xref: /freebsd/contrib/llvm-project/clang/lib/StaticAnalyzer/Checkers/IteratorModeling.cpp (revision 963f5dc7a30624e95d72fb7f87b8892651164e46)
1 //===-- IteratorModeling.cpp --------------------------------------*- C++ -*--//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Defines a modeling-checker for modeling STL iterator-like iterators.
10 //
11 //===----------------------------------------------------------------------===//
12 //
13 // In the code, iterator can be represented as a:
14 // * type-I: typedef-ed pointer. Operations over such iterator, such as
15 //           comparisons or increments, are modeled straightforwardly by the
16 //           analyzer.
17 // * type-II: structure with its method bodies available.  Operations over such
18 //            iterator are inlined by the analyzer, and results of modeling
19 //            these operations are exposing implementation details of the
20 //            iterators, which is not necessarily helping.
21 // * type-III: completely opaque structure. Operations over such iterator are
22 //             modeled conservatively, producing conjured symbols everywhere.
23 //
24 // To handle all these types in a common way we introduce a structure called
25 // IteratorPosition which is an abstraction of the position the iterator
26 // represents using symbolic expressions. The checker handles all the
27 // operations on this structure.
28 //
29 // Additionally, depending on the circumstances, operators of types II and III
30 // can be represented as:
31 // * type-IIa, type-IIIa: conjured structure symbols - when returned by value
32 //                        from conservatively evaluated methods such as
33 //                        `.begin()`.
34 // * type-IIb, type-IIIb: memory regions of iterator-typed objects, such as
35 //                        variables or temporaries, when the iterator object is
36 //                        currently treated as an lvalue.
37 // * type-IIc, type-IIIc: compound values of iterator-typed objects, when the
38 //                        iterator object is treated as an rvalue taken of a
39 //                        particular lvalue, eg. a copy of "type-a" iterator
40 //                        object, or an iterator that existed before the
41 //                        analysis has started.
42 //
43 // To handle any of these three different representations stored in an SVal we
44 // use setter and getters functions which separate the three cases. To store
45 // them we use a pointer union of symbol and memory region.
46 //
47 // The checker works the following way: We record the begin and the
48 // past-end iterator for all containers whenever their `.begin()` and `.end()`
49 // are called. Since the Constraint Manager cannot handle such SVals we need
50 // to take over its role. We post-check equality and non-equality comparisons
51 // and record that the two sides are equal if we are in the 'equal' branch
52 // (true-branch for `==` and false-branch for `!=`).
53 //
54 // In case of type-I or type-II iterators we get a concrete integer as a result
55 // of the comparison (1 or 0) but in case of type-III we only get a Symbol. In
56 // this latter case we record the symbol and reload it in evalAssume() and do
57 // the propagation there. We also handle (maybe double) negated comparisons
58 // which are represented in the form of (x == 0 or x != 0) where x is the
59 // comparison itself.
60 //
61 // Since `SimpleConstraintManager` cannot handle complex symbolic expressions
62 // we only use expressions of the format S, S+n or S-n for iterator positions
63 // where S is a conjured symbol and n is an unsigned concrete integer. When
64 // making an assumption e.g. `S1 + n == S2 + m` we store `S1 - S2 == m - n` as
65 // a constraint which we later retrieve when doing an actual comparison.
66 
67 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
68 #include "clang/AST/DeclTemplate.h"
69 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
70 #include "clang/StaticAnalyzer/Core/Checker.h"
71 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
72 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
73 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicType.h"
74 
75 #include "Iterator.h"
76 
77 #include <utility>
78 
79 using namespace clang;
80 using namespace ento;
81 using namespace iterator;
82 
83 namespace {
84 
85 class IteratorModeling
86     : public Checker<check::PostCall, check::PostStmt<UnaryOperator>,
87                      check::PostStmt<BinaryOperator>,
88                      check::PostStmt<MaterializeTemporaryExpr>,
89                      check::Bind, check::LiveSymbols, check::DeadSymbols> {
90 
91   using AdvanceFn = void (IteratorModeling::*)(CheckerContext &, const Expr *,
92                                                SVal, SVal, SVal) const;
93 
94   void handleOverloadedOperator(CheckerContext &C, const CallEvent &Call,
95                                 OverloadedOperatorKind Op) const;
