1 //=== MallocChecker.cpp - A malloc/free checker -------------------*- C++ -*--// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines a variety of memory management related checkers, such as 10 // leak, double free, and use-after-free. 11 // 12 // The following checkers are defined here: 13 // 14 // * MallocChecker 15 // Despite its name, it models all sorts of memory allocations and 16 // de- or reallocation, including but not limited to malloc, free, 17 // relloc, new, delete. It also reports on a variety of memory misuse 18 // errors. 19 // Many other checkers interact very closely with this checker, in fact, 20 // most are merely options to this one. Other checkers may register 21 // MallocChecker, but do not enable MallocChecker's reports (more details 22 // to follow around its field, ChecksEnabled). 23 // It also has a boolean "Optimistic" checker option, which if set to true 24 // will cause the checker to model user defined memory management related 25 // functions annotated via the attribute ownership_takes, ownership_holds 26 // and ownership_returns. 27 // 28 // * NewDeleteChecker 29 // Enables the modeling of new, new[], delete, delete[] in MallocChecker, 30 // and checks for related double-free and use-after-free errors. 31 // 32 // * NewDeleteLeaksChecker 33 // Checks for leaks related to new, new[], delete, delete[]. 34 // Depends on NewDeleteChecker. 35 // 36 // * MismatchedDeallocatorChecker 37 // Enables checking whether memory is deallocated with the correspending 38 // allocation function in MallocChecker, such as malloc() allocated 39 // regions are only freed by free(), new by delete, new[] by delete[]. 40 // 41 // InnerPointerChecker interacts very closely with MallocChecker, but unlike 42 // the above checkers, it has it's own file, hence the many InnerPointerChecker 43 // related headers and non-static functions. 44 // 45 //===----------------------------------------------------------------------===// 46 47 #include "AllocationState.h" 48 #include "InterCheckerAPI.h" 49 #include "clang/AST/Attr.h" 50 #include "clang/AST/DeclCXX.h" 51 #include "clang/AST/DeclTemplate.h" 52 #include "clang/AST/Expr.h" 53 #include "clang/AST/ExprCXX.h" 54 #include "clang/AST/ParentMap.h" 55 #include "clang/ASTMatchers/ASTMatchFinder.h" 56 #include "clang/ASTMatchers/ASTMatchers.h" 57 #include "clang/Analysis/ProgramPoint.h" 58 #include "clang/Basic/LLVM.h" 59 #include "clang/Basic/SourceManager.h" 60 #include "clang/Basic/TargetInfo.h" 61 #include "clang/Lex/Lexer.h" 62 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" 63 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 64 #include "clang/StaticAnalyzer/Core/BugReporter/CommonBugCategories.h" 65 #include "clang/StaticAnalyzer/Core/Checker.h" 66 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 67 #include "clang/StaticAnalyzer/Core/PathSensitive/CallDescription.h" 68 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 69 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 70 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerHelpers.h" 71 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicExtent.h" 72 #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h" 73 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 74 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 75 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h" 76 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h" 77 #include "clang/StaticAnalyzer/Core/PathSensitive/StoreRef.h" 78 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h" 79 #include "llvm/ADT/STLExtras.h" 80 #include "llvm/ADT/SetOperations.h" 81 #include "llvm/ADT/SmallString.h" 82 #include "llvm/ADT/StringExtras.h" 83 #include "llvm/Support/Casting.h" 84 #include "llvm/Support/Compiler.h" 85 #include "llvm/Support/ErrorHandling.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include <climits> 88 #include <functional> 89 #include <utility> 90 91 using namespace clang; 92 using namespace ento; 93 using namespace std::placeholders; 94 95 //===----------------------------------------------------------------------===// 96 // The types of allocation we're modeling. This is used to check whether a 97 // dynamically allocated object is deallocated with the correct function, like 98 // not using operator delete on an object created by malloc(), or alloca regions 99 // aren't ever deallocated manually. 100 //===----------------------------------------------------------------------===// 101 102 namespace { 103 104 // Used to check correspondence between allocators and deallocators. 105 enum AllocationFamily { 106 AF_None, 107 AF_Malloc, 108 AF_CXXNew, 109 AF_CXXNewArray, 110 AF_IfNameIndex, 111 AF_Alloca, 112 AF_InnerBuffer 113 }; 114 115 } // end of anonymous namespace 116 117 /// Print names of allocators and deallocators. 118 /// 119 /// \returns true on success. 120 static bool printMemFnName(raw_ostream &os, CheckerContext &C, const Expr *E); 121 122 /// Print expected name of an allocator based on the deallocator's family 123 /// derived from the DeallocExpr. 124 static void printExpectedAllocName(raw_ostream &os, AllocationFamily Family); 125 126 /// Print expected name of a deallocator based on the allocator's 127 /// family. 128 static void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family); 129 130 //===----------------------------------------------------------------------===// 131 // The state of a symbol, in terms of memory management. 132 //===----------------------------------------------------------------------===// 133 134 namespace { 135 136 class RefState { 137 enum Kind { 138 // Reference to allocated memory. 139 Allocated, 140 // Reference to zero-allocated memory. 141 AllocatedOfSizeZero, 142 // Reference to released/freed memory. 143 Released, 144 // The responsibility for freeing resources has transferred from 145 // this reference. A relinquished symbol should not be freed. 146 Relinquished, 147 // We are no longer guaranteed to have observed all manipulations 148 // of this pointer/memory. For example, it could have been 149 // passed as a parameter to an opaque function. 150 Escaped 151 }; 152 153 const Stmt *S; 154 155 Kind K; 156 AllocationFamily Family; 157 158 RefState(Kind k, const Stmt *s, AllocationFamily family) 159 : S(s), K(k), Family(family) { 160 assert(family != AF_None); 161 } 162 163 public: 164 bool isAllocated() const { return K == Allocated; } 165 bool isAllocatedOfSizeZero() const { return K == AllocatedOfSizeZero; } 166 bool isReleased() const { return K == Released; } 167 bool isRelinquished() const { return K == Relinquished; } 168 bool isEscaped() const { return K == Escaped; } 169 AllocationFamily getAllocationFamily() const { return Family; } 170 const Stmt *getStmt() const { return S; } 171 172 bool operator==(const RefState &X) const { 173 return K == X.K && S == X.S && Family == X.Family; 174 } 175 176 static RefState getAllocated(AllocationFamily family, const Stmt *s) { 177 return RefState(Allocated, s, family); 178 } 179 static RefState getAllocatedOfSizeZero(const RefState *RS) { 180 return RefState(AllocatedOfSizeZero, RS->getStmt(), 181 RS->getAllocationFamily()); 182 } 183 static RefState getReleased(AllocationFamily family, const Stmt *s) { 184 return RefState(Released, s, family); 185 } 186 static RefState getRelinquished(AllocationFamily family, const Stmt *s) { 187 return RefState(Relinquished, s, family); 188 } 189 static RefState getEscaped(const RefState *RS) { 190 return RefState(Escaped, RS->getStmt(), RS->getAllocationFamily()); 191 } 192 193 void Profile(llvm::FoldingSetNodeID &ID) const { 194 ID.AddInteger(K); 195 ID.AddPointer(S); 196 ID.AddInteger(Family); 197 } 198 199 LLVM_DUMP_METHOD void dump(raw_ostream &OS) const { 200 switch (K) { 201 #define CASE(ID) case ID: OS << #ID; break; 202 CASE(Allocated) 203 CASE(AllocatedOfSizeZero) 204 CASE(Released) 205 CASE(Relinquished) 206 CASE(Escaped) 207 } 208 } 209 210 LLVM_DUMP_METHOD void dump() const { dump(llvm::errs()); } 211 }; 212 213 } // end of anonymous namespace 214 215 REGISTER_MAP_WITH_PROGRAMSTATE(RegionState, SymbolRef, RefState) 216 217 /// Check if the memory associated with this symbol was released. 218 static bool isReleased(SymbolRef Sym, CheckerContext &C); 219 220 /// Update the RefState to reflect the new memory allocation. 221 /// The optional \p RetVal parameter specifies the newly allocated pointer 222 /// value; if unspecified, the value of expression \p E is used. 223 static ProgramStateRef MallocUpdateRefState(CheckerContext &C, const Expr *E, 224 ProgramStateRef State, 225 AllocationFamily Family, 226 Optional<SVal> RetVal = None); 227 228 //===----------------------------------------------------------------------===// 229 // The modeling of memory reallocation. 230 // 231 // The terminology 'toPtr' and 'fromPtr' will be used: 232 // toPtr = realloc(fromPtr, 20); 233 //===----------------------------------------------------------------------===// 234 235 REGISTER_SET_WITH_PROGRAMSTATE(ReallocSizeZeroSymbols, SymbolRef) 236 237 namespace { 238 239 /// The state of 'fromPtr' after reallocation is known to have failed. 240 enum OwnershipAfterReallocKind { 241 // The symbol needs to be freed (e.g.: realloc) 242 OAR_ToBeFreedAfterFailure, 243 // The symbol has been freed (e.g.: reallocf) 244 OAR_FreeOnFailure, 245 // The symbol doesn't have to freed (e.g.: we aren't sure if, how and where 246 // 'fromPtr' was allocated: 247 // void Haha(int *ptr) { 248 // ptr = realloc(ptr, 67); 249 // // ... 250 // } 251 // ). 252 OAR_DoNotTrackAfterFailure 253 }; 254 255 /// Stores information about the 'fromPtr' symbol after reallocation. 256 /// 257 /// This is important because realloc may fail, and that needs special modeling. 258 /// Whether reallocation failed or not will not be known until later, so we'll 259 /// store whether upon failure 'fromPtr' will be freed, or needs to be freed 260 /// later, etc. 261 struct ReallocPair { 262 263 // The 'fromPtr'. 264 SymbolRef ReallocatedSym; 265 OwnershipAfterReallocKind Kind; 266 267 ReallocPair(SymbolRef S, OwnershipAfterReallocKind K) 268 : ReallocatedSym(S), Kind(K) {} 269 void Profile(llvm::FoldingSetNodeID &ID) const { 270 ID.AddInteger(Kind); 271 ID.AddPointer(ReallocatedSym); 272 } 273 bool operator==(const ReallocPair &X) const { 274 return ReallocatedSym == X.ReallocatedSym && 275 Kind == X.Kind; 276 } 277 }; 278 279 } // end of anonymous namespace 280 281 REGISTER_MAP_WITH_PROGRAMSTATE(ReallocPairs, SymbolRef, ReallocPair) 282 283 /// Tells if the callee is one of the builtin new/delete operators, including 284 /// placement operators and other standard overloads. 285 static bool isStandardNewDelete(const FunctionDecl *FD); 286 static bool isStandardNewDelete(const CallEvent &Call) { 287 if (!Call.getDecl() || !isa<FunctionDecl>(Call.getDecl())) 288 return false; 289 return isStandardNewDelete(cast<FunctionDecl>(Call.getDecl())); 290 } 291 292 //===----------------------------------------------------------------------===// 293 // Definition of the MallocChecker class. 294 //===----------------------------------------------------------------------===// 295 296 namespace { 297 298 class MallocChecker 299 : public Checker<check::DeadSymbols, check::PointerEscape, 300 check::ConstPointerEscape, check::PreStmt<ReturnStmt>, 301 check::EndFunction, check::PreCall, check::PostCall, 302 check::NewAllocator, check::PostStmt<BlockExpr>, 303 check::PostObjCMessage, check::Location, eval::Assume> { 304 public: 305 /// In pessimistic mode, the checker assumes that it does not know which 306 /// functions might free the memory. 307 /// In optimistic mode, the checker assumes that all user-defined functions 308 /// which might free a pointer are annotated. 309 DefaultBool ShouldIncludeOwnershipAnnotatedFunctions; 310 311 DefaultBool ShouldRegisterNoOwnershipChangeVisitor; 312 313 /// Many checkers are essentially built into this one, so enabling them will 314 /// make MallocChecker perform additional modeling and reporting. 315 enum CheckKind { 316 /// When a subchecker is enabled but MallocChecker isn't, model memory 317 /// management but do not emit warnings emitted with MallocChecker only 318 /// enabled. 319 CK_MallocChecker, 320 CK_NewDeleteChecker, 321 CK_NewDeleteLeaksChecker, 322 CK_MismatchedDeallocatorChecker, 323 CK_InnerPointerChecker, 324 CK_NumCheckKinds 325 }; 326 327 using LeakInfo = std::pair<const ExplodedNode *, const MemRegion *>; 328 329 DefaultBool ChecksEnabled[CK_NumCheckKinds]; 330 CheckerNameRef CheckNames[CK_NumCheckKinds]; 331 332 void checkPreCall(const CallEvent &Call, CheckerContext &C) const; 333 void checkPostCall(const CallEvent &Call, CheckerContext &C) const; 334 void checkNewAllocator(const CXXAllocatorCall &Call, CheckerContext &C) const; 335 void checkPostObjCMessage(const ObjCMethodCall &Call, CheckerContext &C) const; 336 void checkPostStmt(const BlockExpr *BE, CheckerContext &C) const; 337 void checkDeadSymbols(SymbolReaper &SymReaper, CheckerContext &C) const; 338 void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const; 339 void checkEndFunction(const ReturnStmt *S, CheckerContext &C) const; 340 ProgramStateRef evalAssume(ProgramStateRef state, SVal Cond, 341 bool Assumption) const; 342 void checkLocation(SVal l, bool isLoad, const Stmt *S, 343 CheckerContext &C) const; 344 345 ProgramStateRef checkPointerEscape(ProgramStateRef State, 346 const InvalidatedSymbols &Escaped, 347 const CallEvent *Call, 348 PointerEscapeKind Kind) const; 349 ProgramStateRef checkConstPointerEscape(ProgramStateRef State, 350 const InvalidatedSymbols &Escaped, 351 const CallEvent *Call, 352 PointerEscapeKind Kind) const; 353 354 void printState(raw_ostream &Out, ProgramStateRef State, 355 const char *NL, const char *Sep) const override; 356 357 private: 358 mutable std::unique_ptr<BugType> BT_DoubleFree[CK_NumCheckKinds]; 359 mutable std::unique_ptr<BugType> BT_DoubleDelete; 360 mutable std::unique_ptr<BugType> BT_Leak[CK_NumCheckKinds]; 361 mutable std::unique_ptr<BugType> BT_UseFree[CK_NumCheckKinds]; 362 mutable std::unique_ptr<BugType> BT_BadFree[CK_NumCheckKinds]; 363 mutable std::unique_ptr<BugType> BT_FreeAlloca[CK_NumCheckKinds]; 364 mutable std::unique_ptr<BugType> BT_MismatchedDealloc; 365 mutable std::unique_ptr<BugType> BT_OffsetFree[CK_NumCheckKinds]; 366 mutable std::unique_ptr<BugType> BT_UseZerroAllocated[CK_NumCheckKinds]; 367 368 #define CHECK_FN(NAME) \ 369 void NAME(const CallEvent &Call, CheckerContext &C) const; 370 371 CHECK_FN(checkFree) 372 CHECK_FN(checkIfNameIndex) 373 CHECK_FN(checkBasicAlloc) 374 CHECK_FN(checkKernelMalloc) 375 CHECK_FN(checkCalloc) 376 CHECK_FN(checkAlloca) 377 CHECK_FN(checkStrdup) 378 CHECK_FN(checkIfFreeNameIndex) 379 CHECK_FN(checkCXXNewOrCXXDelete) 380 CHECK_FN(checkGMalloc0) 381 CHECK_FN(checkGMemdup) 382 CHECK_FN(checkGMallocN) 383 CHECK_FN(checkGMallocN0) 384 CHECK_FN(checkReallocN) 385 CHECK_FN(checkOwnershipAttr) 386 387 void checkRealloc(const CallEvent &Call, CheckerContext &C, 388 bool ShouldFreeOnFail) const; 389 390 using CheckFn = std::function<void(const MallocChecker *, 391 const CallEvent &Call, CheckerContext &C)>; 392 393 const CallDescriptionMap<CheckFn> FreeingMemFnMap{ 394 {{"free", 1}, &MallocChecker::checkFree}, 395 {{"if_freenameindex", 1}, &MallocChecker::checkIfFreeNameIndex}, 396 {{"kfree", 1}, &MallocChecker::checkFree}, 397 {{"g_free", 1}, &MallocChecker::checkFree}, 398 }; 399 400 bool isFreeingCall(const CallEvent &Call) const; 401 402 CallDescriptionMap<CheckFn> AllocatingMemFnMap{ 403 {{"alloca", 1}, &MallocChecker::checkAlloca}, 404 {{"_alloca", 1}, &MallocChecker::checkAlloca}, 405 {{"malloc", 1}, &MallocChecker::checkBasicAlloc}, 406 {{"malloc", 3}, &MallocChecker::checkKernelMalloc}, 407 {{"calloc", 2}, &MallocChecker::checkCalloc}, 408 {{"valloc", 1}, &MallocChecker::checkBasicAlloc}, 409 {{CDF_MaybeBuiltin, "strndup", 2}, &MallocChecker::checkStrdup}, 410 {{CDF_MaybeBuiltin, "strdup", 1}, &MallocChecker::checkStrdup}, 411 {{"_strdup", 1}, &MallocChecker::checkStrdup}, 412 {{"kmalloc", 2}, &MallocChecker::checkKernelMalloc}, 413 {{"if_nameindex", 1}, &MallocChecker::checkIfNameIndex}, 414 {{CDF_MaybeBuiltin, "wcsdup", 1}, &MallocChecker::checkStrdup}, 415 {{CDF_MaybeBuiltin, "_wcsdup", 1}, &MallocChecker::checkStrdup}, 416 {{"g_malloc", 1}, &MallocChecker::checkBasicAlloc}, 417 {{"g_malloc0", 1}, &MallocChecker::checkGMalloc0}, 418 {{"g_try_malloc", 1}, &MallocChecker::checkBasicAlloc}, 419 {{"g_try_malloc0", 1}, &MallocChecker::checkGMalloc0}, 420 {{"g_memdup", 2}, &MallocChecker::checkGMemdup}, 421 {{"g_malloc_n", 2}, &MallocChecker::checkGMallocN}, 422 {{"g_malloc0_n", 2}, &MallocChecker::checkGMallocN0}, 423 {{"g_try_malloc_n", 2}, &MallocChecker::checkGMallocN}, 424 {{"g_try_malloc0_n", 2}, &MallocChecker::checkGMallocN0}, 425 }; 426 427 CallDescriptionMap<CheckFn> ReallocatingMemFnMap{ 428 {{"realloc", 2}, 429 std::bind(&MallocChecker::checkRealloc, _1, _2, _3, false)}, 430 {{"reallocf", 2}, 431 std::bind(&MallocChecker::checkRealloc, _1, _2, _3, true)}, 432 {{"g_realloc", 2}, 433 std::bind(&MallocChecker::checkRealloc, _1, _2, _3, false)}, 434 {{"g_try_realloc", 2}, 435 std::bind(&MallocChecker::checkRealloc, _1, _2, _3, false)}, 436 {{"g_realloc_n", 3}, &MallocChecker::checkReallocN}, 437 {{"g_try_realloc_n", 3}, &MallocChecker::checkReallocN}, 438 }; 439 440 bool isMemCall(const CallEvent &Call) const; 441 442 // TODO: Remove mutable by moving the initializtaion to the registry function. 