xref: /freebsd/contrib/llvm-project/clang/lib/StaticAnalyzer/Checkers/IteratorModeling.cpp (revision ac77b2621508c6a50ab01d07fe8d43795d908f05)
1 //===-- IteratorModeling.cpp --------------------------------------*- C++ -*--//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Defines a modeling-checker for modeling STL iterator-like iterators.
10 //
11 //===----------------------------------------------------------------------===//
12 //
13 // In the code, iterator can be represented as a:
14 // * type-I: typedef-ed pointer. Operations over such iterator, such as
15 //           comparisons or increments, are modeled straightforwardly by the
16 //           analyzer.
17 // * type-II: structure with its method bodies available.  Operations over such
18 //            iterator are inlined by the analyzer, and results of modeling
19 //            these operations are exposing implementation details of the
20 //            iterators, which is not necessarily helping.
21 // * type-III: completely opaque structure. Operations over such iterator are
22 //             modeled conservatively, producing conjured symbols everywhere.
23 //
24 // To handle all these types in a common way we introduce a structure called
25 // IteratorPosition which is an abstraction of the position the iterator
26 // represents using symbolic expressions. The checker handles all the
27 // operations on this structure.
28 //
29 // Additionally, depending on the circumstances, operators of types II and III
30 // can be represented as:
31 // * type-IIa, type-IIIa: conjured structure symbols - when returned by value
32 //                        from conservatively evaluated methods such as
33 //                        `.begin()`.
34 // * type-IIb, type-IIIb: memory regions of iterator-typed objects, such as
35 //                        variables or temporaries, when the iterator object is
36 //                        currently treated as an lvalue.
37 // * type-IIc, type-IIIc: compound values of iterator-typed objects, when the
38 //                        iterator object is treated as an rvalue taken of a
39 //                        particular lvalue, eg. a copy of "type-a" iterator
40 //                        object, or an iterator that existed before the
41 //                        analysis has started.
42 //
43 // To handle any of these three different representations stored in an SVal we
44 // use setter and getters functions which separate the three cases. To store
45 // them we use a pointer union of symbol and memory region.
46 //
47 // The checker works the following way: We record the begin and the
48 // past-end iterator for all containers whenever their `.begin()` and `.end()`
49 // are called. Since the Constraint Manager cannot handle such SVals we need
50 // to take over its role. We post-check equality and non-equality comparisons
51 // and record that the two sides are equal if we are in the 'equal' branch
52 // (true-branch for `==` and false-branch for `!=`).
53 //
54 // In case of type-I or type-II iterators we get a concrete integer as a result
55 // of the comparison (1 or 0) but in case of type-III we only get a Symbol. In
56 // this latter case we record the symbol and reload it in evalAssume() and do
57 // the propagation there. We also handle (maybe double) negated comparisons
58 // which are represented in the form of (x == 0 or x != 0) where x is the
59 // comparison itself.
60 //
61 // Since `SimpleConstraintManager` cannot handle complex symbolic expressions
62 // we only use expressions of the format S, S+n or S-n for iterator positions
63 // where S is a conjured symbol and n is an unsigned concrete integer. When
64 // making an assumption e.g. `S1 + n == S2 + m` we store `S1 - S2 == m - n` as
65 // a constraint which we later retrieve when doing an actual comparison.
66 
67 #include "clang/AST/DeclTemplate.h"
68 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
69 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
70 #include "clang/StaticAnalyzer/Core/Checker.h"
71 #include "clang/StaticAnalyzer/Core/PathSensitive/CallDescription.h"
72 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
73 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
74 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicType.h"
75 #include "llvm/ADT/STLExtras.h"
76 
77 #include "Iterator.h"
78 
79 #include <utility>
80 
81 using namespace clang;
82 using namespace ento;
83 using namespace iterator;
84 
85 namespace {
86 
87 class IteratorModeling
88     : public Checker<check::PostCall, check::PostStmt<UnaryOperator>,
89                      check::PostStmt<BinaryOperator>,
90                      check::PostStmt<MaterializeTemporaryExpr>,
91                      check::Bind, check::LiveSymbols, check::DeadSymbols> {
92 
93   using AdvanceFn = void (IteratorModeling::*)(CheckerContext &, const Expr *,
94                                                SVal, SVal, SVal) const;