96   void handleAdvanceLikeFunction(CheckerContext &C, const CallEvent &Call,
97                                  const Expr *OrigExpr,
98                                  const AdvanceFn *Handler) const;
99 
100   void handleComparison(CheckerContext &C, const Expr *CE, SVal RetVal,
101                         const SVal &LVal, const SVal &RVal,
102                         OverloadedOperatorKind Op) const;
103   void processComparison(CheckerContext &C, ProgramStateRef State,
104                          SymbolRef Sym1, SymbolRef Sym2, const SVal &RetVal,
105                          OverloadedOperatorKind Op) const;
106   void handleIncrement(CheckerContext &C, const SVal &RetVal, const SVal &Iter,
107                        bool Postfix) const;
108   void handleDecrement(CheckerContext &C, const SVal &RetVal, const SVal &Iter,
109                        bool Postfix) const;
110   void handleRandomIncrOrDecr(CheckerContext &C, const Expr *CE,
111                               OverloadedOperatorKind Op, const SVal &RetVal,
112                               const SVal &Iterator, const SVal &Amount) const;
113   void handlePtrIncrOrDecr(CheckerContext &C, const Expr *Iterator,
114                            OverloadedOperatorKind OK, SVal Offset) const;
115   void handleAdvance(CheckerContext &C, const Expr *CE, SVal RetVal, SVal Iter,
116                      SVal Amount) const;
117   void handlePrev(CheckerContext &C, const Expr *CE, SVal RetVal, SVal Iter,
118                   SVal Amount) const;
119   void handleNext(CheckerContext &C, const Expr *CE, SVal RetVal, SVal Iter,
120                   SVal Amount) const;
121   void assignToContainer(CheckerContext &C, const Expr *CE, const SVal &RetVal,
122                          const MemRegion *Cont) const;
123   bool noChangeInAdvance(CheckerContext &C, SVal Iter, const Expr *CE) const;
124   void printState(raw_ostream &Out, ProgramStateRef State, const char *NL,
125                   const char *Sep) const override;
126 
127   // std::advance, std::prev & std::next
128   CallDescriptionMap<AdvanceFn> AdvanceLikeFunctions = {
129       // template<class InputIt, class Distance>
130       // void advance(InputIt& it, Distance n);
131       {{{"std", "advance"}, 2}, &IteratorModeling::handleAdvance},
132 
133       // template<class BidirIt>
134       // BidirIt prev(
135       //   BidirIt it,
136       //   typename std::iterator_traits<BidirIt>::difference_type n = 1);
137       {{{"std", "prev"}, 2}, &IteratorModeling::handlePrev},
138 
139       // template<class ForwardIt>
140       // ForwardIt next(
141       //   ForwardIt it,
142       //   typename std::iterator_traits<ForwardIt>::difference_type n = 1);
143       {{{"std", "next"}, 2}, &IteratorModeling::handleNext},
144   };
145 
146 public:
147   IteratorModeling() = default;
148 
149   void checkPostCall(const CallEvent &Call, CheckerContext &C) const;
150   void checkBind(SVal Loc, SVal Val, const Stmt *S, CheckerContext &C) const;
151   void checkPostStmt(const UnaryOperator *UO, CheckerContext &C) const;
152   void checkPostStmt(const BinaryOperator *BO, CheckerContext &C) const;
153   void checkPostStmt(const CXXConstructExpr *CCE, CheckerContext &C) const;
154   void checkPostStmt(const DeclStmt *DS, CheckerContext &C) const;
155   void checkPostStmt(const MaterializeTemporaryExpr *MTE,
156                      CheckerContext &C) const;
157   void checkLiveSymbols(ProgramStateRef State, SymbolReaper &SR) const;
158   void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const;
159 };
160 
161 bool isSimpleComparisonOperator(OverloadedOperatorKind OK);
162 bool isSimpleComparisonOperator(BinaryOperatorKind OK);
163 ProgramStateRef removeIteratorPosition(ProgramStateRef State, const SVal &Val);
164 ProgramStateRef relateSymbols(ProgramStateRef State, SymbolRef Sym1,
165                               SymbolRef Sym2, bool Equal);
166 bool isBoundThroughLazyCompoundVal(const Environment &Env,
167                                    const MemRegion *Reg);
168 const ExplodedNode *findCallEnter(const ExplodedNode *Node, const Expr *Call);
169 
170 } // namespace
171 
172 void IteratorModeling::checkPostCall(const CallEvent &Call,
173                                      CheckerContext &C) const {
174   // Record new iterator positions and iterator position changes
175   const auto *Func = dyn_cast_or_null<FunctionDecl>(Call.getDecl());
176   if (!Func)
177     return;
178 
179   if (Func->isOverloadedOperator()) {
180     const auto Op = Func->getOverloadedOperator();
181     handleOverloadedOperator(C, Call, Op);
182     return;
183   }
184 
185   const auto *OrigExpr = Call.getOriginExpr();
186   if (!OrigExpr)
187     return;
188 
189   const AdvanceFn *Handler = AdvanceLikeFunctions.lookup(Call);
190   if (Handler) {
191     handleAdvanceLikeFunction(C, Call, OrigExpr, Handler);
192     return;
193   }
194 
195   if (!isIteratorType(Call.getResultType()))
196     return;
197 
198   auto State = C.getState();
199 
200   // Already bound to container?
