1 //=== MallocChecker.cpp - A malloc/free checker -------------------*- C++ -*--// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines a variety of memory management related checkers, such as 10 // leak, double free, and use-after-free. 11 // 12 // The following checkers are defined here: 13 // 14 // * MallocChecker 15 // Despite its name, it models all sorts of memory allocations and 16 // de- or reallocation, including but not limited to malloc, free, 17 // relloc, new, delete. It also reports on a variety of memory misuse 18 // errors. 19 // Many other checkers interact very closely with this checker, in fact, 20 // most are merely options to this one. Other checkers may register 21 // MallocChecker, but do not enable MallocChecker's reports (more details 22 // to follow around its field, ChecksEnabled). 23 // It also has a boolean "Optimistic" checker option, which if set to true 24 // will cause the checker to model user defined memory management related 25 // functions annotated via the attribute ownership_takes, ownership_holds 26 // and ownership_returns. 27 // 28 // * NewDeleteChecker 29 // Enables the modeling of new, new[], delete, delete[] in MallocChecker, 30 // and checks for related double-free and use-after-free errors. 31 // 32 // * NewDeleteLeaksChecker 33 // Checks for leaks related to new, new[], delete, delete[]. 34 // Depends on NewDeleteChecker. 35 // 36 // * MismatchedDeallocatorChecker 37 // Enables checking whether memory is deallocated with the correspending 38 // allocation function in MallocChecker, such as malloc() allocated 39 // regions are only freed by free(), new by delete, new[] by delete[]. 40 // 41 // InnerPointerChecker interacts very closely with MallocChecker, but unlike 42 // the above checkers, it has it's own file, hence the many InnerPointerChecker 43 // related headers and non-static functions. 44 // 45 //===----------------------------------------------------------------------===// 46 47 #include "AllocationState.h" 48 #include "InterCheckerAPI.h" 49 #include "clang/AST/Attr.h" 50 #include "clang/AST/DeclCXX.h" 51 #include "clang/AST/Expr.h" 52 #include "clang/AST/ExprCXX.h" 53 #include "clang/AST/ParentMap.h" 54 #include "clang/Basic/LLVM.h" 55 #include "clang/Basic/SourceManager.h" 56 #include "clang/Basic/TargetInfo.h" 57 #include "clang/Lex/Lexer.h" 58 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" 59 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 60 #include "clang/StaticAnalyzer/Core/BugReporter/CommonBugCategories.h" 61 #include "clang/StaticAnalyzer/Core/Checker.h" 62 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 63 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 64 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 65 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerHelpers.h" 66 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicExtent.h" 67 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 68 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 69 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h" 70 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h" 71 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h" 72 #include "llvm/ADT/STLExtras.h" 73 #include "llvm/ADT/SmallString.h" 74 #include "llvm/ADT/StringExtras.h" 75 #include "llvm/Support/Compiler.h" 76 #include "llvm/Support/ErrorHandling.h" 77 #include <climits> 78 #include <functional> 79 #include <utility> 80 81 using namespace clang; 82 using namespace ento; 83 using namespace std::placeholders; 84 85 //===----------------------------------------------------------------------===// 86 // The types of allocation we're modeling. This is used to check whether a 87 // dynamically allocated object is deallocated with the correct function, like 88 // not using operator delete on an object created by malloc(), or alloca regions 89 // aren't ever deallocated manually. 90 //===----------------------------------------------------------------------===// 91 92 namespace { 93 94 // Used to check correspondence between allocators and deallocators. 95 enum AllocationFamily { 96 AF_None, 97 AF_Malloc, 98 AF_CXXNew, 99 AF_CXXNewArray, 100 AF_IfNameIndex, 101 AF_Alloca, 102 AF_InnerBuffer 103 }; 104 105 } // end of anonymous namespace 106 107 /// Print names of allocators and deallocators. 108 /// 109 /// \returns true on success. 110 static bool printMemFnName(raw_ostream &os, CheckerContext &C, const Expr *E); 111 112 /// Print expected name of an allocator based on the deallocator's family 113 /// derived from the DeallocExpr. 114 static void printExpectedAllocName(raw_ostream &os, AllocationFamily Family); 115 116 /// Print expected name of a deallocator based on the allocator's 117 /// family. 118 static void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family); 119 120 //===----------------------------------------------------------------------===// 121 // The state of a symbol, in terms of memory management. 122 //===----------------------------------------------------------------------===// 123 124 namespace { 125 126 class RefState { 127 enum Kind { 128 // Reference to allocated memory. 129 Allocated, 130 // Reference to zero-allocated memory. 131 AllocatedOfSizeZero, 132 // Reference to released/freed memory. 133 Released, 134 // The responsibility for freeing resources has transferred from 135 // this reference. A relinquished symbol should not be freed. 136 Relinquished, 137 // We are no longer guaranteed to have observed all manipulations 138 // of this pointer/memory. For example, it could have been 139 // passed as a parameter to an opaque function. 140 Escaped 141 }; 142 143 const Stmt *S; 144 145 Kind K; 146 AllocationFamily Family; 147 148 RefState(Kind k, const Stmt *s, AllocationFamily family) 149 : S(s), K(k), Family(family) { 150 assert(family != AF_None); 151 } 152 153 public: 154 bool isAllocated() const { return K == Allocated; } 155 bool isAllocatedOfSizeZero() const { return K == AllocatedOfSizeZero; } 156 bool isReleased() const { return K == Released; } 157 bool isRelinquished() const { return K == Relinquished; } 158 bool isEscaped() const { return K == Escaped; } 159 AllocationFamily getAllocationFamily() const { return Family; } 160 const Stmt *getStmt() const { return S; } 161 162 bool operator==(const RefState &X) const { 163 return K == X.K && S == X.S && Family == X.Family; 164 } 165 166 static RefState getAllocated(AllocationFamily family, const Stmt *s) { 167 return RefState(Allocated, s, family); 168 } 169 static RefState getAllocatedOfSizeZero(const RefState *RS) { 170 return RefState(AllocatedOfSizeZero, RS->getStmt(), 171 RS->getAllocationFamily()); 172 } 173 static RefState getReleased(AllocationFamily family, const Stmt *s) { 174 return RefState(Released, s, family); 175 } 176 static RefState getRelinquished(AllocationFamily family, const Stmt *s) { 177 return RefState(Relinquished, s, family); 178 } 179 static RefState getEscaped(const RefState *RS) { 180 return RefState(Escaped, RS->getStmt(), RS->getAllocationFamily()); 181 } 182 183 void Profile(llvm::FoldingSetNodeID &ID) const { 184 ID.AddInteger(K); 185 ID.AddPointer(S); 186 ID.AddInteger(Family); 187 } 188 189 LLVM_DUMP_METHOD void dump(raw_ostream &OS) const { 190 switch (K) { 191 #define CASE(ID) case ID: OS << #ID; break; 192 CASE(Allocated) 193 CASE(AllocatedOfSizeZero) 194 CASE(Released) 195 CASE(Relinquished) 196 CASE(Escaped) 197 } 198 } 199 200 LLVM_DUMP_METHOD void dump() const { dump(llvm::errs()); } 201 }; 202 203 } // end of anonymous namespace 204 205 REGISTER_MAP_WITH_PROGRAMSTATE(RegionState, SymbolRef, RefState) 206 207 /// Check if the memory associated with this symbol was released. 208 static bool isReleased(SymbolRef Sym, CheckerContext &C); 209 210 /// Update the RefState to reflect the new memory allocation. 211 /// The optional \p RetVal parameter specifies the newly allocated pointer 212 /// value; if unspecified, the value of expression \p E is used. 213 static ProgramStateRef MallocUpdateRefState(CheckerContext &C, const Expr *E, 214 ProgramStateRef State, 215 AllocationFamily Family, 216 Optional<SVal> RetVal = None); 217 218 //===----------------------------------------------------------------------===// 219 // The modeling of memory reallocation. 220 // 221 // The terminology 'toPtr' and 'fromPtr' will be used: 222 // toPtr = realloc(fromPtr, 20); 223 //===----------------------------------------------------------------------===// 224 225 REGISTER_SET_WITH_PROGRAMSTATE(ReallocSizeZeroSymbols, SymbolRef) 226 227 namespace { 228 229 /// The state of 'fromPtr' after reallocation is known to have failed. 230 enum OwnershipAfterReallocKind { 231 // The symbol needs to be freed (e.g.: realloc) 232 OAR_ToBeFreedAfterFailure, 233 // The symbol has been freed (e.g.: reallocf) 234 OAR_FreeOnFailure, 235 // The symbol doesn't have to freed (e.g.: we aren't sure if, how and where 236 // 'fromPtr' was allocated: 237 // void Haha(int *ptr) { 238 // ptr = realloc(ptr, 67); 239 // // ... 240 // } 241 // ). 242 OAR_DoNotTrackAfterFailure 243 }; 244 245 /// Stores information about the 'fromPtr' symbol after reallocation. 246 /// 247 /// This is important because realloc may fail, and that needs special modeling. 248 /// Whether reallocation failed or not will not be known until later, so we'll 249 /// store whether upon failure 'fromPtr' will be freed, or needs to be freed 250 /// later, etc. 251 struct ReallocPair { 252 253 // The 'fromPtr'. 254 SymbolRef ReallocatedSym; 255 OwnershipAfterReallocKind Kind; 256 257 ReallocPair(SymbolRef S, OwnershipAfterReallocKind K) 258 : ReallocatedSym(S), Kind(K) {} 259 void Profile(llvm::FoldingSetNodeID &ID) const { 260 ID.AddInteger(Kind); 261 ID.AddPointer(ReallocatedSym); 262 } 263 bool operator==(const ReallocPair &X) const { 264 return ReallocatedSym == X.ReallocatedSym && 265 Kind == X.Kind; 266 } 267 }; 268 269 } // end of anonymous namespace 270 271 REGISTER_MAP_WITH_PROGRAMSTATE(ReallocPairs, SymbolRef, ReallocPair) 272 273 /// Tells if the callee is one of the builtin new/delete operators, including 274 /// placement operators and other standard overloads. 275 static bool isStandardNewDelete(const FunctionDecl *FD); 276 static bool isStandardNewDelete(const CallEvent &Call) { 277 if (!Call.getDecl() || !isa<FunctionDecl>(Call.getDecl())) 278 return false; 279 return isStandardNewDelete(cast<FunctionDecl>(Call.getDecl())); 280 } 281 282 //===----------------------------------------------------------------------===// 283 // Definition of the MallocChecker class. 284 //===----------------------------------------------------------------------===// 285 286 namespace { 287 288 class MallocChecker 289 : public Checker<check::DeadSymbols, check::PointerEscape, 290 check::ConstPointerEscape, check::PreStmt<ReturnStmt>, 291 check::EndFunction, check::PreCall, check::PostCall, 292 check::NewAllocator, check::PostStmt<BlockExpr>, 293 check::PostObjCMessage, check::Location, eval::Assume> { 294 public: 295 /// In pessimistic mode, the checker assumes that it does not know which 296 /// functions might free the memory. 297 /// In optimistic mode, the checker assumes that all user-defined functions 298 /// which might free a pointer are annotated. 299 DefaultBool ShouldIncludeOwnershipAnnotatedFunctions; 300 301 /// Many checkers are essentially built into this one, so enabling them will 302 /// make MallocChecker perform additional modeling and reporting. 303 enum CheckKind { 304 /// When a subchecker is enabled but MallocChecker isn't, model memory 305 /// management but do not emit warnings emitted with MallocChecker only 306 /// enabled. 307 CK_MallocChecker, 308 CK_NewDeleteChecker, 309 CK_NewDeleteLeaksChecker, 310 CK_MismatchedDeallocatorChecker, 311 CK_InnerPointerChecker, 312 CK_NumCheckKinds 313 }; 314 315 using LeakInfo = std::pair<const ExplodedNode *, const MemRegion *>; 316 317 DefaultBool ChecksEnabled[CK_NumCheckKinds]; 318 CheckerNameRef CheckNames[CK_NumCheckKinds]; 319 320 void checkPreCall(const CallEvent &Call, CheckerContext &C) const; 321 void checkPostCall(const CallEvent &Call, CheckerContext &C) const; 322 void checkNewAllocator(const CXXAllocatorCall &Call, CheckerContext &C) const; 323 void checkPostObjCMessage(const ObjCMethodCall &Call, CheckerContext &C) const; 324 void checkPostStmt(const BlockExpr *BE, CheckerContext &C) const; 325 void checkDeadSymbols(SymbolReaper &SymReaper, CheckerContext &C) const; 326 void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const; 327 void checkEndFunction(const ReturnStmt *S, CheckerContext &C) const; 328 ProgramStateRef evalAssume(ProgramStateRef state, SVal Cond, 329 bool Assumption) const; 330 void checkLocation(SVal l, bool isLoad, const Stmt *S, 331 CheckerContext &C) const; 332 333 ProgramStateRef checkPointerEscape(ProgramStateRef State, 334 const InvalidatedSymbols &Escaped, 335 const CallEvent *Call, 336 PointerEscapeKind Kind) const; 337 ProgramStateRef checkConstPointerEscape(ProgramStateRef State, 338 const InvalidatedSymbols &Escaped, 339 const CallEvent *Call, 340 PointerEscapeKind Kind) const; 341 342 void printState(raw_ostream &Out, ProgramStateRef State, 343 const char *NL, const char *Sep) const override; 344 345 private: 346 mutable std::unique_ptr<BugType> BT_DoubleFree[CK_NumCheckKinds]; 347 mutable std::unique_ptr<BugType> BT_DoubleDelete; 348 mutable std::unique_ptr<BugType> BT_Leak[CK_NumCheckKinds]; 349 mutable std::unique_ptr<BugType> BT_UseFree[CK_NumCheckKinds]; 350 mutable std::unique_ptr<BugType> BT_BadFree[CK_NumCheckKinds]; 351 mutable std::unique_ptr<BugType> BT_FreeAlloca[CK_NumCheckKinds]; 352 mutable std::unique_ptr<BugType> BT_MismatchedDealloc; 353 mutable std::unique_ptr<BugType> BT_OffsetFree[CK_NumCheckKinds]; 354 mutable std::unique_ptr<BugType> BT_UseZerroAllocated[CK_NumCheckKinds]; 355 356 #define CHECK_FN(NAME) \ 357 void NAME(const CallEvent &Call, CheckerContext &C) const; 358 359 CHECK_FN(checkFree) 360 CHECK_FN(checkIfNameIndex) 361 CHECK_FN(checkBasicAlloc) 362 CHECK_FN(checkKernelMalloc) 363 CHECK_FN(checkCalloc) 364 CHECK_FN(checkAlloca) 365 CHECK_FN(checkStrdup) 366 CHECK_FN(checkIfFreeNameIndex) 367 CHECK_FN(checkCXXNewOrCXXDelete) 368 CHECK_FN(checkGMalloc0) 369 CHECK_FN(checkGMemdup) 370 CHECK_FN(checkGMallocN) 371 CHECK_FN(checkGMallocN0) 372 CHECK_FN(checkReallocN) 373 CHECK_FN(checkOwnershipAttr) 374 375 void checkRealloc(const CallEvent &Call, CheckerContext &C, 376 bool ShouldFreeOnFail) const; 377 378 using CheckFn = std::function<void(const MallocChecker *, 379 const CallEvent &Call, CheckerContext &C)>; 380 381 const CallDescriptionMap<CheckFn> FreeingMemFnMap{ 382 {{"free", 1}, &MallocChecker::checkFree}, 383 {{"if_freenameindex", 1}, &MallocChecker::checkIfFreeNameIndex}, 384 {{"kfree", 1}, &MallocChecker::checkFree}, 385 {{"g_free", 1}, &MallocChecker::checkFree}, 386 }; 387 388 bool isFreeingCall(const CallEvent &Call) const; 389 390 CallDescriptionMap<CheckFn> AllocatingMemFnMap{ 391 {{"alloca", 1}, &MallocChecker::checkAlloca}, 392 {{"_alloca", 1}, &MallocChecker::checkAlloca}, 393 {{"malloc", 1}, &MallocChecker::checkBasicAlloc}, 394 {{"malloc", 3}, &MallocChecker::checkKernelMalloc}, 395 {{"calloc", 2}, &MallocChecker::checkCalloc}, 396 {{"valloc", 1}, &MallocChecker::checkBasicAlloc}, 397 {{CDF_MaybeBuiltin, "strndup", 2}, &MallocChecker::checkStrdup}, 398 {{CDF_MaybeBuiltin, "strdup", 1}, &MallocChecker::checkStrdup}, 399 {{"_strdup", 1}, &MallocChecker::checkStrdup}, 400 {{"kmalloc", 2}, &MallocChecker::checkKernelMalloc}, 401 {{"if_nameindex", 1}, &MallocChecker::checkIfNameIndex}, 402 {{CDF_MaybeBuiltin, "wcsdup", 1}, &MallocChecker::checkStrdup}, 403 {{CDF_MaybeBuiltin, "_wcsdup", 1}, &MallocChecker::checkStrdup}, 404 {{"g_malloc", 1}, &MallocChecker::checkBasicAlloc}, 405 {{"g_malloc0", 1}, &MallocChecker::checkGMalloc0}, 406 {{"g_try_malloc", 1}, &MallocChecker::checkBasicAlloc}, 407 {{"g_try_malloc0", 1}, &MallocChecker::checkGMalloc0}, 408 {{"g_memdup", 2}, &MallocChecker::checkGMemdup}, 409 {{"g_malloc_n", 2}, &MallocChecker::checkGMallocN}, 410 {{"g_malloc0_n", 2}, &MallocChecker::checkGMallocN0}, 411 {{"g_try_malloc_n", 2}, &MallocChecker::checkGMallocN}, 412 {{"g_try_malloc0_n", 2}, &MallocChecker::checkGMallocN0}, 413 }; 414 415 CallDescriptionMap<CheckFn> ReallocatingMemFnMap{ 416 {{"realloc", 2}, 417 std::bind(&MallocChecker::checkRealloc, _1, _2, _3, false)}, 418 {{"reallocf", 2}, 419 std::bind(&MallocChecker::checkRealloc, _1, _2, _3, true)}, 420 {{"g_realloc", 2}, 421 std::bind(&MallocChecker::checkRealloc, _1, _2, _3, false)}, 422 {{"g_try_realloc", 2}, 423 std::bind(&MallocChecker::checkRealloc, _1, _2, _3, false)}, 424 {{"g_realloc_n", 3}, &MallocChecker::checkReallocN}, 425 {{"g_try_realloc_n", 3}, &MallocChecker::checkReallocN}, 426 }; 427 428 bool isMemCall(const CallEvent &Call) const; 429 430 // TODO: Remove mutable by moving the initializtaion to the registry function. 