95 
96   void handleOverloadedOperator(CheckerContext &C, const CallEvent &Call,
97                                 OverloadedOperatorKind Op) const;
98   void handleAdvanceLikeFunction(CheckerContext &C, const CallEvent &Call,
99                                  const Expr *OrigExpr,
100                                  const AdvanceFn *Handler) const;
101 
102   void handleComparison(CheckerContext &C, const Expr *CE, SVal RetVal,
103                         SVal LVal, SVal RVal, OverloadedOperatorKind Op) const;
104   void processComparison(CheckerContext &C, ProgramStateRef State,
105                          SymbolRef Sym1, SymbolRef Sym2, SVal RetVal,
106                          OverloadedOperatorKind Op) const;
107   void handleIncrement(CheckerContext &C, SVal RetVal, SVal Iter,
108                        bool Postfix) const;
109   void handleDecrement(CheckerContext &C, SVal RetVal, SVal Iter,
110                        bool Postfix) const;
111   void handleRandomIncrOrDecr(CheckerContext &C, const Expr *CE,
112                               OverloadedOperatorKind Op, SVal RetVal,
113                               SVal Iterator, SVal Amount) const;
114   void handlePtrIncrOrDecr(CheckerContext &C, const Expr *Iterator,
115                            OverloadedOperatorKind OK, SVal Offset) const;
116   void handleAdvance(CheckerContext &C, const Expr *CE, SVal RetVal, SVal Iter,
117                      SVal Amount) const;
118   void handlePrev(CheckerContext &C, const Expr *CE, SVal RetVal, SVal Iter,
119                   SVal Amount) const;
120   void handleNext(CheckerContext &C, const Expr *CE, SVal RetVal, SVal Iter,
121                   SVal Amount) const;
122   void assignToContainer(CheckerContext &C, const Expr *CE, SVal RetVal,
123                          const MemRegion *Cont) const;
124   bool noChangeInAdvance(CheckerContext &C, SVal Iter, const Expr *CE) const;
125   void printState(raw_ostream &Out, ProgramStateRef State, const char *NL,
126                   const char *Sep) const override;
127 
128   // std::advance, std::prev & std::next
129   CallDescriptionMap<AdvanceFn> AdvanceLikeFunctions = {
130       // template<class InputIt, class Distance>
131       // void advance(InputIt& it, Distance n);
132       {{{"std", "advance"}, 2}, &IteratorModeling::handleAdvance},
133 
134       // template<class BidirIt>
135       // BidirIt prev(
136       //   BidirIt it,
137       //   typename std::iterator_traits<BidirIt>::difference_type n = 1);
138       {{{"std", "prev"}, 2}, &IteratorModeling::handlePrev},
139 
140       // template<class ForwardIt>
141       // ForwardIt next(
142       //   ForwardIt it,
143       //   typename std::iterator_traits<ForwardIt>::difference_type n = 1);
144       {{{"std", "next"}, 2}, &IteratorModeling::handleNext},
145   };
146 
147 public:
148   IteratorModeling() = default;
149 
150   void checkPostCall(const CallEvent &Call, CheckerContext &C) const;
151   void checkBind(SVal Loc, SVal Val, const Stmt *S, CheckerContext &C) const;
152   void checkPostStmt(const UnaryOperator *UO, CheckerContext &C) const;
153   void checkPostStmt(const BinaryOperator *BO, CheckerContext &C) const;
154   void checkPostStmt(const MaterializeTemporaryExpr *MTE,
155                      CheckerContext &C) const;
156   void checkLiveSymbols(ProgramStateRef State, SymbolReaper &SR) const;
157   void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const;
158 };
159 
160 bool isSimpleComparisonOperator(OverloadedOperatorKind OK);
161 bool isSimpleComparisonOperator(BinaryOperatorKind OK);
162 ProgramStateRef removeIteratorPosition(ProgramStateRef State, SVal Val);
163 ProgramStateRef relateSymbols(ProgramStateRef State, SymbolRef Sym1,
164                               SymbolRef Sym2, bool Equal);
165 bool isBoundThroughLazyCompoundVal(const Environment &Env,
166                                    const MemRegion *Reg);
167 const ExplodedNode *findCallEnter(const ExplodedNode *Node, const Expr *Call);
168 
169 } // namespace
170 
171 void IteratorModeling::checkPostCall(const CallEvent &Call,
172                                      CheckerContext &C) const {
173   // Record new iterator positions and iterator position changes
174   const auto *Func = dyn_cast_or_null<FunctionDecl>(Call.getDecl());
175   if (!Func)
176     return;
177 
178   if (Func->isOverloadedOperator()) {
179     const auto Op = Func->getOverloadedOperator();
180     handleOverloadedOperator(C, Call, Op);
181     return;
182   }
183 
184   const auto *OrigExpr = Call.getOriginExpr();
185   if (!OrigExpr)
186     return;
187 
188   const AdvanceFn *Handler = AdvanceLikeFunctions.lookup(Call);
189   if (Handler) {
190     handleAdvanceLikeFunction(C, Call, OrigExpr, Handler);
191     return;
192   }
193 
194   if (!isIteratorType(Call.getResultType()))
195     return;
196 
197   auto State = C.getState();
198 
199   // Already bound to container?
