1 //=== MallocChecker.cpp - A malloc/free checker -------------------*- C++ -*--// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines a variety of memory management related checkers, such as 10 // leak, double free, and use-after-free. 11 // 12 // The following checkers are defined here: 13 // 14 // * MallocChecker 15 // Despite its name, it models all sorts of memory allocations and 16 // de- or reallocation, including but not limited to malloc, free, 17 // relloc, new, delete. It also reports on a variety of memory misuse 18 // errors. 19 // Many other checkers interact very closely with this checker, in fact, 20 // most are merely options to this one. Other checkers may register 21 // MallocChecker, but do not enable MallocChecker's reports (more details 22 // to follow around its field, ChecksEnabled). 23 // It also has a boolean "Optimistic" checker option, which if set to true 24 // will cause the checker to model user defined memory management related 25 // functions annotated via the attribute ownership_takes, ownership_holds 26 // and ownership_returns. 27 // 28 // * NewDeleteChecker 29 // Enables the modeling of new, new[], delete, delete[] in MallocChecker, 30 // and checks for related double-free and use-after-free errors. 31 // 32 // * NewDeleteLeaksChecker 33 // Checks for leaks related to new, new[], delete, delete[]. 34 // Depends on NewDeleteChecker. 35 // 36 // * MismatchedDeallocatorChecker 37 // Enables checking whether memory is deallocated with the correspending 38 // allocation function in MallocChecker, such as malloc() allocated 39 // regions are only freed by free(), new by delete, new[] by delete[]. 40 // 41 // InnerPointerChecker interacts very closely with MallocChecker, but unlike 42 // the above checkers, it has it's own file, hence the many InnerPointerChecker 43 // related headers and non-static functions. 44 // 45 //===----------------------------------------------------------------------===// 46 47 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" 48 #include "InterCheckerAPI.h" 49 #include "clang/AST/Attr.h" 50 #include "clang/AST/ParentMap.h" 51 #include "clang/Basic/SourceManager.h" 52 #include "clang/Basic/TargetInfo.h" 53 #include "clang/Lex/Lexer.h" 54 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 55 #include "clang/StaticAnalyzer/Core/BugReporter/CommonBugCategories.h" 56 #include "clang/StaticAnalyzer/Core/Checker.h" 57 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 58 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 59 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 60 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 61 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 62 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h" 63 #include "llvm/ADT/STLExtras.h" 64 #include "llvm/ADT/SmallString.h" 65 #include "llvm/ADT/StringExtras.h" 66 #include "AllocationState.h" 67 #include <climits> 68 #include <utility> 69 70 using namespace clang; 71 using namespace ento; 72 73 //===----------------------------------------------------------------------===// 74 // The types of allocation we're modeling. 75 //===----------------------------------------------------------------------===// 76 77 namespace { 78 79 // Used to check correspondence between allocators and deallocators. 80 enum AllocationFamily { 81 AF_None, 82 AF_Malloc, 83 AF_CXXNew, 84 AF_CXXNewArray, 85 AF_IfNameIndex, 86 AF_Alloca, 87 AF_InnerBuffer 88 }; 89 90 struct MemFunctionInfoTy; 91 92 } // end of anonymous namespace 93 94 /// Determine family of a deallocation expression. 95 static AllocationFamily 96 getAllocationFamily(const MemFunctionInfoTy &MemFunctionInfo, CheckerContext &C, 97 const Stmt *S); 98 99 /// Print names of allocators and deallocators. 100 /// 101 /// \returns true on success. 102 static bool printAllocDeallocName(raw_ostream &os, CheckerContext &C, 103 const Expr *E); 104 105 /// Print expected name of an allocator based on the deallocator's 106 /// family derived from the DeallocExpr. 107 static void printExpectedAllocName(raw_ostream &os, 108 const MemFunctionInfoTy &MemFunctionInfo, 109 CheckerContext &C, const Expr *E); 110 111 /// Print expected name of a deallocator based on the allocator's 112 /// family. 113 static void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family); 114 115 //===----------------------------------------------------------------------===// 116 // The state of a symbol, in terms of memory management. 117 //===----------------------------------------------------------------------===// 118 119 namespace { 120 121 class RefState { 122 enum Kind { 123 // Reference to allocated memory. 124 Allocated, 125 // Reference to zero-allocated memory. 126 AllocatedOfSizeZero, 127 // Reference to released/freed memory. 128 Released, 129 // The responsibility for freeing resources has transferred from 130 // this reference. A relinquished symbol should not be freed. 131 Relinquished, 132 // We are no longer guaranteed to have observed all manipulations 133 // of this pointer/memory. For example, it could have been 134 // passed as a parameter to an opaque function. 135 Escaped 136 }; 137 138 const Stmt *S; 139 140 Kind K; 141 AllocationFamily Family; 142 143 RefState(Kind k, const Stmt *s, AllocationFamily family) 144 : S(s), K(k), Family(family) { 145 assert(family != AF_None); 146 } 147 148 public: 149 bool isAllocated() const { return K == Allocated; } 150 bool isAllocatedOfSizeZero() const { return K == AllocatedOfSizeZero; } 151 bool isReleased() const { return K == Released; } 152 bool isRelinquished() const { return K == Relinquished; } 153 bool isEscaped() const { return K == Escaped; } 154 AllocationFamily getAllocationFamily() const { return Family; } 155 const Stmt *getStmt() const { return S; } 156 157 bool operator==(const RefState &X) const { 158 return K == X.K && S == X.S && Family == X.Family; 159 } 160 161 static RefState getAllocated(AllocationFamily family, const Stmt *s) { 162 return RefState(Allocated, s, family); 163 } 164 static RefState getAllocatedOfSizeZero(const RefState *RS) { 165 return RefState(AllocatedOfSizeZero, RS->getStmt(), 166 RS->getAllocationFamily()); 167 } 168 static RefState getReleased(AllocationFamily family, const Stmt *s) { 169 return RefState(Released, s, family); 170 } 171 static RefState getRelinquished(AllocationFamily family, const Stmt *s) { 172 return RefState(Relinquished, s, family); 173 } 174 static RefState getEscaped(const RefState *RS) { 175 return RefState(Escaped, RS->getStmt(), RS->getAllocationFamily()); 176 } 177 178 void Profile(llvm::FoldingSetNodeID &ID) const { 179 ID.AddInteger(K); 180 ID.AddPointer(S); 181 ID.AddInteger(Family); 182 } 183 184 LLVM_DUMP_METHOD void dump(raw_ostream &OS) const { 185 switch (K) { 186 #define CASE(ID) case ID: OS << #ID; break; 187 CASE(Allocated) 188 CASE(AllocatedOfSizeZero) 189 CASE(Released) 190 CASE(Relinquished) 191 CASE(Escaped) 192 } 193 } 194 195 LLVM_DUMP_METHOD void dump() const { dump(llvm::errs()); } 196 }; 197 198 } // end of anonymous namespace 199 200 REGISTER_MAP_WITH_PROGRAMSTATE(RegionState, SymbolRef, RefState) 201 202 /// Check if the memory associated with this symbol was released. 203 static bool isReleased(SymbolRef Sym, CheckerContext &C); 204 205 /// Update the RefState to reflect the new memory allocation. 206 /// The optional \p RetVal parameter specifies the newly allocated pointer 207 /// value; if unspecified, the value of expression \p E is used. 208 static ProgramStateRef MallocUpdateRefState(CheckerContext &C, const Expr *E, 209 ProgramStateRef State, 210 AllocationFamily Family = AF_Malloc, 211 Optional<SVal> RetVal = None); 212 213 //===----------------------------------------------------------------------===// 214 // The modeling of memory reallocation. 215 // 216 // The terminology 'toPtr' and 'fromPtr' will be used: 217 // toPtr = realloc(fromPtr, 20); 218 //===----------------------------------------------------------------------===// 219 220 REGISTER_SET_WITH_PROGRAMSTATE(ReallocSizeZeroSymbols, SymbolRef) 221 222 namespace { 223 224 /// The state of 'fromPtr' after reallocation is known to have failed. 225 enum OwnershipAfterReallocKind { 226 // The symbol needs to be freed (e.g.: realloc) 227 OAR_ToBeFreedAfterFailure, 228 // The symbol has been freed (e.g.: reallocf) 229 OAR_FreeOnFailure, 230 // The symbol doesn't have to freed (e.g.: we aren't sure if, how and where 231 // 'fromPtr' was allocated: 232 // void Haha(int *ptr) { 233 // ptr = realloc(ptr, 67); 234 // // ... 235 // } 236 // ). 237 OAR_DoNotTrackAfterFailure 238 }; 239 240 /// Stores information about the 'fromPtr' symbol after reallocation. 241 /// 242 /// This is important because realloc may fail, and that needs special modeling. 243 /// Whether reallocation failed or not will not be known until later, so we'll 244 /// store whether upon failure 'fromPtr' will be freed, or needs to be freed 245 /// later, etc. 246 struct ReallocPair { 247 248 // The 'fromPtr'. 249 SymbolRef ReallocatedSym; 250 OwnershipAfterReallocKind Kind; 251 252 ReallocPair(SymbolRef S, OwnershipAfterReallocKind K) 253 : ReallocatedSym(S), Kind(K) {} 254 void Profile(llvm::FoldingSetNodeID &ID) const { 255 ID.AddInteger(Kind); 256 ID.AddPointer(ReallocatedSym); 257 } 258 bool operator==(const ReallocPair &X) const { 259 return ReallocatedSym == X.ReallocatedSym && 260 Kind == X.Kind; 261 } 262 }; 263 264 } // end of anonymous namespace 265 266 REGISTER_MAP_WITH_PROGRAMSTATE(ReallocPairs, SymbolRef, ReallocPair) 267 268 //===----------------------------------------------------------------------===// 269 // Kinds of memory operations, information about resource managing functions. 270 //===----------------------------------------------------------------------===// 271 272 namespace { 273 274 enum class MemoryOperationKind { MOK_Allocate, MOK_Free, MOK_Any }; 275 276 struct MemFunctionInfoTy { 277 /// The value of the MallocChecker:Optimistic is stored in this variable. 278 /// 279 /// In pessimistic mode, the checker assumes that it does not know which 280 /// functions might free the memory. 281 /// In optimistic mode, the checker assumes that all user-defined functions 282 /// which might free a pointer are annotated. 283 DefaultBool ShouldIncludeOwnershipAnnotatedFunctions; 284 285 // TODO: Change these to CallDescription, and get rid of lazy initialization. 286 mutable IdentifierInfo *II_alloca = nullptr, *II_win_alloca = nullptr, 287 *II_malloc = nullptr, *II_free = nullptr, 288 *II_realloc = nullptr, *II_calloc = nullptr, 289 *II_valloc = nullptr, *II_reallocf = nullptr, 290 *II_strndup = nullptr, *II_strdup = nullptr, 291 *II_win_strdup = nullptr, *II_kmalloc = nullptr, 292 *II_if_nameindex = nullptr, 293 *II_if_freenameindex = nullptr, *II_wcsdup = nullptr, 294 *II_win_wcsdup = nullptr, *II_g_malloc = nullptr, 295 *II_g_malloc0 = nullptr, *II_g_realloc = nullptr, 296 *II_g_try_malloc = nullptr, 297 *II_g_try_malloc0 = nullptr, 298 *II_g_try_realloc = nullptr, *II_g_free = nullptr, 299 *II_g_memdup = nullptr, *II_g_malloc_n = nullptr, 300 *II_g_malloc0_n = nullptr, *II_g_realloc_n = nullptr, 301 *II_g_try_malloc_n = nullptr, 302 *II_g_try_malloc0_n = nullptr, *II_kfree = nullptr, 303 *II_g_try_realloc_n = nullptr; 304 305 void initIdentifierInfo(ASTContext &C) const; 306 307 ///@{ 308 /// Check if this is one of the functions which can allocate/reallocate 309 /// memory pointed to by one of its arguments. 310 bool isMemFunction(const FunctionDecl *FD, ASTContext &C) const; 311 bool isCMemFunction(const FunctionDecl *FD, ASTContext &C, 312 AllocationFamily Family, 313 MemoryOperationKind MemKind) const; 314 315 /// Tells if the callee is one of the builtin new/delete operators, including 316 /// placement operators and other standard overloads. 317 bool isStandardNewDelete(const FunctionDecl *FD, ASTContext &C) const; 318 ///@} 319 }; 320 321 } // end of anonymous namespace 322 323 //===----------------------------------------------------------------------===// 324 // Definition of the MallocChecker class. 325 //===----------------------------------------------------------------------===// 326 327 namespace { 328 329 class MallocChecker 330 : public Checker<check::DeadSymbols, check::PointerEscape, 331 check::ConstPointerEscape, check::PreStmt<ReturnStmt>, 332 check::EndFunction, check::PreCall, 333 check::PostStmt<CallExpr>, check::PostStmt<CXXNewExpr>, 334 check::NewAllocator, check::PreStmt<CXXDeleteExpr>, 335 check::PostStmt<BlockExpr>, check::PostObjCMessage, 336 check::Location, eval::Assume> { 337 public: 338 MemFunctionInfoTy MemFunctionInfo; 339 340 /// Many checkers are essentially built into this one, so enabling them will 341 /// make MallocChecker perform additional modeling and reporting. 342 enum CheckKind { 343 /// When a subchecker is enabled but MallocChecker isn't, model memory 344 /// management but do not emit warnings emitted with MallocChecker only 345 /// enabled. 346 CK_MallocChecker, 347 CK_NewDeleteChecker, 348 CK_NewDeleteLeaksChecker, 349 CK_MismatchedDeallocatorChecker, 350 CK_InnerPointerChecker, 351 CK_NumCheckKinds 352 }; 353 354 using LeakInfo = std::pair<const ExplodedNode *, const MemRegion *>; 355 356 DefaultBool ChecksEnabled[CK_NumCheckKinds]; 357 CheckerNameRef CheckNames[CK_NumCheckKinds]; 358 359 void checkPreCall(const CallEvent &Call, CheckerContext &C) const; 360 void checkPostStmt(const CallExpr *CE, CheckerContext &C) const; 361 void checkPostStmt(const CXXNewExpr *NE, CheckerContext &C) const; 362 void checkNewAllocator(const CXXNewExpr *NE, SVal Target, 363 CheckerContext &C) const; 364 void checkPreStmt(const CXXDeleteExpr *DE, CheckerContext &C) const; 365 void checkPostObjCMessage(const ObjCMethodCall &Call, CheckerContext &C) const; 366 void checkPostStmt(const BlockExpr *BE, CheckerContext &C) const; 367 void checkDeadSymbols(SymbolReaper &SymReaper, CheckerContext &C) const; 368 void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const; 369 void checkEndFunction(const ReturnStmt *S, CheckerContext &C) const; 370 ProgramStateRef evalAssume(ProgramStateRef state, SVal Cond, 371 bool Assumption) const; 372 void checkLocation(SVal l, bool isLoad, const Stmt *S, 373 CheckerContext &C) const; 374 375 ProgramStateRef checkPointerEscape(ProgramStateRef State, 376 const InvalidatedSymbols &Escaped, 377 const CallEvent *Call, 378 PointerEscapeKind Kind) const; 379 ProgramStateRef checkConstPointerEscape(ProgramStateRef State, 380 const InvalidatedSymbols &Escaped, 381 const CallEvent *Call, 382 PointerEscapeKind Kind) const; 383 384 void printState(raw_ostream &Out, ProgramStateRef State, 385 const char *NL, const char *Sep) const override; 386 387 private: 388 mutable std::unique_ptr<BugType> BT_DoubleFree[CK_NumCheckKinds]; 389 mutable std::unique_ptr<BugType> BT_DoubleDelete; 390 mutable std::unique_ptr<BugType> BT_Leak[CK_NumCheckKinds]; 391 mutable std::unique_ptr<BugType> BT_UseFree[CK_NumCheckKinds]; 392 mutable std::unique_ptr<BugType> BT_BadFree[CK_NumCheckKinds]; 393 mutable std::unique_ptr<BugType> BT_FreeAlloca[CK_NumCheckKinds]; 394 mutable std::unique_ptr<BugType> BT_MismatchedDealloc; 395 mutable std::unique_ptr<BugType> BT_OffsetFree[CK_NumCheckKinds]; 396 mutable std::unique_ptr<BugType> BT_UseZerroAllocated[CK_NumCheckKinds]; 397 398 // TODO: Remove mutable by moving the initializtaion to the registry function. 399 mutable Optional<uint64_t> KernelZeroFlagVal; 400 401 /// Process C++ operator new()'s allocation, which is the part of C++ 402 /// new-expression that goes before the constructor. 