xref: /freebsd/contrib/llvm-project/clang/lib/StaticAnalyzer/Checkers/GenericTaintChecker.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //== GenericTaintChecker.cpp ----------------------------------- -*- C++ -*--=//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This checker defines the attack surface for generic taint propagation.
10 //
11 // The taint information produced by it might be useful to other checkers. For
12 // example, checkers should report errors which involve tainted data more
13 // aggressively, even if the involved symbols are under constrained.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "Yaml.h"
18 #include "clang/AST/Attr.h"
19 #include "clang/Basic/Builtins.h"
20 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
21 #include "clang/StaticAnalyzer/Checkers/Taint.h"
22 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
23 #include "clang/StaticAnalyzer/Core/Checker.h"
24 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
25 #include "clang/StaticAnalyzer/Core/PathSensitive/CallDescription.h"
26 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
27 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
28 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
29 #include "llvm/ADT/StringExtras.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/Support/YAMLTraits.h"
32 
33 #include <limits>
34 #include <memory>
35 #include <optional>
36 #include <utility>
37 #include <vector>
38 
39 #define DEBUG_TYPE "taint-checker"
40 
41 using namespace clang;
42 using namespace ento;
43 using namespace taint;
44 
45 using llvm::ImmutableSet;
46 
47 namespace {
48 
49 class GenericTaintChecker;
50 
51 /// Check for CWE-134: Uncontrolled Format String.
52 constexpr llvm::StringLiteral MsgUncontrolledFormatString =
53     "Untrusted data is used as a format string "
54     "(CWE-134: Uncontrolled Format String)";
55 
56 /// Check for:
57 /// CERT/STR02-C. "Sanitize data passed to complex subsystems"
58 /// CWE-78, "Failure to Sanitize Data into an OS Command"
59 constexpr llvm::StringLiteral MsgSanitizeSystemArgs =
60     "Untrusted data is passed to a system call "
61     "(CERT/STR02-C. Sanitize data passed to complex subsystems)";
62 
63 /// Check if tainted data is used as a custom sink's parameter.
64 constexpr llvm::StringLiteral MsgCustomSink =
65     "Untrusted data is passed to a user-defined sink";
66 
67 using ArgIdxTy = int;
68 using ArgVecTy = llvm::SmallVector<ArgIdxTy, 2>;
69 
70 /// Denotes the return value.
71 constexpr ArgIdxTy ReturnValueIndex{-1};
72 
73 static ArgIdxTy fromArgumentCount(unsigned Count) {
74   assert(Count <=
75              static_cast<std::size_t>(std::numeric_limits<ArgIdxTy>::max()) &&
76          "ArgIdxTy is not large enough to represent the number of arguments.");
77   return Count;
78 }
79 
80 /// Check if the region the expression evaluates to is the standard input,
81 /// and thus, is tainted.
82 /// FIXME: Move this to Taint.cpp.
83 bool isStdin(SVal Val, const ASTContext &ACtx) {
84   // FIXME: What if Val is NonParamVarRegion?
85 
86   // The region should be symbolic, we do not know it's value.
87   const auto *SymReg = dyn_cast_or_null<SymbolicRegion>(Val.getAsRegion());
88   if (!SymReg)
89     return false;
90 
91   // Get it's symbol and find the declaration region it's pointing to.
92   const auto *DeclReg =
93       dyn_cast_or_null<DeclRegion>(SymReg->getSymbol()->getOriginRegion());
94   if (!DeclReg)
95     return false;
96 
97   // This region corresponds to a declaration, find out if it's a global/extern
98   // variable named stdin with the proper type.
99   if (const auto *D = dyn_cast_or_null<VarDecl>(DeclReg->getDecl())) {
100     D = D->getCanonicalDecl();
101     if (D->getName() == "stdin" && D->hasExternalStorage() && D->isExternC()) {
102       const QualType FILETy = ACtx.getFILEType().getCanonicalType();
103       const QualType Ty = D->getType().getCanonicalType();
104 
105       if (Ty->isPointerType())
106         return Ty->getPointeeType() == FILETy;
107     }
108   }
109   return false;
110 }
111 
112 SVal getPointeeOf(ProgramStateRef State, Loc LValue) {
113   const QualType ArgTy = LValue.getType(State->getStateManager().getContext());
114   if (!ArgTy->isPointerType() || !ArgTy->getPointeeType()->isVoidType())
115     return State->getSVal(LValue);
116 
117   // Do not dereference void pointers. Treat them as byte pointers instead.
118   // FIXME: we might want to consider more than just the first byte.
119   return State->getSVal(LValue, State->getStateManager().getContext().CharTy);
120 }
121 
122 /// Given a pointer/reference argument, return the value it refers to.
123 std::optional<SVal> getPointeeOf(ProgramStateRef State, SVal Arg) {
124   if (auto LValue = Arg.getAs<Loc>())
125     return getPointeeOf(State, *LValue);
126   return std::nullopt;
127 }
128 
129 /// Given a pointer, return the SVal of its pointee or if it is tainted,
130 /// otherwise return the pointer's SVal if tainted.
131 /// Also considers stdin as a taint source.
132 std::optional<SVal> getTaintedPointeeOrPointer(ProgramStateRef State,
133                                                SVal Arg) {
134   if (auto Pointee = getPointeeOf(State, Arg))
135     if (isTainted(State, *Pointee)) // FIXME: isTainted(...) ? Pointee : None;
136       return Pointee;
137 
138   if (isTainted(State, Arg))
139     return Arg;
140   return std::nullopt;
141 }
142 
143 bool isTaintedOrPointsToTainted(ProgramStateRef State, SVal ExprSVal) {
144   return getTaintedPointeeOrPointer(State, ExprSVal).has_value();
145 }
146 
147 /// Helps in printing taint diagnostics.
148 /// Marks the incoming parameters of a function interesting (to be printed)
149 /// when the return value, or the outgoing parameters are tainted.
150 const NoteTag *taintOriginTrackerTag(CheckerContext &C,
151                                      std::vector<SymbolRef> TaintedSymbols,
152                                      std::vector<ArgIdxTy> TaintedArgs,
153                                      const LocationContext *CallLocation) {
154   return C.getNoteTag([TaintedSymbols = std::move(TaintedSymbols),
155                        TaintedArgs = std::move(TaintedArgs), CallLocation](
156                           PathSensitiveBugReport &BR) -> std::string {
157     SmallString<256> Msg;
158     // We give diagnostics only for taint related reports
159     if (!BR.isInteresting(CallLocation) ||
160         BR.getBugType().getCategory() != categories::TaintedData) {
161       return "";
162     }
163     if (TaintedSymbols.empty())
164       return "Taint originated here";
165 
166     for (auto Sym : TaintedSymbols) {
167       BR.markInteresting(Sym);
168     }
169     LLVM_DEBUG(for (auto Arg
170                     : TaintedArgs) {
171       llvm::dbgs() << "Taint Propagated from argument " << Arg + 1 << "\n";
172     });
173     return "";
174   });
175 }
176 
177 /// Helps in printing taint diagnostics.
178 /// Marks the function interesting (to be printed)
179 /// when the return value, or the outgoing parameters are tainted.
