1 //= CStringChecker.cpp - Checks calls to C string functions --------*- C++ -*-// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This defines CStringChecker, which is an assortment of checks on calls 10 // to functions in <string.h>. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InterCheckerAPI.h" 15 #include "clang/Basic/CharInfo.h" 16 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" 17 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 18 #include "clang/StaticAnalyzer/Core/Checker.h" 19 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 20 #include "clang/StaticAnalyzer/Core/PathSensitive/CallDescription.h" 21 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 22 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 23 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicExtent.h" 24 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SmallString.h" 27 #include "llvm/ADT/StringExtras.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include <functional> 30 31 using namespace clang; 32 using namespace ento; 33 using namespace std::placeholders; 34 35 namespace { 36 struct AnyArgExpr { 37 // FIXME: Remove constructor in C++17 to turn it into an aggregate. 38 AnyArgExpr(const Expr *Expression, unsigned ArgumentIndex) 39 : Expression{Expression}, ArgumentIndex{ArgumentIndex} {} 40 const Expr *Expression; 41 unsigned ArgumentIndex; 42 }; 43 44 struct SourceArgExpr : AnyArgExpr { 45 using AnyArgExpr::AnyArgExpr; // FIXME: Remove using in C++17. 46 }; 47 48 struct DestinationArgExpr : AnyArgExpr { 49 using AnyArgExpr::AnyArgExpr; // FIXME: Same. 50 }; 51 52 struct SizeArgExpr : AnyArgExpr { 53 using AnyArgExpr::AnyArgExpr; // FIXME: Same. 54 }; 55 56 using ErrorMessage = SmallString<128>; 57 enum class AccessKind { write, read }; 58 59 static ErrorMessage createOutOfBoundErrorMsg(StringRef FunctionDescription, 60 AccessKind Access) { 61 ErrorMessage Message; 62 llvm::raw_svector_ostream Os(Message); 63 64 // Function classification like: Memory copy function 65 Os << toUppercase(FunctionDescription.front()) 66 << &FunctionDescription.data()[1]; 67 68 if (Access == AccessKind::write) { 69 Os << " overflows the destination buffer"; 70 } else { // read access 71 Os << " accesses out-of-bound array element"; 72 } 73 74 return Message; 75 } 76 77 enum class ConcatFnKind { none = 0, strcat = 1, strlcat = 2 }; 78 class CStringChecker : public Checker< eval::Call, 79 check::PreStmt<DeclStmt>, 80 check::LiveSymbols, 81 check::DeadSymbols, 82 check::RegionChanges 83 > { 84 mutable std::unique_ptr<BugType> BT_Null, BT_Bounds, BT_Overlap, 85 BT_NotCString, BT_AdditionOverflow, BT_UninitRead; 86 87 mutable const char *CurrentFunctionDescription; 88 89 public: 90 /// The filter is used to filter out the diagnostics which are not enabled by 91 /// the user. 92 struct CStringChecksFilter { 93 bool CheckCStringNullArg = false; 94 bool CheckCStringOutOfBounds = false; 95 bool CheckCStringBufferOverlap = false; 96 bool CheckCStringNotNullTerm = false; 97 bool CheckCStringUninitializedRead = false; 98 99 CheckerNameRef CheckNameCStringNullArg; 100 CheckerNameRef CheckNameCStringOutOfBounds; 101 CheckerNameRef CheckNameCStringBufferOverlap; 102 CheckerNameRef CheckNameCStringNotNullTerm; 103 CheckerNameRef CheckNameCStringUninitializedRead; 104 }; 105 106 CStringChecksFilter Filter; 107 108 static void *getTag() { static int tag; return &tag; } 109 110 bool evalCall(const CallEvent &Call, CheckerContext &C) const; 111 void checkPreStmt(const DeclStmt *DS, CheckerContext &C) const; 112 void checkLiveSymbols(ProgramStateRef state, SymbolReaper &SR) const; 113 void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const; 114 115 ProgramStateRef 116 checkRegionChanges(ProgramStateRef state, 117 const InvalidatedSymbols *, 118 ArrayRef<const MemRegion *> ExplicitRegions, 119 ArrayRef<const MemRegion *> Regions, 120 const LocationContext *LCtx, 121 const CallEvent *Call) const; 122 123 using FnCheck = std::function<void(const CStringChecker *, CheckerContext &, 124 const CallExpr *)>; 125 126 CallDescriptionMap<FnCheck> Callbacks = { 127 {{CDF_MaybeBuiltin, "memcpy", 3}, 128 std::bind(&CStringChecker::evalMemcpy, _1, _2, _3, false)}, 129 {{CDF_MaybeBuiltin, "wmemcpy", 3}, 130 std::bind(&CStringChecker::evalMemcpy, _1, _2, _3, true)}, 131 {{CDF_MaybeBuiltin, "mempcpy", 3}, &CStringChecker::evalMempcpy}, 132 {{CDF_MaybeBuiltin, "memcmp", 3}, &CStringChecker::evalMemcmp}, 133 {{CDF_MaybeBuiltin, "memmove", 3}, &CStringChecker::evalMemmove}, 134 {{CDF_MaybeBuiltin, "memset", 3}, &CStringChecker::evalMemset}, 135 {{CDF_MaybeBuiltin, "explicit_memset", 3}, &CStringChecker::evalMemset}, 136 {{CDF_MaybeBuiltin, "strcpy", 2}, &CStringChecker::evalStrcpy}, 137 {{CDF_MaybeBuiltin, "strncpy", 3}, &CStringChecker::evalStrncpy}, 138 {{CDF_MaybeBuiltin, "stpcpy", 2}, &CStringChecker::evalStpcpy}, 139 {{CDF_MaybeBuiltin, "strlcpy", 3}, &CStringChecker::evalStrlcpy}, 140 {{CDF_MaybeBuiltin, "strcat", 2}, &CStringChecker::evalStrcat}, 141 {{CDF_MaybeBuiltin, "strncat", 3}, &CStringChecker::evalStrncat}, 142 {{CDF_MaybeBuiltin, "strlcat", 3}, &CStringChecker::evalStrlcat}, 143 {{CDF_MaybeBuiltin, "strlen", 1}, &CStringChecker::evalstrLength}, 144 {{CDF_MaybeBuiltin, "wcslen", 1}, &CStringChecker::evalstrLength}, 145 {{CDF_MaybeBuiltin, "strnlen", 2}, &CStringChecker::evalstrnLength}, 146 {{CDF_MaybeBuiltin, "wcsnlen", 2}, &CStringChecker::evalstrnLength}, 147 {{CDF_MaybeBuiltin, "strcmp", 2}, &CStringChecker::evalStrcmp}, 148 {{CDF_MaybeBuiltin, "strncmp", 3}, &CStringChecker::evalStrncmp}, 149 {{CDF_MaybeBuiltin, "strcasecmp", 2}, &CStringChecker::evalStrcasecmp}, 150 {{CDF_MaybeBuiltin, "strncasecmp", 3}, &CStringChecker::evalStrncasecmp}, 151 {{CDF_MaybeBuiltin, "strsep", 2}, &CStringChecker::evalStrsep}, 152 {{CDF_MaybeBuiltin, "bcopy", 3}, &CStringChecker::evalBcopy}, 153 {{CDF_MaybeBuiltin, "bcmp", 3}, &CStringChecker::evalMemcmp}, 154 {{CDF_MaybeBuiltin, "bzero", 2}, &CStringChecker::evalBzero}, 155 {{CDF_MaybeBuiltin, "explicit_bzero", 2}, &CStringChecker::evalBzero}, 156 }; 157 158 // These require a bit of special handling. 159 CallDescription StdCopy{{"std", "copy"}, 3}, 160 StdCopyBackward{{"std", "copy_backward"}, 3}; 161 162 FnCheck identifyCall(const CallEvent &Call, CheckerContext &C) const; 163 void evalMemcpy(CheckerContext &C, const CallExpr *CE, bool IsWide) const; 164 void evalMempcpy(CheckerContext &C, const CallExpr *CE) const; 165 void evalMemmove(CheckerContext &C, const CallExpr *CE) const; 166 void evalBcopy(CheckerContext &C, const CallExpr *CE) const; 167 void evalCopyCommon(CheckerContext &C, const CallExpr *CE, 168 ProgramStateRef state, SizeArgExpr Size, 169 DestinationArgExpr Dest, SourceArgExpr Source, 170 bool Restricted, bool IsMempcpy, bool IsWide) const; 171 172 void evalMemcmp(CheckerContext &C, const CallExpr *CE) const; 173 174 void evalstrLength(CheckerContext &C, const CallExpr *CE) const; 175 void evalstrnLength(CheckerContext &C, const CallExpr *CE) const; 176 void evalstrLengthCommon(CheckerContext &C, 177 const CallExpr *CE, 178 bool IsStrnlen = false) const; 179 180 void evalStrcpy(CheckerContext &C, const CallExpr *CE) const; 181 void evalStrncpy(CheckerContext &C, const CallExpr *CE) const; 182 void evalStpcpy(CheckerContext &C, const CallExpr *CE) const; 183 void evalStrlcpy(CheckerContext &C, const CallExpr *CE) const; 184 void evalStrcpyCommon(CheckerContext &C, const CallExpr *CE, bool ReturnEnd, 185 bool IsBounded, ConcatFnKind appendK, 186 bool returnPtr = true) const; 187 188 void evalStrcat(CheckerContext &C, const CallExpr *CE) const; 189 void evalStrncat(CheckerContext &C, const CallExpr *CE) const; 190 void evalStrlcat(CheckerContext &C, const CallExpr *CE) const; 191 192 void evalStrcmp(CheckerContext &C, const CallExpr *CE) const; 193 void evalStrncmp(CheckerContext &C, const CallExpr *CE) const; 194 void evalStrcasecmp(CheckerContext &C, const CallExpr *CE) const; 195 void evalStrncasecmp(CheckerContext &C, const CallExpr *CE) const; 196 void evalStrcmpCommon(CheckerContext &C, 197 const CallExpr *CE, 198 bool IsBounded = false, 199 bool IgnoreCase = false) const; 200 201 void evalStrsep(CheckerContext &C, const CallExpr *CE) const; 202 203 void evalStdCopy(CheckerContext &C, const CallExpr *CE) const; 204 void evalStdCopyBackward(CheckerContext &C, const CallExpr *CE) const; 205 void evalStdCopyCommon(CheckerContext &C, const CallExpr *CE) const; 206 void evalMemset(CheckerContext &C, const CallExpr *CE) const; 207 void evalBzero(CheckerContext &C, const CallExpr *CE) const; 208 209 // Utility methods 210 std::pair<ProgramStateRef , ProgramStateRef > 211 static assumeZero(CheckerContext &C, 212 ProgramStateRef state, SVal V, QualType Ty); 213 214 static ProgramStateRef setCStringLength(ProgramStateRef state, 215 const MemRegion *MR, 216 SVal strLength); 217 static SVal getCStringLengthForRegion(CheckerContext &C, 218 ProgramStateRef &state, 219 const Expr *Ex, 220 const MemRegion *MR, 221 bool hypothetical); 222 SVal getCStringLength(CheckerContext &C, 223 ProgramStateRef &state, 224 const Expr *Ex, 225 SVal Buf, 226 bool hypothetical = false) const; 227 228 const StringLiteral *getCStringLiteral(CheckerContext &C, 229 ProgramStateRef &state, 230 const Expr *expr, 231 SVal val) const; 232 233 static ProgramStateRef InvalidateBuffer(CheckerContext &C, 234 ProgramStateRef state, 235 const Expr *Ex, SVal V, 236 bool IsSourceBuffer, 237 const Expr *Size); 238 239 static bool SummarizeRegion(raw_ostream &os, ASTContext &Ctx, 240 const MemRegion *MR); 241 242 static bool memsetAux(const Expr *DstBuffer, SVal CharE, 243 const Expr *Size, CheckerContext &C, 244 ProgramStateRef &State); 245 246 // Re-usable checks 247 ProgramStateRef checkNonNull(CheckerContext &C, ProgramStateRef State, 248 AnyArgExpr Arg, SVal l) const; 249 ProgramStateRef CheckLocation(CheckerContext &C, ProgramStateRef state, 250 AnyArgExpr Buffer, SVal Element, 251 AccessKind Access, bool IsWide = false) const; 252 ProgramStateRef CheckBufferAccess(CheckerContext &C, ProgramStateRef State, 253 AnyArgExpr Buffer, SizeArgExpr Size, 254 AccessKind Access, 255 bool IsWide = false) const; 256 ProgramStateRef CheckOverlap(CheckerContext &C, ProgramStateRef state, 257 SizeArgExpr Size, AnyArgExpr First, 258 AnyArgExpr Second, bool IsWide = false) const; 259 void emitOverlapBug(CheckerContext &C, 260 ProgramStateRef state, 261 const Stmt *First, 262 const Stmt *Second) const; 263 264 void emitNullArgBug(CheckerContext &C, ProgramStateRef State, const Stmt *S, 265 StringRef WarningMsg) const; 266 void emitOutOfBoundsBug(CheckerContext &C, ProgramStateRef State, 267 const Stmt *S, StringRef WarningMsg) const; 268 void emitNotCStringBug(CheckerContext &C, ProgramStateRef State, 269 const Stmt *S, StringRef WarningMsg) const; 270 void emitAdditionOverflowBug(CheckerContext &C, ProgramStateRef State) const; 271 void emitUninitializedReadBug(CheckerContext &C, ProgramStateRef State, 272 const Expr *E) const; 273 ProgramStateRef checkAdditionOverflow(CheckerContext &C, 274 ProgramStateRef state, 275 NonLoc left, 276 NonLoc right) const; 277 278 // Return true if the destination buffer of the copy function may be in bound. 279 // Expects SVal of Size to be positive and unsigned. 280 // Expects SVal of FirstBuf to be a FieldRegion. 