431 mutable Optional<uint64_t> KernelZeroFlagVal; 432 433 using KernelZeroSizePtrValueTy = Optional<int>; 434 /// Store the value of macro called `ZERO_SIZE_PTR`. 435 /// The value is initialized at first use, before first use the outer 436 /// Optional is empty, afterwards it contains another Optional that indicates 437 /// if the macro value could be determined, and if yes the value itself. 438 mutable Optional<KernelZeroSizePtrValueTy> KernelZeroSizePtrValue; 439 440 /// Process C++ operator new()'s allocation, which is the part of C++ 441 /// new-expression that goes before the constructor. 442 LLVM_NODISCARD 443 ProgramStateRef processNewAllocation(const CXXAllocatorCall &Call, 444 CheckerContext &C, 445 AllocationFamily Family) const; 446 447 /// Perform a zero-allocation check. 448 /// 449 /// \param [in] Call The expression that allocates memory. 450 /// \param [in] IndexOfSizeArg Index of the argument that specifies the size 451 /// of the memory that needs to be allocated. E.g. for malloc, this would be 452 /// 0. 453 /// \param [in] RetVal Specifies the newly allocated pointer value; 454 /// if unspecified, the value of expression \p E is used. 455 LLVM_NODISCARD 456 static ProgramStateRef ProcessZeroAllocCheck(const CallEvent &Call, 457 const unsigned IndexOfSizeArg, 458 ProgramStateRef State, 459 Optional<SVal> RetVal = None); 460 461 /// Model functions with the ownership_returns attribute. 462 /// 463 /// User-defined function may have the ownership_returns attribute, which 464 /// annotates that the function returns with an object that was allocated on 465 /// the heap, and passes the ownertship to the callee. 466 /// 467 /// void __attribute((ownership_returns(malloc, 1))) *my_malloc(size_t); 468 /// 469 /// It has two parameters: 470 /// - first: name of the resource (e.g. 'malloc') 471 /// - (OPTIONAL) second: size of the allocated region 472 /// 473 /// \param [in] Call The expression that allocates memory. 474 /// \param [in] Att The ownership_returns attribute. 475 /// \param [in] State The \c ProgramState right before allocation. 476 /// \returns The ProgramState right after allocation. 477 LLVM_NODISCARD 478 ProgramStateRef MallocMemReturnsAttr(CheckerContext &C, const CallEvent &Call, 479 const OwnershipAttr *Att, 480 ProgramStateRef State) const; 481 482 /// Models memory allocation. 483 /// 484 /// \param [in] Call The expression that allocates memory. 485 /// \param [in] SizeEx Size of the memory that needs to be allocated. 486 /// \param [in] Init The value the allocated memory needs to be initialized. 487 /// with. For example, \c calloc initializes the allocated memory to 0, 488 /// malloc leaves it undefined. 489 /// \param [in] State The \c ProgramState right before allocation. 490 /// \returns The ProgramState right after allocation. 491 LLVM_NODISCARD 492 static ProgramStateRef MallocMemAux(CheckerContext &C, const CallEvent &Call, 493 const Expr *SizeEx, SVal Init, 494 ProgramStateRef State, 495 AllocationFamily Family); 496 497 /// Models memory allocation. 498 /// 499 /// \param [in] Call The expression that allocates memory. 500 /// \param [in] Size Size of the memory that needs to be allocated. 501 /// \param [in] Init The value the allocated memory needs to be initialized. 502 /// with. For example, \c calloc initializes the allocated memory to 0, 503 /// malloc leaves it undefined. 504 /// \param [in] State The \c ProgramState right before allocation. 505 /// \returns The ProgramState right after allocation. 506 LLVM_NODISCARD 507 static ProgramStateRef MallocMemAux(CheckerContext &C, const CallEvent &Call, 508 SVal Size, SVal Init, 509 ProgramStateRef State, 510 AllocationFamily Family); 511 512 // Check if this malloc() for special flags. At present that means M_ZERO or 513 // __GFP_ZERO (in which case, treat it like calloc). 514 LLVM_NODISCARD 515 llvm::Optional<ProgramStateRef> 516 performKernelMalloc(const CallEvent &Call, CheckerContext &C, 517 const ProgramStateRef &State) const; 518 519 /// Model functions with the ownership_takes and ownership_holds attributes. 520 /// 521 /// User-defined function may have the ownership_takes and/or ownership_holds 522 /// attributes, which annotates that the function frees the memory passed as a 523 /// parameter. 524 /// 525 /// void __attribute((ownership_takes(malloc, 1))) my_free(void *); 526 /// void __attribute((ownership_holds(malloc, 1))) my_hold(void *); 527 /// 528 /// They have two parameters: 529 /// - first: name of the resource (e.g. 'malloc') 530 /// - second: index of the parameter the attribute applies to 531 /// 532 /// \param [in] Call The expression that frees memory. 533 /// \param [in] Att The ownership_takes or ownership_holds attribute. 534 /// \param [in] State The \c ProgramState right before allocation. 535 /// \returns The ProgramState right after deallocation. 536 LLVM_NODISCARD 537 ProgramStateRef FreeMemAttr(CheckerContext &C, const CallEvent &Call, 538 const OwnershipAttr *Att, 539 ProgramStateRef State) const; 540 541 /// Models memory deallocation. 542 /// 543 /// \param [in] Call The expression that frees memory. 544 /// \param [in] State The \c ProgramState right before allocation. 545 /// \param [in] Num Index of the argument that needs to be freed. This is 546 /// normally 0, but for custom free functions it may be different. 547 /// \param [in] Hold Whether the parameter at \p Index has the ownership_holds 548 /// attribute. 549 /// \param [out] IsKnownToBeAllocated Whether the memory to be freed is known 550 /// to have been allocated, or in other words, the symbol to be freed was 551 /// registered as allocated by this checker. In the following case, \c ptr 552 /// isn't known to be allocated. 553 /// void Haha(int *ptr) { 554 /// ptr = realloc(ptr, 67); 555 /// // ... 556 /// } 557 /// \param [in] ReturnsNullOnFailure Whether the memory deallocation function 558 /// we're modeling returns with Null on failure. 559 /// \returns The ProgramState right after deallocation. 560 LLVM_NODISCARD 561 ProgramStateRef FreeMemAux(CheckerContext &C, const CallEvent &Call, 562 ProgramStateRef State, unsigned Num, bool Hold, 563 bool &IsKnownToBeAllocated, 564 AllocationFamily Family, 565 bool ReturnsNullOnFailure = false) const; 566 567 /// Models memory deallocation. 568 /// 569 /// \param [in] ArgExpr The variable who's pointee needs to be freed. 570 /// \param [in] Call The expression that frees the memory. 571 /// \param [in] State The \c ProgramState right before allocation. 572 /// normally 0, but for custom free functions it may be different. 573 /// \param [in] Hold Whether the parameter at \p Index has the ownership_holds 574 /// attribute. 575 /// \param [out] IsKnownToBeAllocated Whether the memory to be freed is known 576 /// to have been allocated, or in other words, the symbol to be freed was 577 /// registered as allocated by this checker. In the following case, \c ptr 578 /// isn't known to be allocated. 579 /// void Haha(int *ptr) { 580 /// ptr = realloc(ptr, 67); 581 /// // ... 582 /// } 583 /// \param [in] ReturnsNullOnFailure Whether the memory deallocation function 584 /// we're modeling returns with Null on failure. 585 /// \returns The ProgramState right after deallocation. 586 LLVM_NODISCARD 587 ProgramStateRef FreeMemAux(CheckerContext &C, const Expr *ArgExpr, 588 const CallEvent &Call, ProgramStateRef State, 589 bool Hold, bool &IsKnownToBeAllocated, 590 AllocationFamily Family, 591 bool ReturnsNullOnFailure = false) const; 592 593 // TODO: Needs some refactoring, as all other deallocation modeling 594 // functions are suffering from out parameters and messy code due to how 595 // realloc is handled. 596 // 597 /// Models memory reallocation. 598 /// 599 /// \param [in] Call The expression that reallocated memory 600 /// \param [in] ShouldFreeOnFail Whether if reallocation fails, the supplied 601 /// memory should be freed. 602 /// \param [in] State The \c ProgramState right before reallocation. 603 /// \param [in] SuffixWithN Whether the reallocation function we're modeling 604 /// has an '_n' suffix, such as g_realloc_n. 605 /// \returns The ProgramState right after reallocation. 606 LLVM_NODISCARD 607 ProgramStateRef ReallocMemAux(CheckerContext &C, const CallEvent &Call, 608 bool ShouldFreeOnFail, ProgramStateRef State, 609 AllocationFamily Family, 610 bool SuffixWithN = false) const; 611 612 /// Evaluates the buffer size that needs to be allocated. 613 /// 614 /// \param [in] Blocks The amount of blocks that needs to be allocated. 615 /// \param [in] BlockBytes The size of a block. 616 /// \returns The symbolic value of \p Blocks * \p BlockBytes. 617 LLVM_NODISCARD 618 static SVal evalMulForBufferSize(CheckerContext &C, const Expr *Blocks, 619 const Expr *BlockBytes); 620 621 /// Models zero initialized array allocation. 622 /// 623 /// \param [in] Call The expression that reallocated memory 624 /// \param [in] State The \c ProgramState right before reallocation. 625 /// \returns The ProgramState right after allocation. 626 LLVM_NODISCARD 627 static ProgramStateRef CallocMem(CheckerContext &C, const CallEvent &Call, 628 ProgramStateRef State); 629 630 /// See if deallocation happens in a suspicious context. If so, escape the 631 /// pointers that otherwise would have been deallocated and return true. 632 bool suppressDeallocationsInSuspiciousContexts(const CallEvent &Call, 633 CheckerContext &C) const; 634 635 /// If in \p S \p Sym is used, check whether \p Sym was already freed. 636 bool checkUseAfterFree(SymbolRef Sym, CheckerContext &C, const Stmt *S) const; 637 638 /// If in \p S \p Sym is used, check whether \p Sym was allocated as a zero 639 /// sized memory region. 640 void checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, 641 const Stmt *S) const; 642 643 /// If in \p S \p Sym is being freed, check whether \p Sym was already freed. 644 bool checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const; 645 646 /// Check if the function is known to free memory, or if it is 647 /// "interesting" and should be modeled explicitly. 648 /// 649 /// \param [out] EscapingSymbol A function might not free memory in general, 650 /// but could be known to free a particular symbol. In this case, false is 651 /// returned and the single escaping symbol is returned through the out 652 /// parameter. 653 /// 654 /// We assume that pointers do not escape through calls to system functions 655 /// not handled by this checker. 656 bool mayFreeAnyEscapedMemoryOrIsModeledExplicitly(const CallEvent *Call, 657 ProgramStateRef State, 658 SymbolRef &EscapingSymbol) const; 659 660 /// Implementation of the checkPointerEscape callbacks. 661 LLVM_NODISCARD 662 ProgramStateRef checkPointerEscapeAux(ProgramStateRef State, 663 const InvalidatedSymbols &Escaped, 664 const CallEvent *Call, 665 PointerEscapeKind Kind, 666 bool IsConstPointerEscape) const; 667 668 // Implementation of the checkPreStmt and checkEndFunction callbacks. 669 void checkEscapeOnReturn(const ReturnStmt *S, CheckerContext &C) const; 670 671 ///@{ 672 /// Tells if a given family/call/symbol is tracked by the current checker. 673 /// Sets CheckKind to the kind of the checker responsible for this 674 /// family/call/symbol. 675 Optional<CheckKind> getCheckIfTracked(AllocationFamily Family, 676 bool IsALeakCheck = false) const; 677 678 Optional<CheckKind> getCheckIfTracked(CheckerContext &C, SymbolRef Sym, 679 bool IsALeakCheck = false) const; 680 ///@} 681 static bool SummarizeValue(raw_ostream &os, SVal V); 682 static bool SummarizeRegion(raw_ostream &os, const MemRegion *MR); 683 684 void HandleNonHeapDealloc(CheckerContext &C, SVal ArgVal, SourceRange Range, 685 const Expr *DeallocExpr, 686 AllocationFamily Family) const; 687 688 void HandleFreeAlloca(CheckerContext &C, SVal ArgVal, 689 SourceRange Range) const; 690 691 void HandleMismatchedDealloc(CheckerContext &C, SourceRange Range, 692 const Expr *DeallocExpr, const RefState *RS, 693 SymbolRef Sym, bool OwnershipTransferred) const; 694 695 void HandleOffsetFree(CheckerContext &C, SVal ArgVal, SourceRange Range, 696 const Expr *DeallocExpr, AllocationFamily Family, 697 const Expr *AllocExpr = nullptr) const; 698 699 void HandleUseAfterFree(CheckerContext &C, SourceRange Range, 700 SymbolRef Sym) const; 701 702 void HandleDoubleFree(CheckerContext &C, SourceRange Range, bool Released, 703 SymbolRef Sym, SymbolRef PrevSym) const; 704 705 void HandleDoubleDelete(CheckerContext &C, SymbolRef Sym) const; 706 707 void HandleUseZeroAlloc(CheckerContext &C, SourceRange Range, 708 SymbolRef Sym) const; 709 710 void HandleFunctionPtrFree(CheckerContext &C, SVal ArgVal, SourceRange Range, 711 const Expr *FreeExpr, 712 AllocationFamily Family) const; 713 714 /// Find the location of the allocation for Sym on the path leading to the 715 /// exploded node N. 716 static LeakInfo getAllocationSite(const ExplodedNode *N, SymbolRef Sym, 717 CheckerContext &C); 718 719 void HandleLeak(SymbolRef Sym, ExplodedNode *N, CheckerContext &C) const; 720 721 /// Test if value in ArgVal equals to value in macro `ZERO_SIZE_PTR`. 722 bool isArgZERO_SIZE_PTR(ProgramStateRef State, CheckerContext &C, 723 SVal ArgVal) const; 724 }; 725 726 //===----------------------------------------------------------------------===// 727 // Definition of MallocBugVisitor. 728 //===----------------------------------------------------------------------===// 729 730 /// The bug visitor which allows us to print extra diagnostics along the 731 /// BugReport path. For example, showing the allocation site of the leaked 732 /// region. 733 class MallocBugVisitor final : public BugReporterVisitor { 734 protected: 735 enum NotificationMode { Normal, ReallocationFailed }; 736 737 // The allocated region symbol tracked by the main analysis. 738 SymbolRef Sym; 739 740 // The mode we are in, i.e. what kind of diagnostics will be emitted. 741 NotificationMode Mode; 742 743 // A symbol from when the primary region should have been reallocated. 744 SymbolRef FailedReallocSymbol; 745 746 // A C++ destructor stack frame in which memory was released. Used for 747 // miscellaneous false positive suppression. 