1 //=== MallocChecker.cpp - A malloc/free checker -------------------*- C++ -*--// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines a variety of memory management related checkers, such as 10 // leak, double free, and use-after-free. 11 // 12 // The following checkers are defined here: 13 // 14 // * MallocChecker 15 // Despite its name, it models all sorts of memory allocations and 16 // de- or reallocation, including but not limited to malloc, free, 17 // relloc, new, delete. It also reports on a variety of memory misuse 18 // errors. 19 // Many other checkers interact very closely with this checker, in fact, 20 // most are merely options to this one. Other checkers may register 21 // MallocChecker, but do not enable MallocChecker's reports (more details 22 // to follow around its field, ChecksEnabled). 23 // It also has a boolean "Optimistic" checker option, which if set to true 24 // will cause the checker to model user defined memory management related 25 // functions annotated via the attribute ownership_takes, ownership_holds 26 // and ownership_returns. 27 // 28 // * NewDeleteChecker 29 // Enables the modeling of new, new[], delete, delete[] in MallocChecker, 30 // and checks for related double-free and use-after-free errors. 31 // 32 // * NewDeleteLeaksChecker 33 // Checks for leaks related to new, new[], delete, delete[]. 34 // Depends on NewDeleteChecker. 35 // 36 // * MismatchedDeallocatorChecker 37 // Enables checking whether memory is deallocated with the correspending 38 // allocation function in MallocChecker, such as malloc() allocated 39 // regions are only freed by free(), new by delete, new[] by delete[]. 40 // 41 // InnerPointerChecker interacts very closely with MallocChecker, but unlike 42 // the above checkers, it has it's own file, hence the many InnerPointerChecker 43 // related headers and non-static functions. 44 // 45 //===----------------------------------------------------------------------===// 46 47 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" 48 #include "InterCheckerAPI.h" 49 #include "clang/AST/Attr.h" 50 #include "clang/AST/ParentMap.h" 51 #include "clang/Basic/SourceManager.h" 52 #include "clang/Basic/TargetInfo.h" 53 #include "clang/Lex/Lexer.h" 54 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 55 #include "clang/StaticAnalyzer/Core/BugReporter/CommonBugCategories.h" 56 #include "clang/StaticAnalyzer/Core/Checker.h" 57 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 58 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 59 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 60 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 61 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 62 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h" 63 #include "llvm/ADT/STLExtras.h" 64 #include "llvm/ADT/SmallString.h" 65 #include "llvm/ADT/StringExtras.h" 66 #include "AllocationState.h" 67 #include <climits> 68 #include <utility> 69 70 using namespace clang; 71 using namespace ento; 72 73 //===----------------------------------------------------------------------===// 74 // The types of allocation we're modeling. 75 //===----------------------------------------------------------------------===// 76 77 namespace { 78 79 // Used to check correspondence between allocators and deallocators. 80 enum AllocationFamily { 81 AF_None, 82 AF_Malloc, 83 AF_CXXNew, 84 AF_CXXNewArray, 85 AF_IfNameIndex, 86 AF_Alloca, 87 AF_InnerBuffer 88 }; 89 90 struct MemFunctionInfoTy; 91 92 } // end of anonymous namespace 93 94 /// Determine family of a deallocation expression. 95 static AllocationFamily 96 getAllocationFamily(const MemFunctionInfoTy &MemFunctionInfo, CheckerContext &C, 97 const Stmt *S); 98 99 /// Print names of allocators and deallocators. 100 /// 101 /// \returns true on success. 102 static bool printAllocDeallocName(raw_ostream &os, CheckerContext &C, 103 const Expr *E); 104 105 /// Print expected name of an allocator based on the deallocator's 106 /// family derived from the DeallocExpr. 107 static void printExpectedAllocName(raw_ostream &os, 108 const MemFunctionInfoTy &MemFunctionInfo, 109 CheckerContext &C, const Expr *E); 110 111 /// Print expected name of a deallocator based on the allocator's 112 /// family. 113 static void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family); 114 115 //===----------------------------------------------------------------------===// 116 // The state of a symbol, in terms of memory management. 117 //===----------------------------------------------------------------------===// 118 119 namespace { 120 121 class RefState { 122 enum Kind { 123 // Reference to allocated memory. 124 Allocated, 125 // Reference to zero-allocated memory. 126 AllocatedOfSizeZero, 127 // Reference to released/freed memory. 128 Released, 129 // The responsibility for freeing resources has transferred from 130 // this reference. A relinquished symbol should not be freed. 131 Relinquished, 132 // We are no longer guaranteed to have observed all manipulations 133 // of this pointer/memory. For example, it could have been 134 // passed as a parameter to an opaque function. 135 Escaped 136 }; 137 138 const Stmt *S; 139 140 Kind K; 141 AllocationFamily Family; 142 143 RefState(Kind k, const Stmt *s, AllocationFamily family) 144 : S(s), K(k), Family(family) { 145 assert(family != AF_None); 146 } 147 148 public: 149 bool isAllocated() const { return K == Allocated; } 150 bool isAllocatedOfSizeZero() const { return K == AllocatedOfSizeZero; } 151 bool isReleased() const { return K == Released; } 152 bool isRelinquished() const { return K == Relinquished; } 153 bool isEscaped() const { return K == Escaped; } 154 AllocationFamily getAllocationFamily() const { return Family; } 155 const Stmt *getStmt() const { return S; } 156 157 bool operator==(const RefState &X) const { 158 return K == X.K && S == X.S && Family == X.Family; 159 } 160 161 static RefState getAllocated(AllocationFamily family, const Stmt *s) { 162 return RefState(Allocated, s, family); 163 } 164 static RefState getAllocatedOfSizeZero(const RefState *RS) { 165 return RefState(AllocatedOfSizeZero, RS->getStmt(), 166 RS->getAllocationFamily()); 167 } 168 static RefState getReleased(AllocationFamily family, const Stmt *s) { 169 return RefState(Released, s, family); 170 } 171 static RefState getRelinquished(AllocationFamily family, const Stmt *s) { 172 return RefState(Relinquished, s, family); 173 } 174 static RefState getEscaped(const RefState *RS) { 175 return RefState(Escaped, RS->getStmt(), RS->getAllocationFamily()); 176 } 177 178 void Profile(llvm::FoldingSetNodeID &ID) const { 179 ID.AddInteger(K); 180 ID.AddPointer(S); 181 ID.AddInteger(Family); 182 } 183 184 LLVM_DUMP_METHOD void dump(raw_ostream &OS) const { 185 switch (K) { 186 #define CASE(ID) case ID: OS << #ID; break; 187 CASE(Allocated) 188 CASE(AllocatedOfSizeZero) 189 CASE(Released) 190 CASE(Relinquished) 191 CASE(Escaped) 192 } 193 } 194 195 LLVM_DUMP_METHOD void dump() const { dump(llvm::errs()); } 196 }; 197 198 } // end of anonymous namespace 199 200 REGISTER_MAP_WITH_PROGRAMSTATE(RegionState, SymbolRef, RefState) 201 202 /// Check if the memory associated with this symbol was released. 203 static bool isReleased(SymbolRef Sym, CheckerContext &C); 204 205 /// Update the RefState to reflect the new memory allocation. 206 /// The optional \p RetVal parameter specifies the newly allocated pointer 207 /// value; if unspecified, the value of expression \p E is used. 208 static ProgramStateRef MallocUpdateRefState(CheckerContext &C, const Expr *E, 209 ProgramStateRef State, 210 AllocationFamily Family = AF_Malloc, 211 Optional<SVal> RetVal = None); 212 213 //===----------------------------------------------------------------------===// 214 // The modeling of memory reallocation. 215 // 216 // The terminology 'toPtr' and 'fromPtr' will be used: 217 // toPtr = realloc(fromPtr, 20); 218 //===----------------------------------------------------------------------===// 219 220 REGISTER_SET_WITH_PROGRAMSTATE(ReallocSizeZeroSymbols, SymbolRef) 221 222 namespace { 223 224 /// The state of 'fromPtr' after reallocation is known to have failed. 225 enum OwnershipAfterReallocKind { 226 // The symbol needs to be freed (e.g.: realloc) 227 OAR_ToBeFreedAfterFailure, 228 // The symbol has been freed (e.g.: reallocf) 229 OAR_FreeOnFailure, 230 // The symbol doesn't have to freed (e.g.: we aren't sure if, how and where 231 // 'fromPtr' was allocated: 232 // void Haha(int *ptr) { 233 // ptr = realloc(ptr, 67); 234 // // ... 235 // } 236 // ). 237 OAR_DoNotTrackAfterFailure 238 }; 239 240 /// Stores information about the 'fromPtr' symbol after reallocation. 241 /// 242 /// This is important because realloc may fail, and that needs special modeling. 243 /// Whether reallocation failed or not will not be known until later, so we'll 244 /// store whether upon failure 'fromPtr' will be freed, or needs to be freed 245 /// later, etc. 246 struct ReallocPair { 247 248 // The 'fromPtr'. 249 SymbolRef ReallocatedSym; 250 OwnershipAfterReallocKind Kind; 251 252 ReallocPair(SymbolRef S, OwnershipAfterReallocKind K) 253 : ReallocatedSym(S), Kind(K) {} 254 void Profile(llvm::FoldingSetNodeID &ID) const { 255 ID.AddInteger(Kind); 256 ID.AddPointer(ReallocatedSym); 257 } 258 bool operator==(const ReallocPair &X) const { 259 return ReallocatedSym == X.ReallocatedSym && 260 Kind == X.Kind; 261 } 262 }; 263 264 } // end of anonymous namespace 265 266 REGISTER_MAP_WITH_PROGRAMSTATE(ReallocPairs, SymbolRef, ReallocPair) 267 268 //===----------------------------------------------------------------------===// 269 // Kinds of memory operations, information about resource managing functions. 270 //===----------------------------------------------------------------------===// 271 272 namespace { 273 274 enum class MemoryOperationKind { MOK_Allocate, MOK_Free, MOK_Any }; 275 276 struct MemFunctionInfoTy { 277 /// The value of the MallocChecker:Optimistic is stored in this variable. 278 /// 279 /// In pessimistic mode, the checker assumes that it does not know which 280 /// functions might free the memory. 281 /// In optimistic mode, the checker assumes that all user-defined functions 282 /// which might free a pointer are annotated. 283 DefaultBool ShouldIncludeOwnershipAnnotatedFunctions; 284 285 // TODO: Change these to CallDescription, and get rid of lazy initialization. 286 mutable IdentifierInfo *II_alloca = nullptr, *II_win_alloca = nullptr, 287 *II_malloc = nullptr, *II_free = nullptr, 288 *II_realloc = nullptr, *II_calloc = nullptr, 289 *II_valloc = nullptr, *II_reallocf = nullptr, 290 *II_strndup = nullptr, *II_strdup = nullptr, 291 *II_win_strdup = nullptr, *II_kmalloc = nullptr, 292 *II_if_nameindex = nullptr, 293 *II_if_freenameindex = nullptr, *II_wcsdup = nullptr, 294 *II_win_wcsdup = nullptr, *II_g_malloc = nullptr, 295 *II_g_malloc0 = nullptr, *II_g_realloc = nullptr, 296 *II_g_try_malloc = nullptr, 297 *II_g_try_malloc0 = nullptr, 298 *II_g_try_realloc = nullptr, *II_g_free = nullptr, 299 *II_g_memdup = nullptr, *II_g_malloc_n = nullptr, 300 *II_g_malloc0_n = nullptr, *II_g_realloc_n = nullptr, 301 *II_g_try_malloc_n = nullptr, 302 *II_g_try_malloc0_n = nullptr, *II_kfree = nullptr, 303 *II_g_try_realloc_n = nullptr; 304 305 void initIdentifierInfo(ASTContext &C) const; 306 307 ///@{ 308 /// Check if this is one of the functions which can allocate/reallocate 309 /// memory pointed to by one of its arguments. 310 bool isMemFunction(const FunctionDecl *FD, ASTContext &C) const; 311 bool isCMemFunction(const FunctionDecl *FD, ASTContext &C, 312 AllocationFamily Family, 313 MemoryOperationKind MemKind) const; 314 315 /// Tells if the callee is one of the builtin new/delete operators, including 316 /// placement operators and other standard overloads. 317 bool isStandardNewDelete(const FunctionDecl *FD, ASTContext &C) const; 318 ///@} 319 }; 320 321 } // end of anonymous namespace 322 323 //===----------------------------------------------------------------------===// 324 // Definition of the MallocChecker class. 325 //===----------------------------------------------------------------------===// 326 327 namespace { 328 329 class MallocChecker 330 : public Checker<check::DeadSymbols, check::PointerEscape, 331 check::ConstPointerEscape, check::PreStmt<ReturnStmt>, 332 check::EndFunction, check::PreCall, 333 check::PostStmt<CallExpr>, check::PostStmt<CXXNewExpr>, 334 check::NewAllocator, check::PreStmt<CXXDeleteExpr>, 335 check::PostStmt<BlockExpr>, check::PostObjCMessage, 336 check::Location, eval::Assume> { 337 public: 338 MemFunctionInfoTy MemFunctionInfo; 339 340 /// Many checkers are essentially built into this one, so enabling them will 341 /// make MallocChecker perform additional modeling and reporting. 342 enum CheckKind { 343 /// When a subchecker is enabled but MallocChecker isn't, model memory 344 /// management but do not emit warnings emitted with MallocChecker only 345 /// enabled. 346 CK_MallocChecker, 347 CK_NewDeleteChecker, 348 CK_NewDeleteLeaksChecker, 349 CK_MismatchedDeallocatorChecker, 350 CK_InnerPointerChecker, 351 CK_NumCheckKinds 352 }; 353 354 using LeakInfo = std::pair<const ExplodedNode *, const MemRegion *>; 355 356 DefaultBool ChecksEnabled[CK_NumCheckKinds]; 357 CheckerNameRef CheckNames[CK_NumCheckKinds]; 358 359 void checkPreCall(const CallEvent &Call, CheckerContext &C) const; 360 void checkPostStmt(const CallExpr *CE, CheckerContext &C) const; 361 void checkPostStmt(const CXXNewExpr *NE, CheckerContext &C) const; 362 void checkNewAllocator(const CXXNewExpr *NE, SVal Target, 363 CheckerContext &C) const; 364 void checkPreStmt(const CXXDeleteExpr *DE, CheckerContext &C) const; 365 void checkPostObjCMessage(const ObjCMethodCall &Call, CheckerContext &C) const; 366 void checkPostStmt(const BlockExpr *BE, CheckerContext &C) const; 367 void checkDeadSymbols(SymbolReaper &SymReaper, CheckerContext &C) const; 368 void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const; 369 void checkEndFunction(const ReturnStmt *S, CheckerContext &C) const; 370 ProgramStateRef evalAssume(ProgramStateRef state, SVal Cond, 371 bool Assumption) const; 372 void checkLocation(SVal l, bool isLoad, const Stmt *S, 373 CheckerContext &C) const; 374 375 ProgramStateRef checkPointerEscape(ProgramStateRef State, 376 const InvalidatedSymbols &Escaped, 377 const CallEvent *Call, 378 PointerEscapeKind Kind) const; 379 ProgramStateRef checkConstPointerEscape(ProgramStateRef State, 380 const InvalidatedSymbols &Escaped, 381 const CallEvent *Call, 382 PointerEscapeKind Kind) const; 383 384 void printState(raw_ostream &Out, ProgramStateRef State, 385 const char *NL, const char *Sep) const override; 386 387 private: 388 mutable std::unique_ptr<BugType> BT_DoubleFree[CK_NumCheckKinds]; 389 mutable std::unique_ptr<BugType> BT_DoubleDelete; 390 mutable std::unique_ptr<BugType> BT_Leak[CK_NumCheckKinds]; 391 mutable std::unique_ptr<BugType> BT_UseFree[CK_NumCheckKinds]; 392 mutable std::unique_ptr<BugType> BT_BadFree[CK_NumCheckKinds]; 393 mutable std::unique_ptr<BugType> BT_FreeAlloca[CK_NumCheckKinds]; 394 mutable std::unique_ptr<BugType> BT_MismatchedDealloc; 395 mutable std::unique_ptr<BugType> BT_OffsetFree[CK_NumCheckKinds]; 396 mutable std::unique_ptr<BugType> BT_UseZerroAllocated[CK_NumCheckKinds]; 397 398 // TODO: Remove mutable by moving the initializtaion to the registry function. 399 mutable Optional<uint64_t> KernelZeroFlagVal; 400 401 /// Process C++ operator new()'s allocation, which is the part of C++ 402 /// new-expression that goes before the constructor. 