1 //== MIGChecker.cpp - MIG calling convention checker ------------*- C++ -*--==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines MIGChecker, a Mach Interface Generator calling convention 10 // checker. Namely, in MIG callback implementation the following rules apply: 11 // - When a server routine returns an error code that represents success, it 12 // must take ownership of resources passed to it (and eventually release 13 // them). 14 // - Additionally, when returning success, all out-parameters must be 15 // initialized. 16 // - When it returns any other error code, it must not take ownership, 17 // because the message and its out-of-line parameters will be destroyed 18 // by the client that called the function. 19 // For now we only check the last rule, as its violations lead to dangerous 20 // use-after-free exploits. 21 // 22 //===----------------------------------------------------------------------===// 23 24 #include "clang/AST/Attr.h" 25 #include "clang/Analysis/AnyCall.h" 26 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" 27 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 28 #include "clang/StaticAnalyzer/Core/Checker.h" 29 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 30 #include "clang/StaticAnalyzer/Core/PathSensitive/CallDescription.h" 31 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 32 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 33 #include <optional> 34 35 using namespace clang; 36 using namespace ento; 37 38 namespace { 39 class MIGChecker : public Checker<check::PostCall, check::PreStmt<ReturnStmt>, 40 check::EndFunction> { 41 BugType BT{this, "Use-after-free (MIG calling convention violation)", 42 categories::MemoryError}; 43 44 // The checker knows that an out-of-line object is deallocated if it is 45 // passed as an argument to one of these functions. If this object is 46 // additionally an argument of a MIG routine, the checker keeps track of that 47 // information and issues a warning when an error is returned from the 48 // respective routine. 49 CallDescriptionMap<unsigned> Deallocators = { 50 #define CALL(required_args, deallocated_arg, ...) \ 51 {{CDM::SimpleFunc, {__VA_ARGS__}, required_args}, deallocated_arg} 52 // E.g., if the checker sees a C function 'vm_deallocate' that has 53 // exactly 3 parameters, it knows that argument #1 (starting from 0, i.e. 54 // the second argument) is going to be consumed in the sense of the MIG 55 // consume-on-success convention. 56 CALL(3, 1, "vm_deallocate"), 57 CALL(3, 1, "mach_vm_deallocate"), 58 CALL(2, 0, "mig_deallocate"), 59 CALL(2, 1, "mach_port_deallocate"), 60 CALL(1, 0, "device_deallocate"), 61 CALL(1, 0, "iokit_remove_connect_reference"), 62 CALL(1, 0, "iokit_remove_reference"), 63 CALL(1, 0, "iokit_release_port"), 64 CALL(1, 0, "ipc_port_release"), 65 CALL(1, 0, "ipc_port_release_sonce"), 66 CALL(1, 0, "ipc_voucher_attr_control_release"), 67 CALL(1, 0, "ipc_voucher_release"), 68 CALL(1, 0, "lock_set_dereference"), 69 CALL(1, 0, "memory_object_control_deallocate"), 70 CALL(1, 0, "pset_deallocate"), 71 CALL(1, 0, "semaphore_dereference"), 72 CALL(1, 0, "space_deallocate"), 73 CALL(1, 0, "space_inspect_deallocate"), 74 CALL(1, 0, "task_deallocate"), 75 CALL(1, 0, "task_inspect_deallocate"), 76 CALL(1, 0, "task_name_deallocate"), 77 CALL(1, 0, "thread_deallocate"), 78 CALL(1, 0, "thread_inspect_deallocate"), 79 CALL(1, 0, "upl_deallocate"), 80 CALL(1, 0, "vm_map_deallocate"), 81 #undef CALL 82 #define CALL(required_args, deallocated_arg, ...) \ 83 {{CDM::CXXMethod, {__VA_ARGS__}, required_args}, deallocated_arg} 84 // E.g., if the checker sees a method 'releaseAsyncReference64()' that is 85 // defined on class 'IOUserClient' that takes exactly 1 argument, it knows 86 // that the argument is going to be consumed in the sense of the MIG 87 // consume-on-success convention. 