443 mutable Optional<uint64_t> KernelZeroFlagVal; 444 445 using KernelZeroSizePtrValueTy = Optional<int>; 446 /// Store the value of macro called `ZERO_SIZE_PTR`. 447 /// The value is initialized at first use, before first use the outer 448 /// Optional is empty, afterwards it contains another Optional that indicates 449 /// if the macro value could be determined, and if yes the value itself. 450 mutable Optional<KernelZeroSizePtrValueTy> KernelZeroSizePtrValue; 451 452 /// Process C++ operator new()'s allocation, which is the part of C++ 453 /// new-expression that goes before the constructor. 454 LLVM_NODISCARD 455 ProgramStateRef processNewAllocation(const CXXAllocatorCall &Call, 456 CheckerContext &C, 457 AllocationFamily Family) const; 458 459 /// Perform a zero-allocation check. 460 /// 461 /// \param [in] Call The expression that allocates memory. 462 /// \param [in] IndexOfSizeArg Index of the argument that specifies the size 463 /// of the memory that needs to be allocated. E.g. for malloc, this would be 464 /// 0. 465 /// \param [in] RetVal Specifies the newly allocated pointer value; 466 /// if unspecified, the value of expression \p E is used. 467 LLVM_NODISCARD 468 static ProgramStateRef ProcessZeroAllocCheck(const CallEvent &Call, 469 const unsigned IndexOfSizeArg, 470 ProgramStateRef State, 471 Optional<SVal> RetVal = None); 472 473 /// Model functions with the ownership_returns attribute. 474 /// 475 /// User-defined function may have the ownership_returns attribute, which 476 /// annotates that the function returns with an object that was allocated on 477 /// the heap, and passes the ownertship to the callee. 478 /// 479 /// void __attribute((ownership_returns(malloc, 1))) *my_malloc(size_t); 480 /// 481 /// It has two parameters: 482 /// - first: name of the resource (e.g. 'malloc') 483 /// - (OPTIONAL) second: size of the allocated region 484 /// 485 /// \param [in] Call The expression that allocates memory. 486 /// \param [in] Att The ownership_returns attribute. 487 /// \param [in] State The \c ProgramState right before allocation. 488 /// \returns The ProgramState right after allocation. 489 LLVM_NODISCARD 490 ProgramStateRef MallocMemReturnsAttr(CheckerContext &C, const CallEvent &Call, 491 const OwnershipAttr *Att, 492 ProgramStateRef State) const; 493 494 /// Models memory allocation. 495 /// 496 /// \param [in] Call The expression that allocates memory. 497 /// \param [in] SizeEx Size of the memory that needs to be allocated. 498 /// \param [in] Init The value the allocated memory needs to be initialized. 499 /// with. For example, \c calloc initializes the allocated memory to 0, 500 /// malloc leaves it undefined. 501 /// \param [in] State The \c ProgramState right before allocation. 502 /// \returns The ProgramState right after allocation. 503 LLVM_NODISCARD 504 static ProgramStateRef MallocMemAux(CheckerContext &C, const CallEvent &Call, 505 const Expr *SizeEx, SVal Init, 506 ProgramStateRef State, 507 AllocationFamily Family); 508 509 /// Models memory allocation. 510 /// 511 /// \param [in] Call The expression that allocates memory. 512 /// \param [in] Size Size of the memory that needs to be allocated. 513 /// \param [in] Init The value the allocated memory needs to be initialized. 514 /// with. For example, \c calloc initializes the allocated memory to 0, 515 /// malloc leaves it undefined. 516 /// \param [in] State The \c ProgramState right before allocation. 517 /// \returns The ProgramState right after allocation. 518 LLVM_NODISCARD 519 static ProgramStateRef MallocMemAux(CheckerContext &C, const CallEvent &Call, 520 SVal Size, SVal Init, 521 ProgramStateRef State, 522 AllocationFamily Family); 523 524 // Check if this malloc() for special flags. At present that means M_ZERO or 525 // __GFP_ZERO (in which case, treat it like calloc). 526 LLVM_NODISCARD 527 llvm::Optional<ProgramStateRef> 528 performKernelMalloc(const CallEvent &Call, CheckerContext &C, 529 const ProgramStateRef &State) const; 530 531 /// Model functions with the ownership_takes and ownership_holds attributes. 532 /// 533 /// User-defined function may have the ownership_takes and/or ownership_holds 534 /// attributes, which annotates that the function frees the memory passed as a 535 /// parameter. 536 /// 537 /// void __attribute((ownership_takes(malloc, 1))) my_free(void *); 538 /// void __attribute((ownership_holds(malloc, 1))) my_hold(void *); 539 /// 540 /// They have two parameters: 541 /// - first: name of the resource (e.g. 'malloc') 542 /// - second: index of the parameter the attribute applies to 543 /// 544 /// \param [in] Call The expression that frees memory. 545 /// \param [in] Att The ownership_takes or ownership_holds attribute. 546 /// \param [in] State The \c ProgramState right before allocation. 547 /// \returns The ProgramState right after deallocation. 548 LLVM_NODISCARD 549 ProgramStateRef FreeMemAttr(CheckerContext &C, const CallEvent &Call, 550 const OwnershipAttr *Att, 551 ProgramStateRef State) const; 552 553 /// Models memory deallocation. 554 /// 555 /// \param [in] Call The expression that frees memory. 556 /// \param [in] State The \c ProgramState right before allocation. 557 /// \param [in] Num Index of the argument that needs to be freed. This is 558 /// normally 0, but for custom free functions it may be different. 559 /// \param [in] Hold Whether the parameter at \p Index has the ownership_holds 560 /// attribute. 561 /// \param [out] IsKnownToBeAllocated Whether the memory to be freed is known 562 /// to have been allocated, or in other words, the symbol to be freed was 563 /// registered as allocated by this checker. In the following case, \c ptr 564 /// isn't known to be allocated. 565 /// void Haha(int *ptr) { 566 /// ptr = realloc(ptr, 67); 567 /// // ... 568 /// } 569 /// \param [in] ReturnsNullOnFailure Whether the memory deallocation function 570 /// we're modeling returns with Null on failure. 571 /// \returns The ProgramState right after deallocation. 572 LLVM_NODISCARD 573 ProgramStateRef FreeMemAux(CheckerContext &C, const CallEvent &Call, 574 ProgramStateRef State, unsigned Num, bool Hold, 575 bool &IsKnownToBeAllocated, 576 AllocationFamily Family, 577 bool ReturnsNullOnFailure = false) const; 578 579 /// Models memory deallocation. 580 /// 581 /// \param [in] ArgExpr The variable who's pointee needs to be freed. 582 /// \param [in] Call The expression that frees the memory. 583 /// \param [in] State The \c ProgramState right before allocation. 584 /// normally 0, but for custom free functions it may be different. 585 /// \param [in] Hold Whether the parameter at \p Index has the ownership_holds 586 /// attribute. 587 /// \param [out] IsKnownToBeAllocated Whether the memory to be freed is known 588 /// to have been allocated, or in other words, the symbol to be freed was 589 /// registered as allocated by this checker. In the following case, \c ptr 590 /// isn't known to be allocated. 591 /// void Haha(int *ptr) { 592 /// ptr = realloc(ptr, 67); 593 /// // ... 594 /// } 595 /// \param [in] ReturnsNullOnFailure Whether the memory deallocation function 596 /// we're modeling returns with Null on failure. 597 /// \returns The ProgramState right after deallocation. 598 LLVM_NODISCARD 599 ProgramStateRef FreeMemAux(CheckerContext &C, const Expr *ArgExpr, 600 const CallEvent &Call, ProgramStateRef State, 601 bool Hold, bool &IsKnownToBeAllocated, 602 AllocationFamily Family, 603 bool ReturnsNullOnFailure = false) const; 604 605 // TODO: Needs some refactoring, as all other deallocation modeling 606 // functions are suffering from out parameters and messy code due to how 607 // realloc is handled. 608 // 609 /// Models memory reallocation. 610 /// 611 /// \param [in] Call The expression that reallocated memory 612 /// \param [in] ShouldFreeOnFail Whether if reallocation fails, the supplied 613 /// memory should be freed. 614 /// \param [in] State The \c ProgramState right before reallocation. 615 /// \param [in] SuffixWithN Whether the reallocation function we're modeling 616 /// has an '_n' suffix, such as g_realloc_n. 617 /// \returns The ProgramState right after reallocation. 618 LLVM_NODISCARD 619 ProgramStateRef ReallocMemAux(CheckerContext &C, const CallEvent &Call, 620 bool ShouldFreeOnFail, ProgramStateRef State, 621 AllocationFamily Family, 622 bool SuffixWithN = false) const; 623 624 /// Evaluates the buffer size that needs to be allocated. 625 /// 626 /// \param [in] Blocks The amount of blocks that needs to be allocated. 627 /// \param [in] BlockBytes The size of a block. 628 /// \returns The symbolic value of \p Blocks * \p BlockBytes. 629 LLVM_NODISCARD 630 static SVal evalMulForBufferSize(CheckerContext &C, const Expr *Blocks, 631 const Expr *BlockBytes); 632 633 /// Models zero initialized array allocation. 634 /// 635 /// \param [in] Call The expression that reallocated memory 636 /// \param [in] State The \c ProgramState right before reallocation. 637 /// \returns The ProgramState right after allocation. 638 LLVM_NODISCARD 639 static ProgramStateRef CallocMem(CheckerContext &C, const CallEvent &Call, 640 ProgramStateRef State); 641 642 /// See if deallocation happens in a suspicious context. If so, escape the 643 /// pointers that otherwise would have been deallocated and return true. 644 bool suppressDeallocationsInSuspiciousContexts(const CallEvent &Call, 645 CheckerContext &C) const; 646 647 /// If in \p S \p Sym is used, check whether \p Sym was already freed. 648 bool checkUseAfterFree(SymbolRef Sym, CheckerContext &C, const Stmt *S) const; 649 650 /// If in \p S \p Sym is used, check whether \p Sym was allocated as a zero 651 /// sized memory region. 652 void checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, 653 const Stmt *S) const; 654 655 /// If in \p S \p Sym is being freed, check whether \p Sym was already freed. 656 bool checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const; 657 658 /// Check if the function is known to free memory, or if it is 659 /// "interesting" and should be modeled explicitly. 660 /// 661 /// \param [out] EscapingSymbol A function might not free memory in general, 662 /// but could be known to free a particular symbol. In this case, false is 663 /// returned and the single escaping symbol is returned through the out 664 /// parameter. 665 /// 666 /// We assume that pointers do not escape through calls to system functions 667 /// not handled by this checker. 668 bool mayFreeAnyEscapedMemoryOrIsModeledExplicitly(const CallEvent *Call, 669 ProgramStateRef State, 670 SymbolRef &EscapingSymbol) const; 671 672 /// Implementation of the checkPointerEscape callbacks. 673 LLVM_NODISCARD 674 ProgramStateRef checkPointerEscapeAux(ProgramStateRef State, 675 const InvalidatedSymbols &Escaped, 676 const CallEvent *Call, 677 PointerEscapeKind Kind, 678 bool IsConstPointerEscape) const; 679 680 // Implementation of the checkPreStmt and checkEndFunction callbacks. 681 void checkEscapeOnReturn(const ReturnStmt *S, CheckerContext &C) const; 682 683 ///@{ 684 /// Tells if a given family/call/symbol is tracked by the current checker. 685 /// Sets CheckKind to the kind of the checker responsible for this 686 /// family/call/symbol. 687 Optional<CheckKind> getCheckIfTracked(AllocationFamily Family, 688 bool IsALeakCheck = false) const; 689 690 Optional<CheckKind> getCheckIfTracked(CheckerContext &C, SymbolRef Sym, 691 bool IsALeakCheck = false) const; 692 ///@} 693 static bool SummarizeValue(raw_ostream &os, SVal V); 694 static bool SummarizeRegion(raw_ostream &os, const MemRegion *MR); 695 696 void HandleNonHeapDealloc(CheckerContext &C, SVal ArgVal, SourceRange Range, 697 const Expr *DeallocExpr, 698 AllocationFamily Family) const; 699 700 void HandleFreeAlloca(CheckerContext &C, SVal ArgVal, 701 SourceRange Range) const; 702 703 void HandleMismatchedDealloc(CheckerContext &C, SourceRange Range, 704 const Expr *DeallocExpr, const RefState *RS, 705 SymbolRef Sym, bool OwnershipTransferred) const; 706 707 void HandleOffsetFree(CheckerContext &C, SVal ArgVal, SourceRange Range, 708 const Expr *DeallocExpr, AllocationFamily Family, 709 const Expr *AllocExpr = nullptr) const; 710 711 void HandleUseAfterFree(CheckerContext &C, SourceRange Range, 712 SymbolRef Sym) const; 713 714 void HandleDoubleFree(CheckerContext &C, SourceRange Range, bool Released, 715 SymbolRef Sym, SymbolRef PrevSym) const; 716 717 void HandleDoubleDelete(CheckerContext &C, SymbolRef Sym) const; 718 719 void HandleUseZeroAlloc(CheckerContext &C, SourceRange Range, 720 SymbolRef Sym) const; 721 722 void HandleFunctionPtrFree(CheckerContext &C, SVal ArgVal, SourceRange Range, 723 const Expr *FreeExpr, 724 AllocationFamily Family) const; 725 726 /// Find the location of the allocation for Sym on the path leading to the 727 /// exploded node N. 728 static LeakInfo getAllocationSite(const ExplodedNode *N, SymbolRef Sym, 729 CheckerContext &C); 730 731 void HandleLeak(SymbolRef Sym, ExplodedNode *N, CheckerContext &C) const; 732 733 /// Test if value in ArgVal equals to value in macro `ZERO_SIZE_PTR`. 734 bool isArgZERO_SIZE_PTR(ProgramStateRef State, CheckerContext &C, 735 SVal ArgVal) const; 736 }; 737 } // end anonymous namespace 738 739 //===----------------------------------------------------------------------===// 740 // Definition of NoOwnershipChangeVisitor. 741 //===----------------------------------------------------------------------===// 742 743 namespace { 744 class NoOwnershipChangeVisitor final : public NoStateChangeFuncVisitor { 745 SymbolRef Sym; 746 using OwnerSet = llvm::SmallPtrSet<const MemRegion *, 8>; 747 748 // Collect which entities point to the allocated memory, and could be 749 // responsible for deallocating it. 750 class OwnershipBindingsHandler : public StoreManager::BindingsHandler { 751 SymbolRef Sym; 752 OwnerSet &Owners; 753 754 public: 755 OwnershipBindingsHandler(SymbolRef Sym, OwnerSet &Owners) 756 : Sym(Sym), Owners(Owners) {} 757 758 bool HandleBinding(StoreManager &SMgr, Store Store, const MemRegion *Region, 759 SVal Val) override { 760 if (Val.getAsSymbol() == Sym) 761 Owners.insert(Region); 762 return true; 763 } 764 765 LLVM_DUMP_METHOD void dump() const { dumpToStream(llvm::errs()); } 766 LLVM_DUMP_METHOD void dumpToStream(llvm::raw_ostream &out) const { 767 out << "Owners: {\n"; 768 for (const MemRegion *Owner : Owners) { 769 out << " "; 770 Owner->dumpToStream(out); 771 out << ",\n"; 772 } 773 out << "}\n"; 774 } 775 }; 776 777 protected: 778 OwnerSet getOwnersAtNode(const ExplodedNode *N) { 779 OwnerSet Ret; 780 781 ProgramStateRef State = N->getState(); 782 OwnershipBindingsHandler Handler{Sym, Ret}; 783 State->getStateManager().getStoreManager().iterBindings(State->getStore(), 784 Handler); 785 return Ret; 786 } 787 788 LLVM_DUMP_METHOD static std::string 789 getFunctionName(const ExplodedNode *CallEnterN) { 790 if (const CallExpr *CE = llvm::dyn_cast_or_null<CallExpr>( 791 CallEnterN->getLocationAs<CallEnter>()->getCallExpr())) 792 if (const FunctionDecl *FD = CE->getDirectCallee()) 793 return FD->getQualifiedNameAsString(); 794 return ""; 795 } 796 797 bool doesFnIntendToHandleOwnership(const Decl *Callee, ASTContext &ACtx) { 798 using namespace clang::ast_matchers; 799 const FunctionDecl *FD = dyn_cast<FunctionDecl>(Callee); 800 if (!FD) 801 return false; 802 // TODO: Operator delete is hardly the only deallocator -- Can we reuse 803 // isFreeingCall() or something thats already here? 804 auto Deallocations = match( 805 stmt(hasDescendant(cxxDeleteExpr().bind("delete")) 806 ), *FD->getBody(), ACtx); 807 // TODO: Ownership my change with an attempt to store the allocated memory. 