403 void processNewAllocation(const CXXNewExpr *NE, CheckerContext &C, 404 SVal Target) const; 405 406 /// Perform a zero-allocation check. 407 /// 408 /// \param [in] E The expression that allocates memory. 409 /// \param [in] IndexOfSizeArg Index of the argument that specifies the size 410 /// of the memory that needs to be allocated. E.g. for malloc, this would be 411 /// 0. 412 /// \param [in] RetVal Specifies the newly allocated pointer value; 413 /// if unspecified, the value of expression \p E is used. 414 static ProgramStateRef ProcessZeroAllocCheck(CheckerContext &C, const Expr *E, 415 const unsigned IndexOfSizeArg, 416 ProgramStateRef State, 417 Optional<SVal> RetVal = None); 418 419 /// Model functions with the ownership_returns attribute. 420 /// 421 /// User-defined function may have the ownership_returns attribute, which 422 /// annotates that the function returns with an object that was allocated on 423 /// the heap, and passes the ownertship to the callee. 424 /// 425 /// void __attribute((ownership_returns(malloc, 1))) *my_malloc(size_t); 426 /// 427 /// It has two parameters: 428 /// - first: name of the resource (e.g. 'malloc') 429 /// - (OPTIONAL) second: size of the allocated region 430 /// 431 /// \param [in] CE The expression that allocates memory. 432 /// \param [in] Att The ownership_returns attribute. 433 /// \param [in] State The \c ProgramState right before allocation. 434 /// \returns The ProgramState right after allocation. 435 ProgramStateRef MallocMemReturnsAttr(CheckerContext &C, 436 const CallExpr *CE, 437 const OwnershipAttr* Att, 438 ProgramStateRef State) const; 439 440 /// Models memory allocation. 441 /// 442 /// \param [in] CE The expression that allocates memory. 443 /// \param [in] SizeEx Size of the memory that needs to be allocated. 444 /// \param [in] Init The value the allocated memory needs to be initialized. 445 /// with. For example, \c calloc initializes the allocated memory to 0, 446 /// malloc leaves it undefined. 447 /// \param [in] State The \c ProgramState right before allocation. 448 /// \returns The ProgramState right after allocation. 449 static ProgramStateRef MallocMemAux(CheckerContext &C, const CallExpr *CE, 450 const Expr *SizeEx, SVal Init, 451 ProgramStateRef State, 452 AllocationFamily Family = AF_Malloc); 453 454 /// Models memory allocation. 455 /// 456 /// \param [in] CE The expression that allocates memory. 457 /// \param [in] Size Size of the memory that needs to be allocated. 458 /// \param [in] Init The value the allocated memory needs to be initialized. 459 /// with. For example, \c calloc initializes the allocated memory to 0, 460 /// malloc leaves it undefined. 461 /// \param [in] State The \c ProgramState right before allocation. 462 /// \returns The ProgramState right after allocation. 463 static ProgramStateRef MallocMemAux(CheckerContext &C, const CallExpr *CE, 464 SVal Size, SVal Init, 465 ProgramStateRef State, 466 AllocationFamily Family = AF_Malloc); 467 468 static ProgramStateRef addExtentSize(CheckerContext &C, const CXXNewExpr *NE, 469 ProgramStateRef State, SVal Target); 470 471 // Check if this malloc() for special flags. At present that means M_ZERO or 472 // __GFP_ZERO (in which case, treat it like calloc). 473 llvm::Optional<ProgramStateRef> 474 performKernelMalloc(const CallExpr *CE, CheckerContext &C, 475 const ProgramStateRef &State) const; 476 477 /// Model functions with the ownership_takes and ownership_holds attributes. 478 /// 479 /// User-defined function may have the ownership_takes and/or ownership_holds 480 /// attributes, which annotates that the function frees the memory passed as a 481 /// parameter. 482 /// 483 /// void __attribute((ownership_takes(malloc, 1))) my_free(void *); 484 /// void __attribute((ownership_holds(malloc, 1))) my_hold(void *); 485 /// 486 /// They have two parameters: 487 /// - first: name of the resource (e.g. 'malloc') 488 /// - second: index of the parameter the attribute applies to 489 /// 490 /// \param [in] CE The expression that frees memory. 491 /// \param [in] Att The ownership_takes or ownership_holds attribute. 492 /// \param [in] State The \c ProgramState right before allocation. 493 /// \returns The ProgramState right after deallocation. 494 ProgramStateRef FreeMemAttr(CheckerContext &C, const CallExpr *CE, 495 const OwnershipAttr* Att, 496 ProgramStateRef State) const; 497 498 /// Models memory deallocation. 499 /// 500 /// \param [in] CE The expression that frees memory. 501 /// \param [in] State The \c ProgramState right before allocation. 502 /// \param [in] Num Index of the argument that needs to be freed. This is 503 /// normally 0, but for custom free functions it may be different. 504 /// \param [in] Hold Whether the parameter at \p Index has the ownership_holds 505 /// attribute. 506 /// \param [out] IsKnownToBeAllocated Whether the memory to be freed is known 507 /// to have been allocated, or in other words, the symbol to be freed was 508 /// registered as allocated by this checker. In the following case, \c ptr 509 /// isn't known to be allocated. 510 /// void Haha(int *ptr) { 511 /// ptr = realloc(ptr, 67); 512 /// // ... 513 /// } 514 /// \param [in] ReturnsNullOnFailure Whether the memory deallocation function 515 /// we're modeling returns with Null on failure. 516 /// \returns The ProgramState right after deallocation. 517 ProgramStateRef FreeMemAux(CheckerContext &C, const CallExpr *CE, 518 ProgramStateRef State, unsigned Num, bool Hold, 519 bool &IsKnownToBeAllocated, 520 bool ReturnsNullOnFailure = false) const; 521 522 /// Models memory deallocation. 523 /// 524 /// \param [in] ArgExpr The variable who's pointee needs to be freed. 525 /// \param [in] ParentExpr The expression that frees the memory. 526 /// \param [in] State The \c ProgramState right before allocation. 527 /// normally 0, but for custom free functions it may be different. 528 /// \param [in] Hold Whether the parameter at \p Index has the ownership_holds 529 /// attribute. 530 /// \param [out] IsKnownToBeAllocated Whether the memory to be freed is known 531 /// to have been allocated, or in other words, the symbol to be freed was 532 /// registered as allocated by this checker. In the following case, \c ptr 533 /// isn't known to be allocated. 534 /// void Haha(int *ptr) { 535 /// ptr = realloc(ptr, 67); 536 /// // ... 537 /// } 538 /// \param [in] ReturnsNullOnFailure Whether the memory deallocation function 539 /// we're modeling returns with Null on failure. 540 /// \returns The ProgramState right after deallocation. 541 ProgramStateRef FreeMemAux(CheckerContext &C, const Expr *ArgExpr, 542 const Expr *ParentExpr, ProgramStateRef State, 543 bool Hold, bool &IsKnownToBeAllocated, 544 bool ReturnsNullOnFailure = false) const; 545 546 // TODO: Needs some refactoring, as all other deallocation modeling 547 // functions are suffering from out parameters and messy code due to how 548 // realloc is handled. 549 // 550 /// Models memory reallocation. 551 /// 552 /// \param [in] CE The expression that reallocated memory 553 /// \param [in] ShouldFreeOnFail Whether if reallocation fails, the supplied 554 /// memory should be freed. 555 /// \param [in] State The \c ProgramState right before reallocation. 556 /// \param [in] SuffixWithN Whether the reallocation function we're modeling 557 /// has an '_n' suffix, such as g_realloc_n. 558 /// \returns The ProgramState right after reallocation. 559 ProgramStateRef ReallocMemAux(CheckerContext &C, const CallExpr *CE, 560 bool ShouldFreeOnFail, ProgramStateRef State, 561 bool SuffixWithN = false) const; 562 563 /// Evaluates the buffer size that needs to be allocated. 564 /// 565 /// \param [in] Blocks The amount of blocks that needs to be allocated. 566 /// \param [in] BlockBytes The size of a block. 567 /// \returns The symbolic value of \p Blocks * \p BlockBytes. 568 static SVal evalMulForBufferSize(CheckerContext &C, const Expr *Blocks, 569 const Expr *BlockBytes); 570 571 /// Models zero initialized array allocation. 572 /// 573 /// \param [in] CE The expression that reallocated memory 574 /// \param [in] State The \c ProgramState right before reallocation. 575 /// \returns The ProgramState right after allocation. 576 static ProgramStateRef CallocMem(CheckerContext &C, const CallExpr *CE, 577 ProgramStateRef State); 578 579 /// See if deallocation happens in a suspicious context. If so, escape the 580 /// pointers that otherwise would have been deallocated and return true. 581 bool suppressDeallocationsInSuspiciousContexts(const CallExpr *CE, 582 CheckerContext &C) const; 583 584 /// If in \p S \p Sym is used, check whether \p Sym was already freed. 585 bool checkUseAfterFree(SymbolRef Sym, CheckerContext &C, const Stmt *S) const; 586 587 /// If in \p S \p Sym is used, check whether \p Sym was allocated as a zero 588 /// sized memory region. 589 void checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, 590 const Stmt *S) const; 591 592 /// If in \p S \p Sym is being freed, check whether \p Sym was already freed. 593 bool checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const; 594 595 /// Check if the function is known to free memory, or if it is 596 /// "interesting" and should be modeled explicitly. 597 /// 598 /// \param [out] EscapingSymbol A function might not free memory in general, 599 /// but could be known to free a particular symbol. In this case, false is 600 /// returned and the single escaping symbol is returned through the out 601 /// parameter. 602 /// 603 /// We assume that pointers do not escape through calls to system functions 604 /// not handled by this checker. 605 bool mayFreeAnyEscapedMemoryOrIsModeledExplicitly(const CallEvent *Call, 606 ProgramStateRef State, 607 SymbolRef &EscapingSymbol) const; 608 609 /// Implementation of the checkPointerEscape callbacks. 610 ProgramStateRef checkPointerEscapeAux(ProgramStateRef State, 611 const InvalidatedSymbols &Escaped, 612 const CallEvent *Call, 613 PointerEscapeKind Kind, 614 bool IsConstPointerEscape) const; 615 616 // Implementation of the checkPreStmt and checkEndFunction callbacks. 617 void checkEscapeOnReturn(const ReturnStmt *S, CheckerContext &C) const; 618 619 ///@{ 620 /// Tells if a given family/call/symbol is tracked by the current checker. 621 /// Sets CheckKind to the kind of the checker responsible for this 622 /// family/call/symbol. 623 Optional<CheckKind> getCheckIfTracked(AllocationFamily Family, 624 bool IsALeakCheck = false) const; 625 Optional<CheckKind> getCheckIfTracked(CheckerContext &C, 626 const Stmt *AllocDeallocStmt, 627 bool IsALeakCheck = false) const; 628 Optional<CheckKind> getCheckIfTracked(CheckerContext &C, SymbolRef Sym, 629 bool IsALeakCheck = false) const; 630 ///@} 631 static bool SummarizeValue(raw_ostream &os, SVal V); 632 static bool SummarizeRegion(raw_ostream &os, const MemRegion *MR); 633 634 void ReportBadFree(CheckerContext &C, SVal ArgVal, SourceRange Range, 635 const Expr *DeallocExpr) const; 636 void ReportFreeAlloca(CheckerContext &C, SVal ArgVal, 637 SourceRange Range) const; 638 void ReportMismatchedDealloc(CheckerContext &C, SourceRange Range, 639 const Expr *DeallocExpr, const RefState *RS, 640 SymbolRef Sym, bool OwnershipTransferred) const; 641 void ReportOffsetFree(CheckerContext &C, SVal ArgVal, SourceRange Range, 642 const Expr *DeallocExpr, 643 const Expr *AllocExpr = nullptr) const; 644 void ReportUseAfterFree(CheckerContext &C, SourceRange Range, 645 SymbolRef Sym) const; 646 void ReportDoubleFree(CheckerContext &C, SourceRange Range, bool Released, 647 SymbolRef Sym, SymbolRef PrevSym) const; 648 649 void ReportDoubleDelete(CheckerContext &C, SymbolRef Sym) const; 650 651 void ReportUseZeroAllocated(CheckerContext &C, SourceRange Range, 652 SymbolRef Sym) const; 653 654 void ReportFunctionPointerFree(CheckerContext &C, SVal ArgVal, 655 SourceRange Range, const Expr *FreeExpr) const; 656 657 /// Find the location of the allocation for Sym on the path leading to the 658 /// exploded node N. 659 static LeakInfo getAllocationSite(const ExplodedNode *N, SymbolRef Sym, 660 CheckerContext &C); 661 662 void reportLeak(SymbolRef Sym, ExplodedNode *N, CheckerContext &C) const; 663 }; 664 665 //===----------------------------------------------------------------------===// 666 // Definition of MallocBugVisitor. 667 //===----------------------------------------------------------------------===// 668 669 /// The bug visitor which allows us to print extra diagnostics along the 670 /// BugReport path. For example, showing the allocation site of the leaked 671 /// region. 672 class MallocBugVisitor final : public BugReporterVisitor { 673 protected: 674 enum NotificationMode { Normal, ReallocationFailed }; 675 676 // The allocated region symbol tracked by the main analysis. 677 SymbolRef Sym; 678 679 // The mode we are in, i.e. what kind of diagnostics will be emitted. 680 NotificationMode Mode; 681 682 // A symbol from when the primary region should have been reallocated. 683 SymbolRef FailedReallocSymbol; 684 685 // A C++ destructor stack frame in which memory was released. Used for 686 // miscellaneous false positive suppression. 687 const StackFrameContext *ReleaseDestructorLC; 688 689 bool IsLeak; 690 691 public: 692 MallocBugVisitor(SymbolRef S, bool isLeak = false) 693 : Sym(S), Mode(Normal), FailedReallocSymbol(nullptr), 694 ReleaseDestructorLC(nullptr), IsLeak(isLeak) {} 695 696 static void *getTag() { 697 static int Tag = 0; 698 return &Tag; 699 } 700 701 void Profile(llvm::FoldingSetNodeID &ID) const override { 702 ID.AddPointer(getTag()); 703 ID.AddPointer(Sym); 704 } 705 706 /// Did not track -> allocated. Other state (released) -> allocated. 707 static inline bool isAllocated(const RefState *RSCurr, const RefState *RSPrev, 708 const Stmt *Stmt) { 709 return (Stmt && (isa<CallExpr>(Stmt) || isa<CXXNewExpr>(Stmt)) && 710 (RSCurr && 711 (RSCurr->isAllocated() || RSCurr->isAllocatedOfSizeZero())) && 712 (!RSPrev || 713 !(RSPrev->isAllocated() || RSPrev->isAllocatedOfSizeZero()))); 714 } 715 716 /// Did not track -> released. Other state (allocated) -> released. 717 /// The statement associated with the release might be missing. 718 static inline bool isReleased(const RefState *RSCurr, const RefState *RSPrev, 719 const Stmt *Stmt) { 720 bool IsReleased = 721 (RSCurr && RSCurr->isReleased()) && (!RSPrev || !RSPrev->isReleased()); 722 assert(!IsReleased || 723 (Stmt && (isa<CallExpr>(Stmt) || isa<CXXDeleteExpr>(Stmt))) || 724 (!Stmt && RSCurr->getAllocationFamily() == AF_InnerBuffer)); 725 return IsReleased; 726 } 727 728 /// Did not track -> relinquished. Other state (allocated) -> relinquished. 729 static inline bool isRelinquished(const RefState *RSCurr, 730 const RefState *RSPrev, const Stmt *Stmt) { 731 return (Stmt && 732 (isa<CallExpr>(Stmt) || isa<ObjCMessageExpr>(Stmt) || 733 isa<ObjCPropertyRefExpr>(Stmt)) && 734 (RSCurr && RSCurr->isRelinquished()) && 735 (!RSPrev || !RSPrev->isRelinquished())); 736 } 737 738 /// If the expression is not a call, and the state change is 739 /// released -> allocated, it must be the realloc return value 740 /// check. If we have to handle more cases here, it might be cleaner just 741 /// to track this extra bit in the state itself. 742 static inline bool hasReallocFailed(const RefState *RSCurr, 743 const RefState *RSPrev, 744 const Stmt *Stmt) { 745 return ((!Stmt || !isa<CallExpr>(Stmt)) && 746 (RSCurr && 747 (RSCurr->isAllocated() || RSCurr->isAllocatedOfSizeZero())) && 748 (RSPrev && 749 !