBufferCreateWithPlanarBytes" || 3257 FName == "OSAtomicEnqueue") { 3258 return true; 3259 } 3260 3261 if (FName == "postEvent" && 3262 FD->getQualifiedNameAsString() == "QCoreApplication::postEvent") { 3263 return true; 3264 } 3265 3266 if (FName == "connectImpl" && 3267 FD->getQualifiedNameAsString() == "QObject::connectImpl") { 3268 return true; 3269 } 3270 3271 // Handle cases where we know a buffer's /address/ can escape. 3272 // Note that the above checks handle some special cases where we know that 3273 // even though the address escapes, it's still our responsibility to free the 3274 // buffer. 3275 if (Call->argumentsMayEscape()) 3276 return true; 3277 3278 // Otherwise, assume that the function does not free memory. 3279 // Most system calls do not free the memory. 3280 return false; 3281 } 3282 3283 ProgramStateRef MallocChecker::checkPointerEscape(ProgramStateRef State, 3284 const InvalidatedSymbols &Escaped, 3285 const CallEvent *Call, 3286 PointerEscapeKind Kind) const { 3287 return checkPointerEscapeAux(State, Escaped, Call, Kind, 3288 /*IsConstPointerEscape*/ false); 3289 } 3290 3291 ProgramStateRef MallocChecker::checkConstPointerEscape(ProgramStateRef State, 3292 const InvalidatedSymbols &Escaped, 3293 const CallEvent *Call, 3294 PointerEscapeKind Kind) const { 3295 // If a const pointer escapes, it may not be freed(), but it could be deleted. 3296 return checkPointerEscapeAux(State, Escaped, Call, Kind, 3297 /*IsConstPointerEscape*/ true); 3298 } 3299 3300 static bool checkIfNewOrNewArrayFamily(const RefState *RS) { 3301 return (RS->getAllocationFamily() == AF_CXXNewArray || 3302 RS->getAllocationFamily() == AF_CXXNew); 3303 } 3304 3305 ProgramStateRef MallocChecker::checkPointerEscapeAux( 3306 ProgramStateRef State, const InvalidatedSymbols &Escaped, 3307 const CallEvent *Call, PointerEscapeKind Kind, 3308 bool IsConstPointerEscape) const { 3309 // If we know that the call does not free memory, or we want to process the 3310 // call later, keep tracking the top level arguments. 3311 SymbolRef EscapingSymbol = nullptr; 3312 if (Kind == PSK_DirectEscapeOnCall && 3313 !mayFreeAnyEscapedMemoryOrIsModeledExplicitly(Call, State, 3314 EscapingSymbol) && 3315 !EscapingSymbol) { 3316 return State; 3317 } 3318 3319 for (InvalidatedSymbols::const_iterator I = Escaped.begin(), 3320 E = Escaped.end(); 3321 I != E; ++I) { 3322 SymbolRef sym = *I; 3323 3324 if (EscapingSymbol && EscapingSymbol != sym) 3325 continue; 3326 3327 if (const RefState *RS = State->get<RegionState>(sym)) 3328 if (RS->isAllocated() || RS->isAllocatedOfSizeZero()) 3329 if (!IsConstPointerEscape || checkIfNewOrNewArrayFamily(RS)) 3330 State = State->set<RegionState>(sym, RefState::getEscaped(RS)); 3331 } 3332 return State; 3333 } 3334 3335 bool MallocChecker::isArgZERO_SIZE_PTR(ProgramStateRef State, CheckerContext &C, 3336 SVal ArgVal) const { 3337 if (!KernelZeroSizePtrValue) 3338 KernelZeroSizePtrValue = 3339 tryExpandAsInteger("ZERO_SIZE_PTR", C.getPreprocessor()); 3340 3341 const llvm::APSInt *ArgValKnown = 3342 C.getSValBuilder().getKnownValue(State, ArgVal); 3343 return ArgValKnown && *KernelZeroSizePtrValue && 3344 ArgValKnown->getSExtValue() == **KernelZeroSizePtrValue; 3345 } 3346 3347 static SymbolRef findFailedReallocSymbol(ProgramStateRef currState, 3348 ProgramStateRef prevState) { 3349 ReallocPairsTy currMap = currState->get<ReallocPairs>(); 3350 ReallocPairsTy prevMap = prevState->get<ReallocPairs>(); 3351 3352 for (const ReallocPairsTy::value_type &Pair : prevMap) { 3353 SymbolRef sym = Pair.first; 3354 if (!currMap.lookup(sym)) 3355 return sym; 3356 } 3357 