281 static bool IsFirstBufInBound(CheckerContext &C, 282 ProgramStateRef state, 283 const Expr *FirstBuf, 284 const Expr *Size); 285 }; 286 287 } //end anonymous namespace 288 289 REGISTER_MAP_WITH_PROGRAMSTATE(CStringLength, const MemRegion *, SVal) 290 291 //===----------------------------------------------------------------------===// 292 // Individual checks and utility methods. 293 //===----------------------------------------------------------------------===// 294 295 std::pair<ProgramStateRef , ProgramStateRef > 296 CStringChecker::assumeZero(CheckerContext &C, ProgramStateRef state, SVal V, 297 QualType Ty) { 298 Optional<DefinedSVal> val = V.getAs<DefinedSVal>(); 299 if (!val) 300 return std::pair<ProgramStateRef , ProgramStateRef >(state, state); 301 302 SValBuilder &svalBuilder = C.getSValBuilder(); 303 DefinedOrUnknownSVal zero = svalBuilder.makeZeroVal(Ty); 304 return state->assume(svalBuilder.evalEQ(state, *val, zero)); 305 } 306 307 ProgramStateRef CStringChecker::checkNonNull(CheckerContext &C, 308 ProgramStateRef State, 309 AnyArgExpr Arg, SVal l) const { 310 // If a previous check has failed, propagate the failure. 311 if (!State) 312 return nullptr; 313 314 ProgramStateRef stateNull, stateNonNull; 315 std::tie(stateNull, stateNonNull) = 316 assumeZero(C, State, l, Arg.Expression->getType()); 317 318 if (stateNull && !stateNonNull) { 319 if (Filter.CheckCStringNullArg) { 320 SmallString<80> buf; 321 llvm::raw_svector_ostream OS(buf); 322 assert(CurrentFunctionDescription); 323 OS << "Null pointer passed as " << (Arg.ArgumentIndex + 1) 324 << llvm::getOrdinalSuffix(Arg.ArgumentIndex + 1) << " argument to " 325 << CurrentFunctionDescription; 326 327 emitNullArgBug(C, stateNull, Arg.Expression, OS.str()); 328 } 329 return nullptr; 330 } 331 332 // From here on, assume that the value is non-null. 333 assert(stateNonNull); 334 return stateNonNull; 335 } 336 337 // FIXME: This was originally copied from ArrayBoundChecker.cpp. Refactor? 338 ProgramStateRef CStringChecker::CheckLocation(CheckerContext &C, 339 ProgramStateRef state, 340 AnyArgExpr Buffer, SVal Element, 341 AccessKind Access, 342 bool IsWide) const { 343 344 // If a previous check has failed, propagate the failure. 345 if (!state) 346 return nullptr; 347 348 // Check for out of bound array element access. 349 const MemRegion *R = Element.getAsRegion(); 350 if (!R) 351 return state; 352 353 const auto *ER = dyn_cast<ElementRegion>(R); 354 if (!ER) 355 return state; 356 357 SValBuilder &svalBuilder = C.getSValBuilder(); 358 ASTContext &Ctx = svalBuilder.getContext(); 359 360 // Get the index of the accessed element. 361 NonLoc Idx = ER->getIndex(); 362 363 if (!IsWide) { 364 if (ER->getValueType() != Ctx.CharTy) 365 return state; 366 } else { 367 if (ER->getValueType() != Ctx.WideCharTy) 368 return state; 369 370 QualType SizeTy = Ctx.getSizeType(); 371 NonLoc WideSize = 372 svalBuilder 373 .makeIntVal(Ctx.getTypeSizeInChars(Ctx.WideCharTy).getQuantity(), 374 SizeTy) 375 .castAs<NonLoc>(); 376 SVal Offset = svalBuilder.evalBinOpNN(state, BO_Mul, Idx, WideSize, SizeTy); 377 if (Offset.isUnknown()) 378 return state; 379 Idx = Offset.castAs<NonLoc>(); 380 } 381 382 // Get the size of the array. 383 const auto *superReg = cast<SubRegion>(ER->getSuperRegion()); 384 DefinedOrUnknownSVal Size = 385 getDynamicExtent(state, superReg, C.getSValBuilder()); 386 387 ProgramStateRef StInBound, StOutBound; 388 std::tie(StInBound, StOutBound) = state->assumeInBoundDual(Idx, Size); 389 if (StOutBound && !StInBound) { 390 // These checks are either enabled by the CString out-of-bounds checker 391 // explicitly or implicitly by the Malloc checker. 392 // In the latter case we only do modeling but do not emit warning. 393 if (!Filter.CheckCStringOutOfBounds) 394 return nullptr; 395 396 // Emit a bug report. 397 ErrorMessage Message = 398 createOutOfBoundErrorMsg(CurrentFunctionDescription, Access); 399 emitOutOfBoundsBug(C, StOutBound, Buffer.Expression, Message); 400 return nullptr; 401 } 402 403 // Ensure that we wouldn't read uninitialized value. 