1 //== GenericTaintChecker.cpp ----------------------------------- -*- C++ -*--=// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This checker defines the attack surface for generic taint propagation. 10 // 11 // The taint information produced by it might be useful to other checkers. For 12 // example, checkers should report errors which involve tainted data more 13 // aggressively, even if the involved symbols are under constrained. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "Yaml.h" 18 #include "clang/AST/Attr.h" 19 #include "clang/Basic/Builtins.h" 20 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" 21 #include "clang/StaticAnalyzer/Checkers/Taint.h" 22 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 23 #include "clang/StaticAnalyzer/Core/Checker.h" 24 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 25 #include "clang/StaticAnalyzer/Core/PathSensitive/CallDescription.h" 26 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 27 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 28 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 29 #include "llvm/ADT/StringExtras.h" 30 #include "llvm/Support/YAMLTraits.h" 31 32 #include <limits> 33 #include <memory> 34 #include <optional> 35 #include <utility> 36 #include <vector> 37 38 #define DEBUG_TYPE "taint-checker" 39 40 using namespace clang; 41 using namespace ento; 42 using namespace taint; 43 44 using llvm::ImmutableSet; 45 46 namespace { 47 48 class GenericTaintChecker; 49 50 /// Check for CWE-134: Uncontrolled Format String. 51 constexpr llvm::StringLiteral MsgUncontrolledFormatString = 52 "Untrusted data is used as a format string " 53 "(CWE-134: Uncontrolled Format String)"; 54 55 /// Check for: 56 /// CERT/STR02-C. "Sanitize data passed to complex subsystems" 57 /// CWE-78, "Failure to Sanitize Data into an OS Command" 58 constexpr llvm::StringLiteral MsgSanitizeSystemArgs = 59 "Untrusted data is passed to a system call " 60 "(CERT/STR02-C. Sanitize data passed to complex subsystems)"; 61 62 /// Check if tainted data is used as a buffer size in strn.. functions, 63 /// and allocators. 64 constexpr llvm::StringLiteral MsgTaintedBufferSize = 65 "Untrusted data is used to specify the buffer size " 66 "(CERT/STR31-C. Guarantee that storage for strings has sufficient space " 67 "for character data and the null terminator)"; 68 69 /// Check if tainted data is used as a custom sink's parameter. 70 constexpr llvm::StringLiteral MsgCustomSink = 71 "Untrusted data is passed to a user-defined sink"; 72 73 using ArgIdxTy = int; 74 using ArgVecTy = llvm::SmallVector<ArgIdxTy, 2>; 75 76 /// Denotes the return value. 77 constexpr ArgIdxTy ReturnValueIndex{-1}; 78 79 static ArgIdxTy fromArgumentCount(unsigned Count) { 80 assert(Count <= 81 static_cast<std::size_t>(std::numeric_limits<ArgIdxTy>::max()) && 82 "ArgIdxTy is not large enough to represent the number of arguments."); 83 return Count; 84 } 85 86 /// Check if the region the expression evaluates to is the standard input, 87 /// and thus, is tainted. 88 /// FIXME: Move this to Taint.cpp. 89 bool isStdin(SVal Val, const ASTContext &ACtx) { 90 // FIXME: What if Val is NonParamVarRegion? 91 92 // The region should be symbolic, we do not know it's value. 93 const auto *SymReg = dyn_cast_or_null<SymbolicRegion>(Val.getAsRegion()); 94 if (!SymReg) 95 return false; 96 97 // Get it's symbol and find the declaration region it's pointing to. 98 const auto *DeclReg = 99 dyn_cast_or_null<DeclRegion>(SymReg->getSymbol()->getOriginRegion()); 100 if (!DeclReg) 101 return false; 102 103 // This region corresponds to a declaration, find out if it's a global/extern 104 // variable named stdin with the proper type. 105 if (const auto *D = dyn_cast_or_null<VarDecl>(DeclReg->getDecl())) { 106 D = D->getCanonicalDecl(); 107 // FIXME: This should look for an exact match. 108 if (D->getName().contains("stdin") && D->isExternC()) { 109 const QualType FILETy = ACtx.getFILEType().getCanonicalType(); 110 const QualType Ty = D->getType().getCanonicalType(); 111 112 if (Ty->isPointerType()) 113 return Ty->getPointeeType() == FILETy; 114 } 115 } 116 return false; 117 } 118 119 SVal getPointeeOf(ProgramStateRef State, Loc LValue) { 120 const QualType ArgTy = LValue.getType(State->getStateManager().getContext()); 121 if (!ArgTy->isPointerType() || !ArgTy->getPointeeType()->isVoidType()) 122 return State->getSVal(LValue); 123 124 // Do not dereference void pointers. Treat them as byte pointers instead. 125 // FIXME: we might want to consider more than just the first byte. 126 return State->getSVal(LValue, State->getStateManager().getContext().CharTy); 127 } 128 129 /// Given a pointer/reference argument, return the value it refers to. 130 std::optional<SVal> getPointeeOf(ProgramStateRef State, SVal Arg) { 131 if (auto LValue = Arg.getAs<Loc>()) 132 return getPointeeOf(State, *LValue); 133 return std::nullopt; 134 } 135 136 /// Given a pointer, return the SVal of its pointee or if it is tainted, 137 /// otherwise return the pointer's SVal if tainted. 138 /// Also considers stdin as a taint source. 139 std::optional<SVal> getTaintedPointeeOrPointer(ProgramStateRef State, 140 SVal Arg) { 141 if (auto Pointee = getPointeeOf(State, Arg)) 142 if (isTainted(State, *Pointee)) // FIXME: isTainted(...) ? Pointee : None; 143 return Pointee; 144 145 if (isTainted(State, Arg)) 146 return Arg; 147 return std::nullopt; 148 } 149 150 bool isTaintedOrPointsToTainted(ProgramStateRef State, SVal ExprSVal) { 151 return getTaintedPointeeOrPointer(State, ExprSVal).has_value(); 152 } 153 154 /// Helps in printing taint diagnostics. 