403 void processNewAllocation(const CXXNewExpr *NE, CheckerContext &C, 404 SVal Target) const; 405 406 /// Perform a zero-allocation check. 407 /// 408 /// \param [in] E The expression that allocates memory. 409 /// \param [in] IndexOfSizeArg Index of the argument that specifies the size 410 /// of the memory that needs to be allocated. E.g. for malloc, this would be 411 /// 0. 412 /// \param [in] RetVal Specifies the newly allocated pointer value; 413 /// if unspecified, the value of expression \p E is used. 414 static ProgramStateRef ProcessZeroAllocCheck(CheckerContext &C, const Expr *E, 415 const unsigned IndexOfSizeArg, 416 ProgramStateRef State, 417 Optional<SVal> RetVal = None); 418 419 /// Model functions with the ownership_returns attribute. 420 /// 421 /// User-defined function may have the ownership_returns attribute, which 422 /// annotates that the function returns with an object that was allocated on 423 /// the heap, and passes the ownertship to the callee. 424 /// 425 /// void __attribute((ownership_returns(malloc, 1))) *my_malloc(size_t); 426 /// 427 /// It has two parameters: 428 /// - first: name of the resource (e.g. 'malloc') 429 /// - (OPTIONAL) second: size of the allocated region 430 /// 431 /// \param [in] CE The expression that allocates memory. 432 /// \param [in] Att The ownership_returns attribute. 433 /// \param [in] State The \c ProgramState right before allocation. 434 /// \returns The ProgramState right after allocation. 435 ProgramStateRef MallocMemReturnsAttr(CheckerContext &C, 436 const CallExpr *CE, 437 const OwnershipAttr* Att, 438 ProgramStateRef State) const; 439 440 /// Models memory allocation. 441 /// 442 /// \param [in] CE The expression that allocates memory. 443 /// \param [in] SizeEx Size of the memory that needs to be allocated. 444 /// \param [in] Init The value the allocated memory needs to be initialized. 445 /// with. For example, \c calloc initializes the allocated memory to 0, 446 /// malloc leaves it undefined. 447 /// \param [in] State The \c ProgramState right before allocation. 448 /// \returns The ProgramState right after allocation. 449 static ProgramStateRef MallocMemAux(CheckerContext &C, const CallExpr *CE, 450 const Expr *SizeEx, SVal Init, 451 ProgramStateRef State, 452 AllocationFamily Family = AF_Malloc); 453 454 /// Models memory allocation. 455 /// 456 /// \param [in] CE The expression that allocates memory. 457 /// \param [in] Size Size of the memory that needs to be allocated. 458 /// \param [in] Init The value the allocated memory needs to be initialized. 459 /// with. For example, \c calloc initializes the allocated memory to 0, 460 /// malloc leaves it undefined. 461 /// \param [in] State The \c ProgramState right before allocation. 462 /// \returns The ProgramState right after allocation. 463 static ProgramStateRef MallocMemAux(CheckerContext &C, const CallExpr *CE, 464 SVal Size, SVal Init, 465 ProgramStateRef State, 466 AllocationFamily Family = AF_Malloc); 467 468 static ProgramStateRef addExtentSize(CheckerContext &C, const CXXNewExpr *NE, 469 ProgramStateRef State, SVal Target); 470 471 // Check if this malloc() for special flags. At present that means M_ZERO or 472 // __GFP_ZERO (in which case, treat it like calloc). 473 llvm::Optional<ProgramStateRef> 474 performKernelMalloc(const CallExpr *CE, CheckerContext &C, 475 const ProgramStateRef &State) const; 476 477 /// Model functions with the ownership_takes and ownership_holds attributes. 478 /// 479 /// User-defined function may have the ownership_takes and/or ownership_holds 480 /// attributes, which annotates that the function frees the memory passed as a 481 /// parameter. 482 /// 483 /// void __attribute((ownership_takes(malloc, 1))) my_free(void *); 484 /// void __attribute((ownership_holds(malloc, 1))) my_hold(void *); 485 /// 486 /// They have two parameters: 487 /// - first: name of the resource (e.g. 'malloc') 488 /// - second: index of the parameter the attribute applies to 489 /// 490 /// \param [in] CE The expression that frees memory. 491 /// \param [in] Att The ownership_takes or ownership_holds attribute. 492 /// \param [in] State The \c ProgramState right before allocation. 493 /// \returns The ProgramState right after deallocation. 494 ProgramStateRef FreeMemAttr(CheckerContext &C, const CallExpr *CE, 495 const OwnershipAttr* Att, 496 ProgramStateRef State) const; 497 498 /// Models memory deallocation. 499 /// 500 /// \param [in] CE The expression that frees memory. 501 /// \param [in] State The \c ProgramState right before allocation. 502 /// \param [in] Num Index of the argument that needs to be freed. This is 503 /// normally 0, but for custom free functions it may be different. 504 /// \param [in] Hold Whether the parameter at \p Index has the ownership_holds 505 /// attribute. 506 /// \param [out] IsKnownToBeAllocated Whether the memory to be freed is known 507 /// to have been allocated, or in other words, the symbol to be freed was 508 /// registered as allocated by this checker. In the following case, \c ptr 509 /// isn't known to be allocated. 510 /// void Haha(int *ptr) { 511 /// ptr = realloc(ptr, 67); 512 /// // ... 513 /// } 514 /// \param [in] ReturnsNullOnFailure Whether the memory deallocation function 515 /// we're modeling returns with Null on failure. 516 /// \returns The ProgramState right after deallocation. 517 ProgramStateRef FreeMemAux(CheckerContext &C, const CallExpr *CE, 518 ProgramStateRef State, unsigned Num, bool Hold, 519 bool &IsKnownToBeAllocated, 520 bool ReturnsNullOnFailure = false) const; 521 522 /// Models memory deallocation. 523 /// 524 /// \param [in] ArgExpr The variable who's pointee needs to be freed. 525 /// \param [in] ParentExpr The expression that frees the memory. 526 /// \param [in] State The \c ProgramState right before allocation. 527 /// normally 0, but for custom free functions it may be different. 528 /// \param [in] Hold Whether the parameter at \p Index has the ownership_holds 529 /// attribute. 530 /// \param [out] IsKnownToBeAllocated Whether the memory to be freed is known 531 /// to have been allocated, or in other words, the symbol to be freed was 532 /// registered as allocated by this checker. In the following case, \c ptr 533 /// isn't known to be allocated. 534 /// void Haha(int *ptr) { 535 /// ptr = realloc(ptr, 67); 536 /// // ... 537 /// } 538 /// \param [in] ReturnsNullOnFailure Whether the memory deallocation function 539 /// we're modeling returns with Null on failure. 540 /// \returns The ProgramState right after deallocation. 541 ProgramStateRef FreeMemAux(CheckerContext &C, const Expr *ArgExpr, 542 const Expr *ParentExpr, ProgramStateRef State, 543 bool Hold, bool &IsKnownToBeAllocated, 544 bool ReturnsNullOnFailure = false) const; 545 546 // TODO: Needs some refactoring, as all other deallocation modeling 547 // functions are suffering from out parameters and messy code due to how 548 // realloc is handled. 549 // 550 /// Models memory reallocation. 551 /// 552 /// \param [in] CE The expression that reallocated memory 553 /// \param [in] ShouldFreeOnFail Whether if reallocation fails, the supplied 554 /// memory should be freed. 555 /// \param [in] State The \c ProgramState right before reallocation. 556 /// \param [in] SuffixWithN Whether the reallocation function we're modeling 557 /// has an '_n' suffix, such as g_realloc_n. 558 /// \returns The ProgramState right after reallocation. 559 ProgramStateRef ReallocMemAux(CheckerContext &C, const CallExpr *CE, 560 bool ShouldFreeOnFail, ProgramStateRef State, 561 bool SuffixWithN = false) const; 562 563 /// Evaluates the buffer size that needs to be allocated. 564 /// 565 /// \param [in] Blocks The amount of blocks that needs to be allocated. 566 /// \param [in] BlockBytes The size of a block. 567 /// \returns The symbolic value of \p Blocks * \p BlockBytes. 568 static SVal evalMulForBufferSize(CheckerContext &C, const Expr *Blocks, 569 const Expr *BlockBytes); 570 571 /// Models zero initialized array allocation. 572 /// 573 /// \param [in] CE The expression that reallocated memory 574 /// \param [in] State The \c ProgramState right before reallocation. 575 /// \returns The ProgramState right after allocation. 576 static ProgramStateRef CallocMem(CheckerContext &C, const CallExpr *CE, 577 ProgramStateRef State); 578 579 /// See if deallocation happens in a suspicious context. If so, escape the 580 /// pointers that otherwise would have been deallocated and return true. 581 bool suppressDeallocationsInSuspiciousContexts(const CallExpr *CE, 582 CheckerContext &C) const; 583 584 /// If in \p S \p Sym is used, check whether \p Sym was already freed. 585 bool checkUseAfterFree(SymbolRef Sym, CheckerContext &C, const Stmt *S) const; 586 587 /// If in \p S \p Sym is used, check whether \p Sym was allocated as a zero 588 /// sized memory region. 589 void checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, 590 const Stmt *S) const; 591 592 /// If in \p S \p Sym is being freed, check whether \p Sym was already freed. 593 bool checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const; 594 595 /// Check if the function is known to free memory, or if it is 596 /// "interesting" and should be modeled explicitly. 597 /// 598 /// \param [out] EscapingSymbol A function might not free memory in general, 599 /// but could be known to free a particular symbol. In this case, false is 600 /// returned and the single escaping symbol is returned through the out 601 /// parameter. 602 /// 603 /// We assume that pointers do not escape through calls to system functions 604 /// not handled by this checker. 605 bool mayFreeAnyEscapedMemoryOrIsModeledExplicitly(const CallEvent *Call, 606 ProgramStateRef State, 607 SymbolRef &EscapingSymbol) const; 608 609 /// Implementation of the checkPointerEscape callbacks. 610 ProgramStateRef checkPointerEscapeAux(ProgramStateRef State, 611 const InvalidatedSymbols &Escaped, 612 const CallEvent *Call, 613 PointerEscapeKind Kind, 614 bool IsConstPointerEscape) const; 615 616 // Implementation of the checkPreStmt and checkEndFunction callbacks. 617 void checkEscapeOnReturn(const ReturnStmt *S, CheckerContext &C) const; 618 619 ///@{ 620 /// Tells if a given family/call/symbol is tracked by the current checker. 621 /// Sets CheckKind to the kind of the checker responsible for this 622 /// family/call/symbol. 623 Optional<CheckKind> getCheckIfTracked(AllocationFamily Family, 624 bool IsALeakCheck = false) const; 625 Optional<CheckKind> getCheckIfTracked(CheckerContext &C, 626 const Stmt *AllocDeallocStmt, 627 bool IsALeakCheck = false) const; 628 Optional<CheckKind> getCheckIfTracked(CheckerContext &C, SymbolRef Sym, 629 bool IsALeakCheck = false) const; 630 ///@} 631 static bool SummarizeValue(raw_ostream &os, SVal V); 632 static bool SummarizeRegion(raw_ostream &os, const MemRegion *MR); 633 634 void ReportBadFree(CheckerContext &C, SVal ArgVal, SourceRange Range, 635 const Expr *DeallocExpr) const; 636 void ReportFreeAlloca(CheckerContext &C, SVal ArgVal, 637 SourceRange Range) const; 638 void ReportMismatchedDealloc(CheckerContext &C, SourceRange Range, 639 const Expr *DeallocExpr, const RefState *RS, 640 SymbolRef Sym, bool OwnershipTransferred) const; 641 void ReportOffsetFree(CheckerContext &C, SVal ArgVal, SourceRange Range, 642 const Expr *DeallocExpr, 643 const Expr *AllocExpr = nullptr) const; 644 void ReportUseAfterFree(CheckerContext &C, SourceRange Range, 645 SymbolRef Sym) const; 646 void ReportDoubleFree(CheckerContext &C, SourceRange Range, bool Released, 647 SymbolRef Sym, SymbolRef PrevSym) const; 648 649 void ReportDoubleDelete(CheckerContext &C, SymbolRef Sym) const; 650 651 void ReportUseZeroAllocated(CheckerContext &C, SourceRange Range, 652 SymbolRef Sym) const; 653 654 void ReportFunctionPointerFree(CheckerContext &C, SVal ArgVal, 655 SourceRange Range, const Expr *FreeExpr) const; 656 657 /// Find the location of the allocation for Sym on the path leading to the 658 /// exploded node N. 659 static LeakInfo getAllocationSite(const ExplodedNode *N, SymbolRef Sym, 660 CheckerContext &C); 661 662 void reportLeak(SymbolRef Sym, ExplodedNode *N, CheckerContext &C) const; 663 }; 664 665 //===----------------------------------------------------------------------===// 666 // Definition of MallocBugVisitor. 667 //===----------------------------------------------------------------------===// 668 669 /// The bug visitor which allows us to print extra diagnostics along the 670 /// BugReport path. For example, showing the allocation site of the leaked 671 /// region. 672 class MallocBugVisitor final : public BugReporterVisitor { 673 protected: 674 enum NotificationMode { Normal, ReallocationFailed }; 675 676 // The allocated region symbol tracked by the main analysis. 677 SymbolRef Sym; 678 679 // The mode we are in, i.e. what kind of diagnostics will be emitted. 680 NotificationMode Mode; 681 682 // A symbol from when the primary region should have been reallocated. 683 SymbolRef FailedReallocSymbol; 684 685 // A C++ destructor stack frame in which memory was released. Used for 686 // miscellaneous false positive suppression. 687 const StackFrameContext *ReleaseDestructorLC; 688 689 bool IsLeak; 690 691 public: 692 MallocBugVisitor(SymbolRef S, bool isLeak = false) 693 : Sym(S), Mode(Normal), FailedReallocSymbol(nullptr), 694 ReleaseDestructorLC(nullptr), IsLeak(isLeak) {} 695 696 static void *getTag() { 697 static int Tag = 0; 698 return &Tag; 699 } 700 701 void Profile(llvm::FoldingSetNodeID &ID) const override { 702 ID.AddPointer(getTag()); 703 ID.AddPointer(Sym); 704 } 705 706 /// Did not track -> allocated. Other state (released) -> allocated. 707 static inline bool isAllocated(const RefState *RSCurr, const RefState *RSPrev, 708 const Stmt *Stmt) { 709 return (Stmt && (isa<CallExpr>(Stmt) || isa<CXXNewExpr>(Stmt)) && 710 (RSCurr && 711 (RSCurr->isAllocated() || RSCurr->isAllocatedOfSizeZero())) && 712 (!RSPrev || 713 !(RSPrev->isAllocated() || RSPrev->isAllocatedOfSizeZero()))); 714 } 715 716 /// Did not track -> released. Other state (allocated) -> released. 717 /// The statement associated with the release might be missing. 718 static inline bool isReleased(const RefState *RSCurr, const RefState *RSPrev, 719 const Stmt *Stmt) { 720 bool IsReleased = 721 (RSCurr && RSCurr->isReleased()) && (!RSPrev || !RSPrev->isReleased()); 722 assert(!IsReleased || 723 (Stmt && (isa<CallExpr>(Stmt) || isa<CXXDeleteExpr>(Stmt))) || 724 (!Stmt && RSCurr->getAllocationFamily() == AF_InnerBuffer)); 725 return IsReleased; 726 } 727 728 /// Did not track -> relinquished. Other state (allocated) -> relinquished. 729 static inline bool isRelinquished(const RefState *RSCurr, 730 const RefState *RSPrev, const Stmt *Stmt) { 731 return (Stmt && 732 (isa<CallExpr>(Stmt) || isa<ObjCMessageExpr>(Stmt) || 733 isa<ObjCPropertyRefExpr>(Stmt)) && 734 (RSCurr && RSCurr->isRelinquished()) && 735 (!RSPrev || !RSPrev->isRelinquished())); 736 } 737 738 /// If the expression is not a call, and the state change is 739 /// released -> allocated, it must be the realloc return value 740 /// check. If we have to handle more cases here, it might be cleaner just 741 /// to track this extra bit in the state itself. 742 static inline bool hasReallocFailed(const RefState *RSCurr, 743 const RefState *RSPrev, 744 const Stmt *Stmt) { 745 return ((!Stmt || !isa<CallExpr>(Stmt)) && 746 (RSCurr && 747 (RSCurr->isAllocated() || RSCurr->isAllocatedOfSizeZero())) && 748 (RSPrev && 749 !