200   if (getIteratorPosition(State, Call.getReturnValue()))
201     return;
202 
203   // Copy-like and move constructors
204   if (isa<CXXConstructorCall>(&Call) && Call.getNumArgs() == 1) {
205     if (const auto *Pos = getIteratorPosition(State, Call.getArgSVal(0))) {
206       State = setIteratorPosition(State, Call.getReturnValue(), *Pos);
207       if (cast<CXXConstructorDecl>(Func)->isMoveConstructor()) {
208         State = removeIteratorPosition(State, Call.getArgSVal(0));
209       }
210       C.addTransition(State);
211       return;
212     }
213   }
214 
215   // Assumption: if return value is an iterator which is not yet bound to a
216   //             container, then look for the first iterator argument of the
217   //             same type as the return value and bind the return value to
218   //             the same container. This approach works for STL algorithms.
219   // FIXME: Add a more conservative mode
220   for (unsigned i = 0; i < Call.getNumArgs(); ++i) {
221     if (isIteratorType(Call.getArgExpr(i)->getType()) &&
222         Call.getArgExpr(i)->getType().getNonReferenceType().getDesugaredType(
223             C.getASTContext()).getTypePtr() ==
224         Call.getResultType().getDesugaredType(C.getASTContext()).getTypePtr()) {
225       if (const auto *Pos = getIteratorPosition(State, Call.getArgSVal(i))) {
226         assignToContainer(C, OrigExpr, Call.getReturnValue(),
227                           Pos->getContainer());
228         return;
229       }
230     }
231   }
232 }
233 
234 void IteratorModeling::checkBind(SVal Loc, SVal Val, const Stmt *S,
235                                  CheckerContext &C) const {
236   auto State = C.getState();
237   const auto *Pos = getIteratorPosition(State, Val);
238   if (Pos) {
239     State = setIteratorPosition(State, Loc, *Pos);
240     C.addTransition(State);
241   } else {
242     const auto *OldPos = getIteratorPosition(State, Loc);
243     if (OldPos) {
244       State = removeIteratorPosition(State, Loc);
245       C.addTransition(State);
246     }
247   }
248 }
249 
250 void IteratorModeling::checkPostStmt(const UnaryOperator *UO,
251                                      CheckerContext &C) const {
252   UnaryOperatorKind OK = UO->getOpcode();
253   if (!isIncrementOperator(OK) && !isDecrementOperator(OK))
254     return;
255 
256   auto &SVB = C.getSValBuilder();
257   handlePtrIncrOrDecr(C, UO->getSubExpr(),
258                       isIncrementOperator(OK) ? OO_Plus : OO_Minus,
259                       SVB.makeArrayIndex(1));
260 }
261 
262 void IteratorModeling::checkPostStmt(const BinaryOperator *BO,
263                                      CheckerContext &C) const {
264   const ProgramStateRef State = C.getState();
265   const BinaryOperatorKind OK = BO->getOpcode();
266   const Expr *const LHS = BO->getLHS();
267   const Expr *const RHS = BO->getRHS();
268   const SVal LVal = State->getSVal(LHS, C.getLocationContext());
269   const SVal RVal = State->getSVal(RHS, C.getLocationContext());
270 
271   if (isSimpleComparisonOperator(BO->getOpcode())) {
272     SVal Result = State->getSVal(BO, C.getLocationContext());
273     handleComparison(C, BO, Result, LVal, RVal,
274                      BinaryOperator::getOverloadedOperator(OK));
275   } else if (isRandomIncrOrDecrOperator(OK)) {
276     // In case of operator+ the iterator can be either on the LHS (eg.: it + 1),
277     // or on the RHS (eg.: 1 + it). Both cases are modeled.
278     const bool IsIterOnLHS = BO->getLHS()->getType()->isPointerType();
279     const Expr *const &IterExpr = IsIterOnLHS ? LHS : RHS;
280     const Expr *const &AmountExpr = IsIterOnLHS ? RHS : LHS;
281 
282     // The non-iterator side must have an integral or enumeration type.