201   if (getIteratorPosition(State, Call.getReturnValue()))
202     return;
203 
204   // Copy-like and move constructors
205   if (isa<CXXConstructorCall>(&Call) && Call.getNumArgs() == 1) {
206     if (const auto *Pos = getIteratorPosition(State, Call.getArgSVal(0))) {
207       State = setIteratorPosition(State, Call.getReturnValue(), *Pos);
208       if (cast<CXXConstructorDecl>(Func)->isMoveConstructor()) {
209         State = removeIteratorPosition(State, Call.getArgSVal(0));
210       }
211       C.addTransition(State);
212       return;
213     }
214   }
215 
216   // Assumption: if return value is an iterator which is not yet bound to a
217   //             container, then look for the first iterator argument of the
218   //             same type as the return value and bind the return value to
219   //             the same container. This approach works for STL algorithms.
220   // FIXME: Add a more conservative mode
221   for (unsigned i = 0; i < Call.getNumArgs(); ++i) {
222     if (isIteratorType(Call.getArgExpr(i)->getType()) &&
223         Call.getArgExpr(i)->getType().getNonReferenceType().getDesugaredType(
224             C.getASTContext()).getTypePtr() ==
225         Call.getResultType().getDesugaredType(C.getASTContext()).getTypePtr()) {
226       if (const auto *Pos = getIteratorPosition(State, Call.getArgSVal(i))) {
227         assignToContainer(C, OrigExpr, Call.getReturnValue(),
228                           Pos->getContainer());
229         return;
230       }
231     }
232   }
233 }
234 
235 void IteratorModeling::checkBind(SVal Loc, SVal Val, const Stmt *S,
236                                  CheckerContext &C) const {
237   auto State = C.getState();
238   const auto *Pos = getIteratorPosition(State, Val);
239   if (Pos) {
240     State = setIteratorPosition(State, Loc, *Pos);
241     C.addTransition(State);
242   } else {
243     const auto *OldPos = getIteratorPosition(State, Loc);
244     if (OldPos) {
245       State = removeIteratorPosition(State, Loc);
246       C.addTransition(State);
247     }
248   }
249 }
250 
251 void IteratorModeling::checkPostStmt(const UnaryOperator *UO,
252                                      CheckerContext &C) const {
253   UnaryOperatorKind OK = UO->getOpcode();
254   if (!isIncrementOperator(OK) && !isDecrementOperator(OK))
255     return;
256 
257   auto &SVB = C.getSValBuilder();
258   handlePtrIncrOrDecr(C, UO->getSubExpr(),
259                       isIncrementOperator(OK) ? OO_Plus : OO_Minus,
260                       SVB.makeArrayIndex(1));
261 }
262 
263 void IteratorModeling::checkPostStmt(const BinaryOperator *BO,
264                                      CheckerContext &C) const {
265   const ProgramStateRef State = C.getState();
266   const BinaryOperatorKind OK = BO->getOpcode();
267   const Expr *const LHS = BO->getLHS();
268   const Expr *const RHS = BO->getRHS();
269   const SVal LVal = State->getSVal(LHS, C.getLocationContext());
270   const SVal RVal = State->getSVal(RHS, C.getLocationContext());
271 
272   if (isSimpleComparisonOperator(BO->getOpcode())) {
273     SVal Result = State->getSVal(BO, C.getLocationContext());
274     handleComparison(C, BO, Result, LVal, RVal,
275                      BinaryOperator::getOverloadedOperator(OK));
276   } else if (isRandomIncrOrDecrOperator(OK)) {
277     // In case of operator+ the iterator can be either on the LHS (eg.: it + 1),
278     // or on the RHS (eg.: 1 + it). Both cases are modeled.
279     const bool IsIterOnLHS = BO->getLHS()->getType()->isPointerType();
280     const Expr *const &IterExpr = IsIterOnLHS ? LHS : RHS;
281     const Expr *const &AmountExpr = IsIterOnLHS ? RHS : LHS;
282 
283     // The non-iterator side must have an integral or enumeration type.
