xref: /freebsd/contrib/llvm-project/clang/lib/StaticAnalyzer/Checkers/IteratorModeling.cpp (revision afdb42987ca82869eeaecf6dc25c2b6fb7b8370e)
1 //===-- IteratorModeling.cpp --------------------------------------*- C++ -*--//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Defines a modeling-checker for modeling STL iterator-like iterators.
10 //
11 //===----------------------------------------------------------------------===//
12 //
13 // In the code, iterator can be represented as a:
14 // * type-I: typedef-ed pointer. Operations over such iterator, such as
15 //           comparisons or increments, are modeled straightforwardly by the
16 //           analyzer.
17 // * type-II: structure with its method bodies available.  Operations over such
18 //            iterator are inlined by the analyzer, and results of modeling
19 //            these operations are exposing implementation details of the
20 //            iterators, which is not necessarily helping.
21 // * type-III: completely opaque structure. Operations over such iterator are
22 //             modeled conservatively, producing conjured symbols everywhere.
23 //
24 // To handle all these types in a common way we introduce a structure called
25 // IteratorPosition which is an abstraction of the position the iterator
26 // represents using symbolic expressions. The checker handles all the
27 // operations on this structure.
28 //
29 // Additionally, depending on the circumstances, operators of types II and III
30 // can be represented as:
31 // * type-IIa, type-IIIa: conjured structure symbols - when returned by value
32 //                        from conservatively evaluated methods such as
33 //                        `.begin()`.
34 // * type-IIb, type-IIIb: memory regions of iterator-typed objects, such as
35 //                        variables or temporaries, when the iterator object is
36 //                        currently treated as an lvalue.
37 // * type-IIc, type-IIIc: compound values of iterator-typed objects, when the
38 //                        iterator object is treated as an rvalue taken of a
39 //                        particular lvalue, eg. a copy of "type-a" iterator
40 //                        object, or an iterator that existed before the
41 //                        analysis has started.
42 //
43 // To handle any of these three different representations stored in an SVal we
44 // use setter and getters functions which separate the three cases. To store
45 // them we use a pointer union of symbol and memory region.
46 //
47 // The checker works the following way: We record the begin and the
48 // past-end iterator for all containers whenever their `.begin()` and `.end()`
49 // are called. Since the Constraint Manager cannot handle such SVals we need
50 // to take over its role. We post-check equality and non-equality comparisons
51 // and record that the two sides are equal if we are in the 'equal' branch
52 // (true-branch for `==` and false-branch for `!=`).
53 //
54 // In case of type-I or type-II iterators we get a concrete integer as a result
55 // of the comparison (1 or 0) but in case of type-III we only get a Symbol. In
56 // this latter case we record the symbol and reload it in evalAssume() and do
57 // the propagation there. We also handle (maybe double) negated comparisons
58 // which are represented in the form of (x == 0 or x != 0) where x is the
59 // comparison itself.
60 //
61 // Since `SimpleConstraintManager` cannot handle complex symbolic expressions
62 // we only use expressions of the format S, S+n or S-n for iterator positions
63 // where S is a conjured symbol and n is an unsigned concrete integer. When
64 // making an assumption e.g. `S1 + n == S2 + m` we store `S1 - S2 == m - n` as
65 // a constraint which we later retrieve when doing an actual comparison.
66 
67 #include "clang/AST/DeclTemplate.h"
68 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
69 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
70 #include "clang/StaticAnalyzer/Core/Checker.h"
71 #include "clang/StaticAnalyzer/Core/PathSensitive/CallDescription.h"
72 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
73 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
74 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicType.h"
75 
76 #include "Iterator.h"
77 
78 #include <utility>
79 
80 using namespace clang;
81 using namespace ento;
82 using namespace iterator;
83 
84 namespace {
85 
86 class IteratorModeling
87     : public Checker<check::PostCall, check::PostStmt<UnaryOperator>,
88                      check::PostStmt<BinaryOperator>,
89                      check::PostStmt<MaterializeTemporaryExpr>,
90                      check::Bind, check::LiveSymbols, check::DeadSymbols> {
91 
92   using AdvanceFn = void (IteratorModeling::*)(CheckerContext &, const Expr *,
93                                                SVal, SVal, SVal) const;
94 
95   void handleOverloadedOperator(CheckerContext &C, const CallEvent &Call,