808 return !Deallocations.empty(); 809 } 810 811 virtual bool 812 wasModifiedInFunction(const ExplodedNode *CallEnterN, 813 const ExplodedNode *CallExitEndN) override { 814 if (!doesFnIntendToHandleOwnership( 815 CallExitEndN->getFirstPred()->getLocationContext()->getDecl(), 816 CallExitEndN->getState()->getAnalysisManager().getASTContext())) 817 return true; 818 819 if (CallEnterN->getState()->get<RegionState>(Sym) != 820 CallExitEndN->getState()->get<RegionState>(Sym)) 821 return true; 822 823 OwnerSet CurrOwners = getOwnersAtNode(CallEnterN); 824 OwnerSet ExitOwners = getOwnersAtNode(CallExitEndN); 825 826 // Owners in the current set may be purged from the analyzer later on. 827 // If a variable is dead (is not referenced directly or indirectly after 828 // some point), it will be removed from the Store before the end of its 829 // actual lifetime. 830 // This means that that if the ownership status didn't change, CurrOwners 831 // must be a superset of, but not necessarily equal to ExitOwners. 832 return !llvm::set_is_subset(ExitOwners, CurrOwners); 833 } 834 835 static PathDiagnosticPieceRef emitNote(const ExplodedNode *N) { 836 PathDiagnosticLocation L = PathDiagnosticLocation::create( 837 N->getLocation(), 838 N->getState()->getStateManager().getContext().getSourceManager()); 839 return std::make_shared<PathDiagnosticEventPiece>( 840 L, "Returning without deallocating memory or storing the pointer for " 841 "later deallocation"); 842 } 843 844 virtual PathDiagnosticPieceRef 845 maybeEmitNoteForObjCSelf(PathSensitiveBugReport &R, 846 const ObjCMethodCall &Call, 847 const ExplodedNode *N) override { 848 // TODO: Implement. 849 return nullptr; 850 } 851 852 virtual PathDiagnosticPieceRef 853 maybeEmitNoteForCXXThis(PathSensitiveBugReport &R, 854 const CXXConstructorCall &Call, 855 const ExplodedNode *N) override { 856 // TODO: Implement. 857 return nullptr; 858 } 859 860 virtual PathDiagnosticPieceRef 861 maybeEmitNoteForParameters(PathSensitiveBugReport &R, const CallEvent &Call, 862 const ExplodedNode *N) override { 863 // TODO: Factor the logic of "what constitutes as an entity being passed 864 // into a function call" out by reusing the code in 865 // NoStoreFuncVisitor::maybeEmitNoteForParameters, maybe by incorporating 866 // the printing technology in UninitializedObject's FieldChainInfo. 867 ArrayRef<ParmVarDecl *> Parameters = Call.parameters(); 868 for (unsigned I = 0; I < Call.getNumArgs() && I < Parameters.size(); ++I) { 869 SVal V = Call.getArgSVal(I); 870 if (V.getAsSymbol() == Sym) 871 return emitNote(N); 872 } 873 return nullptr; 874 } 875 876 public: 877 NoOwnershipChangeVisitor(SymbolRef Sym) 878 : NoStateChangeFuncVisitor(bugreporter::TrackingKind::Thorough), 879 Sym(Sym) {} 880 881 void Profile(llvm::FoldingSetNodeID &ID) const override { 882 static int Tag = 0; 883 ID.AddPointer(&Tag); 884 ID.AddPointer(Sym); 885 } 886 887 void *getTag() const { 888 static int Tag = 0; 889 return static_cast<void *>(&Tag); 890 } 891 }; 892 893 } // end anonymous namespace 894 895 //===----------------------------------------------------------------------===// 896 // Definition of MallocBugVisitor. 897 //===----------------------------------------------------------------------===// 898 899 namespace { 900 /// The bug visitor which allows us to print extra diagnostics along the 901 /// BugReport path. For example, showing the allocation site of the leaked 902 /// region. 903 class MallocBugVisitor final : public BugReporterVisitor { 904 protected: 905 enum NotificationMode { Normal, ReallocationFailed }; 906 907 // The allocated region symbol tracked by the main analysis. 908 SymbolRef Sym; 909 910 // The mode we are in, i.e. what kind of diagnostics will be emitted. 911 NotificationMode Mode; 912 913 // A symbol from when the primary region should have been reallocated. 914 SymbolRef FailedReallocSymbol; 915 916 // A C++ destructor stack frame in which memory was released. Used for 917 // miscellaneous false positive suppression. 918 const StackFrameContext *ReleaseDestructorLC; 919 920 bool IsLeak; 921 922 public: 923 MallocBugVisitor(SymbolRef S, bool isLeak = false) 924 : Sym(S), Mode(Normal), FailedReallocSymbol(nullptr), 925 ReleaseDestructorLC(nullptr), IsLeak(isLeak) {} 926 927 static void *getTag() { 928 static int Tag = 0; 929 return &Tag; 930 } 931 932 void Profile(llvm::FoldingSetNodeID &ID) const override { 933 ID.AddPointer(getTag()); 934 ID.AddPointer(Sym); 935 } 936 937 /// Did not track -> allocated. Other state (released) -> allocated. 938 static inline bool isAllocated(const RefState *RSCurr, const RefState *RSPrev, 939 const Stmt *Stmt) { 940 return (isa_and_nonnull<CallExpr, CXXNewExpr>(Stmt) && 941 (RSCurr && 942 (RSCurr->isAllocated() || RSCurr->isAllocatedOfSizeZero())) && 943 (!RSPrev || 944 !(RSPrev->isAllocated() || RSPrev->isAllocatedOfSizeZero()))); 945 } 946 947 /// Did not track -> released. Other state (allocated) -> released. 948 /// The statement associated with the release might be missing. 949 static inline bool isReleased(const RefState *RSCurr, const RefState *RSPrev, 950 const Stmt *Stmt) { 951 bool IsReleased = 952 (RSCurr && RSCurr->isReleased()) && (!RSPrev || !RSPrev->isReleased()); 953 assert(!IsReleased || (isa_and_nonnull<CallExpr, CXXDeleteExpr>(Stmt)) || 954 (!Stmt && RSCurr->getAllocationFamily() == AF_InnerBuffer)); 955 return IsReleased; 956 } 957 958 /// Did not track -> relinquished. Other state (allocated) -> relinquished. 959 static inline bool isRelinquished(const RefState *RSCurr, 960 const RefState *RSPrev, const Stmt *Stmt) { 961 return ( 962 isa_and_nonnull<CallExpr, ObjCMessageExpr, ObjCPropertyRefExpr>(Stmt) && 963 (RSCurr && RSCurr->isRelinquished()) && 964 (!RSPrev || !RSPrev->isRelinquished())); 965 } 966 967 /// If the expression is not a call, and the state change is 968 /// released -> allocated, it must be the realloc return value 969 /// check. If we have to handle more cases here, it might be cleaner just 970 /// to track this extra bit in the state itself. 971 static inline bool hasReallocFailed(const RefState *RSCurr, 972 const RefState *RSPrev, 973 const Stmt *Stmt) { 974 return ((!isa_and_nonnull<CallExpr>(Stmt)) && 975 (RSCurr && 976 (RSCurr->isAllocated() || RSCurr->isAllocatedOfSizeZero())) && 977 (RSPrev && 978 !(RSPrev->isAllocated() || RSPrev->isAllocatedOfSizeZero()))); 979 } 980 981 PathDiagnosticPieceRef VisitNode(const ExplodedNode *N, 982 BugReporterContext &BRC, 983 PathSensitiveBugReport &BR) override; 984 985 PathDiagnosticPieceRef getEndPath(BugReporterContext &BRC, 986 const ExplodedNode *EndPathNode, 987 PathSensitiveBugReport &BR) override { 988 if (!IsLeak) 989 return nullptr; 990 991 PathDiagnosticLocation L = BR.getLocation(); 992 // Do not add the statement itself as a range in case of leak. 993 return std::make_shared<PathDiagnosticEventPiece>(L, BR.getDescription(), 994 false); 995 } 996 997 private: 998 class StackHintGeneratorForReallocationFailed 999 : public StackHintGeneratorForSymbol { 1000 public: 1001 StackHintGeneratorForReallocationFailed(SymbolRef S, StringRef M) 1002 : StackHintGeneratorForSymbol(S, M) {} 1003 1004 std::string getMessageForArg(const Expr *ArgE, unsigned ArgIndex) override { 1005 // Printed parameters start at 1, not 0. 1006 ++ArgIndex; 1007 1008 SmallString<200> buf; 1009 llvm::raw_svector_ostream os(buf); 1010 1011 os << "Reallocation of " << ArgIndex << llvm::getOrdinalSuffix(ArgIndex) 1012 << " parameter failed"; 1013 1014 return std::string(os.str()); 1015 } 1016 1017 std::string getMessageForReturn(const CallExpr *CallExpr) override { 1018 return "Reallocation of returned value failed"; 1019 } 1020 }; 1021 }; 1022 } // end anonymous namespace 1023 1024 // A map from the freed symbol to the symbol representing the return value of 1025 // the free function. 1026 REGISTER_MAP_WITH_PROGRAMSTATE(FreeReturnValue, SymbolRef, SymbolRef) 1027 1028 namespace { 1029 class StopTrackingCallback final : public SymbolVisitor { 1030 ProgramStateRef state; 1031 1032 public: 1033 StopTrackingCallback(ProgramStateRef st) : state(std::move(st)) {} 1034 ProgramStateRef getState() const { return state; } 1035 1036 bool VisitSymbol(SymbolRef sym) override { 1037 state = state->remove<RegionState>(sym); 1038 return true; 1039 } 1040 }; 1041 } // end anonymous namespace 1042 1043 static bool isStandardNewDelete(const FunctionDecl *FD) { 1044 if (!FD) 1045 return false; 1046 1047 OverloadedOperatorKind Kind = FD->getOverloadedOperator(); 1048 if (Kind != OO_New && Kind != OO_Array_New && Kind != OO_Delete && 1049 Kind != OO_Array_Delete) 1050 return false; 1051 1052 // This is standard if and only if it's not defined in a user file. 1053 SourceLocation L = FD->getLocation(); 1054 // If the header for operator delete is not included, it's still defined 1055 // in an invalid source location. Check to make sure we don't crash. 1056 return !L.isValid() || 1057 FD->getASTContext().getSourceManager().isInSystemHeader(L); 1058 } 1059 1060 //===----------------------------------------------------------------------===// 1061 // Methods of MallocChecker and MallocBugVisitor. 1062 //===----------------------------------------------------------------------===// 1063 1064 bool MallocChecker::isFreeingCall(const CallEvent &Call) const { 1065 if (FreeingMemFnMap.lookup(Call) || ReallocatingMemFnMap.lookup(Call)) 1066 return true; 1067 1068 const auto *Func = dyn_cast<FunctionDecl>(Call.getDecl()); 1069 if (Func && Func->hasAttrs()) { 1070 for (const auto *I : Func->specific_attrs<OwnershipAttr>()) { 1071 OwnershipAttr::OwnershipKind OwnKind = I->getOwnKind(); 1072 if (OwnKind == OwnershipAttr::Takes || OwnKind == OwnershipAttr::Holds) 1073 return true; 1074 } 1075 } 1076 return false; 1077 } 1078 1079 bool MallocChecker::isMemCall(const CallEvent &Call) const { 1080 if (FreeingMemFnMap.lookup(Call) || AllocatingMemFnMap.lookup(Call) || 1081 ReallocatingMemFnMap.lookup(Call)) 1082 return true; 1083 1084 if (!ShouldIncludeOwnershipAnnotatedFunctions) 1085 return false; 1086 1087 const auto *Func = dyn_cast<FunctionDecl>(Call.getDecl()); 1088 return Func && Func->hasAttr<OwnershipAttr>(); 1089 } 1090 1091 llvm::Optional<ProgramStateRef> 1092 MallocChecker::performKernelMalloc(const CallEvent &Call, CheckerContext &C, 1093 const ProgramStateRef &State) const { 1094 // 3-argument malloc(), as commonly used in {Free,Net,Open}BSD Kernels: 1095 // 1096 // void *malloc(unsigned long size, struct malloc_type *mtp, int flags); 1097 // 1098 // One of the possible flags is M_ZERO, which means 'give me back an 1099 // allocation which is already zeroed', like calloc. 1100 1101 // 2-argument kmalloc(), as used in the Linux kernel: 1102 // 1103 // void *kmalloc(size_t size, gfp_t flags); 1104 // 1105 // Has the similar flag value __GFP_ZERO. 1106 1107 // This logic is largely cloned from O_CREAT in UnixAPIChecker, maybe some 1108 // code could be shared. 1109 1110 ASTContext &Ctx = C.getASTContext(); 1111 llvm::Triple::OSType OS = Ctx.getTargetInfo().getTriple().getOS(); 1112 1113 if (!KernelZeroFlagVal.hasValue()) { 1114 if (OS == llvm::Triple::FreeBSD) 1115 KernelZeroFlagVal = 0x0100; 1116 else if (OS == llvm::Triple::NetBSD) 1117 KernelZeroFlagVal = 0x0002; 1118 else if (OS == llvm::Triple::OpenBSD) 1119 KernelZeroFlagVal = 0x0008; 1120 else if (OS == llvm::Triple::Linux) 1121 // __GFP_ZERO 1122 KernelZeroFlagVal = 0x8000; 1123 else 1124 // FIXME: We need a more general way of getting the M_ZERO value. 1125 // See also: O_CREAT in UnixAPIChecker.cpp. 1126 1127 // Fall back to normal malloc behavior on platforms where we don't 1128 // know M_ZERO. 1129 return None; 1130 } 1131 1132 // We treat the last argument as the flags argument, and callers fall-back to 1133 // normal malloc on a None return. This works for the FreeBSD kernel malloc 1134 // as well as Linux kmalloc. 1135 if (Call.getNumArgs() < 2) 1136 return None; 1137 1138 const Expr *FlagsEx = Call.getArgExpr(Call.getNumArgs() - 1); 1139 const SVal V = C.getSVal(FlagsEx); 1140 if (!V.getAs<NonLoc>()) { 1141 // The case where 'V' can be a location can only be due to a bad header, 1142 // so in this case bail out. 1143 return None; 1144 } 1145 1146 NonLoc Flags = V.castAs<NonLoc>(); 1147 NonLoc ZeroFlag = C.getSValBuilder() 1148 .makeIntVal(KernelZeroFlagVal.getValue(), FlagsEx->getType()) 1149 .castAs<NonLoc>(); 1150 SVal MaskedFlagsUC = C.getSValBuilder().evalBinOpNN(State, BO_And, 1151 Flags, ZeroFlag, 1152 FlagsEx->getType()); 1153 if (MaskedFlagsUC.isUnknownOrUndef()) 1154 return None; 1155 DefinedSVal MaskedFlags = MaskedFlagsUC.castAs<DefinedSVal>(); 1156 1157 // Check if maskedFlags is non-zero. 1158 ProgramStateRef TrueState, FalseState; 1159 std::tie(TrueState, FalseState) = State->assume(MaskedFlags); 1160 1161 // If M_ZERO is set, treat this like calloc (initialized). 1162 if (TrueState && !FalseState) { 1163 SVal ZeroVal = C.getSValBuilder().makeZeroVal(Ctx.CharTy); 1164 return MallocMemAux(C, Call, Call.getArgExpr(0), ZeroVal, TrueState, 1165 AF_Malloc); 1166 } 1167 1168 return None; 1169 } 1170 1171 SVal MallocChecker::evalMulForBufferSize(CheckerContext &C, const Expr *Blocks, 1172 const Expr *BlockBytes) { 1173 SValBuilder &SB = C.getSValBuilder(); 1174 SVal BlocksVal = C.getSVal(Blocks); 1175 SVal BlockBytesVal = C.getSVal(BlockBytes); 1176 ProgramStateRef State = C.getState(); 1177 SVal TotalSize = SB.evalBinOp(State, BO_Mul, BlocksVal, BlockBytesVal, 1178 SB.getContext().getSizeType()); 1179 return TotalSize; 1180 } 1181 1182 void MallocChecker::checkBasicAlloc(const CallEvent &Call, 1183 CheckerContext &C) const { 1184 ProgramStateRef State = C.getState(); 1185 State = MallocMemAux(C, Call, Call.getArgExpr(0), UndefinedVal(), State, 1186 AF_Malloc); 1187 State = ProcessZeroAllocCheck(Call, 0, State); 1188 C.addTransition(State); 1189 } 1190 1191 void MallocChecker::checkKernelMalloc(const CallEvent &Call, 1192 CheckerContext &C) const { 1193 ProgramStateRef State = C.getState(); 1194 llvm::Optional<ProgramStateRef> MaybeState = 1195 performKernelMalloc(Call, C, State); 1196 if (MaybeState.hasValue()) 1197 State = MaybeState.getValue(); 1198 else 1199 State = MallocMemAux(C, Call, Call.getArgExpr(0), UndefinedVal(), State, 1200 AF_Malloc); 1201 C.addTransition(State); 1202 } 1203 1204 static bool isStandardRealloc(const CallEvent &Call) { 1205 const FunctionDecl *FD = dyn_cast<FunctionDecl>(Call.getDecl()); 1206 assert(FD); 1207 ASTContext &AC = FD->getASTContext(); 1208 1209 if (isa<CXXMethodDecl>(FD)) 1210 return false; 1211 1212 return FD->getDeclaredReturnType().getDesugaredType(AC) == AC.VoidPtrTy && 1213 FD->getParamDecl(0)->getType().getDesugaredType(AC) == AC.VoidPtrTy && 1214 FD->getParamDecl(1)->getType().getDesugaredType(AC) == 1215 AC.getSizeType(); 1216 } 1217 1218 static bool isGRealloc(const CallEvent &Call) { 1219 const FunctionDecl *FD = dyn_cast<FunctionDecl>(Call.getDecl()); 1220 assert(FD); 1221 ASTContext &AC = FD->getASTContext(); 1222 1223 if (isa<CXXMethodDecl>(FD)) 1224 return false; 1225 1226 return FD->getDeclaredReturnType().getDesugaredType(AC) == AC.VoidPtrTy && 1227 FD->getParamDecl(0)->getType().getDesugaredType(AC) == AC.VoidPtrTy && 1228 FD->getParamDecl(1)->getType().getDesugaredType(AC) == 1229 AC.UnsignedLongTy; 1230 } 1231 1232 void MallocChecker::checkRealloc(const CallEvent &Call, CheckerContext &C, 1233 bool ShouldFreeOnFail) const { 1234 // HACK: CallDescription currently recognizes non-standard realloc functions 1235 // as standard because it doesn't check the type, or wether its a non-method 1236 // function. This should be solved by making CallDescription smarter. 