748 const StackFrameContext *ReleaseDestructorLC; 749 750 bool IsLeak; 751 752 public: 753 MallocBugVisitor(SymbolRef S, bool isLeak = false) 754 : Sym(S), Mode(Normal), FailedReallocSymbol(nullptr), 755 ReleaseDestructorLC(nullptr), IsLeak(isLeak) {} 756 757 static void *getTag() { 758 static int Tag = 0; 759 return &Tag; 760 } 761 762 void Profile(llvm::FoldingSetNodeID &ID) const override { 763 ID.AddPointer(getTag()); 764 ID.AddPointer(Sym); 765 } 766 767 /// Did not track -> allocated. Other state (released) -> allocated. 768 static inline bool isAllocated(const RefState *RSCurr, const RefState *RSPrev, 769 const Stmt *Stmt) { 770 return (Stmt && (isa<CallExpr>(Stmt) || isa<CXXNewExpr>(Stmt)) && 771 (RSCurr && 772 (RSCurr->isAllocated() || RSCurr->isAllocatedOfSizeZero())) && 773 (!RSPrev || 774 !(RSPrev->isAllocated() || RSPrev->isAllocatedOfSizeZero()))); 775 } 776 777 /// Did not track -> released. Other state (allocated) -> released. 778 /// The statement associated with the release might be missing. 779 static inline bool isReleased(const RefState *RSCurr, const RefState *RSPrev, 780 const Stmt *Stmt) { 781 bool IsReleased = 782 (RSCurr && RSCurr->isReleased()) && (!RSPrev || !RSPrev->isReleased()); 783 assert(!IsReleased || 784 (Stmt && (isa<CallExpr>(Stmt) || isa<CXXDeleteExpr>(Stmt))) || 785 (!Stmt && RSCurr->getAllocationFamily() == AF_InnerBuffer)); 786 return IsReleased; 787 } 788 789 /// Did not track -> relinquished. Other state (allocated) -> relinquished. 790 static inline bool isRelinquished(const RefState *RSCurr, 791 const RefState *RSPrev, const Stmt *Stmt) { 792 return (Stmt && 793 (isa<CallExpr>(Stmt) || isa<ObjCMessageExpr>(Stmt) || 794 isa<ObjCPropertyRefExpr>(Stmt)) && 795 (RSCurr && RSCurr->isRelinquished()) && 796 (!RSPrev || !RSPrev->isRelinquished())); 797 } 798 799 /// If the expression is not a call, and the state change is 800 /// released -> allocated, it must be the realloc return value 801 /// check. If we have to handle more cases here, it might be cleaner just 802 /// to track this extra bit in the state itself. 803 static inline bool hasReallocFailed(const RefState *RSCurr, 804 const RefState *RSPrev, 805 const Stmt *Stmt) { 806 return ((!Stmt || !isa<CallExpr>(Stmt)) && 807 (RSCurr && 808 (RSCurr->isAllocated() || RSCurr->isAllocatedOfSizeZero())) && 809 (RSPrev && 810 !(RSPrev->isAllocated() || RSPrev->isAllocatedOfSizeZero()))); 811 } 812 813 PathDiagnosticPieceRef VisitNode(const ExplodedNode *N, 814 BugReporterContext &BRC, 815 PathSensitiveBugReport &BR) override; 816 817 PathDiagnosticPieceRef getEndPath(BugReporterContext &BRC, 818 const ExplodedNode *EndPathNode, 819 PathSensitiveBugReport &BR) override { 820 if (!IsLeak) 821 return nullptr; 822 823 PathDiagnosticLocation L = BR.getLocation(); 824 // Do not add the statement itself as a range in case of leak. 825 return std::make_shared<PathDiagnosticEventPiece>(L, BR.getDescription(), 826 false); 827 } 828 829 private: 830 class StackHintGeneratorForReallocationFailed 831 : public StackHintGeneratorForSymbol { 832 public: 833 StackHintGeneratorForReallocationFailed(SymbolRef S, StringRef M) 834 : StackHintGeneratorForSymbol(S, M) {} 835 836 std::string getMessageForArg(const Expr *ArgE, unsigned ArgIndex) override { 837 // Printed parameters start at 1, not 0. 838 ++ArgIndex; 839 840 SmallString<200> buf; 841 llvm::raw_svector_ostream os(buf); 842 843 os << "Reallocation of " << ArgIndex << llvm::getOrdinalSuffix(ArgIndex) 844 << " parameter failed"; 845 846 return std::string(os.str()); 847 } 848 849 std::string getMessageForReturn(const CallExpr *CallExpr) override { 850 return "Reallocation of returned value failed"; 851 } 852 }; 853 }; 854 855 } // end anonymous namespace 856 857 // A map from the freed symbol to the symbol representing the return value of 858 // the free function. 859 REGISTER_MAP_WITH_PROGRAMSTATE(FreeReturnValue, SymbolRef, SymbolRef) 860 861 namespace { 862 class StopTrackingCallback final : public SymbolVisitor { 863 ProgramStateRef state; 864 865 public: 866 StopTrackingCallback(ProgramStateRef st) : state(std::move(st)) {} 867 ProgramStateRef getState() const { return state; } 868 869 bool VisitSymbol(SymbolRef sym) override { 870 state = state->remove<RegionState>(sym); 871 return true; 872 } 873 }; 874 } // end anonymous namespace 875 876 static bool isStandardNewDelete(const FunctionDecl *FD) { 877 if (!FD) 878 return false; 879 880 OverloadedOperatorKind Kind = FD->getOverloadedOperator(); 881 if (Kind != OO_New && Kind != OO_Array_New && Kind != OO_Delete && 882 Kind != OO_Array_Delete) 883 return false; 884 885 // This is standard if and only if it's not defined in a user file. 886 SourceLocation L = FD->getLocation(); 887 // If the header for operator delete is not included, it's still defined 888 // in an invalid source location. Check to make sure we don't crash. 889 return !L.isValid() || 890 FD->getASTContext().getSourceManager().isInSystemHeader(L); 891 } 892 893 //===----------------------------------------------------------------------===// 894 // Methods of MallocChecker and MallocBugVisitor. 895 //===----------------------------------------------------------------------===// 896 897 bool MallocChecker::isFreeingCall(const CallEvent &Call) const { 898 if (FreeingMemFnMap.lookup(Call) || ReallocatingMemFnMap.lookup(Call)) 899 return true; 900 901 const auto *Func = dyn_cast<FunctionDecl>(Call.getDecl()); 902 if (Func && Func->hasAttrs()) { 903 for (const auto *I : Func->specific_attrs<OwnershipAttr>()) { 904 OwnershipAttr::OwnershipKind OwnKind = I->getOwnKind(); 905 if (OwnKind == OwnershipAttr::Takes || OwnKind == OwnershipAttr::Holds) 906 return true; 907 } 908 } 909 return false; 910 } 911 912 bool MallocChecker::isMemCall(const CallEvent &Call) const { 913 if (FreeingMemFnMap.lookup(Call) || AllocatingMemFnMap.lookup(Call) || 914 ReallocatingMemFnMap.lookup(Call)) 915 return true; 916 917 if (!ShouldIncludeOwnershipAnnotatedFunctions) 918 return false; 919 920 const auto *Func = dyn_cast<FunctionDecl>(Call.getDecl()); 921 return Func && Func->hasAttr<OwnershipAttr>(); 922 } 923 924 llvm::Optional<ProgramStateRef> 925 MallocChecker::performKernelMalloc(const CallEvent &Call, CheckerContext &C, 926 const ProgramStateRef &State) const { 927 // 3-argument malloc(), as commonly used in {Free,Net,Open}BSD Kernels: 928 // 929 // void *malloc(unsigned long size, struct malloc_type *mtp, int flags); 930 // 931 // One of the possible flags is M_ZERO, which means 'give me back an 932 // allocation which is already zeroed', like calloc. 933 934 // 2-argument kmalloc(), as used in the Linux kernel: 935 // 936 // void *kmalloc(size_t size, gfp_t flags); 937 // 938 // Has the similar flag value __GFP_ZERO. 939 940 // This logic is largely cloned from O_CREAT in UnixAPIChecker, maybe some 941 // code could be shared. 942 943 ASTContext &Ctx = C.getASTContext(); 944 llvm::Triple::OSType OS = Ctx.getTargetInfo().getTriple().getOS(); 945 946 if (!KernelZeroFlagVal.hasValue()) { 947 if (OS == llvm::Triple::FreeBSD) 948 KernelZeroFlagVal = 0x0100; 949 else if (OS == llvm::Triple::NetBSD) 950 KernelZeroFlagVal = 0x0002; 951 else if (OS == llvm::Triple::OpenBSD) 952 KernelZeroFlagVal = 0x0008; 953 else if (OS == llvm::Triple::Linux) 954 // __GFP_ZERO 955 KernelZeroFlagVal = 0x8000; 956 else 957 // FIXME: We need a more general way of getting the M_ZERO value. 958 // See also: O_CREAT in UnixAPIChecker.cpp. 959 960 // Fall back to normal malloc behavior on platforms where we don't 961 // know M_ZERO. 962 return None; 963 } 964 965 // We treat the last argument as the flags argument, and callers fall-back to 966 // normal malloc on a None return. This works for the FreeBSD kernel malloc 967 // as well as Linux kmalloc. 968 if (Call.getNumArgs() < 2) 969 return None; 970 971 const Expr *FlagsEx = Call.getArgExpr(Call.getNumArgs() - 1); 972 const SVal V = C.getSVal(FlagsEx); 973 if (!V.getAs<NonLoc>()) { 974 // The case where 'V' can be a location can only be due to a bad header, 975 // so in this case bail out. 976 return None; 977 } 978 979 NonLoc Flags = V.castAs<NonLoc>(); 980 NonLoc ZeroFlag = C.getSValBuilder() 981 .makeIntVal(KernelZeroFlagVal.getValue(), FlagsEx->getType()) 982 .castAs<NonLoc>(); 983 SVal MaskedFlagsUC = C.getSValBuilder().evalBinOpNN(State, BO_And, 984 Flags, ZeroFlag, 985 FlagsEx->getType()); 986 if (MaskedFlagsUC.isUnknownOrUndef()) 987 return None; 988 DefinedSVal MaskedFlags = MaskedFlagsUC.castAs<DefinedSVal>(); 989 990 // Check if maskedFlags is non-zero. 991 ProgramStateRef TrueState, FalseState; 992 std::tie(TrueState, FalseState) = State->assume(MaskedFlags); 993 994 // If M_ZERO is set, treat this like calloc (initialized). 995 if (TrueState && !FalseState) { 996 SVal ZeroVal = C.getSValBuilder().makeZeroVal(Ctx.CharTy); 997 return MallocMemAux(C, Call, Call.getArgExpr(0), ZeroVal, TrueState, 998 AF_Malloc); 999 } 1000 1001 return None; 1002 } 1003 1004 SVal MallocChecker::evalMulForBufferSize(CheckerContext &C, const Expr *Blocks, 1005 const Expr *BlockBytes) { 1006 SValBuilder &SB = C.getSValBuilder(); 1007 SVal BlocksVal = C.getSVal(Blocks); 1008 SVal BlockBytesVal = C.getSVal(BlockBytes); 1009 ProgramStateRef State = C.getState(); 1010 SVal TotalSize = SB.evalBinOp(State, BO_Mul, BlocksVal, BlockBytesVal, 1011 SB.getContext().getSizeType()); 1012 return TotalSize; 1013 } 1014 1015 void MallocChecker::checkBasicAlloc(const CallEvent &Call, 1016 CheckerContext &C) const { 1017 ProgramStateRef State = C.getState(); 1018 State = MallocMemAux(C, Call, Call.getArgExpr(0), UndefinedVal(), State, 1019 AF_Malloc); 1020 State = ProcessZeroAllocCheck(Call, 0, State); 1021 C.addTransition(State); 1022 } 1023 1024 void MallocChecker::checkKernelMalloc(const CallEvent &Call, 1025 CheckerContext &C) const { 1026 ProgramStateRef State = C.getState(); 1027 llvm::Optional<ProgramStateRef> MaybeState = 1028 performKernelMalloc(Call, C, State); 1029 if (MaybeState.hasValue()) 1030 State = MaybeState.getValue(); 1031 else 1032 State = MallocMemAux(C, Call, Call.getArgExpr(0), UndefinedVal(), State, 1033 AF_Malloc); 1034 C.addTransition(State); 1035 } 1036 1037 static bool isStandardRealloc(const CallEvent &Call) { 1038 const FunctionDecl *FD = dyn_cast<FunctionDecl>(Call.getDecl()); 1039 assert(FD); 1040 ASTContext &AC = FD->getASTContext(); 1041 1042 if (isa<CXXMethodDecl>(FD)) 1043 return false; 1044 1045 return FD->getDeclaredReturnType().getDesugaredType(AC) == AC.VoidPtrTy && 1046 FD->getParamDecl(0)->getType().getDesugaredType(AC) == AC.VoidPtrTy && 1047 FD->getParamDecl(1)->getType().getDesugaredType(AC) == 1048 AC.getSizeType(); 1049 } 1050 1051 static bool isGRealloc(const CallEvent &Call) { 1052 const FunctionDecl *FD = dyn_cast<FunctionDecl>(Call.getDecl()); 1053 assert(FD); 1054 ASTContext &AC = FD->getASTContext(); 1055 1056 if (isa<CXXMethodDecl>(FD)) 1057 return false; 1058 1059 return FD->getDeclaredReturnType().getDesugaredType(AC) == AC.VoidPtrTy && 1060 FD->getParamDecl(0)->getType().getDesugaredType(AC) == AC.VoidPtrTy && 1061 FD->getParamDecl(1)->getType().getDesugaredType(AC) == 1062 AC.UnsignedLongTy; 1063 } 1064 1065 void MallocChecker::checkRealloc(const CallEvent &Call, CheckerContext &C, 1066 bool ShouldFreeOnFail) const { 1067 // HACK: CallDescription currently recognizes non-standard realloc functions 1068 // as standard because it doesn't check the type, or wether its a non-method 1069 // function. This should be solved by making CallDescription smarter. 1070 // Mind that this came from a bug report, and all other functions suffer from 1071 // this. 1072 // https://bugs.llvm.org/show_bug.cgi?id=46253 1073 if (!isStandardRealloc(Call) && !isGRealloc(Call)) 1074 return; 1075 ProgramStateRef State = C.getState(); 1076 State = ReallocMemAux(C, Call, ShouldFreeOnFail, State, AF_Malloc); 1077 State = ProcessZeroAllocCheck(Call, 1, State); 1078 C.addTransition(State); 1079 } 1080 1081 void MallocChecker::checkCalloc(const CallEvent &Call, 1082 CheckerContext &C) const { 1083 ProgramStateRef State = C.getState(); 1084 State = CallocMem(C, Call, State); 1085 State = ProcessZeroAllocCheck(Call, 0, State); 1086 State = ProcessZeroAllocCheck(Call, 1, State); 1087 C.addTransition(State); 1088 } 1089 1090 void MallocChecker::checkFree(const CallEvent &Call, CheckerContext &C) const { 1091 ProgramStateRef State = C.getState(); 1092 bool IsKnownToBeAllocatedMemory = false; 1093 if (suppressDeallocationsInSuspiciousContexts(Call, C)) 1094 return; 1095 State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory, 1096 AF_Malloc); 1097 C.addTransition(State); 1098 } 1099 1100 void MallocChecker::checkAlloca(const CallEvent &Call, 1101 CheckerContext &C) const { 1102 ProgramStateRef State = C.getState(); 1103 State = MallocMemAux(C, Call, Call.getArgExpr(0), UndefinedVal(), State, 1104 AF_Alloca); 1105 State = ProcessZeroAllocCheck(Call, 0, State); 1106 C.addTransition(State); 1107 } 1108 1109 void MallocChecker::checkStrdup(const CallEvent &Call, 1110 CheckerContext &C) const { 1111 ProgramStateRef State = C.getState(); 1112 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); 1113 if (!CE) 1114 return; 1115 State = MallocUpdateRefState(C, CE, State, AF_Malloc); 1116 1117 C.addTransition(State); 1118 } 1119 1120 void MallocChecker::checkIfNameIndex(const CallEvent &Call, 1121 CheckerContext &C) const { 1122 ProgramStateRef State = C.getState(); 1123 // Should we model this differently? We can allocate a fixed number of 1124 // elements with zeros in the last one. 1125 State = 1126 MallocMemAux(C, Call, UnknownVal(), UnknownVal(), State, AF_IfNameIndex); 1127 1128 C.addTransition(State); 1129 } 1130 1131 void MallocChecker::checkIfFreeNameIndex(const CallEvent &Call, 1132 CheckerContext &C) const { 1133 ProgramStateRef State = C.getState(); 1134 bool IsKnownToBeAllocatedMemory = false; 1135 State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory, 1136 AF_IfNameIndex); 1137 C.addTransition(State); 1138 } 1139 1140 void MallocChecker::checkCXXNewOrCXXDelete(const CallEvent &Call, 1141 CheckerContext &C) const { 1142 ProgramStateRef State = C.getState(); 1143 bool IsKnownToBeAllocatedMemory = false; 1144 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); 1145 if (!CE) 1146 return; 1147 1148 assert(isStandardNewDelete(Call)); 1149 1150 // Process direct calls to operator new/new[]/delete/delete[] functions 1151 // as distinct from new/new[]/delete/delete[] expressions that are 1152 // processed by the checkPostStmt callbacks for CXXNewExpr and 1153 // CXXDeleteExpr. 