(RSPrev->isAllocated() || RSPrev->isAllocatedOfSizeZero()))); 750 } 751 752 PathDiagnosticPieceRef VisitNode(const ExplodedNode *N, 753 BugReporterContext &BRC, 754 PathSensitiveBugReport &BR) override; 755 756 PathDiagnosticPieceRef getEndPath(BugReporterContext &BRC, 757 const ExplodedNode *EndPathNode, 758 PathSensitiveBugReport &BR) override { 759 if (!IsLeak) 760 return nullptr; 761 762 PathDiagnosticLocation L = BR.getLocation(); 763 // Do not add the statement itself as a range in case of leak. 764 return std::make_shared<PathDiagnosticEventPiece>(L, BR.getDescription(), 765 false); 766 } 767 768 private: 769 class StackHintGeneratorForReallocationFailed 770 : public StackHintGeneratorForSymbol { 771 public: 772 StackHintGeneratorForReallocationFailed(SymbolRef S, StringRef M) 773 : StackHintGeneratorForSymbol(S, M) {} 774 775 std::string getMessageForArg(const Expr *ArgE, unsigned ArgIndex) override { 776 // Printed parameters start at 1, not 0. 777 ++ArgIndex; 778 779 SmallString<200> buf; 780 llvm::raw_svector_ostream os(buf); 781 782 os << "Reallocation of " << ArgIndex << llvm::getOrdinalSuffix(ArgIndex) 783 << " parameter failed"; 784 785 return os.str(); 786 } 787 788 std::string getMessageForReturn(const CallExpr *CallExpr) override { 789 return "Reallocation of returned value failed"; 790 } 791 }; 792 }; 793 794 } // end anonymous namespace 795 796 // A map from the freed symbol to the symbol representing the return value of 797 // the free function. 798 REGISTER_MAP_WITH_PROGRAMSTATE(FreeReturnValue, SymbolRef, SymbolRef) 799 800 namespace { 801 class StopTrackingCallback final : public SymbolVisitor { 802 ProgramStateRef state; 803 public: 804 StopTrackingCallback(ProgramStateRef st) : state(std::move(st)) {} 805 ProgramStateRef getState() const { return state; } 806 807 bool VisitSymbol(SymbolRef sym) override { 808 state = state->remove<RegionState>(sym); 809 return true; 810 } 811 }; 812 } // end anonymous namespace 813 814 //===----------------------------------------------------------------------===// 815 // Methods of MemFunctionInfoTy. 816 //===----------------------------------------------------------------------===// 817 818 void MemFunctionInfoTy::initIdentifierInfo(ASTContext &Ctx) const { 819 if (II_malloc) 820 return; 821 II_alloca = &Ctx.Idents.get("alloca"); 822 II_malloc = &Ctx.Idents.get("malloc"); 823 II_free = &Ctx.Idents.get("free"); 824 II_realloc = &Ctx.Idents.get("realloc"); 825 II_reallocf = &Ctx.Idents.get("reallocf"); 826 II_calloc = &Ctx.Idents.get("calloc"); 827 II_valloc = &Ctx.Idents.get("valloc"); 828 II_strdup = &Ctx.Idents.get("strdup"); 829 II_strndup = &Ctx.Idents.get("strndup"); 830 II_wcsdup = &Ctx.Idents.get("wcsdup"); 831 II_kmalloc = &Ctx.Idents.get("kmalloc"); 832 II_kfree = &Ctx.Idents.get("kfree"); 833 II_if_nameindex = &Ctx.Idents.get("if_nameindex"); 834 II_if_freenameindex = &Ctx.Idents.get("if_freenameindex"); 835 836 //MSVC uses `_`-prefixed instead, so we check for them too. 837 II_win_strdup = &Ctx.Idents.get("_strdup"); 838 II_win_wcsdup = &Ctx.Idents.get("_wcsdup"); 839 II_win_alloca = &Ctx.Idents.get("_alloca"); 840 841 // Glib 842 II_g_malloc = &Ctx.Idents.get("g_malloc"); 843 II_g_malloc0 = &Ctx.Idents.get("g_malloc0"); 844 II_g_realloc = &Ctx.Idents.get("g_realloc"); 845 II_g_try_malloc = &Ctx.Idents.get("g_try_malloc"); 846 II_g_try_malloc0 = &Ctx.Idents.get("g_try_malloc0"); 847 II_g_try_realloc = &Ctx.Idents.get("g_try_realloc"); 848 II_g_free = &Ctx.Idents.get("g_free"); 849 II_g_memdup = &Ctx.Idents.get("g_memdup"); 850 II_g_malloc_n = &Ctx.Idents.get("g_malloc_n"); 851 II_g_malloc0_n = &Ctx.Idents.get("g_malloc0_n"); 852 II_g_realloc_n = &Ctx.Idents.get("g_realloc_n"); 853 II_g_try_malloc_n = &Ctx.Idents.get("g_try_malloc_n"); 854 II_g_try_malloc0_n = &Ctx.Idents.get("g_try_malloc0_n"); 855 II_g_try_realloc_n = &Ctx.Idents.get("g_try_realloc_n"); 856 } 857 858 bool MemFunctionInfoTy::isMemFunction(const FunctionDecl *FD, 859 ASTContext &C) const { 860 if (isCMemFunction(FD, C, AF_Malloc, MemoryOperationKind::MOK_Any)) 861 return true; 862 863 if (isCMemFunction(FD, C, AF_IfNameIndex, MemoryOperationKind::MOK_Any)) 864 return true; 865 866 if (isCMemFunction(FD, C, AF_Alloca, MemoryOperationKind::MOK_Any)) 867 return true; 868 869 if (isStandardNewDelete(FD, C)) 870 return true; 871 872 return false; 873 } 874 875 bool MemFunctionInfoTy::isCMemFunction(const FunctionDecl *FD, ASTContext &C, 876 AllocationFamily Family, 877 MemoryOperationKind MemKind) const { 878 if (!FD) 879 return false; 880 881 bool CheckFree = (MemKind == MemoryOperationKind::MOK_Any || 882 MemKind == MemoryOperationKind::MOK_Free); 883 bool CheckAlloc = (MemKind == MemoryOperationKind::MOK_Any || 884 MemKind == MemoryOperationKind::MOK_Allocate); 885 886 if (FD->getKind() == Decl::Function) { 887 const IdentifierInfo *FunI = FD->getIdentifier(); 888 initIdentifierInfo(C); 889 890 if (Family == AF_Malloc && CheckFree) { 891 if (FunI == II_free || FunI == II_realloc || FunI == II_reallocf || 892 FunI == II_g_free || FunI == II_kfree) 893 return true; 894 } 895 896 if (Family == AF_Malloc && CheckAlloc) { 897 if (FunI == II_malloc || FunI == II_realloc || FunI == II_reallocf || 898 FunI == II_calloc || FunI == II_valloc || FunI == II_strdup || 899 FunI == II_win_strdup || FunI == II_strndup || FunI == II_wcsdup || 900 FunI == II_win_wcsdup || FunI == II_kmalloc || 901 FunI == II_g_malloc || FunI == II_g_malloc0 || 902 FunI == II_g_realloc || FunI == II_g_try_malloc || 903 FunI == II_g_try_malloc0 || FunI == II_g_try_realloc || 904 FunI == II_g_memdup || FunI == II_g_malloc_n || 905 FunI == II_g_malloc0_n || FunI == II_g_realloc_n || 906 FunI == II_g_try_malloc_n || FunI == II_g_try_malloc0_n || 907 FunI == II_g_try_realloc_n) 908 return true; 909 } 910 911 if (Family == AF_IfNameIndex && CheckFree) { 912 if (FunI == II_if_freenameindex) 913 return true; 914 } 915 916 if (Family == AF_IfNameIndex && CheckAlloc) { 917 if (FunI == II_if_nameindex) 918 return true; 919 } 920 921 if (Family == AF_Alloca && CheckAlloc) { 922 if (FunI == II_alloca || FunI == II_win_alloca) 923 return true; 924 } 925 } 926 927 if (Family != AF_Malloc) 928 return false; 929 930 if (ShouldIncludeOwnershipAnnotatedFunctions && FD->hasAttrs()) { 931 for (const auto *I : FD->specific_attrs<OwnershipAttr>()) { 932 OwnershipAttr::OwnershipKind OwnKind = I->getOwnKind(); 933 if(OwnKind == OwnershipAttr::Takes || OwnKind == OwnershipAttr::Holds) { 934 if (CheckFree) 935 return true; 936 } else if (OwnKind == OwnershipAttr::Returns) { 937 if (CheckAlloc) 938 return true; 939 } 940 } 941 } 942 943 return false; 944 } 945 bool MemFunctionInfoTy::isStandardNewDelete(const FunctionDecl *FD, 946 ASTContext &C) const { 947 if (!FD) 948 return false; 949 950 OverloadedOperatorKind Kind = FD->getOverloadedOperator(); 951 if (Kind != OO_New && Kind != OO_Array_New && 952 Kind != OO_Delete && Kind != OO_Array_Delete) 953 return false; 954 955 // This is standard if and only if it's not defined in a user file. 956 SourceLocation L = FD->getLocation(); 957 // If the header for operator delete is not included, it's still defined 958 // in an invalid source location. Check to make sure we don't crash. 959 return !L.isValid() || C.getSourceManager().isInSystemHeader(L); 960 } 961 962 //===----------------------------------------------------------------------===// 963 // Methods of MallocChecker and MallocBugVisitor. 964 //===----------------------------------------------------------------------===// 965 966 llvm::Optional<ProgramStateRef> MallocChecker::performKernelMalloc( 967 const CallExpr *CE, CheckerContext &C, const ProgramStateRef &State) const { 968 // 3-argument malloc(), as commonly used in {Free,Net,Open}BSD Kernels: 969 // 970 // void *malloc(unsigned long size, struct malloc_type *mtp, int flags); 971 // 972 // One of the possible flags is M_ZERO, which means 'give me back an 973 // allocation which is already zeroed', like calloc. 974 975 // 2-argument kmalloc(), as used in the Linux kernel: 976 // 977 // void *kmalloc(size_t size, gfp_t flags); 978 // 979 // Has the similar flag value __GFP_ZERO. 980 981 // This logic is largely cloned from O_CREAT in UnixAPIChecker, maybe some 982 // code could be shared. 983 984 ASTContext &Ctx = C.getASTContext(); 985 llvm::Triple::OSType OS = Ctx.getTargetInfo().getTriple().getOS(); 986 987 if (!KernelZeroFlagVal.hasValue()) { 988 if (OS == llvm::Triple::FreeBSD) 989 KernelZeroFlagVal = 0x0100; 990 else if (OS == llvm::Triple::NetBSD) 991 KernelZeroFlagVal = 0x0002; 992 else if (OS == llvm::Triple::OpenBSD) 993 KernelZeroFlagVal = 0x0008; 994 else if (OS == llvm::Triple::Linux) 995 // __GFP_ZERO 996 KernelZeroFlagVal = 0x8000; 997 else 998 // FIXME: We need a more general way of getting the M_ZERO value. 999 // See also: O_CREAT in UnixAPIChecker.cpp. 1000 1001 // Fall back to normal malloc behavior on platforms where we don't 1002 // know M_ZERO. 1003 return None; 1004 } 1005 1006 // We treat the last argument as the flags argument, and callers fall-back to 1007 // normal malloc on a None return. This works for the FreeBSD kernel malloc 1008 // as well as Linux kmalloc. 1009 if (CE->getNumArgs() < 2) 1010 return None; 1011 1012 const Expr *FlagsEx = CE->getArg(CE->getNumArgs() - 1); 1013 const SVal V = C.getSVal(FlagsEx); 1014 if (!V.getAs<NonLoc>()) { 1015 // The case where 'V' can be a location can only be due to a bad header, 1016 // so in this case bail out. 1017 return None; 1018 } 1019 1020 NonLoc Flags = V.castAs<NonLoc>(); 1021 NonLoc ZeroFlag = C.getSValBuilder() 1022 .makeIntVal(KernelZeroFlagVal.getValue(), FlagsEx->getType()) 1023 .castAs<NonLoc>(); 1024 SVal MaskedFlagsUC = C.getSValBuilder().evalBinOpNN(State, BO_And, 1025 Flags, ZeroFlag, 1026 FlagsEx->getType()); 1027 if (MaskedFlagsUC.isUnknownOrUndef()) 1028 return None; 1029 DefinedSVal MaskedFlags = MaskedFlagsUC.castAs<DefinedSVal>(); 1030 1031 // Check if maskedFlags is non-zero. 1032 ProgramStateRef TrueState, FalseState; 1033 std::tie(TrueState, FalseState) = State->assume(MaskedFlags); 1034 1035 // If M_ZERO is set, treat this like calloc (initialized). 1036 if (TrueState && !FalseState) { 1037 SVal ZeroVal = C.getSValBuilder().makeZeroVal(Ctx.CharTy); 1038 return MallocMemAux(C, CE, CE->getArg(0), ZeroVal, TrueState); 1039 } 1040 1041 return None; 1042 } 1043 1044 SVal MallocChecker::evalMulForBufferSize(CheckerContext &C, const Expr *Blocks, 1045 const Expr *BlockBytes) { 1046 SValBuilder &SB = C.getSValBuilder(); 1047 SVal BlocksVal = C.getSVal(Blocks); 1048 SVal BlockBytesVal = C.getSVal(BlockBytes); 1049 ProgramStateRef State = C.getState(); 1050 SVal TotalSize = SB.evalBinOp(State, BO_Mul, BlocksVal, BlockBytesVal, 1051 SB.getContext().getSizeType()); 1052 return TotalSize; 1053 } 1054 1055 void MallocChecker::checkPostStmt(const CallExpr *CE, CheckerContext &C) const { 1056 if (C.wasInlined) 1057 return; 1058 1059 const FunctionDecl *FD = C.getCalleeDecl(CE); 1060 if (!FD) 1061 return; 1062 1063 ProgramStateRef State = C.getState(); 1064 bool IsKnownToBeAllocatedMemory = false; 1065 1066 if (FD->getKind() == Decl::Function) { 1067 MemFunctionInfo.initIdentifierInfo(C.getASTContext()); 1068 IdentifierInfo *FunI = FD->getIdentifier(); 1069 1070 if (FunI == MemFunctionInfo.II_malloc || 1071 FunI == MemFunctionInfo.II_g_malloc || 1072 FunI == MemFunctionInfo.II_g_try_malloc) { 1073 switch (CE->getNumArgs()) { 1074 default: 1075 return; 1076 case 1: 1077 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); 1078 State = ProcessZeroAllocCheck(C, CE, 0, State); 1079 break; 1080 case 2: 1081 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); 1082 break; 1083 case 3: 1084 llvm::Optional<ProgramStateRef> MaybeState = 1085 performKernelMalloc(CE, C, State); 1086 if (MaybeState.hasValue()) 1087 State = MaybeState.getValue(); 1088 else 1089 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); 1090 break; 1091 } 1092 } else if (FunI == MemFunctionInfo.II_kmalloc) { 1093 if (CE->getNumArgs() < 1) 1094 return; 1095 llvm::Optional<ProgramStateRef> MaybeState = 1096 performKernelMalloc(CE, C, State); 1097 if (MaybeState.hasValue()) 1098 State = MaybeState.getValue(); 1099 else 1100 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); 1101 } else if (FunI == MemFunctionInfo.II_valloc) { 1102 if (CE->getNumArgs() < 1) 1103 return; 1104 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); 1105 State = ProcessZeroAllocCheck(C, CE, 0, State); 1106 } else if (FunI == MemFunctionInfo.II_realloc || 1107 FunI == MemFunctionInfo.II_g_realloc || 1108 FunI == MemFunctionInfo.II_g_try_realloc) { 1109 State = ReallocMemAux(C, CE, /*ShouldFreeOnFail*/ false, State); 1110 State = ProcessZeroAllocCheck(C, CE, 1, State); 1111 } else if (FunI == MemFunctionInfo.II_reallocf) { 1112 State = ReallocMemAux(C, CE, /*ShouldFreeOnFail*/ true, State); 1113 State = ProcessZeroAllocCheck(C, CE, 1, State); 1114 } else if (FunI == MemFunctionInfo.II_calloc) { 1115 State = CallocMem(C, CE, State); 1116 State = ProcessZeroAllocCheck(C, CE, 0, State); 1117 State = ProcessZeroAllocCheck(C, CE, 1, State); 1118 } else if (FunI == MemFunctionInfo.II_free || 1119 FunI == MemFunctionInfo.II_g_free || 1120 FunI == MemFunctionInfo.II_kfree) { 1121 if (suppressDeallocationsInSuspiciousContexts(CE, C)) 1122 return; 1123 1124 State = FreeMemAux(C, CE, State, 0, false, IsKnownToBeAllocatedMemory); 1125 } else if (FunI == MemFunctionInfo.II_strdup || 1126 FunI == MemFunctionInfo.II_win_strdup || 1127 FunI == MemFunctionInfo.II_wcsdup || 1128 FunI == MemFunctionInfo.II_win_wcsdup) { 1129 State = MallocUpdateRefState(C, CE, State); 1130 } else if (FunI == MemFunctionInfo.II_strndup) { 1131 State = MallocUpdateRefState(C, CE, State); 1132 } else if (FunI == MemFunctionInfo.II_alloca || 1133 FunI == MemFunctionInfo.II_win_alloca) { 1134 if (CE->getNumArgs() < 1) 1135 return; 1136 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State, 1137 AF_Alloca); 1138 State = ProcessZeroAllocCheck(C, CE, 0, State); 1139 } else if (MemFunctionInfo.isStandardNewDelete(FD, C.getASTContext())) { 1140 // Process direct calls to operator new/new[]/delete/delete[] functions 1141 // as distinct from new/new[]/delete/delete[] expressions that are 1142 // processed by the checkPostStmt callbacks for CXXNewExpr and 1143 // CXXDeleteExpr. 