155 /// Marks the incoming parameters of a function interesting (to be printed) 156 /// when the return value, or the outgoing parameters are tainted. 157 const NoteTag *taintOriginTrackerTag(CheckerContext &C, 158 std::vector<SymbolRef> TaintedSymbols, 159 std::vector<ArgIdxTy> TaintedArgs, 160 const LocationContext *CallLocation) { 161 return C.getNoteTag([TaintedSymbols = std::move(TaintedSymbols), 162 TaintedArgs = std::move(TaintedArgs), CallLocation]( 163 PathSensitiveBugReport &BR) -> std::string { 164 SmallString<256> Msg; 165 // We give diagnostics only for taint related reports 166 if (!BR.isInteresting(CallLocation) || 167 BR.getBugType().getCategory() != categories::TaintedData) { 168 return ""; 169 } 170 if (TaintedSymbols.empty()) 171 return "Taint originated here"; 172 173 for (auto Sym : TaintedSymbols) { 174 BR.markInteresting(Sym); 175 } 176 LLVM_DEBUG(for (auto Arg 177 : TaintedArgs) { 178 llvm::dbgs() << "Taint Propagated from argument " << Arg + 1 << "\n"; 179 }); 180 return ""; 181 }); 182 } 183 184 /// Helps in printing taint diagnostics. 185 /// Marks the function interesting (to be printed) 186 /// when the return value, or the outgoing parameters are tainted. 187 const NoteTag *taintPropagationExplainerTag( 188 CheckerContext &C, std::vector<SymbolRef> TaintedSymbols, 189 std::vector<ArgIdxTy> TaintedArgs, const LocationContext *CallLocation) { 190 assert(TaintedSymbols.size() == TaintedArgs.size()); 191 return C.getNoteTag([TaintedSymbols = std::move(TaintedSymbols), 192 TaintedArgs = std::move(TaintedArgs), CallLocation]( 193 PathSensitiveBugReport &BR) -> std::string { 194 SmallString<256> Msg; 195 llvm::raw_svector_ostream Out(Msg); 196 // We give diagnostics only for taint related reports 197 if (TaintedSymbols.empty() || 198 BR.getBugType().getCategory() != categories::TaintedData) { 199 return ""; 200 } 201 int nofTaintedArgs = 0; 202 for (auto [Idx, Sym] : llvm::enumerate(TaintedSymbols)) { 203 if (BR.isInteresting(Sym)) { 204 BR.markInteresting(CallLocation); 205 if (TaintedArgs[Idx] != ReturnValueIndex) { 206 LLVM_DEBUG(llvm::dbgs() << "Taint Propagated to argument " 207 << TaintedArgs[Idx] + 1 << "\n"); 208 if (nofTaintedArgs == 0) 209 Out << "Taint propagated to the "; 210 else 211 Out << ", "; 212 Out << TaintedArgs[Idx] + 1 213 << llvm::getOrdinalSuffix(TaintedArgs[Idx] + 1) << " argument"; 214 nofTaintedArgs++; 215 } else { 216 LLVM_DEBUG(llvm::dbgs() << "Taint Propagated to return value.\n"); 217 Out << "Taint propagated to the return value"; 218 } 219 } 220 } 221 return std::string(Out.str()); 222 }); 223 } 224 225 /// ArgSet is used to describe arguments relevant for taint detection or 226 /// taint application. A discrete set of argument indexes and a variadic 227 /// argument list signified by a starting index are supported. 228 class ArgSet { 229 public: 230 ArgSet() = default; 231 ArgSet(ArgVecTy &&DiscreteArgs, 232 std::optional<ArgIdxTy> VariadicIndex = std::nullopt) 233 : DiscreteArgs(std::move(DiscreteArgs)), 234 VariadicIndex(std::move(VariadicIndex)) {} 235 236 bool contains(ArgIdxTy ArgIdx) const { 237 if (llvm::is_contained(DiscreteArgs, ArgIdx)) 238 return true; 239 240 return VariadicIndex && ArgIdx >= *VariadicIndex; 241 } 242 243 bool isEmpty() const { return DiscreteArgs.empty() && !VariadicIndex; } 244 245 private: 246 ArgVecTy DiscreteArgs; 247 std::optional<ArgIdxTy> VariadicIndex; 248 }; 249 250 /// A struct used to specify taint propagation rules for a function. 251 /// 252 /// If any of the possible taint source arguments is tainted, all of the 253 /// destination arguments should also be tainted. If ReturnValueIndex is added 254 /// to the dst list, the return value will be tainted. 255 class GenericTaintRule { 256 /// Arguments which are taints sinks and should be checked, and a report 257 /// should be emitted if taint reaches these. 258 ArgSet SinkArgs; 259 /// Arguments which should be sanitized on function return. 260 ArgSet FilterArgs; 261 /// Arguments which can participate in taint propagation. If any of the 262 /// arguments in PropSrcArgs is tainted, all arguments in PropDstArgs should 263 /// be tainted. 264 ArgSet PropSrcArgs; 265 ArgSet PropDstArgs; 266 267 /// A message that explains why the call is sensitive to taint. 268 std::optional<StringRef> SinkMsg; 269 270 GenericTaintRule() = default; 271 272 GenericTaintRule(ArgSet &&Sink, ArgSet &&Filter, ArgSet &&Src, ArgSet &&Dst, 273 std::optional<StringRef> SinkMsg = std::nullopt) 274 : SinkArgs(std::move(Sink)), FilterArgs(std::move(Filter)), 275 PropSrcArgs(std::move(Src)), PropDstArgs(std::move(Dst)), 276 SinkMsg(SinkMsg) {} 277 278 public: 279 /// Make a rule that reports a warning if taint reaches any of \p FilterArgs 280 /// arguments. 281 static GenericTaintRule Sink(ArgSet &&SinkArgs, 282 std::optional<StringRef> Msg = std::nullopt) { 283 return {std::move(SinkArgs), {}, {}, {}, Msg}; 284 } 285 286 /// Make a rule that sanitizes all FilterArgs arguments. 287 static GenericTaintRule Filter(ArgSet &&FilterArgs) { 288 return {{}, std::move(FilterArgs), {}, {}}; 289 } 290 291 /// Make a rule that unconditionally taints all Args. 292 /// If Func is provided, it must also return true for taint to propagate. 293 static GenericTaintRule Source(ArgSet &&SourceArgs) { 294 return {{}, {}, {}, std::move(SourceArgs)}; 295 } 296 297 /// Make a rule that taints all PropDstArgs if any of PropSrcArgs is tainted. 