(RSPrev->isAllocated() || RSPrev->isAllocatedOfSizeZero()))); 750 } 751 752 PathDiagnosticPieceRef VisitNode(const ExplodedNode *N, 753 BugReporterContext &BRC, 754 PathSensitiveBugReport &BR) override; 755 756 PathDiagnosticPieceRef getEndPath(BugReporterContext &BRC, 757 const ExplodedNode *EndPathNode, 758 PathSensitiveBugReport &BR) override { 759 if (!IsLeak) 760 return nullptr; 761 762 PathDiagnosticLocation L = BR.getLocation(); 763 // Do not add the statement itself as a range in case of leak. 764 return std::make_shared<PathDiagnosticEventPiece>(L, BR.getDescription(), 765 false); 766 } 767 768 private: 769 class StackHintGeneratorForReallocationFailed 770 : public StackHintGeneratorForSymbol { 771 public: 772 StackHintGeneratorForReallocationFailed(SymbolRef S, StringRef M) 773 : StackHintGeneratorForSymbol(S, M) {} 774 775 std::string getMessageForArg(const Expr *ArgE, unsigned ArgIndex) override { 776 // Printed parameters start at 1, not 0. 777 ++ArgIndex; 778 779 SmallString<200> buf; 780 llvm::raw_svector_ostream os(buf); 781 782 os << "Reallocation of " << ArgIndex << llvm::getOrdinalSuffix(ArgIndex) 783 << " parameter failed"; 784 785 return os.str(); 786 } 787 788 std::string getMessageForReturn(const CallExpr *CallExpr) override { 789 return "Reallocation of returned value failed"; 790 } 791 }; 792 }; 793 794 } // end anonymous namespace 795 796 // A map from the freed symbol to the symbol representing the return value of 797 // the free function. 798 REGISTER_MAP_WITH_PROGRAMSTATE(FreeReturnValue, SymbolRef, SymbolRef) 799 800 namespace { 801 class StopTrackingCallback final : public SymbolVisitor { 802 ProgramStateRef state; 803 public: 804 StopTrackingCallback(ProgramStateRef st) : state(std::move(st)) {} 805 ProgramStateRef getState() const { return state; } 806 807 bool VisitSymbol(SymbolRef sym) override { 808 state = state->remove<RegionState>(sym); 809 return true; 810 } 811 }; 812 } // end anonymous namespace 813 814 //===----------------------------------------------------------------------===// 815 // Methods of MemFunctionInfoTy. 816 //===----------------------------------------------------------------------===// 817 818 void MemFunctionInfoTy::initIdentifierInfo(ASTContext &Ctx) const { 819 if (II_malloc) 820 return; 821 II_alloca = &Ctx.Idents.get("alloca"); 822 II_malloc = &Ctx.Idents.get("malloc"); 823 II_free = &Ctx.Idents.get("free"); 824 II_realloc = &Ctx.Idents.get("realloc"); 825 II_reallocf = &Ctx.Idents.get("reallocf"); 826 II_calloc = &Ctx.Idents.get("calloc"); 827 II_valloc = &Ctx.Idents.get("valloc"); 828 II_strdup = &Ctx.Idents.get("strdup"); 829 II_strndup = &Ctx.Idents.get("strndup"); 830 II_wcsdup = &Ctx.Idents.get("wcsdup"); 831 II_kmalloc = &Ctx.Idents.get("kmalloc"); 832 II_kfree = &Ctx.Idents.get("kfree"); 833 II_if_nameindex = &Ctx.Idents.get("if_nameindex"); 834 II_if_freenameindex = &Ctx.Idents.get("if_freenameindex"); 835 836 //MSVC uses `_`-prefixed instead, so we check for them too. 837 II_win_strdup = &Ctx.Idents.get("_strdup"); 838 II_win_wcsdup = &Ctx.Idents.get("_wcsdup"); 839 II_win_alloca = &Ctx.Idents.get("_alloca"); 840 841 // Glib 842 II_g_malloc = &Ctx.Idents.get("g_malloc"); 843 II_g_malloc0 = &Ctx.Idents.get("g_malloc0"); 844 II_g_realloc = &Ctx.Idents.get("g_realloc"); 845 II_g_try_malloc = &Ctx.Idents.get("g_try_malloc"); 846 II_g_try_malloc0 = &Ctx.Idents.get("g_try_malloc0"); 847 II_g_try_realloc = &Ctx.Idents.get("g_try_realloc"); 848 II_g_free = &Ctx.Idents.get("g_free"); 849 II_g_memdup = &Ctx.Idents.get("g_memdup"); 850 II_g_malloc_n = &Ctx.Idents.get("g_malloc_n"); 851 II_g_malloc0_n = &Ctx.Idents.get("g_malloc0_n"); 852 II_g_realloc_n = &Ctx.Idents.get("g_realloc_n"); 853 II_g_try_malloc_n = &Ctx.Idents.get("g_try_malloc_n"); 854 II_g_try_malloc0_n = &Ctx.Idents.get("g_try_malloc0_n"); 855 II_g_try_realloc_n = &Ctx.Idents.get("g_try_realloc_n"); 856 } 857 858 bool MemFunctionInfoTy::isMemFunction(const FunctionDecl *FD, 859 ASTContext &C) const { 860 if (isCMemFunction(FD, C, AF_Malloc, MemoryOperationKind::MOK_Any)) 861 return true; 862 863 if (isCMemFunction(FD, C, AF_IfNameIndex, MemoryOperationKind::MOK_Any)) 864 return true; 865 866 if (isCMemFunction(FD, C, AF_Alloca, MemoryOperationKind::MOK_Any)) 867 return true; 868 869 if (isStandardNewDelete(FD, C)) 870 return true; 871 872 return false; 873 } 874 875 bool MemFunctionInfoTy::isCMemFunction(const FunctionDecl *FD, ASTContext &C, 876 AllocationFamily Family, 877 MemoryOperationKind MemKind) const { 878 if (!FD) 879 return false; 880 881 bool CheckFree = (MemKind == MemoryOperationKind::MOK_Any || 882 MemKind == MemoryOperationKind::MOK_Free); 883 bool CheckAlloc = (MemKind == MemoryOperationKind::MOK_Any || 884 MemKind == MemoryOperationKind::MOK_Allocate); 885 886 if (FD->getKind() == Decl::Function) { 887 const IdentifierInfo *FunI = FD->getIdentifier(); 888 initIdentifierInfo(C); 889 890 if (Family == AF_Malloc && CheckFree) { 891 if (FunI == II_free || FunI == II_realloc || FunI == II_reallocf || 892 FunI == II_g_free || FunI == II_kfree) 893 return true; 894 } 895 896 if (Family == AF_Malloc && CheckAlloc) { 897 if (FunI == II_malloc || FunI == II_realloc || FunI == II_reallocf || 898 FunI == II_calloc || FunI == II_valloc || FunI == II_strdup || 899 FunI == II_win_strdup || FunI == II_strndup || FunI == II_wcsdup || 900 FunI == II_win_wcsdup || FunI == II_kmalloc || 901 FunI == II_g_malloc || FunI == II_g_malloc0 || 902 FunI == II_g_realloc || FunI == II_g_try_malloc || 903 FunI == II_g_try_malloc0 || FunI == II_g_try_realloc || 904 FunI == II_g_memdup || FunI == II_g_malloc_n || 905 FunI == II_g_malloc0_n || FunI == II_g_realloc_n || 906 FunI == II_g_try_malloc_n || FunI == II_g_try_malloc0_n || 907 FunI == II_g_try_realloc_n) 908 return true; 909 } 910 911 if (Family == AF_IfNameIndex && CheckFree) { 912 if (FunI == II_if_freenameindex) 913 return true; 914 } 915 916 if (Family == AF_IfNameIndex && CheckAlloc) { 917 if (FunI == II_if_nameindex) 918 return true; 919 } 920 921 if (Family == AF_Alloca && CheckAlloc) { 922 if (FunI == II_alloca || FunI == II_win_alloca) 923 return true; 924 } 925 } 926 927 if (Family != AF_Malloc) 928 return false; 929 930 if (ShouldIncludeOwnershipAnnotatedFunctions && FD->hasAttrs()) { 931 for (const auto *I : FD->specific_attrs<OwnershipAttr>()) { 932 OwnershipAttr::OwnershipKind OwnKind = I->getOwnKind(); 933 if(OwnKind == OwnershipAttr::Takes || OwnKind == OwnershipAttr::Holds) { 934 if (CheckFree) 935 return true; 936 } else if (OwnKind == OwnershipAttr::Returns) { 937 if (CheckAlloc) 938 return true; 939 } 940 } 941 } 942 943 return false; 944 } 945 bool MemFunctionInfoTy::isStandardNewDelete(const FunctionDecl *FD, 946 ASTContext &C) const { 947 if (!FD) 948 return false; 949 950 OverloadedOperatorKind Kind = FD->getOverloadedOperator(); 951 if (Kind != OO_New && Kind != OO_Array_New && 952 Kind != OO_Delete && Kind != OO_Array_Delete) 953 return false; 954 955 // This is standard if and only if it's not defined in a user file. 956 SourceLocation L = FD->getLocation(); 957 // If the header for operator delete is not included, it's still defined 958 // in an invalid source location. Check to make sure we don't crash. 959 return !L.isValid() || C.getSourceManager().isInSystemHeader(L); 960 } 961 962 //===----------------------------------------------------------------------===// 963 // Methods of MallocChecker and MallocBugVisitor. 964 //===----------------------------------------------------------------------===// 965 966 llvm::Optional<ProgramStateRef> MallocChecker::performKernelMalloc( 967 const CallExpr *CE, CheckerContext &C, const ProgramStateRef &State) const { 968 // 3-argument malloc(), as commonly used in {Free,Net,Open}BSD Kernels: 969 // 970 // void *malloc(unsigned long size, struct malloc_type *mtp, int flags); 971 // 972 // One of the possible flags is M_ZERO, which means 'give me back an 973 // allocation which is already zeroed', like calloc. 974 975 // 2-argument kmalloc(), as used in the Linux kernel: 976 // 977 // void *kmalloc(size_t size, gfp_t flags); 978 // 979 // Has the similar flag value __GFP_ZERO. 980 981 // This logic is largely cloned from O_CREAT in UnixAPIChecker, maybe some 982 // code could be shared. 983 984 ASTContext &Ctx = C.getASTContext(); 985 llvm::Triple::OSType OS = Ctx.getTargetInfo().getTriple().getOS(); 986 987 if (!KernelZeroFlagVal.hasValue()) { 988 if (OS == llvm::Triple::FreeBSD) 989 KernelZeroFlagVal = 0x0100; 990 else if (OS == llvm::Triple::NetBSD) 991 KernelZeroFlagVal = 0x0002; 992 else if (OS == llvm::Triple::OpenBSD) 993 KernelZeroFlagVal = 0x0008; 994 else if (OS == llvm::Triple::Linux) 995 // __GFP_ZERO 996 KernelZeroFlagVal = 0x8000; 997 else 998 // FIXME: We need a more general way of getting the M_ZERO value. 999 // See also: O_CREAT in UnixAPIChecker.cpp. 1000 1001 // Fall back to normal malloc behavior on platforms where we don't 1002 // know M_ZERO. 1003 return None; 1004 } 1005 1006 // We treat the last argument as the flags argument, and callers fall-back to 1007 // normal malloc on a None return. This works for the FreeBSD kernel malloc 1008 // as well as Linux kmalloc. 1009 if (CE->getNumArgs() < 2) 1010 return None; 1011 1012 const Expr *FlagsEx = CE->getArg(CE->getNumArgs() - 1); 1013 const SVal V = C.getSVal(FlagsEx); 1014 if (!V.getAs<NonLoc>()) { 1015 // The case where 'V' can be a location can only be due to a bad header, 1016 // so in this case bail out. 1017 return None; 1018 } 1019 1020 NonLoc Flags = V.castAs<NonLoc>(); 1021 NonLoc ZeroFlag = C.getSValBuilder() 1022 .makeIntVal(KernelZeroFlagVal.getValue(), FlagsEx->getType()) 1023 .castAs<NonLoc>(); 1024 SVal MaskedFlagsUC = C.getSValBuilder().evalBinOpNN(State, BO_And, 1025 Flags, ZeroFlag, 1026 FlagsEx->getType()); 1027 if (MaskedFlagsUC.isUnknownOrUndef()) 1028 return None; 1029 DefinedSVal MaskedFlags = MaskedFlagsUC.castAs<DefinedSVal>(); 1030 1031 // Check if maskedFlags is non-zero. 1032 ProgramStateRef TrueState, FalseState; 1033 std::tie(TrueState, FalseState) = State->assume(MaskedFlags); 1034 1035 // If M_ZERO is set, treat this like calloc (initialized). 1036 if (TrueState && !FalseState) { 1037 SVal ZeroVal = C.getSValBuilder().makeZeroVal(Ctx.CharTy); 1038 return MallocMemAux(C, CE, CE->getArg(0), ZeroVal, TrueState); 1039 } 1040 1041 return None; 1042 } 1043 1044 SVal MallocChecker::evalMulForBufferSize(CheckerContext &C, const Expr *Blocks, 1045 const Expr *BlockBytes) { 1046 SValBuilder &SB = C.getSValBuilder(); 1047 SVal BlocksVal = C.getSVal(Blocks); 1048 SVal BlockBytesVal = C.getSVal(BlockBytes); 1049 ProgramStateRef State = C.getState(); 1050 SVal TotalSize = SB.evalBinOp(State, BO_Mul, BlocksVal, BlockBytesVal, 1051 SB.getContext().getSizeType()); 1052 return TotalSize; 1053 } 1054 1055 void MallocChecker::checkPostStmt(const CallExpr *CE, CheckerContext &C) const { 1056 if (C.wasInlined) 1057 return; 1058 1059 const FunctionDecl *FD = C.getCalleeDecl(CE); 1060 if (!FD) 1061 return; 1062 1063 ProgramStateRef State = C.getState(); 1064 bool IsKnownToBeAllocatedMemory = false; 1065 1066 if (FD->getKind() == Decl::Function) { 1067 MemFunctionInfo.initIdentifierInfo(C.getASTContext()); 1068 IdentifierInfo *FunI = FD->getIdentifier(); 1069 1070 if (FunI == MemFunctionInfo.II_malloc || 1071 FunI == MemFunctionInfo.II_g_malloc || 1072 FunI == MemFunctionInfo.II_g_try_malloc) { 1073 switch (CE->getNumArgs()) { 1074 default: 1075 return; 1076 case 1: 1077 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); 1078 State = ProcessZeroAllocCheck(C, CE, 0, State); 1079 break; 1080 case 2: 1081 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); 1082 break; 1083 case 3: 1084 llvm::Optional<ProgramStateRef> MaybeState = 1085 performKernelMalloc(CE, C, State); 1086 if (MaybeState.hasValue()) 1087 State = MaybeState.getValue(); 1088 else 1089 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); 1090 break; 1091 } 1092 } else if (FunI == MemFunctionInfo.II_kmalloc) { 1093 if (CE->getNumArgs() < 1) 1094 return; 1095 llvm::Optional<ProgramStateRef> MaybeState = 1096 performKernelMalloc(CE, C, State); 1097 if (MaybeState.hasValue()) 1098 State = MaybeState.getValue(); 1099 else 1100 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); 1101 } else if (FunI == MemFunctionInfo.II_valloc) { 1102 if (CE->getNumArgs() < 1) 1103 return; 1104 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); 1105 State = ProcessZeroAllocCheck(C, CE, 0, State); 1106 } else if (FunI == MemFunctionInfo.II_realloc || 1107 FunI == MemFunctionInfo.II_g_realloc || 1108 FunI == MemFunctionInfo.II_g_try_realloc) { 1109 State = ReallocMemAux(C, CE, /*ShouldFreeOnFail*/ false, State); 1110 State = ProcessZeroAllocCheck(C, CE, 1, State); 1111 } else if (FunI == MemFunctionInfo.II_reallocf) { 1112 State = ReallocMemAux(C, CE, /*ShouldFreeOnFail*/ true, State); 1113 State = ProcessZeroAllocCheck(C, CE, 1, State); 1114 } else if (FunI == MemFunctionInfo.II_calloc) { 1115 State = CallocMem(C, CE, State); 1116 State = ProcessZeroAllocCheck(C, CE, 0, State); 1117 State = ProcessZeroAllocCheck(C, CE, 1, State); 1118 } else if (FunI == MemFunctionInfo.II_free || 1119 FunI == MemFunctionInfo.II_g_free || 1120 FunI == MemFunctionInfo.II_kfree) { 1121 if (suppressDeallocationsInSuspiciousContexts(CE, C)) 1122 return; 1123 1124 State = FreeMemAux(C, CE, State, 0, false, IsKnownToBeAllocatedMemory); 1125 } else if (FunI == MemFunctionInfo.II_strdup || 1126 FunI == MemFunctionInfo.II_win_strdup || 1127 FunI == MemFunctionInfo.II_wcsdup || 1128 FunI == MemFunctionInfo.II_win_wcsdup) { 1129 State = MallocUpdateRefState(C, CE, State); 1130 } else if (FunI == MemFunctionInfo.II_strndup) { 1131 State = MallocUpdateRefState(C, CE, State); 1132 } else if (FunI == MemFunctionInfo.II_alloca || 1133 FunI == MemFunctionInfo.II_win_alloca) { 1134 if (CE->getNumArgs() < 1) 1135 return; 1136 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State, 1137 AF_Alloca); 1138 State = ProcessZeroAllocCheck(C, CE, 0, State); 1139 } else if (MemFunctionInfo.isStandardNewDelete(FD, C.getASTContext())) { 1140 // Process direct calls to operator new/new[]/delete/delete[] functions 1141 // as distinct from new/new[]/delete/delete[] expressions that are 1142 // processed by the checkPostStmt callbacks for CXXNewExpr and 1143 // CXXDeleteExpr. 1144 switch (FD->getOverloadedOperator()) { 1145 case OO_New: 1146 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State, 1147 AF_CXXNew); 1148 State = ProcessZeroAllocCheck(C, CE, 0, State); 1149 break; 1150 case OO_Array_New: 1151 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State, 1152 AF_CXXNewArray); 1153 State = ProcessZeroAllocCheck(C, CE, 0, State); 1154 break; 1155 case OO_Delete: 1156 case OO_Array_Delete: 1157 State = FreeMemAux(C, CE, State, 0, false, IsKnownToBeAllocatedMemory); 1158 break; 1159 default: 1160 llvm_unreachable("not a new/delete operator"); 1161 } 1162 } else if (FunI == MemFunctionInfo.II_if_nameindex) { 1163 // Should we model this differently? We can allocate a fixed number of 1164 // elements with zeros in the last one. 1165 State = MallocMemAux(C, CE, UnknownVal(), UnknownVal(), State, 1166 AF_IfNameIndex); 1167 } else if (FunI == MemFunctionInfo.II_if_freenameindex) { 1168 State = FreeMemAux(C, CE, State, 0, false, IsKnownToBeAllocatedMemory); 1169 } else if (FunI == MemFunctionInfo.II_g_malloc0 || 1170 FunI == MemFunctionInfo.II_g_try_malloc0) { 1171 if (CE->getNumArgs() < 1) 1172 return; 1173 SValBuilder &svalBuilder = C.getSValBuilder(); 1174 SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy); 1175 State = MallocMemAux(C, CE, CE->getArg(0), zeroVal, State); 1176 State = ProcessZeroAllocCheck(C, CE, 0, State); 1177 } else if (FunI == MemFunctionInfo.II_g_memdup) { 1178 if (CE->getNumArgs() < 2) 1179 return; 1180 State = MallocMemAux(C, CE, CE->getArg(1), UndefinedVal(), State); 1181 State = ProcessZeroAllocCheck(C, CE, 1, State); 1182 } else if (FunI == MemFunctionInfo.II_g_malloc_n || 1183 FunI == MemFunctionInfo.II_g_try_malloc_n || 1184 FunI == MemFunctionInfo.II_g_malloc0_n || 1185 FunI == MemFunctionInfo.II_g_try_malloc0_n) { 1186 if (CE->getNumArgs() < 2) 1187 return; 1188 SVal Init = UndefinedVal(); 1189 if (FunI == MemFunctionInfo.II_g_malloc0_n || 1190 FunI == MemFunctionInfo.II_g_try_malloc0_n) { 1191 SValBuilder &SB = C.getSValBuilder(); 1192 Init = SB.makeZeroVal(SB.getContext().CharTy); 1193 } 1194 SVal TotalSize = evalMulForBufferSize(C, CE->getArg(0), CE->getArg(1)); 1195 State = MallocMemAux(C, CE, TotalSize, Init, State); 1196 State = ProcessZeroAllocCheck(C, CE, 0, State); 1197 State = ProcessZeroAllocCheck(C, CE, 1, State); 1198 } else if (FunI == MemFunctionInfo.II_g_realloc_n || 1199 FunI == MemFunctionInfo.II_g_try_realloc_n) { 1200 if (CE->getNumArgs() < 3) 1201 return; 1202 State = ReallocMemAux(C, CE, /*ShouldFreeOnFail*/ false, State, 1203 /*SuffixWithN*/ true); 1204 State = ProcessZeroAllocCheck(C, CE, 1, State); 1205 State = ProcessZeroAllocCheck(C, CE, 2, State); 1206 } 1207 } 1208 1209 if (MemFunctionInfo.ShouldIncludeOwnershipAnnotatedFunctions || 1210 ChecksEnabled[CK_MismatchedDeallocatorChecker]) { 1211 // Check all the attributes, if there are any. 1212 // There can be multiple of these attributes. 