96                                 OverloadedOperatorKind Op) const;
97   void handleAdvanceLikeFunction(CheckerContext &C, const CallEvent &Call,
98                                  const Expr *OrigExpr,
99                                  const AdvanceFn *Handler) const;
100 
101   void handleComparison(CheckerContext &C, const Expr *CE, SVal RetVal,
102                         const SVal &LVal, const SVal &RVal,
103                         OverloadedOperatorKind Op) const;
104   void processComparison(CheckerContext &C, ProgramStateRef State,
105                          SymbolRef Sym1, SymbolRef Sym2, const SVal &RetVal,
106                          OverloadedOperatorKind Op) const;
107   void handleIncrement(CheckerContext &C, const SVal &RetVal, const SVal &Iter,
108                        bool Postfix) const;
109   void handleDecrement(CheckerContext &C, const SVal &RetVal, const SVal &Iter,
110                        bool Postfix) const;
111   void handleRandomIncrOrDecr(CheckerContext &C, const Expr *CE,
112                               OverloadedOperatorKind Op, const SVal &RetVal,
113                               const SVal &Iterator, const SVal &Amount) const;
114   void handlePtrIncrOrDecr(CheckerContext &C, const Expr *Iterator,
115                            OverloadedOperatorKind OK, SVal Offset) const;
116   void handleAdvance(CheckerContext &C, const Expr *CE, SVal RetVal, SVal Iter,
117                      SVal Amount) const;
118   void handlePrev(CheckerContext &C, const Expr *CE, SVal RetVal, SVal Iter,
119                   SVal Amount) const;
120   void handleNext(CheckerContext &C, const Expr *CE, SVal RetVal, SVal Iter,
121                   SVal Amount) const;
122   void assignToContainer(CheckerContext &C, const Expr *CE, const SVal &RetVal,
123                          const MemRegion *Cont) const;
124   bool noChangeInAdvance(CheckerContext &C, SVal Iter, const Expr *CE) const;
125   void printState(raw_ostream &Out, ProgramStateRef State, const char *NL,
126                   const char *Sep) const override;
127 
128   // std::advance, std::prev & std::next
129   CallDescriptionMap<AdvanceFn> AdvanceLikeFunctions = {
130       // template<class InputIt, class Distance>
131       // void advance(InputIt& it, Distance n);
132       {{{"std", "advance"}, 2}, &IteratorModeling::handleAdvance},
133 
134       // template<class BidirIt>
135       // BidirIt prev(
136       //   BidirIt it,
137       //   typename std::iterator_traits<BidirIt>::difference_type n = 1);
138       {{{"std", "prev"}, 2}, &IteratorModeling::handlePrev},
139 
140       // template<class ForwardIt>
141       // ForwardIt next(
142       //   ForwardIt it,
143       //   typename std::iterator_traits<ForwardIt>::difference_type n = 1);
144       {{{"std", "next"}, 2}, &IteratorModeling::handleNext},
145   };
146 
147 public:
148   IteratorModeling() = default;
149 
150   void checkPostCall(const CallEvent &Call, CheckerContext &C) const;
151   void checkBind(SVal Loc, SVal Val, const Stmt *S, CheckerContext &C) const;
152   void checkPostStmt(const UnaryOperator *UO, CheckerContext &C) const;
153   void checkPostStmt(const BinaryOperator *BO, CheckerContext &C) const;
154   void checkPostStmt(const MaterializeTemporaryExpr *MTE,
155                      CheckerContext &C) const;
156   void checkLiveSymbols(ProgramStateRef State, SymbolReaper &SR) const;
157   void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const;
158 };
159 
160 bool isSimpleComparisonOperator(OverloadedOperatorKind OK);
161 bool isSimpleComparisonOperator(BinaryOperatorKind OK);
162 ProgramStateRef removeIteratorPosition(ProgramStateRef State, const SVal &Val);
163 ProgramStateRef relateSymbols(ProgramStateRef State, SymbolRef Sym1,
164                               SymbolRef Sym2, bool Equal);
165 bool isBoundThroughLazyCompoundVal(const Environment &Env,
166                                    const MemRegion *Reg);
167 const ExplodedNode *findCallEnter(const ExplodedNode *Node, const Expr *Call);
168 
169 } // namespace
170 
171 void IteratorModeling::checkPostCall(const CallEvent &Call,
172                                      CheckerContext &C) const {
173   // Record new iterator positions and iterator position changes
174   const auto *Func = dyn_cast_or_null<FunctionDecl>(Call.getDecl());
175   if (!Func)
176     return;
177 
178   if (Func->isOverloadedOperator()) {
179     const auto Op = Func->getOverloadedOperator();
180     handleOverloadedOperator(C, Call, Op);
181     return;
182   }
183 
184   const auto *OrigExpr = Call.getOriginExpr();
185   if (!OrigExpr)
186     return;
187 
188   const AdvanceFn *Handler = AdvanceLikeFunctions.lookup(Call);
189   if (Handler) {
190     handleAdvanceLikeFunction(C, Call, OrigExpr, Handler);
191     return;
192   }
193 
194   if (!isIteratorType(Call.getResultType()))
195     return;
196 
197   auto State = C.getState();
198 
199   // Already bound to container?