284     if (!AmountExpr->getType()->isIntegralOrEnumerationType())
285       return;
286     const SVal &AmountVal = IsIterOnLHS ? RVal : LVal;
287     handlePtrIncrOrDecr(C, IterExpr, BinaryOperator::getOverloadedOperator(OK),
288                         AmountVal);
289   }
290 }
291 
292 void IteratorModeling::checkPostStmt(const MaterializeTemporaryExpr *MTE,
293                                      CheckerContext &C) const {
294   /* Transfer iterator state to temporary objects */
295   auto State = C.getState();
296   const auto *Pos = getIteratorPosition(State, C.getSVal(MTE->getSubExpr()));
297   if (!Pos)
298     return;
299   State = setIteratorPosition(State, C.getSVal(MTE), *Pos);
300   C.addTransition(State);
301 }
302 
303 void IteratorModeling::checkLiveSymbols(ProgramStateRef State,
304                                         SymbolReaper &SR) const {
305   // Keep symbolic expressions of iterator positions alive
306   auto RegionMap = State->get<IteratorRegionMap>();
307   for (const auto &Reg : RegionMap) {
308     const auto Offset = Reg.second.getOffset();
309     for (auto i = Offset->symbol_begin(); i != Offset->symbol_end(); ++i)
310       if (isa<SymbolData>(*i))
311         SR.markLive(*i);
312   }
313 
314   auto SymbolMap = State->get<IteratorSymbolMap>();
315   for (const auto &Sym : SymbolMap) {
316     const auto Offset = Sym.second.getOffset();
317     for (auto i = Offset->symbol_begin(); i != Offset->symbol_end(); ++i)
318       if (isa<SymbolData>(*i))
319         SR.markLive(*i);
320   }
321 
322 }
323 
324 void IteratorModeling::checkDeadSymbols(SymbolReaper &SR,
325                                         CheckerContext &C) const {
326   // Cleanup
327   auto State = C.getState();
328 
329   auto RegionMap = State->get<IteratorRegionMap>();
330   for (const auto &Reg : RegionMap) {
331     if (!SR.isLiveRegion(Reg.first)) {
332       // The region behind the `LazyCompoundVal` is often cleaned up before
333       // the `LazyCompoundVal` itself. If there are iterator positions keyed
334       // by these regions their cleanup must be deferred.
335       if (!isBoundThroughLazyCompoundVal(State->getEnvironment(), Reg.first)) {
336         State = State->remove<IteratorRegionMap>(Reg.first);
337       }
338     }
339   }
340 
341   auto SymbolMap = State->get<IteratorSymbolMap>();
342   for (const auto &Sym : SymbolMap) {
343     if (!SR.isLive(Sym.first)) {
344       State = State->remove<IteratorSymbolMap>(Sym.first);
345     }
346   }
347 
348   C.addTransition(State);
349 }
350 
351 void
352 IteratorModeling::handleOverloadedOperator(CheckerContext &C,
353                                            const CallEvent &Call,
354                                            OverloadedOperatorKind Op) const {
355     if (isSimpleComparisonOperator(Op)) {
356       const auto *OrigExpr = Call.getOriginExpr();
357       if (!OrigExpr)
358         return;
359 
360       if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
361         handleComparison(C, OrigExpr, Call.getReturnValue(),
362                          InstCall->getCXXThisVal(), Call.getArgSVal(0), Op);
363         return;
364       }
365 
366       handleComparison(C, OrigExpr, Call.getReturnValue(), Call.getArgSVal(0),
367                          Call.getArgSVal(1), Op);
368       return;
369     } else if (isRandomIncrOrDecrOperator(Op)) {
370       const auto *OrigExpr = Call.getOriginExpr();
371       if (!OrigExpr)
372         return;
373 
374       if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
375         if (Call.getNumArgs() >= 1 &&
376               Call.getArgExpr(0)->getType()->isIntegralOrEnumerationType()) {
377           handleRandomIncrOrDecr(C, OrigExpr, Op, Call.getReturnValue(),
378                                  InstCall->getCXXThisVal(), Call.getArgSVal(0));
379           return;
380         }
381       } else if (Call.getNumArgs() >= 2) {
382         const Expr *FirstArg = Call.getArgExpr(0);
383         const Expr *SecondArg = Call.getArgExpr(1);
384         const QualType FirstType = FirstArg->getType();
385         const QualType SecondType = SecondArg->getType();
386 
387         if (FirstType->isIntegralOrEnumerationType() ||
388             SecondType->isIntegralOrEnumerationType()) {
389           // In case of operator+ the iterator can be either on the LHS (eg.:
390           // it + 1), or on the RHS (eg.: 1 + it). Both cases are modeled.