283     if (!AmountExpr->getType()->isIntegralOrEnumerationType())
284       return;
285     SVal AmountVal = IsIterOnLHS ? RVal : LVal;
286     handlePtrIncrOrDecr(C, IterExpr, BinaryOperator::getOverloadedOperator(OK),
287                         AmountVal);
288   }
289 }
290 
291 void IteratorModeling::checkPostStmt(const MaterializeTemporaryExpr *MTE,
292                                      CheckerContext &C) const {
293   /* Transfer iterator state to temporary objects */
294   auto State = C.getState();
295   const auto *Pos = getIteratorPosition(State, C.getSVal(MTE->getSubExpr()));
296   if (!Pos)
297     return;
298   State = setIteratorPosition(State, C.getSVal(MTE), *Pos);
299   C.addTransition(State);
300 }
301 
302 void IteratorModeling::checkLiveSymbols(ProgramStateRef State,
303                                         SymbolReaper &SR) const {
304   // Keep symbolic expressions of iterator positions alive
305   auto RegionMap = State->get<IteratorRegionMap>();
306   for (const IteratorPosition &Pos : llvm::make_second_range(RegionMap)) {
307     for (SymbolRef Sym : Pos.getOffset()->symbols())
308       if (isa<SymbolData>(Sym))
309         SR.markLive(Sym);
310   }
311 
312   auto SymbolMap = State->get<IteratorSymbolMap>();
313   for (const IteratorPosition &Pos : llvm::make_second_range(SymbolMap)) {
314     for (SymbolRef Sym : Pos.getOffset()->symbols())
315       if (isa<SymbolData>(Sym))
316         SR.markLive(Sym);
317   }
318 }
319 
320 void IteratorModeling::checkDeadSymbols(SymbolReaper &SR,
321                                         CheckerContext &C) const {
322   // Cleanup
323   auto State = C.getState();
324 
325   auto RegionMap = State->get<IteratorRegionMap>();
326   for (const auto &Reg : RegionMap) {
327     if (!SR.isLiveRegion(Reg.first)) {
328       // The region behind the `LazyCompoundVal` is often cleaned up before
329       // the `LazyCompoundVal` itself. If there are iterator positions keyed
330       // by these regions their cleanup must be deferred.
331       if (!isBoundThroughLazyCompoundVal(State->getEnvironment(), Reg.first)) {
332         State = State->remove<IteratorRegionMap>(Reg.first);
333       }
334     }
335   }
336 
337   auto SymbolMap = State->get<IteratorSymbolMap>();
338   for (const auto &Sym : SymbolMap) {
339     if (!SR.isLive(Sym.first)) {
340       State = State->remove<IteratorSymbolMap>(Sym.first);
341     }
342   }
343 
344   C.addTransition(State);
345 }
346 
347 void
348 IteratorModeling::handleOverloadedOperator(CheckerContext &C,
349                                            const CallEvent &Call,
350                                            OverloadedOperatorKind Op) const {
351     if (isSimpleComparisonOperator(Op)) {
352       const auto *OrigExpr = Call.getOriginExpr();
353       if (!OrigExpr)
354         return;
355 
356       if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
357         handleComparison(C, OrigExpr, Call.getReturnValue(),
358                          InstCall->getCXXThisVal(), Call.getArgSVal(0), Op);
359         return;
360       }
361 
362       handleComparison(C, OrigExpr, Call.getReturnValue(), Call.getArgSVal(0),
363                          Call.getArgSVal(1), Op);
364       return;
365     } else if (isRandomIncrOrDecrOperator(Op)) {
366       const auto *OrigExpr = Call.getOriginExpr();
367       if (!OrigExpr)
368         return;
369 
370       if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
371         if (Call.getNumArgs() >= 1 &&
372               Call.getArgExpr(0)->getType()->isIntegralOrEnumerationType()) {
373           handleRandomIncrOrDecr(C, OrigExpr, Op, Call.getReturnValue(),
374                                  InstCall->getCXXThisVal(), Call.getArgSVal(0));
375           return;
376         }
377       } else if (Call.getNumArgs() >= 2) {
378         const Expr *FirstArg = Call.getArgExpr(0);
379         const Expr *SecondArg = Call.getArgExpr(1);
380         const QualType FirstType = FirstArg->getType();
381         const QualType SecondType = SecondArg->getType();
382 
383         if (FirstType->isIntegralOrEnumerationType() ||
384             SecondType->isIntegralOrEnumerationType()) {
385           // In case of operator+ the iterator can be either on the LHS (eg.:
386           // it + 1), or on the RHS (eg.: 1 + it). Both cases are modeled.
