1 //== MIGChecker.cpp - MIG calling convention checker ------------*- C++ -*--==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines MIGChecker, a Mach Interface Generator calling convention 10 // checker. Namely, in MIG callback implementation the following rules apply: 11 // - When a server routine returns an error code that represents success, it 12 // must take ownership of resources passed to it (and eventually release 13 // them). 14 // - Additionally, when returning success, all out-parameters must be 15 // initialized. 16 // - When it returns any other error code, it must not take ownership, 17 // because the message and its out-of-line parameters will be destroyed 18 // by the client that called the function. 19 // For now we only check the last rule, as its violations lead to dangerous 20 // use-after-free exploits. 21 // 22 //===----------------------------------------------------------------------===// 23 24 #include "clang/AST/Attr.h" 25 #include "clang/Analysis/AnyCall.h" 26 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" 27 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 28 #include "clang/StaticAnalyzer/Core/Checker.h" 29 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 30 #include "clang/StaticAnalyzer/Core/PathSensitive/CallDescription.h" 31 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 32 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 33 34 using namespace clang; 35 using namespace ento; 36 37 namespace { 38 class MIGChecker : public Checker<check::PostCall, check::PreStmt<ReturnStmt>, 39 check::EndFunction> { 40 BugType BT{this, "Use-after-free (MIG calling convention violation)", 41 categories::MemoryError}; 42 43 // The checker knows that an out-of-line object is deallocated if it is 44 // passed as an argument to one of these functions. If this object is 45 // additionally an argument of a MIG routine, the checker keeps track of that 46 // information and issues a warning when an error is returned from the 47 // respective routine. 48 std::vector<std::pair<CallDescription, unsigned>> Deallocators = { 49 #define CALL(required_args, deallocated_arg, ...) \ 50 {{{__VA_ARGS__}, required_args}, deallocated_arg} 51 // E.g., if the checker sees a C function 'vm_deallocate' that is 52 // defined on class 'IOUserClient' that has exactly 3 parameters, it knows 53 // that argument #1 (starting from 0, i.e. the second argument) is going 54 // to be consumed in the sense of the MIG consume-on-success convention. 55 CALL(3, 1, "vm_deallocate"), 56 CALL(3, 1, "mach_vm_deallocate"), 57 CALL(2, 0, "mig_deallocate"), 58 CALL(2, 1, "mach_port_deallocate"), 59 CALL(1, 0, "device_deallocate"), 60 CALL(1, 0, "iokit_remove_connect_reference"), 61 CALL(1, 0, "iokit_remove_reference"), 62 CALL(1, 0, "iokit_release_port"), 63 CALL(1, 0, "ipc_port_release"), 64 CALL(1, 0, "ipc_port_release_sonce"), 65 CALL(1, 0, "ipc_voucher_attr_control_release"), 66 CALL(1, 0, "ipc_voucher_release"), 67 CALL(1, 0, "lock_set_dereference"), 68 CALL(1, 0, "memory_object_control_deallocate"), 69 CALL(1, 0, "pset_deallocate"), 70 CALL(1, 0, "semaphore_dereference"), 71 CALL(1, 0, "space_deallocate"), 72 CALL(1, 0, "space_inspect_deallocate"), 73 CALL(1, 0, "task_deallocate"), 74 CALL(1, 0, "task_inspect_deallocate"), 75 CALL(1, 0, "task_name_deallocate"), 76 CALL(1, 0, "thread_deallocate"), 77 CALL(1, 0, "thread_inspect_deallocate"), 78 CALL(1, 0, "upl_deallocate"), 79 CALL(1, 0, "vm_map_deallocate"), 80 // E.g., if the checker sees a method 'releaseAsyncReference64()' that is 81 // defined on class 'IOUserClient' that takes exactly 1 argument, it knows 82 // that the argument is going to be consumed in the sense of the MIG 83 // consume-on-success convention. 