1144 switch (FD->getOverloadedOperator()) { 1145 case OO_New: 1146 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State, 1147 AF_CXXNew); 1148 State = ProcessZeroAllocCheck(C, CE, 0, State); 1149 break; 1150 case OO_Array_New: 1151 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State, 1152 AF_CXXNewArray); 1153 State = ProcessZeroAllocCheck(C, CE, 0, State); 1154 break; 1155 case OO_Delete: 1156 case OO_Array_Delete: 1157 State = FreeMemAux(C, CE, State, 0, false, IsKnownToBeAllocatedMemory); 1158 break; 1159 default: 1160 llvm_unreachable("not a new/delete operator"); 1161 } 1162 } else if (FunI == MemFunctionInfo.II_if_nameindex) { 1163 // Should we model this differently? We can allocate a fixed number of 1164 // elements with zeros in the last one. 1165 State = MallocMemAux(C, CE, UnknownVal(), UnknownVal(), State, 1166 AF_IfNameIndex); 1167 } else if (FunI == MemFunctionInfo.II_if_freenameindex) { 1168 State = FreeMemAux(C, CE, State, 0, false, IsKnownToBeAllocatedMemory); 1169 } else if (FunI == MemFunctionInfo.II_g_malloc0 || 1170 FunI == MemFunctionInfo.II_g_try_malloc0) { 1171 if (CE->getNumArgs() < 1) 1172 return; 1173 SValBuilder &svalBuilder = C.getSValBuilder(); 1174 SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy); 1175 State = MallocMemAux(C, CE, CE->getArg(0), zeroVal, State); 1176 State = ProcessZeroAllocCheck(C, CE, 0, State); 1177 } else if (FunI == MemFunctionInfo.II_g_memdup) { 1178 if (CE->getNumArgs() < 2) 1179 return; 1180 State = MallocMemAux(C, CE, CE->getArg(1), UndefinedVal(), State); 1181 State = ProcessZeroAllocCheck(C, CE, 1, State); 1182 } else if (FunI == MemFunctionInfo.II_g_malloc_n || 1183 FunI == MemFunctionInfo.II_g_try_malloc_n || 1184 FunI == MemFunctionInfo.II_g_malloc0_n || 1185 FunI == MemFunctionInfo.II_g_try_malloc0_n) { 1186 if (CE->getNumArgs() < 2) 1187 return; 1188 SVal Init = UndefinedVal(); 1189 if (FunI == MemFunctionInfo.II_g_malloc0_n || 1190 FunI == MemFunctionInfo.II_g_try_malloc0_n) { 1191 SValBuilder &SB = C.getSValBuilder(); 1192 Init = SB.makeZeroVal(SB.getContext().CharTy); 1193 } 1194 SVal TotalSize = evalMulForBufferSize(C, CE->getArg(0), CE->getArg(1)); 1195 State = MallocMemAux(C, CE, TotalSize, Init, State); 1196 State = ProcessZeroAllocCheck(C, CE, 0, State); 1197 State = ProcessZeroAllocCheck(C, CE, 1, State); 1198 } else if (FunI == MemFunctionInfo.II_g_realloc_n || 1199 FunI == MemFunctionInfo.II_g_try_realloc_n) { 1200 if (CE->getNumArgs() < 3) 1201 return; 1202 State = ReallocMemAux(C, CE, /*ShouldFreeOnFail*/ false, State, 1203 /*SuffixWithN*/ true); 1204 State = ProcessZeroAllocCheck(C, CE, 1, State); 1205 State = ProcessZeroAllocCheck(C, CE, 2, State); 1206 } 1207 } 1208 1209 if (MemFunctionInfo.ShouldIncludeOwnershipAnnotatedFunctions || 1210 ChecksEnabled[CK_MismatchedDeallocatorChecker]) { 1211 // Check all the attributes, if there are any. 1212 // There can be multiple of these attributes. 1213 if (FD->hasAttrs()) 1214 for (const auto *I : FD->specific_attrs<OwnershipAttr>()) { 1215 switch (I->getOwnKind()) { 1216 case OwnershipAttr::Returns: 1217 State = MallocMemReturnsAttr(C, CE, I, State); 1218 break; 1219 case OwnershipAttr::Takes: 1220 case OwnershipAttr::Holds: 1221 State = FreeMemAttr(C, CE, I, State); 1222 break; 1223 } 1224 } 1225 } 1226 C.addTransition(State); 1227 } 1228 1229 // Performs a 0-sized allocations check. 1230 ProgramStateRef MallocChecker::ProcessZeroAllocCheck( 1231 CheckerContext &C, const Expr *E, const unsigned IndexOfSizeArg, 1232 ProgramStateRef State, Optional<SVal> RetVal) { 1233 if (!State) 1234 return nullptr; 1235 1236 if (!RetVal) 1237 RetVal = C.getSVal(E); 1238 1239 const Expr *Arg = nullptr; 1240 1241 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { 1242 Arg = CE->getArg(IndexOfSizeArg); 1243 } 1244 else if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) { 1245 if (NE->isArray()) 1246 Arg = *NE->getArraySize(); 1247 else 1248 return State; 1249 } 1250 else 1251 llvm_unreachable("not a CallExpr or CXXNewExpr"); 1252 1253 assert(Arg); 1254 1255 Optional<DefinedSVal> DefArgVal = C.getSVal(Arg).getAs<DefinedSVal>(); 1256 1257 if (!DefArgVal) 1258 return State; 1259 1260 // Check if the allocation size is 0. 1261 ProgramStateRef TrueState, FalseState; 1262 SValBuilder &SvalBuilder = C.getSValBuilder(); 1263 DefinedSVal Zero = 1264 SvalBuilder.makeZeroVal(Arg->getType()).castAs<DefinedSVal>(); 1265 1266 std::tie(TrueState, FalseState) = 1267 State->assume(SvalBuilder.evalEQ(State, *DefArgVal, Zero)); 1268 1269 if (TrueState && !FalseState) { 1270 SymbolRef Sym = RetVal->getAsLocSymbol(); 1271 if (!Sym) 1272 return State; 1273 1274 const RefState *RS = State->get<RegionState>(Sym); 1275 if (RS) { 1276 if (RS->isAllocated()) 1277 return TrueState->set<RegionState>(Sym, 1278 RefState::getAllocatedOfSizeZero(RS)); 1279 else 1280 return State; 1281 } else { 1282 // Case of zero-size realloc. Historically 'realloc(ptr, 0)' is treated as 1283 // 'free(ptr)' and the returned value from 'realloc(ptr, 0)' is not 1284 // tracked. Add zero-reallocated Sym to the state to catch references 1285 // to zero-allocated memory. 1286 return TrueState->add<ReallocSizeZeroSymbols>(Sym); 1287 } 1288 } 1289 1290 // Assume the value is non-zero going forward. 1291 assert(FalseState); 1292 return FalseState; 1293 } 1294 1295 static QualType getDeepPointeeType(QualType T) { 1296 QualType Result = T, PointeeType = T->getPointeeType(); 1297 while (!PointeeType.isNull()) { 1298 Result = PointeeType; 1299 PointeeType = PointeeType->getPointeeType(); 1300 } 1301 return Result; 1302 } 1303 1304 /// \returns true if the constructor invoked by \p NE has an argument of a 1305 /// pointer/reference to a record type. 1306 static bool hasNonTrivialConstructorCall(const CXXNewExpr *NE) { 1307 1308 const CXXConstructExpr *ConstructE = NE->getConstructExpr(); 1309 if (!ConstructE) 1310 return false; 1311 1312 if (!NE->getAllocatedType()->getAsCXXRecordDecl()) 1313 return false; 1314 1315 const CXXConstructorDecl *CtorD = ConstructE->getConstructor(); 1316 1317 // Iterate over the constructor parameters. 1318 for (const auto *CtorParam : CtorD->parameters()) { 1319 1320 QualType CtorParamPointeeT = CtorParam->getType()->getPointeeType(); 1321 if (CtorParamPointeeT.isNull()) 1322 continue; 1323 1324 CtorParamPointeeT = getDeepPointeeType(CtorParamPointeeT); 1325 1326 if (CtorParamPointeeT->getAsCXXRecordDecl()) 1327 return true; 1328 } 1329 1330 return false; 1331 } 1332 1333 void MallocChecker::processNewAllocation(const CXXNewExpr *NE, 1334 CheckerContext &C, 1335 SVal Target) const { 1336 if (!MemFunctionInfo.isStandardNewDelete(NE->getOperatorNew(), 1337 C.getASTContext())) 1338 return; 1339 1340 const ParentMap &PM = C.getLocationContext()->getParentMap(); 1341 1342 // Non-trivial constructors have a chance to escape 'this', but marking all 1343 // invocations of trivial constructors as escaped would cause too great of 1344 // reduction of true positives, so let's just do that for constructors that 1345 // have an argument of a pointer-to-record type. 1346 if (!PM.isConsumedExpr(NE) && hasNonTrivialConstructorCall(NE)) 1347 return; 1348 1349 ProgramStateRef State = C.getState(); 1350 // The return value from operator new is bound to a specified initialization 1351 // value (if any) and we don't want to loose this value. So we call 1352 // MallocUpdateRefState() instead of MallocMemAux() which breaks the 1353 // existing binding. 1354 State = MallocUpdateRefState(C, NE, State, NE->isArray() ? AF_CXXNewArray 1355 : AF_CXXNew, Target); 1356 State = addExtentSize(C, NE, State, Target); 1357 State = ProcessZeroAllocCheck(C, NE, 0, State, Target); 1358 C.addTransition(State); 1359 } 1360 1361 void MallocChecker::checkPostStmt(const CXXNewExpr *NE, 1362 CheckerContext &C) const { 1363 if (!C.getAnalysisManager().getAnalyzerOptions().MayInlineCXXAllocator) 1364 processNewAllocation(NE, C, C.getSVal(NE)); 1365 } 1366 1367 void MallocChecker::checkNewAllocator(const CXXNewExpr *NE, SVal Target, 1368 CheckerContext &C) const { 1369 if (!C.wasInlined) 1370 processNewAllocation(NE, C, Target); 1371 } 1372 1373 // Sets the extent value of the MemRegion allocated by 1374 // new expression NE to its size in Bytes. 1375 // 1376 ProgramStateRef MallocChecker::addExtentSize(CheckerContext &C, 1377 const CXXNewExpr *NE, 1378 ProgramStateRef State, 1379 SVal Target) { 1380 if (!State) 1381 return nullptr; 1382 SValBuilder &svalBuilder = C.getSValBuilder(); 1383 SVal ElementCount; 1384 const SubRegion *Region; 1385 if (NE->isArray()) { 1386 const Expr *SizeExpr = *NE->getArraySize(); 1387 ElementCount = C.getSVal(SizeExpr); 1388 // Store the extent size for the (symbolic)region 1389 // containing the elements. 1390 Region = Target.getAsRegion() 1391 ->castAs<SubRegion>() 1392 ->StripCasts() 1393 ->castAs<SubRegion>(); 1394 } else { 1395 ElementCount = svalBuilder.makeIntVal(1, true); 1396 Region = Target.getAsRegion()->castAs<SubRegion>(); 1397 } 1398 1399 // Set the region's extent equal to the Size in Bytes. 1400 QualType ElementType = NE->getAllocatedType(); 1401 ASTContext &AstContext = C.getASTContext(); 1402 CharUnits TypeSize = AstContext.getTypeSizeInChars(ElementType); 1403 1404 if (ElementCount.getAs<NonLoc>()) { 1405 DefinedOrUnknownSVal Extent = Region->getExtent(svalBuilder); 1406 // size in Bytes = ElementCount*TypeSize 1407 SVal SizeInBytes = svalBuilder.evalBinOpNN( 1408 State, BO_Mul, ElementCount.castAs<NonLoc>(), 1409 svalBuilder.makeArrayIndex(TypeSize.getQuantity()), 1410 svalBuilder.getArrayIndexType()); 1411 DefinedOrUnknownSVal extentMatchesSize = svalBuilder.evalEQ( 1412 State, Extent, SizeInBytes.castAs<DefinedOrUnknownSVal>()); 1413 State = State->assume(extentMatchesSize, true); 1414 } 1415 return State; 1416 } 1417 1418 void MallocChecker::checkPreStmt(const CXXDeleteExpr *DE, 1419 CheckerContext &C) const { 1420 1421 if (!ChecksEnabled[CK_NewDeleteChecker]) 1422 if (SymbolRef Sym = C.getSVal(DE->getArgument()).getAsSymbol()) 1423 checkUseAfterFree(Sym, C, DE->getArgument()); 1424 1425 if (!MemFunctionInfo.isStandardNewDelete(DE->getOperatorDelete(), 1426 C.getASTContext())) 1427 return; 1428 1429 ProgramStateRef State = C.getState(); 1430 bool IsKnownToBeAllocated; 1431 State = FreeMemAux(C, DE->getArgument(), DE, State, 1432 /*Hold*/ false, IsKnownToBeAllocated); 1433 1434 C.addTransition(State); 1435 } 1436 1437 static bool isKnownDeallocObjCMethodName(const ObjCMethodCall &Call) { 1438 // If the first selector piece is one of the names below, assume that the 1439 // object takes ownership of the memory, promising to eventually deallocate it 1440 // with free(). 1441 // Ex: [NSData dataWithBytesNoCopy:bytes length:10]; 1442 // (...unless a 'freeWhenDone' parameter is false, but that's checked later.) 1443 StringRef FirstSlot = Call.getSelector().getNameForSlot(0); 1444 return FirstSlot == "dataWithBytesNoCopy" || 1445 FirstSlot == "initWithBytesNoCopy" || 1446 FirstSlot == "initWithCharactersNoCopy"; 1447 } 1448 1449 static Optional<bool> getFreeWhenDoneArg(const ObjCMethodCall &Call) { 1450 Selector S = Call.getSelector(); 1451 1452 // FIXME: We should not rely on fully-constrained symbols being folded. 1453 for (unsigned i = 1; i < S.getNumArgs(); ++i) 1454 if (S.getNameForSlot(i).equals("freeWhenDone")) 1455 return !Call.getArgSVal(i).isZeroConstant(); 1456 1457 return None; 1458 } 1459 1460 void MallocChecker::checkPostObjCMessage(const ObjCMethodCall &Call, 1461 CheckerContext &C) const { 1462 if (C.wasInlined) 1463 return; 1464 1465 if (!isKnownDeallocObjCMethodName(Call)) 1466 return; 1467 1468 if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(Call)) 1469 if (!*FreeWhenDone) 1470 return; 1471 1472 bool IsKnownToBeAllocatedMemory; 1473 ProgramStateRef State = 1474 FreeMemAux(C, Call.getArgExpr(0), Call.getOriginExpr(), C.getState(), 1475 /*Hold=*/true, IsKnownToBeAllocatedMemory, 1476 /*RetNullOnFailure=*/true); 1477 1478 C.addTransition(State); 1479 } 1480 1481 ProgramStateRef 1482 MallocChecker::MallocMemReturnsAttr(CheckerContext &C, const CallExpr *CE, 1483 const OwnershipAttr *Att, 1484 ProgramStateRef State) const { 1485 if (!State) 1486 return nullptr; 1487 1488 if (Att->getModule() != MemFunctionInfo.II_malloc) 1489 return nullptr; 1490 1491 OwnershipAttr::args_iterator I = Att->args_begin(), E = Att->args_end(); 1492 if (I != E) { 1493 return MallocMemAux(C, CE, CE->getArg(I->getASTIndex()), UndefinedVal(), 1494 State); 1495 } 1496 return MallocMemAux(C, CE, UnknownVal(), UndefinedVal(), State); 1497 } 1498 1499 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, 1500 const CallExpr *CE, 1501 const Expr *SizeEx, SVal Init, 1502 ProgramStateRef State, 1503 AllocationFamily Family) { 1504 if (!State) 1505 return nullptr; 1506 1507 return MallocMemAux(C, CE, C.getSVal(SizeEx), Init, State, Family); 1508 } 1509 1510 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, 1511 const CallExpr *CE, 1512 SVal Size, SVal Init, 1513 ProgramStateRef State, 1514 AllocationFamily Family) { 1515 if (!State) 1516 return nullptr; 1517 1518 // We expect the malloc functions to return a pointer. 1519 if (!Loc::isLocType(CE->getType())) 1520 return nullptr; 1521 1522 // Bind the return value to the symbolic value from the heap region. 1523 // TODO: We could rewrite post visit to eval call; 'malloc' does not have 1524 // side effects other than what we model here. 1525 unsigned Count = C.blockCount(); 1526 SValBuilder &svalBuilder = C.getSValBuilder(); 1527 const LocationContext *LCtx = C.getPredecessor()->getLocationContext(); 1528 DefinedSVal RetVal = svalBuilder.getConjuredHeapSymbolVal(CE, LCtx, Count) 1529 .castAs<DefinedSVal>(); 1530 State = State->BindExpr(CE, C.getLocationContext(), RetVal); 1531 1532 // Fill the region with the initialization value. 1533 State = State->bindDefaultInitial(RetVal, Init, LCtx); 1534 1535 // Set the region's extent equal to the Size parameter. 1536 const SymbolicRegion *R = 1537 dyn_cast_or_null<SymbolicRegion>(RetVal.getAsRegion()); 1538 if (!R) 1539 return nullptr; 1540 if (Optional<DefinedOrUnknownSVal> DefinedSize = 1541 Size.getAs<DefinedOrUnknownSVal>()) { 1542 SValBuilder &svalBuilder = C.getSValBuilder(); 1543 DefinedOrUnknownSVal Extent = R->getExtent(svalBuilder); 1544 DefinedOrUnknownSVal extentMatchesSize = 1545 svalBuilder.evalEQ(State, Extent, *DefinedSize); 1546 1547 State = State->assume(extentMatchesSize, true); 1548 assert(State); 1549 } 1550 1551 return MallocUpdateRefState(C, CE, State, Family); 1552 } 1553 1554 static ProgramStateRef MallocUpdateRefState(CheckerContext &C, const Expr *E, 1555 ProgramStateRef State, 1556 AllocationFamily Family, 1557 Optional<SVal> RetVal) { 1558 if (!State) 1559 return nullptr; 1560 1561 // Get the return value. 1562 if (!RetVal) 1563 RetVal = C.getSVal(E); 1564 1565 // We expect the malloc functions to return a pointer. 1566 if (!RetVal->getAs<Loc>()) 1567 return nullptr; 1568 1569 SymbolRef Sym = RetVal->getAsLocSymbol(); 1570 // This is a return value of a function that was not inlined, such as malloc() 1571 // or new(). We've checked that in the caller. Therefore, it must be a symbol. 1572 assert(Sym); 1573 1574 // Set the symbol's state to Allocated. 1575 return State->set<RegionState>(Sym, RefState::getAllocated(Family, E)); 1576 } 1577 1578 ProgramStateRef MallocChecker::FreeMemAttr(CheckerContext &C, 1579 const CallExpr *CE, 1580 const OwnershipAttr *Att, 1581 ProgramStateRef State) const { 1582 if (!State) 1583 return nullptr; 1584 1585 if (Att->getModule() != MemFunctionInfo.II_malloc) 1586 return nullptr; 1587 1588 bool IsKnownToBeAllocated = false; 1589 1590 for (const auto &Arg : Att->args()) { 1591 ProgramStateRef StateI = FreeMemAux( 1592 C, CE, State, Arg.getASTIndex(), 1593 Att->getOwnKind() == OwnershipAttr::Holds, IsKnownToBeAllocated); 1594 if (StateI) 1595 State = StateI; 1596 } 1597 return State; 1598 } 1599 1600 ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C, const CallExpr *CE, 1601 ProgramStateRef State, unsigned Num, 1602 bool Hold, bool &IsKnownToBeAllocated, 1603 bool ReturnsNullOnFailure) const { 1604 if (!State) 1605 return nullptr; 1606 1607 if (CE->getNumArgs() < (Num + 1)) 1608 return nullptr; 1609 1610 return FreeMemAux(C, CE->getArg(Num), CE, State, Hold, IsKnownToBeAllocated, 1611 ReturnsNullOnFailure); 1612 } 1613 1614 /// Checks if the previous call to free on the given symbol failed - if free 1615 /// failed, returns true. Also, returns the corresponding return value symbol. 