387           const bool IsIterFirst = FirstType->isStructureOrClassType();
388           const SVal FirstArg = Call.getArgSVal(0);
389           const SVal SecondArg = Call.getArgSVal(1);
390           SVal Iterator = IsIterFirst ? FirstArg : SecondArg;
391           SVal Amount = IsIterFirst ? SecondArg : FirstArg;
392 
393           handleRandomIncrOrDecr(C, OrigExpr, Op, Call.getReturnValue(),
394                                  Iterator, Amount);
395           return;
396         }
397       }
398     } else if (isIncrementOperator(Op)) {
399       if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
400         handleIncrement(C, Call.getReturnValue(), InstCall->getCXXThisVal(),
401                         Call.getNumArgs());
402         return;
403       }
404 
405       handleIncrement(C, Call.getReturnValue(), Call.getArgSVal(0),
406                       Call.getNumArgs());
407       return;
408     } else if (isDecrementOperator(Op)) {
409       if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
410         handleDecrement(C, Call.getReturnValue(), InstCall->getCXXThisVal(),
411                         Call.getNumArgs());
412         return;
413       }
414 
415       handleDecrement(C, Call.getReturnValue(), Call.getArgSVal(0),
416                         Call.getNumArgs());
417       return;
418     }
419 }
420 
421 void
422 IteratorModeling::handleAdvanceLikeFunction(CheckerContext &C,
423                                             const CallEvent &Call,
424                                             const Expr *OrigExpr,
425                                             const AdvanceFn *Handler) const {
426   if (!C.wasInlined) {
427     (this->**Handler)(C, OrigExpr, Call.getReturnValue(),
428                       Call.getArgSVal(0), Call.getArgSVal(1));
429     return;
430   }
431 
432   // If std::advance() was inlined, but a non-standard function it calls inside
433   // was not, then we have to model it explicitly
434   const auto *IdInfo = cast<FunctionDecl>(Call.getDecl())->getIdentifier();
435   if (IdInfo) {
436     if (IdInfo->getName() == "advance") {
437       if (noChangeInAdvance(C, Call.getArgSVal(0), OrigExpr)) {
438         (this->**Handler)(C, OrigExpr, Call.getReturnValue(),
439                           Call.getArgSVal(0), Call.getArgSVal(1));
440       }
441     }
442   }
443 }
444 
445 void IteratorModeling::handleComparison(CheckerContext &C, const Expr *CE,
446                                         SVal RetVal, SVal LVal, SVal RVal,
447                                         OverloadedOperatorKind Op) const {
448   // Record the operands and the operator of the comparison for the next
449   // evalAssume, if the result is a symbolic expression. If it is a concrete
450   // value (only one branch is possible), then transfer the state between
451   // the operands according to the operator and the result
452   auto State = C.getState();
453   const auto *LPos = getIteratorPosition(State, LVal);
454   const auto *RPos = getIteratorPosition(State, RVal);
455   const MemRegion *Cont = nullptr;
456   if (LPos) {
457     Cont = LPos->getContainer();
458   } else if (RPos) {
459     Cont = RPos->getContainer();
460   }
461   if (!Cont)
462     return;
463 
464   // At least one of the iterators has recorded positions. If one of them does
465   // not then create a new symbol for the offset.
466   SymbolRef Sym;
467   if (!LPos || !RPos) {
468     auto &SymMgr = C.getSymbolManager();
469     Sym = SymMgr.conjureSymbol(CE, C.getLocationContext(),
470                                C.getASTContext().LongTy, C.blockCount());
471     State = assumeNoOverflow(State, Sym, 4);
472   }
473 
474   if (!LPos) {
475     State = setIteratorPosition(State, LVal,
476                                 IteratorPosition::getPosition(Cont, Sym));
477     LPos = getIteratorPosition(State, LVal);
478   } else if (!RPos) {
479     State = setIteratorPosition(State, RVal,
480                                 IteratorPosition::getPosition(Cont, Sym));
481     RPos = getIteratorPosition(State, RVal);
482   }
483 
484   // If the value for which we just tried to set a new iterator position is
485   // an `SVal`for which no iterator position can be set then the setting was
486   // unsuccessful. We cannot handle the comparison in this case.
487   if (!LPos || !RPos)
488     return;
489 
490   // We cannot make assumptions on `UnknownVal`. Let us conjure a symbol
491   // instead.