1237 // Mind that this came from a bug report, and all other functions suffer from 1238 // this. 1239 // https://bugs.llvm.org/show_bug.cgi?id=46253 1240 if (!isStandardRealloc(Call) && !isGRealloc(Call)) 1241 return; 1242 ProgramStateRef State = C.getState(); 1243 State = ReallocMemAux(C, Call, ShouldFreeOnFail, State, AF_Malloc); 1244 State = ProcessZeroAllocCheck(Call, 1, State); 1245 C.addTransition(State); 1246 } 1247 1248 void MallocChecker::checkCalloc(const CallEvent &Call, 1249 CheckerContext &C) const { 1250 ProgramStateRef State = C.getState(); 1251 State = CallocMem(C, Call, State); 1252 State = ProcessZeroAllocCheck(Call, 0, State); 1253 State = ProcessZeroAllocCheck(Call, 1, State); 1254 C.addTransition(State); 1255 } 1256 1257 void MallocChecker::checkFree(const CallEvent &Call, CheckerContext &C) const { 1258 ProgramStateRef State = C.getState(); 1259 bool IsKnownToBeAllocatedMemory = false; 1260 if (suppressDeallocationsInSuspiciousContexts(Call, C)) 1261 return; 1262 State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory, 1263 AF_Malloc); 1264 C.addTransition(State); 1265 } 1266 1267 void MallocChecker::checkAlloca(const CallEvent &Call, 1268 CheckerContext &C) const { 1269 ProgramStateRef State = C.getState(); 1270 State = MallocMemAux(C, Call, Call.getArgExpr(0), UndefinedVal(), State, 1271 AF_Alloca); 1272 State = ProcessZeroAllocCheck(Call, 0, State); 1273 C.addTransition(State); 1274 } 1275 1276 void MallocChecker::checkStrdup(const CallEvent &Call, 1277 CheckerContext &C) const { 1278 ProgramStateRef State = C.getState(); 1279 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); 1280 if (!CE) 1281 return; 1282 State = MallocUpdateRefState(C, CE, State, AF_Malloc); 1283 1284 C.addTransition(State); 1285 } 1286 1287 void MallocChecker::checkIfNameIndex(const CallEvent &Call, 1288 CheckerContext &C) const { 1289 ProgramStateRef State = C.getState(); 1290 // Should we model this differently? We can allocate a fixed number of 1291 // elements with zeros in the last one. 1292 State = 1293 MallocMemAux(C, Call, UnknownVal(), UnknownVal(), State, AF_IfNameIndex); 1294 1295 C.addTransition(State); 1296 } 1297 1298 void MallocChecker::checkIfFreeNameIndex(const CallEvent &Call, 1299 CheckerContext &C) const { 1300 ProgramStateRef State = C.getState(); 1301 bool IsKnownToBeAllocatedMemory = false; 1302 State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory, 1303 AF_IfNameIndex); 1304 C.addTransition(State); 1305 } 1306 1307 void MallocChecker::checkCXXNewOrCXXDelete(const CallEvent &Call, 1308 CheckerContext &C) const { 1309 ProgramStateRef State = C.getState(); 1310 bool IsKnownToBeAllocatedMemory = false; 1311 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); 1312 if (!CE) 1313 return; 1314 1315 assert(isStandardNewDelete(Call)); 1316 1317 // Process direct calls to operator new/new[]/delete/delete[] functions 1318 // as distinct from new/new[]/delete/delete[] expressions that are 1319 // processed by the checkPostStmt callbacks for CXXNewExpr and 1320 // CXXDeleteExpr. 1321 const FunctionDecl *FD = C.getCalleeDecl(CE); 1322 switch (FD->getOverloadedOperator()) { 1323 case OO_New: 1324 State = 1325 MallocMemAux(C, Call, CE->getArg(0), UndefinedVal(), State, AF_CXXNew); 1326 State = ProcessZeroAllocCheck(Call, 0, State); 1327 break; 1328 case OO_Array_New: 1329 State = MallocMemAux(C, Call, CE->getArg(0), UndefinedVal(), State, 1330 AF_CXXNewArray); 1331 State = ProcessZeroAllocCheck(Call, 0, State); 1332 break; 1333 case OO_Delete: 1334 State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory, 1335 AF_CXXNew); 1336 break; 1337 case OO_Array_Delete: 1338 State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory, 1339 AF_CXXNewArray); 1340 break; 1341 default: 1342 llvm_unreachable("not a new/delete operator"); 1343 } 1344 1345 C.addTransition(State); 1346 } 1347 1348 void MallocChecker::checkGMalloc0(const CallEvent &Call, 1349 CheckerContext &C) const { 1350 ProgramStateRef State = C.getState(); 1351 SValBuilder &svalBuilder = C.getSValBuilder(); 1352 SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy); 1353 State = MallocMemAux(C, Call, Call.getArgExpr(0), zeroVal, State, AF_Malloc); 1354 State = ProcessZeroAllocCheck(Call, 0, State); 1355 C.addTransition(State); 1356 } 1357 1358 void MallocChecker::checkGMemdup(const CallEvent &Call, 1359 CheckerContext &C) const { 1360 ProgramStateRef State = C.getState(); 1361 State = MallocMemAux(C, Call, Call.getArgExpr(1), UndefinedVal(), State, 1362 AF_Malloc); 1363 State = ProcessZeroAllocCheck(Call, 1, State); 1364 C.addTransition(State); 1365 } 1366 1367 void MallocChecker::checkGMallocN(const CallEvent &Call, 1368 CheckerContext &C) const { 1369 ProgramStateRef State = C.getState(); 1370 SVal Init = UndefinedVal(); 1371 SVal TotalSize = evalMulForBufferSize(C, Call.getArgExpr(0), Call.getArgExpr(1)); 1372 State = MallocMemAux(C, Call, TotalSize, Init, State, AF_Malloc); 1373 State = ProcessZeroAllocCheck(Call, 0, State); 1374 State = ProcessZeroAllocCheck(Call, 1, State); 1375 C.addTransition(State); 1376 } 1377 1378 void MallocChecker::checkGMallocN0(const CallEvent &Call, 1379 CheckerContext &C) const { 1380 ProgramStateRef State = C.getState(); 1381 SValBuilder &SB = C.getSValBuilder(); 1382 SVal Init = SB.makeZeroVal(SB.getContext().CharTy); 1383 SVal TotalSize = evalMulForBufferSize(C, Call.getArgExpr(0), Call.getArgExpr(1)); 1384 State = MallocMemAux(C, Call, TotalSize, Init, State, AF_Malloc); 1385 State = ProcessZeroAllocCheck(Call, 0, State); 1386 State = ProcessZeroAllocCheck(Call, 1, State); 1387 C.addTransition(State); 1388 } 1389 1390 void MallocChecker::checkReallocN(const CallEvent &Call, 1391 CheckerContext &C) const { 1392 ProgramStateRef State = C.getState(); 1393 State = ReallocMemAux(C, Call, /*ShouldFreeOnFail=*/false, State, AF_Malloc, 1394 /*SuffixWithN=*/true); 1395 State = ProcessZeroAllocCheck(Call, 1, State); 1396 State = ProcessZeroAllocCheck(Call, 2, State); 1397 C.addTransition(State); 1398 } 1399 1400 void MallocChecker::checkOwnershipAttr(const CallEvent &Call, 1401 CheckerContext &C) const { 1402 ProgramStateRef State = C.getState(); 1403 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); 1404 if (!CE) 1405 return; 1406 const FunctionDecl *FD = C.getCalleeDecl(CE); 1407 if (!FD) 1408 return; 1409 if (ShouldIncludeOwnershipAnnotatedFunctions || 1410 ChecksEnabled[CK_MismatchedDeallocatorChecker]) { 1411 // Check all the attributes, if there are any. 1412 // There can be multiple of these attributes. 1413 if (FD->hasAttrs()) 1414 for (const auto *I : FD->specific_attrs<OwnershipAttr>()) { 1415 switch (I->getOwnKind()) { 1416 case OwnershipAttr::Returns: 1417 State = MallocMemReturnsAttr(C, Call, I, State); 1418 break; 1419 case OwnershipAttr::Takes: 1420 case OwnershipAttr::Holds: 1421 State = FreeMemAttr(C, Call, I, State); 1422 break; 1423 } 1424 } 1425 } 1426 C.addTransition(State); 1427 } 1428 1429 void MallocChecker::checkPostCall(const CallEvent &Call, 1430 CheckerContext &C) const { 1431 if (C.wasInlined) 1432 return; 1433 if (!Call.getOriginExpr()) 1434 return; 1435 1436 ProgramStateRef State = C.getState(); 1437 1438 if (const CheckFn *Callback = FreeingMemFnMap.lookup(Call)) { 1439 (*Callback)(this, Call, C); 1440 return; 1441 } 1442 1443 if (const CheckFn *Callback = AllocatingMemFnMap.lookup(Call)) { 1444 (*Callback)(this, Call, C); 1445 return; 1446 } 1447 1448 if (const CheckFn *Callback = ReallocatingMemFnMap.lookup(Call)) { 1449 (*Callback)(this, Call, C); 1450 return; 1451 } 1452 1453 if (isStandardNewDelete(Call)) { 1454 checkCXXNewOrCXXDelete(Call, C); 1455 return; 1456 } 1457 1458 checkOwnershipAttr(Call, C); 1459 } 1460 1461 // Performs a 0-sized allocations check. 1462 ProgramStateRef MallocChecker::ProcessZeroAllocCheck( 1463 const CallEvent &Call, const unsigned IndexOfSizeArg, ProgramStateRef State, 1464 Optional<SVal> RetVal) { 1465 if (!State) 1466 return nullptr; 1467 1468 if (!RetVal) 1469 RetVal = Call.getReturnValue(); 1470 1471 const Expr *Arg = nullptr; 1472 1473 if (const CallExpr *CE = dyn_cast<CallExpr>(Call.getOriginExpr())) { 1474 Arg = CE->getArg(IndexOfSizeArg); 1475 } else if (const CXXNewExpr *NE = 1476 dyn_cast<CXXNewExpr>(Call.getOriginExpr())) { 1477 if (NE->isArray()) { 1478 Arg = *NE->getArraySize(); 1479 } else { 1480 return State; 1481 } 1482 } else 1483 llvm_unreachable("not a CallExpr or CXXNewExpr"); 1484 1485 assert(Arg); 1486 1487 auto DefArgVal = 1488 State->getSVal(Arg, Call.getLocationContext()).getAs<DefinedSVal>(); 1489 1490 if (!DefArgVal) 1491 return State; 1492 1493 // Check if the allocation size is 0. 1494 ProgramStateRef TrueState, FalseState; 1495 SValBuilder &SvalBuilder = State->getStateManager().getSValBuilder(); 1496 DefinedSVal Zero = 1497 SvalBuilder.makeZeroVal(Arg->getType()).castAs<DefinedSVal>(); 1498 1499 std::tie(TrueState, FalseState) = 1500 State->assume(SvalBuilder.evalEQ(State, *DefArgVal, Zero)); 1501 1502 if (TrueState && !FalseState) { 1503 SymbolRef Sym = RetVal->getAsLocSymbol(); 1504 if (!Sym) 1505 return State; 1506 1507 const RefState *RS = State->get<RegionState>(Sym); 1508 if (RS) { 1509 if (RS->isAllocated()) 1510 return TrueState->set<RegionState>(Sym, 1511 RefState::getAllocatedOfSizeZero(RS)); 1512 else 1513 return State; 1514 } else { 1515 // Case of zero-size realloc. Historically 'realloc(ptr, 0)' is treated as 1516 // 'free(ptr)' and the returned value from 'realloc(ptr, 0)' is not 1517 // tracked. Add zero-reallocated Sym to the state to catch references 1518 // to zero-allocated memory. 1519 return TrueState->add<ReallocSizeZeroSymbols>(Sym); 1520 } 1521 } 1522 1523 // Assume the value is non-zero going forward. 1524 assert(FalseState); 1525 return FalseState; 1526 } 1527 1528 static QualType getDeepPointeeType(QualType T) { 1529 QualType Result = T, PointeeType = T->getPointeeType(); 1530 while (!PointeeType.isNull()) { 1531 Result = PointeeType; 1532 PointeeType = PointeeType->getPointeeType(); 1533 } 1534 return Result; 1535 } 1536 1537 /// \returns true if the constructor invoked by \p NE has an argument of a 1538 /// pointer/reference to a record type. 1539 static bool hasNonTrivialConstructorCall(const CXXNewExpr *NE) { 1540 1541 const CXXConstructExpr *ConstructE = NE->getConstructExpr(); 1542 if (!ConstructE) 1543 return false; 1544 1545 if (!NE->getAllocatedType()->getAsCXXRecordDecl()) 1546 return false; 1547 1548 const CXXConstructorDecl *CtorD = ConstructE->getConstructor(); 1549 1550 // Iterate over the constructor parameters. 1551 for (const auto *CtorParam : CtorD->parameters()) { 1552 1553 QualType CtorParamPointeeT = CtorParam->getType()->getPointeeType(); 1554 if (CtorParamPointeeT.isNull()) 1555 continue; 1556 1557 CtorParamPointeeT = getDeepPointeeType(CtorParamPointeeT); 1558 1559 if (CtorParamPointeeT->getAsCXXRecordDecl()) 1560 return true; 1561 } 1562 1563 return false; 1564 } 1565 1566 ProgramStateRef 1567 MallocChecker::processNewAllocation(const CXXAllocatorCall &Call, 1568 CheckerContext &C, 1569 AllocationFamily Family) const { 1570 if (!isStandardNewDelete(Call)) 1571 return nullptr; 1572 1573 const CXXNewExpr *NE = Call.getOriginExpr(); 1574 const ParentMap &PM = C.getLocationContext()->getParentMap(); 1575 ProgramStateRef State = C.getState(); 1576 1577 // Non-trivial constructors have a chance to escape 'this', but marking all 1578 // invocations of trivial constructors as escaped would cause too great of 1579 // reduction of true positives, so let's just do that for constructors that 1580 // have an argument of a pointer-to-record type. 1581 if (!PM.isConsumedExpr(NE) && hasNonTrivialConstructorCall(NE)) 1582 return State; 1583 1584 // The return value from operator new is bound to a specified initialization 1585 // value (if any) and we don't want to loose this value. So we call 1586 // MallocUpdateRefState() instead of MallocMemAux() which breaks the 1587 // existing binding. 1588 SVal Target = Call.getObjectUnderConstruction(); 1589 State = MallocUpdateRefState(C, NE, State, Family, Target); 1590 State = ProcessZeroAllocCheck(Call, 0, State, Target); 1591 return State; 1592 } 1593 1594 void MallocChecker::checkNewAllocator(const CXXAllocatorCall &Call, 1595 CheckerContext &C) const { 1596 if (!C.wasInlined) { 1597 ProgramStateRef State = processNewAllocation( 1598 Call, C, 1599 (Call.getOriginExpr()->isArray() ? AF_CXXNewArray : AF_CXXNew)); 1600 C.addTransition(State); 1601 } 1602 } 1603 1604 static bool isKnownDeallocObjCMethodName(const ObjCMethodCall &Call) { 1605 // If the first selector piece is one of the names below, assume that the 1606 // object takes ownership of the memory, promising to eventually deallocate it 1607 // with free(). 1608 // Ex: [NSData dataWithBytesNoCopy:bytes length:10]; 1609 // (...unless a 'freeWhenDone' parameter is false, but that's checked later.) 1610 StringRef FirstSlot = Call.getSelector().getNameForSlot(0); 1611 return FirstSlot == "dataWithBytesNoCopy" || 1612 FirstSlot == "initWithBytesNoCopy" || 1613 FirstSlot == "initWithCharactersNoCopy"; 1614 } 1615 1616 static Optional<bool> getFreeWhenDoneArg(const ObjCMethodCall &Call) { 1617 Selector S = Call.getSelector(); 1618 1619 // FIXME: We should not rely on fully-constrained symbols being folded. 1620 for (unsigned i = 1; i < S.getNumArgs(); ++i) 1621 if (S.getNameForSlot(i).equals("freeWhenDone")) 1622 return !Call.getArgSVal(i).isZeroConstant(); 1623 1624 return None; 1625 } 1626 1627 void MallocChecker::checkPostObjCMessage(const ObjCMethodCall &Call, 1628 CheckerContext &C) const { 1629 if (C.wasInlined) 1630 return; 1631 1632 if (!isKnownDeallocObjCMethodName(Call)) 1633 return; 1634 1635 if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(Call)) 1636 if (!*FreeWhenDone) 1637 return; 1638 1639 if (Call.hasNonZeroCallbackArg()) 1640 return; 1641 1642 bool IsKnownToBeAllocatedMemory; 1643 ProgramStateRef State = 1644 FreeMemAux(C, Call.getArgExpr(0), Call, C.getState(), 1645 /*Hold=*/true, IsKnownToBeAllocatedMemory, AF_Malloc, 1646 /*RetNullOnFailure=*/true); 1647 1648 C.addTransition(State); 1649 } 1650 1651 ProgramStateRef 1652 MallocChecker::MallocMemReturnsAttr(CheckerContext &C, const CallEvent &Call, 1653 const OwnershipAttr *Att, 1654 ProgramStateRef State) const { 1655 if (!State) 1656 return nullptr; 1657 1658 if (Att->getModule()->getName() != "malloc") 1659 return nullptr; 1660 1661 OwnershipAttr::args_iterator I = Att->args_begin(), E = Att->args_end(); 1662 if (I != E) { 1663 return MallocMemAux(C, Call, Call.getArgExpr(I->getASTIndex()), 1664 UndefinedVal(), State, AF_Malloc); 1665 } 1666 return MallocMemAux(C, Call, UnknownVal(), UndefinedVal(), State, AF_Malloc); 1667 } 1668 1669 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, 1670 const CallEvent &Call, 1671 const Expr *SizeEx, SVal Init, 1672 ProgramStateRef State, 1673 AllocationFamily Family) { 1674 if (!State) 1675 return nullptr; 1676 1677 assert(SizeEx); 1678 return MallocMemAux(C, Call, C.getSVal(SizeEx), Init, State, Family); 1679 } 1680 1681 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, 1682 const CallEvent &Call, SVal Size, 1683 SVal Init, ProgramStateRef State, 1684 AllocationFamily Family) { 1685 if (!State) 1686 return nullptr; 1687 1688 const Expr *CE = Call.getOriginExpr(); 1689 1690 // We expect the malloc functions to return a pointer. 1691 if (!Loc::isLocType(CE->getType())) 1692 return nullptr; 1693 1694 // Bind the return value to the symbolic value from the heap region. 1695 // TODO: We could rewrite post visit to eval call; 'malloc' does not have 1696 // side effects other than what we model here. 1697 unsigned Count = C.blockCount(); 1698 SValBuilder &svalBuilder = C.getSValBuilder(); 1699 const LocationContext *LCtx = C.getPredecessor()->getLocationContext(); 1700 DefinedSVal RetVal = svalBuilder.getConjuredHeapSymbolVal(CE, LCtx, Count) 1701 .castAs<DefinedSVal>(); 1702 State = State->BindExpr(CE, C.getLocationContext(), RetVal); 1703 1704 // Fill the region with the initialization value. 1705 State = State->bindDefaultInitial(RetVal, Init, LCtx); 1706 1707 // Set the region's extent. 1708 State = setDynamicExtent(State, RetVal.getAsRegion(), 1709 Size.castAs<DefinedOrUnknownSVal>(), svalBuilder); 1710 1711 return MallocUpdateRefState(C, CE, State, Family); 1712 } 1713 1714 static ProgramStateRef MallocUpdateRefState(CheckerContext &C, const Expr *E, 1715 ProgramStateRef State, 1716 AllocationFamily Family, 1717 Optional<SVal> RetVal) { 1718 if (!State) 1719 return nullptr; 1720 1721 // Get the return value. 