391           const bool IsIterFirst = FirstType->isStructureOrClassType();
392           const SVal FirstArg = Call.getArgSVal(0);
393           const SVal SecondArg = Call.getArgSVal(1);
394           const SVal &Iterator = IsIterFirst ? FirstArg : SecondArg;
395           const SVal &Amount = IsIterFirst ? SecondArg : FirstArg;
396 
397           handleRandomIncrOrDecr(C, OrigExpr, Op, Call.getReturnValue(),
398                                  Iterator, Amount);
399           return;
400         }
401       }
402     } else if (isIncrementOperator(Op)) {
403       if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
404         handleIncrement(C, Call.getReturnValue(), InstCall->getCXXThisVal(),
405                         Call.getNumArgs());
406         return;
407       }
408 
409       handleIncrement(C, Call.getReturnValue(), Call.getArgSVal(0),
410                       Call.getNumArgs());
411       return;
412     } else if (isDecrementOperator(Op)) {
413       if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
414         handleDecrement(C, Call.getReturnValue(), InstCall->getCXXThisVal(),
415                         Call.getNumArgs());
416         return;
417       }
418 
419       handleDecrement(C, Call.getReturnValue(), Call.getArgSVal(0),
420                         Call.getNumArgs());
421       return;
422     }
423 }
424 
425 void
426 IteratorModeling::handleAdvanceLikeFunction(CheckerContext &C,
427                                             const CallEvent &Call,
428                                             const Expr *OrigExpr,
429                                             const AdvanceFn *Handler) const {
430   if (!C.wasInlined) {
431     (this->**Handler)(C, OrigExpr, Call.getReturnValue(),
432                       Call.getArgSVal(0), Call.getArgSVal(1));
433     return;
434   }
435 
436   // If std::advance() was inlined, but a non-standard function it calls inside
437   // was not, then we have to model it explicitly
438   const auto *IdInfo = cast<FunctionDecl>(Call.getDecl())->getIdentifier();
439   if (IdInfo) {
440     if (IdInfo->getName() == "advance") {
441       if (noChangeInAdvance(C, Call.getArgSVal(0), OrigExpr)) {
442         (this->**Handler)(C, OrigExpr, Call.getReturnValue(),
443                           Call.getArgSVal(0), Call.getArgSVal(1));
444       }
445     }
446   }
447 }
448 
449 void IteratorModeling::handleComparison(CheckerContext &C, const Expr *CE,
450                                        SVal RetVal, const SVal &LVal,
451                                        const SVal &RVal,
452                                        OverloadedOperatorKind Op) const {
453   // Record the operands and the operator of the comparison for the next
454   // evalAssume, if the result is a symbolic expression. If it is a concrete
455   // value (only one branch is possible), then transfer the state between
456   // the operands according to the operator and the result
457    auto State = C.getState();
458   const auto *LPos = getIteratorPosition(State, LVal);
459   const auto *RPos = getIteratorPosition(State, RVal);
460   const MemRegion *Cont = nullptr;
461   if (LPos) {
462     Cont = LPos->getContainer();
463   } else if (RPos) {
464     Cont = RPos->getContainer();
465   }
466   if (!Cont)
467     return;
468 
469   // At least one of the iterators has recorded positions. If one of them does
470   // not then create a new symbol for the offset.
471   SymbolRef Sym;
472   if (!LPos || !RPos) {
473     auto &SymMgr = C.getSymbolManager();
474     Sym = SymMgr.conjureSymbol(CE, C.getLocationContext(),
475                                C.getASTContext().LongTy, C.blockCount());
476     State = assumeNoOverflow(State, Sym, 4);
477   }
478 
479   if (!LPos) {
480     State = setIteratorPosition(State, LVal,
481                                 IteratorPosition::getPosition(Cont, Sym));
482     LPos = getIteratorPosition(State, LVal);
483   } else if (!RPos) {
484     State = setIteratorPosition(State, RVal,
485                                 IteratorPosition::getPosition(Cont, Sym));
486     RPos = getIteratorPosition(State, RVal);
487   }
488 
489   // If the value for which we just tried to set a new iterator position is
490   // an `SVal`for which no iterator position can be set then the setting was
491   // unsuccessful. We cannot handle the comparison in this case.
492   if (!LPos || !RPos)
493     return;
494 
495   // We cannot make assumptions on `UnknownVal`. Let us conjure a symbol
496   // instead.