298 static GenericTaintRule Prop(ArgSet &&SrcArgs, ArgSet &&DstArgs) { 299 return {{}, {}, std::move(SrcArgs), std::move(DstArgs)}; 300 } 301 302 /// Make a rule that taints all PropDstArgs if any of PropSrcArgs is tainted. 303 static GenericTaintRule 304 SinkProp(ArgSet &&SinkArgs, ArgSet &&SrcArgs, ArgSet &&DstArgs, 305 std::optional<StringRef> Msg = std::nullopt) { 306 return { 307 std::move(SinkArgs), {}, std::move(SrcArgs), std::move(DstArgs), Msg}; 308 } 309 310 /// Process a function which could either be a taint source, a taint sink, a 311 /// taint filter or a taint propagator. 312 void process(const GenericTaintChecker &Checker, const CallEvent &Call, 313 CheckerContext &C) const; 314 315 /// Handles the resolution of indexes of type ArgIdxTy to Expr*-s. 316 static const Expr *GetArgExpr(ArgIdxTy ArgIdx, const CallEvent &Call) { 317 return ArgIdx == ReturnValueIndex ? Call.getOriginExpr() 318 : Call.getArgExpr(ArgIdx); 319 }; 320 321 /// Functions for custom taintedness propagation. 322 static bool UntrustedEnv(CheckerContext &C); 323 }; 324 325 using RuleLookupTy = CallDescriptionMap<GenericTaintRule>; 326 327 /// Used to parse the configuration file. 328 struct TaintConfiguration { 329 using NameScopeArgs = std::tuple<std::string, std::string, ArgVecTy>; 330 enum class VariadicType { None, Src, Dst }; 331 332 struct Common { 333 std::string Name; 334 std::string Scope; 335 }; 336 337 struct Sink : Common { 338 ArgVecTy SinkArgs; 339 }; 340 341 struct Filter : Common { 342 ArgVecTy FilterArgs; 343 }; 344 345 struct Propagation : Common { 346 ArgVecTy SrcArgs; 347 ArgVecTy DstArgs; 348 VariadicType VarType; 349 ArgIdxTy VarIndex; 350 }; 351 352 std::vector<Propagation> Propagations; 353 std::vector<Filter> Filters; 354 std::vector<Sink> Sinks; 355 356 TaintConfiguration() = default; 357 TaintConfiguration(const TaintConfiguration &) = default; 358 TaintConfiguration(TaintConfiguration &&) = default; 359 TaintConfiguration &operator=(const TaintConfiguration &) = default; 360 TaintConfiguration &operator=(TaintConfiguration &&) = default; 361 }; 362 363 struct GenericTaintRuleParser { 364 GenericTaintRuleParser(CheckerManager &Mgr) : Mgr(Mgr) {} 365 /// Container type used to gather call identification objects grouped into 366 /// pairs with their corresponding taint rules. It is temporary as it is used 367 /// to finally initialize RuleLookupTy, which is considered to be immutable. 368 using RulesContTy = std::vector<std::pair<CallDescription, GenericTaintRule>>; 369 RulesContTy parseConfiguration(const std::string &Option, 370 TaintConfiguration &&Config) const; 371 372 private: 373 using NamePartsTy = llvm::SmallVector<StringRef, 2>; 374 375 /// Validate part of the configuration, which contains a list of argument 376 /// indexes. 377 void validateArgVector(const std::string &Option, const ArgVecTy &Args) const; 378 379 template <typename Config> static NamePartsTy parseNameParts(const Config &C); 380 381 // Takes the config and creates a CallDescription for it and associates a Rule 382 // with that. 383 template <typename Config> 384 static void consumeRulesFromConfig(const Config &C, GenericTaintRule &&Rule, 385 RulesContTy &Rules); 386 387 void parseConfig(const std::string &Option, TaintConfiguration::Sink &&P, 388 RulesContTy &Rules) const; 389 void parseConfig(const std::string &Option, TaintConfiguration::Filter &&P, 390 RulesContTy &Rules) const; 391 void parseConfig(const std::string &Option, 392 TaintConfiguration::Propagation &&P, 393 RulesContTy &Rules) const; 394 395 CheckerManager &Mgr; 396 }; 397 398 class GenericTaintChecker : public Checker<check::PreCall, check::PostCall> { 399 public: 400 void checkPreCall(const CallEvent &Call, CheckerContext &C) const; 401 void checkPostCall(const CallEvent &Call, CheckerContext &C) const; 402 403 void printState(raw_ostream &Out, ProgramStateRef State, const char *NL, 404 const char *Sep) const override; 405 406 /// Generate a report if the expression is tainted or points to tainted data. 407 bool generateReportIfTainted(const Expr *E, StringRef Msg, 408 CheckerContext &C) const; 409 410 private: 411 const BugType BT{this, "Use of Untrusted Data", categories::TaintedData}; 412 413 bool checkUncontrolledFormatString(const CallEvent &Call, 414 CheckerContext &C) const; 415 416 void taintUnsafeSocketProtocol(const CallEvent &Call, 417 CheckerContext &C) const; 418 419 /// Default taint rules are initalized with the help of a CheckerContext to 420 /// access the names of built-in functions like memcpy. 421 void initTaintRules(CheckerContext &C) const; 422 423 /// CallDescription currently cannot restrict matches to the global namespace 424 /// only, which is why multiple CallDescriptionMaps are used, as we want to 425 /// disambiguate global C functions from functions inside user-defined 426 /// namespaces. 427 // TODO: Remove separation to simplify matching logic once CallDescriptions 428 // are more expressive. 429 430 mutable std::optional<RuleLookupTy> StaticTaintRules; 431 mutable std::optional<RuleLookupTy> DynamicTaintRules; 432 }; 433 } // end of anonymous namespace 434 435 /// YAML serialization mapping. 