200   if (getIteratorPosition(State, Call.getReturnValue()))
201     return;
202 
203   // Copy-like and move constructors
204   if (isa<CXXConstructorCall>(&Call) && Call.getNumArgs() == 1) {
205     if (const auto *Pos = getIteratorPosition(State, Call.getArgSVal(0))) {
206       State = setIteratorPosition(State, Call.getReturnValue(), *Pos);
207       if (cast<CXXConstructorDecl>(Func)->isMoveConstructor()) {
208         State = removeIteratorPosition(State, Call.getArgSVal(0));
209       }
210       C.addTransition(State);
211       return;
212     }
213   }
214 
215   // Assumption: if return value is an iterator which is not yet bound to a
216   //             container, then look for the first iterator argument of the
217   //             same type as the return value and bind the return value to
218   //             the same container. This approach works for STL algorithms.
219   // FIXME: Add a more conservative mode
220   for (unsigned i = 0; i < Call.getNumArgs(); ++i) {
221     if (isIteratorType(Call.getArgExpr(i)->getType()) &&
222         Call.getArgExpr(i)->getType().getNonReferenceType().getDesugaredType(
223             C.getASTContext()).getTypePtr() ==
224         Call.getResultType().getDesugaredType(C.getASTContext()).getTypePtr()) {
225       if (const auto *Pos = getIteratorPosition(State, Call.getArgSVal(i))) {
226         assignToContainer(C, OrigExpr, Call.getReturnValue(),
227                           Pos->getContainer());
228         return;
229       }
230     }
231   }
232 }
233 
234 void IteratorModeling::checkBind(SVal Loc, SVal Val, const Stmt *S,
235                                  CheckerContext &C) const {
236   auto State = C.getState();
237   const auto *Pos = getIteratorPosition(State, Val);
238   if (Pos) {
239     State = setIteratorPosition(State, Loc, *Pos);
240     C.addTransition(State);
241   } else {
242     const auto *OldPos = getIteratorPosition(State, Loc);
243     if (OldPos) {
244       State = removeIteratorPosition(State, Loc);
245       C.addTransition(State);
246     }
247   }
248 }
249 
250 void IteratorModeling::checkPostStmt(const UnaryOperator *UO,
251                                      CheckerContext &C) const {
252   UnaryOperatorKind OK = UO->getOpcode();
253   if (!isIncrementOperator(OK) && !isDecrementOperator(OK))
254     return;
255 
256   auto &SVB = C.getSValBuilder();
257   handlePtrIncrOrDecr(C, UO->getSubExpr(),
258                       isIncrementOperator(OK) ? OO_Plus : OO_Minus,
259                       SVB.makeArrayIndex(1));
260 }
261 
262 void IteratorModeling::checkPostStmt(const BinaryOperator *BO,
263                                      CheckerContext &C) const {
264   const ProgramStateRef State = C.getState();
265   const BinaryOperatorKind OK = BO->getOpcode();
266   const Expr *const LHS = BO->getLHS();
267   const Expr *const RHS = BO->getRHS();
268   const SVal LVal = State->getSVal(LHS, C.getLocationContext());
269   const SVal RVal = State->getSVal(RHS, C.getLocationContext());
270 
271   if (isSimpleComparisonOperator(BO->getOpcode())) {
272     SVal Result = State->getSVal(BO, C.getLocationContext());
273     handleComparison(C, BO, Result, LVal, RVal,
274                      BinaryOperator::getOverloadedOperator(OK));
275   } else if (isRandomIncrOrDecrOperator(OK)) {
276     // In case of operator+ the iterator can be either on the LHS (eg.: it + 1),
277     // or on the RHS (eg.: 1 + it). Both cases are modeled.
278     const bool IsIterOnLHS = BO->getLHS()->getType()->isPointerType();
279     const Expr *const &IterExpr = IsIterOnLHS ? LHS : RHS;
280     const Expr *const &AmountExpr = IsIterOnLHS ? RHS : LHS;
281 
282     // The non-iterator side must have an integral or enumeration type.