88 CALL(1, 0, "IOUserClient", "releaseAsyncReference64"), 89 CALL(1, 0, "IOUserClient", "releaseNotificationPort"), 90 #undef CALL 91 }; 92 93 CallDescription OsRefRetain{CDM::SimpleFunc, {"os_ref_retain"}, 1}; 94 95 void checkReturnAux(const ReturnStmt *RS, CheckerContext &C) const; 96 97 public: 98 void checkPostCall(const CallEvent &Call, CheckerContext &C) const; 99 100 // HACK: We're making two attempts to find the bug: checkEndFunction 101 // should normally be enough but it fails when the return value is a literal 102 // that never gets put into the Environment and ends of function with multiple 103 // returns get agglutinated across returns, preventing us from obtaining 104 // the return value. The problem is similar to https://reviews.llvm.org/D25326 105 // but now we step into it in the top-level function. 106 void checkPreStmt(const ReturnStmt *RS, CheckerContext &C) const { 107 checkReturnAux(RS, C); 108 } 109 void checkEndFunction(const ReturnStmt *RS, CheckerContext &C) const { 110 checkReturnAux(RS, C); 111 } 112 113 }; 114 } // end anonymous namespace 115 116 // A flag that says that the programmer has called a MIG destructor 117 // for at least one parameter. 118 REGISTER_TRAIT_WITH_PROGRAMSTATE(ReleasedParameter, bool) 119 // A set of parameters for which the check is suppressed because 120 // reference counting is being performed. 121 REGISTER_SET_WITH_PROGRAMSTATE(RefCountedParameters, const ParmVarDecl *) 122 123 static const ParmVarDecl *getOriginParam(SVal V, CheckerContext &C, 124 bool IncludeBaseRegions = false) { 125 // TODO: We should most likely always include base regions here. 126 SymbolRef Sym = V.getAsSymbol(IncludeBaseRegions); 127 if (!Sym) 128 return nullptr; 129 130 // If we optimistically assume that the MIG routine never re-uses the storage 131 // that was passed to it as arguments when it invalidates it (but at most when 132 // it assigns to parameter variables directly), this procedure correctly 133 // determines if the value was loaded from the transitive closure of MIG 134 // routine arguments in the heap. 135 while (const MemRegion *MR = Sym->getOriginRegion()) { 136 const auto *VR = dyn_cast<VarRegion>(MR); 137 if (VR && VR->hasStackParametersStorage() && 138 VR->getStackFrame()->inTopFrame()) 139 return cast<ParmVarDecl>(VR->getDecl()); 140 141 const SymbolicRegion *SR = MR->getSymbolicBase(); 142 if (!SR) 143 return nullptr; 144 145 Sym = SR->getSymbol(); 146 } 147 148 return nullptr; 149 } 150 151 static bool isInMIGCall(CheckerContext &C) { 152 const LocationContext *LC = C.getLocationContext(); 153 assert(LC && "Unknown location context"); 154 155 const StackFrameContext *SFC; 156 // Find the top frame. 157 while (LC) { 158 SFC = LC->getStackFrame(); 159 LC = SFC->getParent(); 160 } 161 162 const Decl *D = SFC->getDecl(); 163 164 if (std::optional<AnyCall> AC = AnyCall::forDecl(D)) { 165 // Even though there's a Sema warning when the return type of an annotated 166 // function is not a kern_return_t, this warning isn't an error, so we need 167 // an extra check here. 168 // FIXME: AnyCall doesn't support blocks yet, so they remain unchecked 169 // for now. 170 if (!AC->getReturnType(C.getASTContext()) 171 .getCanonicalType()->isSignedIntegerType()) 172 return false; 173 } 174 175 if (D->hasAttr<MIGServerRoutineAttr>()) 176 return true; 177 178 // See if there's an annotated method in the superclass. 179 if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) 180 for (const auto *OMD: MD->overridden_methods()) 181 if (OMD->hasAttr<MIGServerRoutineAttr>()) 182 return true; 183 184 return false; 185 } 186 187 void MIGChecker::checkPostCall(const CallEvent &Call, CheckerContext &C) const { 188 if (OsRefRetain.matches(Call)) { 189 // If the code is doing reference counting over the parameter, 190 // it opens up an opportunity for safely calling a destructor function. 