436 LLVM_YAML_IS_SEQUENCE_VECTOR(TaintConfiguration::Sink) 437 LLVM_YAML_IS_SEQUENCE_VECTOR(TaintConfiguration::Filter) 438 LLVM_YAML_IS_SEQUENCE_VECTOR(TaintConfiguration::Propagation) 439 440 namespace llvm { 441 namespace yaml { 442 template <> struct MappingTraits<TaintConfiguration> { 443 static void mapping(IO &IO, TaintConfiguration &Config) { 444 IO.mapOptional("Propagations", Config.Propagations); 445 IO.mapOptional("Filters", Config.Filters); 446 IO.mapOptional("Sinks", Config.Sinks); 447 } 448 }; 449 450 template <> struct MappingTraits<TaintConfiguration::Sink> { 451 static void mapping(IO &IO, TaintConfiguration::Sink &Sink) { 452 IO.mapRequired("Name", Sink.Name); 453 IO.mapOptional("Scope", Sink.Scope); 454 IO.mapRequired("Args", Sink.SinkArgs); 455 } 456 }; 457 458 template <> struct MappingTraits<TaintConfiguration::Filter> { 459 static void mapping(IO &IO, TaintConfiguration::Filter &Filter) { 460 IO.mapRequired("Name", Filter.Name); 461 IO.mapOptional("Scope", Filter.Scope); 462 IO.mapRequired("Args", Filter.FilterArgs); 463 } 464 }; 465 466 template <> struct MappingTraits<TaintConfiguration::Propagation> { 467 static void mapping(IO &IO, TaintConfiguration::Propagation &Propagation) { 468 IO.mapRequired("Name", Propagation.Name); 469 IO.mapOptional("Scope", Propagation.Scope); 470 IO.mapOptional("SrcArgs", Propagation.SrcArgs); 471 IO.mapOptional("DstArgs", Propagation.DstArgs); 472 IO.mapOptional("VariadicType", Propagation.VarType); 473 IO.mapOptional("VariadicIndex", Propagation.VarIndex); 474 } 475 }; 476 477 template <> struct ScalarEnumerationTraits<TaintConfiguration::VariadicType> { 478 static void enumeration(IO &IO, TaintConfiguration::VariadicType &Value) { 479 IO.enumCase(Value, "None", TaintConfiguration::VariadicType::None); 480 IO.enumCase(Value, "Src", TaintConfiguration::VariadicType::Src); 481 IO.enumCase(Value, "Dst", TaintConfiguration::VariadicType::Dst); 482 } 483 }; 484 } // namespace yaml 485 } // namespace llvm 486 487 /// A set which is used to pass information from call pre-visit instruction 488 /// to the call post-visit. The values are signed integers, which are either 489 /// ReturnValueIndex, or indexes of the pointer/reference argument, which 490 /// points to data, which should be tainted on return. 491 REGISTER_MAP_WITH_PROGRAMSTATE(TaintArgsOnPostVisit, const LocationContext *, 492 ImmutableSet<ArgIdxTy>) 493 REGISTER_SET_FACTORY_WITH_PROGRAMSTATE(ArgIdxFactory, ArgIdxTy) 494 495 void GenericTaintRuleParser::validateArgVector(const std::string &Option, 496 const ArgVecTy &Args) const { 497 for (ArgIdxTy Arg : Args) { 498 if (Arg < ReturnValueIndex) { 499 Mgr.reportInvalidCheckerOptionValue( 500 Mgr.getChecker<GenericTaintChecker>(), Option, 501 "an argument number for propagation rules greater or equal to -1"); 502 } 503 } 504 } 505 506 template <typename Config> 507 GenericTaintRuleParser::NamePartsTy 508 GenericTaintRuleParser::parseNameParts(const Config &C) { 509 NamePartsTy NameParts; 510 if (!C.Scope.empty()) { 511 // If the Scope argument contains multiple "::" parts, those are considered 512 // namespace identifiers. 513 StringRef{C.Scope}.split(NameParts, "::", /*MaxSplit*/ -1, 514 /*KeepEmpty*/ false); 515 } 516 NameParts.emplace_back(C.Name); 517 return NameParts; 518 } 519 520 template <typename Config> 521 void GenericTaintRuleParser::consumeRulesFromConfig(const Config &C, 522 GenericTaintRule &&Rule, 523 RulesContTy &Rules) { 524 NamePartsTy NameParts = parseNameParts(C); 525 Rules.emplace_back(CallDescription(NameParts), std::move(Rule)); 526 } 527 528 void GenericTaintRuleParser::parseConfig(const std::string &Option, 529 TaintConfiguration::Sink &&S, 530 RulesContTy &Rules) const { 531 validateArgVector(Option, S.SinkArgs); 532 consumeRulesFromConfig(S, GenericTaintRule::Sink(std::move(S.SinkArgs)), 533 Rules); 534 } 535 536 void GenericTaintRuleParser::parseConfig(const std::string &Option, 537 TaintConfiguration::Filter &&S, 538 RulesContTy &Rules) const { 539 validateArgVector(Option, S.FilterArgs); 540 consumeRulesFromConfig(S, GenericTaintRule::Filter(std::move(S.FilterArgs)), 541 Rules); 542 } 543 544 void GenericTaintRuleParser::parseConfig(const std::string &Option, 545 TaintConfiguration::Propagation &&P, 546 RulesContTy &Rules) const { 547 validateArgVector(Option, P.SrcArgs); 548 validateArgVector(Option, P.DstArgs); 549 bool IsSrcVariadic = P.VarType == TaintConfiguration::VariadicType::Src; 550 bool IsDstVariadic = P.VarType == TaintConfiguration::VariadicType::Dst; 551 std::optional<ArgIdxTy> JustVarIndex = P.VarIndex; 552 553 ArgSet SrcDesc(std::move(P.SrcArgs), 554 IsSrcVariadic ? JustVarIndex : std::nullopt); 555 ArgSet DstDesc(std::move(P.DstArgs), 556 IsDstVariadic ? JustVarIndex : std::nullopt); 557 558 consumeRulesFromConfig( 559 P, GenericTaintRule::Prop(std::move(SrcDesc), std::move(DstDesc)), Rules); 560 } 561 562 GenericTaintRuleParser::RulesContTy 563 GenericTaintRuleParser::parseConfiguration(const std::string &Option, 564 TaintConfiguration &&Config) const { 565 566 RulesContTy Rules; 567 568 for (auto &F : Config.Filters) 569 parseConfig(Option, std::move(F), Rules); 570 571 for (auto &S : Config.Sinks) 572 parseConfig(Option, std::move(S), Rules); 573 574 for (auto &P : Config.Propagations) 575 parseConfig(Option, std::move(P), Rules); 576 577 return Rules; 578 } 579 580 void GenericTaintChecker::initTaintRules(CheckerContext &C) const { 581 // Check for exact name match for functions without builtin substitutes. 582 // Use qualified name, because these are C functions without namespace. 