283     if (!AmountExpr->getType()->isIntegralOrEnumerationType())
284       return;
285     const SVal &AmountVal = IsIterOnLHS ? RVal : LVal;
286     handlePtrIncrOrDecr(C, IterExpr, BinaryOperator::getOverloadedOperator(OK),
287                         AmountVal);
288   }
289 }
290 
291 void IteratorModeling::checkPostStmt(const MaterializeTemporaryExpr *MTE,
292                                      CheckerContext &C) const {
293   /* Transfer iterator state to temporary objects */
294   auto State = C.getState();
295   const auto *Pos = getIteratorPosition(State, C.getSVal(MTE->getSubExpr()));
296   if (!Pos)
297     return;
298   State = setIteratorPosition(State, C.getSVal(MTE), *Pos);
299   C.addTransition(State);
300 }
301 
302 void IteratorModeling::checkLiveSymbols(ProgramStateRef State,
303                                         SymbolReaper &SR) const {
304   // Keep symbolic expressions of iterator positions alive
305   auto RegionMap = State->get<IteratorRegionMap>();
306   for (const auto &Reg : RegionMap) {
307     const auto Offset = Reg.second.getOffset();
308     for (auto i = Offset->symbol_begin(); i != Offset->symbol_end(); ++i)
309       if (isa<SymbolData>(*i))
310         SR.markLive(*i);
311   }
312 
313   auto SymbolMap = State->get<IteratorSymbolMap>();
314   for (const auto &Sym : SymbolMap) {
315     const auto Offset = Sym.second.getOffset();
316     for (auto i = Offset->symbol_begin(); i != Offset->symbol_end(); ++i)
317       if (isa<SymbolData>(*i))
318         SR.markLive(*i);
319   }
320 
321 }
322 
323 void IteratorModeling::checkDeadSymbols(SymbolReaper &SR,
324                                         CheckerContext &C) const {
325   // Cleanup
326   auto State = C.getState();
327 
328   auto RegionMap = State->get<IteratorRegionMap>();
329   for (const auto &Reg : RegionMap) {
330     if (!SR.isLiveRegion(Reg.first)) {
331       // The region behind the `LazyCompoundVal` is often cleaned up before
332       // the `LazyCompoundVal` itself. If there are iterator positions keyed
333       // by these regions their cleanup must be deferred.
334       if (!isBoundThroughLazyCompoundVal(State->getEnvironment(), Reg.first)) {
335         State = State->remove<IteratorRegionMap>(Reg.first);
336       }
337     }
338   }
339 
340   auto SymbolMap = State->get<IteratorSymbolMap>();
341   for (const auto &Sym : SymbolMap) {
342     if (!SR.isLive(Sym.first)) {
343       State = State->remove<IteratorSymbolMap>(Sym.first);
344     }
345   }
346 
347   C.addTransition(State);
348 }
349 
350 void
351 IteratorModeling::handleOverloadedOperator(CheckerContext &C,
352                                            const CallEvent &Call,
353                                            OverloadedOperatorKind Op) const {
354     if (isSimpleComparisonOperator(Op)) {
355       const auto *OrigExpr = Call.getOriginExpr();
356       if (!OrigExpr)
357         return;
358 
359       if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
360         handleComparison(C, OrigExpr, Call.getReturnValue(),
361                          InstCall->getCXXThisVal(), Call.getArgSVal(0), Op);
362         return;
363       }
364 
365       handleComparison(C, OrigExpr, Call.getReturnValue(), Call.getArgSVal(0),
366                          Call.getArgSVal(1), Op);
367       return;
368     } else if (isRandomIncrOrDecrOperator(Op)) {
369       const auto *OrigExpr = Call.getOriginExpr();
370       if (!OrigExpr)
371         return;
372 
373       if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
374         if (Call.getNumArgs() >= 1 &&
375               Call.getArgExpr(0)->getType()->isIntegralOrEnumerationType()) {
376           handleRandomIncrOrDecr(C, OrigExpr, Op, Call.getReturnValue(),
377                                  InstCall->getCXXThisVal(), Call.getArgSVal(0));
378           return;
379         }
380       } else if (Call.getNumArgs() >= 2) {
381         const Expr *FirstArg = Call.getArgExpr(0);
382         const Expr *SecondArg = Call.getArgExpr(1);
383         const QualType FirstType = FirstArg->getType();
384         const QualType SecondType = SecondArg->getType();
385 
386         if (FirstType->isIntegralOrEnumerationType() ||
387             SecondType->isIntegralOrEnumerationType()) {
388           // In case of operator+ the iterator can be either on the LHS (eg.:
389           // it + 1), or on the RHS (eg.: 1 + it). Both cases are modeled.