180 const NoteTag *taintPropagationExplainerTag(
181     CheckerContext &C, std::vector<SymbolRef> TaintedSymbols,
182     std::vector<ArgIdxTy> TaintedArgs, const LocationContext *CallLocation) {
183   assert(TaintedSymbols.size() == TaintedArgs.size());
184   return C.getNoteTag([TaintedSymbols = std::move(TaintedSymbols),
185                        TaintedArgs = std::move(TaintedArgs), CallLocation](
186                           PathSensitiveBugReport &BR) -> std::string {
187     SmallString<256> Msg;
188     llvm::raw_svector_ostream Out(Msg);
189     // We give diagnostics only for taint related reports
190     if (TaintedSymbols.empty() ||
191         BR.getBugType().getCategory() != categories::TaintedData) {
192       return "";
193     }
194     int nofTaintedArgs = 0;
195     for (auto [Idx, Sym] : llvm::enumerate(TaintedSymbols)) {
196       if (BR.isInteresting(Sym)) {
197         BR.markInteresting(CallLocation);
198         if (TaintedArgs[Idx] != ReturnValueIndex) {
199           LLVM_DEBUG(llvm::dbgs() << "Taint Propagated to argument "
200                                   << TaintedArgs[Idx] + 1 << "\n");
201           if (nofTaintedArgs == 0)
202             Out << "Taint propagated to the ";
203           else
204             Out << ", ";
205           Out << TaintedArgs[Idx] + 1
206               << llvm::getOrdinalSuffix(TaintedArgs[Idx] + 1) << " argument";
207           nofTaintedArgs++;
208         } else {
209           LLVM_DEBUG(llvm::dbgs() << "Taint Propagated to return value.\n");
210           Out << "Taint propagated to the return value";
211         }
212       }
213     }
214     return std::string(Out.str());
215   });
216 }
217 
218 /// ArgSet is used to describe arguments relevant for taint detection or
219 /// taint application. A discrete set of argument indexes and a variadic
220 /// argument list signified by a starting index are supported.
221 class ArgSet {
222 public:
223   ArgSet() = default;
224   ArgSet(ArgVecTy &&DiscreteArgs,
225          std::optional<ArgIdxTy> VariadicIndex = std::nullopt)
226       : DiscreteArgs(std::move(DiscreteArgs)),
227         VariadicIndex(std::move(VariadicIndex)) {}
228 
229   bool contains(ArgIdxTy ArgIdx) const {
230     if (llvm::is_contained(DiscreteArgs, ArgIdx))
231       return true;
232 
233     return VariadicIndex && ArgIdx >= *VariadicIndex;
234   }
235 
236   bool isEmpty() const { return DiscreteArgs.empty() && !VariadicIndex; }
237 
238 private:
239   ArgVecTy DiscreteArgs;
240   std::optional<ArgIdxTy> VariadicIndex;
241 };
242 
243 /// A struct used to specify taint propagation rules for a function.
244 ///
245 /// If any of the possible taint source arguments is tainted, all of the
246 /// destination arguments should also be tainted. If ReturnValueIndex is added
247 /// to the dst list, the return value will be tainted.
248 class GenericTaintRule {
249   /// Arguments which are taints sinks and should be checked, and a report
250   /// should be emitted if taint reaches these.
251   ArgSet SinkArgs;
252   /// Arguments which should be sanitized on function return.
253   ArgSet FilterArgs;
254   /// Arguments which can participate in taint propagation. If any of the
255   /// arguments in PropSrcArgs is tainted, all arguments in  PropDstArgs should
256   /// be tainted.
257   ArgSet PropSrcArgs;
258   ArgSet PropDstArgs;
259 
260   /// A message that explains why the call is sensitive to taint.
261   std::optional<StringRef> SinkMsg;
262 
263   GenericTaintRule() = default;
264 
265   GenericTaintRule(ArgSet &&Sink, ArgSet &&Filter, ArgSet &&Src, ArgSet &&Dst,
266                    std::optional<StringRef> SinkMsg = std::nullopt)
267       : SinkArgs(std::move(Sink)), FilterArgs(std::move(Filter)),
268         PropSrcArgs(std::move(Src)), PropDstArgs(std::move(Dst)),
269         SinkMsg(SinkMsg) {}
270 
271 public:
272   /// Make a rule that reports a warning if taint reaches any of \p FilterArgs
273   /// arguments.
274   static GenericTaintRule Sink(ArgSet &&SinkArgs,
275                                std::optional<StringRef> Msg = std::nullopt) {
276     return {std::move(SinkArgs), {}, {}, {}, Msg};
277   }
278 
279   /// Make a rule that sanitizes all FilterArgs arguments.
280   static GenericTaintRule Filter(ArgSet &&FilterArgs) {
281     return {{}, std::move(FilterArgs), {}, {}};
282   }
283 
284   /// Make a rule that unconditionally taints all Args.
285   /// If Func is provided, it must also return true for taint to propagate.
286   static GenericTaintRule Source(ArgSet &&SourceArgs) {
287     return {{}, {}, {}, std::move(SourceArgs)};
288   }
289 
290   /// Make a rule that taints all PropDstArgs if any of PropSrcArgs is tainted.
291   static GenericTaintRule Prop(ArgSet &&SrcArgs, ArgSet &&DstArgs) {
292     return {{}, {}, std::move(SrcArgs), std::move(DstArgs)};
293   }
294 
295   /// Process a function which could either be a taint source, a taint sink, a
296   /// taint filter or a taint propagator.
297   void process(const GenericTaintChecker &Checker, const CallEvent &Call,
298                CheckerContext &C) const;
299 
300   /// Handles the resolution of indexes of type ArgIdxTy to Expr*-s.
301   static const Expr *GetArgExpr(ArgIdxTy ArgIdx, const CallEvent &Call) {
302     return ArgIdx == ReturnValueIndex ? Call.getOriginExpr()
303                                       : Call.getArgExpr(ArgIdx);
304   };
305 
306   /// Functions for custom taintedness propagation.
307   static bool UntrustedEnv(CheckerContext &C);
308 };
309 
310 using RuleLookupTy = CallDescriptionMap<GenericTaintRule>;
311 
312 /// Used to parse the configuration file.
313 struct TaintConfiguration {
314   using NameScopeArgs = std::tuple<std::string, std::string, ArgVecTy>;
315   enum class VariadicType { None, Src, Dst };
316 
317   struct Common {
318     std::string Name;
319     std::string Scope;
320   };
321 
322   struct Sink : Common {
323     ArgVecTy SinkArgs;
324   };
325 
326   struct Filter : Common {
327     ArgVecTy FilterArgs;
328   };
329 
330   struct Propagation : Common {
331     ArgVecTy SrcArgs;
332     ArgVecTy DstArgs;
333     VariadicType VarType;
334     ArgIdxTy VarIndex;
335   };
336 
337   std::vector<Propagation> Propagations;
338   std::vector<Filter> Filters;
339   std::vector<Sink> Sinks;
340 
341   TaintConfiguration() = default;
342   TaintConfiguration(const TaintConfiguration &) = default;
343   TaintConfiguration(TaintConfiguration &&) = default;
344   TaintConfiguration &operator=(const TaintConfiguration &) = default;
345   TaintConfiguration &operator=(TaintConfiguration &&) = default;
346 };
347 
348 struct GenericTaintRuleParser {
349   GenericTaintRuleParser(CheckerManager &Mgr) : Mgr(Mgr) {}
350   /// Container type used to gather call identification objects grouped into
351   /// pairs with their corresponding taint rules. It is temporary as it is used
352   /// to finally initialize RuleLookupTy, which is considered to be immutable.