3358 return nullptr; 3359 } 3360 3361 static bool isReferenceCountingPointerDestructor(const CXXDestructorDecl *DD) { 3362 if (const IdentifierInfo *II = DD->getParent()->getIdentifier()) { 3363 StringRef N = II->getName(); 3364 if (N.contains_insensitive("ptr") || N.contains_insensitive("pointer")) { 3365 if (N.contains_insensitive("ref") || N.contains_insensitive("cnt") || 3366 N.contains_insensitive("intrusive") || 3367 N.contains_insensitive("shared")) { 3368 return true; 3369 } 3370 } 3371 } 3372 return false; 3373 } 3374 3375 PathDiagnosticPieceRef MallocBugVisitor::VisitNode(const ExplodedNode *N, 3376 BugReporterContext &BRC, 3377 PathSensitiveBugReport &BR) { 3378 ProgramStateRef state = N->getState(); 3379 ProgramStateRef statePrev = N->getFirstPred()->getState(); 3380 3381 const RefState *RSCurr = state->get<RegionState>(Sym); 3382 const RefState *RSPrev = statePrev->get<RegionState>(Sym); 3383 3384 const Stmt *S = N->getStmtForDiagnostics(); 3385 // When dealing with containers, we sometimes want to give a note 3386 // even if the statement is missing. 3387 if (!S && (!RSCurr || RSCurr->getAllocationFamily() != AF_InnerBuffer)) 3388 return nullptr; 3389 3390 const LocationContext *CurrentLC = N->getLocationContext(); 3391 3392 // If we find an atomic fetch_add or fetch_sub within the destructor in which 3393 // the pointer was released (before the release), this is likely a destructor 3394 // of a shared pointer. 3395 // Because we don't model atomics, and also because we don't know that the 3396 // original reference count is positive, we should not report use-after-frees 3397 // on objects deleted in such destructors. This can probably be improved 3398 // through better shared pointer modeling. 3399 if (ReleaseDestructorLC) { 3400 if (const auto *AE = dyn_cast<AtomicExpr>(S)) { 3401 AtomicExpr::AtomicOp Op = AE->getOp(); 3402 if (Op == AtomicExpr::AO__c11_atomic_fetch_add || 3403 Op == AtomicExpr::AO__c11_atomic_fetch_sub) { 3404 if (ReleaseDestructorLC == CurrentLC || 3405 ReleaseDestructorLC->isParentOf(CurrentLC)) { 3406 BR.markInvalid(getTag(), S); 3407 } 3408 } 3409 } 3410 } 3411 3412 // FIXME: We will eventually need to handle non-statement-based events 3413 // (__attribute__((cleanup))). 3414 3415 // Find out if this is an interesting point and what is the kind. 3416 StringRef Msg; 3417 std::unique_ptr<StackHintGeneratorForSymbol> StackHint = nullptr; 3418 SmallString<256> Buf; 3419 llvm::raw_svector_ostream OS(Buf); 3420 3421 if (Mode == Normal) { 3422 if (isAllocated(RSCurr, RSPrev, S)) { 3423 Msg = "Memory is allocated"; 3424 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3425 Sym, "Returned allocated memory"); 3426 } else if (isReleased(RSCurr, RSPrev, S)) { 3427 const auto Family = RSCurr->getAllocationFamily(); 3428 switch (Family) { 3429 case AF_Alloca: 3430 case AF_Malloc: 3431 case AF_CXXNew: 3432 case AF_CXXNewArray: 3433 case AF_IfNameIndex: 3434 Msg = "Memory is released"; 3435 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3436 Sym, "Returning; memory was released"); 3437 break; 3438 case AF_InnerBuffer: { 3439 const MemRegion *ObjRegion = 3440 allocation_state::getContainerObjRegion(statePrev, Sym); 3441 const auto *TypedRegion = cast<TypedValueRegion>(ObjRegion); 3442 QualType ObjTy = TypedRegion->getValueType(); 3443 OS << "Inner buffer of '" << ObjTy << "' "; 3444 3445 if (N->getLocation().getKind() == ProgramPoint::PostImplicitCallKind) { 3446 OS << "deallocated by call to destructor"; 3447 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3448 Sym, "Returning; inner buffer was deallocated"); 3449 } else { 3450 OS << "reallocated by call to '"; 3451 const Stmt *S = RSCurr->getStmt(); 3452 if (const auto *MemCallE = dyn_cast<CXXMemberCallExpr>(S)) { 3453 OS << MemCallE->getMethodDecl()->getDeclName(); 3454 } else if (const auto *OpCallE = dyn_cast<CXXOperatorCallExpr>(S)) { 3455 OS << OpCallE->getDirectCallee()->getDeclName(); 3456 } else if (const auto *CallE = dyn_cast<CallExpr>(S)) { 3457 auto &CEMgr = BRC.getStateManager().getCallEventManager(); 3458 CallEventRef<> Call = CEMgr.getSimpleCall(CallE, state, CurrentLC); 3459 if (const auto *D = dyn_cast_or_null<NamedDecl>(Call->getDecl())) 3460 OS << D->getDeclName(); 3461 else 3462 OS << "unknown"; 3463 } 3464 OS << "'"; 3465 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3466 Sym, "Returning; inner buffer was reallocated"); 3467 } 3468 Msg = OS.str(); 3469 break; 3470 } 3471 case AF_None: 3472 llvm_unreachable("Unhandled allocation family!"); 3473 } 3474 3475 // See if we're releasing memory while inlining a destructor 3476 // (or one of its callees). This turns on various common 3477 // false positive suppressions. 3478 bool FoundAnyDestructor = false; 3479 for (const LocationContext *LC = CurrentLC; LC; LC = LC->getParent()) { 3480 if (const auto *DD = dyn_cast<CXXDestructorDecl>(LC->getDecl())) { 3481 if (isReferenceCountingPointerDestructor(DD)) { 3482 // This immediately looks like a reference-counting destructor. 3483 // We're bad at guessing the original reference count of the object, 3484 // so suppress the report for now. 3485 BR.markInvalid(getTag(), DD); 3486 } else if (!FoundAnyDestructor) { 3487 assert(!ReleaseDestructorLC && 3488 "There can be only one release point!"); 3489 // Suspect that it's a reference counting pointer destructor. 3490 // On one of the next nodes might find out that it has atomic 3491 // reference counting operations within it (see the code above), 3492 // and if so, we'd conclude that it likely is a reference counting 3493 // pointer destructor. 3494 ReleaseDestructorLC = LC->getStackFrame(); 3495 // It is unlikely that releasing memory is delegated to a destructor 3496 // inside a destructor of a shared pointer, because it's fairly hard 3497 // to pass the information that the pointer indeed needs to be 3498 // released into it. So we're only interested in the innermost 3499 // destructor. 3500 FoundAnyDestructor = true; 3501 } 3502 } 3503 } 3504 } else if (isRelinquished(RSCurr, RSPrev, S)) { 3505 Msg = "Memory ownership is transferred"; 3506 StackHint = std::make_unique<StackHintGeneratorForSymbol>(Sym, ""); 3507 } else if (hasReallocFailed(RSCurr, RSPrev, S)) { 3508 Mode = ReallocationFailed; 3509 Msg = "Reallocation failed"; 3510 StackHint = std::make_unique<StackHintGeneratorForReallocationFailed>( 3511 Sym, "Reallocation failed"); 3512 3513 if (SymbolRef sym = findFailedReallocSymbol(state, statePrev)) { 3514 // Is it possible to fail two reallocs WITHOUT testing in between? 3515 assert((!FailedReallocSymbol || FailedReallocSymbol == sym) && 3516 "We only support one failed realloc at a time."); 3517 BR.markInteresting(sym); 3518 FailedReallocSymbol = sym; 3519 } 3520 } 3521 3522 // We are in a special mode if a reallocation failed later in the path. 3523 } else if (Mode == ReallocationFailed) { 3524 assert(FailedReallocSymbol && "No symbol to look for."); 3525 3526 // Is this is the first appearance of the reallocated symbol? 3527 if (!statePrev->get<RegionState>(FailedReallocSymbol)) { 3528 // We're at the reallocation point. 