390           const bool IsIterFirst = FirstType->isStructureOrClassType();
391           const SVal FirstArg = Call.getArgSVal(0);
392           const SVal SecondArg = Call.getArgSVal(1);
393           const SVal &Iterator = IsIterFirst ? FirstArg : SecondArg;
394           const SVal &Amount = IsIterFirst ? SecondArg : FirstArg;
395 
396           handleRandomIncrOrDecr(C, OrigExpr, Op, Call.getReturnValue(),
397                                  Iterator, Amount);
398           return;
399         }
400       }
401     } else if (isIncrementOperator(Op)) {
402       if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
403         handleIncrement(C, Call.getReturnValue(), InstCall->getCXXThisVal(),
404                         Call.getNumArgs());
405         return;
406       }
407 
408       handleIncrement(C, Call.getReturnValue(), Call.getArgSVal(0),
409                       Call.getNumArgs());
410       return;
411     } else if (isDecrementOperator(Op)) {
412       if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
413         handleDecrement(C, Call.getReturnValue(), InstCall->getCXXThisVal(),
414                         Call.getNumArgs());
415         return;
416       }
417 
418       handleDecrement(C, Call.getReturnValue(), Call.getArgSVal(0),
419                         Call.getNumArgs());
420       return;
421     }
422 }
423 
424 void
425 IteratorModeling::handleAdvanceLikeFunction(CheckerContext &C,
426                                             const CallEvent &Call,
427                                             const Expr *OrigExpr,
428                                             const AdvanceFn *Handler) const {
429   if (!C.wasInlined) {
430     (this->**Handler)(C, OrigExpr, Call.getReturnValue(),
431                       Call.getArgSVal(0), Call.getArgSVal(1));
432     return;
433   }
434 
435   // If std::advance() was inlined, but a non-standard function it calls inside
436   // was not, then we have to model it explicitly
437   const auto *IdInfo = cast<FunctionDecl>(Call.getDecl())->getIdentifier();
438   if (IdInfo) {
439     if (IdInfo->getName() == "advance") {
440       if (noChangeInAdvance(C, Call.getArgSVal(0), OrigExpr)) {
441         (this->**Handler)(C, OrigExpr, Call.getReturnValue(),
442                           Call.getArgSVal(0), Call.getArgSVal(1));
443       }
444     }
445   }
446 }
447 
448 void IteratorModeling::handleComparison(CheckerContext &C, const Expr *CE,
449                                        SVal RetVal, const SVal &LVal,
450                                        const SVal &RVal,
451                                        OverloadedOperatorKind Op) const {
452   // Record the operands and the operator of the comparison for the next
453   // evalAssume, if the result is a symbolic expression. If it is a concrete
454   // value (only one branch is possible), then transfer the state between
455   // the operands according to the operator and the result
456    auto State = C.getState();
457   const auto *LPos = getIteratorPosition(State, LVal);
458   const auto *RPos = getIteratorPosition(State, RVal);
459   const MemRegion *Cont = nullptr;
460   if (LPos) {
461     Cont = LPos->getContainer();
462   } else if (RPos) {
463     Cont = RPos->getContainer();
464   }
465   if (!Cont)
466     return;
467 
468   // At least one of the iterators has recorded positions. If one of them does
469   // not then create a new symbol for the offset.
470   SymbolRef Sym;
471   if (!LPos || !RPos) {
472     auto &SymMgr = C.getSymbolManager();
473     Sym = SymMgr.conjureSymbol(CE, C.getLocationContext(),
474                                C.getASTContext().LongTy, C.blockCount());
475     State = assumeNoOverflow(State, Sym, 4);
476   }
477 
478   if (!LPos) {
479     State = setIteratorPosition(State, LVal,
480                                 IteratorPosition::getPosition(Cont, Sym));
481     LPos = getIteratorPosition(State, LVal);
482   } else if (!RPos) {
483     State = setIteratorPosition(State, RVal,
484                                 IteratorPosition::getPosition(Cont, Sym));
485     RPos = getIteratorPosition(State, RVal);
486   }
487 
488   // If the value for which we just tried to set a new iterator position is
489   // an `SVal`for which no iterator position can be set then the setting was
490   // unsuccessful. We cannot handle the comparison in this case.
491   if (!LPos || !RPos)
492     return;
493 
494   // We cannot make assumptions on `UnknownVal`. Let us conjure a symbol
495   // instead.