353   using RulesContTy = std::vector<std::pair<CallDescription, GenericTaintRule>>;
354   RulesContTy parseConfiguration(const std::string &Option,
355                                  TaintConfiguration &&Config) const;
356 
357 private:
358   using NamePartsTy = llvm::SmallVector<StringRef, 2>;
359 
360   /// Validate part of the configuration, which contains a list of argument
361   /// indexes.
362   void validateArgVector(const std::string &Option, const ArgVecTy &Args) const;
363 
364   template <typename Config> static NamePartsTy parseNameParts(const Config &C);
365 
366   // Takes the config and creates a CallDescription for it and associates a Rule
367   // with that.
368   template <typename Config>
369   static void consumeRulesFromConfig(const Config &C, GenericTaintRule &&Rule,
370                                      RulesContTy &Rules);
371 
372   void parseConfig(const std::string &Option, TaintConfiguration::Sink &&P,
373                    RulesContTy &Rules) const;
374   void parseConfig(const std::string &Option, TaintConfiguration::Filter &&P,
375                    RulesContTy &Rules) const;
376   void parseConfig(const std::string &Option,
377                    TaintConfiguration::Propagation &&P,
378                    RulesContTy &Rules) const;
379 
380   CheckerManager &Mgr;
381 };
382 
383 class GenericTaintChecker : public Checker<check::PreCall, check::PostCall> {
384 public:
385   void checkPreCall(const CallEvent &Call, CheckerContext &C) const;
386   void checkPostCall(const CallEvent &Call, CheckerContext &C) const;
387 
388   void printState(raw_ostream &Out, ProgramStateRef State, const char *NL,
389                   const char *Sep) const override;
390 
391   /// Generate a report if the expression is tainted or points to tainted data.
392   bool generateReportIfTainted(const Expr *E, StringRef Msg,
393                                CheckerContext &C) const;
394 
395   bool isTaintReporterCheckerEnabled = false;
396   std::optional<BugType> BT;
397 
398 private:
399   bool checkUncontrolledFormatString(const CallEvent &Call,
400                                      CheckerContext &C) const;
401 
402   void taintUnsafeSocketProtocol(const CallEvent &Call,
403                                  CheckerContext &C) const;
404 
405   /// The taint rules are initalized with the help of a CheckerContext to
406   /// access user-provided configuration.
407   void initTaintRules(CheckerContext &C) const;
408 
409   // TODO: The two separate `CallDescriptionMap`s were introduced when
410   // `CallDescription` was unable to restrict matches to the global namespace
411   // only. This limitation no longer exists, so the following two maps should
412   // be unified.
413   mutable std::optional<RuleLookupTy> StaticTaintRules;
414   mutable std::optional<RuleLookupTy> DynamicTaintRules;
415 };
416 } // end of anonymous namespace
417 
418 /// YAML serialization mapping.
419 LLVM_YAML_IS_SEQUENCE_VECTOR(TaintConfiguration::Sink)
420 LLVM_YAML_IS_SEQUENCE_VECTOR(TaintConfiguration::Filter)
421 LLVM_YAML_IS_SEQUENCE_VECTOR(TaintConfiguration::Propagation)
422 
423 namespace llvm {
424 namespace yaml {
425 template <> struct MappingTraits<TaintConfiguration> {
426   static void mapping(IO &IO, TaintConfiguration &Config) {
427     IO.mapOptional("Propagations", Config.Propagations);
428     IO.mapOptional("Filters", Config.Filters);
429     IO.mapOptional("Sinks", Config.Sinks);
430   }
431 };
432 
433 template <> struct MappingTraits<TaintConfiguration::Sink> {
434   static void mapping(IO &IO, TaintConfiguration::Sink &Sink) {
435     IO.mapRequired("Name", Sink.Name);
436     IO.mapOptional("Scope", Sink.Scope);
437     IO.mapRequired("Args", Sink.SinkArgs);
438   }
439 };
440 
441 template <> struct MappingTraits<TaintConfiguration::Filter> {
442   static void mapping(IO &IO, TaintConfiguration::Filter &Filter) {
443     IO.mapRequired("Name", Filter.Name);
444     IO.mapOptional("Scope", Filter.Scope);
445     IO.mapRequired("Args", Filter.FilterArgs);
446   }
447 };
448 
449 template <> struct MappingTraits<TaintConfiguration::Propagation> {
450   static void mapping(IO &IO, TaintConfiguration::Propagation &Propagation) {
451     IO.mapRequired("Name", Propagation.Name);
452     IO.mapOptional("Scope", Propagation.Scope);
453     IO.mapOptional("SrcArgs", Propagation.SrcArgs);
454     IO.mapOptional("DstArgs", Propagation.DstArgs);
455     IO.mapOptional("VariadicType", Propagation.VarType);
456     IO.mapOptional("VariadicIndex", Propagation.VarIndex);
457   }
458 };
459 
460 template <> struct ScalarEnumerationTraits<TaintConfiguration::VariadicType> {
461   static void enumeration(IO &IO, TaintConfiguration::VariadicType &Value) {
462     IO.enumCase(Value, "None", TaintConfiguration::VariadicType::None);
463     IO.enumCase(Value, "Src", TaintConfiguration::VariadicType::Src);
464     IO.enumCase(Value, "Dst", TaintConfiguration::VariadicType::Dst);
465   }
466 };
467 } // namespace yaml
468 } // namespace llvm
469 
470 /// A set which is used to pass information from call pre-visit instruction
471 /// to the call post-visit. The values are signed integers, which are either
472 /// ReturnValueIndex, or indexes of the pointer/reference argument, which
473 /// points to data, which should be tainted on return.
474 REGISTER_MAP_WITH_PROGRAMSTATE(TaintArgsOnPostVisit, const LocationContext *,
475                                ImmutableSet<ArgIdxTy>)
476 REGISTER_SET_FACTORY_WITH_PROGRAMSTATE(ArgIdxFactory, ArgIdxTy)
477 
478 void GenericTaintRuleParser::validateArgVector(const std::string &Option,
479                                                const ArgVecTy &Args) const {
480   for (ArgIdxTy Arg : Args) {
481     if (Arg < ReturnValueIndex) {
482       Mgr.reportInvalidCheckerOptionValue(
483           Mgr.getChecker<GenericTaintChecker>(), Option,
484           "an argument number for propagation rules greater or equal to -1");
485     }
486   }
487 }
488 
489 template <typename Config>
490 GenericTaintRuleParser::NamePartsTy
491 GenericTaintRuleParser::parseNameParts(const Config &C) {
492   NamePartsTy NameParts;
493   if (!C.Scope.empty()) {
494     // If the Scope argument contains multiple "::" parts, those are considered
495     // namespace identifiers.