1213 if (FD->hasAttrs()) 1214 for (const auto *I : FD->specific_attrs<OwnershipAttr>()) { 1215 switch (I->getOwnKind()) { 1216 case OwnershipAttr::Returns: 1217 State = MallocMemReturnsAttr(C, CE, I, State); 1218 break; 1219 case OwnershipAttr::Takes: 1220 case OwnershipAttr::Holds: 1221 State = FreeMemAttr(C, CE, I, State); 1222 break; 1223 } 1224 } 1225 } 1226 C.addTransition(State); 1227 } 1228 1229 // Performs a 0-sized allocations check. 1230 ProgramStateRef MallocChecker::ProcessZeroAllocCheck( 1231 CheckerContext &C, const Expr *E, const unsigned IndexOfSizeArg, 1232 ProgramStateRef State, Optional<SVal> RetVal) { 1233 if (!State) 1234 return nullptr; 1235 1236 if (!RetVal) 1237 RetVal = C.getSVal(E); 1238 1239 const Expr *Arg = nullptr; 1240 1241 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { 1242 Arg = CE->getArg(IndexOfSizeArg); 1243 } 1244 else if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) { 1245 if (NE->isArray()) 1246 Arg = *NE->getArraySize(); 1247 else 1248 return State; 1249 } 1250 else 1251 llvm_unreachable("not a CallExpr or CXXNewExpr"); 1252 1253 assert(Arg); 1254 1255 Optional<DefinedSVal> DefArgVal = C.getSVal(Arg).getAs<DefinedSVal>(); 1256 1257 if (!DefArgVal) 1258 return State; 1259 1260 // Check if the allocation size is 0. 1261 ProgramStateRef TrueState, FalseState; 1262 SValBuilder &SvalBuilder = C.getSValBuilder(); 1263 DefinedSVal Zero = 1264 SvalBuilder.makeZeroVal(Arg->getType()).castAs<DefinedSVal>(); 1265 1266 std::tie(TrueState, FalseState) = 1267 State->assume(SvalBuilder.evalEQ(State, *DefArgVal, Zero)); 1268 1269 if (TrueState && !FalseState) { 1270 SymbolRef Sym = RetVal->getAsLocSymbol(); 1271 if (!Sym) 1272 return State; 1273 1274 const RefState *RS = State->get<RegionState>(Sym); 1275 if (RS) { 1276 if (RS->isAllocated()) 1277 return TrueState->set<RegionState>(Sym, 1278 RefState::getAllocatedOfSizeZero(RS)); 1279 else 1280 return State; 1281 } else { 1282 // Case of zero-size realloc. Historically 'realloc(ptr, 0)' is treated as 1283 // 'free(ptr)' and the returned value from 'realloc(ptr, 0)' is not 1284 // tracked. Add zero-reallocated Sym to the state to catch references 1285 // to zero-allocated memory. 1286 return TrueState->add<ReallocSizeZeroSymbols>(Sym); 1287 } 1288 } 1289 1290 // Assume the value is non-zero going forward. 1291 assert(FalseState); 1292 return FalseState; 1293 } 1294 1295 static QualType getDeepPointeeType(QualType T) { 1296 QualType Result = T, PointeeType = T->getPointeeType(); 1297 while (!PointeeType.isNull()) { 1298 Result = PointeeType; 1299 PointeeType = PointeeType->getPointeeType(); 1300 } 1301 return Result; 1302 } 1303 1304 /// \returns true if the constructor invoked by \p NE has an argument of a 1305 /// pointer/reference to a record type. 1306 static bool hasNonTrivialConstructorCall(const CXXNewExpr *NE) { 1307 1308 const CXXConstructExpr *ConstructE = NE->getConstructExpr(); 1309 if (!ConstructE) 1310 return false; 1311 1312 if (!NE->getAllocatedType()->getAsCXXRecordDecl()) 1313 return false; 1314 1315 const CXXConstructorDecl *CtorD = ConstructE->getConstructor(); 1316 1317 // Iterate over the constructor parameters. 1318 for (const auto *CtorParam : CtorD->parameters()) { 1319 1320 QualType CtorParamPointeeT = CtorParam->getType()->getPointeeType(); 1321 if (CtorParamPointeeT.isNull()) 1322 continue; 1323 1324 CtorParamPointeeT = getDeepPointeeType(CtorParamPointeeT); 1325 1326 if (CtorParamPointeeT->getAsCXXRecordDecl()) 1327 return true; 1328 } 1329 1330 return false; 1331 } 1332 1333 void MallocChecker::processNewAllocation(const CXXNewExpr *NE, 1334 CheckerContext &C, 1335 SVal Target) const { 1336 if (!MemFunctionInfo.isStandardNewDelete(NE->getOperatorNew(), 1337 C.getASTContext())) 1338 return; 1339 1340 const ParentMap &PM = C.getLocationContext()->getParentMap(); 1341 1342 // Non-trivial constructors have a chance to escape 'this', but marking all 1343 // invocations of trivial constructors as escaped would cause too great of 1344 // reduction of true positives, so let's just do that for constructors that 1345 // have an argument of a pointer-to-record type. 1346 if (!PM.isConsumedExpr(NE) && hasNonTrivialConstructorCall(NE)) 1347 return; 1348 1349 ProgramStateRef State = C.getState(); 1350 // The return value from operator new is bound to a specified initialization 1351 // value (if any) and we don't want to loose this value. So we call 1352 // MallocUpdateRefState() instead of MallocMemAux() which breaks the 1353 // existing binding. 1354 State = MallocUpdateRefState(C, NE, State, NE->isArray() ? AF_CXXNewArray 1355 : AF_CXXNew, Target); 1356 State = addExtentSize(C, NE, State, Target); 1357 State = ProcessZeroAllocCheck(C, NE, 0, State, Target); 1358 C.addTransition(State); 1359 } 1360 1361 void MallocChecker::checkPostStmt(const CXXNewExpr *NE, 1362 CheckerContext &C) const { 1363 if (!C.getAnalysisManager().getAnalyzerOptions().MayInlineCXXAllocator) 1364 processNewAllocation(NE, C, C.getSVal(NE)); 1365 } 1366 1367 void MallocChecker::checkNewAllocator(const CXXNewExpr *NE, SVal Target, 1368 CheckerContext &C) const { 1369 if (!C.wasInlined) 1370 processNewAllocation(NE, C, Target); 1371 } 1372 1373 // Sets the extent value of the MemRegion allocated by 1374 // new expression NE to its size in Bytes. 1375 // 1376 ProgramStateRef MallocChecker::addExtentSize(CheckerContext &C, 1377 const CXXNewExpr *NE, 1378 ProgramStateRef State, 1379 SVal Target) { 1380 if (!State) 1381 return nullptr; 1382 SValBuilder &svalBuilder = C.getSValBuilder(); 1383 SVal ElementCount; 1384 const SubRegion *Region; 1385 if (NE->isArray()) { 1386 const Expr *SizeExpr = *NE->getArraySize(); 1387 ElementCount = C.getSVal(SizeExpr); 1388 // Store the extent size for the (symbolic)region 1389 // containing the elements. 1390 Region = Target.getAsRegion() 1391 ->castAs<SubRegion>() 1392 ->StripCasts() 1393 ->castAs<SubRegion>(); 1394 } else { 1395 ElementCount = svalBuilder.makeIntVal(1, true); 1396 Region = Target.getAsRegion()->castAs<SubRegion>(); 1397 } 1398 1399 // Set the region's extent equal to the Size in Bytes. 1400 QualType ElementType = NE->getAllocatedType(); 1401 ASTContext &AstContext = C.getASTContext(); 1402 CharUnits TypeSize = AstContext.getTypeSizeInChars(ElementType); 1403 1404 if (ElementCount.getAs<NonLoc>()) { 1405 DefinedOrUnknownSVal Extent = Region->getExtent(svalBuilder); 1406 // size in Bytes = ElementCount*TypeSize 1407 SVal SizeInBytes = svalBuilder.evalBinOpNN( 1408 State, BO_Mul, ElementCount.castAs<NonLoc>(), 1409 svalBuilder.makeArrayIndex(TypeSize.getQuantity()), 1410 svalBuilder.getArrayIndexType()); 1411 DefinedOrUnknownSVal extentMatchesSize = svalBuilder.evalEQ( 1412 State, Extent, SizeInBytes.castAs<DefinedOrUnknownSVal>()); 1413 State = State->assume(extentMatchesSize, true); 1414 } 1415 return State; 1416 } 1417 1418 void MallocChecker::checkPreStmt(const CXXDeleteExpr *DE, 1419 CheckerContext &C) const { 1420 1421 if (!ChecksEnabled[CK_NewDeleteChecker]) 1422 if (SymbolRef Sym = C.getSVal(DE->getArgument()).getAsSymbol()) 1423 checkUseAfterFree(Sym, C, DE->getArgument()); 1424 1425 if (!MemFunctionInfo.isStandardNewDelete(DE->getOperatorDelete(), 1426 C.getASTContext())) 1427 return; 1428 1429 ProgramStateRef State = C.getState(); 1430 bool IsKnownToBeAllocated; 1431 State = FreeMemAux(C, DE->getArgument(), DE, State, 1432 /*Hold*/ false, IsKnownToBeAllocated); 1433 1434 C.addTransition(State); 1435 } 1436 1437 static bool isKnownDeallocObjCMethodName(const ObjCMethodCall &Call) { 1438 // If the first selector piece is one of the names below, assume that the 1439 // object takes ownership of the memory, promising to eventually deallocate it 1440 // with free(). 1441 // Ex: [NSData dataWithBytesNoCopy:bytes length:10]; 1442 // (...unless a 'freeWhenDone' parameter is false, but that's checked later.) 1443 StringRef FirstSlot = Call.getSelector().getNameForSlot(0); 1444 return FirstSlot == "dataWithBytesNoCopy" || 1445 FirstSlot == "initWithBytesNoCopy" || 1446 FirstSlot == "initWithCharactersNoCopy"; 1447 } 1448 1449 static Optional<bool> getFreeWhenDoneArg(const ObjCMethodCall &Call) { 1450 Selector S = Call.getSelector(); 1451 1452 // FIXME: We should not rely on fully-constrained symbols being folded. 1453 for (unsigned i = 1; i < S.getNumArgs(); ++i) 1454 if (S.getNameForSlot(i).equals("freeWhenDone")) 1455 return !Call.getArgSVal(i).isZeroConstant(); 1456 1457 return None; 1458 } 1459 1460 void MallocChecker::checkPostObjCMessage(const ObjCMethodCall &Call, 1461 CheckerContext &C) const { 1462 if (C.wasInlined) 1463 return; 1464 1465 if (!isKnownDeallocObjCMethodName(Call)) 1466 return; 1467 1468 if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(Call)) 1469 if (!*FreeWhenDone) 1470 return; 1471 1472 if (Call.hasNonZeroCallbackArg()) 1473 return; 1474 1475 bool IsKnownToBeAllocatedMemory; 1476 ProgramStateRef State = 1477 FreeMemAux(C, Call.getArgExpr(0), Call.getOriginExpr(), C.getState(), 1478 /*Hold=*/true, IsKnownToBeAllocatedMemory, 1479 /*RetNullOnFailure=*/true); 1480 1481 C.addTransition(State); 1482 } 1483 1484 ProgramStateRef 1485 MallocChecker::MallocMemReturnsAttr(CheckerContext &C, const CallExpr *CE, 1486 const OwnershipAttr *Att, 1487 ProgramStateRef State) const { 1488 if (!State) 1489 return nullptr; 1490 1491 if (Att->getModule() != MemFunctionInfo.II_malloc) 1492 return nullptr; 1493 1494 OwnershipAttr::args_iterator I = Att->args_begin(), E = Att->args_end(); 1495 if (I != E) { 1496 return MallocMemAux(C, CE, CE->getArg(I->getASTIndex()), UndefinedVal(), 1497 State); 1498 } 1499 return MallocMemAux(C, CE, UnknownVal(), UndefinedVal(), State); 1500 } 1501 1502 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, 1503 const CallExpr *CE, 1504 const Expr *SizeEx, SVal Init, 1505 ProgramStateRef State, 1506 AllocationFamily Family) { 1507 if (!State) 1508 return nullptr; 1509 1510 return MallocMemAux(C, CE, C.getSVal(SizeEx), Init, State, Family); 1511 } 1512 1513 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, 1514 const CallExpr *CE, 1515 SVal Size, SVal Init, 1516 ProgramStateRef State, 1517 AllocationFamily Family) { 1518 if (!State) 1519 return nullptr; 1520 1521 // We expect the malloc functions to return a pointer. 1522 if (!Loc::isLocType(CE->getType())) 1523 return nullptr; 1524 1525 // Bind the return value to the symbolic value from the heap region. 1526 // TODO: We could rewrite post visit to eval call; 'malloc' does not have 1527 // side effects other than what we model here. 1528 unsigned Count = C.blockCount(); 1529 SValBuilder &svalBuilder = C.getSValBuilder(); 1530 const LocationContext *LCtx = C.getPredecessor()->getLocationContext(); 1531 DefinedSVal RetVal = svalBuilder.getConjuredHeapSymbolVal(CE, LCtx, Count) 1532 .castAs<DefinedSVal>(); 1533 State = State->BindExpr(CE, C.getLocationContext(), RetVal); 1534 1535 // Fill the region with the initialization value. 1536 State = State->bindDefaultInitial(RetVal, Init, LCtx); 1537 1538 // Set the region's extent equal to the Size parameter. 1539 const SymbolicRegion *R = 1540 dyn_cast_or_null<SymbolicRegion>(RetVal.getAsRegion()); 1541 if (!R) 1542 return nullptr; 1543 if (Optional<DefinedOrUnknownSVal> DefinedSize = 1544 Size.getAs<DefinedOrUnknownSVal>()) { 1545 SValBuilder &svalBuilder = C.getSValBuilder(); 1546 DefinedOrUnknownSVal Extent = R->getExtent(svalBuilder); 1547 DefinedOrUnknownSVal extentMatchesSize = 1548 svalBuilder.evalEQ(State, Extent, *DefinedSize); 1549 1550 State = State->assume(extentMatchesSize, true); 1551 assert(State); 1552 } 1553 1554 return MallocUpdateRefState(C, CE, State, Family); 1555 } 1556 1557 static ProgramStateRef MallocUpdateRefState(CheckerContext &C, const Expr *E, 1558 ProgramStateRef State, 1559 AllocationFamily Family, 1560 Optional<SVal> RetVal) { 1561 if (!State) 1562 return nullptr; 1563 1564 // Get the return value. 1565 if (!RetVal) 1566 RetVal = C.getSVal(E); 1567 1568 // We expect the malloc functions to return a pointer. 1569 if (!RetVal->getAs<Loc>()) 1570 return nullptr; 1571 1572 SymbolRef Sym = RetVal->getAsLocSymbol(); 1573 // This is a return value of a function that was not inlined, such as malloc() 1574 // or new(). We've checked that in the caller. Therefore, it must be a symbol. 1575 assert(Sym); 1576 1577 // Set the symbol's state to Allocated. 1578 return State->set<RegionState>(Sym, RefState::getAllocated(Family, E)); 1579 } 1580 1581 ProgramStateRef MallocChecker::FreeMemAttr(CheckerContext &C, 1582 const CallExpr *CE, 1583 const OwnershipAttr *Att, 1584 ProgramStateRef State) const { 1585 if (!State) 1586 return nullptr; 1587 1588 if (Att->getModule() != MemFunctionInfo.II_malloc) 1589 return nullptr; 1590 1591 bool IsKnownToBeAllocated = false; 1592 1593 for (const auto &Arg : Att->args()) { 1594 ProgramStateRef StateI = FreeMemAux( 1595 C, CE, State, Arg.getASTIndex(), 1596 Att->getOwnKind() == OwnershipAttr::Holds, IsKnownToBeAllocated); 1597 if (StateI) 1598 State = StateI; 1599 } 1600 return State; 1601 } 1602 1603 ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C, const CallExpr *CE, 1604 ProgramStateRef State, unsigned Num, 1605 bool Hold, bool &IsKnownToBeAllocated, 1606 bool ReturnsNullOnFailure) const { 1607 if (!State) 1608 return nullptr; 1609 1610 if (CE->getNumArgs() < (Num + 1)) 1611 return nullptr; 1612 1613 return FreeMemAux(C, CE->getArg(Num), CE, State, Hold, IsKnownToBeAllocated, 1614 ReturnsNullOnFailure); 1615 } 1616 1617 /// Checks if the previous call to free on the given symbol failed - if free 1618 /// failed, returns true. Also, returns the corresponding return value symbol. 