496   if (RetVal.isUnknown()) {
497     auto &SymMgr = C.getSymbolManager();
498     auto *LCtx = C.getLocationContext();
499     RetVal = nonloc::SymbolVal(SymMgr.conjureSymbol(
500         CE, LCtx, C.getASTContext().BoolTy, C.blockCount()));
501     State = State->BindExpr(CE, LCtx, RetVal);
502   }
503 
504   processComparison(C, State, LPos->getOffset(), RPos->getOffset(), RetVal, Op);
505 }
506 
507 void IteratorModeling::processComparison(CheckerContext &C,
508                                          ProgramStateRef State, SymbolRef Sym1,
509                                          SymbolRef Sym2, const SVal &RetVal,
510                                          OverloadedOperatorKind Op) const {
511   if (const auto TruthVal = RetVal.getAs<nonloc::ConcreteInt>()) {
512     if ((State = relateSymbols(State, Sym1, Sym2,
513                               (Op == OO_EqualEqual) ==
514                                (TruthVal->getValue() != 0)))) {
515       C.addTransition(State);
516     } else {
517       C.generateSink(State, C.getPredecessor());
518     }
519     return;
520   }
521 
522   const auto ConditionVal = RetVal.getAs<DefinedSVal>();
523   if (!ConditionVal)
524     return;
525 
526   if (auto StateTrue = relateSymbols(State, Sym1, Sym2, Op == OO_EqualEqual)) {
527     StateTrue = StateTrue->assume(*ConditionVal, true);
528     C.addTransition(StateTrue);
529   }
530 
531   if (auto StateFalse = relateSymbols(State, Sym1, Sym2, Op != OO_EqualEqual)) {
532     StateFalse = StateFalse->assume(*ConditionVal, false);
533     C.addTransition(StateFalse);
534   }
535 }
536 
537 void IteratorModeling::handleIncrement(CheckerContext &C, const SVal &RetVal,
538                                        const SVal &Iter, bool Postfix) const {
539   // Increment the symbolic expressions which represents the position of the
540   // iterator
541   auto State = C.getState();
542   auto &BVF = C.getSymbolManager().getBasicVals();
543 
544   const auto *Pos = getIteratorPosition(State, Iter);
545   if (!Pos)
546     return;
547 
548   auto NewState =
549     advancePosition(State, Iter, OO_Plus,
550                     nonloc::ConcreteInt(BVF.getValue(llvm::APSInt::get(1))));
551   assert(NewState &&
552          "Advancing position by concrete int should always be successful");
553 
554   const auto *NewPos = getIteratorPosition(NewState, Iter);
555   assert(NewPos &&
556          "Iterator should have position after successful advancement");
557 
558   State = setIteratorPosition(State, Iter, *NewPos);
559   State = setIteratorPosition(State, RetVal, Postfix ? *Pos : *NewPos);
560   C.addTransition(State);
561 }
562 
563 void IteratorModeling::handleDecrement(CheckerContext &C, const SVal &RetVal,
564                                        const SVal &Iter, bool Postfix) const {
565   // Decrement the symbolic expressions which represents the position of the
566   // iterator
567   auto State = C.getState();
568   auto &BVF = C.getSymbolManager().getBasicVals();
569 
570   const auto *Pos = getIteratorPosition(State, Iter);
571   if (!Pos)
572     return;
573 
574   auto NewState =
575     advancePosition(State, Iter, OO_Minus,
576                     nonloc::ConcreteInt(BVF.getValue(llvm::APSInt::get(1))));
577   assert(NewState &&
578          "Advancing position by concrete int should always be successful");
579 
580   const auto *NewPos = getIteratorPosition(NewState, Iter);
581   assert(NewPos &&
582          "Iterator should have position after successful advancement");
583 
584   State = setIteratorPosition(State, Iter, *NewPos);
585   State = setIteratorPosition(State, RetVal, Postfix ? *Pos : *NewPos);
586   C.addTransition(State);
587 }
588 
589 void IteratorModeling::handleRandomIncrOrDecr(CheckerContext &C, const Expr *CE,
590                                               OverloadedOperatorKind Op,
591                                               const SVal &RetVal,
592                                               const SVal &Iterator,
593                                               const SVal &Amount) const {
594   // Increment or decrement the symbolic expressions which represents the
595   // position of the iterator
596   auto State = C.getState();
597 
598   const auto *Pos = getIteratorPosition(State, Iterator);
599   if (!Pos)
600     return;
601 
602   const auto *Value = &Amount;
603   SVal Val;
604   if (auto LocAmount = Amount.getAs<Loc>()) {
605     Val = State->getRawSVal(*LocAmount);
606     Value = &Val;
607   }
608 
609   const auto &TgtVal =
610       (Op == OO_PlusEqual || Op == OO_MinusEqual) ? Iterator : RetVal;
611 
612   // `AdvancedState` is a state where the position of `LHS` is advanced. We
613   // only need this state to retrieve the new position, but we do not want
614   // to change the position of `LHS` (in every case).