1154 const FunctionDecl *FD = C.getCalleeDecl(CE); 1155 switch (FD->getOverloadedOperator()) { 1156 case OO_New: 1157 State = 1158 MallocMemAux(C, Call, CE->getArg(0), UndefinedVal(), State, AF_CXXNew); 1159 State = ProcessZeroAllocCheck(Call, 0, State); 1160 break; 1161 case OO_Array_New: 1162 State = MallocMemAux(C, Call, CE->getArg(0), UndefinedVal(), State, 1163 AF_CXXNewArray); 1164 State = ProcessZeroAllocCheck(Call, 0, State); 1165 break; 1166 case OO_Delete: 1167 State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory, 1168 AF_CXXNew); 1169 break; 1170 case OO_Array_Delete: 1171 State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory, 1172 AF_CXXNewArray); 1173 break; 1174 default: 1175 llvm_unreachable("not a new/delete operator"); 1176 } 1177 1178 C.addTransition(State); 1179 } 1180 1181 void MallocChecker::checkGMalloc0(const CallEvent &Call, 1182 CheckerContext &C) const { 1183 ProgramStateRef State = C.getState(); 1184 SValBuilder &svalBuilder = C.getSValBuilder(); 1185 SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy); 1186 State = MallocMemAux(C, Call, Call.getArgExpr(0), zeroVal, State, AF_Malloc); 1187 State = ProcessZeroAllocCheck(Call, 0, State); 1188 C.addTransition(State); 1189 } 1190 1191 void MallocChecker::checkGMemdup(const CallEvent &Call, 1192 CheckerContext &C) const { 1193 ProgramStateRef State = C.getState(); 1194 State = MallocMemAux(C, Call, Call.getArgExpr(1), UndefinedVal(), State, 1195 AF_Malloc); 1196 State = ProcessZeroAllocCheck(Call, 1, State); 1197 C.addTransition(State); 1198 } 1199 1200 void MallocChecker::checkGMallocN(const CallEvent &Call, 1201 CheckerContext &C) const { 1202 ProgramStateRef State = C.getState(); 1203 SVal Init = UndefinedVal(); 1204 SVal TotalSize = evalMulForBufferSize(C, Call.getArgExpr(0), Call.getArgExpr(1)); 1205 State = MallocMemAux(C, Call, TotalSize, Init, State, AF_Malloc); 1206 State = ProcessZeroAllocCheck(Call, 0, State); 1207 State = ProcessZeroAllocCheck(Call, 1, State); 1208 C.addTransition(State); 1209 } 1210 1211 void MallocChecker::checkGMallocN0(const CallEvent &Call, 1212 CheckerContext &C) const { 1213 ProgramStateRef State = C.getState(); 1214 SValBuilder &SB = C.getSValBuilder(); 1215 SVal Init = SB.makeZeroVal(SB.getContext().CharTy); 1216 SVal TotalSize = evalMulForBufferSize(C, Call.getArgExpr(0), Call.getArgExpr(1)); 1217 State = MallocMemAux(C, Call, TotalSize, Init, State, AF_Malloc); 1218 State = ProcessZeroAllocCheck(Call, 0, State); 1219 State = ProcessZeroAllocCheck(Call, 1, State); 1220 C.addTransition(State); 1221 } 1222 1223 void MallocChecker::checkReallocN(const CallEvent &Call, 1224 CheckerContext &C) const { 1225 ProgramStateRef State = C.getState(); 1226 State = ReallocMemAux(C, Call, /*ShouldFreeOnFail=*/false, State, AF_Malloc, 1227 /*SuffixWithN=*/true); 1228 State = ProcessZeroAllocCheck(Call, 1, State); 1229 State = ProcessZeroAllocCheck(Call, 2, State); 1230 C.addTransition(State); 1231 } 1232 1233 void MallocChecker::checkOwnershipAttr(const CallEvent &Call, 1234 CheckerContext &C) const { 1235 ProgramStateRef State = C.getState(); 1236 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); 1237 if (!CE) 1238 return; 1239 const FunctionDecl *FD = C.getCalleeDecl(CE); 1240 if (!FD) 1241 return; 1242 if (ShouldIncludeOwnershipAnnotatedFunctions || 1243 ChecksEnabled[CK_MismatchedDeallocatorChecker]) { 1244 // Check all the attributes, if there are any. 1245 // There can be multiple of these attributes. 1246 if (FD->hasAttrs()) 1247 for (const auto *I : FD->specific_attrs<OwnershipAttr>()) { 1248 switch (I->getOwnKind()) { 1249 case OwnershipAttr::Returns: 1250 State = MallocMemReturnsAttr(C, Call, I, State); 1251 break; 1252 case OwnershipAttr::Takes: 1253 case OwnershipAttr::Holds: 1254 State = FreeMemAttr(C, Call, I, State); 1255 break; 1256 } 1257 } 1258 } 1259 C.addTransition(State); 1260 } 1261 1262 void MallocChecker::checkPostCall(const CallEvent &Call, 1263 CheckerContext &C) const { 1264 if (C.wasInlined) 1265 return; 1266 if (!Call.getOriginExpr()) 1267 return; 1268 1269 ProgramStateRef State = C.getState(); 1270 1271 if (const CheckFn *Callback = FreeingMemFnMap.lookup(Call)) { 1272 (*Callback)(this, Call, C); 1273 return; 1274 } 1275 1276 if (const CheckFn *Callback = AllocatingMemFnMap.lookup(Call)) { 1277 (*Callback)(this, Call, C); 1278 return; 1279 } 1280 1281 if (const CheckFn *Callback = ReallocatingMemFnMap.lookup(Call)) { 1282 (*Callback)(this, Call, C); 1283 return; 1284 } 1285 1286 if (isStandardNewDelete(Call)) { 1287 checkCXXNewOrCXXDelete(Call, C); 1288 return; 1289 } 1290 1291 checkOwnershipAttr(Call, C); 1292 } 1293 1294 // Performs a 0-sized allocations check. 1295 ProgramStateRef MallocChecker::ProcessZeroAllocCheck( 1296 const CallEvent &Call, const unsigned IndexOfSizeArg, ProgramStateRef State, 1297 Optional<SVal> RetVal) { 1298 if (!State) 1299 return nullptr; 1300 1301 if (!RetVal) 1302 RetVal = Call.getReturnValue(); 1303 1304 const Expr *Arg = nullptr; 1305 1306 if (const CallExpr *CE = dyn_cast<CallExpr>(Call.getOriginExpr())) { 1307 Arg = CE->getArg(IndexOfSizeArg); 1308 } else if (const CXXNewExpr *NE = 1309 dyn_cast<CXXNewExpr>(Call.getOriginExpr())) { 1310 if (NE->isArray()) { 1311 Arg = *NE->getArraySize(); 1312 } else { 1313 return State; 1314 } 1315 } else 1316 llvm_unreachable("not a CallExpr or CXXNewExpr"); 1317 1318 assert(Arg); 1319 1320 auto DefArgVal = 1321 State->getSVal(Arg, Call.getLocationContext()).getAs<DefinedSVal>(); 1322 1323 if (!DefArgVal) 1324 return State; 1325 1326 // Check if the allocation size is 0. 1327 ProgramStateRef TrueState, FalseState; 1328 SValBuilder &SvalBuilder = State->getStateManager().getSValBuilder(); 1329 DefinedSVal Zero = 1330 SvalBuilder.makeZeroVal(Arg->getType()).castAs<DefinedSVal>(); 1331 1332 std::tie(TrueState, FalseState) = 1333 State->assume(SvalBuilder.evalEQ(State, *DefArgVal, Zero)); 1334 1335 if (TrueState && !FalseState) { 1336 SymbolRef Sym = RetVal->getAsLocSymbol(); 1337 if (!Sym) 1338 return State; 1339 1340 const RefState *RS = State->get<RegionState>(Sym); 1341 if (RS) { 1342 if (RS->isAllocated()) 1343 return TrueState->set<RegionState>(Sym, 1344 RefState::getAllocatedOfSizeZero(RS)); 1345 else 1346 return State; 1347 } else { 1348 // Case of zero-size realloc. Historically 'realloc(ptr, 0)' is treated as 1349 // 'free(ptr)' and the returned value from 'realloc(ptr, 0)' is not 1350 // tracked. Add zero-reallocated Sym to the state to catch references 1351 // to zero-allocated memory. 1352 return TrueState->add<ReallocSizeZeroSymbols>(Sym); 1353 } 1354 } 1355 1356 // Assume the value is non-zero going forward. 1357 assert(FalseState); 1358 return FalseState; 1359 } 1360 1361 static QualType getDeepPointeeType(QualType T) { 1362 QualType Result = T, PointeeType = T->getPointeeType(); 1363 while (!PointeeType.isNull()) { 1364 Result = PointeeType; 1365 PointeeType = PointeeType->getPointeeType(); 1366 } 1367 return Result; 1368 } 1369 1370 /// \returns true if the constructor invoked by \p NE has an argument of a 1371 /// pointer/reference to a record type. 1372 static bool hasNonTrivialConstructorCall(const CXXNewExpr *NE) { 1373 1374 const CXXConstructExpr *ConstructE = NE->getConstructExpr(); 1375 if (!ConstructE) 1376 return false; 1377 1378 if (!NE->getAllocatedType()->getAsCXXRecordDecl()) 1379 return false; 1380 1381 const CXXConstructorDecl *CtorD = ConstructE->getConstructor(); 1382 1383 // Iterate over the constructor parameters. 1384 for (const auto *CtorParam : CtorD->parameters()) { 1385 1386 QualType CtorParamPointeeT = CtorParam->getType()->getPointeeType(); 1387 if (CtorParamPointeeT.isNull()) 1388 continue; 1389 1390 CtorParamPointeeT = getDeepPointeeType(CtorParamPointeeT); 1391 1392 if (CtorParamPointeeT->getAsCXXRecordDecl()) 1393 return true; 1394 } 1395 1396 return false; 1397 } 1398 1399 ProgramStateRef 1400 MallocChecker::processNewAllocation(const CXXAllocatorCall &Call, 1401 CheckerContext &C, 1402 AllocationFamily Family) const { 1403 if (!isStandardNewDelete(Call)) 1404 return nullptr; 1405 1406 const CXXNewExpr *NE = Call.getOriginExpr(); 1407 const ParentMap &PM = C.getLocationContext()->getParentMap(); 1408 ProgramStateRef State = C.getState(); 1409 1410 // Non-trivial constructors have a chance to escape 'this', but marking all 1411 // invocations of trivial constructors as escaped would cause too great of 1412 // reduction of true positives, so let's just do that for constructors that 1413 // have an argument of a pointer-to-record type. 1414 if (!PM.isConsumedExpr(NE) && hasNonTrivialConstructorCall(NE)) 1415 return State; 1416 1417 // The return value from operator new is bound to a specified initialization 1418 // value (if any) and we don't want to loose this value. So we call 1419 // MallocUpdateRefState() instead of MallocMemAux() which breaks the 1420 // existing binding. 1421 SVal Target = Call.getObjectUnderConstruction(); 1422 State = MallocUpdateRefState(C, NE, State, Family, Target); 1423 State = ProcessZeroAllocCheck(Call, 0, State, Target); 1424 return State; 1425 } 1426 1427 void MallocChecker::checkNewAllocator(const CXXAllocatorCall &Call, 1428 CheckerContext &C) const { 1429 if (!C.wasInlined) { 1430 ProgramStateRef State = processNewAllocation( 1431 Call, C, 1432 (Call.getOriginExpr()->isArray() ? AF_CXXNewArray : AF_CXXNew)); 1433 C.addTransition(State); 1434 } 1435 } 1436 1437 static bool isKnownDeallocObjCMethodName(const ObjCMethodCall &Call) { 1438 // If the first selector piece is one of the names below, assume that the 1439 // object takes ownership of the memory, promising to eventually deallocate it 1440 // with free(). 1441 // Ex: [NSData dataWithBytesNoCopy:bytes length:10]; 1442 // (...unless a 'freeWhenDone' parameter is false, but that's checked later.) 1443 StringRef FirstSlot = Call.getSelector().getNameForSlot(0); 1444 return FirstSlot == "dataWithBytesNoCopy" || 1445 FirstSlot == "initWithBytesNoCopy" || 1446 FirstSlot == "initWithCharactersNoCopy"; 1447 } 1448 1449 static Optional<bool> getFreeWhenDoneArg(const ObjCMethodCall &Call) { 1450 Selector S = Call.getSelector(); 1451 1452 // FIXME: We should not rely on fully-constrained symbols being folded. 1453 for (unsigned i = 1; i < S.getNumArgs(); ++i) 1454 if (S.getNameForSlot(i).equals("freeWhenDone")) 1455 return !Call.getArgSVal(i).isZeroConstant(); 1456 1457 return None; 1458 } 1459 1460 void MallocChecker::checkPostObjCMessage(const ObjCMethodCall &Call, 1461 CheckerContext &C) const { 1462 if (C.wasInlined) 1463 return; 1464 1465 if (!isKnownDeallocObjCMethodName(Call)) 1466 return; 1467 1468 if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(Call)) 1469 if (!*FreeWhenDone) 1470 return; 1471 1472 if (Call.hasNonZeroCallbackArg()) 1473 return; 1474 1475 bool IsKnownToBeAllocatedMemory; 1476 ProgramStateRef State = 1477 FreeMemAux(C, Call.getArgExpr(0), Call, C.getState(), 1478 /*Hold=*/true, IsKnownToBeAllocatedMemory, AF_Malloc, 1479 /*RetNullOnFailure=*/true); 1480 1481 C.addTransition(State); 1482 } 1483 1484 ProgramStateRef 1485 MallocChecker::MallocMemReturnsAttr(CheckerContext &C, const CallEvent &Call, 1486 const OwnershipAttr *Att, 1487 ProgramStateRef State) const { 1488 if (!State) 1489 return nullptr; 1490 1491 if (Att->getModule()->getName() != "malloc") 1492 return nullptr; 1493 1494 OwnershipAttr::args_iterator I = Att->args_begin(), E = Att->args_end(); 1495 if (I != E) { 1496 return MallocMemAux(C, Call, Call.getArgExpr(I->getASTIndex()), 1497 UndefinedVal(), State, AF_Malloc); 1498 } 1499 return MallocMemAux(C, Call, UnknownVal(), UndefinedVal(), State, AF_Malloc); 1500 } 1501 1502 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, 1503 const CallEvent &Call, 1504 const Expr *SizeEx, SVal Init, 1505 ProgramStateRef State, 1506 AllocationFamily Family) { 1507 if (!State) 1508 return nullptr; 1509 1510 assert(SizeEx); 1511 return MallocMemAux(C, Call, C.getSVal(SizeEx), Init, State, Family); 1512 } 1513 1514 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, 1515 const CallEvent &Call, SVal Size, 1516 SVal Init, ProgramStateRef State, 1517 AllocationFamily Family) { 1518 if (!State) 1519 return nullptr; 1520 1521 const Expr *CE = Call.getOriginExpr(); 1522 1523 // We expect the malloc functions to return a pointer. 1524 if (!Loc::isLocType(CE->getType())) 1525 return nullptr; 1526 1527 // Bind the return value to the symbolic value from the heap region. 1528 // TODO: We could rewrite post visit to eval call; 'malloc' does not have 1529 // side effects other than what we model here. 1530 unsigned Count = C.blockCount(); 1531 SValBuilder &svalBuilder = C.getSValBuilder(); 1532 const LocationContext *LCtx = C.getPredecessor()->getLocationContext(); 1533 DefinedSVal RetVal = svalBuilder.getConjuredHeapSymbolVal(CE, LCtx, Count) 1534 .castAs<DefinedSVal>(); 1535 State = State->BindExpr(CE, C.getLocationContext(), RetVal); 1536 1537 // Fill the region with the initialization value. 1538 State = State->bindDefaultInitial(RetVal, Init, LCtx); 1539 1540 // Set the region's extent. 1541 State = setDynamicExtent(State, RetVal.getAsRegion(), 1542 Size.castAs<DefinedOrUnknownSVal>(), svalBuilder); 1543 1544 return MallocUpdateRefState(C, CE, State, Family); 1545 } 1546 1547 static ProgramStateRef MallocUpdateRefState(CheckerContext &C, const Expr *E, 1548 ProgramStateRef State, 1549 AllocationFamily Family, 1550 Optional<SVal> RetVal) { 1551 if (!State) 1552 return nullptr; 1553 1554 // Get the return value. 1555 if (!RetVal) 1556 RetVal = C.getSVal(E); 1557 1558 // We expect the malloc functions to return a pointer. 1559 if (!RetVal->getAs<Loc>()) 1560 return nullptr; 1561 1562 SymbolRef Sym = RetVal->getAsLocSymbol(); 1563 // This is a return value of a function that was not inlined, such as malloc() 1564 // or new(). We've checked that in the caller. Therefore, it must be a symbol. 1565 assert(Sym); 1566 1567 // Set the symbol's state to Allocated. 1568 return State->set<RegionState>(Sym, RefState::getAllocated(Family, E)); 1569 } 1570 1571 ProgramStateRef MallocChecker::FreeMemAttr(CheckerContext &C, 1572 const CallEvent &Call, 1573 const OwnershipAttr *Att, 1574 ProgramStateRef State) const { 1575 if (!State) 1576 return nullptr; 1577 1578 if (Att->getModule()->getName() != "malloc") 1579 return nullptr; 1580 1581 bool IsKnownToBeAllocated = false; 1582 1583 for (const auto &Arg : Att->args()) { 1584 ProgramStateRef StateI = 1585 FreeMemAux(C, Call, State, Arg.getASTIndex(), 1586 Att->getOwnKind() == OwnershipAttr::Holds, 1587 IsKnownToBeAllocated, AF_Malloc); 1588 if (StateI) 1589 State = StateI; 1590 } 1591 return State; 1592 } 1593 1594 ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C, 1595 const CallEvent &Call, 1596 ProgramStateRef State, unsigned Num, 1597 bool Hold, bool &IsKnownToBeAllocated, 1598 AllocationFamily Family, 1599 bool ReturnsNullOnFailure) const { 1600 if (!State) 1601 return nullptr; 1602 1603 if (Call.getNumArgs() < (Num + 1)) 1604 return nullptr; 1605 1606 return FreeMemAux(C, Call.getArgExpr(Num), Call, State, Hold, 1607 IsKnownToBeAllocated, Family, ReturnsNullOnFailure); 1608 } 1609 1610 /// Checks if the previous call to free on the given symbol failed - if free 1611 /// failed, returns true. Also, returns the corresponding return value symbol. 1612 static bool didPreviousFreeFail(ProgramStateRef State, 1613 SymbolRef Sym, SymbolRef &RetStatusSymbol) { 1614 const SymbolRef *Ret = State->get<FreeReturnValue>(Sym); 1615 if (Ret) { 1616 assert(*Ret && "We should not store the null return symbol"); 1617 ConstraintManager &CMgr = State->getConstraintManager(); 1618 ConditionTruthVal FreeFailed = CMgr.isNull(State, *Ret); 1619 RetStatusSymbol = *Ret; 1620 return FreeFailed.isConstrainedTrue(); 1621 } 1622 return false; 1623 } 1624 1625 static bool printMemFnName(raw_ostream &os, CheckerContext &C, const Expr *E) { 1626 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { 1627 // FIXME: This doesn't handle indirect calls. 