1722 if (!RetVal) 1723 RetVal = C.getSVal(E); 1724 1725 // We expect the malloc functions to return a pointer. 1726 if (!RetVal->getAs<Loc>()) 1727 return nullptr; 1728 1729 SymbolRef Sym = RetVal->getAsLocSymbol(); 1730 // This is a return value of a function that was not inlined, such as malloc() 1731 // or new(). We've checked that in the caller. Therefore, it must be a symbol. 1732 assert(Sym); 1733 1734 // Set the symbol's state to Allocated. 1735 return State->set<RegionState>(Sym, RefState::getAllocated(Family, E)); 1736 } 1737 1738 ProgramStateRef MallocChecker::FreeMemAttr(CheckerContext &C, 1739 const CallEvent &Call, 1740 const OwnershipAttr *Att, 1741 ProgramStateRef State) const { 1742 if (!State) 1743 return nullptr; 1744 1745 if (Att->getModule()->getName() != "malloc") 1746 return nullptr; 1747 1748 bool IsKnownToBeAllocated = false; 1749 1750 for (const auto &Arg : Att->args()) { 1751 ProgramStateRef StateI = 1752 FreeMemAux(C, Call, State, Arg.getASTIndex(), 1753 Att->getOwnKind() == OwnershipAttr::Holds, 1754 IsKnownToBeAllocated, AF_Malloc); 1755 if (StateI) 1756 State = StateI; 1757 } 1758 return State; 1759 } 1760 1761 ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C, 1762 const CallEvent &Call, 1763 ProgramStateRef State, unsigned Num, 1764 bool Hold, bool &IsKnownToBeAllocated, 1765 AllocationFamily Family, 1766 bool ReturnsNullOnFailure) const { 1767 if (!State) 1768 return nullptr; 1769 1770 if (Call.getNumArgs() < (Num + 1)) 1771 return nullptr; 1772 1773 return FreeMemAux(C, Call.getArgExpr(Num), Call, State, Hold, 1774 IsKnownToBeAllocated, Family, ReturnsNullOnFailure); 1775 } 1776 1777 /// Checks if the previous call to free on the given symbol failed - if free 1778 /// failed, returns true. Also, returns the corresponding return value symbol. 1779 static bool didPreviousFreeFail(ProgramStateRef State, 1780 SymbolRef Sym, SymbolRef &RetStatusSymbol) { 1781 const SymbolRef *Ret = State->get<FreeReturnValue>(Sym); 1782 if (Ret) { 1783 assert(*Ret && "We should not store the null return symbol"); 1784 ConstraintManager &CMgr = State->getConstraintManager(); 1785 ConditionTruthVal FreeFailed = CMgr.isNull(State, *Ret); 1786 RetStatusSymbol = *Ret; 1787 return FreeFailed.isConstrainedTrue(); 1788 } 1789 return false; 1790 } 1791 1792 static bool printMemFnName(raw_ostream &os, CheckerContext &C, const Expr *E) { 1793 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { 1794 // FIXME: This doesn't handle indirect calls. 1795 const FunctionDecl *FD = CE->getDirectCallee(); 1796 if (!FD) 1797 return false; 1798 1799 os << *FD; 1800 if (!FD->isOverloadedOperator()) 1801 os << "()"; 1802 return true; 1803 } 1804 1805 if (const ObjCMessageExpr *Msg = dyn_cast<ObjCMessageExpr>(E)) { 1806 if (Msg->isInstanceMessage()) 1807 os << "-"; 1808 else 1809 os << "+"; 1810 Msg->getSelector().print(os); 1811 return true; 1812 } 1813 1814 if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) { 1815 os << "'" 1816 << getOperatorSpelling(NE->getOperatorNew()->getOverloadedOperator()) 1817 << "'"; 1818 return true; 1819 } 1820 1821 if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(E)) { 1822 os << "'" 1823 << getOperatorSpelling(DE->getOperatorDelete()->getOverloadedOperator()) 1824 << "'"; 1825 return true; 1826 } 1827 1828 return false; 1829 } 1830 1831 static void printExpectedAllocName(raw_ostream &os, AllocationFamily Family) { 1832 1833 switch(Family) { 1834 case AF_Malloc: os << "malloc()"; return; 1835 case AF_CXXNew: os << "'new'"; return; 1836 case AF_CXXNewArray: os << "'new[]'"; return; 1837 case AF_IfNameIndex: os << "'if_nameindex()'"; return; 1838 case AF_InnerBuffer: os << "container-specific allocator"; return; 1839 case AF_Alloca: 1840 case AF_None: llvm_unreachable("not a deallocation expression"); 1841 } 1842 } 1843 1844 static void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family) { 1845 switch(Family) { 1846 case AF_Malloc: os << "free()"; return; 1847 case AF_CXXNew: os << "'delete'"; return; 1848 case AF_CXXNewArray: os << "'delete[]'"; return; 1849 case AF_IfNameIndex: os << "'if_freenameindex()'"; return; 1850 case AF_InnerBuffer: os << "container-specific deallocator"; return; 1851 case AF_Alloca: 1852 case AF_None: llvm_unreachable("suspicious argument"); 1853 } 1854 } 1855 1856 ProgramStateRef MallocChecker::FreeMemAux( 1857 CheckerContext &C, const Expr *ArgExpr, const CallEvent &Call, 1858 ProgramStateRef State, bool Hold, bool &IsKnownToBeAllocated, 1859 AllocationFamily Family, bool ReturnsNullOnFailure) const { 1860 1861 if (!State) 1862 return nullptr; 1863 1864 SVal ArgVal = C.getSVal(ArgExpr); 1865 if (!ArgVal.getAs<DefinedOrUnknownSVal>()) 1866 return nullptr; 1867 DefinedOrUnknownSVal location = ArgVal.castAs<DefinedOrUnknownSVal>(); 1868 1869 // Check for null dereferences. 1870 if (!location.getAs<Loc>()) 1871 return nullptr; 1872 1873 // The explicit NULL case, no operation is performed. 1874 ProgramStateRef notNullState, nullState; 1875 std::tie(notNullState, nullState) = State->assume(location); 1876 if (nullState && !notNullState) 1877 return nullptr; 1878 1879 // Unknown values could easily be okay 1880 // Undefined values are handled elsewhere 1881 if (ArgVal.isUnknownOrUndef()) 1882 return nullptr; 1883 1884 const MemRegion *R = ArgVal.getAsRegion(); 1885 const Expr *ParentExpr = Call.getOriginExpr(); 1886 1887 // NOTE: We detected a bug, but the checker under whose name we would emit the 1888 // error could be disabled. Generally speaking, the MallocChecker family is an 1889 // integral part of the Static Analyzer, and disabling any part of it should 1890 // only be done under exceptional circumstances, such as frequent false 1891 // positives. If this is the case, we can reasonably believe that there are 1892 // serious faults in our understanding of the source code, and even if we 1893 // don't emit an warning, we should terminate further analysis with a sink 1894 // node. 1895 1896 // Nonlocs can't be freed, of course. 1897 // Non-region locations (labels and fixed addresses) also shouldn't be freed. 1898 if (!R) { 1899 // Exception: 1900 // If the macro ZERO_SIZE_PTR is defined, this could be a kernel source 1901 // code. In that case, the ZERO_SIZE_PTR defines a special value used for a 1902 // zero-sized memory block which is allowed to be freed, despite not being a 1903 // null pointer. 1904 if (Family != AF_Malloc || !isArgZERO_SIZE_PTR(State, C, ArgVal)) 1905 HandleNonHeapDealloc(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 1906 Family); 1907 return nullptr; 1908 } 1909 1910 R = R->StripCasts(); 1911 1912 // Blocks might show up as heap data, but should not be free()d 1913 if (isa<BlockDataRegion>(R)) { 1914 HandleNonHeapDealloc(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 1915 Family); 1916 return nullptr; 1917 } 1918 1919 const MemSpaceRegion *MS = R->getMemorySpace(); 1920 1921 // Parameters, locals, statics, globals, and memory returned by 1922 // __builtin_alloca() shouldn't be freed. 1923 if (!isa<UnknownSpaceRegion, HeapSpaceRegion>(MS)) { 1924 // FIXME: at the time this code was written, malloc() regions were 1925 // represented by conjured symbols, which are all in UnknownSpaceRegion. 1926 // This means that there isn't actually anything from HeapSpaceRegion 1927 // that should be freed, even though we allow it here. 1928 // Of course, free() can work on memory allocated outside the current 1929 // function, so UnknownSpaceRegion is always a possibility. 1930 // False negatives are better than false positives. 1931 1932 if (isa<AllocaRegion>(R)) 1933 HandleFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); 1934 else 1935 HandleNonHeapDealloc(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 1936 Family); 1937 1938 return nullptr; 1939 } 1940 1941 const SymbolicRegion *SrBase = dyn_cast<SymbolicRegion>(R->getBaseRegion()); 1942 // Various cases could lead to non-symbol values here. 1943 // For now, ignore them. 1944 if (!SrBase) 1945 return nullptr; 1946 1947 SymbolRef SymBase = SrBase->getSymbol(); 1948 const RefState *RsBase = State->get<RegionState>(SymBase); 1949 SymbolRef PreviousRetStatusSymbol = nullptr; 1950 1951 IsKnownToBeAllocated = 1952 RsBase && (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero()); 1953 1954 if (RsBase) { 1955 1956 // Memory returned by alloca() shouldn't be freed. 1957 if (RsBase->getAllocationFamily() == AF_Alloca) { 1958 HandleFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); 1959 return nullptr; 1960 } 1961 1962 // Check for double free first. 1963 if ((RsBase->isReleased() || RsBase->isRelinquished()) && 1964 !didPreviousFreeFail(State, SymBase, PreviousRetStatusSymbol)) { 1965 HandleDoubleFree(C, ParentExpr->getSourceRange(), RsBase->isReleased(), 1966 SymBase, PreviousRetStatusSymbol); 1967 return nullptr; 1968 1969 // If the pointer is allocated or escaped, but we are now trying to free it, 1970 // check that the call to free is proper. 1971 } else if (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero() || 1972 RsBase->isEscaped()) { 1973 1974 // Check if an expected deallocation function matches the real one. 1975 bool DeallocMatchesAlloc = RsBase->getAllocationFamily() == Family; 1976 if (!DeallocMatchesAlloc) { 1977 HandleMismatchedDealloc(C, ArgExpr->getSourceRange(), ParentExpr, 1978 RsBase, SymBase, Hold); 1979 return nullptr; 1980 } 1981 1982 // Check if the memory location being freed is the actual location 1983 // allocated, or an offset. 1984 RegionOffset Offset = R->getAsOffset(); 1985 if (Offset.isValid() && 1986 !Offset.hasSymbolicOffset() && 1987 Offset.getOffset() != 0) { 1988 const Expr *AllocExpr = cast<Expr>(RsBase->getStmt()); 1989 HandleOffsetFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 1990 Family, AllocExpr); 1991 return nullptr; 1992 } 1993 } 1994 } 1995 1996 if (SymBase->getType()->isFunctionPointerType()) { 1997 HandleFunctionPtrFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 1998 Family); 1999 return nullptr; 2000 } 2001 2002 // Clean out the info on previous call to free return info. 2003 State = State->remove<FreeReturnValue>(SymBase); 2004 2005 // Keep track of the return value. If it is NULL, we will know that free 2006 // failed. 2007 if (ReturnsNullOnFailure) { 2008 SVal RetVal = C.getSVal(ParentExpr); 2009 SymbolRef RetStatusSymbol = RetVal.getAsSymbol(); 2010 if (RetStatusSymbol) { 2011 C.getSymbolManager().addSymbolDependency(SymBase, RetStatusSymbol); 2012 State = State->set<FreeReturnValue>(SymBase, RetStatusSymbol); 2013 } 2014 } 2015 2016 // If we don't know anything about this symbol, a free on it may be totally 2017 // valid. If this is the case, lets assume that the allocation family of the 2018 // freeing function is the same as the symbols allocation family, and go with 2019 // that. 2020 assert(!RsBase || (RsBase && RsBase->getAllocationFamily() == Family)); 2021 2022 // Normal free. 2023 if (Hold) 2024 return State->set<RegionState>(SymBase, 2025 RefState::getRelinquished(Family, 2026 ParentExpr)); 2027 2028 return State->set<RegionState>(SymBase, 2029 RefState::getReleased(Family, ParentExpr)); 2030 } 2031 2032 Optional<MallocChecker::CheckKind> 2033 MallocChecker::getCheckIfTracked(AllocationFamily Family, 2034 bool IsALeakCheck) const { 2035 switch (Family) { 2036 case AF_Malloc: 2037 case AF_Alloca: 2038 case AF_IfNameIndex: { 2039 if (ChecksEnabled[CK_MallocChecker]) 2040 return CK_MallocChecker; 2041 return None; 2042 } 2043 case AF_CXXNew: 2044 case AF_CXXNewArray: { 2045 if (IsALeakCheck) { 2046 if (ChecksEnabled[CK_NewDeleteLeaksChecker]) 2047 return CK_NewDeleteLeaksChecker; 2048 } 2049 else { 2050 if (ChecksEnabled[CK_NewDeleteChecker]) 2051 return CK_NewDeleteChecker; 2052 } 2053 return None; 2054 } 2055 case AF_InnerBuffer: { 2056 if (ChecksEnabled[CK_InnerPointerChecker]) 2057 return CK_InnerPointerChecker; 2058 return None; 2059 } 2060 case AF_None: { 2061 llvm_unreachable("no family"); 2062 } 2063 } 2064 llvm_unreachable("unhandled family"); 2065 } 2066 2067 Optional<MallocChecker::CheckKind> 2068 MallocChecker::getCheckIfTracked(CheckerContext &C, SymbolRef Sym, 2069 bool IsALeakCheck) const { 2070 if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) 2071 return CK_MallocChecker; 2072 2073 const RefState *RS = C.getState()->get<RegionState>(Sym); 2074 assert(RS); 2075 return getCheckIfTracked(RS->getAllocationFamily(), IsALeakCheck); 2076 } 2077 2078 bool MallocChecker::SummarizeValue(raw_ostream &os, SVal V) { 2079 if (Optional<nonloc::ConcreteInt> IntVal = V.getAs<nonloc::ConcreteInt>()) 2080 os << "an integer (" << IntVal->getValue() << ")"; 2081 else if (Optional<loc::ConcreteInt> ConstAddr = V.getAs<loc::ConcreteInt>()) 2082 os << "a constant address (" << ConstAddr->getValue() << ")"; 2083 else if (Optional<loc::GotoLabel> Label = V.getAs<loc::GotoLabel>()) 2084 os << "the address of the label '" << Label->getLabel()->getName() << "'"; 2085 else 2086 return false; 2087 2088 return true; 2089 } 2090 2091 bool MallocChecker::SummarizeRegion(raw_ostream &os, 2092 const MemRegion *MR) { 2093 switch (MR->getKind()) { 2094 case MemRegion::FunctionCodeRegionKind: { 2095 const NamedDecl *FD = cast<FunctionCodeRegion>(MR)->getDecl(); 2096 if (FD) 2097 os << "the address of the function '" << *FD << '\''; 2098 else 2099 os << "the address of a function"; 2100 return true; 2101 } 2102 case MemRegion::BlockCodeRegionKind: 2103 os << "block text"; 2104 return true; 2105 case MemRegion::BlockDataRegionKind: 2106 // FIXME: where the block came from? 2107 os << "a block"; 2108 return true; 2109 default: { 2110 const MemSpaceRegion *MS = MR->getMemorySpace(); 2111 2112 if (isa<StackLocalsSpaceRegion>(MS)) { 2113 const VarRegion *VR = dyn_cast<VarRegion>(MR); 2114 const VarDecl *VD; 2115 if (VR) 2116 VD = VR->getDecl(); 2117 else 2118 VD = nullptr; 2119 2120 if (VD) 2121 os << "the address of the local variable '" << VD->getName() << "'"; 2122 else 2123 os << "the address of a local stack variable"; 2124 return true; 2125 } 2126 2127 if (isa<StackArgumentsSpaceRegion>(MS)) { 2128 const VarRegion *VR = dyn_cast<VarRegion>(MR); 2129 const VarDecl *VD; 2130 if (VR) 2131 VD = VR->getDecl(); 2132 else 2133 VD = nullptr; 2134 2135 if (VD) 2136 os << "the address of the parameter '" << VD->getName() << "'"; 2137 else 2138 os << "the address of a parameter"; 2139 return true; 2140 } 2141 2142 if (isa<GlobalsSpaceRegion>(MS)) { 2143 const VarRegion *VR = dyn_cast<VarRegion>(MR); 2144 const VarDecl *VD; 2145 if (VR) 2146 VD = VR->getDecl(); 2147 else 2148 VD = nullptr; 2149 2150 if (VD) { 2151 if (VD->isStaticLocal()) 2152 os << "the address of the static variable '" << VD->getName() << "'"; 2153 else 2154 os << "the address of the global variable '" << VD->getName() << "'"; 2155 } else 2156 os << "the address of a global variable"; 2157 return true; 2158 } 2159 2160 return false; 2161 } 2162 } 2163 } 2164 2165 void MallocChecker::HandleNonHeapDealloc(CheckerContext &C, SVal ArgVal, 2166 SourceRange Range, 2167 const Expr *DeallocExpr, 2168 AllocationFamily Family) const { 2169 2170 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) { 2171 C.addSink(); 2172 return; 2173 } 2174 2175 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 2176 if (!CheckKind.hasValue()) 2177 return; 2178 2179 if (ExplodedNode *N = C.generateErrorNode()) { 2180 if (!BT_BadFree[*CheckKind]) 2181 BT_BadFree[*CheckKind].reset(new BugType( 2182 CheckNames[*CheckKind], "Bad free", categories::MemoryError)); 2183 2184 SmallString<100> buf; 2185 llvm::raw_svector_ostream os(buf); 2186 2187 const MemRegion *MR = ArgVal.getAsRegion(); 2188 while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR)) 2189 MR = ER->getSuperRegion(); 2190 2191 os << "Argument to "; 2192 if (!printMemFnName(os, C, DeallocExpr)) 2193 os << "deallocator"; 2194 2195 os << " is "; 2196 bool Summarized = MR ? SummarizeRegion(os, MR) 2197 : SummarizeValue(os, ArgVal); 2198 if (Summarized) 2199 os << ", which is not memory allocated by "; 2200 else 2201 os << "not memory allocated by "; 2202 2203 printExpectedAllocName(os, Family); 2204 2205 auto R = std::make_unique<PathSensitiveBugReport>(*BT_BadFree[*CheckKind], 2206 os.str(), N); 2207 R->markInteresting(MR); 2208 R->addRange(Range); 2209 C.emitReport(std::move(R)); 2210 } 2211 } 2212 2213 void MallocChecker::HandleFreeAlloca(CheckerContext &C, SVal ArgVal, 