492   if (RetVal.isUnknown()) {
493     auto &SymMgr = C.getSymbolManager();
494     auto *LCtx = C.getLocationContext();
495     RetVal = nonloc::SymbolVal(SymMgr.conjureSymbol(
496         CE, LCtx, C.getASTContext().BoolTy, C.blockCount()));
497     State = State->BindExpr(CE, LCtx, RetVal);
498   }
499 
500   processComparison(C, State, LPos->getOffset(), RPos->getOffset(), RetVal, Op);
501 }
502 
503 void IteratorModeling::processComparison(CheckerContext &C,
504                                          ProgramStateRef State, SymbolRef Sym1,
505                                          SymbolRef Sym2, SVal RetVal,
506                                          OverloadedOperatorKind Op) const {
507   if (const auto TruthVal = RetVal.getAs<nonloc::ConcreteInt>()) {
508     if ((State = relateSymbols(State, Sym1, Sym2,
509                               (Op == OO_EqualEqual) ==
510                                (TruthVal->getValue() != 0)))) {
511       C.addTransition(State);
512     } else {
513       C.generateSink(State, C.getPredecessor());
514     }
515     return;
516   }
517 
518   const auto ConditionVal = RetVal.getAs<DefinedSVal>();
519   if (!ConditionVal)
520     return;
521 
522   if (auto StateTrue = relateSymbols(State, Sym1, Sym2, Op == OO_EqualEqual)) {
523     StateTrue = StateTrue->assume(*ConditionVal, true);
524     C.addTransition(StateTrue);
525   }
526 
527   if (auto StateFalse = relateSymbols(State, Sym1, Sym2, Op != OO_EqualEqual)) {
528     StateFalse = StateFalse->assume(*ConditionVal, false);
529     C.addTransition(StateFalse);
530   }
531 }
532 
533 void IteratorModeling::handleIncrement(CheckerContext &C, SVal RetVal,
534                                        SVal Iter, bool Postfix) const {
535   // Increment the symbolic expressions which represents the position of the
536   // iterator
537   auto State = C.getState();
538   auto &BVF = C.getSymbolManager().getBasicVals();
539 
540   const auto *Pos = getIteratorPosition(State, Iter);
541   if (!Pos)
542     return;
543 
544   auto NewState =
545     advancePosition(State, Iter, OO_Plus,
546                     nonloc::ConcreteInt(BVF.getValue(llvm::APSInt::get(1))));
547   assert(NewState &&
548          "Advancing position by concrete int should always be successful");
549 
550   const auto *NewPos = getIteratorPosition(NewState, Iter);
551   assert(NewPos &&
552          "Iterator should have position after successful advancement");
553 
554   State = setIteratorPosition(State, Iter, *NewPos);
555   State = setIteratorPosition(State, RetVal, Postfix ? *Pos : *NewPos);
556   C.addTransition(State);
557 }
558 
559 void IteratorModeling::handleDecrement(CheckerContext &C, SVal RetVal,
560                                        SVal Iter, bool Postfix) const {
561   // Decrement the symbolic expressions which represents the position of the
562   // iterator
563   auto State = C.getState();
564   auto &BVF = C.getSymbolManager().getBasicVals();
565 
566   const auto *Pos = getIteratorPosition(State, Iter);
567   if (!Pos)
568     return;
569 
570   auto NewState =
571     advancePosition(State, Iter, OO_Minus,
572                     nonloc::ConcreteInt(BVF.getValue(llvm::APSInt::get(1))));
573   assert(NewState &&
574          "Advancing position by concrete int should always be successful");
575 
576   const auto *NewPos = getIteratorPosition(NewState, Iter);
577   assert(NewPos &&
578          "Iterator should have position after successful advancement");
579 
580   State = setIteratorPosition(State, Iter, *NewPos);
581   State = setIteratorPosition(State, RetVal, Postfix ? *Pos : *NewPos);
582   C.addTransition(State);
583 }
584 
585 void IteratorModeling::handleRandomIncrOrDecr(CheckerContext &C, const Expr *CE,
586                                               OverloadedOperatorKind Op,
587                                               SVal RetVal, SVal Iterator,
588                                               SVal Amount) const {
589   // Increment or decrement the symbolic expressions which represents the
590   // position of the iterator
591   auto State = C.getState();
592 
593   const auto *Pos = getIteratorPosition(State, Iterator);
594   if (!Pos)
595     return;
596 
597   const auto *Value = &Amount;
598   SVal Val;
599   if (auto LocAmount = Amount.getAs<Loc>()) {
600     Val = State->getRawSVal(*LocAmount);
601     Value = &Val;
602   }
603 
604   const auto &TgtVal =
605       (Op == OO_PlusEqual || Op == OO_MinusEqual) ? Iterator : RetVal;
606 
607   // `AdvancedState` is a state where the position of `LHS` is advanced. We
608   // only need this state to retrieve the new position, but we do not want
609   // to change the position of `LHS` (in every case).