1628 const FunctionDecl *FD = CE->getDirectCallee(); 1629 if (!FD) 1630 return false; 1631 1632 os << *FD; 1633 if (!FD->isOverloadedOperator()) 1634 os << "()"; 1635 return true; 1636 } 1637 1638 if (const ObjCMessageExpr *Msg = dyn_cast<ObjCMessageExpr>(E)) { 1639 if (Msg->isInstanceMessage()) 1640 os << "-"; 1641 else 1642 os << "+"; 1643 Msg->getSelector().print(os); 1644 return true; 1645 } 1646 1647 if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) { 1648 os << "'" 1649 << getOperatorSpelling(NE->getOperatorNew()->getOverloadedOperator()) 1650 << "'"; 1651 return true; 1652 } 1653 1654 if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(E)) { 1655 os << "'" 1656 << getOperatorSpelling(DE->getOperatorDelete()->getOverloadedOperator()) 1657 << "'"; 1658 return true; 1659 } 1660 1661 return false; 1662 } 1663 1664 static void printExpectedAllocName(raw_ostream &os, AllocationFamily Family) { 1665 1666 switch(Family) { 1667 case AF_Malloc: os << "malloc()"; return; 1668 case AF_CXXNew: os << "'new'"; return; 1669 case AF_CXXNewArray: os << "'new[]'"; return; 1670 case AF_IfNameIndex: os << "'if_nameindex()'"; return; 1671 case AF_InnerBuffer: os << "container-specific allocator"; return; 1672 case AF_Alloca: 1673 case AF_None: llvm_unreachable("not a deallocation expression"); 1674 } 1675 } 1676 1677 static void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family) { 1678 switch(Family) { 1679 case AF_Malloc: os << "free()"; return; 1680 case AF_CXXNew: os << "'delete'"; return; 1681 case AF_CXXNewArray: os << "'delete[]'"; return; 1682 case AF_IfNameIndex: os << "'if_freenameindex()'"; return; 1683 case AF_InnerBuffer: os << "container-specific deallocator"; return; 1684 case AF_Alloca: 1685 case AF_None: llvm_unreachable("suspicious argument"); 1686 } 1687 } 1688 1689 ProgramStateRef MallocChecker::FreeMemAux( 1690 CheckerContext &C, const Expr *ArgExpr, const CallEvent &Call, 1691 ProgramStateRef State, bool Hold, bool &IsKnownToBeAllocated, 1692 AllocationFamily Family, bool ReturnsNullOnFailure) const { 1693 1694 if (!State) 1695 return nullptr; 1696 1697 SVal ArgVal = C.getSVal(ArgExpr); 1698 if (!ArgVal.getAs<DefinedOrUnknownSVal>()) 1699 return nullptr; 1700 DefinedOrUnknownSVal location = ArgVal.castAs<DefinedOrUnknownSVal>(); 1701 1702 // Check for null dereferences. 1703 if (!location.getAs<Loc>()) 1704 return nullptr; 1705 1706 // The explicit NULL case, no operation is performed. 1707 ProgramStateRef notNullState, nullState; 1708 std::tie(notNullState, nullState) = State->assume(location); 1709 if (nullState && !notNullState) 1710 return nullptr; 1711 1712 // Unknown values could easily be okay 1713 // Undefined values are handled elsewhere 1714 if (ArgVal.isUnknownOrUndef()) 1715 return nullptr; 1716 1717 const MemRegion *R = ArgVal.getAsRegion(); 1718 const Expr *ParentExpr = Call.getOriginExpr(); 1719 1720 // NOTE: We detected a bug, but the checker under whose name we would emit the 1721 // error could be disabled. Generally speaking, the MallocChecker family is an 1722 // integral part of the Static Analyzer, and disabling any part of it should 1723 // only be done under exceptional circumstances, such as frequent false 1724 // positives. If this is the case, we can reasonably believe that there are 1725 // serious faults in our understanding of the source code, and even if we 1726 // don't emit an warning, we should terminate further analysis with a sink 1727 // node. 1728 1729 // Nonlocs can't be freed, of course. 1730 // Non-region locations (labels and fixed addresses) also shouldn't be freed. 1731 if (!R) { 1732 // Exception: 1733 // If the macro ZERO_SIZE_PTR is defined, this could be a kernel source 1734 // code. In that case, the ZERO_SIZE_PTR defines a special value used for a 1735 // zero-sized memory block which is allowed to be freed, despite not being a 1736 // null pointer. 1737 if (Family != AF_Malloc || !isArgZERO_SIZE_PTR(State, C, ArgVal)) 1738 HandleNonHeapDealloc(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 1739 Family); 1740 return nullptr; 1741 } 1742 1743 R = R->StripCasts(); 1744 1745 // Blocks might show up as heap data, but should not be free()d 1746 if (isa<BlockDataRegion>(R)) { 1747 HandleNonHeapDealloc(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 1748 Family); 1749 return nullptr; 1750 } 1751 1752 const MemSpaceRegion *MS = R->getMemorySpace(); 1753 1754 // Parameters, locals, statics, globals, and memory returned by 1755 // __builtin_alloca() shouldn't be freed. 1756 if (!(isa<UnknownSpaceRegion>(MS) || isa<HeapSpaceRegion>(MS))) { 1757 // FIXME: at the time this code was written, malloc() regions were 1758 // represented by conjured symbols, which are all in UnknownSpaceRegion. 1759 // This means that there isn't actually anything from HeapSpaceRegion 1760 // that should be freed, even though we allow it here. 1761 // Of course, free() can work on memory allocated outside the current 1762 // function, so UnknownSpaceRegion is always a possibility. 1763 // False negatives are better than false positives. 1764 1765 if (isa<AllocaRegion>(R)) 1766 HandleFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); 1767 else 1768 HandleNonHeapDealloc(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 1769 Family); 1770 1771 return nullptr; 1772 } 1773 1774 const SymbolicRegion *SrBase = dyn_cast<SymbolicRegion>(R->getBaseRegion()); 1775 // Various cases could lead to non-symbol values here. 1776 // For now, ignore them. 1777 if (!SrBase) 1778 return nullptr; 1779 1780 SymbolRef SymBase = SrBase->getSymbol(); 1781 const RefState *RsBase = State->get<RegionState>(SymBase); 1782 SymbolRef PreviousRetStatusSymbol = nullptr; 1783 1784 IsKnownToBeAllocated = 1785 RsBase && (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero()); 1786 1787 if (RsBase) { 1788 1789 // Memory returned by alloca() shouldn't be freed. 1790 if (RsBase->getAllocationFamily() == AF_Alloca) { 1791 HandleFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); 1792 return nullptr; 1793 } 1794 1795 // Check for double free first. 1796 if ((RsBase->isReleased() || RsBase->isRelinquished()) && 1797 !didPreviousFreeFail(State, SymBase, PreviousRetStatusSymbol)) { 1798 HandleDoubleFree(C, ParentExpr->getSourceRange(), RsBase->isReleased(), 1799 SymBase, PreviousRetStatusSymbol); 1800 return nullptr; 1801 1802 // If the pointer is allocated or escaped, but we are now trying to free it, 1803 // check that the call to free is proper. 1804 } else if (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero() || 1805 RsBase->isEscaped()) { 1806 1807 // Check if an expected deallocation function matches the real one. 1808 bool DeallocMatchesAlloc = RsBase->getAllocationFamily() == Family; 1809 if (!DeallocMatchesAlloc) { 1810 HandleMismatchedDealloc(C, ArgExpr->getSourceRange(), ParentExpr, 1811 RsBase, SymBase, Hold); 1812 return nullptr; 1813 } 1814 1815 // Check if the memory location being freed is the actual location 1816 // allocated, or an offset. 1817 RegionOffset Offset = R->getAsOffset(); 1818 if (Offset.isValid() && 1819 !Offset.hasSymbolicOffset() && 1820 Offset.getOffset() != 0) { 1821 const Expr *AllocExpr = cast<Expr>(RsBase->getStmt()); 1822 HandleOffsetFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 1823 Family, AllocExpr); 1824 return nullptr; 1825 } 1826 } 1827 } 1828 1829 if (SymBase->getType()->isFunctionPointerType()) { 1830 HandleFunctionPtrFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 1831 Family); 1832 return nullptr; 1833 } 1834 1835 // Clean out the info on previous call to free return info. 1836 State = State->remove<FreeReturnValue>(SymBase); 1837 1838 // Keep track of the return value. If it is NULL, we will know that free 1839 // failed. 1840 if (ReturnsNullOnFailure) { 1841 SVal RetVal = C.getSVal(ParentExpr); 1842 SymbolRef RetStatusSymbol = RetVal.getAsSymbol(); 1843 if (RetStatusSymbol) { 1844 C.getSymbolManager().addSymbolDependency(SymBase, RetStatusSymbol); 1845 State = State->set<FreeReturnValue>(SymBase, RetStatusSymbol); 1846 } 1847 } 1848 1849 // If we don't know anything about this symbol, a free on it may be totally 1850 // valid. If this is the case, lets assume that the allocation family of the 1851 // freeing function is the same as the symbols allocation family, and go with 1852 // that. 1853 assert(!RsBase || (RsBase && RsBase->getAllocationFamily() == Family)); 1854 1855 // Normal free. 1856 if (Hold) 1857 return State->set<RegionState>(SymBase, 1858 RefState::getRelinquished(Family, 1859 ParentExpr)); 1860 1861 return State->set<RegionState>(SymBase, 1862 RefState::getReleased(Family, ParentExpr)); 1863 } 1864 1865 Optional<MallocChecker::CheckKind> 1866 MallocChecker::getCheckIfTracked(AllocationFamily Family, 1867 bool IsALeakCheck) const { 1868 switch (Family) { 1869 case AF_Malloc: 1870 case AF_Alloca: 1871 case AF_IfNameIndex: { 1872 if (ChecksEnabled[CK_MallocChecker]) 1873 return CK_MallocChecker; 1874 return None; 1875 } 1876 case AF_CXXNew: 1877 case AF_CXXNewArray: { 1878 if (IsALeakCheck) { 1879 if (ChecksEnabled[CK_NewDeleteLeaksChecker]) 1880 return CK_NewDeleteLeaksChecker; 1881 } 1882 else { 1883 if (ChecksEnabled[CK_NewDeleteChecker]) 1884 return CK_NewDeleteChecker; 1885 } 1886 return None; 1887 } 1888 case AF_InnerBuffer: { 1889 if (ChecksEnabled[CK_InnerPointerChecker]) 1890 return CK_InnerPointerChecker; 1891 return None; 1892 } 1893 case AF_None: { 1894 llvm_unreachable("no family"); 1895 } 1896 } 1897 llvm_unreachable("unhandled family"); 1898 } 1899 1900 Optional<MallocChecker::CheckKind> 1901 MallocChecker::getCheckIfTracked(CheckerContext &C, SymbolRef Sym, 1902 bool IsALeakCheck) const { 1903 if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) 1904 return CK_MallocChecker; 1905 1906 const RefState *RS = C.getState()->get<RegionState>(Sym); 1907 assert(RS); 1908 return getCheckIfTracked(RS->getAllocationFamily(), IsALeakCheck); 1909 } 1910 1911 bool MallocChecker::SummarizeValue(raw_ostream &os, SVal V) { 1912 if (Optional<nonloc::ConcreteInt> IntVal = V.getAs<nonloc::ConcreteInt>()) 1913 os << "an integer (" << IntVal->getValue() << ")"; 1914 else if (Optional<loc::ConcreteInt> ConstAddr = V.getAs<loc::ConcreteInt>()) 1915 os << "a constant address (" << ConstAddr->getValue() << ")"; 1916 else if (Optional<loc::GotoLabel> Label = V.getAs<loc::GotoLabel>()) 1917 os << "the address of the label '" << Label->getLabel()->getName() << "'"; 1918 else 1919 return false; 1920 1921 return true; 1922 } 1923 1924 bool MallocChecker::SummarizeRegion(raw_ostream &os, 1925 const MemRegion *MR) { 1926 switch (MR->getKind()) { 1927 case MemRegion::FunctionCodeRegionKind: { 1928 const NamedDecl *FD = cast<FunctionCodeRegion>(MR)->getDecl(); 1929 if (FD) 1930 os << "the address of the function '" << *FD << '\''; 1931 else 1932 os << "the address of a function"; 1933 return true; 1934 } 1935 case MemRegion::BlockCodeRegionKind: 1936 os << "block text"; 1937 return true; 1938 case MemRegion::BlockDataRegionKind: 1939 // FIXME: where the block came from? 1940 os << "a block"; 1941 return true; 1942 default: { 1943 const MemSpaceRegion *MS = MR->getMemorySpace(); 1944 1945 if (isa<StackLocalsSpaceRegion>(MS)) { 1946 const VarRegion *VR = dyn_cast<VarRegion>(MR); 1947 const VarDecl *VD; 1948 if (VR) 1949 VD = VR->getDecl(); 1950 else 1951 VD = nullptr; 1952 1953 if (VD) 1954 os << "the address of the local variable '" << VD->getName() << "'"; 1955 else 1956 os << "the address of a local stack variable"; 1957 return true; 1958 } 1959 1960 if (isa<StackArgumentsSpaceRegion>(MS)) { 1961 const VarRegion *VR = dyn_cast<VarRegion>(MR); 1962 const VarDecl *VD; 1963 if (VR) 1964 VD = VR->getDecl(); 1965 else 1966 VD = nullptr; 1967 1968 if (VD) 1969 os << "the address of the parameter '" << VD->getName() << "'"; 1970 else 1971 os << "the address of a parameter"; 1972 return true; 1973 } 1974 1975 if (isa<GlobalsSpaceRegion>(MS)) { 1976 const VarRegion *VR = dyn_cast<VarRegion>(MR); 1977 const VarDecl *VD; 1978 if (VR) 1979 VD = VR->getDecl(); 1980 else 1981 VD = nullptr; 1982 1983 if (VD) { 1984 if (VD->isStaticLocal()) 1985 os << "the address of the static variable '" << VD->getName() << "'"; 1986 else 1987 os << "the address of the global variable '" << VD->getName() << "'"; 1988 } else 1989 os << "the address of a global variable"; 1990 return true; 1991 } 1992 1993 return false; 1994 } 1995 } 1996 } 1997 1998 void MallocChecker::HandleNonHeapDealloc(CheckerContext &C, SVal ArgVal, 1999 SourceRange Range, 2000 const Expr *DeallocExpr, 2001 AllocationFamily Family) const { 2002 2003 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) { 2004 C.addSink(); 2005 return; 2006 } 2007 2008 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 2009 if (!CheckKind.hasValue()) 2010 return; 2011 2012 if (ExplodedNode *N = C.generateErrorNode()) { 2013 if (!BT_BadFree[*CheckKind]) 2014 BT_BadFree[*CheckKind].reset(new BugType( 2015 CheckNames[*CheckKind], "Bad free", categories::MemoryError)); 2016 2017 SmallString<100> buf; 2018 llvm::raw_svector_ostream os(buf); 2019 2020 const MemRegion *MR = ArgVal.getAsRegion(); 2021 while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR)) 2022 MR = ER->getSuperRegion(); 2023 2024 os << "Argument to "; 2025 if (!printMemFnName(os, C, DeallocExpr)) 2026 os << "deallocator"; 2027 2028 os << " is "; 2029 bool Summarized = MR ? SummarizeRegion(os, MR) 2030 : SummarizeValue(os, ArgVal); 2031 if (Summarized) 2032 os << ", which is not memory allocated by "; 2033 else 2034 os << "not memory allocated by "; 2035 2036 printExpectedAllocName(os, Family); 2037 2038 auto R = std::make_unique<PathSensitiveBugReport>(*BT_BadFree[*CheckKind], 2039 os.str(), N); 2040 R->markInteresting(MR); 2041 R->addRange(Range); 2042 C.emitReport(std::move(R)); 2043 } 2044 } 2045 2046 void MallocChecker::HandleFreeAlloca(CheckerContext &C, SVal ArgVal, 2047 SourceRange Range) const { 2048 2049 Optional<MallocChecker::CheckKind> CheckKind; 2050 2051 if (ChecksEnabled[CK_MallocChecker]) 2052 CheckKind = CK_MallocChecker; 2053 else if (ChecksEnabled[CK_MismatchedDeallocatorChecker]) 2054 CheckKind = CK_MismatchedDeallocatorChecker; 2055 else { 2056 C.addSink(); 2057 return; 2058 } 2059 2060 if (ExplodedNode *N = C.generateErrorNode()) { 2061 if (!BT_FreeAlloca[*CheckKind]) 2062 BT_FreeAlloca[*CheckKind].reset(new BugType( 2063 CheckNames[*CheckKind], "Free alloca()", categories::MemoryError)); 2064 2065 auto R = std::make_unique<PathSensitiveBugReport>( 2066 *BT_FreeAlloca[*CheckKind], 2067 "Memory allocated by alloca() should not be deallocated", N); 2068 R->markInteresting(ArgVal.getAsRegion()); 2069 R->addRange(Range); 2070 C.emitReport(std::move(R)); 2071 } 2072 } 2073 2074 void MallocChecker::HandleMismatchedDealloc(CheckerContext &C, 2075 SourceRange Range, 2076 const Expr *DeallocExpr, 2077 const RefState *RS, SymbolRef Sym, 2078 bool OwnershipTransferred) const { 2079 2080 if (!ChecksEnabled[CK_MismatchedDeallocatorChecker]) { 2081 C.addSink(); 2082 return; 2083 } 2084 2085 if (ExplodedNode *N = C.generateErrorNode()) { 2086 if (!BT_MismatchedDealloc) 2087 BT_MismatchedDealloc.reset( 2088 new BugType(CheckNames[CK_MismatchedDeallocatorChecker], 2089 "Bad deallocator", categories::MemoryError)); 2090 2091 SmallString<100> buf; 2092 llvm::raw_svector_ostream os(buf); 2093 2094 const Expr *AllocExpr = cast<Expr>(RS->getStmt()); 2095 SmallString<20> AllocBuf; 2096 llvm::raw_svector_ostream AllocOs(AllocBuf); 2097 SmallString<20> DeallocBuf; 2098 llvm::raw_svector_ostream DeallocOs(DeallocBuf); 2099 2100 if (OwnershipTransferred) { 2101 if (printMemFnName(DeallocOs, C, DeallocExpr)) 2102 os << DeallocOs.str() << " cannot"; 2103 else 2104 os << "Cannot"; 2105 2106 os << " take ownership of memory"; 2107 2108 if (printMemFnName(AllocOs, C, AllocExpr)) 2109 os << " allocated by " << AllocOs.str(); 2110 } else { 2111 os << "Memory"; 2112 if (printMemFnName(AllocOs, C, AllocExpr)) 2113 os << " allocated by " << AllocOs.str(); 2114 2115 os << " should be deallocated by "; 2116 