1616 static bool didPreviousFreeFail(ProgramStateRef State, 1617 SymbolRef Sym, SymbolRef &RetStatusSymbol) { 1618 const SymbolRef *Ret = State->get<FreeReturnValue>(Sym); 1619 if (Ret) { 1620 assert(*Ret && "We should not store the null return symbol"); 1621 ConstraintManager &CMgr = State->getConstraintManager(); 1622 ConditionTruthVal FreeFailed = CMgr.isNull(State, *Ret); 1623 RetStatusSymbol = *Ret; 1624 return FreeFailed.isConstrainedTrue(); 1625 } 1626 return false; 1627 } 1628 1629 static AllocationFamily 1630 getAllocationFamily(const MemFunctionInfoTy &MemFunctionInfo, CheckerContext &C, 1631 const Stmt *S) { 1632 1633 if (!S) 1634 return AF_None; 1635 1636 if (const CallExpr *CE = dyn_cast<CallExpr>(S)) { 1637 const FunctionDecl *FD = C.getCalleeDecl(CE); 1638 1639 if (!FD) 1640 FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl()); 1641 1642 ASTContext &Ctx = C.getASTContext(); 1643 1644 if (MemFunctionInfo.isCMemFunction(FD, Ctx, AF_Malloc, 1645 MemoryOperationKind::MOK_Any)) 1646 return AF_Malloc; 1647 1648 if (MemFunctionInfo.isStandardNewDelete(FD, Ctx)) { 1649 OverloadedOperatorKind Kind = FD->getOverloadedOperator(); 1650 if (Kind == OO_New || Kind == OO_Delete) 1651 return AF_CXXNew; 1652 else if (Kind == OO_Array_New || Kind == OO_Array_Delete) 1653 return AF_CXXNewArray; 1654 } 1655 1656 if (MemFunctionInfo.isCMemFunction(FD, Ctx, AF_IfNameIndex, 1657 MemoryOperationKind::MOK_Any)) 1658 return AF_IfNameIndex; 1659 1660 if (MemFunctionInfo.isCMemFunction(FD, Ctx, AF_Alloca, 1661 MemoryOperationKind::MOK_Any)) 1662 return AF_Alloca; 1663 1664 return AF_None; 1665 } 1666 1667 if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(S)) 1668 return NE->isArray() ? AF_CXXNewArray : AF_CXXNew; 1669 1670 if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(S)) 1671 return DE->isArrayForm() ? AF_CXXNewArray : AF_CXXNew; 1672 1673 if (isa<ObjCMessageExpr>(S)) 1674 return AF_Malloc; 1675 1676 return AF_None; 1677 } 1678 1679 static bool printAllocDeallocName(raw_ostream &os, CheckerContext &C, 1680 const Expr *E) { 1681 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { 1682 // FIXME: This doesn't handle indirect calls. 1683 const FunctionDecl *FD = CE->getDirectCallee(); 1684 if (!FD) 1685 return false; 1686 1687 os << *FD; 1688 if (!FD->isOverloadedOperator()) 1689 os << "()"; 1690 return true; 1691 } 1692 1693 if (const ObjCMessageExpr *Msg = dyn_cast<ObjCMessageExpr>(E)) { 1694 if (Msg->isInstanceMessage()) 1695 os << "-"; 1696 else 1697 os << "+"; 1698 Msg->getSelector().print(os); 1699 return true; 1700 } 1701 1702 if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) { 1703 os << "'" 1704 << getOperatorSpelling(NE->getOperatorNew()->getOverloadedOperator()) 1705 << "'"; 1706 return true; 1707 } 1708 1709 if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(E)) { 1710 os << "'" 1711 << getOperatorSpelling(DE->getOperatorDelete()->getOverloadedOperator()) 1712 << "'"; 1713 return true; 1714 } 1715 1716 return false; 1717 } 1718 1719 static void printExpectedAllocName(raw_ostream &os, 1720 const MemFunctionInfoTy &MemFunctionInfo, 1721 CheckerContext &C, const Expr *E) { 1722 AllocationFamily Family = getAllocationFamily(MemFunctionInfo, C, E); 1723 1724 switch(Family) { 1725 case AF_Malloc: os << "malloc()"; return; 1726 case AF_CXXNew: os << "'new'"; return; 1727 case AF_CXXNewArray: os << "'new[]'"; return; 1728 case AF_IfNameIndex: os << "'if_nameindex()'"; return; 1729 case AF_InnerBuffer: os << "container-specific allocator"; return; 1730 case AF_Alloca: 1731 case AF_None: llvm_unreachable("not a deallocation expression"); 1732 } 1733 } 1734 1735 static void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family) { 1736 switch(Family) { 1737 case AF_Malloc: os << "free()"; return; 1738 case AF_CXXNew: os << "'delete'"; return; 1739 case AF_CXXNewArray: os << "'delete[]'"; return; 1740 case AF_IfNameIndex: os << "'if_freenameindex()'"; return; 1741 case AF_InnerBuffer: os << "container-specific deallocator"; return; 1742 case AF_Alloca: 1743 case AF_None: llvm_unreachable("suspicious argument"); 1744 } 1745 } 1746 1747 ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C, 1748 const Expr *ArgExpr, 1749 const Expr *ParentExpr, 1750 ProgramStateRef State, bool Hold, 1751 bool &IsKnownToBeAllocated, 1752 bool ReturnsNullOnFailure) const { 1753 1754 if (!State) 1755 return nullptr; 1756 1757 SVal ArgVal = C.getSVal(ArgExpr); 1758 if (!ArgVal.getAs<DefinedOrUnknownSVal>()) 1759 return nullptr; 1760 DefinedOrUnknownSVal location = ArgVal.castAs<DefinedOrUnknownSVal>(); 1761 1762 // Check for null dereferences. 1763 if (!location.getAs<Loc>()) 1764 return nullptr; 1765 1766 // The explicit NULL case, no operation is performed. 1767 ProgramStateRef notNullState, nullState; 1768 std::tie(notNullState, nullState) = State->assume(location); 1769 if (nullState && !notNullState) 1770 return nullptr; 1771 1772 // Unknown values could easily be okay 1773 // Undefined values are handled elsewhere 1774 if (ArgVal.isUnknownOrUndef()) 1775 return nullptr; 1776 1777 const MemRegion *R = ArgVal.getAsRegion(); 1778 1779 // Nonlocs can't be freed, of course. 1780 // Non-region locations (labels and fixed addresses) also shouldn't be freed. 1781 if (!R) { 1782 ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); 1783 return nullptr; 1784 } 1785 1786 R = R->StripCasts(); 1787 1788 // Blocks might show up as heap data, but should not be free()d 1789 if (isa<BlockDataRegion>(R)) { 1790 ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); 1791 return nullptr; 1792 } 1793 1794 const MemSpaceRegion *MS = R->getMemorySpace(); 1795 1796 // Parameters, locals, statics, globals, and memory returned by 1797 // __builtin_alloca() shouldn't be freed. 1798 if (!(isa<UnknownSpaceRegion>(MS) || isa<HeapSpaceRegion>(MS))) { 1799 // FIXME: at the time this code was written, malloc() regions were 1800 // represented by conjured symbols, which are all in UnknownSpaceRegion. 1801 // This means that there isn't actually anything from HeapSpaceRegion 1802 // that should be freed, even though we allow it here. 1803 // Of course, free() can work on memory allocated outside the current 1804 // function, so UnknownSpaceRegion is always a possibility. 1805 // False negatives are better than false positives. 1806 1807 if (isa<AllocaRegion>(R)) 1808 ReportFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); 1809 else 1810 ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); 1811 1812 return nullptr; 1813 } 1814 1815 const SymbolicRegion *SrBase = dyn_cast<SymbolicRegion>(R->getBaseRegion()); 1816 // Various cases could lead to non-symbol values here. 1817 // For now, ignore them. 1818 if (!SrBase) 1819 return nullptr; 1820 1821 SymbolRef SymBase = SrBase->getSymbol(); 1822 const RefState *RsBase = State->get<RegionState>(SymBase); 1823 SymbolRef PreviousRetStatusSymbol = nullptr; 1824 1825 IsKnownToBeAllocated = 1826 RsBase && (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero()); 1827 1828 if (RsBase) { 1829 1830 // Memory returned by alloca() shouldn't be freed. 1831 if (RsBase->getAllocationFamily() == AF_Alloca) { 1832 ReportFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); 1833 return nullptr; 1834 } 1835 1836 // Check for double free first. 1837 if ((RsBase->isReleased() || RsBase->isRelinquished()) && 1838 !didPreviousFreeFail(State, SymBase, PreviousRetStatusSymbol)) { 1839 ReportDoubleFree(C, ParentExpr->getSourceRange(), RsBase->isReleased(), 1840 SymBase, PreviousRetStatusSymbol); 1841 return nullptr; 1842 1843 // If the pointer is allocated or escaped, but we are now trying to free it, 1844 // check that the call to free is proper. 1845 } else if (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero() || 1846 RsBase->isEscaped()) { 1847 1848 // Check if an expected deallocation function matches the real one. 1849 bool DeallocMatchesAlloc = 1850 RsBase->getAllocationFamily() == 1851 getAllocationFamily(MemFunctionInfo, C, ParentExpr); 1852 if (!DeallocMatchesAlloc) { 1853 ReportMismatchedDealloc(C, ArgExpr->getSourceRange(), 1854 ParentExpr, RsBase, SymBase, Hold); 1855 return nullptr; 1856 } 1857 1858 // Check if the memory location being freed is the actual location 1859 // allocated, or an offset. 1860 RegionOffset Offset = R->getAsOffset(); 1861 if (Offset.isValid() && 1862 !Offset.hasSymbolicOffset() && 1863 Offset.getOffset() != 0) { 1864 const Expr *AllocExpr = cast<Expr>(RsBase->getStmt()); 1865 ReportOffsetFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 1866 AllocExpr); 1867 return nullptr; 1868 } 1869 } 1870 } 1871 1872 if (SymBase->getType()->isFunctionPointerType()) { 1873 ReportFunctionPointerFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); 1874 return nullptr; 1875 } 1876 1877 // Clean out the info on previous call to free return info. 1878 State = State->remove<FreeReturnValue>(SymBase); 1879 1880 // Keep track of the return value. If it is NULL, we will know that free 1881 // failed. 1882 if (ReturnsNullOnFailure) { 1883 SVal RetVal = C.getSVal(ParentExpr); 1884 SymbolRef RetStatusSymbol = RetVal.getAsSymbol(); 1885 if (RetStatusSymbol) { 1886 C.getSymbolManager().addSymbolDependency(SymBase, RetStatusSymbol); 1887 State = State->set<FreeReturnValue>(SymBase, RetStatusSymbol); 1888 } 1889 } 1890 1891 AllocationFamily Family = 1892 RsBase ? RsBase->getAllocationFamily() 1893 : getAllocationFamily(MemFunctionInfo, C, ParentExpr); 1894 // Normal free. 1895 if (Hold) 1896 return State->set<RegionState>(SymBase, 1897 RefState::getRelinquished(Family, 1898 ParentExpr)); 1899 1900 return State->set<RegionState>(SymBase, 1901 RefState::getReleased(Family, ParentExpr)); 1902 } 1903 1904 Optional<MallocChecker::CheckKind> 1905 MallocChecker::getCheckIfTracked(AllocationFamily Family, 1906 bool IsALeakCheck) const { 1907 switch (Family) { 1908 case AF_Malloc: 1909 case AF_Alloca: 1910 case AF_IfNameIndex: { 1911 if (ChecksEnabled[CK_MallocChecker]) 1912 return CK_MallocChecker; 1913 return None; 1914 } 1915 case AF_CXXNew: 1916 case AF_CXXNewArray: { 1917 if (IsALeakCheck) { 1918 if (ChecksEnabled[CK_NewDeleteLeaksChecker]) 1919 return CK_NewDeleteLeaksChecker; 1920 } 1921 else { 1922 if (ChecksEnabled[CK_NewDeleteChecker]) 1923 return CK_NewDeleteChecker; 1924 } 1925 return None; 1926 } 1927 case AF_InnerBuffer: { 1928 if (ChecksEnabled[CK_InnerPointerChecker]) 1929 return CK_InnerPointerChecker; 1930 return None; 1931 } 1932 case AF_None: { 1933 llvm_unreachable("no family"); 1934 } 1935 } 1936 llvm_unreachable("unhandled family"); 1937 } 1938 1939 Optional<MallocChecker::CheckKind> 1940 MallocChecker::getCheckIfTracked(CheckerContext &C, 1941 const Stmt *AllocDeallocStmt, 1942 bool IsALeakCheck) const { 1943 return getCheckIfTracked( 1944 getAllocationFamily(MemFunctionInfo, C, AllocDeallocStmt), IsALeakCheck); 1945 } 1946 1947 Optional<MallocChecker::CheckKind> 1948 MallocChecker::getCheckIfTracked(CheckerContext &C, SymbolRef Sym, 1949 bool IsALeakCheck) const { 1950 if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) 1951 return CK_MallocChecker; 1952 1953 const RefState *RS = C.getState()->get<RegionState>(Sym); 1954 assert(RS); 1955 return getCheckIfTracked(RS->getAllocationFamily(), IsALeakCheck); 1956 } 1957 1958 bool MallocChecker::SummarizeValue(raw_ostream &os, SVal V) { 1959 if (Optional<nonloc::ConcreteInt> IntVal = V.getAs<nonloc::ConcreteInt>()) 1960 os << "an integer (" << IntVal->getValue() << ")"; 1961 else if (Optional<loc::ConcreteInt> ConstAddr = V.getAs<loc::ConcreteInt>()) 1962 os << "a constant address (" << ConstAddr->getValue() << ")"; 1963 else if (Optional<loc::GotoLabel> Label = V.getAs<loc::GotoLabel>()) 1964 os << "the address of the label '" << Label->getLabel()->getName() << "'"; 1965 else 1966 return false; 1967 1968 return true; 1969 } 1970 1971 bool MallocChecker::SummarizeRegion(raw_ostream &os, 1972 const MemRegion *MR) { 1973 switch (MR->getKind()) { 1974 case MemRegion::FunctionCodeRegionKind: { 1975 const NamedDecl *FD = cast<FunctionCodeRegion>(MR)->getDecl(); 1976 if (FD) 1977 os << "the address of the function '" << *FD << '\''; 1978 else 1979 os << "the address of a function"; 1980 return true; 1981 } 1982 case MemRegion::BlockCodeRegionKind: 1983 os << "block text"; 1984 return true; 1985 case MemRegion::BlockDataRegionKind: 1986 // FIXME: where the block came from? 1987 os << "a block"; 1988 return true; 1989 default: { 1990 const MemSpaceRegion *MS = MR->getMemorySpace(); 1991 1992 if (isa<StackLocalsSpaceRegion>(MS)) { 1993 const VarRegion *VR = dyn_cast<VarRegion>(MR); 1994 const VarDecl *VD; 1995 if (VR) 1996 VD = VR->getDecl(); 1997 else 1998 VD = nullptr; 1999 2000 if (VD) 2001 os << "the address of the local variable '" << VD->getName() << "'"; 2002 else 2003 os << "the address of a local stack variable"; 2004 return true; 2005 } 2006 2007 if (isa<StackArgumentsSpaceRegion>(MS)) { 2008 const VarRegion *VR = dyn_cast<VarRegion>(MR); 2009 const VarDecl *VD; 2010 if (VR) 2011 VD = VR->getDecl(); 2012 else 2013 VD = nullptr; 2014 2015 if (VD) 2016 os << "the address of the parameter '" << VD->getName() << "'"; 2017 else 2018 os << "the address of a parameter"; 2019 return true; 2020 } 2021 2022 if (isa<GlobalsSpaceRegion>(MS)) { 2023 const VarRegion *VR = dyn_cast<VarRegion>(MR); 2024 const VarDecl *VD; 2025 if (VR) 2026 VD = VR->getDecl(); 2027 else 2028 VD = nullptr; 2029 2030 if (VD) { 2031 if (VD->isStaticLocal()) 2032 os << "the address of the static variable '" << VD->getName() << "'"; 2033 else 2034 os << "the address of the global variable '" << VD->getName() << "'"; 2035 } else 2036 os << "the address of a global variable"; 2037 return true; 2038 } 2039 2040 return false; 2041 } 2042 } 2043 } 2044 2045 void MallocChecker::ReportBadFree(CheckerContext &C, SVal ArgVal, 2046 SourceRange Range, 2047 const Expr *DeallocExpr) const { 2048 2049 if (!ChecksEnabled[CK_MallocChecker] && 2050 !ChecksEnabled[CK_NewDeleteChecker]) 2051 return; 2052 2053 Optional<MallocChecker::CheckKind> CheckKind = 2054 getCheckIfTracked(C, DeallocExpr); 2055 if (!CheckKind.hasValue()) 2056 return; 2057 2058 if (ExplodedNode *N = C.generateErrorNode()) { 2059 if (!BT_BadFree[*CheckKind]) 2060 BT_BadFree[*CheckKind].reset(new BugType( 2061 CheckNames[*CheckKind], "Bad free", categories::MemoryError)); 2062 2063 SmallString<100> buf; 2064 llvm::raw_svector_ostream os(buf); 2065 2066 const MemRegion *MR = ArgVal.getAsRegion(); 2067 while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR)) 2068 MR = ER->getSuperRegion(); 2069 2070 os << "Argument to "; 2071 if (!printAllocDeallocName(os, C, DeallocExpr)) 2072 os << "deallocator"; 2073 2074 os << " is "; 2075 bool Summarized = MR ? SummarizeRegion(os, MR) 2076 : SummarizeValue(os, ArgVal); 2077 if (Summarized) 2078 os << ", which is not memory allocated by "; 2079 else 2080 os << "not memory allocated by "; 2081 2082 printExpectedAllocName(os, MemFunctionInfo, C, DeallocExpr); 2083 2084 auto R = std::make_unique<PathSensitiveBugReport>(*BT_BadFree[*CheckKind], 2085 os.str(), N); 2086 R->markInteresting(MR); 2087 R->addRange(Range); 2088 C.emitReport(std::move(R)); 2089 } 2090 } 2091 2092 void MallocChecker::ReportFreeAlloca(CheckerContext &C, SVal ArgVal, 2093 SourceRange Range) const { 2094 2095 Optional<MallocChecker::CheckKind> CheckKind; 2096 2097 if (ChecksEnabled[CK_MallocChecker]) 2098 CheckKind = CK_MallocChecker; 2099 else if (ChecksEnabled[CK_MismatchedDeallocatorChecker]) 2100 CheckKind = CK_MismatchedDeallocatorChecker; 2101 else 2102 return; 2103 2104 if (ExplodedNode *N = C.generateErrorNode()) { 2105 if (!BT_FreeAlloca[*CheckKind]) 2106 BT_FreeAlloca[*CheckKind].reset(new BugType( 2107 CheckNames[*CheckKind], "Free alloca()", categories::MemoryError)); 2108 2109 auto R = std::make_unique<PathSensitiveBugReport>( 2110 *BT_FreeAlloca[*CheckKind], 2111 "Memory allocated by alloca() should not be deallocated", N); 2112 R->markInteresting(ArgVal.getAsRegion()); 2113 R->addRange(Range); 2114 C.emitReport(std::move(R)); 2115 } 2116 } 2117 2118 void MallocChecker::ReportMismatchedDealloc(CheckerContext &C, 2119 SourceRange Range, 2120 const Expr *DeallocExpr, 2121 const RefState *RS, 