2214 SourceRange Range) const { 2215 2216 Optional<MallocChecker::CheckKind> CheckKind; 2217 2218 if (ChecksEnabled[CK_MallocChecker]) 2219 CheckKind = CK_MallocChecker; 2220 else if (ChecksEnabled[CK_MismatchedDeallocatorChecker]) 2221 CheckKind = CK_MismatchedDeallocatorChecker; 2222 else { 2223 C.addSink(); 2224 return; 2225 } 2226 2227 if (ExplodedNode *N = C.generateErrorNode()) { 2228 if (!BT_FreeAlloca[*CheckKind]) 2229 BT_FreeAlloca[*CheckKind].reset(new BugType( 2230 CheckNames[*CheckKind], "Free alloca()", categories::MemoryError)); 2231 2232 auto R = std::make_unique<PathSensitiveBugReport>( 2233 *BT_FreeAlloca[*CheckKind], 2234 "Memory allocated by alloca() should not be deallocated", N); 2235 R->markInteresting(ArgVal.getAsRegion()); 2236 R->addRange(Range); 2237 C.emitReport(std::move(R)); 2238 } 2239 } 2240 2241 void MallocChecker::HandleMismatchedDealloc(CheckerContext &C, 2242 SourceRange Range, 2243 const Expr *DeallocExpr, 2244 const RefState *RS, SymbolRef Sym, 2245 bool OwnershipTransferred) const { 2246 2247 if (!ChecksEnabled[CK_MismatchedDeallocatorChecker]) { 2248 C.addSink(); 2249 return; 2250 } 2251 2252 if (ExplodedNode *N = C.generateErrorNode()) { 2253 if (!BT_MismatchedDealloc) 2254 BT_MismatchedDealloc.reset( 2255 new BugType(CheckNames[CK_MismatchedDeallocatorChecker], 2256 "Bad deallocator", categories::MemoryError)); 2257 2258 SmallString<100> buf; 2259 llvm::raw_svector_ostream os(buf); 2260 2261 const Expr *AllocExpr = cast<Expr>(RS->getStmt()); 2262 SmallString<20> AllocBuf; 2263 llvm::raw_svector_ostream AllocOs(AllocBuf); 2264 SmallString<20> DeallocBuf; 2265 llvm::raw_svector_ostream DeallocOs(DeallocBuf); 2266 2267 if (OwnershipTransferred) { 2268 if (printMemFnName(DeallocOs, C, DeallocExpr)) 2269 os << DeallocOs.str() << " cannot"; 2270 else 2271 os << "Cannot"; 2272 2273 os << " take ownership of memory"; 2274 2275 if (printMemFnName(AllocOs, C, AllocExpr)) 2276 os << " allocated by " << AllocOs.str(); 2277 } else { 2278 os << "Memory"; 2279 if (printMemFnName(AllocOs, C, AllocExpr)) 2280 os << " allocated by " << AllocOs.str(); 2281 2282 os << " should be deallocated by "; 2283 printExpectedDeallocName(os, RS->getAllocationFamily()); 2284 2285 if (printMemFnName(DeallocOs, C, DeallocExpr)) 2286 os << ", not " << DeallocOs.str(); 2287 } 2288 2289 auto R = std::make_unique<PathSensitiveBugReport>(*BT_MismatchedDealloc, 2290 os.str(), N); 2291 R->markInteresting(Sym); 2292 R->addRange(Range); 2293 R->addVisitor<MallocBugVisitor>(Sym); 2294 C.emitReport(std::move(R)); 2295 } 2296 } 2297 2298 void MallocChecker::HandleOffsetFree(CheckerContext &C, SVal ArgVal, 2299 SourceRange Range, const Expr *DeallocExpr, 2300 AllocationFamily Family, 2301 const Expr *AllocExpr) const { 2302 2303 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) { 2304 C.addSink(); 2305 return; 2306 } 2307 2308 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 2309 if (!CheckKind.hasValue()) 2310 return; 2311 2312 ExplodedNode *N = C.generateErrorNode(); 2313 if (!N) 2314 return; 2315 2316 if (!BT_OffsetFree[*CheckKind]) 2317 BT_OffsetFree[*CheckKind].reset(new BugType( 2318 CheckNames[*CheckKind], "Offset free", categories::MemoryError)); 2319 2320 SmallString<100> buf; 2321 llvm::raw_svector_ostream os(buf); 2322 SmallString<20> AllocNameBuf; 2323 llvm::raw_svector_ostream AllocNameOs(AllocNameBuf); 2324 2325 const MemRegion *MR = ArgVal.getAsRegion(); 2326 assert(MR && "Only MemRegion based symbols can have offset free errors"); 2327 2328 RegionOffset Offset = MR->getAsOffset(); 2329 assert((Offset.isValid() && 2330 !Offset.hasSymbolicOffset() && 2331 Offset.getOffset() != 0) && 2332 "Only symbols with a valid offset can have offset free errors"); 2333 2334 int offsetBytes = Offset.getOffset() / C.getASTContext().getCharWidth(); 2335 2336 os << "Argument to "; 2337 if (!printMemFnName(os, C, DeallocExpr)) 2338 os << "deallocator"; 2339 os << " is offset by " 2340 << offsetBytes 2341 << " " 2342 << ((abs(offsetBytes) > 1) ? "bytes" : "byte") 2343 << " from the start of "; 2344 if (AllocExpr && printMemFnName(AllocNameOs, C, AllocExpr)) 2345 os << "memory allocated by " << AllocNameOs.str(); 2346 else 2347 os << "allocated memory"; 2348 2349 auto R = std::make_unique<PathSensitiveBugReport>(*BT_OffsetFree[*CheckKind], 2350 os.str(), N); 2351 R->markInteresting(MR->getBaseRegion()); 2352 R->addRange(Range); 2353 C.emitReport(std::move(R)); 2354 } 2355 2356 void MallocChecker::HandleUseAfterFree(CheckerContext &C, SourceRange Range, 2357 SymbolRef Sym) const { 2358 2359 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker] && 2360 !ChecksEnabled[CK_InnerPointerChecker]) { 2361 C.addSink(); 2362 return; 2363 } 2364 2365 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2366 if (!CheckKind.hasValue()) 2367 return; 2368 2369 if (ExplodedNode *N = C.generateErrorNode()) { 2370 if (!BT_UseFree[*CheckKind]) 2371 BT_UseFree[*CheckKind].reset(new BugType( 2372 CheckNames[*CheckKind], "Use-after-free", categories::MemoryError)); 2373 2374 AllocationFamily AF = 2375 C.getState()->get<RegionState>(Sym)->getAllocationFamily(); 2376 2377 auto R = std::make_unique<PathSensitiveBugReport>( 2378 *BT_UseFree[*CheckKind], 2379 AF == AF_InnerBuffer 2380 ? "Inner pointer of container used after re/deallocation" 2381 : "Use of memory after it is freed", 2382 N); 2383 2384 R->markInteresting(Sym); 2385 R->addRange(Range); 2386 R->addVisitor<MallocBugVisitor>(Sym); 2387 2388 if (AF == AF_InnerBuffer) 2389 R->addVisitor(allocation_state::getInnerPointerBRVisitor(Sym)); 2390 2391 C.emitReport(std::move(R)); 2392 } 2393 } 2394 2395 void MallocChecker::HandleDoubleFree(CheckerContext &C, SourceRange Range, 2396 bool Released, SymbolRef Sym, 2397 SymbolRef PrevSym) const { 2398 2399 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) { 2400 C.addSink(); 2401 return; 2402 } 2403 2404 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2405 if (!CheckKind.hasValue()) 2406 return; 2407 2408 if (ExplodedNode *N = C.generateErrorNode()) { 2409 if (!BT_DoubleFree[*CheckKind]) 2410 BT_DoubleFree[*CheckKind].reset(new BugType( 2411 CheckNames[*CheckKind], "Double free", categories::MemoryError)); 2412 2413 auto R = std::make_unique<PathSensitiveBugReport>( 2414 *BT_DoubleFree[*CheckKind], 2415 (Released ? "Attempt to free released memory" 2416 : "Attempt to free non-owned memory"), 2417 N); 2418 R->addRange(Range); 2419 R->markInteresting(Sym); 2420 if (PrevSym) 2421 R->markInteresting(PrevSym); 2422 R->addVisitor<MallocBugVisitor>(Sym); 2423 C.emitReport(std::move(R)); 2424 } 2425 } 2426 2427 void MallocChecker::HandleDoubleDelete(CheckerContext &C, SymbolRef Sym) const { 2428 2429 if (!ChecksEnabled[CK_NewDeleteChecker]) { 2430 C.addSink(); 2431 return; 2432 } 2433 2434 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2435 if (!CheckKind.hasValue()) 2436 return; 2437 2438 if (ExplodedNode *N = C.generateErrorNode()) { 2439 if (!BT_DoubleDelete) 2440 BT_DoubleDelete.reset(new BugType(CheckNames[CK_NewDeleteChecker], 2441 "Double delete", 2442 categories::MemoryError)); 2443 2444 auto R = std::make_unique<PathSensitiveBugReport>( 2445 *BT_DoubleDelete, "Attempt to delete released memory", N); 2446 2447 R->markInteresting(Sym); 2448 R->addVisitor<MallocBugVisitor>(Sym); 2449 C.emitReport(std::move(R)); 2450 } 2451 } 2452 2453 void MallocChecker::HandleUseZeroAlloc(CheckerContext &C, SourceRange Range, 2454 SymbolRef Sym) const { 2455 2456 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) { 2457 C.addSink(); 2458 return; 2459 } 2460 2461 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2462 2463 if (!CheckKind.hasValue()) 2464 return; 2465 2466 if (ExplodedNode *N = C.generateErrorNode()) { 2467 if (!BT_UseZerroAllocated[*CheckKind]) 2468 BT_UseZerroAllocated[*CheckKind].reset( 2469 new BugType(CheckNames[*CheckKind], "Use of zero allocated", 2470 categories::MemoryError)); 2471 2472 auto R = std::make_unique<PathSensitiveBugReport>( 2473 *BT_UseZerroAllocated[*CheckKind], 2474 "Use of memory allocated with size zero", N); 2475 2476 R->addRange(Range); 2477 if (Sym) { 2478 R->markInteresting(Sym); 2479 R->addVisitor<MallocBugVisitor>(Sym); 2480 } 2481 C.emitReport(std::move(R)); 2482 } 2483 } 2484 2485 void MallocChecker::HandleFunctionPtrFree(CheckerContext &C, SVal ArgVal, 2486 SourceRange Range, 2487 const Expr *FreeExpr, 2488 AllocationFamily Family) const { 2489 if (!ChecksEnabled[CK_MallocChecker]) { 2490 C.addSink(); 2491 return; 2492 } 2493 2494 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 2495 if (!CheckKind.hasValue()) 2496 return; 2497 2498 if (ExplodedNode *N = C.generateErrorNode()) { 2499 if (!BT_BadFree[*CheckKind]) 2500 BT_BadFree[*CheckKind].reset(new BugType( 2501 CheckNames[*CheckKind], "Bad free", categories::MemoryError)); 2502 2503 SmallString<100> Buf; 2504 llvm::raw_svector_ostream Os(Buf); 2505 2506 const MemRegion *MR = ArgVal.getAsRegion(); 2507 while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR)) 2508 MR = ER->getSuperRegion(); 2509 2510 Os << "Argument to "; 2511 if (!printMemFnName(Os, C, FreeExpr)) 2512 Os << "deallocator"; 2513 2514 Os << " is a function pointer"; 2515 2516 auto R = std::make_unique<PathSensitiveBugReport>(*BT_BadFree[*CheckKind], 2517 Os.str(), N); 2518 R->markInteresting(MR); 2519 R->addRange(Range); 2520 C.emitReport(std::move(R)); 2521 } 2522 } 2523 2524 ProgramStateRef 2525 MallocChecker::ReallocMemAux(CheckerContext &C, const CallEvent &Call, 2526 bool ShouldFreeOnFail, ProgramStateRef State, 2527 AllocationFamily Family, bool SuffixWithN) const { 2528 if (!State) 2529 return nullptr; 2530 2531 const CallExpr *CE = cast<CallExpr>(Call.getOriginExpr()); 2532 2533 if (SuffixWithN && CE->getNumArgs() < 3) 2534 return nullptr; 2535 else if (CE->getNumArgs() < 2) 2536 return nullptr; 2537 2538 const Expr *arg0Expr = CE->getArg(0); 2539 SVal Arg0Val = C.getSVal(arg0Expr); 2540 if (!Arg0Val.getAs<DefinedOrUnknownSVal>()) 2541 return nullptr; 2542 DefinedOrUnknownSVal arg0Val = Arg0Val.castAs<DefinedOrUnknownSVal>(); 2543 2544 SValBuilder &svalBuilder = C.getSValBuilder(); 2545 2546 DefinedOrUnknownSVal PtrEQ = 2547 svalBuilder.evalEQ(State, arg0Val, svalBuilder.makeNull()); 2548 2549 // Get the size argument. 2550 const Expr *Arg1 = CE->getArg(1); 2551 2552 // Get the value of the size argument. 2553 SVal TotalSize = C.getSVal(Arg1); 2554 if (SuffixWithN) 2555 TotalSize = evalMulForBufferSize(C, Arg1, CE->getArg(2)); 2556 if (!TotalSize.getAs<DefinedOrUnknownSVal>()) 2557 return nullptr; 2558 2559 // Compare the size argument to 0. 2560 DefinedOrUnknownSVal SizeZero = 2561 svalBuilder.evalEQ(State, TotalSize.castAs<DefinedOrUnknownSVal>(), 2562 svalBuilder.makeIntValWithPtrWidth(0, false)); 2563 2564 ProgramStateRef StatePtrIsNull, StatePtrNotNull; 2565 std::tie(StatePtrIsNull, StatePtrNotNull) = State->assume(PtrEQ); 2566 ProgramStateRef StateSizeIsZero, StateSizeNotZero; 2567 std::tie(StateSizeIsZero, StateSizeNotZero) = State->assume(SizeZero); 2568 // We only assume exceptional states if they are definitely true; if the 2569 // state is under-constrained, assume regular realloc behavior. 2570 bool PrtIsNull = StatePtrIsNull && !StatePtrNotNull; 2571 bool SizeIsZero = StateSizeIsZero && !StateSizeNotZero; 2572 2573 // If the ptr is NULL and the size is not 0, the call is equivalent to 2574 // malloc(size). 2575 if (PrtIsNull && !SizeIsZero) { 2576 ProgramStateRef stateMalloc = MallocMemAux( 2577 C, Call, TotalSize, UndefinedVal(), StatePtrIsNull, Family); 2578 return stateMalloc; 2579 } 2580 2581 if (PrtIsNull && SizeIsZero) 2582 return State; 2583 2584 assert(!PrtIsNull); 2585 2586 bool IsKnownToBeAllocated = false; 2587 2588 // If the size is 0, free the memory. 2589 if (SizeIsZero) 2590 // The semantics of the return value are: 2591 // If size was equal to 0, either NULL or a pointer suitable to be passed 2592 // to free() is returned. We just free the input pointer and do not add 2593 // any constrains on the output pointer. 2594 if (ProgramStateRef stateFree = FreeMemAux( 2595 C, Call, StateSizeIsZero, 0, false, IsKnownToBeAllocated, Family)) 2596 return stateFree; 2597 2598 // Default behavior. 2599 if (ProgramStateRef stateFree = 2600 FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocated, Family)) { 2601 2602 ProgramStateRef stateRealloc = 2603 MallocMemAux(C, Call, TotalSize, UnknownVal(), stateFree, Family); 2604 if (!stateRealloc) 2605 return nullptr; 2606 2607 OwnershipAfterReallocKind Kind = OAR_ToBeFreedAfterFailure; 2608 if (ShouldFreeOnFail) 2609 Kind = OAR_FreeOnFailure; 2610 else if (!IsKnownToBeAllocated) 2611 Kind = OAR_DoNotTrackAfterFailure; 2612 2613 // Get the from and to pointer symbols as in toPtr = realloc(fromPtr, size). 2614 SymbolRef FromPtr = arg0Val.getLocSymbolInBase(); 2615 SVal RetVal = C.getSVal(CE); 2616 SymbolRef ToPtr = RetVal.getAsSymbol(); 2617 assert(FromPtr && ToPtr && 2618 "By this point, FreeMemAux and MallocMemAux should have checked " 2619 "whether the argument or the return value is symbolic!"); 2620 2621 // Record the info about the reallocated symbol so that we could properly 2622 // process failed reallocation. 2623 stateRealloc = stateRealloc->set<ReallocPairs>(ToPtr, 2624 ReallocPair(FromPtr, Kind)); 2625 // The reallocated symbol should stay alive for as long as the new symbol. 2626 C.getSymbolManager().addSymbolDependency(ToPtr, FromPtr); 2627 return stateRealloc; 2628 } 2629 return nullptr; 2630 } 2631 2632 ProgramStateRef MallocChecker::CallocMem(CheckerContext &C, 2633 const CallEvent &Call, 2634 ProgramStateRef State) { 2635 if (!State) 2636 return nullptr; 2637 2638 if (Call.getNumArgs() < 2) 2639 return nullptr; 2640 2641 SValBuilder &svalBuilder = C.getSValBuilder(); 2642 SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy); 2643 SVal TotalSize = 2644 evalMulForBufferSize(C, Call.getArgExpr(0), Call.getArgExpr(1)); 2645 2646 return MallocMemAux(C, Call, TotalSize, zeroVal, State, AF_Malloc); 2647 } 2648 2649 MallocChecker::LeakInfo MallocChecker::getAllocationSite(const ExplodedNode *N, 2650 SymbolRef Sym, 2651 CheckerContext &C) { 2652 const LocationContext *LeakContext = N->getLocationContext(); 2653 // Walk the ExplodedGraph backwards and find the first node that referred to 2654 // the tracked symbol. 2655 const ExplodedNode *AllocNode = N; 2656 const MemRegion *ReferenceRegion = nullptr; 2657 2658 while (N) { 2659 ProgramStateRef State = N->getState(); 2660 if (!State->get<RegionState>(Sym)) 2661 break; 2662 2663 // Find the most recent expression bound to the symbol in the current 2664 // context. 2665 if (!ReferenceRegion) { 2666 if (const MemRegion *MR = C.getLocationRegionIfPostStore(N)) { 2667 SVal Val = State->getSVal(MR); 2668 if (Val.getAsLocSymbol() == Sym) { 2669 const VarRegion *VR = MR->getBaseRegion()->getAs<VarRegion>(); 2670 // Do not show local variables belonging to a function other than 2671 // where the error is reported. 2672 if (!VR || (VR->getStackFrame() == LeakContext->getStackFrame())) 2673 ReferenceRegion = MR; 2674 } 2675 } 2676 } 2677 2678 // Allocation node, is the last node in the current or parent context in 2679 // which the symbol was tracked. 2680 const LocationContext *NContext = N->getLocationContext(); 2681 if (NContext == LeakContext || 2682 NContext->isParentOf(LeakContext)) 2683 AllocNode = N; 2684 N = N->pred_empty() ? nullptr : *(N->pred_begin()); 2685 } 2686 2687 return LeakInfo(AllocNode, ReferenceRegion); 2688 } 2689 2690 void MallocChecker::HandleLeak(SymbolRef Sym, ExplodedNode *N, 2691 CheckerContext &C) const { 2692 2693 if (!ChecksEnabled[CK_MallocChecker] && 2694 !ChecksEnabled[CK_NewDeleteLeaksChecker]) 2695 return; 2696 2697 const RefState *RS = C.getState()->get<RegionState>(Sym); 2698 assert(RS && "cannot leak an untracked symbol"); 2699 AllocationFamily Family = RS->getAllocationFamily(); 2700 2701 if (Family == AF_Alloca) 2702 return; 2703 2704 Optional<MallocChecker::CheckKind> 2705 CheckKind = getCheckIfTracked(Family, true); 2706 2707 if (!CheckKind.hasValue()) 2708 return; 2709 2710 assert(N); 2711 if (!BT_Leak[*CheckKind]) { 2712 // Leaks should not be reported if they are post-dominated by a sink: 2713 // (1) Sinks are higher importance bugs. 2714 // (2) NoReturnFunctionChecker uses sink nodes to represent paths ending 2715 // with __noreturn functions such as assert() or exit(). We choose not 2716 // to report leaks on such paths. 