497   if (RetVal.isUnknown()) {
498     auto &SymMgr = C.getSymbolManager();
499     auto *LCtx = C.getLocationContext();
500     RetVal = nonloc::SymbolVal(SymMgr.conjureSymbol(
501         CE, LCtx, C.getASTContext().BoolTy, C.blockCount()));
502     State = State->BindExpr(CE, LCtx, RetVal);
503   }
504 
505   processComparison(C, State, LPos->getOffset(), RPos->getOffset(), RetVal, Op);
506 }
507 
508 void IteratorModeling::processComparison(CheckerContext &C,
509                                          ProgramStateRef State, SymbolRef Sym1,
510                                          SymbolRef Sym2, const SVal &RetVal,
511                                          OverloadedOperatorKind Op) const {
512   if (const auto TruthVal = RetVal.getAs<nonloc::ConcreteInt>()) {
513     if ((State = relateSymbols(State, Sym1, Sym2,
514                               (Op == OO_EqualEqual) ==
515                                (TruthVal->getValue() != 0)))) {
516       C.addTransition(State);
517     } else {
518       C.generateSink(State, C.getPredecessor());
519     }
520     return;
521   }
522 
523   const auto ConditionVal = RetVal.getAs<DefinedSVal>();
524   if (!ConditionVal)
525     return;
526 
527   if (auto StateTrue = relateSymbols(State, Sym1, Sym2, Op == OO_EqualEqual)) {
528     StateTrue = StateTrue->assume(*ConditionVal, true);
529     C.addTransition(StateTrue);
530   }
531 
532   if (auto StateFalse = relateSymbols(State, Sym1, Sym2, Op != OO_EqualEqual)) {
533     StateFalse = StateFalse->assume(*ConditionVal, false);
534     C.addTransition(StateFalse);
535   }
536 }
537 
538 void IteratorModeling::handleIncrement(CheckerContext &C, const SVal &RetVal,
539                                        const SVal &Iter, bool Postfix) const {
540   // Increment the symbolic expressions which represents the position of the
541   // iterator
542   auto State = C.getState();
543   auto &BVF = C.getSymbolManager().getBasicVals();
544 
545   const auto *Pos = getIteratorPosition(State, Iter);
546   if (!Pos)
547     return;
548 
549   auto NewState =
550     advancePosition(State, Iter, OO_Plus,
551                     nonloc::ConcreteInt(BVF.getValue(llvm::APSInt::get(1))));
552   assert(NewState &&
553          "Advancing position by concrete int should always be successful");
554 
555   const auto *NewPos = getIteratorPosition(NewState, Iter);
556   assert(NewPos &&
557          "Iterator should have position after successful advancement");
558 
559   State = setIteratorPosition(State, Iter, *NewPos);
560   State = setIteratorPosition(State, RetVal, Postfix ? *Pos : *NewPos);
561   C.addTransition(State);
562 }
563 
564 void IteratorModeling::handleDecrement(CheckerContext &C, const SVal &RetVal,
565                                        const SVal &Iter, bool Postfix) const {
566   // Decrement the symbolic expressions which represents the position of the
567   // iterator
568   auto State = C.getState();
569   auto &BVF = C.getSymbolManager().getBasicVals();
570 
571   const auto *Pos = getIteratorPosition(State, Iter);
572   if (!Pos)
573     return;
574 
575   auto NewState =
576     advancePosition(State, Iter, OO_Minus,
577                     nonloc::ConcreteInt(BVF.getValue(llvm::APSInt::get(1))));
578   assert(NewState &&
579          "Advancing position by concrete int should always be successful");
580 
581   const auto *NewPos = getIteratorPosition(NewState, Iter);
582   assert(NewPos &&
583          "Iterator should have position after successful advancement");
584 
585   State = setIteratorPosition(State, Iter, *NewPos);
586   State = setIteratorPosition(State, RetVal, Postfix ? *Pos : *NewPos);
587   C.addTransition(State);
588 }
589 
590 void IteratorModeling::handleRandomIncrOrDecr(CheckerContext &C, const Expr *CE,
591                                               OverloadedOperatorKind Op,
592                                               const SVal &RetVal,
593                                               const SVal &Iterator,
594                                               const SVal &Amount) const {
595   // Increment or decrement the symbolic expressions which represents the
596   // position of the iterator
597   auto State = C.getState();
598 
599   const auto *Pos = getIteratorPosition(State, Iterator);
600   if (!Pos)
601     return;
602 
603   const auto *Value = &Amount;
604   SVal Val;
605   if (auto LocAmount = Amount.getAs<Loc>()) {
606     Val = State->getRawSVal(*LocAmount);
607     Value = &Val;
608   }
609 
610   const auto &TgtVal =
611       (Op == OO_PlusEqual || Op == OO_MinusEqual) ? Iterator : RetVal;
612 
613   // `AdvancedState` is a state where the position of `LHS` is advanced. We
614   // only need this state to retrieve the new position, but we do not want
615   // to change the position of `LHS` (in every case).