583 584 if (StaticTaintRules || DynamicTaintRules) 585 return; 586 587 using RulesConstructionTy = 588 std::vector<std::pair<CallDescription, GenericTaintRule>>; 589 using TR = GenericTaintRule; 590 591 const Builtin::Context &BI = C.getASTContext().BuiltinInfo; 592 593 RulesConstructionTy GlobalCRules{ 594 // Sources 595 {{{"fdopen"}}, TR::Source({{ReturnValueIndex}})}, 596 {{{"fopen"}}, TR::Source({{ReturnValueIndex}})}, 597 {{{"freopen"}}, TR::Source({{ReturnValueIndex}})}, 598 {{{"getch"}}, TR::Source({{ReturnValueIndex}})}, 599 {{{"getchar"}}, TR::Source({{ReturnValueIndex}})}, 600 {{{"getchar_unlocked"}}, TR::Source({{ReturnValueIndex}})}, 601 {{{"gets"}}, TR::Source({{0}, ReturnValueIndex})}, 602 {{{"gets_s"}}, TR::Source({{0}, ReturnValueIndex})}, 603 {{{"scanf"}}, TR::Source({{}, 1})}, 604 {{{"scanf_s"}}, TR::Source({{}, {1}})}, 605 {{{"wgetch"}}, TR::Source({{}, ReturnValueIndex})}, 606 // Sometimes the line between taint sources and propagators is blurry. 607 // _IO_getc is choosen to be a source, but could also be a propagator. 608 // This way it is simpler, as modeling it as a propagator would require 609 // to model the possible sources of _IO_FILE * values, which the _IO_getc 610 // function takes as parameters. 611 {{{"_IO_getc"}}, TR::Source({{ReturnValueIndex}})}, 612 {{{"getcwd"}}, TR::Source({{0, ReturnValueIndex}})}, 613 {{{"getwd"}}, TR::Source({{0, ReturnValueIndex}})}, 614 {{{"readlink"}}, TR::Source({{1, ReturnValueIndex}})}, 615 {{{"readlinkat"}}, TR::Source({{2, ReturnValueIndex}})}, 616 {{{"get_current_dir_name"}}, TR::Source({{ReturnValueIndex}})}, 617 {{{"gethostname"}}, TR::Source({{0}})}, 618 {{{"getnameinfo"}}, TR::Source({{2, 4}})}, 619 {{{"getseuserbyname"}}, TR::Source({{1, 2}})}, 620 {{{"getgroups"}}, TR::Source({{1, ReturnValueIndex}})}, 621 {{{"getlogin"}}, TR::Source({{ReturnValueIndex}})}, 622 {{{"getlogin_r"}}, TR::Source({{0}})}, 623 624 // Props 625 {{{"atoi"}}, TR::Prop({{0}}, {{ReturnValueIndex}})}, 626 {{{"atol"}}, TR::Prop({{0}}, {{ReturnValueIndex}})}, 627 {{{"atoll"}}, TR::Prop({{0}}, {{ReturnValueIndex}})}, 628 {{{"fgetc"}}, TR::Prop({{0}}, {{ReturnValueIndex}})}, 629 {{{"fgetln"}}, TR::Prop({{0}}, {{ReturnValueIndex}})}, 630 {{{"fgets"}}, TR::Prop({{2}}, {{0, ReturnValueIndex}})}, 631 {{{"fscanf"}}, TR::Prop({{0}}, {{}, 2})}, 632 {{{"fscanf_s"}}, TR::Prop({{0}}, {{}, {2}})}, 633 {{{"sscanf"}}, TR::Prop({{0}}, {{}, 2})}, 634 635 {{{"getc"}}, TR::Prop({{0}}, {{ReturnValueIndex}})}, 636 {{{"getc_unlocked"}}, TR::Prop({{0}}, {{ReturnValueIndex}})}, 637 {{{"getdelim"}}, TR::Prop({{3}}, {{0}})}, 638 {{{"getline"}}, TR::Prop({{2}}, {{0}})}, 639 {{{"getw"}}, TR::Prop({{0}}, {{ReturnValueIndex}})}, 640 {{{"pread"}}, TR::Prop({{0, 1, 2, 3}}, {{1, ReturnValueIndex}})}, 641 {{{"read"}}, TR::Prop({{0, 2}}, {{1, ReturnValueIndex}})}, 642 {{{"strchr"}}, TR::Prop({{0}}, {{ReturnValueIndex}})}, 643 {{{"strrchr"}}, TR::Prop({{0}}, {{ReturnValueIndex}})}, 644 {{{"tolower"}}, TR::Prop({{0}}, {{ReturnValueIndex}})}, 645 {{{"toupper"}}, TR::Prop({{0}}, {{ReturnValueIndex}})}, 646 {{{"fread"}}, TR::Prop({{3}}, {{0, ReturnValueIndex}})}, 647 {{{"recv"}}, TR::Prop({{0}}, {{1, ReturnValueIndex}})}, 648 {{{"recvfrom"}}, TR::Prop({{0}}, {{1, ReturnValueIndex}})}, 649 650 {{{"ttyname"}}, TR::Prop({{0}}, {{ReturnValueIndex}})}, 651 {{{"ttyname_r"}}, TR::Prop({{0}}, {{1, ReturnValueIndex}})}, 652 653 {{{"basename"}}, TR::Prop({{0}}, {{ReturnValueIndex}})}, 654 {{{"dirname"}}, TR::Prop({{0}}, {{ReturnValueIndex}})}, 655 {{{"fnmatch"}}, TR::Prop({{1}}, {{ReturnValueIndex}})}, 656 {{{"memchr"}}, TR::Prop({{0}}, {{ReturnValueIndex}})}, 657 {{{"memrchr"}}, TR::Prop({{0}}, {{ReturnValueIndex}})}, 658 {{{"rawmemchr"}}, TR::Prop({{0}}, {{ReturnValueIndex}})}, 659 660 {{{"mbtowc"}}, TR::Prop({{1}}, {{0, ReturnValueIndex}})}, 661 {{{"wctomb"}}, TR::Prop({{1}}, {{0, ReturnValueIndex}})}, 662 {{{"wcwidth"}}, TR::Prop({{0}}, {{ReturnValueIndex}})}, 663 664 {{{"memcmp"}}, TR::Prop({{0, 1}}, {{ReturnValueIndex}})}, 665 {{{"memcpy"}}, TR::Prop({{1}}, {{0, ReturnValueIndex}})}, 666 {{{"memmove"}}, TR::Prop({{1}}, {{0, ReturnValueIndex}})}, 667 // If memmem was called with a tainted needle and the search was 668 // successful, that would mean that the value pointed by the return value 669 // has the same content as the needle. If we choose to go by the policy of 670 // content equivalence implies taintedness equivalence, that would mean 671 // haystack should be considered a propagation source argument. 672 {{{"memmem"}}, TR::Prop({{0}}, {{ReturnValueIndex}})}, 673 674 // The comment for memmem above also applies to strstr. 675 {{{"strstr"}}, TR::Prop({{0}}, {{ReturnValueIndex}})}, 676 {{{"strcasestr"}}, TR::Prop({{0}}, {{ReturnValueIndex}})}, 677 678 {{{"strchrnul"}}, TR::Prop({{0}}, {{ReturnValueIndex}})}, 679 680 {{{"index"}}, TR::Prop({{0}}, {{ReturnValueIndex}})}, 681 {{{"rindex"}}, TR::Prop({{0}}, {{ReturnValueIndex}})}, 682 683 // FIXME: In case of arrays, only the first element of the array gets 684 // tainted. 