496     StringRef{C.Scope}.split(NameParts, "::", /*MaxSplit*/ -1,
497                              /*KeepEmpty*/ false);
498   }
499   NameParts.emplace_back(C.Name);
500   return NameParts;
501 }
502 
503 template <typename Config>
504 void GenericTaintRuleParser::consumeRulesFromConfig(const Config &C,
505                                                     GenericTaintRule &&Rule,
506                                                     RulesContTy &Rules) {
507   NamePartsTy NameParts = parseNameParts(C);
508   Rules.emplace_back(CallDescription(CDM::Unspecified, NameParts),
509                      std::move(Rule));
510 }
511 
512 void GenericTaintRuleParser::parseConfig(const std::string &Option,
513                                          TaintConfiguration::Sink &&S,
514                                          RulesContTy &Rules) const {
515   validateArgVector(Option, S.SinkArgs);
516   consumeRulesFromConfig(S, GenericTaintRule::Sink(std::move(S.SinkArgs)),
517                          Rules);
518 }
519 
520 void GenericTaintRuleParser::parseConfig(const std::string &Option,
521                                          TaintConfiguration::Filter &&S,
522                                          RulesContTy &Rules) const {
523   validateArgVector(Option, S.FilterArgs);
524   consumeRulesFromConfig(S, GenericTaintRule::Filter(std::move(S.FilterArgs)),
525                          Rules);
526 }
527 
528 void GenericTaintRuleParser::parseConfig(const std::string &Option,
529                                          TaintConfiguration::Propagation &&P,
530                                          RulesContTy &Rules) const {
531   validateArgVector(Option, P.SrcArgs);
532   validateArgVector(Option, P.DstArgs);
533   bool IsSrcVariadic = P.VarType == TaintConfiguration::VariadicType::Src;
534   bool IsDstVariadic = P.VarType == TaintConfiguration::VariadicType::Dst;
535   std::optional<ArgIdxTy> JustVarIndex = P.VarIndex;
536 
537   ArgSet SrcDesc(std::move(P.SrcArgs),
538                  IsSrcVariadic ? JustVarIndex : std::nullopt);
539   ArgSet DstDesc(std::move(P.DstArgs),
540                  IsDstVariadic ? JustVarIndex : std::nullopt);
541 
542   consumeRulesFromConfig(
543       P, GenericTaintRule::Prop(std::move(SrcDesc), std::move(DstDesc)), Rules);
544 }
545 
546 GenericTaintRuleParser::RulesContTy
547 GenericTaintRuleParser::parseConfiguration(const std::string &Option,
548                                            TaintConfiguration &&Config) const {
549 
550   RulesContTy Rules;
551 
552   for (auto &F : Config.Filters)
553     parseConfig(Option, std::move(F), Rules);
554 
555   for (auto &S : Config.Sinks)
556     parseConfig(Option, std::move(S), Rules);
557 
558   for (auto &P : Config.Propagations)
559     parseConfig(Option, std::move(P), Rules);
560 
561   return Rules;
562 }
563 
564 void GenericTaintChecker::initTaintRules(CheckerContext &C) const {
565   // Check for exact name match for functions without builtin substitutes.
566   // Use qualified name, because these are C functions without namespace.
567 
568   if (StaticTaintRules || DynamicTaintRules)
569     return;
570 
571   using RulesConstructionTy =
572       std::vector<std::pair<CallDescription, GenericTaintRule>>;
573   using TR = GenericTaintRule;
574 
575   RulesConstructionTy GlobalCRules{
576       // Sources
577       {{CDM::CLibrary, {"fdopen"}}, TR::Source({{ReturnValueIndex}})},
578       {{CDM::CLibrary, {"fopen"}}, TR::Source({{ReturnValueIndex}})},
579       {{CDM::CLibrary, {"freopen"}}, TR::Source({{ReturnValueIndex}})},
580       {{CDM::CLibrary, {"getch"}}, TR::Source({{ReturnValueIndex}})},
581       {{CDM::CLibrary, {"getchar"}}, TR::Source({{ReturnValueIndex}})},
582       {{CDM::CLibrary, {"getchar_unlocked"}}, TR::Source({{ReturnValueIndex}})},
583       {{CDM::CLibrary, {"gets"}}, TR::Source({{0, ReturnValueIndex}})},
584       {{CDM::CLibrary, {"gets_s"}}, TR::Source({{0, ReturnValueIndex}})},
585       {{CDM::CLibrary, {"scanf"}}, TR::Source({{}, 1})},
586       {{CDM::CLibrary, {"scanf_s"}}, TR::Source({{}, 1})},
587       {{CDM::CLibrary, {"wgetch"}}, TR::Source({{ReturnValueIndex}})},
588       // Sometimes the line between taint sources and propagators is blurry.
589       // _IO_getc is choosen to be a source, but could also be a propagator.
590       // This way it is simpler, as modeling it as a propagator would require
591       // to model the possible sources of _IO_FILE * values, which the _IO_getc
592       // function takes as parameters.
593       {{CDM::CLibrary, {"_IO_getc"}}, TR::Source({{ReturnValueIndex}})},
594       {{CDM::CLibrary, {"getcwd"}}, TR::Source({{0, ReturnValueIndex}})},
595       {{CDM::CLibrary, {"getwd"}}, TR::Source({{0, ReturnValueIndex}})},
596       {{CDM::CLibrary, {"readlink"}}, TR::Source({{1, ReturnValueIndex}})},
597       {{CDM::CLibrary, {"readlinkat"}}, TR::Source({{2, ReturnValueIndex}})},
598       {{CDM::CLibrary, {"get_current_dir_name"}},
599        TR::Source({{ReturnValueIndex}})},
600       {{CDM::CLibrary, {"gethostname"}}, TR::Source({{0}})},
601       {{CDM::CLibrary, {"getnameinfo"}}, TR::Source({{2, 4}})},
602       {{CDM::CLibrary, {"getseuserbyname"}}, TR::Source({{1, 2}})},
603       {{CDM::CLibrary, {"getgroups"}}, TR::Source({{1, ReturnValueIndex}})},
604       {{CDM::CLibrary, {"getlogin"}}, TR::Source({{ReturnValueIndex}})},
605       {{CDM::CLibrary, {"getlogin_r"}}, TR::Source({{0}})},
606 
607       // Props
608       {{CDM::CLibrary, {"accept"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
609       {{CDM::CLibrary, {"atoi"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
610       {{CDM::CLibrary, {"atol"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
611       {{CDM::CLibrary, {"atoll"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
612       {{CDM::CLibrary, {"fgetc"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
613       {{CDM::CLibrary, {"fgetln"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
614       {{CDM::CLibraryMaybeHardened, {"fgets"}},
615        TR::Prop({{2}}, {{0, ReturnValueIndex}})},
616       {{CDM::CLibraryMaybeHardened, {"fgetws"}},
617        TR::Prop({{2}}, {{0, ReturnValueIndex}})},
618       {{CDM::CLibrary, {"fscanf"}}, TR::Prop({{0}}, {{}, 2})},
619       {{CDM::CLibrary, {"fscanf_s"}}, TR::Prop({{0}}, {{}, 2})},
620       {{CDM::CLibrary, {"sscanf"}}, TR::Prop({{0}}, {{}, 2})},
621       {{CDM::CLibrary, {"sscanf_s"}}, TR::Prop({{0}}, {{}, 2})},
622 
623       {{CDM::CLibrary, {"getc"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
624       {{CDM::CLibrary, {"getc_unlocked"}},
625        TR::Prop({{0}}, {{ReturnValueIndex}})},
626       {{CDM::CLibrary, {"getdelim"}}, TR::Prop({{3}}, {{0}})},
627       // TODO: this intends to match the C function `getline()`, but the call
628       // description also matches the C++ function `std::getline()`; it should
629       // be ruled out by some additional logic.