404 if (Access == AccessKind::read) { 405 if (Filter.CheckCStringUninitializedRead && 406 StInBound->getSVal(ER).isUndef()) { 407 emitUninitializedReadBug(C, StInBound, Buffer.Expression); 408 return nullptr; 409 } 410 } 411 412 // Array bound check succeeded. From this point forward the array bound 413 // should always succeed. 414 return StInBound; 415 } 416 417 ProgramStateRef 418 CStringChecker::CheckBufferAccess(CheckerContext &C, ProgramStateRef State, 419 AnyArgExpr Buffer, SizeArgExpr Size, 420 AccessKind Access, bool IsWide) const { 421 // If a previous check has failed, propagate the failure. 422 if (!State) 423 return nullptr; 424 425 SValBuilder &svalBuilder = C.getSValBuilder(); 426 ASTContext &Ctx = svalBuilder.getContext(); 427 428 QualType SizeTy = Size.Expression->getType(); 429 QualType PtrTy = Ctx.getPointerType(IsWide ? Ctx.WideCharTy : Ctx.CharTy); 430 431 // Check that the first buffer is non-null. 432 SVal BufVal = C.getSVal(Buffer.Expression); 433 State = checkNonNull(C, State, Buffer, BufVal); 434 if (!State) 435 return nullptr; 436 437 // If out-of-bounds checking is turned off, skip the rest. 438 if (!Filter.CheckCStringOutOfBounds) 439 return State; 440 441 // Get the access length and make sure it is known. 442 // FIXME: This assumes the caller has already checked that the access length 443 // is positive. And that it's unsigned. 444 SVal LengthVal = C.getSVal(Size.Expression); 445 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); 446 if (!Length) 447 return State; 448 449 // Compute the offset of the last element to be accessed: size-1. 450 NonLoc One = svalBuilder.makeIntVal(1, SizeTy).castAs<NonLoc>(); 451 SVal Offset = svalBuilder.evalBinOpNN(State, BO_Sub, *Length, One, SizeTy); 452 if (Offset.isUnknown()) 453 return nullptr; 454 NonLoc LastOffset = Offset.castAs<NonLoc>(); 455 456 // Check that the first buffer is sufficiently long. 457 SVal BufStart = 458 svalBuilder.evalCast(BufVal, PtrTy, Buffer.Expression->getType()); 459 if (Optional<Loc> BufLoc = BufStart.getAs<Loc>()) { 460 461 SVal BufEnd = 462 svalBuilder.evalBinOpLN(State, BO_Add, *BufLoc, LastOffset, PtrTy); 463 State = CheckLocation(C, State, Buffer, BufEnd, Access, IsWide); 464 465 // If the buffer isn't large enough, abort. 466 if (!State) 467 return nullptr; 468 } 469 470 // Large enough or not, return this state! 471 return State; 472 } 473 474 ProgramStateRef CStringChecker::CheckOverlap(CheckerContext &C, 475 ProgramStateRef state, 476 SizeArgExpr Size, AnyArgExpr First, 477 AnyArgExpr Second, 478 bool IsWide) const { 479 if (!Filter.CheckCStringBufferOverlap) 480 return state; 481 482 // Do a simple check for overlap: if the two arguments are from the same 483 // buffer, see if the end of the first is greater than the start of the second 484 // or vice versa. 485 486 // If a previous check has failed, propagate the failure. 487 if (!state) 488 return nullptr; 489 490 ProgramStateRef stateTrue, stateFalse; 491 492 // Assume different address spaces cannot overlap. 493 if (First.Expression->getType()->getPointeeType().getAddressSpace() != 494 Second.Expression->getType()->getPointeeType().getAddressSpace()) 495 return state; 496 497 // Get the buffer values and make sure they're known locations. 498 const LocationContext *LCtx = C.getLocationContext(); 499 SVal firstVal = state->getSVal(First.Expression, LCtx); 500 SVal secondVal = state->getSVal(Second.Expression, LCtx); 501 502 Optional<Loc> firstLoc = firstVal.getAs<Loc>(); 503 if (!firstLoc) 504 return state; 505 506 Optional<Loc> secondLoc = secondVal.getAs<Loc>(); 507 if (!secondLoc) 508 return state; 509 510 // Are the two values the same? 511 SValBuilder &svalBuilder = C.getSValBuilder(); 512 std::tie(stateTrue, stateFalse) = 513 state->assume(svalBuilder.evalEQ(state, *firstLoc, *secondLoc)); 514 515 if (stateTrue && !stateFalse) { 516 // If the values are known to be equal, that's automatically an overlap. 