84 CALL(1, 0, "IOUserClient", "releaseAsyncReference64"), 85 CALL(1, 0, "IOUserClient", "releaseNotificationPort"), 86 #undef CALL 87 }; 88 89 CallDescription OsRefRetain{"os_ref_retain", 1}; 90 91 void checkReturnAux(const ReturnStmt *RS, CheckerContext &C) const; 92 93 public: 94 void checkPostCall(const CallEvent &Call, CheckerContext &C) const; 95 96 // HACK: We're making two attempts to find the bug: checkEndFunction 97 // should normally be enough but it fails when the return value is a literal 98 // that never gets put into the Environment and ends of function with multiple 99 // returns get agglutinated across returns, preventing us from obtaining 100 // the return value. The problem is similar to https://reviews.llvm.org/D25326 101 // but now we step into it in the top-level function. 102 void checkPreStmt(const ReturnStmt *RS, CheckerContext &C) const { 103 checkReturnAux(RS, C); 104 } 105 void checkEndFunction(const ReturnStmt *RS, CheckerContext &C) const { 106 checkReturnAux(RS, C); 107 } 108 109 }; 110 } // end anonymous namespace 111 112 // A flag that says that the programmer has called a MIG destructor 113 // for at least one parameter. 114 REGISTER_TRAIT_WITH_PROGRAMSTATE(ReleasedParameter, bool) 115 // A set of parameters for which the check is suppressed because 116 // reference counting is being performed. 117 REGISTER_SET_WITH_PROGRAMSTATE(RefCountedParameters, const ParmVarDecl *) 118 119 static const ParmVarDecl *getOriginParam(SVal V, CheckerContext &C, 120 bool IncludeBaseRegions = false) { 121 // TODO: We should most likely always include base regions here. 122 SymbolRef Sym = V.getAsSymbol(IncludeBaseRegions); 123 if (!Sym) 124 return nullptr; 125 126 // If we optimistically assume that the MIG routine never re-uses the storage 127 // that was passed to it as arguments when it invalidates it (but at most when 128 // it assigns to parameter variables directly), this procedure correctly 129 // determines if the value was loaded from the transitive closure of MIG 130 // routine arguments in the heap. 131 while (const MemRegion *MR = Sym->getOriginRegion()) { 132 const auto *VR = dyn_cast<VarRegion>(MR); 133 if (VR && VR->hasStackParametersStorage() && 134 VR->getStackFrame()->inTopFrame()) 135 return cast<ParmVarDecl>(VR->getDecl()); 136 137 const SymbolicRegion *SR = MR->getSymbolicBase(); 138 if (!SR) 139 return nullptr; 140 141 Sym = SR->getSymbol(); 142 } 143 144 return nullptr; 145 } 146 147 static bool isInMIGCall(CheckerContext &C) { 148 const LocationContext *LC = C.getLocationContext(); 149 assert(LC && "Unknown location context"); 150 151 const StackFrameContext *SFC; 152 // Find the top frame. 153 while (LC) { 154 SFC = LC->getStackFrame(); 155 LC = SFC->getParent(); 156 } 157 158 const Decl *D = SFC->getDecl(); 159 160 if (Optional<AnyCall> AC = AnyCall::forDecl(D)) { 161 // Even though there's a Sema warning when the return type of an annotated 162 // function is not a kern_return_t, this warning isn't an error, so we need 163 // an extra check here. 164 // FIXME: AnyCall doesn't support blocks yet, so they remain unchecked 165 // for now. 166 if (!AC->getReturnType(C.getASTContext()) 167 .getCanonicalType()->isSignedIntegerType()) 168 return false; 169 } 170 171 if (D->hasAttr<MIGServerRoutineAttr>()) 172 return true; 173 174 // See if there's an annotated method in the superclass. 175 if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) 176 for (const auto *OMD: MD->overridden_methods()) 177 if (OMD->hasAttr<MIGServerRoutineAttr>()) 178 return true; 179 180 return false; 181 } 182 183 void MIGChecker::checkPostCall(const CallEvent &Call, CheckerContext &C) const { 184 if (OsRefRetain.matches(Call)) { 185 // If the code is doing reference counting over the parameter, 186 // it opens up an opportunity for safely calling a destructor function. 187 // TODO: We should still check for over-releases. 