610   auto AdvancedState = advancePosition(State, Iterator, Op, *Value);
611   if (AdvancedState) {
612     const auto *NewPos = getIteratorPosition(AdvancedState, Iterator);
613     assert(NewPos &&
614            "Iterator should have position after successful advancement");
615 
616     State = setIteratorPosition(State, TgtVal, *NewPos);
617     C.addTransition(State);
618   } else {
619     assignToContainer(C, CE, TgtVal, Pos->getContainer());
620   }
621 }
622 
623 void IteratorModeling::handlePtrIncrOrDecr(CheckerContext &C,
624                                            const Expr *Iterator,
625                                            OverloadedOperatorKind OK,
626                                            SVal Offset) const {
627   if (!isa<DefinedSVal>(Offset))
628     return;
629 
630   QualType PtrType = Iterator->getType();
631   if (!PtrType->isPointerType())
632     return;
633   QualType ElementType = PtrType->getPointeeType();
634 
635   ProgramStateRef State = C.getState();
636   SVal OldVal = State->getSVal(Iterator, C.getLocationContext());
637 
638   const IteratorPosition *OldPos = getIteratorPosition(State, OldVal);
639   if (!OldPos)
640     return;
641 
642   SVal NewVal;
643   if (OK == OO_Plus || OK == OO_PlusEqual) {
644     NewVal = State->getLValue(ElementType, Offset, OldVal);
645   } else {
646     auto &SVB = C.getSValBuilder();
647     SVal NegatedOffset = SVB.evalMinus(Offset.castAs<NonLoc>());
648     NewVal = State->getLValue(ElementType, NegatedOffset, OldVal);
649   }
650 
651   // `AdvancedState` is a state where the position of `Old` is advanced. We
652   // only need this state to retrieve the new position, but we do not want
653   // ever to change the position of `OldVal`.
654   auto AdvancedState = advancePosition(State, OldVal, OK, Offset);
655   if (AdvancedState) {
656     const IteratorPosition *NewPos = getIteratorPosition(AdvancedState, OldVal);
657     assert(NewPos &&
658            "Iterator should have position after successful advancement");
659 
660     ProgramStateRef NewState = setIteratorPosition(State, NewVal, *NewPos);
661     C.addTransition(NewState);
662   } else {
663     assignToContainer(C, Iterator, NewVal, OldPos->getContainer());
664   }
665 }
666 
667 void IteratorModeling::handleAdvance(CheckerContext &C, const Expr *CE,
668                                      SVal RetVal, SVal Iter,
669                                      SVal Amount) const {
670   handleRandomIncrOrDecr(C, CE, OO_PlusEqual, RetVal, Iter, Amount);
671 }
672 
673 void IteratorModeling::handlePrev(CheckerContext &C, const Expr *CE,
674                                   SVal RetVal, SVal Iter, SVal Amount) const {
675   handleRandomIncrOrDecr(C, CE, OO_Minus, RetVal, Iter, Amount);
676 }
677 
678 void IteratorModeling::handleNext(CheckerContext &C, const Expr *CE,
679                                   SVal RetVal, SVal Iter, SVal Amount) const {
680   handleRandomIncrOrDecr(C, CE, OO_Plus, RetVal, Iter, Amount);
681 }
682 
683 void IteratorModeling::assignToContainer(CheckerContext &C, const Expr *CE,
684                                          SVal RetVal,
685                                          const MemRegion *Cont) const {
686   Cont = Cont->getMostDerivedObjectRegion();
687 
688   auto State = C.getState();
689   const auto *LCtx = C.getLocationContext();
690   State = createIteratorPosition(State, RetVal, Cont, CE, LCtx, C.blockCount());
691 
692   C.addTransition(State);
693 }
694 
695 bool IteratorModeling::noChangeInAdvance(CheckerContext &C, SVal Iter,
696                                          const Expr *CE) const {
697   // Compare the iterator position before and after the call. (To be called
698   // from `checkPostCall()`.)
699   const auto StateAfter = C.getState();
700 
701   const auto *PosAfter = getIteratorPosition(StateAfter, Iter);
702   // If we have no position after the call of `std::advance`, then we are not
703   // interested. (Modeling of an inlined `std::advance()` should not remove the
704   // position in any case.)
705   if (!PosAfter)
706     return false;
707 
708   const ExplodedNode *N = findCallEnter(C.getPredecessor(), CE);
709   assert(N && "Any call should have a `CallEnter` node.");
710 
711   const auto StateBefore = N->getState();
712   const auto *PosBefore = getIteratorPosition(StateBefore, Iter);
713   // FIXME: `std::advance()` should not create a new iterator position but
714   //        change existing ones. However, in case of iterators implemented as
715   //        pointers the handling of parameters in `std::advance()`-like
716   //        functions is still incomplete which may result in cases where
717   //        the new position is assigned to the wrong pointer. This causes
718   //        crash if we use an assertion here.
719   if (!PosBefore)
720     return false;
721 
722   return PosBefore->getOffset() == PosAfter->getOffset();
723 }
724 
725 void IteratorModeling::printState(raw_ostream &Out, ProgramStateRef State,
726                                   const char *NL, const char *Sep) const {
727   auto SymbolMap = State->get<IteratorSymbolMap>();
728   auto RegionMap = State->get<IteratorRegionMap>();
729   // Use a counter to add newlines before every line except the first one.