2717 BT_Leak[*CheckKind].reset(new BugType(CheckNames[*CheckKind], "Memory leak", 2718 categories::MemoryError, 2719 /*SuppressOnSink=*/true)); 2720 } 2721 2722 // Most bug reports are cached at the location where they occurred. 2723 // With leaks, we want to unique them by the location where they were 2724 // allocated, and only report a single path. 2725 PathDiagnosticLocation LocUsedForUniqueing; 2726 const ExplodedNode *AllocNode = nullptr; 2727 const MemRegion *Region = nullptr; 2728 std::tie(AllocNode, Region) = getAllocationSite(N, Sym, C); 2729 2730 const Stmt *AllocationStmt = AllocNode->getStmtForDiagnostics(); 2731 if (AllocationStmt) 2732 LocUsedForUniqueing = PathDiagnosticLocation::createBegin(AllocationStmt, 2733 C.getSourceManager(), 2734 AllocNode->getLocationContext()); 2735 2736 SmallString<200> buf; 2737 llvm::raw_svector_ostream os(buf); 2738 if (Region && Region->canPrintPretty()) { 2739 os << "Potential leak of memory pointed to by "; 2740 Region->printPretty(os); 2741 } else { 2742 os << "Potential memory leak"; 2743 } 2744 2745 auto R = std::make_unique<PathSensitiveBugReport>( 2746 *BT_Leak[*CheckKind], os.str(), N, LocUsedForUniqueing, 2747 AllocNode->getLocationContext()->getDecl()); 2748 R->markInteresting(Sym); 2749 R->addVisitor<MallocBugVisitor>(Sym, true); 2750 if (ShouldRegisterNoOwnershipChangeVisitor) 2751 R->addVisitor<NoOwnershipChangeVisitor>(Sym); 2752 C.emitReport(std::move(R)); 2753 } 2754 2755 void MallocChecker::checkDeadSymbols(SymbolReaper &SymReaper, 2756 CheckerContext &C) const 2757 { 2758 ProgramStateRef state = C.getState(); 2759 RegionStateTy OldRS = state->get<RegionState>(); 2760 RegionStateTy::Factory &F = state->get_context<RegionState>(); 2761 2762 RegionStateTy RS = OldRS; 2763 SmallVector<SymbolRef, 2> Errors; 2764 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 2765 if (SymReaper.isDead(I->first)) { 2766 if (I->second.isAllocated() || I->second.isAllocatedOfSizeZero()) 2767 Errors.push_back(I->first); 2768 // Remove the dead symbol from the map. 2769 RS = F.remove(RS, I->first); 2770 } 2771 } 2772 2773 if (RS == OldRS) { 2774 // We shouldn't have touched other maps yet. 2775 assert(state->get<ReallocPairs>() == 2776 C.getState()->get<ReallocPairs>()); 2777 assert(state->get<FreeReturnValue>() == 2778 C.getState()->get<FreeReturnValue>()); 2779 return; 2780 } 2781 2782 // Cleanup the Realloc Pairs Map. 2783 ReallocPairsTy RP = state->get<ReallocPairs>(); 2784 for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) { 2785 if (SymReaper.isDead(I->first) || 2786 SymReaper.isDead(I->second.ReallocatedSym)) { 2787 state = state->remove<ReallocPairs>(I->first); 2788 } 2789 } 2790 2791 // Cleanup the FreeReturnValue Map. 2792 FreeReturnValueTy FR = state->get<FreeReturnValue>(); 2793 for (FreeReturnValueTy::iterator I = FR.begin(), E = FR.end(); I != E; ++I) { 2794 if (SymReaper.isDead(I->first) || 2795 SymReaper.isDead(I->second)) { 2796 state = state->remove<FreeReturnValue>(I->first); 2797 } 2798 } 2799 2800 // Generate leak node. 2801 ExplodedNode *N = C.getPredecessor(); 2802 if (!Errors.empty()) { 2803 static CheckerProgramPointTag Tag("MallocChecker", "DeadSymbolsLeak"); 2804 N = C.generateNonFatalErrorNode(C.getState(), &Tag); 2805 if (N) { 2806 for (SmallVectorImpl<SymbolRef>::iterator 2807 I = Errors.begin(), E = Errors.end(); I != E; ++I) { 2808 HandleLeak(*I, N, C); 2809 } 2810 } 2811 } 2812 2813 C.addTransition(state->set<RegionState>(RS), N); 2814 } 2815 2816 void MallocChecker::checkPreCall(const CallEvent &Call, 2817 CheckerContext &C) const { 2818 2819 if (const auto *DC = dyn_cast<CXXDeallocatorCall>(&Call)) { 2820 const CXXDeleteExpr *DE = DC->getOriginExpr(); 2821 2822 if (!ChecksEnabled[CK_NewDeleteChecker]) 2823 if (SymbolRef Sym = C.getSVal(DE->getArgument()).getAsSymbol()) 2824 checkUseAfterFree(Sym, C, DE->getArgument()); 2825 2826 if (!isStandardNewDelete(DC->getDecl())) 2827 return; 2828 2829 ProgramStateRef State = C.getState(); 2830 bool IsKnownToBeAllocated; 2831 State = FreeMemAux(C, DE->getArgument(), Call, State, 2832 /*Hold*/ false, IsKnownToBeAllocated, 2833 (DE->isArrayForm() ? AF_CXXNewArray : AF_CXXNew)); 2834 2835 C.addTransition(State); 2836 return; 2837 } 2838 2839 if (const auto *DC = dyn_cast<CXXDestructorCall>(&Call)) { 2840 SymbolRef Sym = DC->getCXXThisVal().getAsSymbol(); 2841 if (!Sym || checkDoubleDelete(Sym, C)) 2842 return; 2843 } 2844 2845 // We will check for double free in the post visit. 2846 if (const AnyFunctionCall *FC = dyn_cast<AnyFunctionCall>(&Call)) { 2847 const FunctionDecl *FD = FC->getDecl(); 2848 if (!FD) 2849 return; 2850 2851 if (ChecksEnabled[CK_MallocChecker] && isFreeingCall(Call)) 2852 return; 2853 } 2854 2855 // Check if the callee of a method is deleted. 2856 if (const CXXInstanceCall *CC = dyn_cast<CXXInstanceCall>(&Call)) { 2857 SymbolRef Sym = CC->getCXXThisVal().getAsSymbol(); 2858 if (!Sym || checkUseAfterFree(Sym, C, CC->getCXXThisExpr())) 2859 return; 2860 } 2861 2862 // Check arguments for being used after free. 2863 for (unsigned I = 0, E = Call.getNumArgs(); I != E; ++I) { 2864 SVal ArgSVal = Call.getArgSVal(I); 2865 if (ArgSVal.getAs<Loc>()) { 2866 SymbolRef Sym = ArgSVal.getAsSymbol(); 2867 if (!Sym) 2868 continue; 2869 if (checkUseAfterFree(Sym, C, Call.getArgExpr(I))) 2870 return; 2871 } 2872 } 2873 } 2874 2875 void MallocChecker::checkPreStmt(const ReturnStmt *S, 2876 CheckerContext &C) const { 2877 checkEscapeOnReturn(S, C); 2878 } 2879 2880 // In the CFG, automatic destructors come after the return statement. 2881 // This callback checks for returning memory that is freed by automatic 2882 // destructors, as those cannot be reached in checkPreStmt(). 2883 void MallocChecker::checkEndFunction(const ReturnStmt *S, 2884 CheckerContext &C) const { 2885 checkEscapeOnReturn(S, C); 2886 } 2887 2888 void MallocChecker::checkEscapeOnReturn(const ReturnStmt *S, 2889 CheckerContext &C) const { 2890 if (!S) 2891 return; 2892 2893 const Expr *E = S->getRetValue(); 2894 if (!E) 2895 return; 2896 2897 // Check if we are returning a symbol. 2898 ProgramStateRef State = C.getState(); 2899 SVal RetVal = C.getSVal(E); 2900 SymbolRef Sym = RetVal.getAsSymbol(); 2901 if (!Sym) 2902 // If we are returning a field of the allocated struct or an array element, 2903 // the callee could still free the memory. 2904 // TODO: This logic should be a part of generic symbol escape callback. 2905 if (const MemRegion *MR = RetVal.getAsRegion()) 2906 if (isa<FieldRegion, ElementRegion>(MR)) 2907 if (const SymbolicRegion *BMR = 2908 dyn_cast<SymbolicRegion>(MR->getBaseRegion())) 2909 Sym = BMR->getSymbol(); 2910 2911 // Check if we are returning freed memory. 2912 if (Sym) 2913 checkUseAfterFree(Sym, C, E); 2914 } 2915 2916 // TODO: Blocks should be either inlined or should call invalidate regions 2917 // upon invocation. After that's in place, special casing here will not be 2918 // needed. 2919 void MallocChecker::checkPostStmt(const BlockExpr *BE, 2920 CheckerContext &C) const { 2921 2922 // Scan the BlockDecRefExprs for any object the retain count checker 2923 // may be tracking. 2924 if (!BE->getBlockDecl()->hasCaptures()) 2925 return; 2926 2927 ProgramStateRef state = C.getState(); 2928 const BlockDataRegion *R = 2929 cast<BlockDataRegion>(C.getSVal(BE).getAsRegion()); 2930 2931 BlockDataRegion::referenced_vars_iterator I = R->referenced_vars_begin(), 2932 E = R->referenced_vars_end(); 2933 2934 if (I == E) 2935 return; 2936 2937 SmallVector<const MemRegion*, 10> Regions; 2938 const LocationContext *LC = C.getLocationContext(); 2939 MemRegionManager &MemMgr = C.getSValBuilder().getRegionManager(); 2940 2941 for ( ; I != E; ++I) { 2942 const VarRegion *VR = I.getCapturedRegion(); 2943 if (VR->getSuperRegion() == R) { 2944 VR = MemMgr.getVarRegion(VR->getDecl(), LC); 2945 } 2946 Regions.push_back(VR); 2947 } 2948 2949 state = 2950 state->scanReachableSymbols<StopTrackingCallback>(Regions).getState(); 2951 C.addTransition(state); 2952 } 2953 2954 static bool isReleased(SymbolRef Sym, CheckerContext &C) { 2955 assert(Sym); 2956 const RefState *RS = C.getState()->get<RegionState>(Sym); 2957 return (RS && RS->isReleased()); 2958 } 2959 2960 bool MallocChecker::suppressDeallocationsInSuspiciousContexts( 2961 const CallEvent &Call, CheckerContext &C) const { 2962 if (Call.getNumArgs() == 0) 2963 return false; 2964 2965 StringRef FunctionStr = ""; 2966 if (const auto *FD = dyn_cast<FunctionDecl>(C.getStackFrame()->getDecl())) 2967 if (const Stmt *Body = FD->getBody()) 2968 if (Body->getBeginLoc().isValid()) 2969 FunctionStr = 2970 Lexer::getSourceText(CharSourceRange::getTokenRange( 2971 {FD->getBeginLoc(), Body->getBeginLoc()}), 2972 C.getSourceManager(), C.getLangOpts()); 2973 2974 // We do not model the Integer Set Library's retain-count based allocation. 2975 if (!FunctionStr.contains("__isl_")) 2976 return false; 2977 2978 ProgramStateRef State = C.getState(); 2979 2980 for (const Expr *Arg : cast<CallExpr>(Call.getOriginExpr())->arguments()) 2981 if (SymbolRef Sym = C.getSVal(Arg).getAsSymbol()) 2982 if (const RefState *RS = State->get<RegionState>(Sym)) 2983 State = State->set<RegionState>(Sym, RefState::getEscaped(RS)); 2984 2985 C.addTransition(State); 2986 return true; 2987 } 2988 2989 bool MallocChecker::checkUseAfterFree(SymbolRef Sym, CheckerContext &C, 2990 const Stmt *S) const { 2991 2992 if (isReleased(Sym, C)) { 2993 HandleUseAfterFree(C, S->getSourceRange(), Sym); 2994 return true; 2995 } 2996 2997 return false; 2998 } 2999 3000 void MallocChecker::checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, 3001 const Stmt *S) const { 3002 assert(Sym); 3003 3004 if (const RefState *RS = C.getState()->get<RegionState>(Sym)) { 3005 if (RS->isAllocatedOfSizeZero()) 3006 HandleUseZeroAlloc(C, RS->getStmt()->getSourceRange(), Sym); 3007 } 3008 else if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) { 3009 HandleUseZeroAlloc(C, S->getSourceRange(), Sym); 3010 } 3011 } 3012 3013 bool MallocChecker::checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const { 3014 3015 if (isReleased(Sym, C)) { 3016 HandleDoubleDelete(C, Sym); 3017 return true; 3018 } 3019 return false; 3020 } 3021 3022 // Check if the location is a freed symbolic region. 3023 void MallocChecker::checkLocation(SVal l, bool isLoad, const Stmt *S, 3024 CheckerContext &C) const { 3025 SymbolRef Sym = l.getLocSymbolInBase(); 3026 if (Sym) { 3027 checkUseAfterFree(Sym, C, S); 3028 checkUseZeroAllocated(Sym, C, S); 3029 } 3030 } 3031 3032 // If a symbolic region is assumed to NULL (or another constant), stop tracking 3033 // it - assuming that allocation failed on this path. 3034 ProgramStateRef MallocChecker::evalAssume(ProgramStateRef state, 3035 SVal Cond, 3036 bool Assumption) const { 3037 RegionStateTy RS = state->get<RegionState>(); 3038 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 3039 // If the symbol is assumed to be NULL, remove it from consideration. 3040 ConstraintManager &CMgr = state->getConstraintManager(); 3041 ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey()); 3042 if (AllocFailed.isConstrainedTrue()) 3043 state = state->remove<RegionState>(I.getKey()); 3044 } 3045 3046 // Realloc returns 0 when reallocation fails, which means that we should 3047 // restore the state of the pointer being reallocated. 3048 ReallocPairsTy RP = state->get<ReallocPairs>(); 3049 for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) { 3050 // If the symbol is assumed to be NULL, remove it from consideration. 3051 ConstraintManager &CMgr = state->getConstraintManager(); 3052 ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey()); 3053 if (!AllocFailed.isConstrainedTrue()) 3054 continue; 3055 3056 SymbolRef ReallocSym = I.getData().ReallocatedSym; 3057 if (const RefState *RS = state->get<RegionState>(ReallocSym)) { 3058 if (RS->isReleased()) { 3059 switch (I.getData().Kind) { 3060 case OAR_ToBeFreedAfterFailure: 3061 state = state->set<RegionState>(ReallocSym, 3062 RefState::getAllocated(RS->getAllocationFamily(), RS->getStmt())); 3063 break; 3064 case OAR_DoNotTrackAfterFailure: 3065 state = state->remove<RegionState>(ReallocSym); 3066 break; 3067 default: 3068 assert(I.getData().Kind == OAR_FreeOnFailure); 3069 } 3070 } 3071 } 3072 state = state->remove<ReallocPairs>(I.getKey()); 3073 } 3074 3075 return state; 3076 } 3077 3078 bool MallocChecker::mayFreeAnyEscapedMemoryOrIsModeledExplicitly( 3079 const CallEvent *Call, 3080 ProgramStateRef State, 3081 SymbolRef &EscapingSymbol) const { 3082 assert(Call); 3083 EscapingSymbol = nullptr; 3084 3085 // For now, assume that any C++ or block call can free memory. 3086 // TODO: If we want to be more optimistic here, we'll need to make sure that 3087 // regions escape to C++ containers. They seem to do that even now, but for 3088 // mysterious reasons. 3089 if (!isa<SimpleFunctionCall, ObjCMethodCall>(Call)) 3090 return true; 3091 3092 // Check Objective-C messages by selector name. 3093 if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Call)) { 3094 // If it's not a framework call, or if it takes a callback, assume it 3095 // can free memory. 3096 if (!Call->isInSystemHeader() || Call->argumentsMayEscape()) 3097 return true; 3098 3099 // If it's a method we know about, handle it explicitly post-call. 3100 // This should happen before the "freeWhenDone" check below. 3101 if (isKnownDeallocObjCMethodName(*Msg)) 3102 return false; 3103 3104 // If there's a "freeWhenDone" parameter, but the method isn't one we know 3105 // about, we can't be sure that the object will use free() to deallocate the 3106 // memory, so we can't model it explicitly. The best we can do is use it to 3107 // decide whether the pointer escapes. 3108 if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(*Msg)) 3109 return *FreeWhenDone; 3110 3111 // If the first selector piece ends with "NoCopy", and there is no 3112 // "freeWhenDone" parameter set to zero, we know ownership is being 3113 // transferred. Again, though, we can't be sure that the object will use 3114 // free() to deallocate the memory, so we can't model it explicitly. 3115 StringRef FirstSlot = Msg->getSelector().getNameForSlot(0); 3116 if (FirstSlot.endswith("NoCopy")) 3117 return true; 3118 3119 // If the first selector starts with addPointer, insertPointer, 3120 // or replacePointer, assume we are dealing with NSPointerArray or similar. 3121 // This is similar to C++ containers (vector); we still might want to check 3122 // that the pointers get freed by following the container itself. 3123 if (FirstSlot.startswith("addPointer") || 3124 FirstSlot.startswith("insertPointer") || 3125 FirstSlot.startswith("replacePointer") || 3126 FirstSlot.equals("valueWithPointer")) { 3127 return true; 3128 } 3129 3130 // We should escape receiver on call to 'init'. This is especially relevant 3131 // to the receiver, as the corresponding symbol is usually not referenced 3132 // after the call. 3133 if (Msg->getMethodFamily() == OMF_init) { 3134 EscapingSymbol = Msg->getReceiverSVal().getAsSymbol(); 3135 return true; 3136 } 3137 3138 // Otherwise, assume that the method does not free memory. 3139 // Most framework methods do not free memory. 3140 return false; 3141 } 3142 3143 // At this point the only thing left to handle is straight function calls. 3144 const FunctionDecl *FD = cast<SimpleFunctionCall>(Call)->getDecl(); 3145 if (!FD) 3146 return true; 3147 3148 // If it's one of the allocation functions we can reason about, we model 3149 // its behavior explicitly. 3150 if (isMemCall(*Call)) 3151 return false; 3152 3153 // If it's not a system call, assume it frees memory. 3154 if (!Call->isInSystemHeader()) 3155 return true; 3156 3157 // White list the system functions whose arguments escape. 3158 const IdentifierInfo *II = FD->getIdentifier(); 3159 if (!II) 3160 return true; 3161 StringRef FName = II->getName(); 3162 3163 // White list the 'XXXNoCopy' CoreFoundation functions. 3164 // We specifically check these before 3165 if (FName.endswith("NoCopy")) { 3166 // Look for the deallocator argument. We know that the memory ownership 3167 // is not transferred only if the deallocator argument is 3168 // 'kCFAllocatorNull'. 