188 if (const ParmVarDecl *PVD = 189 getOriginParam(Call.getArgSVal(0), C, /*IncludeBaseRegions=*/true)) { 190 // We never need to clean up the program state because these are 191 // top-level parameters anyway, so they're always live. 192 C.addTransition(C.getState()->add<RefCountedParameters>(PVD)); 193 } 194 return; 195 } 196 197 if (!isInMIGCall(C)) 198 return; 199 200 auto I = llvm::find_if(Deallocators, 201 [&](const std::pair<CallDescription, unsigned> &Item) { 202 return Item.first.matches(Call); 203 }); 204 if (I == Deallocators.end()) 205 return; 206 207 ProgramStateRef State = C.getState(); 208 unsigned ArgIdx = I->second; 209 SVal Arg = Call.getArgSVal(ArgIdx); 210 const ParmVarDecl *PVD = getOriginParam(Arg, C); 211 if (!PVD || State->contains<RefCountedParameters>(PVD)) 212 return; 213 214 const NoteTag *T = 215 C.getNoteTag([this, PVD](PathSensitiveBugReport &BR) -> std::string { 216 if (&BR.getBugType() != &BT) 217 return ""; 218 SmallString<64> Str; 219 llvm::raw_svector_ostream OS(Str); 220 OS << "Value passed through parameter '" << PVD->getName() 221 << "\' is deallocated"; 222 return std::string(OS.str()); 223 }); 224 C.addTransition(State->set<ReleasedParameter>(true), T); 225 } 226 227 // Returns true if V can potentially represent a "successful" kern_return_t. 228 static bool mayBeSuccess(SVal V, CheckerContext &C) { 229 ProgramStateRef State = C.getState(); 230 231 // Can V represent KERN_SUCCESS? 232 if (!State->isNull(V).isConstrainedFalse()) 233 return true; 234 235 SValBuilder &SVB = C.getSValBuilder(); 236 ASTContext &ACtx = C.getASTContext(); 237 238 // Can V represent MIG_NO_REPLY? 239 static const int MigNoReply = -305; 240 V = SVB.evalEQ(C.getState(), V, SVB.makeIntVal(MigNoReply, ACtx.IntTy)); 241 if (!State->isNull(V).isConstrainedTrue()) 242 return true; 243 244 // If none of the above, it's definitely an error. 245 return false; 246 } 247 248 void MIGChecker::checkReturnAux(const ReturnStmt *RS, CheckerContext &C) const { 249 // It is very unlikely that a MIG callback will be called from anywhere 250 // within the project under analysis and the caller isn't itself a routine 251 // that follows the MIG calling convention. Therefore we're safe to believe 252 // that it's always the top frame that is of interest. There's a slight chance 253 // that the user would want to enforce the MIG calling convention upon 254 // a random routine in the middle of nowhere, but given that the convention is 255 // fairly weird and hard to follow in the first place, there's relatively 256 // little motivation to spread it this way. 257 if (!C.inTopFrame()) 258 return; 259 260 if (!isInMIGCall(C)) 261 return; 262 263 // We know that the function is non-void, but what if the return statement 264 // is not there in the code? It's not a compile error, we should not crash. 265 if (!RS) 266 return; 267 268 ProgramStateRef State = C.getState(); 269 if (!State->get<ReleasedParameter>()) 270 return; 271 272 SVal V = C.getSVal(RS); 273 if (mayBeSuccess(V, C)) 274 return; 275 276 ExplodedNode *N = C.generateErrorNode(); 277 if (!N) 278 return; 279 280 auto R = std::make_unique<PathSensitiveBugReport>( 281 BT, 282 "MIG callback fails with error after deallocating argument value. " 283 "This is a use-after-free vulnerability because the caller will try to " 284 "deallocate it again", 285 N); 286 287 R->addRange(RS->getSourceRange()); 288 bugreporter::trackExpressionValue( 289 N, RS->getRetValue(), *R, 290 {bugreporter::TrackingKind::Thorough, /*EnableNullFPSuppression=*/false}); 291 C.emitReport(std::move(R)); 292 } 293 294 void ento::registerMIGChecker(CheckerManager &Mgr) { 295 Mgr.registerChecker<MIGChecker>(); 296 } 297 298 bool ento::shouldRegisterMIGChecker(const CheckerManager &mgr) { 299 return true; 300 } 301