685 {{{"qsort"}}, TR::Prop({{0}}, {{0}})}, 686 {{{"qsort_r"}}, TR::Prop({{0}}, {{0}})}, 687 688 {{{"strcmp"}}, TR::Prop({{0, 1}}, {{ReturnValueIndex}})}, 689 {{{"strcasecmp"}}, TR::Prop({{0, 1}}, {{ReturnValueIndex}})}, 690 {{{"strncmp"}}, TR::Prop({{0, 1, 2}}, {{ReturnValueIndex}})}, 691 {{{"strncasecmp"}}, TR::Prop({{0, 1, 2}}, {{ReturnValueIndex}})}, 692 {{{"strspn"}}, TR::Prop({{0, 1}}, {{ReturnValueIndex}})}, 693 {{{"strcspn"}}, TR::Prop({{0, 1}}, {{ReturnValueIndex}})}, 694 {{{"strpbrk"}}, TR::Prop({{0}}, {{ReturnValueIndex}})}, 695 {{{"strndup"}}, TR::Prop({{0}}, {{ReturnValueIndex}})}, 696 {{{"strndupa"}}, TR::Prop({{0}}, {{ReturnValueIndex}})}, 697 {{{"strlen"}}, TR::Prop({{0}}, {{ReturnValueIndex}})}, 698 {{{"strnlen"}}, TR::Prop({{0}}, {{ReturnValueIndex}})}, 699 {{{"strtol"}}, TR::Prop({{0}}, {{1, ReturnValueIndex}})}, 700 {{{"strtoll"}}, TR::Prop({{0}}, {{1, ReturnValueIndex}})}, 701 {{{"strtoul"}}, TR::Prop({{0}}, {{1, ReturnValueIndex}})}, 702 {{{"strtoull"}}, TR::Prop({{0}}, {{1, ReturnValueIndex}})}, 703 704 {{{"isalnum"}}, TR::Prop({{0}}, {{ReturnValueIndex}})}, 705 {{{"isalpha"}}, TR::Prop({{0}}, {{ReturnValueIndex}})}, 706 {{{"isascii"}}, TR::Prop({{0}}, {{ReturnValueIndex}})}, 707 {{{"isblank"}}, TR::Prop({{0}}, {{ReturnValueIndex}})}, 708 {{{"iscntrl"}}, TR::Prop({{0}}, {{ReturnValueIndex}})}, 709 {{{"isdigit"}}, TR::Prop({{0}}, {{ReturnValueIndex}})}, 710 {{{"isgraph"}}, TR::Prop({{0}}, {{ReturnValueIndex}})}, 711 {{{"islower"}}, TR::Prop({{0}}, {{ReturnValueIndex}})}, 712 {{{"isprint"}}, TR::Prop({{0}}, {{ReturnValueIndex}})}, 713 {{{"ispunct"}}, TR::Prop({{0}}, {{ReturnValueIndex}})}, 714 {{{"isspace"}}, TR::Prop({{0}}, {{ReturnValueIndex}})}, 715 {{{"isupper"}}, TR::Prop({{0}}, {{ReturnValueIndex}})}, 716 {{{"isxdigit"}}, TR::Prop({{0}}, {{ReturnValueIndex}})}, 717 718 {{CDF_MaybeBuiltin, {BI.getName(Builtin::BIstrncat)}}, 719 TR::Prop({{1, 2}}, {{0, ReturnValueIndex}})}, 720 {{CDF_MaybeBuiltin, {BI.getName(Builtin::BIstrlcpy)}}, 721 TR::Prop({{1, 2}}, {{0}})}, 722 {{CDF_MaybeBuiltin, {BI.getName(Builtin::BIstrlcat)}}, 723 TR::Prop({{1, 2}}, {{0}})}, 724 {{CDF_MaybeBuiltin, {{"snprintf"}}}, 725 TR::Prop({{1}, 3}, {{0, ReturnValueIndex}})}, 726 {{CDF_MaybeBuiltin, {{"sprintf"}}}, 727 TR::Prop({{1}, 2}, {{0, ReturnValueIndex}})}, 728 {{CDF_MaybeBuiltin, {{"strcpy"}}}, 729 TR::Prop({{1}}, {{0, ReturnValueIndex}})}, 730 {{CDF_MaybeBuiltin, {{"stpcpy"}}}, 731 TR::Prop({{1}}, {{0, ReturnValueIndex}})}, 732 {{CDF_MaybeBuiltin, {{"strcat"}}}, 733 TR::Prop({{1}}, {{0, ReturnValueIndex}})}, 734 {{CDF_MaybeBuiltin, {{"strdup"}}}, TR::Prop({{0}}, {{ReturnValueIndex}})}, 735 {{CDF_MaybeBuiltin, {{"strdupa"}}}, 736 TR::Prop({{0}}, {{ReturnValueIndex}})}, 737 {{CDF_MaybeBuiltin, {{"wcsdup"}}}, TR::Prop({{0}}, {{ReturnValueIndex}})}, 738 739 // Sinks 740 {{{"system"}}, TR::Sink({{0}}, MsgSanitizeSystemArgs)}, 741 {{{"popen"}}, TR::Sink({{0}}, MsgSanitizeSystemArgs)}, 742 {{{"execl"}}, TR::Sink({{0}}, MsgSanitizeSystemArgs)}, 743 {{{"execle"}}, TR::Sink({{0}}, MsgSanitizeSystemArgs)}, 744 {{{"execlp"}}, TR::Sink({{0}}, MsgSanitizeSystemArgs)}, 745 {{{"execvp"}}, TR::Sink({{0}}, MsgSanitizeSystemArgs)}, 746 {{{"execvP"}}, TR::Sink({{0}}, MsgSanitizeSystemArgs)}, 747 {{{"execve"}}, TR::Sink({{0}}, MsgSanitizeSystemArgs)}, 748 {{{"dlopen"}}, TR::Sink({{0}}, MsgSanitizeSystemArgs)}, 749 {{CDF_MaybeBuiltin, {{"malloc"}}}, TR::Sink({{0}}, MsgTaintedBufferSize)}, 750 {{CDF_MaybeBuiltin, {{"calloc"}}}, TR::Sink({{0}}, MsgTaintedBufferSize)}, 751 {{CDF_MaybeBuiltin, {{"alloca"}}}, TR::Sink({{0}}, MsgTaintedBufferSize)}, 752 {{CDF_MaybeBuiltin, {{"memccpy"}}}, 753 TR::Sink({{3}}, MsgTaintedBufferSize)}, 754 {{CDF_MaybeBuiltin, {{"realloc"}}}, 755 TR::Sink({{1}}, MsgTaintedBufferSize)}, 756 {{{{"setproctitle"}}}, TR::Sink({{0}, 1}, MsgUncontrolledFormatString)}, 757 {{{{"setproctitle_fast"}}}, 758 TR::Sink({{0}, 1}, MsgUncontrolledFormatString)}, 759 760 // SinkProps 761 {{CDF_MaybeBuiltin, BI.getName(Builtin::BImemcpy)}, 762 TR::SinkProp({{2}}, {{1, 2}}, {{0, ReturnValueIndex}}, 763 MsgTaintedBufferSize)}, 764 {{CDF_MaybeBuiltin, {BI.getName(Builtin::BImemmove)}}, 765 TR::SinkProp({{2}}, {{1, 2}}, {{0, ReturnValueIndex}}, 766 MsgTaintedBufferSize)}, 767 {{CDF_MaybeBuiltin, {BI.getName(Builtin::BIstrncpy)}}, 768 TR::SinkProp({{2}}, {{1, 2}}, {{0, ReturnValueIndex}}, 769 MsgTaintedBufferSize)}, 770 {{CDF_MaybeBuiltin, {BI.getName(Builtin::BIstrndup)}}, 771 TR::SinkProp({{1}}, {{0, 1}}, {{ReturnValueIndex}}, 772 MsgTaintedBufferSize)}, 773 {{CDF_MaybeBuiltin, {{"bcopy"}}}, 774 TR::SinkProp({{2}}, {{0, 2}}, {{1}}, MsgTaintedBufferSize)}}; 775 776 // `getenv` returns taint only in untrusted environments. 777 if (TR::UntrustedEnv(C)) { 778 // void setproctitle_init(int argc, char *argv[], char *envp[]) 779 GlobalCRules.push_back( 780 {{{"setproctitle_init"}}, TR::Sink({{1, 2}}, MsgCustomSink)}); 781 GlobalCRules.push_back({{{"getenv"}}, TR::Source({{ReturnValueIndex}})}); 782 } 783 784 StaticTaintRules.emplace(std::make_move_iterator(GlobalCRules.begin()), 785 std::make_move_iterator(GlobalCRules.end())); 786 787 // User-provided taint configuration. 788 CheckerManager *Mgr = C.getAnalysisManager().getCheckerManager(); 789 assert(Mgr); 790 GenericTaintRuleParser ConfigParser{*Mgr}; 791 std::string Option{"Config"}; 792 StringRef ConfigFile = 793 Mgr->getAnalyzerOptions().getCheckerStringOption(this, Option); 794 std::optional<TaintConfiguration> Config = 795 getConfiguration<TaintConfiguration>(*Mgr, this, Option, ConfigFile); 796 if (!Config) { 797 // We don't have external taint config, no parsing required. 798 DynamicTaintRules = RuleLookupTy{}; 799 return; 800 } 801 802 GenericTaintRuleParser::RulesContTy Rules{ 803 ConfigParser.parseConfiguration(Option, std::move(*Config))}; 804 805 DynamicTaintRules.emplace(std::make_move_iterator(Rules.begin()), 806 std::make_move_iterator(Rules.end())); 807 } 808 809 void GenericTaintChecker::checkPreCall(const CallEvent &Call, 810 CheckerContext &C) const { 811 initTaintRules(C); 812 813 // FIXME: this should be much simpler. 814 if (const auto *Rule = 815 Call.isGlobalCFunction() ? StaticTaintRules->lookup(Call) : nullptr) 816 Rule->process(*this, Call, C); 817 else if (const auto *Rule = DynamicTaintRules->lookup(Call)) 818 Rule->process(*this, Call, C); 819 820 // FIXME: These edge cases are to be eliminated from here eventually. 