2122 SymbolRef Sym, 2123 bool OwnershipTransferred) const { 2124 2125 if (!ChecksEnabled[CK_MismatchedDeallocatorChecker]) 2126 return; 2127 2128 if (ExplodedNode *N = C.generateErrorNode()) { 2129 if (!BT_MismatchedDealloc) 2130 BT_MismatchedDealloc.reset( 2131 new BugType(CheckNames[CK_MismatchedDeallocatorChecker], 2132 "Bad deallocator", categories::MemoryError)); 2133 2134 SmallString<100> buf; 2135 llvm::raw_svector_ostream os(buf); 2136 2137 const Expr *AllocExpr = cast<Expr>(RS->getStmt()); 2138 SmallString<20> AllocBuf; 2139 llvm::raw_svector_ostream AllocOs(AllocBuf); 2140 SmallString<20> DeallocBuf; 2141 llvm::raw_svector_ostream DeallocOs(DeallocBuf); 2142 2143 if (OwnershipTransferred) { 2144 if (printAllocDeallocName(DeallocOs, C, DeallocExpr)) 2145 os << DeallocOs.str() << " cannot"; 2146 else 2147 os << "Cannot"; 2148 2149 os << " take ownership of memory"; 2150 2151 if (printAllocDeallocName(AllocOs, C, AllocExpr)) 2152 os << " allocated by " << AllocOs.str(); 2153 } else { 2154 os << "Memory"; 2155 if (printAllocDeallocName(AllocOs, C, AllocExpr)) 2156 os << " allocated by " << AllocOs.str(); 2157 2158 os << " should be deallocated by "; 2159 printExpectedDeallocName(os, RS->getAllocationFamily()); 2160 2161 if (printAllocDeallocName(DeallocOs, C, DeallocExpr)) 2162 os << ", not " << DeallocOs.str(); 2163 } 2164 2165 auto R = std::make_unique<PathSensitiveBugReport>(*BT_MismatchedDealloc, 2166 os.str(), N); 2167 R->markInteresting(Sym); 2168 R->addRange(Range); 2169 R->addVisitor(std::make_unique<MallocBugVisitor>(Sym)); 2170 C.emitReport(std::move(R)); 2171 } 2172 } 2173 2174 void MallocChecker::ReportOffsetFree(CheckerContext &C, SVal ArgVal, 2175 SourceRange Range, const Expr *DeallocExpr, 2176 const Expr *AllocExpr) const { 2177 2178 2179 if (!ChecksEnabled[CK_MallocChecker] && 2180 !ChecksEnabled[CK_NewDeleteChecker]) 2181 return; 2182 2183 Optional<MallocChecker::CheckKind> CheckKind = 2184 getCheckIfTracked(C, AllocExpr); 2185 if (!CheckKind.hasValue()) 2186 return; 2187 2188 ExplodedNode *N = C.generateErrorNode(); 2189 if (!N) 2190 return; 2191 2192 if (!BT_OffsetFree[*CheckKind]) 2193 BT_OffsetFree[*CheckKind].reset(new BugType( 2194 CheckNames[*CheckKind], "Offset free", categories::MemoryError)); 2195 2196 SmallString<100> buf; 2197 llvm::raw_svector_ostream os(buf); 2198 SmallString<20> AllocNameBuf; 2199 llvm::raw_svector_ostream AllocNameOs(AllocNameBuf); 2200 2201 const MemRegion *MR = ArgVal.getAsRegion(); 2202 assert(MR && "Only MemRegion based symbols can have offset free errors"); 2203 2204 RegionOffset Offset = MR->getAsOffset(); 2205 assert((Offset.isValid() && 2206 !Offset.hasSymbolicOffset() && 2207 Offset.getOffset() != 0) && 2208 "Only symbols with a valid offset can have offset free errors"); 2209 2210 int offsetBytes = Offset.getOffset() / C.getASTContext().getCharWidth(); 2211 2212 os << "Argument to "; 2213 if (!printAllocDeallocName(os, C, DeallocExpr)) 2214 os << "deallocator"; 2215 os << " is offset by " 2216 << offsetBytes 2217 << " " 2218 << ((abs(offsetBytes) > 1) ? "bytes" : "byte") 2219 << " from the start of "; 2220 if (AllocExpr && printAllocDeallocName(AllocNameOs, C, AllocExpr)) 2221 os << "memory allocated by " << AllocNameOs.str(); 2222 else 2223 os << "allocated memory"; 2224 2225 auto R = std::make_unique<PathSensitiveBugReport>(*BT_OffsetFree[*CheckKind], 2226 os.str(), N); 2227 R->markInteresting(MR->getBaseRegion()); 2228 R->addRange(Range); 2229 C.emitReport(std::move(R)); 2230 } 2231 2232 void MallocChecker::ReportUseAfterFree(CheckerContext &C, SourceRange Range, 2233 SymbolRef Sym) const { 2234 2235 if (!ChecksEnabled[CK_MallocChecker] && 2236 !ChecksEnabled[CK_NewDeleteChecker] && 2237 !ChecksEnabled[CK_InnerPointerChecker]) 2238 return; 2239 2240 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2241 if (!CheckKind.hasValue()) 2242 return; 2243 2244 if (ExplodedNode *N = C.generateErrorNode()) { 2245 if (!BT_UseFree[*CheckKind]) 2246 BT_UseFree[*CheckKind].reset(new BugType( 2247 CheckNames[*CheckKind], "Use-after-free", categories::MemoryError)); 2248 2249 AllocationFamily AF = 2250 C.getState()->get<RegionState>(Sym)->getAllocationFamily(); 2251 2252 auto R = std::make_unique<PathSensitiveBugReport>( 2253 *BT_UseFree[*CheckKind], 2254 AF == AF_InnerBuffer 2255 ? "Inner pointer of container used after re/deallocation" 2256 : "Use of memory after it is freed", 2257 N); 2258 2259 R->markInteresting(Sym); 2260 R->addRange(Range); 2261 R->addVisitor(std::make_unique<MallocBugVisitor>(Sym)); 2262 2263 if (AF == AF_InnerBuffer) 2264 R->addVisitor(allocation_state::getInnerPointerBRVisitor(Sym)); 2265 2266 C.emitReport(std::move(R)); 2267 } 2268 } 2269 2270 void MallocChecker::ReportDoubleFree(CheckerContext &C, SourceRange Range, 2271 bool Released, SymbolRef Sym, 2272 SymbolRef PrevSym) const { 2273 2274 if (!ChecksEnabled[CK_MallocChecker] && 2275 !ChecksEnabled[CK_NewDeleteChecker]) 2276 return; 2277 2278 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2279 if (!CheckKind.hasValue()) 2280 return; 2281 2282 if (ExplodedNode *N = C.generateErrorNode()) { 2283 if (!BT_DoubleFree[*CheckKind]) 2284 BT_DoubleFree[*CheckKind].reset(new BugType( 2285 CheckNames[*CheckKind], "Double free", categories::MemoryError)); 2286 2287 auto R = std::make_unique<PathSensitiveBugReport>( 2288 *BT_DoubleFree[*CheckKind], 2289 (Released ? "Attempt to free released memory" 2290 : "Attempt to free non-owned memory"), 2291 N); 2292 R->addRange(Range); 2293 R->markInteresting(Sym); 2294 if (PrevSym) 2295 R->markInteresting(PrevSym); 2296 R->addVisitor(std::make_unique<MallocBugVisitor>(Sym)); 2297 C.emitReport(std::move(R)); 2298 } 2299 } 2300 2301 void MallocChecker::ReportDoubleDelete(CheckerContext &C, SymbolRef Sym) const { 2302 2303 if (!ChecksEnabled[CK_NewDeleteChecker]) 2304 return; 2305 2306 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2307 if (!CheckKind.hasValue()) 2308 return; 2309 2310 if (ExplodedNode *N = C.generateErrorNode()) { 2311 if (!BT_DoubleDelete) 2312 BT_DoubleDelete.reset(new BugType(CheckNames[CK_NewDeleteChecker], 2313 "Double delete", 2314 categories::MemoryError)); 2315 2316 auto R = std::make_unique<PathSensitiveBugReport>( 2317 *BT_DoubleDelete, "Attempt to delete released memory", N); 2318 2319 R->markInteresting(Sym); 2320 R->addVisitor(std::make_unique<MallocBugVisitor>(Sym)); 2321 C.emitReport(std::move(R)); 2322 } 2323 } 2324 2325 void MallocChecker::ReportUseZeroAllocated(CheckerContext &C, 2326 SourceRange Range, 2327 SymbolRef Sym) const { 2328 2329 if (!ChecksEnabled[CK_MallocChecker] && 2330 !ChecksEnabled[CK_NewDeleteChecker]) 2331 return; 2332 2333 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2334 2335 if (!CheckKind.hasValue()) 2336 return; 2337 2338 if (ExplodedNode *N = C.generateErrorNode()) { 2339 if (!BT_UseZerroAllocated[*CheckKind]) 2340 BT_UseZerroAllocated[*CheckKind].reset( 2341 new BugType(CheckNames[*CheckKind], "Use of zero allocated", 2342 categories::MemoryError)); 2343 2344 auto R = std::make_unique<PathSensitiveBugReport>( 2345 *BT_UseZerroAllocated[*CheckKind], "Use of zero-allocated memory", N); 2346 2347 R->addRange(Range); 2348 if (Sym) { 2349 R->markInteresting(Sym); 2350 R->addVisitor(std::make_unique<MallocBugVisitor>(Sym)); 2351 } 2352 C.emitReport(std::move(R)); 2353 } 2354 } 2355 2356 void MallocChecker::ReportFunctionPointerFree(CheckerContext &C, SVal ArgVal, 2357 SourceRange Range, 2358 const Expr *FreeExpr) const { 2359 if (!ChecksEnabled[CK_MallocChecker]) 2360 return; 2361 2362 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, FreeExpr); 2363 if (!CheckKind.hasValue()) 2364 return; 2365 2366 if (ExplodedNode *N = C.generateErrorNode()) { 2367 if (!BT_BadFree[*CheckKind]) 2368 BT_BadFree[*CheckKind].reset(new BugType( 2369 CheckNames[*CheckKind], "Bad free", categories::MemoryError)); 2370 2371 SmallString<100> Buf; 2372 llvm::raw_svector_ostream Os(Buf); 2373 2374 const MemRegion *MR = ArgVal.getAsRegion(); 2375 while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR)) 2376 MR = ER->getSuperRegion(); 2377 2378 Os << "Argument to "; 2379 if (!printAllocDeallocName(Os, C, FreeExpr)) 2380 Os << "deallocator"; 2381 2382 Os << " is a function pointer"; 2383 2384 auto R = std::make_unique<PathSensitiveBugReport>(*BT_BadFree[*CheckKind], 2385 Os.str(), N); 2386 R->markInteresting(MR); 2387 R->addRange(Range); 2388 C.emitReport(std::move(R)); 2389 } 2390 } 2391 2392 ProgramStateRef MallocChecker::ReallocMemAux(CheckerContext &C, 2393 const CallExpr *CE, 2394 bool ShouldFreeOnFail, 2395 ProgramStateRef State, 2396 bool SuffixWithN) const { 2397 if (!State) 2398 return nullptr; 2399 2400 if (SuffixWithN && CE->getNumArgs() < 3) 2401 return nullptr; 2402 else if (CE->getNumArgs() < 2) 2403 return nullptr; 2404 2405 const Expr *arg0Expr = CE->getArg(0); 2406 SVal Arg0Val = C.getSVal(arg0Expr); 2407 if (!Arg0Val.getAs<DefinedOrUnknownSVal>()) 2408 return nullptr; 2409 DefinedOrUnknownSVal arg0Val = Arg0Val.castAs<DefinedOrUnknownSVal>(); 2410 2411 SValBuilder &svalBuilder = C.getSValBuilder(); 2412 2413 DefinedOrUnknownSVal PtrEQ = 2414 svalBuilder.evalEQ(State, arg0Val, svalBuilder.makeNull()); 2415 2416 // Get the size argument. 2417 const Expr *Arg1 = CE->getArg(1); 2418 2419 // Get the value of the size argument. 2420 SVal TotalSize = C.getSVal(Arg1); 2421 if (SuffixWithN) 2422 TotalSize = evalMulForBufferSize(C, Arg1, CE->getArg(2)); 2423 if (!TotalSize.getAs<DefinedOrUnknownSVal>()) 2424 return nullptr; 2425 2426 // Compare the size argument to 0. 2427 DefinedOrUnknownSVal SizeZero = 2428 svalBuilder.evalEQ(State, TotalSize.castAs<DefinedOrUnknownSVal>(), 2429 svalBuilder.makeIntValWithPtrWidth(0, false)); 2430 2431 ProgramStateRef StatePtrIsNull, StatePtrNotNull; 2432 std::tie(StatePtrIsNull, StatePtrNotNull) = State->assume(PtrEQ); 2433 ProgramStateRef StateSizeIsZero, StateSizeNotZero; 2434 std::tie(StateSizeIsZero, StateSizeNotZero) = State->assume(SizeZero); 2435 // We only assume exceptional states if they are definitely true; if the 2436 // state is under-constrained, assume regular realloc behavior. 2437 bool PrtIsNull = StatePtrIsNull && !StatePtrNotNull; 2438 bool SizeIsZero = StateSizeIsZero && !StateSizeNotZero; 2439 2440 // If the ptr is NULL and the size is not 0, the call is equivalent to 2441 // malloc(size). 2442 if (PrtIsNull && !SizeIsZero) { 2443 ProgramStateRef stateMalloc = MallocMemAux(C, CE, TotalSize, 2444 UndefinedVal(), StatePtrIsNull); 2445 return stateMalloc; 2446 } 2447 2448 if (PrtIsNull && SizeIsZero) 2449 return State; 2450 2451 // Get the from and to pointer symbols as in toPtr = realloc(fromPtr, size). 2452 assert(!PrtIsNull); 2453 SymbolRef FromPtr = arg0Val.getAsSymbol(); 2454 SVal RetVal = C.getSVal(CE); 2455 SymbolRef ToPtr = RetVal.getAsSymbol(); 2456 if (!FromPtr || !ToPtr) 2457 return nullptr; 2458 2459 bool IsKnownToBeAllocated = false; 2460 2461 // If the size is 0, free the memory. 2462 if (SizeIsZero) 2463 // The semantics of the return value are: 2464 // If size was equal to 0, either NULL or a pointer suitable to be passed 2465 // to free() is returned. We just free the input pointer and do not add 2466 // any constrains on the output pointer. 2467 if (ProgramStateRef stateFree = 2468 FreeMemAux(C, CE, StateSizeIsZero, 0, false, IsKnownToBeAllocated)) 2469 return stateFree; 2470 2471 // Default behavior. 2472 if (ProgramStateRef stateFree = 2473 FreeMemAux(C, CE, State, 0, false, IsKnownToBeAllocated)) { 2474 2475 ProgramStateRef stateRealloc = MallocMemAux(C, CE, TotalSize, 2476 UnknownVal(), stateFree); 2477 if (!stateRealloc) 2478 return nullptr; 2479 2480 OwnershipAfterReallocKind Kind = OAR_ToBeFreedAfterFailure; 2481 if (ShouldFreeOnFail) 2482 Kind = OAR_FreeOnFailure; 2483 else if (!IsKnownToBeAllocated) 2484 Kind = OAR_DoNotTrackAfterFailure; 2485 2486 // Record the info about the reallocated symbol so that we could properly 2487 // process failed reallocation. 2488 stateRealloc = stateRealloc->set<ReallocPairs>(ToPtr, 2489 ReallocPair(FromPtr, Kind)); 2490 // The reallocated symbol should stay alive for as long as the new symbol. 2491 C.getSymbolManager().addSymbolDependency(ToPtr, FromPtr); 2492 return stateRealloc; 2493 } 2494 return nullptr; 2495 } 2496 2497 ProgramStateRef MallocChecker::CallocMem(CheckerContext &C, const CallExpr *CE, 2498 ProgramStateRef State) { 2499 if (!State) 2500 return nullptr; 2501 2502 if (CE->getNumArgs() < 2) 2503 return nullptr; 2504 2505 SValBuilder &svalBuilder = C.getSValBuilder(); 2506 SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy); 2507 SVal TotalSize = evalMulForBufferSize(C, CE->getArg(0), CE->getArg(1)); 2508 2509 return MallocMemAux(C, CE, TotalSize, zeroVal, State); 2510 } 2511 2512 MallocChecker::LeakInfo MallocChecker::getAllocationSite(const ExplodedNode *N, 2513 SymbolRef Sym, 2514 CheckerContext &C) { 2515 const LocationContext *LeakContext = N->getLocationContext(); 2516 // Walk the ExplodedGraph backwards and find the first node that referred to 2517 // the tracked symbol. 2518 const ExplodedNode *AllocNode = N; 2519 const MemRegion *ReferenceRegion = nullptr; 2520 2521 while (N) { 2522 ProgramStateRef State = N->getState(); 2523 if (!State->get<RegionState>(Sym)) 2524 break; 2525 2526 // Find the most recent expression bound to the symbol in the current 2527 // context. 2528 if (!ReferenceRegion) { 2529 if (const MemRegion *MR = C.getLocationRegionIfPostStore(N)) { 2530 SVal Val = State->getSVal(MR); 2531 if (Val.getAsLocSymbol() == Sym) { 2532 const VarRegion* VR = MR->getBaseRegion()->getAs<VarRegion>(); 2533 // Do not show local variables belonging to a function other than 2534 // where the error is reported. 2535 if (!VR || 2536 (VR->getStackFrame() == LeakContext->getStackFrame())) 2537 ReferenceRegion = MR; 2538 } 2539 } 2540 } 2541 2542 // Allocation node, is the last node in the current or parent context in 2543 // which the symbol was tracked. 2544 const LocationContext *NContext = N->getLocationContext(); 2545 if (NContext == LeakContext || 2546 NContext->isParentOf(LeakContext)) 2547 AllocNode = N; 2548 N = N->pred_empty() ? nullptr : *(N->pred_begin()); 2549 } 2550 2551 return LeakInfo(AllocNode, ReferenceRegion); 2552 } 2553 2554 void MallocChecker::reportLeak(SymbolRef Sym, ExplodedNode *N, 2555 CheckerContext &C) const { 2556 2557 if (!ChecksEnabled[CK_MallocChecker] && 2558 !ChecksEnabled[CK_NewDeleteLeaksChecker]) 2559 return; 2560 2561 const RefState *RS = C.getState()->get<RegionState>(Sym); 2562 assert(RS && "cannot leak an untracked symbol"); 2563 AllocationFamily Family = RS->getAllocationFamily(); 2564 2565 if (Family == AF_Alloca) 2566 return; 2567 2568 Optional<MallocChecker::CheckKind> 2569 CheckKind = getCheckIfTracked(Family, true); 2570 2571 if (!CheckKind.hasValue()) 2572 return; 2573 2574 assert(N); 2575 if (!BT_Leak[*CheckKind]) { 2576 // Leaks should not be reported if they are post-dominated by a sink: 2577 // (1) Sinks are higher importance bugs. 2578 // (2) NoReturnFunctionChecker uses sink nodes to represent paths ending 2579 // with __noreturn functions such as assert() or exit(). We choose not 2580 // to report leaks on such paths. 2581 BT_Leak[*CheckKind].reset(new BugType(CheckNames[*CheckKind], "Memory leak", 2582 categories::MemoryError, 2583 /*SuppressOnSink=*/true)); 2584 } 2585 2586 // Most bug reports are cached at the location where they occurred. 