615   auto AdvancedState = advancePosition(State, Iterator, Op, *Value);
616   if (AdvancedState) {
617     const auto *NewPos = getIteratorPosition(AdvancedState, Iterator);
618     assert(NewPos &&
619            "Iterator should have position after successful advancement");
620 
621     State = setIteratorPosition(State, TgtVal, *NewPos);
622     C.addTransition(State);
623   } else {
624     assignToContainer(C, CE, TgtVal, Pos->getContainer());
625   }
626 }
627 
628 void IteratorModeling::handlePtrIncrOrDecr(CheckerContext &C,
629                                            const Expr *Iterator,
630                                            OverloadedOperatorKind OK,
631                                            SVal Offset) const {
632   if (!isa<DefinedSVal>(Offset))
633     return;
634 
635   QualType PtrType = Iterator->getType();
636   if (!PtrType->isPointerType())
637     return;
638   QualType ElementType = PtrType->getPointeeType();
639 
640   ProgramStateRef State = C.getState();
641   SVal OldVal = State->getSVal(Iterator, C.getLocationContext());
642 
643   const IteratorPosition *OldPos = getIteratorPosition(State, OldVal);
644   if (!OldPos)
645     return;
646 
647   SVal NewVal;
648   if (OK == OO_Plus || OK == OO_PlusEqual) {
649     NewVal = State->getLValue(ElementType, Offset, OldVal);
650   } else {
651     auto &SVB = C.getSValBuilder();
652     SVal NegatedOffset = SVB.evalMinus(Offset.castAs<NonLoc>());
653     NewVal = State->getLValue(ElementType, NegatedOffset, OldVal);
654   }
655 
656   // `AdvancedState` is a state where the position of `Old` is advanced. We
657   // only need this state to retrieve the new position, but we do not want
658   // ever to change the position of `OldVal`.
659   auto AdvancedState = advancePosition(State, OldVal, OK, Offset);
660   if (AdvancedState) {
661     const IteratorPosition *NewPos = getIteratorPosition(AdvancedState, OldVal);
662     assert(NewPos &&
663            "Iterator should have position after successful advancement");
664 
665     ProgramStateRef NewState = setIteratorPosition(State, NewVal, *NewPos);
666     C.addTransition(NewState);
667   } else {
668     assignToContainer(C, Iterator, NewVal, OldPos->getContainer());
669   }
670 }
671 
672 void IteratorModeling::handleAdvance(CheckerContext &C, const Expr *CE,
673                                      SVal RetVal, SVal Iter,
674                                      SVal Amount) const {
675   handleRandomIncrOrDecr(C, CE, OO_PlusEqual, RetVal, Iter, Amount);
676 }
677 
678 void IteratorModeling::handlePrev(CheckerContext &C, const Expr *CE,
679                                   SVal RetVal, SVal Iter, SVal Amount) const {
680   handleRandomIncrOrDecr(C, CE, OO_Minus, RetVal, Iter, Amount);
681 }
682 
683 void IteratorModeling::handleNext(CheckerContext &C, const Expr *CE,
684                                   SVal RetVal, SVal Iter, SVal Amount) const {
685   handleRandomIncrOrDecr(C, CE, OO_Plus, RetVal, Iter, Amount);
686 }
687 
688 void IteratorModeling::assignToContainer(CheckerContext &C, const Expr *CE,
689                                          const SVal &RetVal,
690                                          const MemRegion *Cont) const {
691   Cont = Cont->getMostDerivedObjectRegion();
692 
693   auto State = C.getState();
694   const auto *LCtx = C.getLocationContext();
695   State = createIteratorPosition(State, RetVal, Cont, CE, LCtx, C.blockCount());
696 
697   C.addTransition(State);
698 }
699 
700 bool IteratorModeling::noChangeInAdvance(CheckerContext &C, SVal Iter,
701                                          const Expr *CE) const {
702   // Compare the iterator position before and after the call. (To be called
703   // from `checkPostCall()`.)
704   const auto StateAfter = C.getState();
705 
706   const auto *PosAfter = getIteratorPosition(StateAfter, Iter);
707   // If we have no position after the call of `std::advance`, then we are not
708   // interested. (Modeling of an inlined `std::advance()` should not remove the
709   // position in any case.)
710   if (!PosAfter)
711     return false;
712 
713   const ExplodedNode *N = findCallEnter(C.getPredecessor(), CE);
714   assert(N && "Any call should have a `CallEnter` node.");
715 
716   const auto StateBefore = N->getState();
717   const auto *PosBefore = getIteratorPosition(StateBefore, Iter);
718   // FIXME: `std::advance()` should not create a new iterator position but
719   //        change existing ones. However, in case of iterators implemented as
720   //        pointers the handling of parameters in `std::advance()`-like
721   //        functions is still incomplete which may result in cases where
722   //        the new position is assigned to the wrong pointer. This causes
723   //        crash if we use an assertion here.
724   if (!PosBefore)
725     return false;
726 
727   return PosBefore->getOffset() == PosAfter->getOffset();
728 }
729 
730 void IteratorModeling::printState(raw_ostream &Out, ProgramStateRef State,
731                                   const char *NL, const char *Sep) const {
732   auto SymbolMap = State->get<IteratorSymbolMap>();
733   auto RegionMap = State->get<IteratorRegionMap>();
734   // Use a counter to add newlines before every line except the first one.