517 emitOverlapBug(C, stateTrue, First.Expression, Second.Expression); 518 return nullptr; 519 } 520 521 // assume the two expressions are not equal. 522 assert(stateFalse); 523 state = stateFalse; 524 525 // Which value comes first? 526 QualType cmpTy = svalBuilder.getConditionType(); 527 SVal reverse = 528 svalBuilder.evalBinOpLL(state, BO_GT, *firstLoc, *secondLoc, cmpTy); 529 Optional<DefinedOrUnknownSVal> reverseTest = 530 reverse.getAs<DefinedOrUnknownSVal>(); 531 if (!reverseTest) 532 return state; 533 534 std::tie(stateTrue, stateFalse) = state->assume(*reverseTest); 535 if (stateTrue) { 536 if (stateFalse) { 537 // If we don't know which one comes first, we can't perform this test. 538 return state; 539 } else { 540 // Switch the values so that firstVal is before secondVal. 541 std::swap(firstLoc, secondLoc); 542 543 // Switch the Exprs as well, so that they still correspond. 544 std::swap(First, Second); 545 } 546 } 547 548 // Get the length, and make sure it too is known. 549 SVal LengthVal = state->getSVal(Size.Expression, LCtx); 550 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); 551 if (!Length) 552 return state; 553 554 // Convert the first buffer's start address to char*. 555 // Bail out if the cast fails. 556 ASTContext &Ctx = svalBuilder.getContext(); 557 QualType CharPtrTy = Ctx.getPointerType(IsWide ? Ctx.WideCharTy : Ctx.CharTy); 558 SVal FirstStart = 559 svalBuilder.evalCast(*firstLoc, CharPtrTy, First.Expression->getType()); 560 Optional<Loc> FirstStartLoc = FirstStart.getAs<Loc>(); 561 if (!FirstStartLoc) 562 return state; 563 564 // Compute the end of the first buffer. Bail out if THAT fails. 565 SVal FirstEnd = svalBuilder.evalBinOpLN(state, BO_Add, *FirstStartLoc, 566 *Length, CharPtrTy); 567 Optional<Loc> FirstEndLoc = FirstEnd.getAs<Loc>(); 568 if (!FirstEndLoc) 569 return state; 570 571 // Is the end of the first buffer past the start of the second buffer? 572 SVal Overlap = 573 svalBuilder.evalBinOpLL(state, BO_GT, *FirstEndLoc, *secondLoc, cmpTy); 574 Optional<DefinedOrUnknownSVal> OverlapTest = 575 Overlap.getAs<DefinedOrUnknownSVal>(); 576 if (!OverlapTest) 577 return state; 578 579 std::tie(stateTrue, stateFalse) = state->assume(*OverlapTest); 580 581 if (stateTrue && !stateFalse) { 582 // Overlap! 583 emitOverlapBug(C, stateTrue, First.Expression, Second.Expression); 584 return nullptr; 585 } 586 587 // assume the two expressions don't overlap. 588 assert(stateFalse); 589 return stateFalse; 590 } 591 592 void CStringChecker::emitOverlapBug(CheckerContext &C, ProgramStateRef state, 593 const Stmt *First, const Stmt *Second) const { 594 ExplodedNode *N = C.generateErrorNode(state); 595 if (!N) 596 return; 597 598 if (!BT_Overlap) 599 BT_Overlap.reset(new BugType(Filter.CheckNameCStringBufferOverlap, 600 categories::UnixAPI, "Improper arguments")); 601 602 // Generate a report for this bug. 603 auto report = std::make_unique<PathSensitiveBugReport>( 604 *BT_Overlap, "Arguments must not be overlapping buffers", N); 605 report->addRange(First->getSourceRange()); 606 report->addRange(Second->getSourceRange()); 607 608 C.emitReport(std::move(report)); 609 } 610 611 void CStringChecker::emitNullArgBug(CheckerContext &C, ProgramStateRef State, 612 const Stmt *S, StringRef WarningMsg) const { 613 if (ExplodedNode *N = C.generateErrorNode(State)) { 614 if (!BT_Null) 615 BT_Null.reset(new BuiltinBug( 616 Filter.CheckNameCStringNullArg, categories::UnixAPI, 617 "Null pointer argument in call to byte string function")); 618 619 BuiltinBug *BT = static_cast<BuiltinBug *>(BT_Null.get()); 620 auto Report = std::make_unique<PathSensitiveBugReport>(*BT, WarningMsg, N); 621 Report->addRange(S->getSourceRange()); 622 if (const auto *Ex = dyn_cast<Expr>(S)) 623 bugreporter::trackExpressionValue(N, Ex, *Report); 624 C.emitReport(std::move(Report)); 625 } 626 } 627 628 void CStringChecker::emitUninitializedReadBug(CheckerContext &C, 629 ProgramStateRef State, 630 const Expr *E) const { 631 if (ExplodedNode *N = C.generateErrorNode(State)) { 632 const char *Msg = 633 "Bytes string function accesses uninitialized/garbage values"; 634 if (!BT_UninitRead) 635 BT_UninitRead.reset( 636 new BuiltinBug(Filter.CheckNameCStringUninitializedRead, 637 "Accessing unitialized/garbage values", Msg)); 638 639 BuiltinBug *BT = static_cast<BuiltinBug *>(BT_UninitRead.get()); 640 641 auto Report = std::make_unique<PathSensitiveBugReport>(*BT, Msg, N); 642 Report->addRange(E->getSourceRange()); 643 bugreporter::trackExpressionValue(N, E, *Report); 644 C.emitReport(std::move(Report)); 645 } 646 } 647 648 void CStringChecker::emitOutOfBoundsBug(CheckerContext &C, 649 ProgramStateRef State, const Stmt *S, 650 StringRef WarningMsg) const { 651 if (ExplodedNode *N = C.generateErrorNode(State)) { 652 if (!BT_Bounds) 653 BT_Bounds.reset(new BuiltinBug( 654 Filter.CheckCStringOutOfBounds ? Filter.CheckNameCStringOutOfBounds 655 : Filter.CheckNameCStringNullArg, 656 "Out-of-bound array access", 657 "Byte string function accesses out-of-bound array element")); 658 659 BuiltinBug *BT = static_cast<BuiltinBug *>(BT_Bounds.get()); 660 661 // FIXME: It would be nice to eventually make this diagnostic more clear, 662 // e.g., by referencing the original declaration or by saying *why* this 663 // reference is outside the range. 664 auto Report = std::make_unique<PathSensitiveBugReport>(*BT, WarningMsg, N); 665 Report->addRange(S->getSourceRange()); 666 C.emitReport(std::move(Report)); 667 } 668 } 669 670 void CStringChecker::emitNotCStringBug(CheckerContext &C, ProgramStateRef State, 671 const Stmt *S, 672 StringRef WarningMsg) const { 673 if (ExplodedNode *N = C.generateNonFatalErrorNode(State)) { 674 if (!BT_NotCString) 675 BT_NotCString.reset(new BuiltinBug( 676 Filter.CheckNameCStringNotNullTerm, categories::UnixAPI, 677 "Argument is not a null-terminated string.")); 678 679 auto Report = 680 std::make_unique<PathSensitiveBugReport>(*BT_NotCString, WarningMsg, N); 681 682 Report->addRange(S->getSourceRange()); 683 C.emitReport(std::move(Report)); 684 } 685 } 686 687 void CStringChecker::emitAdditionOverflowBug(CheckerContext &C, 688 ProgramStateRef State) const { 689 if (ExplodedNode *N = C.generateErrorNode(State)) { 690 if (!BT_AdditionOverflow) 691 BT_AdditionOverflow.reset( 692 new BuiltinBug(Filter.CheckNameCStringOutOfBounds, "API", 693 "Sum of expressions causes overflow.")); 694 695 // This isn't a great error message, but this should never occur in real 696 // code anyway -- you'd have to create a buffer longer than a size_t can 697 // represent, which is sort of a contradiction. 698 const char *WarningMsg = 699 "This expression will create a string whose length is too big to " 700 "be represented as a size_t"; 701 702 auto Report = std::make_unique<PathSensitiveBugReport>(*BT_AdditionOverflow, 703 WarningMsg, N); 704 C.emitReport(std::move(Report)); 705 } 706 } 707 708 ProgramStateRef CStringChecker::checkAdditionOverflow(CheckerContext &C, 709 ProgramStateRef state, 710 NonLoc left, 711 NonLoc right) const { 712 // If out-of-bounds checking is turned off, skip the rest. 713 if (!Filter.CheckCStringOutOfBounds) 714 return state; 715 716 // If a previous check has failed, propagate the failure. 