1619 static bool didPreviousFreeFail(ProgramStateRef State, 1620 SymbolRef Sym, SymbolRef &RetStatusSymbol) { 1621 const SymbolRef *Ret = State->get<FreeReturnValue>(Sym); 1622 if (Ret) { 1623 assert(*Ret && "We should not store the null return symbol"); 1624 ConstraintManager &CMgr = State->getConstraintManager(); 1625 ConditionTruthVal FreeFailed = CMgr.isNull(State, *Ret); 1626 RetStatusSymbol = *Ret; 1627 return FreeFailed.isConstrainedTrue(); 1628 } 1629 return false; 1630 } 1631 1632 static AllocationFamily 1633 getAllocationFamily(const MemFunctionInfoTy &MemFunctionInfo, CheckerContext &C, 1634 const Stmt *S) { 1635 1636 if (!S) 1637 return AF_None; 1638 1639 if (const CallExpr *CE = dyn_cast<CallExpr>(S)) { 1640 const FunctionDecl *FD = C.getCalleeDecl(CE); 1641 1642 if (!FD) 1643 FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl()); 1644 1645 ASTContext &Ctx = C.getASTContext(); 1646 1647 if (MemFunctionInfo.isCMemFunction(FD, Ctx, AF_Malloc, 1648 MemoryOperationKind::MOK_Any)) 1649 return AF_Malloc; 1650 1651 if (MemFunctionInfo.isStandardNewDelete(FD, Ctx)) { 1652 OverloadedOperatorKind Kind = FD->getOverloadedOperator(); 1653 if (Kind == OO_New || Kind == OO_Delete) 1654 return AF_CXXNew; 1655 else if (Kind == OO_Array_New || Kind == OO_Array_Delete) 1656 return AF_CXXNewArray; 1657 } 1658 1659 if (MemFunctionInfo.isCMemFunction(FD, Ctx, AF_IfNameIndex, 1660 MemoryOperationKind::MOK_Any)) 1661 return AF_IfNameIndex; 1662 1663 if (MemFunctionInfo.isCMemFunction(FD, Ctx, AF_Alloca, 1664 MemoryOperationKind::MOK_Any)) 1665 return AF_Alloca; 1666 1667 return AF_None; 1668 } 1669 1670 if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(S)) 1671 return NE->isArray() ? AF_CXXNewArray : AF_CXXNew; 1672 1673 if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(S)) 1674 return DE->isArrayForm() ? AF_CXXNewArray : AF_CXXNew; 1675 1676 if (isa<ObjCMessageExpr>(S)) 1677 return AF_Malloc; 1678 1679 return AF_None; 1680 } 1681 1682 static bool printAllocDeallocName(raw_ostream &os, CheckerContext &C, 1683 const Expr *E) { 1684 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { 1685 // FIXME: This doesn't handle indirect calls. 1686 const FunctionDecl *FD = CE->getDirectCallee(); 1687 if (!FD) 1688 return false; 1689 1690 os << *FD; 1691 if (!FD->isOverloadedOperator()) 1692 os << "()"; 1693 return true; 1694 } 1695 1696 if (const ObjCMessageExpr *Msg = dyn_cast<ObjCMessageExpr>(E)) { 1697 if (Msg->isInstanceMessage()) 1698 os << "-"; 1699 else 1700 os << "+"; 1701 Msg->getSelector().print(os); 1702 return true; 1703 } 1704 1705 if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) { 1706 os << "'" 1707 << getOperatorSpelling(NE->getOperatorNew()->getOverloadedOperator()) 1708 << "'"; 1709 return true; 1710 } 1711 1712 if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(E)) { 1713 os << "'" 1714 << getOperatorSpelling(DE->getOperatorDelete()->getOverloadedOperator()) 1715 << "'"; 1716 return true; 1717 } 1718 1719 return false; 1720 } 1721 1722 static void printExpectedAllocName(raw_ostream &os, 1723 const MemFunctionInfoTy &MemFunctionInfo, 1724 CheckerContext &C, const Expr *E) { 1725 AllocationFamily Family = getAllocationFamily(MemFunctionInfo, C, E); 1726 1727 switch(Family) { 1728 case AF_Malloc: os << "malloc()"; return; 1729 case AF_CXXNew: os << "'new'"; return; 1730 case AF_CXXNewArray: os << "'new[]'"; return; 1731 case AF_IfNameIndex: os << "'if_nameindex()'"; return; 1732 case AF_InnerBuffer: os << "container-specific allocator"; return; 1733 case AF_Alloca: 1734 case AF_None: llvm_unreachable("not a deallocation expression"); 1735 } 1736 } 1737 1738 static void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family) { 1739 switch(Family) { 1740 case AF_Malloc: os << "free()"; return; 1741 case AF_CXXNew: os << "'delete'"; return; 1742 case AF_CXXNewArray: os << "'delete[]'"; return; 1743 case AF_IfNameIndex: os << "'if_freenameindex()'"; return; 1744 case AF_InnerBuffer: os << "container-specific deallocator"; return; 1745 case AF_Alloca: 1746 case AF_None: llvm_unreachable("suspicious argument"); 1747 } 1748 } 1749 1750 ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C, 1751 const Expr *ArgExpr, 1752 const Expr *ParentExpr, 1753 ProgramStateRef State, bool Hold, 1754 bool &IsKnownToBeAllocated, 1755 bool ReturnsNullOnFailure) const { 1756 1757 if (!State) 1758 return nullptr; 1759 1760 SVal ArgVal = C.getSVal(ArgExpr); 1761 if (!ArgVal.getAs<DefinedOrUnknownSVal>()) 1762 return nullptr; 1763 DefinedOrUnknownSVal location = ArgVal.castAs<DefinedOrUnknownSVal>(); 1764 1765 // Check for null dereferences. 1766 if (!location.getAs<Loc>()) 1767 return nullptr; 1768 1769 // The explicit NULL case, no operation is performed. 1770 ProgramStateRef notNullState, nullState; 1771 std::tie(notNullState, nullState) = State->assume(location); 1772 if (nullState && !notNullState) 1773 return nullptr; 1774 1775 // Unknown values could easily be okay 1776 // Undefined values are handled elsewhere 1777 if (ArgVal.isUnknownOrUndef()) 1778 return nullptr; 1779 1780 const MemRegion *R = ArgVal.getAsRegion(); 1781 1782 // Nonlocs can't be freed, of course. 1783 // Non-region locations (labels and fixed addresses) also shouldn't be freed. 1784 if (!R) { 1785 ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); 1786 return nullptr; 1787 } 1788 1789 R = R->StripCasts(); 1790 1791 // Blocks might show up as heap data, but should not be free()d 1792 if (isa<BlockDataRegion>(R)) { 1793 ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); 1794 return nullptr; 1795 } 1796 1797 const MemSpaceRegion *MS = R->getMemorySpace(); 1798 1799 // Parameters, locals, statics, globals, and memory returned by 1800 // __builtin_alloca() shouldn't be freed. 1801 if (!(isa<UnknownSpaceRegion>(MS) || isa<HeapSpaceRegion>(MS))) { 1802 // FIXME: at the time this code was written, malloc() regions were 1803 // represented by conjured symbols, which are all in UnknownSpaceRegion. 1804 // This means that there isn't actually anything from HeapSpaceRegion 1805 // that should be freed, even though we allow it here. 1806 // Of course, free() can work on memory allocated outside the current 1807 // function, so UnknownSpaceRegion is always a possibility. 1808 // False negatives are better than false positives. 1809 1810 if (isa<AllocaRegion>(R)) 1811 ReportFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); 1812 else 1813 ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); 1814 1815 return nullptr; 1816 } 1817 1818 const SymbolicRegion *SrBase = dyn_cast<SymbolicRegion>(R->getBaseRegion()); 1819 // Various cases could lead to non-symbol values here. 1820 // For now, ignore them. 1821 if (!SrBase) 1822 return nullptr; 1823 1824 SymbolRef SymBase = SrBase->getSymbol(); 1825 const RefState *RsBase = State->get<RegionState>(SymBase); 1826 SymbolRef PreviousRetStatusSymbol = nullptr; 1827 1828 IsKnownToBeAllocated = 1829 RsBase && (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero()); 1830 1831 if (RsBase) { 1832 1833 // Memory returned by alloca() shouldn't be freed. 1834 if (RsBase->getAllocationFamily() == AF_Alloca) { 1835 ReportFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); 1836 return nullptr; 1837 } 1838 1839 // Check for double free first. 1840 if ((RsBase->isReleased() || RsBase->isRelinquished()) && 1841 !didPreviousFreeFail(State, SymBase, PreviousRetStatusSymbol)) { 1842 ReportDoubleFree(C, ParentExpr->getSourceRange(), RsBase->isReleased(), 1843 SymBase, PreviousRetStatusSymbol); 1844 return nullptr; 1845 1846 // If the pointer is allocated or escaped, but we are now trying to free it, 1847 // check that the call to free is proper. 1848 } else if (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero() || 1849 RsBase->isEscaped()) { 1850 1851 // Check if an expected deallocation function matches the real one. 1852 bool DeallocMatchesAlloc = 1853 RsBase->getAllocationFamily() == 1854 getAllocationFamily(MemFunctionInfo, C, ParentExpr); 1855 if (!DeallocMatchesAlloc) { 1856 ReportMismatchedDealloc(C, ArgExpr->getSourceRange(), 1857 ParentExpr, RsBase, SymBase, Hold); 1858 return nullptr; 1859 } 1860 1861 // Check if the memory location being freed is the actual location 1862 // allocated, or an offset. 1863 RegionOffset Offset = R->getAsOffset(); 1864 if (Offset.isValid() && 1865 !Offset.hasSymbolicOffset() && 1866 Offset.getOffset() != 0) { 1867 const Expr *AllocExpr = cast<Expr>(RsBase->getStmt()); 1868 ReportOffsetFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 1869 AllocExpr); 1870 return nullptr; 1871 } 1872 } 1873 } 1874 1875 if (SymBase->getType()->isFunctionPointerType()) { 1876 ReportFunctionPointerFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); 1877 return nullptr; 1878 } 1879 1880 // Clean out the info on previous call to free return info. 1881 State = State->remove<FreeReturnValue>(SymBase); 1882 1883 // Keep track of the return value. If it is NULL, we will know that free 1884 // failed. 1885 if (ReturnsNullOnFailure) { 1886 SVal RetVal = C.getSVal(ParentExpr); 1887 SymbolRef RetStatusSymbol = RetVal.getAsSymbol(); 1888 if (RetStatusSymbol) { 1889 C.getSymbolManager().addSymbolDependency(SymBase, RetStatusSymbol); 1890 State = State->set<FreeReturnValue>(SymBase, RetStatusSymbol); 1891 } 1892 } 1893 1894 AllocationFamily Family = 1895 RsBase ? RsBase->getAllocationFamily() 1896 : getAllocationFamily(MemFunctionInfo, C, ParentExpr); 1897 // Normal free. 1898 if (Hold) 1899 return State->set<RegionState>(SymBase, 1900 RefState::getRelinquished(Family, 1901 ParentExpr)); 1902 1903 return State->set<RegionState>(SymBase, 1904 RefState::getReleased(Family, ParentExpr)); 1905 } 1906 1907 Optional<MallocChecker::CheckKind> 1908 MallocChecker::getCheckIfTracked(AllocationFamily Family, 1909 bool IsALeakCheck) const { 1910 switch (Family) { 1911 case AF_Malloc: 1912 case AF_Alloca: 1913 case AF_IfNameIndex: { 1914 if (ChecksEnabled[CK_MallocChecker]) 1915 return CK_MallocChecker; 1916 return None; 1917 } 1918 case AF_CXXNew: 1919 case AF_CXXNewArray: { 1920 if (IsALeakCheck) { 1921 if (ChecksEnabled[CK_NewDeleteLeaksChecker]) 1922 return CK_NewDeleteLeaksChecker; 1923 } 1924 else { 1925 if (ChecksEnabled[CK_NewDeleteChecker]) 1926 return CK_NewDeleteChecker; 1927 } 1928 return None; 1929 } 1930 case AF_InnerBuffer: { 1931 if (ChecksEnabled[CK_InnerPointerChecker]) 1932 return CK_InnerPointerChecker; 1933 return None; 1934 } 1935 case AF_None: { 1936 llvm_unreachable("no family"); 1937 } 1938 } 1939 llvm_unreachable("unhandled family"); 1940 } 1941 1942 Optional<MallocChecker::CheckKind> 1943 MallocChecker::getCheckIfTracked(CheckerContext &C, 1944 const Stmt *AllocDeallocStmt, 1945 bool IsALeakCheck) const { 1946 return getCheckIfTracked( 1947 getAllocationFamily(MemFunctionInfo, C, AllocDeallocStmt), IsALeakCheck); 1948 } 1949 1950 Optional<MallocChecker::CheckKind> 1951 MallocChecker::getCheckIfTracked(CheckerContext &C, SymbolRef Sym, 1952 bool IsALeakCheck) const { 1953 if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) 1954 return CK_MallocChecker; 1955 1956 const RefState *RS = C.getState()->get<RegionState>(Sym); 1957 assert(RS); 1958 return getCheckIfTracked(RS->getAllocationFamily(), IsALeakCheck); 1959 } 1960 1961 bool MallocChecker::SummarizeValue(raw_ostream &os, SVal V) { 1962 if (Optional<nonloc::ConcreteInt> IntVal = V.getAs<nonloc::ConcreteInt>()) 1963 os << "an integer (" << IntVal->getValue() << ")"; 1964 else if (Optional<loc::ConcreteInt> ConstAddr = V.getAs<loc::ConcreteInt>()) 1965 os << "a constant address (" << ConstAddr->getValue() << ")"; 1966 else if (Optional<loc::GotoLabel> Label = V.getAs<loc::GotoLabel>()) 1967 os << "the address of the label '" << Label->getLabel()->getName() << "'"; 1968 else 1969 return false; 1970 1971 return true; 1972 } 1973 1974 bool MallocChecker::SummarizeRegion(raw_ostream &os, 1975 const MemRegion *MR) { 1976 switch (MR->getKind()) { 1977 case MemRegion::FunctionCodeRegionKind: { 1978 const NamedDecl *FD = cast<FunctionCodeRegion>(MR)->getDecl(); 1979 if (FD) 1980 os << "the address of the function '" << *FD << '\''; 1981 else 1982 os << "the address of a function"; 1983 return true; 1984 } 1985 case MemRegion::BlockCodeRegionKind: 1986 os << "block text"; 1987 return true; 1988 case MemRegion::BlockDataRegionKind: 1989 // FIXME: where the block came from? 1990 os << "a block"; 1991 return true; 1992 default: { 1993 const MemSpaceRegion *MS = MR->getMemorySpace(); 1994 1995 if (isa<StackLocalsSpaceRegion>(MS)) { 1996 const VarRegion *VR = dyn_cast<VarRegion>(MR); 1997 const VarDecl *VD; 1998 if (VR) 1999 VD = VR->getDecl(); 2000 else 2001 VD = nullptr; 2002 2003 if (VD) 2004 os << "the address of the local variable '" << VD->getName() << "'"; 2005 else 2006 os << "the address of a local stack variable"; 2007 return true; 2008 } 2009 2010 if (isa<StackArgumentsSpaceRegion>(MS)) { 2011 const VarRegion *VR = dyn_cast<VarRegion>(MR); 2012 const VarDecl *VD; 2013 if (VR) 2014 VD = VR->getDecl(); 2015 else 2016 VD = nullptr; 2017 2018 if (VD) 2019 os << "the address of the parameter '" << VD->getName() << "'"; 2020 else 2021 os << "the address of a parameter"; 2022 return true; 2023 } 2024 2025 if (isa<GlobalsSpaceRegion>(MS)) { 2026 const VarRegion *VR = dyn_cast<VarRegion>(MR); 2027 const VarDecl *VD; 2028 if (VR) 2029 VD = VR->getDecl(); 2030 else 2031 VD = nullptr; 2032 2033 if (VD) { 2034 if (VD->isStaticLocal()) 2035 os << "the address of the static variable '" << VD->getName() << "'"; 2036 else 2037 os << "the address of the global variable '" << VD->getName() << "'"; 2038 } else 2039 os << "the address of a global variable"; 2040 return true; 2041 } 2042 2043 return false; 2044 } 2045 } 2046 } 2047 2048 void MallocChecker::ReportBadFree(CheckerContext &C, SVal ArgVal, 2049 SourceRange Range, 2050 const Expr *DeallocExpr) const { 2051 2052 if (!ChecksEnabled[CK_MallocChecker] && 2053 !ChecksEnabled[CK_NewDeleteChecker]) 2054 return; 2055 2056 Optional<MallocChecker::CheckKind> CheckKind = 2057 getCheckIfTracked(C, DeallocExpr); 2058 if (!CheckKind.hasValue()) 2059 return; 2060 2061 if (ExplodedNode *N = C.generateErrorNode()) { 2062 if (!BT_BadFree[*CheckKind]) 2063 BT_BadFree[*CheckKind].reset(new BugType( 2064 CheckNames[*CheckKind], "Bad free", categories::MemoryError)); 2065 2066 SmallString<100> buf; 2067 llvm::raw_svector_ostream os(buf); 2068 2069 const MemRegion *MR = ArgVal.getAsRegion(); 2070 while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR)) 2071 MR = ER->getSuperRegion(); 2072 2073 os << "Argument to "; 2074 if (!printAllocDeallocName(os, C, DeallocExpr)) 2075 os << "deallocator"; 2076 2077 os << " is "; 2078 bool Summarized = MR ? SummarizeRegion(os, MR) 2079 : SummarizeValue(os, ArgVal); 2080 if (Summarized) 2081 os << ", which is not memory allocated by "; 2082 else 2083 os << "not memory allocated by "; 2084 2085 printExpectedAllocName(os, MemFunctionInfo, C, DeallocExpr); 2086 2087 auto R = std::make_unique<PathSensitiveBugReport>(*BT_BadFree[*CheckKind], 2088 os.str(), N); 2089 R->markInteresting(MR); 2090 R->addRange(Range); 2091 C.emitReport(std::move(R)); 2092 } 2093 } 2094 2095 void MallocChecker::ReportFreeAlloca(CheckerContext &C, SVal ArgVal, 2096 SourceRange Range) const { 2097 2098 Optional<MallocChecker::CheckKind> CheckKind; 2099 2100 if (ChecksEnabled[CK_MallocChecker]) 2101 CheckKind = CK_MallocChecker; 2102 else if (ChecksEnabled[CK_MismatchedDeallocatorChecker]) 2103 CheckKind = CK_MismatchedDeallocatorChecker; 2104 else 2105 return; 2106 2107 if (ExplodedNode *N = C.generateErrorNode()) { 2108 if (!BT_FreeAlloca[*CheckKind]) 2109 BT_FreeAlloca[*CheckKind].reset(new BugType( 2110 CheckNames[*CheckKind], "Free alloca()", categories::MemoryError)); 2111 2112 auto R = std::make_unique<PathSensitiveBugReport>( 2113 *BT_FreeAlloca[*CheckKind], 2114 "Memory allocated by alloca() should not be deallocated", N); 2115 R->markInteresting(ArgVal.getAsRegion()); 2116 R->addRange(Range); 2117 C.emitReport(std::move(R)); 2118 } 2119 } 2120 2121 void MallocChecker::ReportMismatchedDealloc(CheckerContext &C, 2122 SourceRange Range, 2123 const Expr *DeallocExpr, 