821 // 822 // Additional check that is not supported by CallDescription. 823 // TODO: Make CallDescription be able to match attributes such as printf-like 824 // arguments. 825 checkUncontrolledFormatString(Call, C); 826 827 // TODO: Modeling sockets should be done in a specific checker. 828 // Socket is a source, which taints the return value. 829 taintUnsafeSocketProtocol(Call, C); 830 } 831 832 void GenericTaintChecker::checkPostCall(const CallEvent &Call, 833 CheckerContext &C) const { 834 // Set the marked values as tainted. The return value only accessible from 835 // checkPostStmt. 836 ProgramStateRef State = C.getState(); 837 const StackFrameContext *CurrentFrame = C.getStackFrame(); 838 839 // Depending on what was tainted at pre-visit, we determined a set of 840 // arguments which should be tainted after the function returns. These are 841 // stored in the state as TaintArgsOnPostVisit set. 842 TaintArgsOnPostVisitTy TaintArgsMap = State->get<TaintArgsOnPostVisit>(); 843 844 const ImmutableSet<ArgIdxTy> *TaintArgs = TaintArgsMap.lookup(CurrentFrame); 845 if (!TaintArgs) 846 return; 847 assert(!TaintArgs->isEmpty()); 848 849 LLVM_DEBUG(for (ArgIdxTy I 850 : *TaintArgs) { 851 llvm::dbgs() << "PostCall<"; 852 Call.dump(llvm::dbgs()); 853 llvm::dbgs() << "> actually wants to taint arg index: " << I << '\n'; 854 }); 855 856 const NoteTag *InjectionTag = nullptr; 857 std::vector<SymbolRef> TaintedSymbols; 858 std::vector<ArgIdxTy> TaintedIndexes; 859 for (ArgIdxTy ArgNum : *TaintArgs) { 860 // Special handling for the tainted return value. 861 if (ArgNum == ReturnValueIndex) { 862 State = addTaint(State, Call.getReturnValue()); 863 std::vector<SymbolRef> TaintedSyms = 864 getTaintedSymbols(State, Call.getReturnValue()); 865 if (!TaintedSyms.empty()) { 866 TaintedSymbols.push_back(TaintedSyms[0]); 867 TaintedIndexes.push_back(ArgNum); 868 } 869 continue; 870 } 871 // The arguments are pointer arguments. The data they are pointing at is 872 // tainted after the call. 873 if (auto V = getPointeeOf(State, Call.getArgSVal(ArgNum))) { 874 State = addTaint(State, *V); 875 std::vector<SymbolRef> TaintedSyms = getTaintedSymbols(State, *V); 876 if (!TaintedSyms.empty()) { 877 TaintedSymbols.push_back(TaintedSyms[0]); 878 TaintedIndexes.push_back(ArgNum); 879 } 880 } 881 } 882 // Create a NoteTag callback, which prints to the user where the taintedness 883 // was propagated to. 884 InjectionTag = taintPropagationExplainerTag(C, TaintedSymbols, TaintedIndexes, 885 Call.getCalleeStackFrame(0)); 886 // Clear up the taint info from the state. 887 State = State->remove<TaintArgsOnPostVisit>(CurrentFrame); 888 C.addTransition(State, InjectionTag); 889 } 890 891 void GenericTaintChecker::printState(raw_ostream &Out, ProgramStateRef State, 892 const char *NL, const char *Sep) const { 893 printTaint(State, Out, NL, Sep); 894 } 895 896 void GenericTaintRule::process(const GenericTaintChecker &Checker, 897 const CallEvent &Call, CheckerContext &C) const { 898 ProgramStateRef State = C.getState(); 899 const ArgIdxTy CallNumArgs = fromArgumentCount(Call.getNumArgs()); 900 901 /// Iterate every call argument, and get their corresponding Expr and SVal. 902 const auto ForEachCallArg = [&C, &Call, CallNumArgs](auto &&Fun) { 903 for (ArgIdxTy I = ReturnValueIndex; I < CallNumArgs; ++I) { 904 const Expr *E = GetArgExpr(I, Call); 905 Fun(I, E, C.getSVal(E)); 906 } 907 }; 908 909 /// Check for taint sinks. 910 ForEachCallArg([this, &Checker, &C, &State](ArgIdxTy I, const Expr *E, SVal) { 911 // Add taintedness to stdin parameters 912 if (isStdin(C.getSVal(E), C.getASTContext())) { 913 State = addTaint(State, C.getSVal(E)); 914 } 915 if (SinkArgs.contains(I) && isTaintedOrPointsToTainted(State, C.getSVal(E))) 916 Checker.generateReportIfTainted(E, SinkMsg.value_or(MsgCustomSink), C); 917 }); 918 919 /// Check for taint filters. 920 ForEachCallArg([this, &State](ArgIdxTy I, const Expr *E, SVal S) { 921 if (FilterArgs.contains(I)) { 922 State = removeTaint(State, S); 923 if (auto P = getPointeeOf(State, S)) 924 State = removeTaint(State, *P); 925 } 926 }); 927 928 /// Check for taint propagation sources. 929 /// A rule will make the destination variables tainted if PropSrcArgs 930 /// is empty (taints the destination 931 /// arguments unconditionally), or if any of its signified 932 /// args are tainted in context of the current CallEvent. 933 bool IsMatching = PropSrcArgs.isEmpty(); 934 std::vector<SymbolRef> TaintedSymbols; 935 std::vector<ArgIdxTy> TaintedIndexes; 936 ForEachCallArg([this, &C, &IsMatching, &State, &TaintedSymbols, 937 &TaintedIndexes](ArgIdxTy I, const Expr *E, SVal) { 938 std::optional<SVal> TaintedSVal = 939 getTaintedPointeeOrPointer(State, C.getSVal(E)); 940 IsMatching = 941 IsMatching || (PropSrcArgs.contains(I) && TaintedSVal.has_value()); 942 943 // We track back tainted arguments except for stdin 944 if (TaintedSVal && !isStdin(*TaintedSVal, C.getASTContext())) { 945 std::vector<SymbolRef> TaintedArgSyms = 946 getTaintedSymbols(State, *TaintedSVal); 947 if (!TaintedArgSyms.empty()) { 948 llvm::append_range(TaintedSymbols, TaintedArgSyms); 949 TaintedIndexes.push_back(I); 950 } 951 } 952 }); 953 954 // Early return for propagation rules which dont match. 955 // Matching propagations, Sinks and Filters will pass this point. 