printExpectedDeallocName(os, RS->getAllocationFamily()); 2117 2118 if (printMemFnName(DeallocOs, C, DeallocExpr)) 2119 os << ", not " << DeallocOs.str(); 2120 } 2121 2122 auto R = std::make_unique<PathSensitiveBugReport>(*BT_MismatchedDealloc, 2123 os.str(), N); 2124 R->markInteresting(Sym); 2125 R->addRange(Range); 2126 R->addVisitor<MallocBugVisitor>(Sym); 2127 C.emitReport(std::move(R)); 2128 } 2129 } 2130 2131 void MallocChecker::HandleOffsetFree(CheckerContext &C, SVal ArgVal, 2132 SourceRange Range, const Expr *DeallocExpr, 2133 AllocationFamily Family, 2134 const Expr *AllocExpr) const { 2135 2136 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) { 2137 C.addSink(); 2138 return; 2139 } 2140 2141 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 2142 if (!CheckKind.hasValue()) 2143 return; 2144 2145 ExplodedNode *N = C.generateErrorNode(); 2146 if (!N) 2147 return; 2148 2149 if (!BT_OffsetFree[*CheckKind]) 2150 BT_OffsetFree[*CheckKind].reset(new BugType( 2151 CheckNames[*CheckKind], "Offset free", categories::MemoryError)); 2152 2153 SmallString<100> buf; 2154 llvm::raw_svector_ostream os(buf); 2155 SmallString<20> AllocNameBuf; 2156 llvm::raw_svector_ostream AllocNameOs(AllocNameBuf); 2157 2158 const MemRegion *MR = ArgVal.getAsRegion(); 2159 assert(MR && "Only MemRegion based symbols can have offset free errors"); 2160 2161 RegionOffset Offset = MR->getAsOffset(); 2162 assert((Offset.isValid() && 2163 !Offset.hasSymbolicOffset() && 2164 Offset.getOffset() != 0) && 2165 "Only symbols with a valid offset can have offset free errors"); 2166 2167 int offsetBytes = Offset.getOffset() / C.getASTContext().getCharWidth(); 2168 2169 os << "Argument to "; 2170 if (!printMemFnName(os, C, DeallocExpr)) 2171 os << "deallocator"; 2172 os << " is offset by " 2173 << offsetBytes 2174 << " " 2175 << ((abs(offsetBytes) > 1) ? "bytes" : "byte") 2176 << " from the start of "; 2177 if (AllocExpr && printMemFnName(AllocNameOs, C, AllocExpr)) 2178 os << "memory allocated by " << AllocNameOs.str(); 2179 else 2180 os << "allocated memory"; 2181 2182 auto R = std::make_unique<PathSensitiveBugReport>(*BT_OffsetFree[*CheckKind], 2183 os.str(), N); 2184 R->markInteresting(MR->getBaseRegion()); 2185 R->addRange(Range); 2186 C.emitReport(std::move(R)); 2187 } 2188 2189 void MallocChecker::HandleUseAfterFree(CheckerContext &C, SourceRange Range, 2190 SymbolRef Sym) const { 2191 2192 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker] && 2193 !ChecksEnabled[CK_InnerPointerChecker]) { 2194 C.addSink(); 2195 return; 2196 } 2197 2198 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2199 if (!CheckKind.hasValue()) 2200 return; 2201 2202 if (ExplodedNode *N = C.generateErrorNode()) { 2203 if (!BT_UseFree[*CheckKind]) 2204 BT_UseFree[*CheckKind].reset(new BugType( 2205 CheckNames[*CheckKind], "Use-after-free", categories::MemoryError)); 2206 2207 AllocationFamily AF = 2208 C.getState()->get<RegionState>(Sym)->getAllocationFamily(); 2209 2210 auto R = std::make_unique<PathSensitiveBugReport>( 2211 *BT_UseFree[*CheckKind], 2212 AF == AF_InnerBuffer 2213 ? "Inner pointer of container used after re/deallocation" 2214 : "Use of memory after it is freed", 2215 N); 2216 2217 R->markInteresting(Sym); 2218 R->addRange(Range); 2219 R->addVisitor<MallocBugVisitor>(Sym); 2220 2221 if (AF == AF_InnerBuffer) 2222 R->addVisitor(allocation_state::getInnerPointerBRVisitor(Sym)); 2223 2224 C.emitReport(std::move(R)); 2225 } 2226 } 2227 2228 void MallocChecker::HandleDoubleFree(CheckerContext &C, SourceRange Range, 2229 bool Released, SymbolRef Sym, 2230 SymbolRef PrevSym) const { 2231 2232 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) { 2233 C.addSink(); 2234 return; 2235 } 2236 2237 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2238 if (!CheckKind.hasValue()) 2239 return; 2240 2241 if (ExplodedNode *N = C.generateErrorNode()) { 2242 if (!BT_DoubleFree[*CheckKind]) 2243 BT_DoubleFree[*CheckKind].reset(new BugType( 2244 CheckNames[*CheckKind], "Double free", categories::MemoryError)); 2245 2246 auto R = std::make_unique<PathSensitiveBugReport>( 2247 *BT_DoubleFree[*CheckKind], 2248 (Released ? "Attempt to free released memory" 2249 : "Attempt to free non-owned memory"), 2250 N); 2251 R->addRange(Range); 2252 R->markInteresting(Sym); 2253 if (PrevSym) 2254 R->markInteresting(PrevSym); 2255 R->addVisitor<MallocBugVisitor>(Sym); 2256 C.emitReport(std::move(R)); 2257 } 2258 } 2259 2260 void MallocChecker::HandleDoubleDelete(CheckerContext &C, SymbolRef Sym) const { 2261 2262 if (!ChecksEnabled[CK_NewDeleteChecker]) { 2263 C.addSink(); 2264 return; 2265 } 2266 2267 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2268 if (!CheckKind.hasValue()) 2269 return; 2270 2271 if (ExplodedNode *N = C.generateErrorNode()) { 2272 if (!BT_DoubleDelete) 2273 BT_DoubleDelete.reset(new BugType(CheckNames[CK_NewDeleteChecker], 2274 "Double delete", 2275 categories::MemoryError)); 2276 2277 auto R = std::make_unique<PathSensitiveBugReport>( 2278 *BT_DoubleDelete, "Attempt to delete released memory", N); 2279 2280 R->markInteresting(Sym); 2281 R->addVisitor<MallocBugVisitor>(Sym); 2282 C.emitReport(std::move(R)); 2283 } 2284 } 2285 2286 void MallocChecker::HandleUseZeroAlloc(CheckerContext &C, SourceRange Range, 2287 SymbolRef Sym) const { 2288 2289 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) { 2290 C.addSink(); 2291 return; 2292 } 2293 2294 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2295 2296 if (!CheckKind.hasValue()) 2297 return; 2298 2299 if (ExplodedNode *N = C.generateErrorNode()) { 2300 if (!BT_UseZerroAllocated[*CheckKind]) 2301 BT_UseZerroAllocated[*CheckKind].reset( 2302 new BugType(CheckNames[*CheckKind], "Use of zero allocated", 2303 categories::MemoryError)); 2304 2305 auto R = std::make_unique<PathSensitiveBugReport>( 2306 *BT_UseZerroAllocated[*CheckKind], "Use of zero-allocated memory", N); 2307 2308 R->addRange(Range); 2309 if (Sym) { 2310 R->markInteresting(Sym); 2311 R->addVisitor<MallocBugVisitor>(Sym); 2312 } 2313 C.emitReport(std::move(R)); 2314 } 2315 } 2316 2317 void MallocChecker::HandleFunctionPtrFree(CheckerContext &C, SVal ArgVal, 2318 SourceRange Range, 2319 const Expr *FreeExpr, 2320 AllocationFamily Family) const { 2321 if (!ChecksEnabled[CK_MallocChecker]) { 2322 C.addSink(); 2323 return; 2324 } 2325 2326 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 2327 if (!CheckKind.hasValue()) 2328 return; 2329 2330 if (ExplodedNode *N = C.generateErrorNode()) { 2331 if (!BT_BadFree[*CheckKind]) 2332 BT_BadFree[*CheckKind].reset(new BugType( 2333 CheckNames[*CheckKind], "Bad free", categories::MemoryError)); 2334 2335 SmallString<100> Buf; 2336 llvm::raw_svector_ostream Os(Buf); 2337 2338 const MemRegion *MR = ArgVal.getAsRegion(); 2339 while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR)) 2340 MR = ER->getSuperRegion(); 2341 2342 Os << "Argument to "; 2343 if (!printMemFnName(Os, C, FreeExpr)) 2344 Os << "deallocator"; 2345 2346 Os << " is a function pointer"; 2347 2348 auto R = std::make_unique<PathSensitiveBugReport>(*BT_BadFree[*CheckKind], 2349 Os.str(), N); 2350 R->markInteresting(MR); 2351 R->addRange(Range); 2352 C.emitReport(std::move(R)); 2353 } 2354 } 2355 2356 ProgramStateRef 2357 MallocChecker::ReallocMemAux(CheckerContext &C, const CallEvent &Call, 2358 bool ShouldFreeOnFail, ProgramStateRef State, 2359 AllocationFamily Family, bool SuffixWithN) const { 2360 if (!State) 2361 return nullptr; 2362 2363 const CallExpr *CE = cast<CallExpr>(Call.getOriginExpr()); 2364 2365 if (SuffixWithN && CE->getNumArgs() < 3) 2366 return nullptr; 2367 else if (CE->getNumArgs() < 2) 2368 return nullptr; 2369 2370 const Expr *arg0Expr = CE->getArg(0); 2371 SVal Arg0Val = C.getSVal(arg0Expr); 2372 if (!Arg0Val.getAs<DefinedOrUnknownSVal>()) 2373 return nullptr; 2374 DefinedOrUnknownSVal arg0Val = Arg0Val.castAs<DefinedOrUnknownSVal>(); 2375 2376 SValBuilder &svalBuilder = C.getSValBuilder(); 2377 2378 DefinedOrUnknownSVal PtrEQ = 2379 svalBuilder.evalEQ(State, arg0Val, svalBuilder.makeNull()); 2380 2381 // Get the size argument. 2382 const Expr *Arg1 = CE->getArg(1); 2383 2384 // Get the value of the size argument. 2385 SVal TotalSize = C.getSVal(Arg1); 2386 if (SuffixWithN) 2387 TotalSize = evalMulForBufferSize(C, Arg1, CE->getArg(2)); 2388 if (!TotalSize.getAs<DefinedOrUnknownSVal>()) 2389 return nullptr; 2390 2391 // Compare the size argument to 0. 2392 DefinedOrUnknownSVal SizeZero = 2393 svalBuilder.evalEQ(State, TotalSize.castAs<DefinedOrUnknownSVal>(), 2394 svalBuilder.makeIntValWithPtrWidth(0, false)); 2395 2396 ProgramStateRef StatePtrIsNull, StatePtrNotNull; 2397 std::tie(StatePtrIsNull, StatePtrNotNull) = State->assume(PtrEQ); 2398 ProgramStateRef StateSizeIsZero, StateSizeNotZero; 2399 std::tie(StateSizeIsZero, StateSizeNotZero) = State->assume(SizeZero); 2400 // We only assume exceptional states if they are definitely true; if the 2401 // state is under-constrained, assume regular realloc behavior. 2402 bool PrtIsNull = StatePtrIsNull && !StatePtrNotNull; 2403 bool SizeIsZero = StateSizeIsZero && !StateSizeNotZero; 2404 2405 // If the ptr is NULL and the size is not 0, the call is equivalent to 2406 // malloc(size). 2407 if (PrtIsNull && !SizeIsZero) { 2408 ProgramStateRef stateMalloc = MallocMemAux( 2409 C, Call, TotalSize, UndefinedVal(), StatePtrIsNull, Family); 2410 return stateMalloc; 2411 } 2412 2413 if (PrtIsNull && SizeIsZero) 2414 return State; 2415 2416 assert(!PrtIsNull); 2417 2418 bool IsKnownToBeAllocated = false; 2419 2420 // If the size is 0, free the memory. 2421 if (SizeIsZero) 2422 // The semantics of the return value are: 2423 // If size was equal to 0, either NULL or a pointer suitable to be passed 2424 // to free() is returned. We just free the input pointer and do not add 2425 // any constrains on the output pointer. 2426 if (ProgramStateRef stateFree = FreeMemAux( 2427 C, Call, StateSizeIsZero, 0, false, IsKnownToBeAllocated, Family)) 2428 return stateFree; 2429 2430 // Default behavior. 2431 if (ProgramStateRef stateFree = 2432 FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocated, Family)) { 2433 2434 ProgramStateRef stateRealloc = 2435 MallocMemAux(C, Call, TotalSize, UnknownVal(), stateFree, Family); 2436 if (!stateRealloc) 2437 return nullptr; 2438 2439 OwnershipAfterReallocKind Kind = OAR_ToBeFreedAfterFailure; 2440 if (ShouldFreeOnFail) 2441 Kind = OAR_FreeOnFailure; 2442 else if (!IsKnownToBeAllocated) 2443 Kind = OAR_DoNotTrackAfterFailure; 2444 2445 // Get the from and to pointer symbols as in toPtr = realloc(fromPtr, size). 2446 SymbolRef FromPtr = arg0Val.getLocSymbolInBase(); 2447 SVal RetVal = C.getSVal(CE); 2448 SymbolRef ToPtr = RetVal.getAsSymbol(); 2449 assert(FromPtr && ToPtr && 2450 "By this point, FreeMemAux and MallocMemAux should have checked " 2451 "whether the argument or the return value is symbolic!"); 2452 2453 // Record the info about the reallocated symbol so that we could properly 2454 // process failed reallocation. 2455 stateRealloc = stateRealloc->set<ReallocPairs>(ToPtr, 2456 ReallocPair(FromPtr, Kind)); 2457 // The reallocated symbol should stay alive for as long as the new symbol. 2458 C.getSymbolManager().addSymbolDependency(ToPtr, FromPtr); 2459 return stateRealloc; 2460 } 2461 return nullptr; 2462 } 2463 2464 ProgramStateRef MallocChecker::CallocMem(CheckerContext &C, 2465 const CallEvent &Call, 2466 ProgramStateRef State) { 2467 if (!State) 2468 return nullptr; 2469 2470 if (Call.getNumArgs() < 2) 2471 return nullptr; 2472 2473 SValBuilder &svalBuilder = C.getSValBuilder(); 2474 SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy); 2475 SVal TotalSize = 2476 evalMulForBufferSize(C, Call.getArgExpr(0), Call.getArgExpr(1)); 2477 2478 return MallocMemAux(C, Call, TotalSize, zeroVal, State, AF_Malloc); 2479 } 2480 2481 MallocChecker::LeakInfo MallocChecker::getAllocationSite(const ExplodedNode *N, 2482 SymbolRef Sym, 2483 CheckerContext &C) { 2484 const LocationContext *LeakContext = N->getLocationContext(); 2485 // Walk the ExplodedGraph backwards and find the first node that referred to 2486 // the tracked symbol. 2487 const ExplodedNode *AllocNode = N; 2488 const MemRegion *ReferenceRegion = nullptr; 2489 2490 while (N) { 2491 ProgramStateRef State = N->getState(); 2492 if (!State->get<RegionState>(Sym)) 2493 break; 2494 2495 // Find the most recent expression bound to the symbol in the current 2496 // context. 2497 if (!ReferenceRegion) { 2498 if (const MemRegion *MR = C.getLocationRegionIfPostStore(N)) { 2499 SVal Val = State->getSVal(MR); 2500 if (Val.getAsLocSymbol() == Sym) { 2501 const VarRegion *VR = MR->getBaseRegion()->getAs<VarRegion>(); 2502 // Do not show local variables belonging to a function other than 2503 // where the error is reported. 2504 if (!VR || (VR->getStackFrame() == LeakContext->getStackFrame())) 2505 ReferenceRegion = MR; 2506 } 2507 } 2508 } 2509 2510 // Allocation node, is the last node in the current or parent context in 2511 // which the symbol was tracked. 2512 const LocationContext *NContext = N->getLocationContext(); 2513 if (NContext == LeakContext || 2514 NContext->isParentOf(LeakContext)) 2515 AllocNode = N; 2516 N = N->pred_empty() ? nullptr : *(N->pred_begin()); 2517 } 2518 2519 return LeakInfo(AllocNode, ReferenceRegion); 2520 } 2521 2522 void MallocChecker::HandleLeak(SymbolRef Sym, ExplodedNode *N, 2523 CheckerContext &C) const { 2524 2525 if (!ChecksEnabled[CK_MallocChecker] && 2526 !ChecksEnabled[CK_NewDeleteLeaksChecker]) 2527 return; 2528 2529 const RefState *RS = C.getState()->get<RegionState>(Sym); 2530 assert(RS && "cannot leak an untracked symbol"); 2531 AllocationFamily Family = RS->getAllocationFamily(); 2532 2533 if (Family == AF_Alloca) 2534 return; 2535 2536 Optional<MallocChecker::CheckKind> 2537 CheckKind = getCheckIfTracked(Family, true); 2538 2539 if (!CheckKind.hasValue()) 2540 return; 2541 2542 assert(N); 2543 if (!BT_Leak[*CheckKind]) { 2544 // Leaks should not be reported if they are post-dominated by a sink: 2545 // (1) Sinks are higher importance bugs. 2546 // (2) NoReturnFunctionChecker uses sink nodes to represent paths ending 2547 // with __noreturn functions such as assert() or exit(). We choose not 2548 // to report leaks on such paths. 2549 BT_Leak[*CheckKind].reset(new BugType(CheckNames[*CheckKind], "Memory leak", 2550 categories::MemoryError, 2551 /*SuppressOnSink=*/true)); 2552 } 2553 2554 // Most bug reports are cached at the location where they occurred. 