2124 const RefState *RS, 2125 SymbolRef Sym, 2126 bool OwnershipTransferred) const { 2127 2128 if (!ChecksEnabled[CK_MismatchedDeallocatorChecker]) 2129 return; 2130 2131 if (ExplodedNode *N = C.generateErrorNode()) { 2132 if (!BT_MismatchedDealloc) 2133 BT_MismatchedDealloc.reset( 2134 new BugType(CheckNames[CK_MismatchedDeallocatorChecker], 2135 "Bad deallocator", categories::MemoryError)); 2136 2137 SmallString<100> buf; 2138 llvm::raw_svector_ostream os(buf); 2139 2140 const Expr *AllocExpr = cast<Expr>(RS->getStmt()); 2141 SmallString<20> AllocBuf; 2142 llvm::raw_svector_ostream AllocOs(AllocBuf); 2143 SmallString<20> DeallocBuf; 2144 llvm::raw_svector_ostream DeallocOs(DeallocBuf); 2145 2146 if (OwnershipTransferred) { 2147 if (printAllocDeallocName(DeallocOs, C, DeallocExpr)) 2148 os << DeallocOs.str() << " cannot"; 2149 else 2150 os << "Cannot"; 2151 2152 os << " take ownership of memory"; 2153 2154 if (printAllocDeallocName(AllocOs, C, AllocExpr)) 2155 os << " allocated by " << AllocOs.str(); 2156 } else { 2157 os << "Memory"; 2158 if (printAllocDeallocName(AllocOs, C, AllocExpr)) 2159 os << " allocated by " << AllocOs.str(); 2160 2161 os << " should be deallocated by "; 2162 printExpectedDeallocName(os, RS->getAllocationFamily()); 2163 2164 if (printAllocDeallocName(DeallocOs, C, DeallocExpr)) 2165 os << ", not " << DeallocOs.str(); 2166 } 2167 2168 auto R = std::make_unique<PathSensitiveBugReport>(*BT_MismatchedDealloc, 2169 os.str(), N); 2170 R->markInteresting(Sym); 2171 R->addRange(Range); 2172 R->addVisitor(std::make_unique<MallocBugVisitor>(Sym)); 2173 C.emitReport(std::move(R)); 2174 } 2175 } 2176 2177 void MallocChecker::ReportOffsetFree(CheckerContext &C, SVal ArgVal, 2178 SourceRange Range, const Expr *DeallocExpr, 2179 const Expr *AllocExpr) const { 2180 2181 2182 if (!ChecksEnabled[CK_MallocChecker] && 2183 !ChecksEnabled[CK_NewDeleteChecker]) 2184 return; 2185 2186 Optional<MallocChecker::CheckKind> CheckKind = 2187 getCheckIfTracked(C, AllocExpr); 2188 if (!CheckKind.hasValue()) 2189 return; 2190 2191 ExplodedNode *N = C.generateErrorNode(); 2192 if (!N) 2193 return; 2194 2195 if (!BT_OffsetFree[*CheckKind]) 2196 BT_OffsetFree[*CheckKind].reset(new BugType( 2197 CheckNames[*CheckKind], "Offset free", categories::MemoryError)); 2198 2199 SmallString<100> buf; 2200 llvm::raw_svector_ostream os(buf); 2201 SmallString<20> AllocNameBuf; 2202 llvm::raw_svector_ostream AllocNameOs(AllocNameBuf); 2203 2204 const MemRegion *MR = ArgVal.getAsRegion(); 2205 assert(MR && "Only MemRegion based symbols can have offset free errors"); 2206 2207 RegionOffset Offset = MR->getAsOffset(); 2208 assert((Offset.isValid() && 2209 !Offset.hasSymbolicOffset() && 2210 Offset.getOffset() != 0) && 2211 "Only symbols with a valid offset can have offset free errors"); 2212 2213 int offsetBytes = Offset.getOffset() / C.getASTContext().getCharWidth(); 2214 2215 os << "Argument to "; 2216 if (!printAllocDeallocName(os, C, DeallocExpr)) 2217 os << "deallocator"; 2218 os << " is offset by " 2219 << offsetBytes 2220 << " " 2221 << ((abs(offsetBytes) > 1) ? "bytes" : "byte") 2222 << " from the start of "; 2223 if (AllocExpr && printAllocDeallocName(AllocNameOs, C, AllocExpr)) 2224 os << "memory allocated by " << AllocNameOs.str(); 2225 else 2226 os << "allocated memory"; 2227 2228 auto R = std::make_unique<PathSensitiveBugReport>(*BT_OffsetFree[*CheckKind], 2229 os.str(), N); 2230 R->markInteresting(MR->getBaseRegion()); 2231 R->addRange(Range); 2232 C.emitReport(std::move(R)); 2233 } 2234 2235 void MallocChecker::ReportUseAfterFree(CheckerContext &C, SourceRange Range, 2236 SymbolRef Sym) const { 2237 2238 if (!ChecksEnabled[CK_MallocChecker] && 2239 !ChecksEnabled[CK_NewDeleteChecker] && 2240 !ChecksEnabled[CK_InnerPointerChecker]) 2241 return; 2242 2243 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2244 if (!CheckKind.hasValue()) 2245 return; 2246 2247 if (ExplodedNode *N = C.generateErrorNode()) { 2248 if (!BT_UseFree[*CheckKind]) 2249 BT_UseFree[*CheckKind].reset(new BugType( 2250 CheckNames[*CheckKind], "Use-after-free", categories::MemoryError)); 2251 2252 AllocationFamily AF = 2253 C.getState()->get<RegionState>(Sym)->getAllocationFamily(); 2254 2255 auto R = std::make_unique<PathSensitiveBugReport>( 2256 *BT_UseFree[*CheckKind], 2257 AF == AF_InnerBuffer 2258 ? "Inner pointer of container used after re/deallocation" 2259 : "Use of memory after it is freed", 2260 N); 2261 2262 R->markInteresting(Sym); 2263 R->addRange(Range); 2264 R->addVisitor(std::make_unique<MallocBugVisitor>(Sym)); 2265 2266 if (AF == AF_InnerBuffer) 2267 R->addVisitor(allocation_state::getInnerPointerBRVisitor(Sym)); 2268 2269 C.emitReport(std::move(R)); 2270 } 2271 } 2272 2273 void MallocChecker::ReportDoubleFree(CheckerContext &C, SourceRange Range, 2274 bool Released, SymbolRef Sym, 2275 SymbolRef PrevSym) const { 2276 2277 if (!ChecksEnabled[CK_MallocChecker] && 2278 !ChecksEnabled[CK_NewDeleteChecker]) 2279 return; 2280 2281 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2282 if (!CheckKind.hasValue()) 2283 return; 2284 2285 if (ExplodedNode *N = C.generateErrorNode()) { 2286 if (!BT_DoubleFree[*CheckKind]) 2287 BT_DoubleFree[*CheckKind].reset(new BugType( 2288 CheckNames[*CheckKind], "Double free", categories::MemoryError)); 2289 2290 auto R = std::make_unique<PathSensitiveBugReport>( 2291 *BT_DoubleFree[*CheckKind], 2292 (Released ? "Attempt to free released memory" 2293 : "Attempt to free non-owned memory"), 2294 N); 2295 R->addRange(Range); 2296 R->markInteresting(Sym); 2297 if (PrevSym) 2298 R->markInteresting(PrevSym); 2299 R->addVisitor(std::make_unique<MallocBugVisitor>(Sym)); 2300 C.emitReport(std::move(R)); 2301 } 2302 } 2303 2304 void MallocChecker::ReportDoubleDelete(CheckerContext &C, SymbolRef Sym) const { 2305 2306 if (!ChecksEnabled[CK_NewDeleteChecker]) 2307 return; 2308 2309 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2310 if (!CheckKind.hasValue()) 2311 return; 2312 2313 if (ExplodedNode *N = C.generateErrorNode()) { 2314 if (!BT_DoubleDelete) 2315 BT_DoubleDelete.reset(new BugType(CheckNames[CK_NewDeleteChecker], 2316 "Double delete", 2317 categories::MemoryError)); 2318 2319 auto R = std::make_unique<PathSensitiveBugReport>( 2320 *BT_DoubleDelete, "Attempt to delete released memory", N); 2321 2322 R->markInteresting(Sym); 2323 R->addVisitor(std::make_unique<MallocBugVisitor>(Sym)); 2324 C.emitReport(std::move(R)); 2325 } 2326 } 2327 2328 void MallocChecker::ReportUseZeroAllocated(CheckerContext &C, 2329 SourceRange Range, 2330 SymbolRef Sym) const { 2331 2332 if (!ChecksEnabled[CK_MallocChecker] && 2333 !ChecksEnabled[CK_NewDeleteChecker]) 2334 return; 2335 2336 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2337 2338 if (!CheckKind.hasValue()) 2339 return; 2340 2341 if (ExplodedNode *N = C.generateErrorNode()) { 2342 if (!BT_UseZerroAllocated[*CheckKind]) 2343 BT_UseZerroAllocated[*CheckKind].reset( 2344 new BugType(CheckNames[*CheckKind], "Use of zero allocated", 2345 categories::MemoryError)); 2346 2347 auto R = std::make_unique<PathSensitiveBugReport>( 2348 *BT_UseZerroAllocated[*CheckKind], "Use of zero-allocated memory", N); 2349 2350 R->addRange(Range); 2351 if (Sym) { 2352 R->markInteresting(Sym); 2353 R->addVisitor(std::make_unique<MallocBugVisitor>(Sym)); 2354 } 2355 C.emitReport(std::move(R)); 2356 } 2357 } 2358 2359 void MallocChecker::ReportFunctionPointerFree(CheckerContext &C, SVal ArgVal, 2360 SourceRange Range, 2361 const Expr *FreeExpr) const { 2362 if (!ChecksEnabled[CK_MallocChecker]) 2363 return; 2364 2365 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, FreeExpr); 2366 if (!CheckKind.hasValue()) 2367 return; 2368 2369 if (ExplodedNode *N = C.generateErrorNode()) { 2370 if (!BT_BadFree[*CheckKind]) 2371 BT_BadFree[*CheckKind].reset(new BugType( 2372 CheckNames[*CheckKind], "Bad free", categories::MemoryError)); 2373 2374 SmallString<100> Buf; 2375 llvm::raw_svector_ostream Os(Buf); 2376 2377 const MemRegion *MR = ArgVal.getAsRegion(); 2378 while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR)) 2379 MR = ER->getSuperRegion(); 2380 2381 Os << "Argument to "; 2382 if (!printAllocDeallocName(Os, C, FreeExpr)) 2383 Os << "deallocator"; 2384 2385 Os << " is a function pointer"; 2386 2387 auto R = std::make_unique<PathSensitiveBugReport>(*BT_BadFree[*CheckKind], 2388 Os.str(), N); 2389 R->markInteresting(MR); 2390 R->addRange(Range); 2391 C.emitReport(std::move(R)); 2392 } 2393 } 2394 2395 ProgramStateRef MallocChecker::ReallocMemAux(CheckerContext &C, 2396 const CallExpr *CE, 2397 bool ShouldFreeOnFail, 2398 ProgramStateRef State, 2399 bool SuffixWithN) const { 2400 if (!State) 2401 return nullptr; 2402 2403 if (SuffixWithN && CE->getNumArgs() < 3) 2404 return nullptr; 2405 else if (CE->getNumArgs() < 2) 2406 return nullptr; 2407 2408 const Expr *arg0Expr = CE->getArg(0); 2409 SVal Arg0Val = C.getSVal(arg0Expr); 2410 if (!Arg0Val.getAs<DefinedOrUnknownSVal>()) 2411 return nullptr; 2412 DefinedOrUnknownSVal arg0Val = Arg0Val.castAs<DefinedOrUnknownSVal>(); 2413 2414 SValBuilder &svalBuilder = C.getSValBuilder(); 2415 2416 DefinedOrUnknownSVal PtrEQ = 2417 svalBuilder.evalEQ(State, arg0Val, svalBuilder.makeNull()); 2418 2419 // Get the size argument. 2420 const Expr *Arg1 = CE->getArg(1); 2421 2422 // Get the value of the size argument. 2423 SVal TotalSize = C.getSVal(Arg1); 2424 if (SuffixWithN) 2425 TotalSize = evalMulForBufferSize(C, Arg1, CE->getArg(2)); 2426 if (!TotalSize.getAs<DefinedOrUnknownSVal>()) 2427 return nullptr; 2428 2429 // Compare the size argument to 0. 2430 DefinedOrUnknownSVal SizeZero = 2431 svalBuilder.evalEQ(State, TotalSize.castAs<DefinedOrUnknownSVal>(), 2432 svalBuilder.makeIntValWithPtrWidth(0, false)); 2433 2434 ProgramStateRef StatePtrIsNull, StatePtrNotNull; 2435 std::tie(StatePtrIsNull, StatePtrNotNull) = State->assume(PtrEQ); 2436 ProgramStateRef StateSizeIsZero, StateSizeNotZero; 2437 std::tie(StateSizeIsZero, StateSizeNotZero) = State->assume(SizeZero); 2438 // We only assume exceptional states if they are definitely true; if the 2439 // state is under-constrained, assume regular realloc behavior. 2440 bool PrtIsNull = StatePtrIsNull && !StatePtrNotNull; 2441 bool SizeIsZero = StateSizeIsZero && !StateSizeNotZero; 2442 2443 // If the ptr is NULL and the size is not 0, the call is equivalent to 2444 // malloc(size). 2445 if (PrtIsNull && !SizeIsZero) { 2446 ProgramStateRef stateMalloc = MallocMemAux(C, CE, TotalSize, 2447 UndefinedVal(), StatePtrIsNull); 2448 return stateMalloc; 2449 } 2450 2451 if (PrtIsNull && SizeIsZero) 2452 return State; 2453 2454 // Get the from and to pointer symbols as in toPtr = realloc(fromPtr, size). 2455 assert(!PrtIsNull); 2456 SymbolRef FromPtr = arg0Val.getAsSymbol(); 2457 SVal RetVal = C.getSVal(CE); 2458 SymbolRef ToPtr = RetVal.getAsSymbol(); 2459 if (!FromPtr || !ToPtr) 2460 return nullptr; 2461 2462 bool IsKnownToBeAllocated = false; 2463 2464 // If the size is 0, free the memory. 2465 if (SizeIsZero) 2466 // The semantics of the return value are: 2467 // If size was equal to 0, either NULL or a pointer suitable to be passed 2468 // to free() is returned. We just free the input pointer and do not add 2469 // any constrains on the output pointer. 2470 if (ProgramStateRef stateFree = 2471 FreeMemAux(C, CE, StateSizeIsZero, 0, false, IsKnownToBeAllocated)) 2472 return stateFree; 2473 2474 // Default behavior. 2475 if (ProgramStateRef stateFree = 2476 FreeMemAux(C, CE, State, 0, false, IsKnownToBeAllocated)) { 2477 2478 ProgramStateRef stateRealloc = MallocMemAux(C, CE, TotalSize, 2479 UnknownVal(), stateFree); 2480 if (!stateRealloc) 2481 return nullptr; 2482 2483 OwnershipAfterReallocKind Kind = OAR_ToBeFreedAfterFailure; 2484 if (ShouldFreeOnFail) 2485 Kind = OAR_FreeOnFailure; 2486 else if (!IsKnownToBeAllocated) 2487 Kind = OAR_DoNotTrackAfterFailure; 2488 2489 // Record the info about the reallocated symbol so that we could properly 2490 // process failed reallocation. 2491 stateRealloc = stateRealloc->set<ReallocPairs>(ToPtr, 2492 ReallocPair(FromPtr, Kind)); 2493 // The reallocated symbol should stay alive for as long as the new symbol. 2494 C.getSymbolManager().addSymbolDependency(ToPtr, FromPtr); 2495 return stateRealloc; 2496 } 2497 return nullptr; 2498 } 2499 2500 ProgramStateRef MallocChecker::CallocMem(CheckerContext &C, const CallExpr *CE, 2501 ProgramStateRef State) { 2502 if (!State) 2503 return nullptr; 2504 2505 if (CE->getNumArgs() < 2) 2506 return nullptr; 2507 2508 SValBuilder &svalBuilder = C.getSValBuilder(); 2509 SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy); 2510 SVal TotalSize = evalMulForBufferSize(C, CE->getArg(0), CE->getArg(1)); 2511 2512 return MallocMemAux(C, CE, TotalSize, zeroVal, State); 2513 } 2514 2515 MallocChecker::LeakInfo MallocChecker::getAllocationSite(const ExplodedNode *N, 2516 SymbolRef Sym, 2517 CheckerContext &C) { 2518 const LocationContext *LeakContext = N->getLocationContext(); 2519 // Walk the ExplodedGraph backwards and find the first node that referred to 2520 // the tracked symbol. 2521 const ExplodedNode *AllocNode = N; 2522 const MemRegion *ReferenceRegion = nullptr; 2523 2524 while (N) { 2525 ProgramStateRef State = N->getState(); 2526 if (!State->get<RegionState>(Sym)) 2527 break; 2528 2529 // Find the most recent expression bound to the symbol in the current 2530 // context. 2531 if (!ReferenceRegion) { 2532 if (const MemRegion *MR = C.getLocationRegionIfPostStore(N)) { 2533 SVal Val = State->getSVal(MR); 2534 if (Val.getAsLocSymbol() == Sym) { 2535 const VarRegion *VR = MR->getBaseRegion()->getAs<VarRegion>(); 2536 // Do not show local variables belonging to a function other than 2537 // where the error is reported. 2538 if (!VR || (VR->getStackFrame() == LeakContext->getStackFrame())) 2539 ReferenceRegion = MR; 2540 } 2541 } 2542 } 2543 2544 // Allocation node, is the last node in the current or parent context in 2545 // which the symbol was tracked. 2546 const LocationContext *NContext = N->getLocationContext(); 2547 if (NContext == LeakContext || 2548 NContext->isParentOf(LeakContext)) 2549 AllocNode = N; 2550 N = N->pred_empty() ? nullptr : *(N->pred_begin()); 2551 } 2552 2553 return LeakInfo(AllocNode, ReferenceRegion); 2554 } 2555 2556 void MallocChecker::reportLeak(SymbolRef Sym, ExplodedNode *N, 2557 CheckerContext &C) const { 2558 2559 if (!ChecksEnabled[CK_MallocChecker] && 2560 !ChecksEnabled[CK_NewDeleteLeaksChecker]) 2561 return; 2562 2563 const RefState *RS = C.getState()->get<RegionState>(Sym); 2564 assert(RS && "cannot leak an untracked symbol"); 2565 AllocationFamily Family = RS->getAllocationFamily(); 2566 2567 if (Family == AF_Alloca) 2568 return; 2569 2570 Optional<MallocChecker::CheckKind> 2571 CheckKind = getCheckIfTracked(Family, true); 2572 2573 if (!CheckKind.hasValue()) 2574 return; 2575 2576 assert(N); 2577 if (!BT_Leak[*CheckKind]) { 2578 // Leaks should not be reported if they are post-dominated by a sink: 2579 // (1) Sinks are higher importance bugs. 2580 // (2) NoReturnFunctionChecker uses sink nodes to represent paths ending 2581 // with __noreturn functions such as assert() or exit(). We choose not 2582 // to report leaks on such paths. 2583 BT_Leak[*CheckKind].reset(new BugType(CheckNames[*CheckKind], "Memory leak", 2584 categories::MemoryError, 2585 /*SuppressOnSink=*/true)); 2586 } 2587 2588 // Most bug reports are cached at the location where they occurred. 