630       {{CDM::CLibrary, {"getline"}}, TR::Prop({{2}}, {{0}})},
631       {{CDM::CLibrary, {"getw"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
632       {{CDM::CLibraryMaybeHardened, {"pread"}},
633        TR::Prop({{0, 1, 2, 3}}, {{1, ReturnValueIndex}})},
634       {{CDM::CLibraryMaybeHardened, {"read"}},
635        TR::Prop({{0, 2}}, {{1, ReturnValueIndex}})},
636       {{CDM::CLibraryMaybeHardened, {"fread"}},
637        TR::Prop({{3}}, {{0, ReturnValueIndex}})},
638       {{CDM::CLibraryMaybeHardened, {"recv"}},
639        TR::Prop({{0}}, {{1, ReturnValueIndex}})},
640       {{CDM::CLibraryMaybeHardened, {"recvfrom"}},
641        TR::Prop({{0}}, {{1, ReturnValueIndex}})},
642 
643       {{CDM::CLibrary, {"ttyname"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
644       {{CDM::CLibrary, {"ttyname_r"}},
645        TR::Prop({{0}}, {{1, ReturnValueIndex}})},
646 
647       {{CDM::CLibrary, {"basename"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
648       {{CDM::CLibrary, {"dirname"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
649       {{CDM::CLibrary, {"fnmatch"}}, TR::Prop({{1}}, {{ReturnValueIndex}})},
650 
651       {{CDM::CLibrary, {"mbtowc"}}, TR::Prop({{1}}, {{0, ReturnValueIndex}})},
652       {{CDM::CLibrary, {"wctomb"}}, TR::Prop({{1}}, {{0, ReturnValueIndex}})},
653       {{CDM::CLibrary, {"wcwidth"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
654 
655       {{CDM::CLibrary, {"memcmp"}},
656        TR::Prop({{0, 1, 2}}, {{ReturnValueIndex}})},
657       {{CDM::CLibraryMaybeHardened, {"memcpy"}},
658        TR::Prop({{1, 2}}, {{0, ReturnValueIndex}})},
659       {{CDM::CLibraryMaybeHardened, {"memmove"}},
660        TR::Prop({{1, 2}}, {{0, ReturnValueIndex}})},
661       {{CDM::CLibraryMaybeHardened, {"bcopy"}}, TR::Prop({{0, 2}}, {{1}})},
662 
663       // Note: "memmem" and its variants search for a byte sequence ("needle")
664       // in a larger area ("haystack"). Currently we only propagate taint from
665       // the haystack to the result, but in theory tampering with the needle
666       // could also produce incorrect results.
667       {{CDM::CLibrary, {"memmem"}}, TR::Prop({{0, 1}}, {{ReturnValueIndex}})},
668       {{CDM::CLibrary, {"strstr"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
669       {{CDM::CLibrary, {"strcasestr"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
670 
671       // Analogously, the following functions search for a byte within a buffer
672       // and we only propagate taint from the buffer to the result.
673       {{CDM::CLibraryMaybeHardened, {"memchr"}},
674        TR::Prop({{0}}, {{ReturnValueIndex}})},
675       {{CDM::CLibraryMaybeHardened, {"memrchr"}},
676        TR::Prop({{0}}, {{ReturnValueIndex}})},
677       {{CDM::CLibrary, {"rawmemchr"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
678       {{CDM::CLibraryMaybeHardened, {"strchr"}},
679        TR::Prop({{0}}, {{ReturnValueIndex}})},
680       {{CDM::CLibraryMaybeHardened, {"strrchr"}},
681        TR::Prop({{0}}, {{ReturnValueIndex}})},
682       {{CDM::CLibraryMaybeHardened, {"strchrnul"}},
683        TR::Prop({{0}}, {{ReturnValueIndex}})},
684       {{CDM::CLibrary, {"index"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
685       {{CDM::CLibrary, {"rindex"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
686 
687       // FIXME: In case of arrays, only the first element of the array gets
688       // tainted.
689       {{CDM::CLibrary, {"qsort"}}, TR::Prop({{0}}, {{0}})},
690       {{CDM::CLibrary, {"qsort_r"}}, TR::Prop({{0}}, {{0}})},
691 
692       {{CDM::CLibrary, {"strcmp"}}, TR::Prop({{0, 1}}, {{ReturnValueIndex}})},
693       {{CDM::CLibrary, {"strcasecmp"}},
694        TR::Prop({{0, 1}}, {{ReturnValueIndex}})},
695       {{CDM::CLibrary, {"strncmp"}},
696        TR::Prop({{0, 1, 2}}, {{ReturnValueIndex}})},
697       {{CDM::CLibrary, {"strncasecmp"}},
698        TR::Prop({{0, 1, 2}}, {{ReturnValueIndex}})},
699       {{CDM::CLibrary, {"strspn"}}, TR::Prop({{0, 1}}, {{ReturnValueIndex}})},
700       {{CDM::CLibrary, {"strcspn"}}, TR::Prop({{0, 1}}, {{ReturnValueIndex}})},
701       {{CDM::CLibrary, {"strpbrk"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
702 
703       {{CDM::CLibrary, {"strndup"}}, TR::Prop({{0, 1}}, {{ReturnValueIndex}})},
704       {{CDM::CLibrary, {"strndupa"}}, TR::Prop({{0, 1}}, {{ReturnValueIndex}})},
705       {{CDM::CLibrary, {"strdup"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
706       {{CDM::CLibrary, {"strdupa"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
707       {{CDM::CLibrary, {"wcsdup"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
708 
709       // strlen, wcslen, strnlen and alike intentionally don't propagate taint.