730   unsigned Count = 0;
731 
732   if (!SymbolMap.isEmpty() || !RegionMap.isEmpty()) {
733     Out << Sep << "Iterator Positions :" << NL;
734     for (const auto &Sym : SymbolMap) {
735       if (Count++)
736         Out << NL;
737 
738       Sym.first->dumpToStream(Out);
739       Out << " : ";
740       const auto Pos = Sym.second;
741       Out << (Pos.isValid() ? "Valid" : "Invalid") << " ; Container == ";
742       Pos.getContainer()->dumpToStream(Out);
743       Out<<" ; Offset == ";
744       Pos.getOffset()->dumpToStream(Out);
745     }
746 
747     for (const auto &Reg : RegionMap) {
748       if (Count++)
749         Out << NL;
750 
751       Reg.first->dumpToStream(Out);
752       Out << " : ";
753       const auto Pos = Reg.second;
754       Out << (Pos.isValid() ? "Valid" : "Invalid") << " ; Container == ";
755       Pos.getContainer()->dumpToStream(Out);
756       Out<<" ; Offset == ";
757       Pos.getOffset()->dumpToStream(Out);
758     }
759   }
760 }
761 
762 namespace {
763 
764 bool isSimpleComparisonOperator(OverloadedOperatorKind OK) {
765   return OK == OO_EqualEqual || OK == OO_ExclaimEqual;
766 }
767 
768 bool isSimpleComparisonOperator(BinaryOperatorKind OK) {
769   return OK == BO_EQ || OK == BO_NE;
770 }
771 
772 ProgramStateRef removeIteratorPosition(ProgramStateRef State, SVal Val) {
773   if (auto Reg = Val.getAsRegion()) {
774     Reg = Reg->getMostDerivedObjectRegion();
775     return State->remove<IteratorRegionMap>(Reg);
776   } else if (const auto Sym = Val.getAsSymbol()) {
777     return State->remove<IteratorSymbolMap>(Sym);
778   } else if (const auto LCVal = Val.getAs<nonloc::LazyCompoundVal>()) {
779     return State->remove<IteratorRegionMap>(LCVal->getRegion());
780   }
781   return nullptr;
782 }
783 
784 ProgramStateRef relateSymbols(ProgramStateRef State, SymbolRef Sym1,
785                               SymbolRef Sym2, bool Equal) {
786   auto &SVB = State->getStateManager().getSValBuilder();
787 
788   // FIXME: This code should be reworked as follows:
789   // 1. Subtract the operands using evalBinOp().
790   // 2. Assume that the result doesn't overflow.
791   // 3. Compare the result to 0.
792   // 4. Assume the result of the comparison.
793   const auto comparison =
794     SVB.evalBinOp(State, BO_EQ, nonloc::SymbolVal(Sym1),
795                   nonloc::SymbolVal(Sym2), SVB.getConditionType());
796 
797   assert(isa<DefinedSVal>(comparison) &&
798          "Symbol comparison must be a `DefinedSVal`");
799 
800   auto NewState = State->assume(comparison.castAs<DefinedSVal>(), Equal);
801   if (!NewState)
802     return nullptr;
803 
804   if (const auto CompSym = comparison.getAsSymbol()) {
805     assert(isa<SymIntExpr>(CompSym) &&
806            "Symbol comparison must be a `SymIntExpr`");
807     assert(BinaryOperator::isComparisonOp(
808                cast<SymIntExpr>(CompSym)->getOpcode()) &&
809            "Symbol comparison must be a comparison");
810     return assumeNoOverflow(NewState, cast<SymIntExpr>(CompSym)->getLHS(), 2);
811   }
812 
813   return NewState;
814 }
815 
816 bool isBoundThroughLazyCompoundVal(const Environment &Env,
817                                    const MemRegion *Reg) {
818   for (const auto &Binding : Env) {
819     if (const auto LCVal = Binding.second.getAs<nonloc::LazyCompoundVal>()) {
820       if (LCVal->getRegion() == Reg)
821         return true;
822     }
823   }
824 
825   return false;
826 }
827 
828 const ExplodedNode *findCallEnter(const ExplodedNode *Node, const Expr *Call) {
829   while (Node) {
830     ProgramPoint PP = Node->getLocation();
831     if (auto Enter = PP.getAs<CallEnter>()) {
832       if (Enter->getCallExpr() == Call)
833         break;
834     }
835 
836     Node = Node->getFirstPred();
837   }
838 
839   return Node;
840 }
841 
842 } // namespace
843 
844 void ento::registerIteratorModeling(CheckerManager &mgr) {
845   mgr.registerChecker<IteratorModeling>();
846 }
847 
848 bool ento::shouldRegisterIteratorModeling(const CheckerManager &mgr) {
849   return true;
850 }
851