2589 // With leaks, we want to unique them by the location where they were 2590 // allocated, and only report a single path. 2591 PathDiagnosticLocation LocUsedForUniqueing; 2592 const ExplodedNode *AllocNode = nullptr; 2593 const MemRegion *Region = nullptr; 2594 std::tie(AllocNode, Region) = getAllocationSite(N, Sym, C); 2595 2596 const Stmt *AllocationStmt = AllocNode->getStmtForDiagnostics(); 2597 if (AllocationStmt) 2598 LocUsedForUniqueing = PathDiagnosticLocation::createBegin(AllocationStmt, 2599 C.getSourceManager(), 2600 AllocNode->getLocationContext()); 2601 2602 SmallString<200> buf; 2603 llvm::raw_svector_ostream os(buf); 2604 if (Region && Region->canPrintPretty()) { 2605 os << "Potential leak of memory pointed to by "; 2606 Region->printPretty(os); 2607 } else { 2608 os << "Potential memory leak"; 2609 } 2610 2611 auto R = std::make_unique<PathSensitiveBugReport>( 2612 *BT_Leak[*CheckKind], os.str(), N, LocUsedForUniqueing, 2613 AllocNode->getLocationContext()->getDecl()); 2614 R->markInteresting(Sym); 2615 R->addVisitor(std::make_unique<MallocBugVisitor>(Sym, true)); 2616 C.emitReport(std::move(R)); 2617 } 2618 2619 void MallocChecker::checkDeadSymbols(SymbolReaper &SymReaper, 2620 CheckerContext &C) const 2621 { 2622 ProgramStateRef state = C.getState(); 2623 RegionStateTy OldRS = state->get<RegionState>(); 2624 RegionStateTy::Factory &F = state->get_context<RegionState>(); 2625 2626 RegionStateTy RS = OldRS; 2627 SmallVector<SymbolRef, 2> Errors; 2628 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 2629 if (SymReaper.isDead(I->first)) { 2630 if (I->second.isAllocated() || I->second.isAllocatedOfSizeZero()) 2631 Errors.push_back(I->first); 2632 // Remove the dead symbol from the map. 2633 RS = F.remove(RS, I->first); 2634 } 2635 } 2636 2637 if (RS == OldRS) { 2638 // We shouldn't have touched other maps yet. 2639 assert(state->get<ReallocPairs>() == 2640 C.getState()->get<ReallocPairs>()); 2641 assert(state->get<FreeReturnValue>() == 2642 C.getState()->get<FreeReturnValue>()); 2643 return; 2644 } 2645 2646 // Cleanup the Realloc Pairs Map. 2647 ReallocPairsTy RP = state->get<ReallocPairs>(); 2648 for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) { 2649 if (SymReaper.isDead(I->first) || 2650 SymReaper.isDead(I->second.ReallocatedSym)) { 2651 state = state->remove<ReallocPairs>(I->first); 2652 } 2653 } 2654 2655 // Cleanup the FreeReturnValue Map. 2656 FreeReturnValueTy FR = state->get<FreeReturnValue>(); 2657 for (FreeReturnValueTy::iterator I = FR.begin(), E = FR.end(); I != E; ++I) { 2658 if (SymReaper.isDead(I->first) || 2659 SymReaper.isDead(I->second)) { 2660 state = state->remove<FreeReturnValue>(I->first); 2661 } 2662 } 2663 2664 // Generate leak node. 2665 ExplodedNode *N = C.getPredecessor(); 2666 if (!Errors.empty()) { 2667 static CheckerProgramPointTag Tag("MallocChecker", "DeadSymbolsLeak"); 2668 N = C.generateNonFatalErrorNode(C.getState(), &Tag); 2669 if (N) { 2670 for (SmallVectorImpl<SymbolRef>::iterator 2671 I = Errors.begin(), E = Errors.end(); I != E; ++I) { 2672 reportLeak(*I, N, C); 2673 } 2674 } 2675 } 2676 2677 C.addTransition(state->set<RegionState>(RS), N); 2678 } 2679 2680 void MallocChecker::checkPreCall(const CallEvent &Call, 2681 CheckerContext &C) const { 2682 2683 if (const CXXDestructorCall *DC = dyn_cast<CXXDestructorCall>(&Call)) { 2684 SymbolRef Sym = DC->getCXXThisVal().getAsSymbol(); 2685 if (!Sym || checkDoubleDelete(Sym, C)) 2686 return; 2687 } 2688 2689 // We will check for double free in the post visit. 2690 if (const AnyFunctionCall *FC = dyn_cast<AnyFunctionCall>(&Call)) { 2691 const FunctionDecl *FD = FC->getDecl(); 2692 if (!FD) 2693 return; 2694 2695 ASTContext &Ctx = C.getASTContext(); 2696 if (ChecksEnabled[CK_MallocChecker] && 2697 (MemFunctionInfo.isCMemFunction(FD, Ctx, AF_Malloc, 2698 MemoryOperationKind::MOK_Free) || 2699 MemFunctionInfo.isCMemFunction(FD, Ctx, AF_IfNameIndex, 2700 MemoryOperationKind::MOK_Free))) 2701 return; 2702 } 2703 2704 // Check if the callee of a method is deleted. 2705 if (const CXXInstanceCall *CC = dyn_cast<CXXInstanceCall>(&Call)) { 2706 SymbolRef Sym = CC->getCXXThisVal().getAsSymbol(); 2707 if (!Sym || checkUseAfterFree(Sym, C, CC->getCXXThisExpr())) 2708 return; 2709 } 2710 2711 // Check arguments for being used after free. 2712 for (unsigned I = 0, E = Call.getNumArgs(); I != E; ++I) { 2713 SVal ArgSVal = Call.getArgSVal(I); 2714 if (ArgSVal.getAs<Loc>()) { 2715 SymbolRef Sym = ArgSVal.getAsSymbol(); 2716 if (!Sym) 2717 continue; 2718 if (checkUseAfterFree(Sym, C, Call.getArgExpr(I))) 2719 return; 2720 } 2721 } 2722 } 2723 2724 void MallocChecker::checkPreStmt(const ReturnStmt *S, 2725 CheckerContext &C) const { 2726 checkEscapeOnReturn(S, C); 2727 } 2728 2729 // In the CFG, automatic destructors come after the return statement. 2730 // This callback checks for returning memory that is freed by automatic 2731 // destructors, as those cannot be reached in checkPreStmt(). 2732 void MallocChecker::checkEndFunction(const ReturnStmt *S, 2733 CheckerContext &C) const { 2734 checkEscapeOnReturn(S, C); 2735 } 2736 2737 void MallocChecker::checkEscapeOnReturn(const ReturnStmt *S, 2738 CheckerContext &C) const { 2739 if (!S) 2740 return; 2741 2742 const Expr *E = S->getRetValue(); 2743 if (!E) 2744 return; 2745 2746 // Check if we are returning a symbol. 2747 ProgramStateRef State = C.getState(); 2748 SVal RetVal = C.getSVal(E); 2749 SymbolRef Sym = RetVal.getAsSymbol(); 2750 if (!Sym) 2751 // If we are returning a field of the allocated struct or an array element, 2752 // the callee could still free the memory. 2753 // TODO: This logic should be a part of generic symbol escape callback. 2754 if (const MemRegion *MR = RetVal.getAsRegion()) 2755 if (isa<FieldRegion>(MR) || isa<ElementRegion>(MR)) 2756 if (const SymbolicRegion *BMR = 2757 dyn_cast<SymbolicRegion>(MR->getBaseRegion())) 2758 Sym = BMR->getSymbol(); 2759 2760 // Check if we are returning freed memory. 2761 if (Sym) 2762 checkUseAfterFree(Sym, C, E); 2763 } 2764 2765 // TODO: Blocks should be either inlined or should call invalidate regions 2766 // upon invocation. After that's in place, special casing here will not be 2767 // needed. 2768 void MallocChecker::checkPostStmt(const BlockExpr *BE, 2769 CheckerContext &C) const { 2770 2771 // Scan the BlockDecRefExprs for any object the retain count checker 2772 // may be tracking. 2773 if (!BE->getBlockDecl()->hasCaptures()) 2774 return; 2775 2776 ProgramStateRef state = C.getState(); 2777 const BlockDataRegion *R = 2778 cast<BlockDataRegion>(C.getSVal(BE).getAsRegion()); 2779 2780 BlockDataRegion::referenced_vars_iterator I = R->referenced_vars_begin(), 2781 E = R->referenced_vars_end(); 2782 2783 if (I == E) 2784 return; 2785 2786 SmallVector<const MemRegion*, 10> Regions; 2787 const LocationContext *LC = C.getLocationContext(); 2788 MemRegionManager &MemMgr = C.getSValBuilder().getRegionManager(); 2789 2790 for ( ; I != E; ++I) { 2791 const VarRegion *VR = I.getCapturedRegion(); 2792 if (VR->getSuperRegion() == R) { 2793 VR = MemMgr.getVarRegion(VR->getDecl(), LC); 2794 } 2795 Regions.push_back(VR); 2796 } 2797 2798 state = 2799 state->scanReachableSymbols<StopTrackingCallback>(Regions).getState(); 2800 C.addTransition(state); 2801 } 2802 2803 static bool isReleased(SymbolRef Sym, CheckerContext &C) { 2804 assert(Sym); 2805 const RefState *RS = C.getState()->get<RegionState>(Sym); 2806 return (RS && RS->isReleased()); 2807 } 2808 2809 bool MallocChecker::suppressDeallocationsInSuspiciousContexts( 2810 const CallExpr *CE, CheckerContext &C) const { 2811 if (CE->getNumArgs() == 0) 2812 return false; 2813 2814 StringRef FunctionStr = ""; 2815 if (const auto *FD = dyn_cast<FunctionDecl>(C.getStackFrame()->getDecl())) 2816 if (const Stmt *Body = FD->getBody()) 2817 if (Body->getBeginLoc().isValid()) 2818 FunctionStr = 2819 Lexer::getSourceText(CharSourceRange::getTokenRange( 2820 {FD->getBeginLoc(), Body->getBeginLoc()}), 2821 C.getSourceManager(), C.getLangOpts()); 2822 2823 // We do not model the Integer Set Library's retain-count based allocation. 2824 if (!FunctionStr.contains("__isl_")) 2825 return false; 2826 2827 ProgramStateRef State = C.getState(); 2828 2829 for (const Expr *Arg : CE->arguments()) 2830 if (SymbolRef Sym = C.getSVal(Arg).getAsSymbol()) 2831 if (const RefState *RS = State->get<RegionState>(Sym)) 2832 State = State->set<RegionState>(Sym, RefState::getEscaped(RS)); 2833 2834 C.addTransition(State); 2835 return true; 2836 } 2837 2838 bool MallocChecker::checkUseAfterFree(SymbolRef Sym, CheckerContext &C, 2839 const Stmt *S) const { 2840 2841 if (isReleased(Sym, C)) { 2842 ReportUseAfterFree(C, S->getSourceRange(), Sym); 2843 return true; 2844 } 2845 2846 return false; 2847 } 2848 2849 void MallocChecker::checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, 2850 const Stmt *S) const { 2851 assert(Sym); 2852 2853 if (const RefState *RS = C.getState()->get<RegionState>(Sym)) { 2854 if (RS->isAllocatedOfSizeZero()) 2855 ReportUseZeroAllocated(C, RS->getStmt()->getSourceRange(), Sym); 2856 } 2857 else if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) { 2858 ReportUseZeroAllocated(C, S->getSourceRange(), Sym); 2859 } 2860 } 2861 2862 bool MallocChecker::checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const { 2863 2864 if (isReleased(Sym, C)) { 2865 ReportDoubleDelete(C, Sym); 2866 return true; 2867 } 2868 return false; 2869 } 2870 2871 // Check if the location is a freed symbolic region. 2872 void MallocChecker::checkLocation(SVal l, bool isLoad, const Stmt *S, 2873 CheckerContext &C) const { 2874 SymbolRef Sym = l.getLocSymbolInBase(); 2875 if (Sym) { 2876 checkUseAfterFree(Sym, C, S); 2877 checkUseZeroAllocated(Sym, C, S); 2878 } 2879 } 2880 2881 // If a symbolic region is assumed to NULL (or another constant), stop tracking 2882 // it - assuming that allocation failed on this path. 2883 ProgramStateRef MallocChecker::evalAssume(ProgramStateRef state, 2884 SVal Cond, 2885 bool Assumption) const { 2886 RegionStateTy RS = state->get<RegionState>(); 2887 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 2888 // If the symbol is assumed to be NULL, remove it from consideration. 2889 ConstraintManager &CMgr = state->getConstraintManager(); 2890 ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey()); 2891 if (AllocFailed.isConstrainedTrue()) 2892 state = state->remove<RegionState>(I.getKey()); 2893 } 2894 2895 // Realloc returns 0 when reallocation fails, which means that we should 2896 // restore the state of the pointer being reallocated. 2897 ReallocPairsTy RP = state->get<ReallocPairs>(); 2898 for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) { 2899 // If the symbol is assumed to be NULL, remove it from consideration. 2900 ConstraintManager &CMgr = state->getConstraintManager(); 2901 ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey()); 2902 if (!AllocFailed.isConstrainedTrue()) 2903 continue; 2904 2905 SymbolRef ReallocSym = I.getData().ReallocatedSym; 2906 if (const RefState *RS = state->get<RegionState>(ReallocSym)) { 2907 if (RS->isReleased()) { 2908 switch (I.getData().Kind) { 2909 case OAR_ToBeFreedAfterFailure: 2910 state = state->set<RegionState>(ReallocSym, 2911 RefState::getAllocated(RS->getAllocationFamily(), RS->getStmt())); 2912 break; 2913 case OAR_DoNotTrackAfterFailure: 2914 state = state->remove<RegionState>(ReallocSym); 2915 break; 2916 default: 2917 assert(I.getData().Kind == OAR_FreeOnFailure); 2918 } 2919 } 2920 } 2921 state = state->remove<ReallocPairs>(I.getKey()); 2922 } 2923 2924 return state; 2925 } 2926 2927 bool MallocChecker::mayFreeAnyEscapedMemoryOrIsModeledExplicitly( 2928 const CallEvent *Call, 2929 ProgramStateRef State, 2930 SymbolRef &EscapingSymbol) const { 2931 assert(Call); 2932 EscapingSymbol = nullptr; 2933 2934 // For now, assume that any C++ or block call can free memory. 2935 // TODO: If we want to be more optimistic here, we'll need to make sure that 2936 // regions escape to C++ containers. They seem to do that even now, but for 2937 // mysterious reasons. 2938 if (!(isa<SimpleFunctionCall>(Call) || isa<ObjCMethodCall>(Call))) 2939 return true; 2940 2941 // Check Objective-C messages by selector name. 2942 if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Call)) { 2943 // If it's not a framework call, or if it takes a callback, assume it 2944 // can free memory. 2945 if (!Call->isInSystemHeader() || Call->argumentsMayEscape()) 2946 return true; 2947 2948 // If it's a method we know about, handle it explicitly post-call. 2949 // This should happen before the "freeWhenDone" check below. 2950 if (isKnownDeallocObjCMethodName(*Msg)) 2951 return false; 2952 2953 // If there's a "freeWhenDone" parameter, but the method isn't one we know 2954 // about, we can't be sure that the object will use free() to deallocate the 2955 // memory, so we can't model it explicitly. The best we can do is use it to 2956 // decide whether the pointer escapes. 2957 if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(*Msg)) 2958 return *FreeWhenDone; 2959 2960 // If the first selector piece ends with "NoCopy", and there is no 2961 // "freeWhenDone" parameter set to zero, we know ownership is being 2962 // transferred. Again, though, we can't be sure that the object will use 2963 // free() to deallocate the memory, so we can't model it explicitly. 2964 StringRef FirstSlot = Msg->getSelector().getNameForSlot(0); 2965 if (FirstSlot.endswith("NoCopy")) 2966 return true; 2967 2968 // If the first selector starts with addPointer, insertPointer, 2969 // or replacePointer, assume we are dealing with NSPointerArray or similar. 2970 // This is similar to C++ containers (vector); we still might want to check 2971 // that the pointers get freed by following the container itself. 2972 if (FirstSlot.startswith("addPointer") || 2973 FirstSlot.startswith("insertPointer") || 2974 FirstSlot.startswith("replacePointer") || 2975 FirstSlot.equals("valueWithPointer")) { 2976 return true; 2977 } 2978 2979 // We should escape receiver on call to 'init'. This is especially relevant 2980 // to the receiver, as the corresponding symbol is usually not referenced 2981 // after the call. 2982 if (Msg->getMethodFamily() == OMF_init) { 2983 EscapingSymbol = Msg->getReceiverSVal().getAsSymbol(); 2984 return true; 2985 } 2986 2987 // Otherwise, assume that the method does not free memory. 2988 // Most framework methods do not free memory. 2989 return false; 2990 } 2991 2992 // At this point the only thing left to handle is straight function calls. 2993 const FunctionDecl *FD = cast<SimpleFunctionCall>(Call)->getDecl(); 2994 if (!FD) 2995 return true; 2996 2997 ASTContext &ASTC = State->getStateManager().getContext(); 2998 2999 // If it's one of the allocation functions we can reason about, we model 3000 // its behavior explicitly. 3001 if (MemFunctionInfo.isMemFunction(FD, ASTC)) 3002 return false; 3003 3004 // If it's not a system call, assume it frees memory. 3005 if (!Call->isInSystemHeader()) 3006 return true; 3007 3008 // White list the system functions whose arguments escape. 3009 const IdentifierInfo *II = FD->getIdentifier(); 3010 if (!II) 3011 return true; 3012 StringRef FName = II->getName(); 3013 3014 // White list the 'XXXNoCopy' CoreFoundation functions. 3015 // We specifically check these before 3016 if (FName.endswith("NoCopy")) { 3017 // Look for the deallocator argument. We know that the memory ownership 3018 // is not transferred only if the deallocator argument is 3019 // 'kCFAllocatorNull'. 3020 for (unsigned i = 1; i < Call->getNumArgs(); ++i) { 3021 const Expr *ArgE = Call->getArgExpr(i)->IgnoreParenCasts(); 3022 if (const DeclRefExpr *DE = dyn_cast<DeclRefExpr>(ArgE)) { 3023 StringRef DeallocatorName = DE->getFoundDecl()->getName(); 3024 if (DeallocatorName == "kCFAllocatorNull") 3025 return false; 3026 } 3027 } 3028 return true; 3029 } 3030 3031 // Associating streams with malloced buffers. The pointer can escape if 3032 // 'closefn' is specified (and if that function does free memory), 3033 // but it will not if closefn is not specified. 