191 // TODO: We should still check for over-releases. 192 if (const ParmVarDecl *PVD = 193 getOriginParam(Call.getArgSVal(0), C, /*IncludeBaseRegions=*/true)) { 194 // We never need to clean up the program state because these are 195 // top-level parameters anyway, so they're always live. 196 C.addTransition(C.getState()->add<RefCountedParameters>(PVD)); 197 } 198 return; 199 } 200 201 if (!isInMIGCall(C)) 202 return; 203 204 const unsigned *ArgIdxPtr = Deallocators.lookup(Call); 205 if (!ArgIdxPtr) 206 return; 207 208 ProgramStateRef State = C.getState(); 209 unsigned ArgIdx = *ArgIdxPtr; 210 SVal Arg = Call.getArgSVal(ArgIdx); 211 const ParmVarDecl *PVD = getOriginParam(Arg, C); 212 if (!PVD || State->contains<RefCountedParameters>(PVD)) 213 return; 214 215 const NoteTag *T = 216 C.getNoteTag([this, PVD](PathSensitiveBugReport &BR) -> std::string { 217 if (&BR.getBugType() != &BT) 218 return ""; 219 SmallString<64> Str; 220 llvm::raw_svector_ostream OS(Str); 221 OS << "Value passed through parameter '" << PVD->getName() 222 << "\' is deallocated"; 223 return std::string(OS.str()); 224 }); 225 C.addTransition(State->set<ReleasedParameter>(true), T); 226 } 227 228 // Returns true if V can potentially represent a "successful" kern_return_t. 229 static bool mayBeSuccess(SVal V, CheckerContext &C) { 230 ProgramStateRef State = C.getState(); 231 232 // Can V represent KERN_SUCCESS? 233 if (!State->isNull(V).isConstrainedFalse()) 234 return true; 235 236 SValBuilder &SVB = C.getSValBuilder(); 237 ASTContext &ACtx = C.getASTContext(); 238 239 // Can V represent MIG_NO_REPLY? 240 static const int MigNoReply = -305; 241 V = SVB.evalEQ(C.getState(), V, SVB.makeIntVal(MigNoReply, ACtx.IntTy)); 242 if (!State->isNull(V).isConstrainedTrue()) 243 return true; 244 245 // If none of the above, it's definitely an error. 246 return false; 247 } 248 249 void MIGChecker::checkReturnAux(const ReturnStmt *RS, CheckerContext &C) const { 250 // It is very unlikely that a MIG callback will be called from anywhere 251 // within the project under analysis and the caller isn't itself a routine 252 // that follows the MIG calling convention. Therefore we're safe to believe 253 // that it's always the top frame that is of interest. There's a slight chance 254 // that the user would want to enforce the MIG calling convention upon 255 // a random routine in the middle of nowhere, but given that the convention is 256 // fairly weird and hard to follow in the first place, there's relatively 257 // little motivation to spread it this way. 258 if (!C.inTopFrame()) 259 return; 260 261 if (!isInMIGCall(C)) 262 return; 263 264 // We know that the function is non-void, but what if the return statement 265 // is not there in the code? It's not a compile error, we should not crash. 266 if (!RS) 267 return; 268 269 ProgramStateRef State = C.getState(); 270 if (!State->get<ReleasedParameter>()) 271 return; 272 273 SVal V = C.getSVal(RS); 274 if (mayBeSuccess(V, C)) 275 return; 276 277 ExplodedNode *N = C.generateErrorNode(); 278 if (!N) 279 return; 280 281 auto R = std::make_unique<PathSensitiveBugReport>( 282 BT, 283 "MIG callback fails with error after deallocating argument value. " 284 "This is a use-after-free vulnerability because the caller will try to " 285 "deallocate it again", 286 N); 287 288 R->addRange(RS->getSourceRange()); 289 bugreporter::trackExpressionValue( 290 N, RS->getRetValue(), *R, 291 {bugreporter::TrackingKind::Thorough, /*EnableNullFPSuppression=*/false}); 292 C.emitReport(std::move(R)); 293 } 294 295 void ento::registerMIGChecker(CheckerManager &Mgr) { 296 Mgr.registerChecker<MIGChecker>(); 297 } 298 299 bool ento::shouldRegisterMIGChecker(const CheckerManager &mgr) { 300 return true; 301 } 302