956 if (!IsMatching) 957 return; 958 959 const auto WouldEscape = [](SVal V, QualType Ty) -> bool { 960 if (!isa<Loc>(V)) 961 return false; 962 963 const bool IsNonConstRef = Ty->isReferenceType() && !Ty.isConstQualified(); 964 const bool IsNonConstPtr = 965 Ty->isPointerType() && !Ty->getPointeeType().isConstQualified(); 966 967 return IsNonConstRef || IsNonConstPtr; 968 }; 969 970 /// Propagate taint where it is necessary. 971 auto &F = State->getStateManager().get_context<ArgIdxFactory>(); 972 ImmutableSet<ArgIdxTy> Result = F.getEmptySet(); 973 ForEachCallArg( 974 [&](ArgIdxTy I, const Expr *E, SVal V) { 975 if (PropDstArgs.contains(I)) { 976 LLVM_DEBUG(llvm::dbgs() << "PreCall<"; Call.dump(llvm::dbgs()); 977 llvm::dbgs() 978 << "> prepares tainting arg index: " << I << '\n';); 979 Result = F.add(Result, I); 980 } 981 982 // Taint property gets lost if the variable is passed as a 983 // non-const pointer or reference to a function which is 984 // not inlined. For matching rules we want to preserve the taintedness. 985 // TODO: We should traverse all reachable memory regions via the 986 // escaping parameter. Instead of doing that we simply mark only the 987 // referred memory region as tainted. 988 if (WouldEscape(V, E->getType()) && getTaintedPointeeOrPointer(State, V)) { 989 LLVM_DEBUG(if (!Result.contains(I)) { 990 llvm::dbgs() << "PreCall<"; 991 Call.dump(llvm::dbgs()); 992 llvm::dbgs() << "> prepares tainting arg index: " << I << '\n'; 993 }); 994 Result = F.add(Result, I); 995 } 996 }); 997 998 if (!Result.isEmpty()) 999 State = State->set<TaintArgsOnPostVisit>(C.getStackFrame(), Result); 1000 const NoteTag *InjectionTag = taintOriginTrackerTag( 1001 C, std::move(TaintedSymbols), std::move(TaintedIndexes), 1002 Call.getCalleeStackFrame(0)); 1003 C.addTransition(State, InjectionTag); 1004 } 1005 1006 bool GenericTaintRule::UntrustedEnv(CheckerContext &C) { 1007 return !C.getAnalysisManager() 1008 .getAnalyzerOptions() 1009 .ShouldAssumeControlledEnvironment; 1010 } 1011 1012 bool GenericTaintChecker::generateReportIfTainted(const Expr *E, StringRef Msg, 1013 CheckerContext &C) const { 1014 assert(E); 1015 std::optional<SVal> TaintedSVal = 1016 getTaintedPointeeOrPointer(C.getState(), C.getSVal(E)); 1017 1018 if (!TaintedSVal) 1019 return false; 1020 1021 // Generate diagnostic. 1022 if (ExplodedNode *N = C.generateNonFatalErrorNode()) { 1023 auto report = std::make_unique<PathSensitiveBugReport>(BT, Msg, N); 1024 report->addRange(E->getSourceRange()); 1025 for (auto TaintedSym : getTaintedSymbols(C.getState(), *TaintedSVal)) { 1026 report->markInteresting(TaintedSym); 1027 } 1028 1029 C.emitReport(std::move(report)); 1030 return true; 1031 } 1032 return false; 1033 } 1034 1035 /// TODO: remove checking for printf format attributes and socket whitelisting 1036 /// from GenericTaintChecker, and that means the following functions: 1037 /// getPrintfFormatArgumentNum, 1038 /// GenericTaintChecker::checkUncontrolledFormatString, 1039 /// GenericTaintChecker::taintUnsafeSocketProtocol 1040 1041 static bool getPrintfFormatArgumentNum(const CallEvent &Call, 1042 const CheckerContext &C, 1043 ArgIdxTy &ArgNum) { 1044 // Find if the function contains a format string argument. 1045 // Handles: fprintf, printf, sprintf, snprintf, vfprintf, vprintf, vsprintf, 1046 // vsnprintf, syslog, custom annotated functions. 1047 const Decl *CallDecl = Call.getDecl(); 1048 if (!CallDecl) 1049 return false; 1050 const FunctionDecl *FDecl = CallDecl->getAsFunction(); 1051 if (!FDecl) 1052 return false; 1053 1054 const ArgIdxTy CallNumArgs = fromArgumentCount(Call.getNumArgs()); 1055 1056 for (const auto *Format : FDecl->specific_attrs<FormatAttr>()) { 1057 ArgNum = Format->getFormatIdx() - 1; 1058 if ((Format->getType()->getName() == "printf") && CallNumArgs > ArgNum) 1059 return true; 1060 } 1061 1062 return false; 1063 } 1064 1065 bool GenericTaintChecker::checkUncontrolledFormatString( 1066 const CallEvent &Call, CheckerContext &C) const { 1067 // Check if the function contains a format string argument. 1068 ArgIdxTy ArgNum = 0; 1069 if (!getPrintfFormatArgumentNum(Call, C, ArgNum)) 1070 return false; 1071 1072 // If either the format string content or the pointer itself are tainted, 1073 // warn. 1074 return generateReportIfTainted(Call.getArgExpr(ArgNum), 1075 MsgUncontrolledFormatString, C); 1076 } 1077 1078 void GenericTaintChecker::taintUnsafeSocketProtocol(const CallEvent &Call, 1079 CheckerContext &C) const { 1080 if (Call.getNumArgs() < 1) 1081 return; 1082 const IdentifierInfo *ID = Call.getCalleeIdentifier(); 1083 if (!ID) 1084 return; 1085 if (!ID->getName().equals("socket")) 1086 return; 1087 1088 SourceLocation DomLoc = Call.getArgExpr(0)->getExprLoc(); 1089 StringRef DomName = C.getMacroNameOrSpelling(DomLoc); 1090 // Allow internal communication protocols. 1091 bool SafeProtocol = DomName.equals("AF_SYSTEM") || 1092 DomName.equals("AF_LOCAL") || DomName.equals("AF_UNIX") || 1093 DomName.equals("AF_RESERVED_36"); 1094 if (SafeProtocol) 1095 return; 1096 1097 ProgramStateRef State = C.getState(); 1098 auto &F = State->getStateManager().get_context<ArgIdxFactory>(); 1099 ImmutableSet<ArgIdxTy> Result = F.add(F.getEmptySet(), ReturnValueIndex); 1100 State = State->set<TaintArgsOnPostVisit>(C.getStackFrame(), Result); 1101 C.addTransition(State); 1102 } 1103 1104 /// Checker registration 1105 void ento::registerGenericTaintChecker(CheckerManager &Mgr) { 1106 Mgr.registerChecker<GenericTaintChecker>(); 1107 } 1108 1109 bool ento::shouldRegisterGenericTaintChecker(const CheckerManager &mgr) { 1110 return true; 1111 } 1112