3034 // Currently, we do not inspect the 'closefn' function (PR12101). 3035 if (FName == "funopen") 3036 if (Call->getNumArgs() >= 4 && Call->getArgSVal(4).isConstant(0)) 3037 return false; 3038 3039 // Do not warn on pointers passed to 'setbuf' when used with std streams, 3040 // these leaks might be intentional when setting the buffer for stdio. 3041 // http://stackoverflow.com/questions/2671151/who-frees-setvbuf-buffer 3042 if (FName == "setbuf" || FName =="setbuffer" || 3043 FName == "setlinebuf" || FName == "setvbuf") { 3044 if (Call->getNumArgs() >= 1) { 3045 const Expr *ArgE = Call->getArgExpr(0)->IgnoreParenCasts(); 3046 if (const DeclRefExpr *ArgDRE = dyn_cast<DeclRefExpr>(ArgE)) 3047 if (const VarDecl *D = dyn_cast<VarDecl>(ArgDRE->getDecl())) 3048 if (D->getCanonicalDecl()->getName().find("std") != StringRef::npos) 3049 return true; 3050 } 3051 } 3052 3053 // A bunch of other functions which either take ownership of a pointer or 3054 // wrap the result up in a struct or object, meaning it can be freed later. 3055 // (See RetainCountChecker.) Not all the parameters here are invalidated, 3056 // but the Malloc checker cannot differentiate between them. The right way 3057 // of doing this would be to implement a pointer escapes callback. 3058 if (FName == "CGBitmapContextCreate" || 3059 FName == "CGBitmapContextCreateWithData" || 3060 FName == "CVPixelBufferCreateWithBytes" || 3061 FName == "CVPixelBufferCreateWithPlanarBytes" || 3062 FName == "OSAtomicEnqueue") { 3063 return true; 3064 } 3065 3066 if (FName == "postEvent" && 3067 FD->getQualifiedNameAsString() == "QCoreApplication::postEvent") { 3068 return true; 3069 } 3070 3071 if (FName == "postEvent" && 3072 FD->getQualifiedNameAsString() == "QCoreApplication::postEvent") { 3073 return true; 3074 } 3075 3076 if (FName == "connectImpl" && 3077 FD->getQualifiedNameAsString() == "QObject::connectImpl") { 3078 return true; 3079 } 3080 3081 // Handle cases where we know a buffer's /address/ can escape. 3082 // Note that the above checks handle some special cases where we know that 3083 // even though the address escapes, it's still our responsibility to free the 3084 // buffer. 3085 if (Call->argumentsMayEscape()) 3086 return true; 3087 3088 // Otherwise, assume that the function does not free memory. 3089 // Most system calls do not free the memory. 3090 return false; 3091 } 3092 3093 ProgramStateRef MallocChecker::checkPointerEscape(ProgramStateRef State, 3094 const InvalidatedSymbols &Escaped, 3095 const CallEvent *Call, 3096 PointerEscapeKind Kind) const { 3097 return checkPointerEscapeAux(State, Escaped, Call, Kind, 3098 /*IsConstPointerEscape*/ false); 3099 } 3100 3101 ProgramStateRef MallocChecker::checkConstPointerEscape(ProgramStateRef State, 3102 const InvalidatedSymbols &Escaped, 3103 const CallEvent *Call, 3104 PointerEscapeKind Kind) const { 3105 // If a const pointer escapes, it may not be freed(), but it could be deleted. 3106 return checkPointerEscapeAux(State, Escaped, Call, Kind, 3107 /*IsConstPointerEscape*/ true); 3108 } 3109 3110 static bool checkIfNewOrNewArrayFamily(const RefState *RS) { 3111 return (RS->getAllocationFamily() == AF_CXXNewArray || 3112 RS->getAllocationFamily() == AF_CXXNew); 3113 } 3114 3115 ProgramStateRef MallocChecker::checkPointerEscapeAux( 3116 ProgramStateRef State, const InvalidatedSymbols &Escaped, 3117 const CallEvent *Call, PointerEscapeKind Kind, 3118 bool IsConstPointerEscape) const { 3119 // If we know that the call does not free memory, or we want to process the 3120 // call later, keep tracking the top level arguments. 3121 SymbolRef EscapingSymbol = nullptr; 3122 if (Kind == PSK_DirectEscapeOnCall && 3123 !mayFreeAnyEscapedMemoryOrIsModeledExplicitly(Call, State, 3124 EscapingSymbol) && 3125 !EscapingSymbol) { 3126 return State; 3127 } 3128 3129 for (InvalidatedSymbols::const_iterator I = Escaped.begin(), 3130 E = Escaped.end(); 3131 I != E; ++I) { 3132 SymbolRef sym = *I; 3133 3134 if (EscapingSymbol && EscapingSymbol != sym) 3135 continue; 3136 3137 if (const RefState *RS = State->get<RegionState>(sym)) 3138 if (RS->isAllocated() || RS->isAllocatedOfSizeZero()) 3139 if (!IsConstPointerEscape || checkIfNewOrNewArrayFamily(RS)) 3140 State = State->set<RegionState>(sym, RefState::getEscaped(RS)); 3141 } 3142 return State; 3143 } 3144 3145 static SymbolRef findFailedReallocSymbol(ProgramStateRef currState, 3146 ProgramStateRef prevState) { 3147 ReallocPairsTy currMap = currState->get<ReallocPairs>(); 3148 ReallocPairsTy prevMap = prevState->get<ReallocPairs>(); 3149 3150 for (const ReallocPairsTy::value_type &Pair : prevMap) { 3151 SymbolRef sym = Pair.first; 3152 if (!currMap.lookup(sym)) 3153 return sym; 3154 } 3155 3156 return nullptr; 3157 } 3158 3159 static bool isReferenceCountingPointerDestructor(const CXXDestructorDecl *DD) { 3160 if (const IdentifierInfo *II = DD->getParent()->getIdentifier()) { 3161 StringRef N = II->getName(); 3162 if (N.contains_lower("ptr") || N.contains_lower("pointer")) { 3163 if (N.contains_lower("ref") || N.contains_lower("cnt") || 3164 N.contains_lower("intrusive") || N.contains_lower("shared")) { 3165 return true; 3166 } 3167 } 3168 } 3169 return false; 3170 } 3171 3172 PathDiagnosticPieceRef MallocBugVisitor::VisitNode(const ExplodedNode *N, 3173 BugReporterContext &BRC, 3174 PathSensitiveBugReport &BR) { 3175 ProgramStateRef state = N->getState(); 3176 ProgramStateRef statePrev = N->getFirstPred()->getState(); 3177 3178 const RefState *RSCurr = state->get<RegionState>(Sym); 3179 const RefState *RSPrev = statePrev->get<RegionState>(Sym); 3180 3181 const Stmt *S = N->getStmtForDiagnostics(); 3182 // When dealing with containers, we sometimes want to give a note 3183 // even if the statement is missing. 3184 if (!S && (!RSCurr || RSCurr->getAllocationFamily() != AF_InnerBuffer)) 3185 return nullptr; 3186 3187 const LocationContext *CurrentLC = N->getLocationContext(); 3188 3189 // If we find an atomic fetch_add or fetch_sub within the destructor in which 3190 // the pointer was released (before the release), this is likely a destructor 3191 // of a shared pointer. 3192 // Because we don't model atomics, and also because we don't know that the 3193 // original reference count is positive, we should not report use-after-frees 3194 // on objects deleted in such destructors. This can probably be improved 3195 // through better shared pointer modeling. 3196 if (ReleaseDestructorLC) { 3197 if (const auto *AE = dyn_cast<AtomicExpr>(S)) { 3198 AtomicExpr::AtomicOp Op = AE->getOp(); 3199 if (Op == AtomicExpr::AO__c11_atomic_fetch_add || 3200 Op == AtomicExpr::AO__c11_atomic_fetch_sub) { 3201 if (ReleaseDestructorLC == CurrentLC || 3202 ReleaseDestructorLC->isParentOf(CurrentLC)) { 3203 BR.markInvalid(getTag(), S); 3204 } 3205 } 3206 } 3207 } 3208 3209 // FIXME: We will eventually need to handle non-statement-based events 3210 // (__attribute__((cleanup))). 3211 3212 // Find out if this is an interesting point and what is the kind. 3213 StringRef Msg; 3214 std::unique_ptr<StackHintGeneratorForSymbol> StackHint = nullptr; 3215 SmallString<256> Buf; 3216 llvm::raw_svector_ostream OS(Buf); 3217 3218 if (Mode == Normal) { 3219 if (isAllocated(RSCurr, RSPrev, S)) { 3220 Msg = "Memory is allocated"; 3221 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3222 Sym, "Returned allocated memory"); 3223 } else if (isReleased(RSCurr, RSPrev, S)) { 3224 const auto Family = RSCurr->getAllocationFamily(); 3225 switch (Family) { 3226 case AF_Alloca: 3227 case AF_Malloc: 3228 case AF_CXXNew: 3229 case AF_CXXNewArray: 3230 case AF_IfNameIndex: 3231 Msg = "Memory is released"; 3232 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3233 Sym, "Returning; memory was released"); 3234 break; 3235 case AF_InnerBuffer: { 3236 const MemRegion *ObjRegion = 3237 allocation_state::getContainerObjRegion(statePrev, Sym); 3238 const auto *TypedRegion = cast<TypedValueRegion>(ObjRegion); 3239 QualType ObjTy = TypedRegion->getValueType(); 3240 OS << "Inner buffer of '" << ObjTy.getAsString() << "' "; 3241 3242 if (N->getLocation().getKind() == ProgramPoint::PostImplicitCallKind) { 3243 OS << "deallocated by call to destructor"; 3244 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3245 Sym, "Returning; inner buffer was deallocated"); 3246 } else { 3247 OS << "reallocated by call to '"; 3248 const Stmt *S = RSCurr->getStmt(); 3249 if (const auto *MemCallE = dyn_cast<CXXMemberCallExpr>(S)) { 3250 OS << MemCallE->getMethodDecl()->getNameAsString(); 3251 } else if (const auto *OpCallE = dyn_cast<CXXOperatorCallExpr>(S)) { 3252 OS << OpCallE->getDirectCallee()->getNameAsString(); 3253 } else if (const auto *CallE = dyn_cast<CallExpr>(S)) { 3254 auto &CEMgr = BRC.getStateManager().getCallEventManager(); 3255 CallEventRef<> Call = CEMgr.getSimpleCall(CallE, state, CurrentLC); 3256 const auto *D = dyn_cast_or_null<NamedDecl>(Call->getDecl()); 3257 OS << (D ? D->getNameAsString() : "unknown"); 3258 } 3259 OS << "'"; 3260 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3261 Sym, "Returning; inner buffer was reallocated"); 3262 } 3263 Msg = OS.str(); 3264 break; 3265 } 3266 case AF_None: 3267 llvm_unreachable("Unhandled allocation family!"); 3268 } 3269 3270 // See if we're releasing memory while inlining a destructor 3271 // (or one of its callees). This turns on various common 3272 // false positive suppressions. 3273 bool FoundAnyDestructor = false; 3274 for (const LocationContext *LC = CurrentLC; LC; LC = LC->getParent()) { 3275 if (const auto *DD = dyn_cast<CXXDestructorDecl>(LC->getDecl())) { 3276 if (isReferenceCountingPointerDestructor(DD)) { 3277 // This immediately looks like a reference-counting destructor. 3278 // We're bad at guessing the original reference count of the object, 3279 // so suppress the report for now. 3280 BR.markInvalid(getTag(), DD); 3281 } else if (!FoundAnyDestructor) { 3282 assert(!ReleaseDestructorLC && 3283 "There can be only one release point!"); 3284 // Suspect that it's a reference counting pointer destructor. 3285 // On one of the next nodes might find out that it has atomic 3286 // reference counting operations within it (see the code above), 3287 // and if so, we'd conclude that it likely is a reference counting 3288 // pointer destructor. 3289 ReleaseDestructorLC = LC->getStackFrame(); 3290 // It is unlikely that releasing memory is delegated to a destructor 3291 // inside a destructor of a shared pointer, because it's fairly hard 3292 // to pass the information that the pointer indeed needs to be 3293 // released into it. So we're only interested in the innermost 3294 // destructor. 3295 FoundAnyDestructor = true; 3296 } 3297 } 3298 } 3299 } else if (isRelinquished(RSCurr, RSPrev, S)) { 3300 Msg = "Memory ownership is transferred"; 3301 StackHint = std::make_unique<StackHintGeneratorForSymbol>(Sym, ""); 3302 } else if (hasReallocFailed(RSCurr, RSPrev, S)) { 3303 Mode = ReallocationFailed; 3304 Msg = "Reallocation failed"; 3305 StackHint = std::make_unique<StackHintGeneratorForReallocationFailed>( 3306 Sym, "Reallocation failed"); 3307 3308 if (SymbolRef sym = findFailedReallocSymbol(state, statePrev)) { 3309 // Is it possible to fail two reallocs WITHOUT testing in between? 3310 assert((!FailedReallocSymbol || FailedReallocSymbol == sym) && 3311 "We only support one failed realloc at a time."); 3312 BR.markInteresting(sym); 3313 FailedReallocSymbol = sym; 3314 } 3315 } 3316 3317 // We are in a special mode if a reallocation failed later in the path. 3318 } else if (Mode == ReallocationFailed) { 3319 assert(FailedReallocSymbol && "No symbol to look for."); 3320 3321 // Is this is the first appearance of the reallocated symbol? 3322 if (!statePrev->get<RegionState>(FailedReallocSymbol)) { 3323 // We're at the reallocation point. 3324 Msg = "Attempt to reallocate memory"; 3325 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3326 Sym, "Returned reallocated memory"); 3327 FailedReallocSymbol = nullptr; 3328 Mode = Normal; 3329 } 3330 } 3331 3332 if (Msg.empty()) { 3333 assert(!StackHint); 3334 return nullptr; 3335 } 3336 3337 assert(StackHint); 3338 3339 // Generate the extra diagnostic. 3340 PathDiagnosticLocation Pos; 3341 if (!S) { 3342 assert(RSCurr->getAllocationFamily() == AF_InnerBuffer); 3343 auto PostImplCall = N->getLocation().getAs<PostImplicitCall>(); 3344 if (!PostImplCall) 3345 return nullptr; 3346 Pos = PathDiagnosticLocation(PostImplCall->getLocation(), 3347 BRC.getSourceManager()); 3348 } else { 3349 Pos = PathDiagnosticLocation(S, BRC.getSourceManager(), 3350 N->getLocationContext()); 3351 } 3352 3353 auto P = std::make_shared<PathDiagnosticEventPiece>(Pos, Msg, true); 3354 BR.addCallStackHint(P, std::move(StackHint)); 3355 return P; 3356 } 3357 3358 void MallocChecker::printState(raw_ostream &Out, ProgramStateRef State, 3359 const char *NL, const char *Sep) const { 3360 3361 RegionStateTy RS = State->get<RegionState>(); 3362 3363 if (!RS.isEmpty()) { 3364 Out << Sep << "MallocChecker :" << NL; 3365 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 3366 const RefState *RefS = State->get<RegionState>(I.getKey()); 3367 AllocationFamily Family = RefS->getAllocationFamily(); 3368 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 3369 if (!CheckKind.hasValue()) 3370 CheckKind = getCheckIfTracked(Family, true); 3371 3372 I.getKey()->dumpToStream(Out); 3373 Out << " : "; 3374 I.getData().dump(Out); 3375 if (CheckKind.hasValue()) 3376 Out << " (" << CheckNames[*CheckKind].getName() << ")"; 3377 Out << NL; 3378 } 3379 } 3380 } 3381 3382 namespace clang { 3383 namespace ento { 3384 namespace allocation_state { 3385 3386 ProgramStateRef 3387 markReleased(ProgramStateRef State, SymbolRef Sym, const Expr *Origin) { 3388 AllocationFamily Family = AF_InnerBuffer; 3389 return State->set<RegionState>(Sym, RefState::getReleased(Family, Origin)); 3390 } 3391 3392 } // end namespace allocation_state 3393 } // end namespace ento 3394 } // end namespace clang 3395 3396 // Intended to be used in InnerPointerChecker to register the part of 3397 // MallocChecker connected to it. 3398 void ento::registerInnerPointerCheckerAux(CheckerManager &mgr) { 3399 MallocChecker *checker = mgr.getChecker<MallocChecker>(); 3400 checker->ChecksEnabled[MallocChecker::CK_InnerPointerChecker] = true; 3401 checker->CheckNames[MallocChecker::CK_InnerPointerChecker] = 3402 mgr.getCurrentCheckerName(); 3403 } 3404 3405 void ento::registerDynamicMemoryModeling(CheckerManager &mgr) { 3406 auto *checker = mgr.registerChecker<MallocChecker>(); 3407 checker->MemFunctionInfo.ShouldIncludeOwnershipAnnotatedFunctions = 3408 mgr.getAnalyzerOptions().getCheckerBooleanOption(checker, "Optimistic"); 3409 } 3410 3411 bool ento::shouldRegisterDynamicMemoryModeling(const LangOptions &LO) { 3412 return true; 3413 } 3414 3415 #define REGISTER_CHECKER(name) \ 3416 void ento::register##name(CheckerManager &mgr) { \ 3417 MallocChecker *checker = mgr.getChecker<MallocChecker>(); \ 3418 checker->ChecksEnabled[MallocChecker::CK_##name] = true; \ 3419 checker->CheckNames[MallocChecker::CK_##name] = \ 3420 mgr.getCurrentCheckerName(); \ 3421 } \ 3422 \ 3423 bool ento::shouldRegister##name(const LangOptions &LO) { return true; } 3424 3425 REGISTER_CHECKER(MallocChecker) 3426 REGISTER_CHECKER(NewDeleteChecker) 3427 REGISTER_CHECKER(NewDeleteLeaksChecker) 3428 REGISTER_CHECKER(MismatchedDeallocatorChecker) 3429