3169 for (unsigned i = 1; i < Call->getNumArgs(); ++i) { 3170 const Expr *ArgE = Call->getArgExpr(i)->IgnoreParenCasts(); 3171 if (const DeclRefExpr *DE = dyn_cast<DeclRefExpr>(ArgE)) { 3172 StringRef DeallocatorName = DE->getFoundDecl()->getName(); 3173 if (DeallocatorName == "kCFAllocatorNull") 3174 return false; 3175 } 3176 } 3177 return true; 3178 } 3179 3180 // Associating streams with malloced buffers. The pointer can escape if 3181 // 'closefn' is specified (and if that function does free memory), 3182 // but it will not if closefn is not specified. 3183 // Currently, we do not inspect the 'closefn' function (PR12101). 3184 if (FName == "funopen") 3185 if (Call->getNumArgs() >= 4 && Call->getArgSVal(4).isConstant(0)) 3186 return false; 3187 3188 // Do not warn on pointers passed to 'setbuf' when used with std streams, 3189 // these leaks might be intentional when setting the buffer for stdio. 3190 // http://stackoverflow.com/questions/2671151/who-frees-setvbuf-buffer 3191 if (FName == "setbuf" || FName =="setbuffer" || 3192 FName == "setlinebuf" || FName == "setvbuf") { 3193 if (Call->getNumArgs() >= 1) { 3194 const Expr *ArgE = Call->getArgExpr(0)->IgnoreParenCasts(); 3195 if (const DeclRefExpr *ArgDRE = dyn_cast<DeclRefExpr>(ArgE)) 3196 if (const VarDecl *D = dyn_cast<VarDecl>(ArgDRE->getDecl())) 3197 if (D->getCanonicalDecl()->getName().contains("std")) 3198 return true; 3199 } 3200 } 3201 3202 // A bunch of other functions which either take ownership of a pointer or 3203 // wrap the result up in a struct or object, meaning it can be freed later. 3204 // (See RetainCountChecker.) Not all the parameters here are invalidated, 3205 // but the Malloc checker cannot differentiate between them. The right way 3206 // of doing this would be to implement a pointer escapes callback. 3207 if (FName == "CGBitmapContextCreate" || 3208 FName == "CGBitmapContextCreateWithData" || 3209 FName == "CVPixelBufferCreateWithBytes" || 3210 FName == "CVPixelBufferCreateWithPlanarBytes" || 3211 FName == "OSAtomicEnqueue") { 3212 return true; 3213 } 3214 3215 if (FName == "postEvent" && 3216 FD->getQualifiedNameAsString() == "QCoreApplication::postEvent") { 3217 return true; 3218 } 3219 3220 if (FName == "connectImpl" && 3221 FD->getQualifiedNameAsString() == "QObject::connectImpl") { 3222 return true; 3223 } 3224 3225 // Handle cases where we know a buffer's /address/ can escape. 3226 // Note that the above checks handle some special cases where we know that 3227 // even though the address escapes, it's still our responsibility to free the 3228 // buffer. 3229 if (Call->argumentsMayEscape()) 3230 return true; 3231 3232 // Otherwise, assume that the function does not free memory. 3233 // Most system calls do not free the memory. 3234 return false; 3235 } 3236 3237 ProgramStateRef MallocChecker::checkPointerEscape(ProgramStateRef State, 3238 const InvalidatedSymbols &Escaped, 3239 const CallEvent *Call, 3240 PointerEscapeKind Kind) const { 3241 return checkPointerEscapeAux(State, Escaped, Call, Kind, 3242 /*IsConstPointerEscape*/ false); 3243 } 3244 3245 ProgramStateRef MallocChecker::checkConstPointerEscape(ProgramStateRef State, 3246 const InvalidatedSymbols &Escaped, 3247 const CallEvent *Call, 3248 PointerEscapeKind Kind) const { 3249 // If a const pointer escapes, it may not be freed(), but it could be deleted. 3250 return checkPointerEscapeAux(State, Escaped, Call, Kind, 3251 /*IsConstPointerEscape*/ true); 3252 } 3253 3254 static bool checkIfNewOrNewArrayFamily(const RefState *RS) { 3255 return (RS->getAllocationFamily() == AF_CXXNewArray || 3256 RS->getAllocationFamily() == AF_CXXNew); 3257 } 3258 3259 ProgramStateRef MallocChecker::checkPointerEscapeAux( 3260 ProgramStateRef State, const InvalidatedSymbols &Escaped, 3261 const CallEvent *Call, PointerEscapeKind Kind, 3262 bool IsConstPointerEscape) const { 3263 // If we know that the call does not free memory, or we want to process the 3264 // call later, keep tracking the top level arguments. 3265 SymbolRef EscapingSymbol = nullptr; 3266 if (Kind == PSK_DirectEscapeOnCall && 3267 !mayFreeAnyEscapedMemoryOrIsModeledExplicitly(Call, State, 3268 EscapingSymbol) && 3269 !EscapingSymbol) { 3270 return State; 3271 } 3272 3273 for (InvalidatedSymbols::const_iterator I = Escaped.begin(), 3274 E = Escaped.end(); 3275 I != E; ++I) { 3276 SymbolRef sym = *I; 3277 3278 if (EscapingSymbol && EscapingSymbol != sym) 3279 continue; 3280 3281 if (const RefState *RS = State->get<RegionState>(sym)) 3282 if (RS->isAllocated() || RS->isAllocatedOfSizeZero()) 3283 if (!IsConstPointerEscape || checkIfNewOrNewArrayFamily(RS)) 3284 State = State->set<RegionState>(sym, RefState::getEscaped(RS)); 3285 } 3286 return State; 3287 } 3288 3289 bool MallocChecker::isArgZERO_SIZE_PTR(ProgramStateRef State, CheckerContext &C, 3290 SVal ArgVal) const { 3291 if (!KernelZeroSizePtrValue) 3292 KernelZeroSizePtrValue = 3293 tryExpandAsInteger("ZERO_SIZE_PTR", C.getPreprocessor()); 3294 3295 const llvm::APSInt *ArgValKnown = 3296 C.getSValBuilder().getKnownValue(State, ArgVal); 3297 return ArgValKnown && *KernelZeroSizePtrValue && 3298 ArgValKnown->getSExtValue() == **KernelZeroSizePtrValue; 3299 } 3300 3301 static SymbolRef findFailedReallocSymbol(ProgramStateRef currState, 3302 ProgramStateRef prevState) { 3303 ReallocPairsTy currMap = currState->get<ReallocPairs>(); 3304 ReallocPairsTy prevMap = prevState->get<ReallocPairs>(); 3305 3306 for (const ReallocPairsTy::value_type &Pair : prevMap) { 3307 SymbolRef sym = Pair.first; 3308 if (!currMap.lookup(sym)) 3309 return sym; 3310 } 3311 3312 return nullptr; 3313 } 3314 3315 static bool isReferenceCountingPointerDestructor(const CXXDestructorDecl *DD) { 3316 if (const IdentifierInfo *II = DD->getParent()->getIdentifier()) { 3317 StringRef N = II->getName(); 3318 if (N.contains_insensitive("ptr") || N.contains_insensitive("pointer")) { 3319 if (N.contains_insensitive("ref") || N.contains_insensitive("cnt") || 3320 N.contains_insensitive("intrusive") || 3321 N.contains_insensitive("shared")) { 3322 return true; 3323 } 3324 } 3325 } 3326 return false; 3327 } 3328 3329 PathDiagnosticPieceRef MallocBugVisitor::VisitNode(const ExplodedNode *N, 3330 BugReporterContext &BRC, 3331 PathSensitiveBugReport &BR) { 3332 ProgramStateRef state = N->getState(); 3333 ProgramStateRef statePrev = N->getFirstPred()->getState(); 3334 3335 const RefState *RSCurr = state->get<RegionState>(Sym); 3336 const RefState *RSPrev = statePrev->get<RegionState>(Sym); 3337 3338 const Stmt *S = N->getStmtForDiagnostics(); 3339 // When dealing with containers, we sometimes want to give a note 3340 // even if the statement is missing. 3341 if (!S && (!RSCurr || RSCurr->getAllocationFamily() != AF_InnerBuffer)) 3342 return nullptr; 3343 3344 const LocationContext *CurrentLC = N->getLocationContext(); 3345 3346 // If we find an atomic fetch_add or fetch_sub within the destructor in which 3347 // the pointer was released (before the release), this is likely a destructor 3348 // of a shared pointer. 3349 // Because we don't model atomics, and also because we don't know that the 3350 // original reference count is positive, we should not report use-after-frees 3351 // on objects deleted in such destructors. This can probably be improved 3352 // through better shared pointer modeling. 3353 if (ReleaseDestructorLC) { 3354 if (const auto *AE = dyn_cast<AtomicExpr>(S)) { 3355 AtomicExpr::AtomicOp Op = AE->getOp(); 3356 if (Op == AtomicExpr::AO__c11_atomic_fetch_add || 3357 Op == AtomicExpr::AO__c11_atomic_fetch_sub) { 3358 if (ReleaseDestructorLC == CurrentLC || 3359 ReleaseDestructorLC->isParentOf(CurrentLC)) { 3360 BR.markInvalid(getTag(), S); 3361 } 3362 } 3363 } 3364 } 3365 3366 // FIXME: We will eventually need to handle non-statement-based events 3367 // (__attribute__((cleanup))). 3368 3369 // Find out if this is an interesting point and what is the kind. 3370 StringRef Msg; 3371 std::unique_ptr<StackHintGeneratorForSymbol> StackHint = nullptr; 3372 SmallString<256> Buf; 3373 llvm::raw_svector_ostream OS(Buf); 3374 3375 if (Mode == Normal) { 3376 if (isAllocated(RSCurr, RSPrev, S)) { 3377 Msg = "Memory is allocated"; 3378 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3379 Sym, "Returned allocated memory"); 3380 } else if (isReleased(RSCurr, RSPrev, S)) { 3381 const auto Family = RSCurr->getAllocationFamily(); 3382 switch (Family) { 3383 case AF_Alloca: 3384 case AF_Malloc: 3385 case AF_CXXNew: 3386 case AF_CXXNewArray: 3387 case AF_IfNameIndex: 3388 Msg = "Memory is released"; 3389 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3390 Sym, "Returning; memory was released"); 3391 break; 3392 case AF_InnerBuffer: { 3393 const MemRegion *ObjRegion = 3394 allocation_state::getContainerObjRegion(statePrev, Sym); 3395 const auto *TypedRegion = cast<TypedValueRegion>(ObjRegion); 3396 QualType ObjTy = TypedRegion->getValueType(); 3397 OS << "Inner buffer of '" << ObjTy.getAsString() << "' "; 3398 3399 if (N->getLocation().getKind() == ProgramPoint::PostImplicitCallKind) { 3400 OS << "deallocated by call to destructor"; 3401 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3402 Sym, "Returning; inner buffer was deallocated"); 3403 } else { 3404 OS << "reallocated by call to '"; 3405 const Stmt *S = RSCurr->getStmt(); 3406 if (const auto *MemCallE = dyn_cast<CXXMemberCallExpr>(S)) { 3407 OS << MemCallE->getMethodDecl()->getDeclName(); 3408 } else if (const auto *OpCallE = dyn_cast<CXXOperatorCallExpr>(S)) { 3409 OS << OpCallE->getDirectCallee()->getDeclName(); 3410 } else if (const auto *CallE = dyn_cast<CallExpr>(S)) { 3411 auto &CEMgr = BRC.getStateManager().getCallEventManager(); 3412 CallEventRef<> Call = CEMgr.getSimpleCall(CallE, state, CurrentLC); 3413 if (const auto *D = dyn_cast_or_null<NamedDecl>(Call->getDecl())) 3414 OS << D->getDeclName(); 3415 else 3416 OS << "unknown"; 3417 } 3418 OS << "'"; 3419 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3420 Sym, "Returning; inner buffer was reallocated"); 3421 } 3422 Msg = OS.str(); 3423 break; 3424 } 3425 case AF_None: 3426 llvm_unreachable("Unhandled allocation family!"); 3427 } 3428 3429 // See if we're releasing memory while inlining a destructor 3430 // (or one of its callees). This turns on various common 3431 // false positive suppressions. 3432 bool FoundAnyDestructor = false; 3433 for (const LocationContext *LC = CurrentLC; LC; LC = LC->getParent()) { 3434 if (const auto *DD = dyn_cast<CXXDestructorDecl>(LC->getDecl())) { 3435 if (isReferenceCountingPointerDestructor(DD)) { 3436 // This immediately looks like a reference-counting destructor. 3437 // We're bad at guessing the original reference count of the object, 3438 // so suppress the report for now. 3439 BR.markInvalid(getTag(), DD); 3440 } else if (!FoundAnyDestructor) { 3441 assert(!ReleaseDestructorLC && 3442 "There can be only one release point!"); 3443 // Suspect that it's a reference counting pointer destructor. 3444 // On one of the next nodes might find out that it has atomic 3445 // reference counting operations within it (see the code above), 3446 // and if so, we'd conclude that it likely is a reference counting 3447 // pointer destructor. 3448 ReleaseDestructorLC = LC->getStackFrame(); 3449 // It is unlikely that releasing memory is delegated to a destructor 3450 // inside a destructor of a shared pointer, because it's fairly hard 3451 // to pass the information that the pointer indeed needs to be 3452 // released into it. So we're only interested in the innermost 3453 // destructor. 3454 FoundAnyDestructor = true; 3455 } 3456 } 3457 } 3458 } else if (isRelinquished(RSCurr, RSPrev, S)) { 3459 Msg = "Memory ownership is transferred"; 3460 StackHint = std::make_unique<StackHintGeneratorForSymbol>(Sym, ""); 3461 } else if (hasReallocFailed(RSCurr, RSPrev, S)) { 3462 Mode = ReallocationFailed; 3463 Msg = "Reallocation failed"; 3464 StackHint = std::make_unique<StackHintGeneratorForReallocationFailed>( 3465 Sym, "Reallocation failed"); 3466 3467 if (SymbolRef sym = findFailedReallocSymbol(state, statePrev)) { 3468 // Is it possible to fail two reallocs WITHOUT testing in between? 3469 assert((!FailedReallocSymbol || FailedReallocSymbol == sym) && 3470 "We only support one failed realloc at a time."); 3471 BR.markInteresting(sym); 3472 FailedReallocSymbol = sym; 3473 } 3474 } 3475 3476 // We are in a special mode if a reallocation failed later in the path. 3477 } else if (Mode == ReallocationFailed) { 3478 assert(FailedReallocSymbol && "No symbol to look for."); 3479 3480 // Is this is the first appearance of the reallocated symbol? 3481 if (!statePrev->get<RegionState>(FailedReallocSymbol)) { 3482 // We're at the reallocation point. 3483 Msg = "Attempt to reallocate memory"; 3484 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3485 Sym, "Returned reallocated memory"); 3486 FailedReallocSymbol = nullptr; 3487 Mode = Normal; 3488 } 3489 } 3490 3491 if (Msg.empty()) { 3492 assert(!StackHint); 3493 return nullptr; 3494 } 3495 3496 assert(StackHint); 3497 3498 // Generate the extra diagnostic. 3499 PathDiagnosticLocation Pos; 3500 if (!S) { 3501 assert(RSCurr->getAllocationFamily() == AF_InnerBuffer); 3502 auto PostImplCall = N->getLocation().getAs<PostImplicitCall>(); 3503 if (!PostImplCall) 3504 return nullptr; 3505 Pos = PathDiagnosticLocation(PostImplCall->getLocation(), 3506 BRC.getSourceManager()); 3507 } else { 3508 Pos = PathDiagnosticLocation(S, BRC.getSourceManager(), 3509 N->getLocationContext()); 3510 } 3511 3512 auto P = std::make_shared<PathDiagnosticEventPiece>(Pos, Msg, true); 3513 BR.addCallStackHint(P, std::move(StackHint)); 3514 return P; 3515 } 3516 3517 void MallocChecker::printState(raw_ostream &Out, ProgramStateRef State, 3518 const char *NL, const char *Sep) const { 3519 3520 RegionStateTy RS = State->get<RegionState>(); 3521 3522 if (!RS.isEmpty()) { 3523 Out << Sep << "MallocChecker :" << NL; 3524 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 3525 const RefState *RefS = State->get<RegionState>(I.getKey()); 3526 AllocationFamily Family = RefS->getAllocationFamily(); 3527 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 3528 if (!CheckKind.hasValue()) 3529 CheckKind = getCheckIfTracked(Family, true); 3530 3531 I.getKey()->dumpToStream(Out); 3532 Out << " : "; 3533 I.getData().dump(Out); 3534 if (CheckKind.hasValue()) 3535 Out << " (" << CheckNames[*CheckKind].getName() << ")"; 3536 Out << NL; 3537 } 3538 } 3539 } 3540 3541 namespace clang { 3542 namespace ento { 3543 namespace allocation_state { 3544 3545 ProgramStateRef 3546 markReleased(ProgramStateRef State, SymbolRef Sym, const Expr *Origin) { 3547 AllocationFamily Family = AF_InnerBuffer; 3548 return State->set<RegionState>(Sym, RefState::getReleased(Family, Origin)); 3549 } 3550 3551 } // end namespace allocation_state 3552 } // end namespace ento 3553 } // end namespace clang 3554 3555 // Intended to be used in InnerPointerChecker to register the part of 3556 // MallocChecker connected to it. 3557 void ento::registerInnerPointerCheckerAux(CheckerManager &mgr) { 3558 MallocChecker *checker = mgr.getChecker<MallocChecker>(); 3559 checker->ChecksEnabled[MallocChecker::CK_InnerPointerChecker] = true; 3560 checker->CheckNames[MallocChecker::CK_InnerPointerChecker] = 3561 mgr.getCurrentCheckerName(); 3562 } 3563 3564 void ento::registerDynamicMemoryModeling(CheckerManager &mgr) { 3565 auto *checker = mgr.registerChecker<MallocChecker>(); 3566 checker->ShouldIncludeOwnershipAnnotatedFunctions = 3567 mgr.getAnalyzerOptions().getCheckerBooleanOption(checker, "Optimistic"); 3568 checker->ShouldRegisterNoOwnershipChangeVisitor = 3569 mgr.getAnalyzerOptions().getCheckerBooleanOption( 3570 checker, "AddNoOwnershipChangeNotes"); 3571 } 3572 3573 bool ento::shouldRegisterDynamicMemoryModeling(const CheckerManager &mgr) { 3574 return true; 3575 } 3576 3577 #define REGISTER_CHECKER(name) \ 3578 void ento::register##name(CheckerManager &mgr) { \ 3579 MallocChecker *checker = mgr.getChecker<MallocChecker>(); \ 3580 checker->ChecksEnabled[MallocChecker::CK_##name] = true; \ 3581 checker->CheckNames[MallocChecker::CK_##name] = \ 3582 mgr.getCurrentCheckerName(); \ 3583 } \ 3584 \ 3585 bool ento::shouldRegister##name(const CheckerManager &mgr) { return true; } 3586 3587 REGISTER_CHECKER(MallocChecker) 3588 REGISTER_CHECKER(NewDeleteChecker) 3589 REGISTER_CHECKER(NewDeleteLeaksChecker) 3590 REGISTER_CHECKER(MismatchedDeallocatorChecker) 3591