710       // See the details here: https://github.com/llvm/llvm-project/pull/66086
711 
712       {{CDM::CLibrary, {"strtol"}}, TR::Prop({{0}}, {{1, ReturnValueIndex}})},
713       {{CDM::CLibrary, {"strtoll"}}, TR::Prop({{0}}, {{1, ReturnValueIndex}})},
714       {{CDM::CLibrary, {"strtoul"}}, TR::Prop({{0}}, {{1, ReturnValueIndex}})},
715       {{CDM::CLibrary, {"strtoull"}}, TR::Prop({{0}}, {{1, ReturnValueIndex}})},
716 
717       {{CDM::CLibrary, {"tolower"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
718       {{CDM::CLibrary, {"toupper"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
719 
720       {{CDM::CLibrary, {"isalnum"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
721       {{CDM::CLibrary, {"isalpha"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
722       {{CDM::CLibrary, {"isascii"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
723       {{CDM::CLibrary, {"isblank"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
724       {{CDM::CLibrary, {"iscntrl"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
725       {{CDM::CLibrary, {"isdigit"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
726       {{CDM::CLibrary, {"isgraph"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
727       {{CDM::CLibrary, {"islower"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
728       {{CDM::CLibrary, {"isprint"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
729       {{CDM::CLibrary, {"ispunct"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
730       {{CDM::CLibrary, {"isspace"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
731       {{CDM::CLibrary, {"isupper"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
732       {{CDM::CLibrary, {"isxdigit"}}, TR::Prop({{0}}, {{ReturnValueIndex}})},
733 
734       {{CDM::CLibraryMaybeHardened, {"strcpy"}},
735        TR::Prop({{1}}, {{0, ReturnValueIndex}})},
736       {{CDM::CLibraryMaybeHardened, {"stpcpy"}},
737        TR::Prop({{1}}, {{0, ReturnValueIndex}})},
738       {{CDM::CLibraryMaybeHardened, {"strcat"}},
739        TR::Prop({{0, 1}}, {{0, ReturnValueIndex}})},
740       {{CDM::CLibraryMaybeHardened, {"wcsncat"}},
741        TR::Prop({{0, 1}}, {{0, ReturnValueIndex}})},
742       {{CDM::CLibraryMaybeHardened, {"strncpy"}},
743        TR::Prop({{1, 2}}, {{0, ReturnValueIndex}})},
744       {{CDM::CLibraryMaybeHardened, {"strncat"}},
745        TR::Prop({{0, 1, 2}}, {{0, ReturnValueIndex}})},
746       {{CDM::CLibraryMaybeHardened, {"strlcpy"}}, TR::Prop({{1, 2}}, {{0}})},
747       {{CDM::CLibraryMaybeHardened, {"strlcat"}}, TR::Prop({{0, 1, 2}}, {{0}})},
748 
749       // Usually the matching mode `CDM::CLibraryMaybeHardened` is sufficient
750       // for unified handling of a function `FOO()` and its hardened variant
751       // `__FOO_chk()`, but in the "sprintf" family the extra parameters of the
752       // hardened variants are inserted into the middle of the parameter list,
753       // so that would not work in their case.
754       // int snprintf(char * str, size_t maxlen, const char * format, ...);
755       {{CDM::CLibrary, {"snprintf"}},
756        TR::Prop({{1, 2}, 3}, {{0, ReturnValueIndex}})},
757       // int sprintf(char * str, const char * format, ...);
758       {{CDM::CLibrary, {"sprintf"}},
759        TR::Prop({{1}, 2}, {{0, ReturnValueIndex}})},
760       // int __snprintf_chk(char * str, size_t maxlen, int flag, size_t strlen,
761       //                    const char * format, ...);
762       {{CDM::CLibrary, {"__snprintf_chk"}},
763        TR::Prop({{1, 4}, 5}, {{0, ReturnValueIndex}})},
764       // int __sprintf_chk(char * str, int flag, size_t strlen, const char *
765       //                   format, ...);
766       {{CDM::CLibrary, {"__sprintf_chk"}},
767        TR::Prop({{3}, 4}, {{0, ReturnValueIndex}})},
768 
769       // Sinks
770       {{CDM::CLibrary, {"system"}}, TR::Sink({{0}}, MsgSanitizeSystemArgs)},
771       {{CDM::CLibrary, {"popen"}}, TR::Sink({{0}}, MsgSanitizeSystemArgs)},
772       {{CDM::CLibrary, {"execl"}}, TR::Sink({{}, {0}}, MsgSanitizeSystemArgs)},
773       {{CDM::CLibrary, {"execle"}}, TR::Sink({{}, {0}}, MsgSanitizeSystemArgs)},
774       {{CDM::CLibrary, {"execlp"}}, TR::Sink({{}, {0}}, MsgSanitizeSystemArgs)},
775       {{CDM::CLibrary, {"execv"}}, TR::Sink({{0, 1}}, MsgSanitizeSystemArgs)},
776       {{CDM::CLibrary, {"execve"}},
777        TR::Sink({{0, 1, 2}}, MsgSanitizeSystemArgs)},
778       {{CDM::CLibrary, {"fexecve"}},
779        TR::Sink({{0, 1, 2}}, MsgSanitizeSystemArgs)},
780       {{CDM::CLibrary, {"execvp"}}, TR::Sink({{0, 1}}, MsgSanitizeSystemArgs)},
781       {{CDM::CLibrary, {"execvpe"}},
782        TR::Sink({{0, 1, 2}}, MsgSanitizeSystemArgs)},
783       {{CDM::CLibrary, {"dlopen"}}, TR::Sink({{0}}, MsgSanitizeSystemArgs)},
784 
785       // malloc, calloc, alloca, realloc, memccpy
786       // are intentionally not marked as taint sinks because unconditional
787       // reporting for these functions generates many false positives.
788       // These taint sinks should be implemented in other checkers with more
789       // sophisticated sanitation heuristics.
790 
791       {{CDM::CLibrary, {"setproctitle"}},
792        TR::Sink({{0}, 1}, MsgUncontrolledFormatString)},
793       {{CDM::CLibrary, {"setproctitle_fast"}},
794        TR::Sink({{0}, 1}, MsgUncontrolledFormatString)}};
795 
796   if (TR::UntrustedEnv(C)) {
797     // void setproctitle_init(int argc, char *argv[], char *envp[])
798     // TODO: replace `MsgCustomSink` with a message that fits this situation.
799     GlobalCRules.push_back({{CDM::CLibrary, {"setproctitle_init"}},
800                             TR::Sink({{1, 2}}, MsgCustomSink)});
801 
802     // `getenv` returns taint only in untrusted environments.
803     GlobalCRules.push_back(
804         {{CDM::CLibrary, {"getenv"}}, TR::Source({{ReturnValueIndex}})});
805   }
806 
807   StaticTaintRules.emplace(std::make_move_iterator(GlobalCRules.begin()),
808                            std::make_move_iterator(GlobalCRules.end()));
809 
810   // User-provided taint configuration.
811   CheckerManager *Mgr = C.getAnalysisManager().getCheckerManager();
812   assert(Mgr);
813   GenericTaintRuleParser ConfigParser{*Mgr};
814   std::string Option{"Config"};
815   StringRef ConfigFile =
816       Mgr->getAnalyzerOptions().getCheckerStringOption(this, Option);
817   std::optional<TaintConfiguration> Config =
818       getConfiguration<TaintConfiguration>(*Mgr, this, Option, ConfigFile);
819   if (!Config) {
820     // We don't have external taint config, no parsing required.
821     DynamicTaintRules = RuleLookupTy{};
822     return;
823   }
824 
825   GenericTaintRuleParser::RulesContTy Rules{
826       ConfigParser.parseConfiguration(Option, std::move(*Config))};
827 
828   DynamicTaintRules.emplace(std::make_move_iterator(Rules.begin()),
829                             std::make_move_iterator(Rules.end()));
830 }
831 
832 void GenericTaintChecker::checkPreCall(const CallEvent &Call,
833                                        CheckerContext &C) const {
834   initTaintRules(C);
835 
836   // FIXME: this should be much simpler.
837   if (const auto *Rule =
838           Call.isGlobalCFunction() ? StaticTaintRules->lookup(Call) : nullptr)
839     Rule->process(*this, Call, C);
840   else if (const auto *Rule = DynamicTaintRules->lookup(Call))
841     Rule->process(*this, Call, C);
842 
843   // FIXME: These edge cases are to be eliminated from here eventually.