616   auto AdvancedState = advancePosition(State, Iterator, Op, *Value);
617   if (AdvancedState) {
618     const auto *NewPos = getIteratorPosition(AdvancedState, Iterator);
619     assert(NewPos &&
620            "Iterator should have position after successful advancement");
621 
622     State = setIteratorPosition(State, TgtVal, *NewPos);
623     C.addTransition(State);
624   } else {
625     assignToContainer(C, CE, TgtVal, Pos->getContainer());
626   }
627 }
628 
629 void IteratorModeling::handlePtrIncrOrDecr(CheckerContext &C,
630                                            const Expr *Iterator,
631                                            OverloadedOperatorKind OK,
632                                            SVal Offset) const {
633   if (!Offset.getAs<DefinedSVal>())
634     return;
635 
636   QualType PtrType = Iterator->getType();
637   if (!PtrType->isPointerType())
638     return;
639   QualType ElementType = PtrType->getPointeeType();
640 
641   ProgramStateRef State = C.getState();
642   SVal OldVal = State->getSVal(Iterator, C.getLocationContext());
643 
644   const IteratorPosition *OldPos = getIteratorPosition(State, OldVal);
645   if (!OldPos)
646     return;
647 
648   SVal NewVal;
649   if (OK == OO_Plus || OK == OO_PlusEqual) {
650     NewVal = State->getLValue(ElementType, Offset, OldVal);
651   } else {
652     auto &SVB = C.getSValBuilder();
653     SVal NegatedOffset = SVB.evalMinus(Offset.castAs<NonLoc>());
654     NewVal = State->getLValue(ElementType, NegatedOffset, OldVal);
655   }
656 
657   // `AdvancedState` is a state where the position of `Old` is advanced. We
658   // only need this state to retrieve the new position, but we do not want
659   // ever to change the position of `OldVal`.
660   auto AdvancedState = advancePosition(State, OldVal, OK, Offset);
661   if (AdvancedState) {
662     const IteratorPosition *NewPos = getIteratorPosition(AdvancedState, OldVal);
663     assert(NewPos &&
664            "Iterator should have position after successful advancement");
665 
666     ProgramStateRef NewState = setIteratorPosition(State, NewVal, *NewPos);
667     C.addTransition(NewState);
668   } else {
669     assignToContainer(C, Iterator, NewVal, OldPos->getContainer());
670   }
671 }
672 
673 void IteratorModeling::handleAdvance(CheckerContext &C, const Expr *CE,
674                                      SVal RetVal, SVal Iter,
675                                      SVal Amount) const {
676   handleRandomIncrOrDecr(C, CE, OO_PlusEqual, RetVal, Iter, Amount);
677 }
678 
679 void IteratorModeling::handlePrev(CheckerContext &C, const Expr *CE,
680                                   SVal RetVal, SVal Iter, SVal Amount) const {
681   handleRandomIncrOrDecr(C, CE, OO_Minus, RetVal, Iter, Amount);
682 }
683 
684 void IteratorModeling::handleNext(CheckerContext &C, const Expr *CE,
685                                   SVal RetVal, SVal Iter, SVal Amount) const {
686   handleRandomIncrOrDecr(C, CE, OO_Plus, RetVal, Iter, Amount);
687 }
688 
689 void IteratorModeling::assignToContainer(CheckerContext &C, const Expr *CE,
690                                          const SVal &RetVal,
691                                          const MemRegion *Cont) const {
692   Cont = Cont->getMostDerivedObjectRegion();
693 
694   auto State = C.getState();
695   const auto *LCtx = C.getLocationContext();
696   State = createIteratorPosition(State, RetVal, Cont, CE, LCtx, C.blockCount());
697 
698   C.addTransition(State);
699 }
700 
701 bool IteratorModeling::noChangeInAdvance(CheckerContext &C, SVal Iter,
702                                          const Expr *CE) const {
703   // Compare the iterator position before and after the call. (To be called
704   // from `checkPostCall()`.)
705   const auto StateAfter = C.getState();
706 
707   const auto *PosAfter = getIteratorPosition(StateAfter, Iter);
708   // If we have no position after the call of `std::advance`, then we are not
709   // interested. (Modeling of an inlined `std::advance()` should not remove the
710   // position in any case.)
711   if (!PosAfter)
712     return false;
713 
714   const ExplodedNode *N = findCallEnter(C.getPredecessor(), CE);
715   assert(N && "Any call should have a `CallEnter` node.");
716 
717   const auto StateBefore = N->getState();
718   const auto *PosBefore = getIteratorPosition(StateBefore, Iter);
719   // FIXME: `std::advance()` should not create a new iterator position but
720   //        change existing ones. However, in case of iterators implemented as
721   //        pointers the handling of parameters in `std::advance()`-like
722   //        functions is still incomplete which may result in cases where
723   //        the new position is assigned to the wrong pointer. This causes
724   //        crash if we use an assertion here.
725   if (!PosBefore)
726     return false;
727 
728   return PosBefore->getOffset() == PosAfter->getOffset();
729 }
730 
731 void IteratorModeling::printState(raw_ostream &Out, ProgramStateRef State,
732                                   const char *NL, const char *Sep) const {
733   auto SymbolMap = State->get<IteratorSymbolMap>();
734   auto RegionMap = State->get<IteratorRegionMap>();
735   // Use a counter to add newlines before every line except the first one.