3529 Msg = "Attempt to reallocate memory"; 3530 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3531 Sym, "Returned reallocated memory"); 3532 FailedReallocSymbol = nullptr; 3533 Mode = Normal; 3534 } 3535 } 3536 3537 if (Msg.empty()) { 3538 assert(!StackHint); 3539 return nullptr; 3540 } 3541 3542 assert(StackHint); 3543 3544 // Generate the extra diagnostic. 3545 PathDiagnosticLocation Pos; 3546 if (!S) { 3547 assert(RSCurr->getAllocationFamily() == AF_InnerBuffer); 3548 auto PostImplCall = N->getLocation().getAs<PostImplicitCall>(); 3549 if (!PostImplCall) 3550 return nullptr; 3551 Pos = PathDiagnosticLocation(PostImplCall->getLocation(), 3552 BRC.getSourceManager()); 3553 } else { 3554 Pos = PathDiagnosticLocation(S, BRC.getSourceManager(), 3555 N->getLocationContext()); 3556 } 3557 3558 auto P = std::make_shared<PathDiagnosticEventPiece>(Pos, Msg, true); 3559 BR.addCallStackHint(P, std::move(StackHint)); 3560 return P; 3561 } 3562 3563 void MallocChecker::printState(raw_ostream &Out, ProgramStateRef State, 3564 const char *NL, const char *Sep) const { 3565 3566 RegionStateTy RS = State->get<RegionState>(); 3567 3568 if (!RS.isEmpty()) { 3569 Out << Sep << "MallocChecker :" << NL; 3570 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 3571 const RefState *RefS = State->get<RegionState>(I.getKey()); 3572 AllocationFamily Family = RefS->getAllocationFamily(); 3573 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 3574 if (!CheckKind) 3575 CheckKind = getCheckIfTracked(Family, true); 3576 3577 I.getKey()->dumpToStream(Out); 3578 Out << " : "; 3579 I.getData().dump(Out); 3580 if (CheckKind) 3581 Out << " (" << CheckNames[*CheckKind].getName() << ")"; 3582 Out << NL; 3583 } 3584 } 3585 } 3586 3587 namespace clang { 3588 namespace ento { 3589 namespace allocation_state { 3590 3591 ProgramStateRef 3592 markReleased(ProgramStateRef State, SymbolRef Sym, const Expr *Origin) { 3593 AllocationFamily Family = AF_InnerBuffer; 3594 return State->set<RegionState>(Sym, RefState::getReleased(Family, Origin)); 3595 } 3596 3597 } // end namespace allocation_state 3598 } // end namespace ento 3599 } // end namespace clang 3600 3601 // Intended to be used in InnerPointerChecker to register the part of 3602 // MallocChecker connected to it. 3603 void ento::registerInnerPointerCheckerAux(CheckerManager &mgr) { 3604 MallocChecker *checker = mgr.getChecker<MallocChecker>(); 3605 checker->ChecksEnabled[MallocChecker::CK_InnerPointerChecker] = true; 3606 checker->CheckNames[MallocChecker::CK_InnerPointerChecker] = 3607 mgr.getCurrentCheckerName(); 3608 } 3609 3610 void ento::registerDynamicMemoryModeling(CheckerManager &mgr) { 3611 auto *checker = mgr.registerChecker<MallocChecker>(); 3612 checker->ShouldIncludeOwnershipAnnotatedFunctions = 3613 mgr.getAnalyzerOptions().getCheckerBooleanOption(checker, "Optimistic"); 3614 checker->ShouldRegisterNoOwnershipChangeVisitor = 3615 mgr.getAnalyzerOptions().getCheckerBooleanOption( 3616 checker, "AddNoOwnershipChangeNotes"); 3617 } 3618 3619 bool ento::shouldRegisterDynamicMemoryModeling(const CheckerManager &mgr) { 3620 return true; 3621 } 3622 3623 #define REGISTER_CHECKER(name) \ 3624 void ento::register##name(CheckerManager &mgr) { \ 3625 MallocChecker *checker = mgr.getChecker<MallocChecker>(); \ 3626 checker->ChecksEnabled[MallocChecker::CK_##name] = true; \ 3627 checker->CheckNames[MallocChecker::CK_##name] = \ 3628 mgr.getCurrentCheckerName(); \ 3629 } \ 3630 \ 3631 bool ento::shouldRegister##name(const CheckerManager &mgr) { return true; } 3632 3633 REGISTER_CHECKER(MallocChecker) 3634 REGISTER_CHECKER(NewDeleteChecker) 3635 REGISTER_CHECKER(NewDeleteLeaksChecker) 3636 REGISTER_CHECKER(MismatchedDeallocatorChecker) 3637