844   //
845   // Additional check that is not supported by CallDescription.
846   // TODO: Make CallDescription be able to match attributes such as printf-like
847   // arguments.
848   checkUncontrolledFormatString(Call, C);
849 
850   // TODO: Modeling sockets should be done in a specific checker.
851   // Socket is a source, which taints the return value.
852   taintUnsafeSocketProtocol(Call, C);
853 }
854 
855 void GenericTaintChecker::checkPostCall(const CallEvent &Call,
856                                         CheckerContext &C) const {
857   // Set the marked values as tainted. The return value only accessible from
858   // checkPostStmt.
859   ProgramStateRef State = C.getState();
860   const StackFrameContext *CurrentFrame = C.getStackFrame();
861 
862   // Depending on what was tainted at pre-visit, we determined a set of
863   // arguments which should be tainted after the function returns. These are
864   // stored in the state as TaintArgsOnPostVisit set.
865   TaintArgsOnPostVisitTy TaintArgsMap = State->get<TaintArgsOnPostVisit>();
866 
867   const ImmutableSet<ArgIdxTy> *TaintArgs = TaintArgsMap.lookup(CurrentFrame);
868   if (!TaintArgs)
869     return;
870   assert(!TaintArgs->isEmpty());
871 
872   LLVM_DEBUG(for (ArgIdxTy I
873                   : *TaintArgs) {
874     llvm::dbgs() << "PostCall<";
875     Call.dump(llvm::dbgs());
876     llvm::dbgs() << "> actually wants to taint arg index: " << I << '\n';
877   });
878 
879   const NoteTag *InjectionTag = nullptr;
880   std::vector<SymbolRef> TaintedSymbols;
881   std::vector<ArgIdxTy> TaintedIndexes;
882   for (ArgIdxTy ArgNum : *TaintArgs) {
883     // Special handling for the tainted return value.
884     if (ArgNum == ReturnValueIndex) {
885       State = addTaint(State, Call.getReturnValue());
886       std::vector<SymbolRef> TaintedSyms =
887           getTaintedSymbols(State, Call.getReturnValue());
888       if (!TaintedSyms.empty()) {
889         TaintedSymbols.push_back(TaintedSyms[0]);
890         TaintedIndexes.push_back(ArgNum);
891       }
892       continue;
893     }
894     // The arguments are pointer arguments. The data they are pointing at is
895     // tainted after the call.
896     if (auto V = getPointeeOf(State, Call.getArgSVal(ArgNum))) {
897       State = addTaint(State, *V);
898       std::vector<SymbolRef> TaintedSyms = getTaintedSymbols(State, *V);
899       if (!TaintedSyms.empty()) {
900         TaintedSymbols.push_back(TaintedSyms[0]);
901         TaintedIndexes.push_back(ArgNum);
902       }
903     }
904   }
905   // Create a NoteTag callback, which prints to the user where the taintedness
906   // was propagated to.
907   InjectionTag = taintPropagationExplainerTag(C, TaintedSymbols, TaintedIndexes,
908                                               Call.getCalleeStackFrame(0));
909   // Clear up the taint info from the state.
910   State = State->remove<TaintArgsOnPostVisit>(CurrentFrame);
911   C.addTransition(State, InjectionTag);
912 }
913 
914 void GenericTaintChecker::printState(raw_ostream &Out, ProgramStateRef State,
915                                      const char *NL, const char *Sep) const {
916   printTaint(State, Out, NL, Sep);
917 }
918 
919 void GenericTaintRule::process(const GenericTaintChecker &Checker,
920                                const CallEvent &Call, CheckerContext &C) const {
921   ProgramStateRef State = C.getState();
922   const ArgIdxTy CallNumArgs = fromArgumentCount(Call.getNumArgs());
923 
924   /// Iterate every call argument, and get their corresponding Expr and SVal.
925   const auto ForEachCallArg = [&C, &Call, CallNumArgs](auto &&Fun) {
926     for (ArgIdxTy I = ReturnValueIndex; I < CallNumArgs; ++I) {
927       const Expr *E = GetArgExpr(I, Call);
928       Fun(I, E, C.getSVal(E));
929     }
930   };
931 
932   /// Check for taint sinks.
933   ForEachCallArg([this, &Checker, &C, &State](ArgIdxTy I, const Expr *E, SVal) {
934     // Add taintedness to stdin parameters
935     if (isStdin(C.getSVal(E), C.getASTContext())) {
936       State = addTaint(State, C.getSVal(E));
937     }
938     if (SinkArgs.contains(I) && isTaintedOrPointsToTainted(State, C.getSVal(E)))
939       Checker.generateReportIfTainted(E, SinkMsg.value_or(MsgCustomSink), C);
940   });
941 
942   /// Check for taint filters.
943   ForEachCallArg([this, &State](ArgIdxTy I, const Expr *E, SVal S) {
944     if (FilterArgs.contains(I)) {
945       State = removeTaint(State, S);
946       if (auto P = getPointeeOf(State, S))
947         State = removeTaint(State, *P);
948     }
949   });
950 
951   /// Check for taint propagation sources.
952   /// A rule will make the destination variables tainted if PropSrcArgs
953   /// is empty (taints the destination
954   /// arguments unconditionally), or if any of its signified
955   /// args are tainted in context of the current CallEvent.
956   bool IsMatching = PropSrcArgs.isEmpty();
957   std::vector<SymbolRef> TaintedSymbols;
958   std::vector<ArgIdxTy> TaintedIndexes;
959   ForEachCallArg([this, &C, &IsMatching, &State, &TaintedSymbols,
960                   &TaintedIndexes](ArgIdxTy I, const Expr *E, SVal) {
961     std::optional<SVal> TaintedSVal =
962         getTaintedPointeeOrPointer(State, C.getSVal(E));
963     IsMatching =
964         IsMatching || (PropSrcArgs.contains(I) && TaintedSVal.has_value());
965 
966     // We track back tainted arguments except for stdin
967     if (TaintedSVal && !isStdin(*TaintedSVal, C.getASTContext())) {
968       std::vector<SymbolRef> TaintedArgSyms =
969           getTaintedSymbols(State, *TaintedSVal);
970       if (!TaintedArgSyms.empty()) {
971         llvm::append_range(TaintedSymbols, TaintedArgSyms);
972         TaintedIndexes.push_back(I);
973       }
974     }
975   });
976 
977   // Early return for propagation rules which dont match.
978   // Matching propagations, Sinks and Filters will pass this point.
979   if (!IsMatching)
980     return;
981 
982   const auto WouldEscape = [](SVal V, QualType Ty) -> bool {
983     if (!isa<Loc>(V))
984       return false;
985 
986     const bool IsNonConstRef = Ty->isReferenceType() && !Ty.isConstQualified();
987     const bool IsNonConstPtr =
988         Ty->isPointerType() && !Ty->getPointeeType().isConstQualified();
989 
990     return IsNonConstRef || IsNonConstPtr;
991   };
992 
993   /// Propagate taint where it is necessary.