2587 // With leaks, we want to unique them by the location where they were 2588 // allocated, and only report a single path. 2589 PathDiagnosticLocation LocUsedForUniqueing; 2590 const ExplodedNode *AllocNode = nullptr; 2591 const MemRegion *Region = nullptr; 2592 std::tie(AllocNode, Region) = getAllocationSite(N, Sym, C); 2593 2594 const Stmt *AllocationStmt = AllocNode->getStmtForDiagnostics(); 2595 if (AllocationStmt) 2596 LocUsedForUniqueing = PathDiagnosticLocation::createBegin(AllocationStmt, 2597 C.getSourceManager(), 2598 AllocNode->getLocationContext()); 2599 2600 SmallString<200> buf; 2601 llvm::raw_svector_ostream os(buf); 2602 if (Region && Region->canPrintPretty()) { 2603 os << "Potential leak of memory pointed to by "; 2604 Region->printPretty(os); 2605 } else { 2606 os << "Potential memory leak"; 2607 } 2608 2609 auto R = std::make_unique<PathSensitiveBugReport>( 2610 *BT_Leak[*CheckKind], os.str(), N, LocUsedForUniqueing, 2611 AllocNode->getLocationContext()->getDecl()); 2612 R->markInteresting(Sym); 2613 R->addVisitor(std::make_unique<MallocBugVisitor>(Sym, true)); 2614 C.emitReport(std::move(R)); 2615 } 2616 2617 void MallocChecker::checkDeadSymbols(SymbolReaper &SymReaper, 2618 CheckerContext &C) const 2619 { 2620 ProgramStateRef state = C.getState(); 2621 RegionStateTy OldRS = state->get<RegionState>(); 2622 RegionStateTy::Factory &F = state->get_context<RegionState>(); 2623 2624 RegionStateTy RS = OldRS; 2625 SmallVector<SymbolRef, 2> Errors; 2626 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 2627 if (SymReaper.isDead(I->first)) { 2628 if (I->second.isAllocated() || I->second.isAllocatedOfSizeZero()) 2629 Errors.push_back(I->first); 2630 // Remove the dead symbol from the map. 2631 RS = F.remove(RS, I->first); 2632 } 2633 } 2634 2635 if (RS == OldRS) { 2636 // We shouldn't have touched other maps yet. 2637 assert(state->get<ReallocPairs>() == 2638 C.getState()->get<ReallocPairs>()); 2639 assert(state->get<FreeReturnValue>() == 2640 C.getState()->get<FreeReturnValue>()); 2641 return; 2642 } 2643 2644 // Cleanup the Realloc Pairs Map. 2645 ReallocPairsTy RP = state->get<ReallocPairs>(); 2646 for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) { 2647 if (SymReaper.isDead(I->first) || 2648 SymReaper.isDead(I->second.ReallocatedSym)) { 2649 state = state->remove<ReallocPairs>(I->first); 2650 } 2651 } 2652 2653 // Cleanup the FreeReturnValue Map. 2654 FreeReturnValueTy FR = state->get<FreeReturnValue>(); 2655 for (FreeReturnValueTy::iterator I = FR.begin(), E = FR.end(); I != E; ++I) { 2656 if (SymReaper.isDead(I->first) || 2657 SymReaper.isDead(I->second)) { 2658 state = state->remove<FreeReturnValue>(I->first); 2659 } 2660 } 2661 2662 // Generate leak node. 2663 ExplodedNode *N = C.getPredecessor(); 2664 if (!Errors.empty()) { 2665 static CheckerProgramPointTag Tag("MallocChecker", "DeadSymbolsLeak"); 2666 N = C.generateNonFatalErrorNode(C.getState(), &Tag); 2667 if (N) { 2668 for (SmallVectorImpl<SymbolRef>::iterator 2669 I = Errors.begin(), E = Errors.end(); I != E; ++I) { 2670 reportLeak(*I, N, C); 2671 } 2672 } 2673 } 2674 2675 C.addTransition(state->set<RegionState>(RS), N); 2676 } 2677 2678 void MallocChecker::checkPreCall(const CallEvent &Call, 2679 CheckerContext &C) const { 2680 2681 if (const CXXDestructorCall *DC = dyn_cast<CXXDestructorCall>(&Call)) { 2682 SymbolRef Sym = DC->getCXXThisVal().getAsSymbol(); 2683 if (!Sym || checkDoubleDelete(Sym, C)) 2684 return; 2685 } 2686 2687 // We will check for double free in the post visit. 2688 if (const AnyFunctionCall *FC = dyn_cast<AnyFunctionCall>(&Call)) { 2689 const FunctionDecl *FD = FC->getDecl(); 2690 if (!FD) 2691 return; 2692 2693 ASTContext &Ctx = C.getASTContext(); 2694 if (ChecksEnabled[CK_MallocChecker] && 2695 (MemFunctionInfo.isCMemFunction(FD, Ctx, AF_Malloc, 2696 MemoryOperationKind::MOK_Free) || 2697 MemFunctionInfo.isCMemFunction(FD, Ctx, AF_IfNameIndex, 2698 MemoryOperationKind::MOK_Free))) 2699 return; 2700 } 2701 2702 // Check if the callee of a method is deleted. 2703 if (const CXXInstanceCall *CC = dyn_cast<CXXInstanceCall>(&Call)) { 2704 SymbolRef Sym = CC->getCXXThisVal().getAsSymbol(); 2705 if (!Sym || checkUseAfterFree(Sym, C, CC->getCXXThisExpr())) 2706 return; 2707 } 2708 2709 // Check arguments for being used after free. 2710 for (unsigned I = 0, E = Call.getNumArgs(); I != E; ++I) { 2711 SVal ArgSVal = Call.getArgSVal(I); 2712 if (ArgSVal.getAs<Loc>()) { 2713 SymbolRef Sym = ArgSVal.getAsSymbol(); 2714 if (!Sym) 2715 continue; 2716 if (checkUseAfterFree(Sym, C, Call.getArgExpr(I))) 2717 return; 2718 } 2719 } 2720 } 2721 2722 void MallocChecker::checkPreStmt(const ReturnStmt *S, 2723 CheckerContext &C) const { 2724 checkEscapeOnReturn(S, C); 2725 } 2726 2727 // In the CFG, automatic destructors come after the return statement. 2728 // This callback checks for returning memory that is freed by automatic 2729 // destructors, as those cannot be reached in checkPreStmt(). 2730 void MallocChecker::checkEndFunction(const ReturnStmt *S, 2731 CheckerContext &C) const { 2732 checkEscapeOnReturn(S, C); 2733 } 2734 2735 void MallocChecker::checkEscapeOnReturn(const ReturnStmt *S, 2736 CheckerContext &C) const { 2737 if (!S) 2738 return; 2739 2740 const Expr *E = S->getRetValue(); 2741 if (!E) 2742 return; 2743 2744 // Check if we are returning a symbol. 2745 ProgramStateRef State = C.getState(); 2746 SVal RetVal = C.getSVal(E); 2747 SymbolRef Sym = RetVal.getAsSymbol(); 2748 if (!Sym) 2749 // If we are returning a field of the allocated struct or an array element, 2750 // the callee could still free the memory. 2751 // TODO: This logic should be a part of generic symbol escape callback. 2752 if (const MemRegion *MR = RetVal.getAsRegion()) 2753 if (isa<FieldRegion>(MR) || isa<ElementRegion>(MR)) 2754 if (const SymbolicRegion *BMR = 2755 dyn_cast<SymbolicRegion>(MR->getBaseRegion())) 2756 Sym = BMR->getSymbol(); 2757 2758 // Check if we are returning freed memory. 2759 if (Sym) 2760 checkUseAfterFree(Sym, C, E); 2761 } 2762 2763 // TODO: Blocks should be either inlined or should call invalidate regions 2764 // upon invocation. After that's in place, special casing here will not be 2765 // needed. 2766 void MallocChecker::checkPostStmt(const BlockExpr *BE, 2767 CheckerContext &C) const { 2768 2769 // Scan the BlockDecRefExprs for any object the retain count checker 2770 // may be tracking. 2771 if (!BE->getBlockDecl()->hasCaptures()) 2772 return; 2773 2774 ProgramStateRef state = C.getState(); 2775 const BlockDataRegion *R = 2776 cast<BlockDataRegion>(C.getSVal(BE).getAsRegion()); 2777 2778 BlockDataRegion::referenced_vars_iterator I = R->referenced_vars_begin(), 2779 E = R->referenced_vars_end(); 2780 2781 if (I == E) 2782 return; 2783 2784 SmallVector<const MemRegion*, 10> Regions; 2785 const LocationContext *LC = C.getLocationContext(); 2786 MemRegionManager &MemMgr = C.getSValBuilder().getRegionManager(); 2787 2788 for ( ; I != E; ++I) { 2789 const VarRegion *VR = I.getCapturedRegion(); 2790 if (VR->getSuperRegion() == R) { 2791 VR = MemMgr.getVarRegion(VR->getDecl(), LC); 2792 } 2793 Regions.push_back(VR); 2794 } 2795 2796 state = 2797 state->scanReachableSymbols<StopTrackingCallback>(Regions).getState(); 2798 C.addTransition(state); 2799 } 2800 2801 static bool isReleased(SymbolRef Sym, CheckerContext &C) { 2802 assert(Sym); 2803 const RefState *RS = C.getState()->get<RegionState>(Sym); 2804 return (RS && RS->isReleased()); 2805 } 2806 2807 bool MallocChecker::suppressDeallocationsInSuspiciousContexts( 2808 const CallExpr *CE, CheckerContext &C) const { 2809 if (CE->getNumArgs() == 0) 2810 return false; 2811 2812 StringRef FunctionStr = ""; 2813 if (const auto *FD = dyn_cast<FunctionDecl>(C.getStackFrame()->getDecl())) 2814 if (const Stmt *Body = FD->getBody()) 2815 if (Body->getBeginLoc().isValid()) 2816 FunctionStr = 2817 Lexer::getSourceText(CharSourceRange::getTokenRange( 2818 {FD->getBeginLoc(), Body->getBeginLoc()}), 2819 C.getSourceManager(), C.getLangOpts()); 2820 2821 // We do not model the Integer Set Library's retain-count based allocation. 2822 if (!FunctionStr.contains("__isl_")) 2823 return false; 2824 2825 ProgramStateRef State = C.getState(); 2826 2827 for (const Expr *Arg : CE->arguments()) 2828 if (SymbolRef Sym = C.getSVal(Arg).getAsSymbol()) 2829 if (const RefState *RS = State->get<RegionState>(Sym)) 2830 State = State->set<RegionState>(Sym, RefState::getEscaped(RS)); 2831 2832 C.addTransition(State); 2833 return true; 2834 } 2835 2836 bool MallocChecker::checkUseAfterFree(SymbolRef Sym, CheckerContext &C, 2837 const Stmt *S) const { 2838 2839 if (isReleased(Sym, C)) { 2840 ReportUseAfterFree(C, S->getSourceRange(), Sym); 2841 return true; 2842 } 2843 2844 return false; 2845 } 2846 2847 void MallocChecker::checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, 2848 const Stmt *S) const { 2849 assert(Sym); 2850 2851 if (const RefState *RS = C.getState()->get<RegionState>(Sym)) { 2852 if (RS->isAllocatedOfSizeZero()) 2853 ReportUseZeroAllocated(C, RS->getStmt()->getSourceRange(), Sym); 2854 } 2855 else if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) { 2856 ReportUseZeroAllocated(C, S->getSourceRange(), Sym); 2857 } 2858 } 2859 2860 bool MallocChecker::checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const { 2861 2862 if (isReleased(Sym, C)) { 2863 ReportDoubleDelete(C, Sym); 2864 return true; 2865 } 2866 return false; 2867 } 2868 2869 // Check if the location is a freed symbolic region. 2870 void MallocChecker::checkLocation(SVal l, bool isLoad, const Stmt *S, 2871 CheckerContext &C) const { 2872 SymbolRef Sym = l.getLocSymbolInBase(); 2873 if (Sym) { 2874 checkUseAfterFree(Sym, C, S); 2875 checkUseZeroAllocated(Sym, C, S); 2876 } 2877 } 2878 2879 // If a symbolic region is assumed to NULL (or another constant), stop tracking 2880 // it - assuming that allocation failed on this path. 2881 ProgramStateRef MallocChecker::evalAssume(ProgramStateRef state, 2882 SVal Cond, 2883 bool Assumption) const { 2884 RegionStateTy RS = state->get<RegionState>(); 2885 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 2886 // If the symbol is assumed to be NULL, remove it from consideration. 2887 ConstraintManager &CMgr = state->getConstraintManager(); 2888 ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey()); 2889 if (AllocFailed.isConstrainedTrue()) 2890 state = state->remove<RegionState>(I.getKey()); 2891 } 2892 2893 // Realloc returns 0 when reallocation fails, which means that we should 2894 // restore the state of the pointer being reallocated. 2895 ReallocPairsTy RP = state->get<ReallocPairs>(); 2896 for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) { 2897 // If the symbol is assumed to be NULL, remove it from consideration. 2898 ConstraintManager &CMgr = state->getConstraintManager(); 2899 ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey()); 2900 if (!AllocFailed.isConstrainedTrue()) 2901 continue; 2902 2903 SymbolRef ReallocSym = I.getData().ReallocatedSym; 2904 if (const RefState *RS = state->get<RegionState>(ReallocSym)) { 2905 if (RS->isReleased()) { 2906 switch (I.getData().Kind) { 2907 case OAR_ToBeFreedAfterFailure: 2908 state = state->set<RegionState>(ReallocSym, 2909 RefState::getAllocated(RS->getAllocationFamily(), RS->getStmt())); 2910 break; 2911 case OAR_DoNotTrackAfterFailure: 2912 state = state->remove<RegionState>(ReallocSym); 2913 break; 2914 default: 2915 assert(I.getData().Kind == OAR_FreeOnFailure); 2916 } 2917 } 2918 } 2919 state = state->remove<ReallocPairs>(I.getKey()); 2920 } 2921 2922 return state; 2923 } 2924 2925 bool MallocChecker::mayFreeAnyEscapedMemoryOrIsModeledExplicitly( 2926 const CallEvent *Call, 2927 ProgramStateRef State, 2928 SymbolRef &EscapingSymbol) const { 2929 assert(Call); 2930 EscapingSymbol = nullptr; 2931 2932 // For now, assume that any C++ or block call can free memory. 2933 // TODO: If we want to be more optimistic here, we'll need to make sure that 2934 // regions escape to C++ containers. They seem to do that even now, but for 2935 // mysterious reasons. 2936 if (!(isa<SimpleFunctionCall>(Call) || isa<ObjCMethodCall>(Call))) 2937 return true; 2938 2939 // Check Objective-C messages by selector name. 2940 if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Call)) { 2941 // If it's not a framework call, or if it takes a callback, assume it 2942 // can free memory. 2943 if (!Call->isInSystemHeader() || Call->argumentsMayEscape()) 2944 return true; 2945 2946 // If it's a method we know about, handle it explicitly post-call. 2947 // This should happen before the "freeWhenDone" check below. 2948 if (isKnownDeallocObjCMethodName(*Msg)) 2949 return false; 2950 2951 // If there's a "freeWhenDone" parameter, but the method isn't one we know 2952 // about, we can't be sure that the object will use free() to deallocate the 2953 // memory, so we can't model it explicitly. The best we can do is use it to 2954 // decide whether the pointer escapes. 2955 if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(*Msg)) 2956 return *FreeWhenDone; 2957 2958 // If the first selector piece ends with "NoCopy", and there is no 2959 // "freeWhenDone" parameter set to zero, we know ownership is being 2960 // transferred. Again, though, we can't be sure that the object will use 2961 // free() to deallocate the memory, so we can't model it explicitly. 2962 StringRef FirstSlot = Msg->getSelector().getNameForSlot(0); 2963 if (FirstSlot.endswith("NoCopy")) 2964 return true; 2965 2966 // If the first selector starts with addPointer, insertPointer, 2967 // or replacePointer, assume we are dealing with NSPointerArray or similar. 2968 // This is similar to C++ containers (vector); we still might want to check 2969 // that the pointers get freed by following the container itself. 2970 if (FirstSlot.startswith("addPointer") || 2971 FirstSlot.startswith("insertPointer") || 2972 FirstSlot.startswith("replacePointer") || 2973 FirstSlot.equals("valueWithPointer")) { 2974 return true; 2975 } 2976 2977 // We should escape receiver on call to 'init'. This is especially relevant 2978 // to the receiver, as the corresponding symbol is usually not referenced 2979 // after the call. 2980 if (Msg->getMethodFamily() == OMF_init) { 2981 EscapingSymbol = Msg->getReceiverSVal().getAsSymbol(); 2982 return true; 2983 } 2984 2985 // Otherwise, assume that the method does not free memory. 2986 // Most framework methods do not free memory. 2987 return false; 2988 } 2989 2990 // At this point the only thing left to handle is straight function calls. 2991 const FunctionDecl *FD = cast<SimpleFunctionCall>(Call)->getDecl(); 2992 if (!FD) 2993 return true; 2994 2995 ASTContext &ASTC = State->getStateManager().getContext(); 2996 2997 // If it's one of the allocation functions we can reason about, we model 2998 // its behavior explicitly. 2999 if (MemFunctionInfo.isMemFunction(FD, ASTC)) 3000 return false; 3001 3002 // If it's not a system call, assume it frees memory. 3003 if (!Call->isInSystemHeader()) 3004 return true; 3005 3006 // White list the system functions whose arguments escape. 3007 const IdentifierInfo *II = FD->getIdentifier(); 3008 if (!II) 3009 return true; 3010 StringRef FName = II->getName(); 3011 3012 // White list the 'XXXNoCopy' CoreFoundation functions. 3013 // We specifically check these before 3014 if (FName.endswith("NoCopy")) { 3015 // Look for the deallocator argument. We know that the memory ownership 3016 // is not transferred only if the deallocator argument is 3017 // 'kCFAllocatorNull'. 3018 for (unsigned i = 1; i < Call->getNumArgs(); ++i) { 3019 const Expr *ArgE = Call->getArgExpr(i)->IgnoreParenCasts(); 3020 if (const DeclRefExpr *DE = dyn_cast<DeclRefExpr>(ArgE)) { 3021 StringRef DeallocatorName = DE->getFoundDecl()->getName(); 3022 if (DeallocatorName == "kCFAllocatorNull") 3023 return false; 3024 } 3025 } 3026 return true; 3027 } 3028 3029 // Associating streams with malloced buffers. The pointer can escape if 3030 // 'closefn' is specified (and if that function does free memory), 3031 // but it will not if closefn is not specified. 