736   unsigned Count = 0;
737 
738   if (!SymbolMap.isEmpty() || !RegionMap.isEmpty()) {
739     Out << Sep << "Iterator Positions :" << NL;
740     for (const auto &Sym : SymbolMap) {
741       if (Count++)
742         Out << NL;
743 
744       Sym.first->dumpToStream(Out);
745       Out << " : ";
746       const auto Pos = Sym.second;
747       Out << (Pos.isValid() ? "Valid" : "Invalid") << " ; Container == ";
748       Pos.getContainer()->dumpToStream(Out);
749       Out<<" ; Offset == ";
750       Pos.getOffset()->dumpToStream(Out);
751     }
752 
753     for (const auto &Reg : RegionMap) {
754       if (Count++)
755         Out << NL;
756 
757       Reg.first->dumpToStream(Out);
758       Out << " : ";
759       const auto Pos = Reg.second;
760       Out << (Pos.isValid() ? "Valid" : "Invalid") << " ; Container == ";
761       Pos.getContainer()->dumpToStream(Out);
762       Out<<" ; Offset == ";
763       Pos.getOffset()->dumpToStream(Out);
764     }
765   }
766 }
767 
768 namespace {
769 
770 bool isSimpleComparisonOperator(OverloadedOperatorKind OK) {
771   return OK == OO_EqualEqual || OK == OO_ExclaimEqual;
772 }
773 
774 bool isSimpleComparisonOperator(BinaryOperatorKind OK) {
775   return OK == BO_EQ || OK == BO_NE;
776 }
777 
778 ProgramStateRef removeIteratorPosition(ProgramStateRef State, const SVal &Val) {
779   if (auto Reg = Val.getAsRegion()) {
780     Reg = Reg->getMostDerivedObjectRegion();
781     return State->remove<IteratorRegionMap>(Reg);
782   } else if (const auto Sym = Val.getAsSymbol()) {
783     return State->remove<IteratorSymbolMap>(Sym);
784   } else if (const auto LCVal = Val.getAs<nonloc::LazyCompoundVal>()) {
785     return State->remove<IteratorRegionMap>(LCVal->getRegion());
786   }
787   return nullptr;
788 }
789 
790 ProgramStateRef relateSymbols(ProgramStateRef State, SymbolRef Sym1,
791                               SymbolRef Sym2, bool Equal) {
792   auto &SVB = State->getStateManager().getSValBuilder();
793 
794   // FIXME: This code should be reworked as follows:
795   // 1. Subtract the operands using evalBinOp().
796   // 2. Assume that the result doesn't overflow.
797   // 3. Compare the result to 0.
798   // 4. Assume the result of the comparison.
799   const auto comparison =
800     SVB.evalBinOp(State, BO_EQ, nonloc::SymbolVal(Sym1),
801                   nonloc::SymbolVal(Sym2), SVB.getConditionType());
802 
803   assert(comparison.getAs<DefinedSVal>() &&
804     "Symbol comparison must be a `DefinedSVal`");
805 
806   auto NewState = State->assume(comparison.castAs<DefinedSVal>(), Equal);
807   if (!NewState)
808     return nullptr;
809 
810   if (const auto CompSym = comparison.getAsSymbol()) {
811     assert(isa<SymIntExpr>(CompSym) &&
812            "Symbol comparison must be a `SymIntExpr`");
813     assert(BinaryOperator::isComparisonOp(
814                cast<SymIntExpr>(CompSym)->getOpcode()) &&
815            "Symbol comparison must be a comparison");
816     return assumeNoOverflow(NewState, cast<SymIntExpr>(CompSym)->getLHS(), 2);
817   }
818 
819   return NewState;
820 }
821 
822 bool isBoundThroughLazyCompoundVal(const Environment &Env,
823                                    const MemRegion *Reg) {
824   for (const auto &Binding : Env) {
825     if (const auto LCVal = Binding.second.getAs<nonloc::LazyCompoundVal>()) {
826       if (LCVal->getRegion() == Reg)
827         return true;
828     }
829   }
830 
831   return false;
832 }
833 
834 const ExplodedNode *findCallEnter(const ExplodedNode *Node, const Expr *Call) {
835   while (Node) {
836     ProgramPoint PP = Node->getLocation();
837     if (auto Enter = PP.getAs<CallEnter>()) {
838       if (Enter->getCallExpr() == Call)
839         break;
840     }
841 
842     Node = Node->getFirstPred();
843   }
844 
845   return Node;
846 }
847 
848 } // namespace
849 
850 void ento::registerIteratorModeling(CheckerManager &mgr) {
851   mgr.registerChecker<IteratorModeling>();
852 }
853 
854 bool ento::shouldRegisterIteratorModeling(const CheckerManager &mgr) {
855   return true;
856 }
857