2555 // With leaks, we want to unique them by the location where they were 2556 // allocated, and only report a single path. 2557 PathDiagnosticLocation LocUsedForUniqueing; 2558 const ExplodedNode *AllocNode = nullptr; 2559 const MemRegion *Region = nullptr; 2560 std::tie(AllocNode, Region) = getAllocationSite(N, Sym, C); 2561 2562 const Stmt *AllocationStmt = AllocNode->getStmtForDiagnostics(); 2563 if (AllocationStmt) 2564 LocUsedForUniqueing = PathDiagnosticLocation::createBegin(AllocationStmt, 2565 C.getSourceManager(), 2566 AllocNode->getLocationContext()); 2567 2568 SmallString<200> buf; 2569 llvm::raw_svector_ostream os(buf); 2570 if (Region && Region->canPrintPretty()) { 2571 os << "Potential leak of memory pointed to by "; 2572 Region->printPretty(os); 2573 } else { 2574 os << "Potential memory leak"; 2575 } 2576 2577 auto R = std::make_unique<PathSensitiveBugReport>( 2578 *BT_Leak[*CheckKind], os.str(), N, LocUsedForUniqueing, 2579 AllocNode->getLocationContext()->getDecl()); 2580 R->markInteresting(Sym); 2581 R->addVisitor<MallocBugVisitor>(Sym, true); 2582 C.emitReport(std::move(R)); 2583 } 2584 2585 void MallocChecker::checkDeadSymbols(SymbolReaper &SymReaper, 2586 CheckerContext &C) const 2587 { 2588 ProgramStateRef state = C.getState(); 2589 RegionStateTy OldRS = state->get<RegionState>(); 2590 RegionStateTy::Factory &F = state->get_context<RegionState>(); 2591 2592 RegionStateTy RS = OldRS; 2593 SmallVector<SymbolRef, 2> Errors; 2594 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 2595 if (SymReaper.isDead(I->first)) { 2596 if (I->second.isAllocated() || I->second.isAllocatedOfSizeZero()) 2597 Errors.push_back(I->first); 2598 // Remove the dead symbol from the map. 2599 RS = F.remove(RS, I->first); 2600 } 2601 } 2602 2603 if (RS == OldRS) { 2604 // We shouldn't have touched other maps yet. 2605 assert(state->get<ReallocPairs>() == 2606 C.getState()->get<ReallocPairs>()); 2607 assert(state->get<FreeReturnValue>() == 2608 C.getState()->get<FreeReturnValue>()); 2609 return; 2610 } 2611 2612 // Cleanup the Realloc Pairs Map. 2613 ReallocPairsTy RP = state->get<ReallocPairs>(); 2614 for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) { 2615 if (SymReaper.isDead(I->first) || 2616 SymReaper.isDead(I->second.ReallocatedSym)) { 2617 state = state->remove<ReallocPairs>(I->first); 2618 } 2619 } 2620 2621 // Cleanup the FreeReturnValue Map. 2622 FreeReturnValueTy FR = state->get<FreeReturnValue>(); 2623 for (FreeReturnValueTy::iterator I = FR.begin(), E = FR.end(); I != E; ++I) { 2624 if (SymReaper.isDead(I->first) || 2625 SymReaper.isDead(I->second)) { 2626 state = state->remove<FreeReturnValue>(I->first); 2627 } 2628 } 2629 2630 // Generate leak node. 2631 ExplodedNode *N = C.getPredecessor(); 2632 if (!Errors.empty()) { 2633 static CheckerProgramPointTag Tag("MallocChecker", "DeadSymbolsLeak"); 2634 N = C.generateNonFatalErrorNode(C.getState(), &Tag); 2635 if (N) { 2636 for (SmallVectorImpl<SymbolRef>::iterator 2637 I = Errors.begin(), E = Errors.end(); I != E; ++I) { 2638 HandleLeak(*I, N, C); 2639 } 2640 } 2641 } 2642 2643 C.addTransition(state->set<RegionState>(RS), N); 2644 } 2645 2646 void MallocChecker::checkPreCall(const CallEvent &Call, 2647 CheckerContext &C) const { 2648 2649 if (const auto *DC = dyn_cast<CXXDeallocatorCall>(&Call)) { 2650 const CXXDeleteExpr *DE = DC->getOriginExpr(); 2651 2652 if (!ChecksEnabled[CK_NewDeleteChecker]) 2653 if (SymbolRef Sym = C.getSVal(DE->getArgument()).getAsSymbol()) 2654 checkUseAfterFree(Sym, C, DE->getArgument()); 2655 2656 if (!isStandardNewDelete(DC->getDecl())) 2657 return; 2658 2659 ProgramStateRef State = C.getState(); 2660 bool IsKnownToBeAllocated; 2661 State = FreeMemAux(C, DE->getArgument(), Call, State, 2662 /*Hold*/ false, IsKnownToBeAllocated, 2663 (DE->isArrayForm() ? AF_CXXNewArray : AF_CXXNew)); 2664 2665 C.addTransition(State); 2666 return; 2667 } 2668 2669 if (const auto *DC = dyn_cast<CXXDestructorCall>(&Call)) { 2670 SymbolRef Sym = DC->getCXXThisVal().getAsSymbol(); 2671 if (!Sym || checkDoubleDelete(Sym, C)) 2672 return; 2673 } 2674 2675 // We will check for double free in the post visit. 2676 if (const AnyFunctionCall *FC = dyn_cast<AnyFunctionCall>(&Call)) { 2677 const FunctionDecl *FD = FC->getDecl(); 2678 if (!FD) 2679 return; 2680 2681 if (ChecksEnabled[CK_MallocChecker] && isFreeingCall(Call)) 2682 return; 2683 } 2684 2685 // Check if the callee of a method is deleted. 2686 if (const CXXInstanceCall *CC = dyn_cast<CXXInstanceCall>(&Call)) { 2687 SymbolRef Sym = CC->getCXXThisVal().getAsSymbol(); 2688 if (!Sym || checkUseAfterFree(Sym, C, CC->getCXXThisExpr())) 2689 return; 2690 } 2691 2692 // Check arguments for being used after free. 2693 for (unsigned I = 0, E = Call.getNumArgs(); I != E; ++I) { 2694 SVal ArgSVal = Call.getArgSVal(I); 2695 if (ArgSVal.getAs<Loc>()) { 2696 SymbolRef Sym = ArgSVal.getAsSymbol(); 2697 if (!Sym) 2698 continue; 2699 if (checkUseAfterFree(Sym, C, Call.getArgExpr(I))) 2700 return; 2701 } 2702 } 2703 } 2704 2705 void MallocChecker::checkPreStmt(const ReturnStmt *S, 2706 CheckerContext &C) const { 2707 checkEscapeOnReturn(S, C); 2708 } 2709 2710 // In the CFG, automatic destructors come after the return statement. 2711 // This callback checks for returning memory that is freed by automatic 2712 // destructors, as those cannot be reached in checkPreStmt(). 2713 void MallocChecker::checkEndFunction(const ReturnStmt *S, 2714 CheckerContext &C) const { 2715 checkEscapeOnReturn(S, C); 2716 } 2717 2718 void MallocChecker::checkEscapeOnReturn(const ReturnStmt *S, 2719 CheckerContext &C) const { 2720 if (!S) 2721 return; 2722 2723 const Expr *E = S->getRetValue(); 2724 if (!E) 2725 return; 2726 2727 // Check if we are returning a symbol. 2728 ProgramStateRef State = C.getState(); 2729 SVal RetVal = C.getSVal(E); 2730 SymbolRef Sym = RetVal.getAsSymbol(); 2731 if (!Sym) 2732 // If we are returning a field of the allocated struct or an array element, 2733 // the callee could still free the memory. 2734 // TODO: This logic should be a part of generic symbol escape callback. 2735 if (const MemRegion *MR = RetVal.getAsRegion()) 2736 if (isa<FieldRegion>(MR) || isa<ElementRegion>(MR)) 2737 if (const SymbolicRegion *BMR = 2738 dyn_cast<SymbolicRegion>(MR->getBaseRegion())) 2739 Sym = BMR->getSymbol(); 2740 2741 // Check if we are returning freed memory. 2742 if (Sym) 2743 checkUseAfterFree(Sym, C, E); 2744 } 2745 2746 // TODO: Blocks should be either inlined or should call invalidate regions 2747 // upon invocation. After that's in place, special casing here will not be 2748 // needed. 2749 void MallocChecker::checkPostStmt(const BlockExpr *BE, 2750 CheckerContext &C) const { 2751 2752 // Scan the BlockDecRefExprs for any object the retain count checker 2753 // may be tracking. 2754 if (!BE->getBlockDecl()->hasCaptures()) 2755 return; 2756 2757 ProgramStateRef state = C.getState(); 2758 const BlockDataRegion *R = 2759 cast<BlockDataRegion>(C.getSVal(BE).getAsRegion()); 2760 2761 BlockDataRegion::referenced_vars_iterator I = R->referenced_vars_begin(), 2762 E = R->referenced_vars_end(); 2763 2764 if (I == E) 2765 return; 2766 2767 SmallVector<const MemRegion*, 10> Regions; 2768 const LocationContext *LC = C.getLocationContext(); 2769 MemRegionManager &MemMgr = C.getSValBuilder().getRegionManager(); 2770 2771 for ( ; I != E; ++I) { 2772 const VarRegion *VR = I.getCapturedRegion(); 2773 if (VR->getSuperRegion() == R) { 2774 VR = MemMgr.getVarRegion(VR->getDecl(), LC); 2775 } 2776 Regions.push_back(VR); 2777 } 2778 2779 state = 2780 state->scanReachableSymbols<StopTrackingCallback>(Regions).getState(); 2781 C.addTransition(state); 2782 } 2783 2784 static bool isReleased(SymbolRef Sym, CheckerContext &C) { 2785 assert(Sym); 2786 const RefState *RS = C.getState()->get<RegionState>(Sym); 2787 return (RS && RS->isReleased()); 2788 } 2789 2790 bool MallocChecker::suppressDeallocationsInSuspiciousContexts( 2791 const CallEvent &Call, CheckerContext &C) const { 2792 if (Call.getNumArgs() == 0) 2793 return false; 2794 2795 StringRef FunctionStr = ""; 2796 if (const auto *FD = dyn_cast<FunctionDecl>(C.getStackFrame()->getDecl())) 2797 if (const Stmt *Body = FD->getBody()) 2798 if (Body->getBeginLoc().isValid()) 2799 FunctionStr = 2800 Lexer::getSourceText(CharSourceRange::getTokenRange( 2801 {FD->getBeginLoc(), Body->getBeginLoc()}), 2802 C.getSourceManager(), C.getLangOpts()); 2803 2804 // We do not model the Integer Set Library's retain-count based allocation. 2805 if (!FunctionStr.contains("__isl_")) 2806 return false; 2807 2808 ProgramStateRef State = C.getState(); 2809 2810 for (const Expr *Arg : cast<CallExpr>(Call.getOriginExpr())->arguments()) 2811 if (SymbolRef Sym = C.getSVal(Arg).getAsSymbol()) 2812 if (const RefState *RS = State->get<RegionState>(Sym)) 2813 State = State->set<RegionState>(Sym, RefState::getEscaped(RS)); 2814 2815 C.addTransition(State); 2816 return true; 2817 } 2818 2819 bool MallocChecker::checkUseAfterFree(SymbolRef Sym, CheckerContext &C, 2820 const Stmt *S) const { 2821 2822 if (isReleased(Sym, C)) { 2823 HandleUseAfterFree(C, S->getSourceRange(), Sym); 2824 return true; 2825 } 2826 2827 return false; 2828 } 2829 2830 void MallocChecker::checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, 2831 const Stmt *S) const { 2832 assert(Sym); 2833 2834 if (const RefState *RS = C.getState()->get<RegionState>(Sym)) { 2835 if (RS->isAllocatedOfSizeZero()) 2836 HandleUseZeroAlloc(C, RS->getStmt()->getSourceRange(), Sym); 2837 } 2838 else if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) { 2839 HandleUseZeroAlloc(C, S->getSourceRange(), Sym); 2840 } 2841 } 2842 2843 bool MallocChecker::checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const { 2844 2845 if (isReleased(Sym, C)) { 2846 HandleDoubleDelete(C, Sym); 2847 return true; 2848 } 2849 return false; 2850 } 2851 2852 // Check if the location is a freed symbolic region. 2853 void MallocChecker::checkLocation(SVal l, bool isLoad, const Stmt *S, 2854 CheckerContext &C) const { 2855 SymbolRef Sym = l.getLocSymbolInBase(); 2856 if (Sym) { 2857 checkUseAfterFree(Sym, C, S); 2858 checkUseZeroAllocated(Sym, C, S); 2859 } 2860 } 2861 2862 // If a symbolic region is assumed to NULL (or another constant), stop tracking 2863 // it - assuming that allocation failed on this path. 2864 ProgramStateRef MallocChecker::evalAssume(ProgramStateRef state, 2865 SVal Cond, 2866 bool Assumption) const { 2867 RegionStateTy RS = state->get<RegionState>(); 2868 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 2869 // If the symbol is assumed to be NULL, remove it from consideration. 2870 ConstraintManager &CMgr = state->getConstraintManager(); 2871 ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey()); 2872 if (AllocFailed.isConstrainedTrue()) 2873 state = state->remove<RegionState>(I.getKey()); 2874 } 2875 2876 // Realloc returns 0 when reallocation fails, which means that we should 2877 // restore the state of the pointer being reallocated. 2878 ReallocPairsTy RP = state->get<ReallocPairs>(); 2879 for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) { 2880 // If the symbol is assumed to be NULL, remove it from consideration. 2881 ConstraintManager &CMgr = state->getConstraintManager(); 2882 ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey()); 2883 if (!AllocFailed.isConstrainedTrue()) 2884 continue; 2885 2886 SymbolRef ReallocSym = I.getData().ReallocatedSym; 2887 if (const RefState *RS = state->get<RegionState>(ReallocSym)) { 2888 if (RS->isReleased()) { 2889 switch (I.getData().Kind) { 2890 case OAR_ToBeFreedAfterFailure: 2891 state = state->set<RegionState>(ReallocSym, 2892 RefState::getAllocated(RS->getAllocationFamily(), RS->getStmt())); 2893 break; 2894 case OAR_DoNotTrackAfterFailure: 2895 state = state->remove<RegionState>(ReallocSym); 2896 break; 2897 default: 2898 assert(I.getData().Kind == OAR_FreeOnFailure); 2899 } 2900 } 2901 } 2902 state = state->remove<ReallocPairs>(I.getKey()); 2903 } 2904 2905 return state; 2906 } 2907 2908 bool MallocChecker::mayFreeAnyEscapedMemoryOrIsModeledExplicitly( 2909 const CallEvent *Call, 2910 ProgramStateRef State, 2911 SymbolRef &EscapingSymbol) const { 2912 assert(Call); 2913 EscapingSymbol = nullptr; 2914 2915 // For now, assume that any C++ or block call can free memory. 2916 // TODO: If we want to be more optimistic here, we'll need to make sure that 2917 // regions escape to C++ containers. They seem to do that even now, but for 2918 // mysterious reasons. 2919 if (!(isa<SimpleFunctionCall>(Call) || isa<ObjCMethodCall>(Call))) 2920 return true; 2921 2922 // Check Objective-C messages by selector name. 2923 if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Call)) { 2924 // If it's not a framework call, or if it takes a callback, assume it 2925 // can free memory. 2926 if (!Call->isInSystemHeader() || Call->argumentsMayEscape()) 2927 return true; 2928 2929 // If it's a method we know about, handle it explicitly post-call. 2930 // This should happen before the "freeWhenDone" check below. 2931 if (isKnownDeallocObjCMethodName(*Msg)) 2932 return false; 2933 2934 // If there's a "freeWhenDone" parameter, but the method isn't one we know 2935 // about, we can't be sure that the object will use free() to deallocate the 2936 // memory, so we can't model it explicitly. The best we can do is use it to 2937 // decide whether the pointer escapes. 2938 if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(*Msg)) 2939 return *FreeWhenDone; 2940 2941 // If the first selector piece ends with "NoCopy", and there is no 2942 // "freeWhenDone" parameter set to zero, we know ownership is being 2943 // transferred. Again, though, we can't be sure that the object will use 2944 // free() to deallocate the memory, so we can't model it explicitly. 2945 StringRef FirstSlot = Msg->getSelector().getNameForSlot(0); 2946 if (FirstSlot.endswith("NoCopy")) 2947 return true; 2948 2949 // If the first selector starts with addPointer, insertPointer, 2950 // or replacePointer, assume we are dealing with NSPointerArray or similar. 2951 // This is similar to C++ containers (vector); we still might want to check 2952 // that the pointers get freed by following the container itself. 2953 if (FirstSlot.startswith("addPointer") || 2954 FirstSlot.startswith("insertPointer") || 2955 FirstSlot.startswith("replacePointer") || 2956 FirstSlot.equals("valueWithPointer")) { 2957 return true; 2958 } 2959 2960 // We should escape receiver on call to 'init'. This is especially relevant 2961 // to the receiver, as the corresponding symbol is usually not referenced 2962 // after the call. 2963 if (Msg->getMethodFamily() == OMF_init) { 2964 EscapingSymbol = Msg->getReceiverSVal().getAsSymbol(); 2965 return true; 2966 } 2967 2968 // Otherwise, assume that the method does not free memory. 2969 // Most framework methods do not free memory. 2970 return false; 2971 } 2972 2973 // At this point the only thing left to handle is straight function calls. 2974 const FunctionDecl *FD = cast<SimpleFunctionCall>(Call)->getDecl(); 2975 if (!FD) 2976 return true; 2977 2978 // If it's one of the allocation functions we can reason about, we model 2979 // its behavior explicitly. 2980 if (isMemCall(*Call)) 2981 return false; 2982 2983 // If it's not a system call, assume it frees memory. 2984 if (!Call->isInSystemHeader()) 2985 return true; 2986 2987 // White list the system functions whose arguments escape. 2988 const IdentifierInfo *II = FD->getIdentifier(); 2989 if (!II) 2990 return true; 2991 StringRef FName = II->getName(); 2992 2993 // White list the 'XXXNoCopy' CoreFoundation functions. 2994 // We specifically check these before 2995 if (FName.endswith("NoCopy")) { 2996 // Look for the deallocator argument. We know that the memory ownership 2997 // is not transferred only if the deallocator argument is 2998 // 'kCFAllocatorNull'. 2999 for (unsigned i = 1; i < Call->getNumArgs(); ++i) { 3000 const Expr *ArgE = Call->getArgExpr(i)->IgnoreParenCasts(); 3001 if (const DeclRefExpr *DE = dyn_cast<DeclRefExpr>(ArgE)) { 3002 StringRef DeallocatorName = DE->getFoundDecl()->getName(); 3003 if (DeallocatorName == "kCFAllocatorNull") 3004 return false; 3005 } 3006 } 3007 return true; 3008 } 3009 3010 // Associating streams with malloced buffers. The pointer can escape if 3011 // 'closefn' is specified (and if that function does free memory), 3012 // but it will not if closefn is not specified. 3013 // Currently, we do not inspect the 'closefn' function (PR12101). 