994   auto &F = State->getStateManager().get_context<ArgIdxFactory>();
995   ImmutableSet<ArgIdxTy> Result = F.getEmptySet();
996   ForEachCallArg(
997       [&](ArgIdxTy I, const Expr *E, SVal V) {
998         if (PropDstArgs.contains(I)) {
999           LLVM_DEBUG(llvm::dbgs() << "PreCall<"; Call.dump(llvm::dbgs());
1000                      llvm::dbgs()
1001                      << "> prepares tainting arg index: " << I << '\n';);
1002           Result = F.add(Result, I);
1003         }
1004 
1005         // Taint property gets lost if the variable is passed as a
1006         // non-const pointer or reference to a function which is
1007         // not inlined. For matching rules we want to preserve the taintedness.
1008         // TODO: We should traverse all reachable memory regions via the
1009         // escaping parameter. Instead of doing that we simply mark only the
1010         // referred memory region as tainted.
1011         if (WouldEscape(V, E->getType()) && getTaintedPointeeOrPointer(State, V)) {
1012           LLVM_DEBUG(if (!Result.contains(I)) {
1013             llvm::dbgs() << "PreCall<";
1014             Call.dump(llvm::dbgs());
1015             llvm::dbgs() << "> prepares tainting arg index: " << I << '\n';
1016           });
1017           Result = F.add(Result, I);
1018         }
1019       });
1020 
1021   if (!Result.isEmpty())
1022     State = State->set<TaintArgsOnPostVisit>(C.getStackFrame(), Result);
1023   const NoteTag *InjectionTag = taintOriginTrackerTag(
1024       C, std::move(TaintedSymbols), std::move(TaintedIndexes),
1025       Call.getCalleeStackFrame(0));
1026   C.addTransition(State, InjectionTag);
1027 }
1028 
1029 bool GenericTaintRule::UntrustedEnv(CheckerContext &C) {
1030   return !C.getAnalysisManager()
1031               .getAnalyzerOptions()
1032               .ShouldAssumeControlledEnvironment;
1033 }
1034 
1035 bool GenericTaintChecker::generateReportIfTainted(const Expr *E, StringRef Msg,
1036                                                   CheckerContext &C) const {
1037   assert(E);
1038   if (!isTaintReporterCheckerEnabled)
1039     return false;
1040   std::optional<SVal> TaintedSVal =
1041       getTaintedPointeeOrPointer(C.getState(), C.getSVal(E));
1042 
1043   if (!TaintedSVal)
1044     return false;
1045 
1046   // Generate diagnostic.
1047   assert(BT);
1048   static CheckerProgramPointTag Tag(BT->getCheckerName(), Msg);
1049   if (ExplodedNode *N = C.generateNonFatalErrorNode(C.getState(), &Tag)) {
1050     auto report = std::make_unique<PathSensitiveBugReport>(*BT, Msg, N);
1051     report->addRange(E->getSourceRange());
1052     for (auto TaintedSym : getTaintedSymbols(C.getState(), *TaintedSVal)) {
1053       report->markInteresting(TaintedSym);
1054     }
1055     C.emitReport(std::move(report));
1056     return true;
1057   }
1058   return false;
1059 }
1060 
1061 /// TODO: remove checking for printf format attributes and socket whitelisting
1062 /// from GenericTaintChecker, and that means the following functions:
1063 /// getPrintfFormatArgumentNum,
1064 /// GenericTaintChecker::checkUncontrolledFormatString,
1065 /// GenericTaintChecker::taintUnsafeSocketProtocol
1066 
1067 static bool getPrintfFormatArgumentNum(const CallEvent &Call,
1068                                        const CheckerContext &C,
1069                                        ArgIdxTy &ArgNum) {
1070   // Find if the function contains a format string argument.
1071   // Handles: fprintf, printf, sprintf, snprintf, vfprintf, vprintf, vsprintf,
1072   // vsnprintf, syslog, custom annotated functions.
1073   const Decl *CallDecl = Call.getDecl();
1074   if (!CallDecl)
1075     return false;
1076   const FunctionDecl *FDecl = CallDecl->getAsFunction();
1077   if (!FDecl)
1078     return false;
1079 
1080   const ArgIdxTy CallNumArgs = fromArgumentCount(Call.getNumArgs());
1081 
1082   for (const auto *Format : FDecl->specific_attrs<FormatAttr>()) {
1083     ArgNum = Format->getFormatIdx() - 1;
1084     if ((Format->getType()->getName() == "printf") && CallNumArgs > ArgNum)
1085       return true;
1086   }
1087 
1088   return false;
1089 }
1090 
1091 bool GenericTaintChecker::checkUncontrolledFormatString(
1092     const CallEvent &Call, CheckerContext &C) const {
1093   // Check if the function contains a format string argument.
1094   ArgIdxTy ArgNum = 0;
1095   if (!getPrintfFormatArgumentNum(Call, C, ArgNum))
1096     return false;
1097 
1098   // If either the format string content or the pointer itself are tainted,
1099   // warn.
1100   return generateReportIfTainted(Call.getArgExpr(ArgNum),
1101                                  MsgUncontrolledFormatString, C);
1102 }
1103 
1104 void GenericTaintChecker::taintUnsafeSocketProtocol(const CallEvent &Call,
1105                                                     CheckerContext &C) const {
1106   if (Call.getNumArgs() < 1)
1107     return;
1108   const IdentifierInfo *ID = Call.getCalleeIdentifier();
1109   if (!ID)
1110     return;
1111   if (ID->getName() != "socket")
1112     return;
1113 
1114   SourceLocation DomLoc = Call.getArgExpr(0)->getExprLoc();
1115   StringRef DomName = C.getMacroNameOrSpelling(DomLoc);
1116   // Allow internal communication protocols.
1117   bool SafeProtocol = DomName == "AF_SYSTEM" || DomName == "AF_LOCAL" ||
1118                       DomName == "AF_UNIX" || DomName == "AF_RESERVED_36";
1119   if (SafeProtocol)
1120     return;
1121 
1122   ProgramStateRef State = C.getState();
1123   auto &F = State->getStateManager().get_context<ArgIdxFactory>();
1124   ImmutableSet<ArgIdxTy> Result = F.add(F.getEmptySet(), ReturnValueIndex);
1125   State = State->set<TaintArgsOnPostVisit>(C.getStackFrame(), Result);
1126   C.addTransition(State);
1127 }
1128 
1129 /// Checker registration
1130 void ento::registerTaintPropagationChecker(CheckerManager &Mgr) {
1131   Mgr.registerChecker<GenericTaintChecker>();
1132 }
1133 
1134 bool ento::shouldRegisterTaintPropagationChecker(const CheckerManager &mgr) {
1135   return true;
1136 }
1137 
1138 void ento::registerGenericTaintChecker(CheckerManager &Mgr) {
1139   GenericTaintChecker *checker = Mgr.getChecker<GenericTaintChecker>();
1140   checker->isTaintReporterCheckerEnabled = true;
1141   checker->BT.emplace(Mgr.getCurrentCheckerName(), "Use of Untrusted Data",
1142                       categories::TaintedData);
1143 }
1144 
1145 bool ento::shouldRegisterGenericTaintChecker(const CheckerManager &mgr) {
1146   return true;
1147 }
1148