3032 // Currently, we do not inspect the 'closefn' function (PR12101). 3033 if (FName == "funopen") 3034 if (Call->getNumArgs() >= 4 && Call->getArgSVal(4).isConstant(0)) 3035 return false; 3036 3037 // Do not warn on pointers passed to 'setbuf' when used with std streams, 3038 // these leaks might be intentional when setting the buffer for stdio. 3039 // http://stackoverflow.com/questions/2671151/who-frees-setvbuf-buffer 3040 if (FName == "setbuf" || FName =="setbuffer" || 3041 FName == "setlinebuf" || FName == "setvbuf") { 3042 if (Call->getNumArgs() >= 1) { 3043 const Expr *ArgE = Call->getArgExpr(0)->IgnoreParenCasts(); 3044 if (const DeclRefExpr *ArgDRE = dyn_cast<DeclRefExpr>(ArgE)) 3045 if (const VarDecl *D = dyn_cast<VarDecl>(ArgDRE->getDecl())) 3046 if (D->getCanonicalDecl()->getName().find("std") != StringRef::npos) 3047 return true; 3048 } 3049 } 3050 3051 // A bunch of other functions which either take ownership of a pointer or 3052 // wrap the result up in a struct or object, meaning it can be freed later. 3053 // (See RetainCountChecker.) Not all the parameters here are invalidated, 3054 // but the Malloc checker cannot differentiate between them. The right way 3055 // of doing this would be to implement a pointer escapes callback. 3056 if (FName == "CGBitmapContextCreate" || 3057 FName == "CGBitmapContextCreateWithData" || 3058 FName == "CVPixelBufferCreateWithBytes" || 3059 FName == "CVPixelBufferCreateWithPlanarBytes" || 3060 FName == "OSAtomicEnqueue") { 3061 return true; 3062 } 3063 3064 if (FName == "postEvent" && 3065 FD->getQualifiedNameAsString() == "QCoreApplication::postEvent") { 3066 return true; 3067 } 3068 3069 if (FName == "postEvent" && 3070 FD->getQualifiedNameAsString() == "QCoreApplication::postEvent") { 3071 return true; 3072 } 3073 3074 if (FName == "connectImpl" && 3075 FD->getQualifiedNameAsString() == "QObject::connectImpl") { 3076 return true; 3077 } 3078 3079 // Handle cases where we know a buffer's /address/ can escape. 3080 // Note that the above checks handle some special cases where we know that 3081 // even though the address escapes, it's still our responsibility to free the 3082 // buffer. 3083 if (Call->argumentsMayEscape()) 3084 return true; 3085 3086 // Otherwise, assume that the function does not free memory. 3087 // Most system calls do not free the memory. 3088 return false; 3089 } 3090 3091 ProgramStateRef MallocChecker::checkPointerEscape(ProgramStateRef State, 3092 const InvalidatedSymbols &Escaped, 3093 const CallEvent *Call, 3094 PointerEscapeKind Kind) const { 3095 return checkPointerEscapeAux(State, Escaped, Call, Kind, 3096 /*IsConstPointerEscape*/ false); 3097 } 3098 3099 ProgramStateRef MallocChecker::checkConstPointerEscape(ProgramStateRef State, 3100 const InvalidatedSymbols &Escaped, 3101 const CallEvent *Call, 3102 PointerEscapeKind Kind) const { 3103 // If a const pointer escapes, it may not be freed(), but it could be deleted. 3104 return checkPointerEscapeAux(State, Escaped, Call, Kind, 3105 /*IsConstPointerEscape*/ true); 3106 } 3107 3108 static bool checkIfNewOrNewArrayFamily(const RefState *RS) { 3109 return (RS->getAllocationFamily() == AF_CXXNewArray || 3110 RS->getAllocationFamily() == AF_CXXNew); 3111 } 3112 3113 ProgramStateRef MallocChecker::checkPointerEscapeAux( 3114 ProgramStateRef State, const InvalidatedSymbols &Escaped, 3115 const CallEvent *Call, PointerEscapeKind Kind, 3116 bool IsConstPointerEscape) const { 3117 // If we know that the call does not free memory, or we want to process the 3118 // call later, keep tracking the top level arguments. 3119 SymbolRef EscapingSymbol = nullptr; 3120 if (Kind == PSK_DirectEscapeOnCall && 3121 !mayFreeAnyEscapedMemoryOrIsModeledExplicitly(Call, State, 3122 EscapingSymbol) && 3123 !EscapingSymbol) { 3124 return State; 3125 } 3126 3127 for (InvalidatedSymbols::const_iterator I = Escaped.begin(), 3128 E = Escaped.end(); 3129 I != E; ++I) { 3130 SymbolRef sym = *I; 3131 3132 if (EscapingSymbol && EscapingSymbol != sym) 3133 continue; 3134 3135 if (const RefState *RS = State->get<RegionState>(sym)) 3136 if (RS->isAllocated() || RS->isAllocatedOfSizeZero()) 3137 if (!IsConstPointerEscape || checkIfNewOrNewArrayFamily(RS)) 3138 State = State->set<RegionState>(sym, RefState::getEscaped(RS)); 3139 } 3140 return State; 3141 } 3142 3143 static SymbolRef findFailedReallocSymbol(ProgramStateRef currState, 3144 ProgramStateRef prevState) { 3145 ReallocPairsTy currMap = currState->get<ReallocPairs>(); 3146 ReallocPairsTy prevMap = prevState->get<ReallocPairs>(); 3147 3148 for (const ReallocPairsTy::value_type &Pair : prevMap) { 3149 SymbolRef sym = Pair.first; 3150 if (!currMap.lookup(sym)) 3151 return sym; 3152 } 3153 3154 return nullptr; 3155 } 3156 3157 static bool isReferenceCountingPointerDestructor(const CXXDestructorDecl *DD) { 3158 if (const IdentifierInfo *II = DD->getParent()->getIdentifier()) { 3159 StringRef N = II->getName(); 3160 if (N.contains_lower("ptr") || N.contains_lower("pointer")) { 3161 if (N.contains_lower("ref") || N.contains_lower("cnt") || 3162 N.contains_lower("intrusive") || N.contains_lower("shared")) { 3163 return true; 3164 } 3165 } 3166 } 3167 return false; 3168 } 3169 3170 PathDiagnosticPieceRef MallocBugVisitor::VisitNode(const ExplodedNode *N, 3171 BugReporterContext &BRC, 3172 PathSensitiveBugReport &BR) { 3173 ProgramStateRef state = N->getState(); 3174 ProgramStateRef statePrev = N->getFirstPred()->getState(); 3175 3176 const RefState *RSCurr = state->get<RegionState>(Sym); 3177 const RefState *RSPrev = statePrev->get<RegionState>(Sym); 3178 3179 const Stmt *S = N->getStmtForDiagnostics(); 3180 // When dealing with containers, we sometimes want to give a note 3181 // even if the statement is missing. 3182 if (!S && (!RSCurr || RSCurr->getAllocationFamily() != AF_InnerBuffer)) 3183 return nullptr; 3184 3185 const LocationContext *CurrentLC = N->getLocationContext(); 3186 3187 // If we find an atomic fetch_add or fetch_sub within the destructor in which 3188 // the pointer was released (before the release), this is likely a destructor 3189 // of a shared pointer. 3190 // Because we don't model atomics, and also because we don't know that the 3191 // original reference count is positive, we should not report use-after-frees 3192 // on objects deleted in such destructors. This can probably be improved 3193 // through better shared pointer modeling. 3194 if (ReleaseDestructorLC) { 3195 if (const auto *AE = dyn_cast<AtomicExpr>(S)) { 3196 AtomicExpr::AtomicOp Op = AE->getOp(); 3197 if (Op == AtomicExpr::AO__c11_atomic_fetch_add || 3198 Op == AtomicExpr::AO__c11_atomic_fetch_sub) { 3199 if (ReleaseDestructorLC == CurrentLC || 3200 ReleaseDestructorLC->isParentOf(CurrentLC)) { 3201 BR.markInvalid(getTag(), S); 3202 } 3203 } 3204 } 3205 } 3206 3207 // FIXME: We will eventually need to handle non-statement-based events 3208 // (__attribute__((cleanup))). 3209 3210 // Find out if this is an interesting point and what is the kind. 3211 StringRef Msg; 3212 std::unique_ptr<StackHintGeneratorForSymbol> StackHint = nullptr; 3213 SmallString<256> Buf; 3214 llvm::raw_svector_ostream OS(Buf); 3215 3216 if (Mode == Normal) { 3217 if (isAllocated(RSCurr, RSPrev, S)) { 3218 Msg = "Memory is allocated"; 3219 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3220 Sym, "Returned allocated memory"); 3221 } else if (isReleased(RSCurr, RSPrev, S)) { 3222 const auto Family = RSCurr->getAllocationFamily(); 3223 switch (Family) { 3224 case AF_Alloca: 3225 case AF_Malloc: 3226 case AF_CXXNew: 3227 case AF_CXXNewArray: 3228 case AF_IfNameIndex: 3229 Msg = "Memory is released"; 3230 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3231 Sym, "Returning; memory was released"); 3232 break; 3233 case AF_InnerBuffer: { 3234 const MemRegion *ObjRegion = 3235 allocation_state::getContainerObjRegion(statePrev, Sym); 3236 const auto *TypedRegion = cast<TypedValueRegion>(ObjRegion); 3237 QualType ObjTy = TypedRegion->getValueType(); 3238 OS << "Inner buffer of '" << ObjTy.getAsString() << "' "; 3239 3240 if (N->getLocation().getKind() == ProgramPoint::PostImplicitCallKind) { 3241 OS << "deallocated by call to destructor"; 3242 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3243 Sym, "Returning; inner buffer was deallocated"); 3244 } else { 3245 OS << "reallocated by call to '"; 3246 const Stmt *S = RSCurr->getStmt(); 3247 if (const auto *MemCallE = dyn_cast<CXXMemberCallExpr>(S)) { 3248 OS << MemCallE->getMethodDecl()->getNameAsString(); 3249 } else if (const auto *OpCallE = dyn_cast<CXXOperatorCallExpr>(S)) { 3250 OS << OpCallE->getDirectCallee()->getNameAsString(); 3251 } else if (const auto *CallE = dyn_cast<CallExpr>(S)) { 3252 auto &CEMgr = BRC.getStateManager().getCallEventManager(); 3253 CallEventRef<> Call = CEMgr.getSimpleCall(CallE, state, CurrentLC); 3254 const auto *D = dyn_cast_or_null<NamedDecl>(Call->getDecl()); 3255 OS << (D ? D->getNameAsString() : "unknown"); 3256 } 3257 OS << "'"; 3258 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3259 Sym, "Returning; inner buffer was reallocated"); 3260 } 3261 Msg = OS.str(); 3262 break; 3263 } 3264 case AF_None: 3265 llvm_unreachable("Unhandled allocation family!"); 3266 } 3267 3268 // See if we're releasing memory while inlining a destructor 3269 // (or one of its callees). This turns on various common 3270 // false positive suppressions. 3271 bool FoundAnyDestructor = false; 3272 for (const LocationContext *LC = CurrentLC; LC; LC = LC->getParent()) { 3273 if (const auto *DD = dyn_cast<CXXDestructorDecl>(LC->getDecl())) { 3274 if (isReferenceCountingPointerDestructor(DD)) { 3275 // This immediately looks like a reference-counting destructor. 3276 // We're bad at guessing the original reference count of the object, 3277 // so suppress the report for now. 3278 BR.markInvalid(getTag(), DD); 3279 } else if (!FoundAnyDestructor) { 3280 assert(!ReleaseDestructorLC && 3281 "There can be only one release point!"); 3282 // Suspect that it's a reference counting pointer destructor. 3283 // On one of the next nodes might find out that it has atomic 3284 // reference counting operations within it (see the code above), 3285 // and if so, we'd conclude that it likely is a reference counting 3286 // pointer destructor. 3287 ReleaseDestructorLC = LC->getStackFrame(); 3288 // It is unlikely that releasing memory is delegated to a destructor 3289 // inside a destructor of a shared pointer, because it's fairly hard 3290 // to pass the information that the pointer indeed needs to be 3291 // released into it. So we're only interested in the innermost 3292 // destructor. 3293 FoundAnyDestructor = true; 3294 } 3295 } 3296 } 3297 } else if (isRelinquished(RSCurr, RSPrev, S)) { 3298 Msg = "Memory ownership is transferred"; 3299 StackHint = std::make_unique<StackHintGeneratorForSymbol>(Sym, ""); 3300 } else if (hasReallocFailed(RSCurr, RSPrev, S)) { 3301 Mode = ReallocationFailed; 3302 Msg = "Reallocation failed"; 3303 StackHint = std::make_unique<StackHintGeneratorForReallocationFailed>( 3304 Sym, "Reallocation failed"); 3305 3306 if (SymbolRef sym = findFailedReallocSymbol(state, statePrev)) { 3307 // Is it possible to fail two reallocs WITHOUT testing in between? 3308 assert((!FailedReallocSymbol || FailedReallocSymbol == sym) && 3309 "We only support one failed realloc at a time."); 3310 BR.markInteresting(sym); 3311 FailedReallocSymbol = sym; 3312 } 3313 } 3314 3315 // We are in a special mode if a reallocation failed later in the path. 3316 } else if (Mode == ReallocationFailed) { 3317 assert(FailedReallocSymbol && "No symbol to look for."); 3318 3319 // Is this is the first appearance of the reallocated symbol? 3320 if (!statePrev->get<RegionState>(FailedReallocSymbol)) { 3321 // We're at the reallocation point. 3322 Msg = "Attempt to reallocate memory"; 3323 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3324 Sym, "Returned reallocated memory"); 3325 FailedReallocSymbol = nullptr; 3326 Mode = Normal; 3327 } 3328 } 3329 3330 if (Msg.empty()) { 3331 assert(!StackHint); 3332 return nullptr; 3333 } 3334 3335 assert(StackHint); 3336 3337 // Generate the extra diagnostic. 3338 PathDiagnosticLocation Pos; 3339 if (!S) { 3340 assert(RSCurr->getAllocationFamily() == AF_InnerBuffer); 3341 auto PostImplCall = N->getLocation().getAs<PostImplicitCall>(); 3342 if (!PostImplCall) 3343 return nullptr; 3344 Pos = PathDiagnosticLocation(PostImplCall->getLocation(), 3345 BRC.getSourceManager()); 3346 } else { 3347 Pos = PathDiagnosticLocation(S, BRC.getSourceManager(), 3348 N->getLocationContext()); 3349 } 3350 3351 auto P = std::make_shared<PathDiagnosticEventPiece>(Pos, Msg, true); 3352 BR.addCallStackHint(P, std::move(StackHint)); 3353 return P; 3354 } 3355 3356 void MallocChecker::printState(raw_ostream &Out, ProgramStateRef State, 3357 const char *NL, const char *Sep) const { 3358 3359 RegionStateTy RS = State->get<RegionState>(); 3360 3361 if (!RS.isEmpty()) { 3362 Out << Sep << "MallocChecker :" << NL; 3363 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 3364 const RefState *RefS = State->get<RegionState>(I.getKey()); 3365 AllocationFamily Family = RefS->getAllocationFamily(); 3366 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 3367 if (!CheckKind.hasValue()) 3368 CheckKind = getCheckIfTracked(Family, true); 3369 3370 I.getKey()->dumpToStream(Out); 3371 Out << " : "; 3372 I.getData().dump(Out); 3373 if (CheckKind.hasValue()) 3374 Out << " (" << CheckNames[*CheckKind].getName() << ")"; 3375 Out << NL; 3376 } 3377 } 3378 } 3379 3380 namespace clang { 3381 namespace ento { 3382 namespace allocation_state { 3383 3384 ProgramStateRef 3385 markReleased(ProgramStateRef State, SymbolRef Sym, const Expr *Origin) { 3386 AllocationFamily Family = AF_InnerBuffer; 3387 return State->set<RegionState>(Sym, RefState::getReleased(Family, Origin)); 3388 } 3389 3390 } // end namespace allocation_state 3391 } // end namespace ento 3392 } // end namespace clang 3393 3394 // Intended to be used in InnerPointerChecker to register the part of 3395 // MallocChecker connected to it. 3396 void ento::registerInnerPointerCheckerAux(CheckerManager &mgr) { 3397 MallocChecker *checker = mgr.getChecker<MallocChecker>(); 3398 checker->ChecksEnabled[MallocChecker::CK_InnerPointerChecker] = true; 3399 checker->CheckNames[MallocChecker::CK_InnerPointerChecker] = 3400 mgr.getCurrentCheckerName(); 3401 } 3402 3403 void ento::registerDynamicMemoryModeling(CheckerManager &mgr) { 3404 auto *checker = mgr.registerChecker<MallocChecker>(); 3405 checker->MemFunctionInfo.ShouldIncludeOwnershipAnnotatedFunctions = 3406 mgr.getAnalyzerOptions().getCheckerBooleanOption(checker, "Optimistic"); 3407 } 3408 3409 bool ento::shouldRegisterDynamicMemoryModeling(const LangOptions &LO) { 3410 return true; 3411 } 3412 3413 #define REGISTER_CHECKER(name) \ 3414 void ento::register##name(CheckerManager &mgr) { \ 3415 MallocChecker *checker = mgr.getChecker<MallocChecker>(); \ 3416 checker->ChecksEnabled[MallocChecker::CK_##name] = true; \ 3417 checker->CheckNames[MallocChecker::CK_##name] = \ 3418 mgr.getCurrentCheckerName(); \ 3419 } \ 3420 \ 3421 bool ento::shouldRegister##name(const LangOptions &LO) { return true; } 3422 3423 REGISTER_CHECKER(MallocChecker) 3424 REGISTER_CHECKER(NewDeleteChecker) 3425 REGISTER_CHECKER(NewDeleteLeaksChecker) 3426 REGISTER_CHECKER(MismatchedDeallocatorChecker) 3427