3014 if (FName == "funopen") 3015 if (Call->getNumArgs() >= 4 && Call->getArgSVal(4).isConstant(0)) 3016 return false; 3017 3018 // Do not warn on pointers passed to 'setbuf' when used with std streams, 3019 // these leaks might be intentional when setting the buffer for stdio. 3020 // http://stackoverflow.com/questions/2671151/who-frees-setvbuf-buffer 3021 if (FName == "setbuf" || FName =="setbuffer" || 3022 FName == "setlinebuf" || FName == "setvbuf") { 3023 if (Call->getNumArgs() >= 1) { 3024 const Expr *ArgE = Call->getArgExpr(0)->IgnoreParenCasts(); 3025 if (const DeclRefExpr *ArgDRE = dyn_cast<DeclRefExpr>(ArgE)) 3026 if (const VarDecl *D = dyn_cast<VarDecl>(ArgDRE->getDecl())) 3027 if (D->getCanonicalDecl()->getName().find("std") != StringRef::npos) 3028 return true; 3029 } 3030 } 3031 3032 // A bunch of other functions which either take ownership of a pointer or 3033 // wrap the result up in a struct or object, meaning it can be freed later. 3034 // (See RetainCountChecker.) Not all the parameters here are invalidated, 3035 // but the Malloc checker cannot differentiate between them. The right way 3036 // of doing this would be to implement a pointer escapes callback. 3037 if (FName == "CGBitmapContextCreate" || 3038 FName == "CGBitmapContextCreateWithData" || 3039 FName == "CVPixelBufferCreateWithBytes" || 3040 FName == "CVPixelBufferCreateWithPlanarBytes" || 3041 FName == "OSAtomicEnqueue") { 3042 return true; 3043 } 3044 3045 if (FName == "postEvent" && 3046 FD->getQualifiedNameAsString() == "QCoreApplication::postEvent") { 3047 return true; 3048 } 3049 3050 if (FName == "connectImpl" && 3051 FD->getQualifiedNameAsString() == "QObject::connectImpl") { 3052 return true; 3053 } 3054 3055 // Handle cases where we know a buffer's /address/ can escape. 3056 // Note that the above checks handle some special cases where we know that 3057 // even though the address escapes, it's still our responsibility to free the 3058 // buffer. 3059 if (Call->argumentsMayEscape()) 3060 return true; 3061 3062 // Otherwise, assume that the function does not free memory. 3063 // Most system calls do not free the memory. 3064 return false; 3065 } 3066 3067 ProgramStateRef MallocChecker::checkPointerEscape(ProgramStateRef State, 3068 const InvalidatedSymbols &Escaped, 3069 const CallEvent *Call, 3070 PointerEscapeKind Kind) const { 3071 return checkPointerEscapeAux(State, Escaped, Call, Kind, 3072 /*IsConstPointerEscape*/ false); 3073 } 3074 3075 ProgramStateRef MallocChecker::checkConstPointerEscape(ProgramStateRef State, 3076 const InvalidatedSymbols &Escaped, 3077 const CallEvent *Call, 3078 PointerEscapeKind Kind) const { 3079 // If a const pointer escapes, it may not be freed(), but it could be deleted. 3080 return checkPointerEscapeAux(State, Escaped, Call, Kind, 3081 /*IsConstPointerEscape*/ true); 3082 } 3083 3084 static bool checkIfNewOrNewArrayFamily(const RefState *RS) { 3085 return (RS->getAllocationFamily() == AF_CXXNewArray || 3086 RS->getAllocationFamily() == AF_CXXNew); 3087 } 3088 3089 ProgramStateRef MallocChecker::checkPointerEscapeAux( 3090 ProgramStateRef State, const InvalidatedSymbols &Escaped, 3091 const CallEvent *Call, PointerEscapeKind Kind, 3092 bool IsConstPointerEscape) const { 3093 // If we know that the call does not free memory, or we want to process the 3094 // call later, keep tracking the top level arguments. 3095 SymbolRef EscapingSymbol = nullptr; 3096 if (Kind == PSK_DirectEscapeOnCall && 3097 !mayFreeAnyEscapedMemoryOrIsModeledExplicitly(Call, State, 3098 EscapingSymbol) && 3099 !EscapingSymbol) { 3100 return State; 3101 } 3102 3103 for (InvalidatedSymbols::const_iterator I = Escaped.begin(), 3104 E = Escaped.end(); 3105 I != E; ++I) { 3106 SymbolRef sym = *I; 3107 3108 if (EscapingSymbol && EscapingSymbol != sym) 3109 continue; 3110 3111 if (const RefState *RS = State->get<RegionState>(sym)) 3112 if (RS->isAllocated() || RS->isAllocatedOfSizeZero()) 3113 if (!IsConstPointerEscape || checkIfNewOrNewArrayFamily(RS)) 3114 State = State->set<RegionState>(sym, RefState::getEscaped(RS)); 3115 } 3116 return State; 3117 } 3118 3119 bool MallocChecker::isArgZERO_SIZE_PTR(ProgramStateRef State, CheckerContext &C, 3120 SVal ArgVal) const { 3121 if (!KernelZeroSizePtrValue) 3122 KernelZeroSizePtrValue = 3123 tryExpandAsInteger("ZERO_SIZE_PTR", C.getPreprocessor()); 3124 3125 const llvm::APSInt *ArgValKnown = 3126 C.getSValBuilder().getKnownValue(State, ArgVal); 3127 return ArgValKnown && *KernelZeroSizePtrValue && 3128 ArgValKnown->getSExtValue() == **KernelZeroSizePtrValue; 3129 } 3130 3131 static SymbolRef findFailedReallocSymbol(ProgramStateRef currState, 3132 ProgramStateRef prevState) { 3133 ReallocPairsTy currMap = currState->get<ReallocPairs>(); 3134 ReallocPairsTy prevMap = prevState->get<ReallocPairs>(); 3135 3136 for (const ReallocPairsTy::value_type &Pair : prevMap) { 3137 SymbolRef sym = Pair.first; 3138 if (!currMap.lookup(sym)) 3139 return sym; 3140 } 3141 3142 return nullptr; 3143 } 3144 3145 static bool isReferenceCountingPointerDestructor(const CXXDestructorDecl *DD) { 3146 if (const IdentifierInfo *II = DD->getParent()->getIdentifier()) { 3147 StringRef N = II->getName(); 3148 if (N.contains_insensitive("ptr") || N.contains_insensitive("pointer")) { 3149 if (N.contains_insensitive("ref") || N.contains_insensitive("cnt") || 3150 N.contains_insensitive("intrusive") || 3151 N.contains_insensitive("shared")) { 3152 return true; 3153 } 3154 } 3155 } 3156 return false; 3157 } 3158 3159 PathDiagnosticPieceRef MallocBugVisitor::VisitNode(const ExplodedNode *N, 3160 BugReporterContext &BRC, 3161 PathSensitiveBugReport &BR) { 3162 ProgramStateRef state = N->getState(); 3163 ProgramStateRef statePrev = N->getFirstPred()->getState(); 3164 3165 const RefState *RSCurr = state->get<RegionState>(Sym); 3166 const RefState *RSPrev = statePrev->get<RegionState>(Sym); 3167 3168 const Stmt *S = N->getStmtForDiagnostics(); 3169 // When dealing with containers, we sometimes want to give a note 3170 // even if the statement is missing. 3171 if (!S && (!RSCurr || RSCurr->getAllocationFamily() != AF_InnerBuffer)) 3172 return nullptr; 3173 3174 const LocationContext *CurrentLC = N->getLocationContext(); 3175 3176 // If we find an atomic fetch_add or fetch_sub within the destructor in which 3177 // the pointer was released (before the release), this is likely a destructor 3178 // of a shared pointer. 3179 // Because we don't model atomics, and also because we don't know that the 3180 // original reference count is positive, we should not report use-after-frees 3181 // on objects deleted in such destructors. This can probably be improved 3182 // through better shared pointer modeling. 3183 if (ReleaseDestructorLC) { 3184 if (const auto *AE = dyn_cast<AtomicExpr>(S)) { 3185 AtomicExpr::AtomicOp Op = AE->getOp(); 3186 if (Op == AtomicExpr::AO__c11_atomic_fetch_add || 3187 Op == AtomicExpr::AO__c11_atomic_fetch_sub) { 3188 if (ReleaseDestructorLC == CurrentLC || 3189 ReleaseDestructorLC->isParentOf(CurrentLC)) { 3190 BR.markInvalid(getTag(), S); 3191 } 3192 } 3193 } 3194 } 3195 3196 // FIXME: We will eventually need to handle non-statement-based events 3197 // (__attribute__((cleanup))). 3198 3199 // Find out if this is an interesting point and what is the kind. 3200 StringRef Msg; 3201 std::unique_ptr<StackHintGeneratorForSymbol> StackHint = nullptr; 3202 SmallString<256> Buf; 3203 llvm::raw_svector_ostream OS(Buf); 3204 3205 if (Mode == Normal) { 3206 if (isAllocated(RSCurr, RSPrev, S)) { 3207 Msg = "Memory is allocated"; 3208 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3209 Sym, "Returned allocated memory"); 3210 } else if (isReleased(RSCurr, RSPrev, S)) { 3211 const auto Family = RSCurr->getAllocationFamily(); 3212 switch (Family) { 3213 case AF_Alloca: 3214 case AF_Malloc: 3215 case AF_CXXNew: 3216 case AF_CXXNewArray: 3217 case AF_IfNameIndex: 3218 Msg = "Memory is released"; 3219 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3220 Sym, "Returning; memory was released"); 3221 break; 3222 case AF_InnerBuffer: { 3223 const MemRegion *ObjRegion = 3224 allocation_state::getContainerObjRegion(statePrev, Sym); 3225 const auto *TypedRegion = cast<TypedValueRegion>(ObjRegion); 3226 QualType ObjTy = TypedRegion->getValueType(); 3227 OS << "Inner buffer of '" << ObjTy.getAsString() << "' "; 3228 3229 if (N->getLocation().getKind() == ProgramPoint::PostImplicitCallKind) { 3230 OS << "deallocated by call to destructor"; 3231 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3232 Sym, "Returning; inner buffer was deallocated"); 3233 } else { 3234 OS << "reallocated by call to '"; 3235 const Stmt *S = RSCurr->getStmt(); 3236 if (const auto *MemCallE = dyn_cast<CXXMemberCallExpr>(S)) { 3237 OS << MemCallE->getMethodDecl()->getDeclName(); 3238 } else if (const auto *OpCallE = dyn_cast<CXXOperatorCallExpr>(S)) { 3239 OS << OpCallE->getDirectCallee()->getDeclName(); 3240 } else if (const auto *CallE = dyn_cast<CallExpr>(S)) { 3241 auto &CEMgr = BRC.getStateManager().getCallEventManager(); 3242 CallEventRef<> Call = CEMgr.getSimpleCall(CallE, state, CurrentLC); 3243 if (const auto *D = dyn_cast_or_null<NamedDecl>(Call->getDecl())) 3244 OS << D->getDeclName(); 3245 else 3246 OS << "unknown"; 3247 } 3248 OS << "'"; 3249 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3250 Sym, "Returning; inner buffer was reallocated"); 3251 } 3252 Msg = OS.str(); 3253 break; 3254 } 3255 case AF_None: 3256 llvm_unreachable("Unhandled allocation family!"); 3257 } 3258 3259 // See if we're releasing memory while inlining a destructor 3260 // (or one of its callees). This turns on various common 3261 // false positive suppressions. 3262 bool FoundAnyDestructor = false; 3263 for (const LocationContext *LC = CurrentLC; LC; LC = LC->getParent()) { 3264 if (const auto *DD = dyn_cast<CXXDestructorDecl>(LC->getDecl())) { 3265 if (isReferenceCountingPointerDestructor(DD)) { 3266 // This immediately looks like a reference-counting destructor. 3267 // We're bad at guessing the original reference count of the object, 3268 // so suppress the report for now. 3269 BR.markInvalid(getTag(), DD); 3270 } else if (!FoundAnyDestructor) { 3271 assert(!ReleaseDestructorLC && 3272 "There can be only one release point!"); 3273 // Suspect that it's a reference counting pointer destructor. 3274 // On one of the next nodes might find out that it has atomic 3275 // reference counting operations within it (see the code above), 3276 // and if so, we'd conclude that it likely is a reference counting 3277 // pointer destructor. 3278 ReleaseDestructorLC = LC->getStackFrame(); 3279 // It is unlikely that releasing memory is delegated to a destructor 3280 // inside a destructor of a shared pointer, because it's fairly hard 3281 // to pass the information that the pointer indeed needs to be 3282 // released into it. So we're only interested in the innermost 3283 // destructor. 3284 FoundAnyDestructor = true; 3285 } 3286 } 3287 } 3288 } else if (isRelinquished(RSCurr, RSPrev, S)) { 3289 Msg = "Memory ownership is transferred"; 3290 StackHint = std::make_unique<StackHintGeneratorForSymbol>(Sym, ""); 3291 } else if (hasReallocFailed(RSCurr, RSPrev, S)) { 3292 Mode = ReallocationFailed; 3293 Msg = "Reallocation failed"; 3294 StackHint = std::make_unique<StackHintGeneratorForReallocationFailed>( 3295 Sym, "Reallocation failed"); 3296 3297 if (SymbolRef sym = findFailedReallocSymbol(state, statePrev)) { 3298 // Is it possible to fail two reallocs WITHOUT testing in between? 3299 assert((!FailedReallocSymbol || FailedReallocSymbol == sym) && 3300 "We only support one failed realloc at a time."); 3301 BR.markInteresting(sym); 3302 FailedReallocSymbol = sym; 3303 } 3304 } 3305 3306 // We are in a special mode if a reallocation failed later in the path. 3307 } else if (Mode == ReallocationFailed) { 3308 assert(FailedReallocSymbol && "No symbol to look for."); 3309 3310 // Is this is the first appearance of the reallocated symbol? 3311 if (!statePrev->get<RegionState>(FailedReallocSymbol)) { 3312 // We're at the reallocation point. 3313 Msg = "Attempt to reallocate memory"; 3314 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3315 Sym, "Returned reallocated memory"); 3316 FailedReallocSymbol = nullptr; 3317 Mode = Normal; 3318 } 3319 } 3320 3321 if (Msg.empty()) { 3322 assert(!StackHint); 3323 return nullptr; 3324 } 3325 3326 assert(StackHint); 3327 3328 // Generate the extra diagnostic. 3329 PathDiagnosticLocation Pos; 3330 if (!S) { 3331 assert(RSCurr->getAllocationFamily() == AF_InnerBuffer); 3332 auto PostImplCall = N->getLocation().getAs<PostImplicitCall>(); 3333 if (!PostImplCall) 3334 return nullptr; 3335 Pos = PathDiagnosticLocation(PostImplCall->getLocation(), 3336 BRC.getSourceManager()); 3337 } else { 3338 Pos = PathDiagnosticLocation(S, BRC.getSourceManager(), 3339 N->getLocationContext()); 3340 } 3341 3342 auto P = std::make_shared<PathDiagnosticEventPiece>(Pos, Msg, true); 3343 BR.addCallStackHint(P, std::move(StackHint)); 3344 return P; 3345 } 3346 3347 void MallocChecker::printState(raw_ostream &Out, ProgramStateRef State, 3348 const char *NL, const char *Sep) const { 3349 3350 RegionStateTy RS = State->get<RegionState>(); 3351 3352 if (!RS.isEmpty()) { 3353 Out << Sep << "MallocChecker :" << NL; 3354 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 3355 const RefState *RefS = State->get<RegionState>(I.getKey()); 3356 AllocationFamily Family = RefS->getAllocationFamily(); 3357 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 3358 if (!CheckKind.hasValue()) 3359 CheckKind = getCheckIfTracked(Family, true); 3360 3361 I.getKey()->dumpToStream(Out); 3362 Out << " : "; 3363 I.getData().dump(Out); 3364 if (CheckKind.hasValue()) 3365 Out << " (" << CheckNames[*CheckKind].getName() << ")"; 3366 Out << NL; 3367 } 3368 } 3369 } 3370 3371 namespace clang { 3372 namespace ento { 3373 namespace allocation_state { 3374 3375 ProgramStateRef 3376 markReleased(ProgramStateRef State, SymbolRef Sym, const Expr *Origin) { 3377 AllocationFamily Family = AF_InnerBuffer; 3378 return State->set<RegionState>(Sym, RefState::getReleased(Family, Origin)); 3379 } 3380 3381 } // end namespace allocation_state 3382 } // end namespace ento 3383 } // end namespace clang 3384 3385 // Intended to be used in InnerPointerChecker to register the part of 3386 // MallocChecker connected to it. 3387 void ento::registerInnerPointerCheckerAux(CheckerManager &mgr) { 3388 MallocChecker *checker = mgr.getChecker<MallocChecker>(); 3389 checker->ChecksEnabled[MallocChecker::CK_InnerPointerChecker] = true; 3390 checker->CheckNames[MallocChecker::CK_InnerPointerChecker] = 3391 mgr.getCurrentCheckerName(); 3392 } 3393 3394 void ento::registerDynamicMemoryModeling(CheckerManager &mgr) { 3395 auto *checker = mgr.registerChecker<MallocChecker>(); 3396 checker->ShouldIncludeOwnershipAnnotatedFunctions = 3397 mgr.getAnalyzerOptions().getCheckerBooleanOption(checker, "Optimistic"); 3398 } 3399 3400 bool ento::shouldRegisterDynamicMemoryModeling(const CheckerManager &mgr) { 3401 return true; 3402 } 3403 3404 #define REGISTER_CHECKER(name) \ 3405 void ento::register##name(CheckerManager &mgr) { \ 3406 MallocChecker *checker = mgr.getChecker<MallocChecker>(); \ 3407 checker->ChecksEnabled[MallocChecker::CK_##name] = true; \ 3408 checker->CheckNames[MallocChecker::CK_##name] = \ 3409 mgr.getCurrentCheckerName(); \ 3410 } \ 3411 \ 3412 bool ento::shouldRegister##name(const CheckerManager &mgr) { return true; } 3413 3414 REGISTER_CHECKER(MallocChecker) 3415 REGISTER_CHECKER(NewDeleteChecker) 3416 REGISTER_CHECKER(NewDeleteLeaksChecker) 3417 REGISTER_CHECKER(MismatchedDeallocatorChecker) 3418