735   unsigned Count = 0;
736 
737   if (!SymbolMap.isEmpty() || !RegionMap.isEmpty()) {
738     Out << Sep << "Iterator Positions :" << NL;
739     for (const auto &Sym : SymbolMap) {
740       if (Count++)
741         Out << NL;
742 
743       Sym.first->dumpToStream(Out);
744       Out << " : ";
745       const auto Pos = Sym.second;
746       Out << (Pos.isValid() ? "Valid" : "Invalid") << " ; Container == ";
747       Pos.getContainer()->dumpToStream(Out);
748       Out<<" ; Offset == ";
749       Pos.getOffset()->dumpToStream(Out);
750     }
751 
752     for (const auto &Reg : RegionMap) {
753       if (Count++)
754         Out << NL;
755 
756       Reg.first->dumpToStream(Out);
757       Out << " : ";
758       const auto Pos = Reg.second;
759       Out << (Pos.isValid() ? "Valid" : "Invalid") << " ; Container == ";
760       Pos.getContainer()->dumpToStream(Out);
761       Out<<" ; Offset == ";
762       Pos.getOffset()->dumpToStream(Out);
763     }
764   }
765 }
766 
767 namespace {
768 
769 bool isSimpleComparisonOperator(OverloadedOperatorKind OK) {
770   return OK == OO_EqualEqual || OK == OO_ExclaimEqual;
771 }
772 
773 bool isSimpleComparisonOperator(BinaryOperatorKind OK) {
774   return OK == BO_EQ || OK == BO_NE;
775 }
776 
777 ProgramStateRef removeIteratorPosition(ProgramStateRef State, const SVal &Val) {
778   if (auto Reg = Val.getAsRegion()) {
779     Reg = Reg->getMostDerivedObjectRegion();
780     return State->remove<IteratorRegionMap>(Reg);
781   } else if (const auto Sym = Val.getAsSymbol()) {
782     return State->remove<IteratorSymbolMap>(Sym);
783   } else if (const auto LCVal = Val.getAs<nonloc::LazyCompoundVal>()) {
784     return State->remove<IteratorRegionMap>(LCVal->getRegion());
785   }
786   return nullptr;
787 }
788 
789 ProgramStateRef relateSymbols(ProgramStateRef State, SymbolRef Sym1,
790                               SymbolRef Sym2, bool Equal) {
791   auto &SVB = State->getStateManager().getSValBuilder();
792 
793   // FIXME: This code should be reworked as follows:
794   // 1. Subtract the operands using evalBinOp().
795   // 2. Assume that the result doesn't overflow.
796   // 3. Compare the result to 0.
797   // 4. Assume the result of the comparison.
798   const auto comparison =
799     SVB.evalBinOp(State, BO_EQ, nonloc::SymbolVal(Sym1),
800                   nonloc::SymbolVal(Sym2), SVB.getConditionType());
801 
802   assert(isa<DefinedSVal>(comparison) &&
803          "Symbol comparison must be a `DefinedSVal`");
804 
805   auto NewState = State->assume(comparison.castAs<DefinedSVal>(), Equal);
806   if (!NewState)
807     return nullptr;
808 
809   if (const auto CompSym = comparison.getAsSymbol()) {
810     assert(isa<SymIntExpr>(CompSym) &&
811            "Symbol comparison must be a `SymIntExpr`");
812     assert(BinaryOperator::isComparisonOp(
813                cast<SymIntExpr>(CompSym)->getOpcode()) &&
814            "Symbol comparison must be a comparison");
815     return assumeNoOverflow(NewState, cast<SymIntExpr>(CompSym)->getLHS(), 2);
816   }
817 
818   return NewState;
819 }
820 
821 bool isBoundThroughLazyCompoundVal(const Environment &Env,
822                                    const MemRegion *Reg) {
823   for (const auto &Binding : Env) {
824     if (const auto LCVal = Binding.second.getAs<nonloc::LazyCompoundVal>()) {
825       if (LCVal->getRegion() == Reg)
826         return true;
827     }
828   }
829 
830   return false;
831 }
832 
833 const ExplodedNode *findCallEnter(const ExplodedNode *Node, const Expr *Call) {
834   while (Node) {
835     ProgramPoint PP = Node->getLocation();
836     if (auto Enter = PP.getAs<CallEnter>()) {
837       if (Enter->getCallExpr() == Call)
838         break;
839     }
840 
841     Node = Node->getFirstPred();
842   }
843 
844   return Node;
845 }
846 
847 } // namespace
848 
849 void ento::registerIteratorModeling(CheckerManager &mgr) {
850   mgr.registerChecker<IteratorModeling>();
851 }
852 
853 bool ento::shouldRegisterIteratorModeling(const CheckerManager &mgr) {
854   return true;
855 }
856