717 if (!state) 718 return nullptr; 719 720 SValBuilder &svalBuilder = C.getSValBuilder(); 721 BasicValueFactory &BVF = svalBuilder.getBasicValueFactory(); 722 723 QualType sizeTy = svalBuilder.getContext().getSizeType(); 724 const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy); 725 NonLoc maxVal = svalBuilder.makeIntVal(maxValInt); 726 727 SVal maxMinusRight; 728 if (isa<nonloc::ConcreteInt>(right)) { 729 maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, right, 730 sizeTy); 731 } else { 732 // Try switching the operands. (The order of these two assignments is 733 // important!) 734 maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, left, 735 sizeTy); 736 left = right; 737 } 738 739 if (Optional<NonLoc> maxMinusRightNL = maxMinusRight.getAs<NonLoc>()) { 740 QualType cmpTy = svalBuilder.getConditionType(); 741 // If left > max - right, we have an overflow. 742 SVal willOverflow = svalBuilder.evalBinOpNN(state, BO_GT, left, 743 *maxMinusRightNL, cmpTy); 744 745 ProgramStateRef stateOverflow, stateOkay; 746 std::tie(stateOverflow, stateOkay) = 747 state->assume(willOverflow.castAs<DefinedOrUnknownSVal>()); 748 749 if (stateOverflow && !stateOkay) { 750 // We have an overflow. Emit a bug report. 751 emitAdditionOverflowBug(C, stateOverflow); 752 return nullptr; 753 } 754 755 // From now on, assume an overflow didn't occur. 756 assert(stateOkay); 757 state = stateOkay; 758 } 759 760 return state; 761 } 762 763 ProgramStateRef CStringChecker::setCStringLength(ProgramStateRef state, 764 const MemRegion *MR, 765 SVal strLength) { 766 assert(!strLength.isUndef() && "Attempt to set an undefined string length"); 767 768 MR = MR->StripCasts(); 769 770 switch (MR->getKind()) { 771 case MemRegion::StringRegionKind: 772 // FIXME: This can happen if we strcpy() into a string region. This is 773 // undefined [C99 6.4.5p6], but we should still warn about it. 774 return state; 775 776 case MemRegion::SymbolicRegionKind: 777 case MemRegion::AllocaRegionKind: 778 case MemRegion::NonParamVarRegionKind: 779 case MemRegion::ParamVarRegionKind: 780 case MemRegion::FieldRegionKind: 781 case MemRegion::ObjCIvarRegionKind: 782 // These are the types we can currently track string lengths for. 783 break; 784 785 case MemRegion::ElementRegionKind: 786 // FIXME: Handle element regions by upper-bounding the parent region's 787 // string length. 788 return state; 789 790 default: 791 // Other regions (mostly non-data) can't have a reliable C string length. 792 // For now, just ignore the change. 793 // FIXME: These are rare but not impossible. We should output some kind of 794 // warning for things like strcpy((char[]){'a', 0}, "b"); 795 return state; 796 } 797 798 if (strLength.isUnknown()) 799 return state->remove<CStringLength>(MR); 800 801 return state->set<CStringLength>(MR, strLength); 802 } 803 804 SVal CStringChecker::getCStringLengthForRegion(CheckerContext &C, 805 ProgramStateRef &state, 806 const Expr *Ex, 807 const MemRegion *MR, 808 bool hypothetical) { 809 if (!hypothetical) { 810 // If there's a recorded length, go ahead and return it. 811 const SVal *Recorded = state->get<CStringLength>(MR); 812 if (Recorded) 813 return *Recorded; 814 } 815 816 // Otherwise, get a new symbol and update the state. 817 SValBuilder &svalBuilder = C.getSValBuilder(); 818 QualType sizeTy = svalBuilder.getContext().getSizeType(); 819 SVal strLength = svalBuilder.getMetadataSymbolVal(CStringChecker::getTag(), 820 MR, Ex, sizeTy, 821 C.getLocationContext(), 822 C.blockCount()); 823 824 if (!hypothetical) { 825 if (Optional<NonLoc> strLn = strLength.getAs<NonLoc>()) { 826 // In case of unbounded calls strlen etc bound the range to SIZE_MAX/4 827 BasicValueFactory &BVF = svalBuilder.getBasicValueFactory(); 828 const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy); 829 llvm::APSInt fourInt = APSIntType(maxValInt).getValue(4); 830 const llvm::APSInt *maxLengthInt = BVF.evalAPSInt(BO_Div, maxValInt, 831 fourInt); 832 NonLoc maxLength = svalBuilder.makeIntVal(*maxLengthInt); 833 SVal evalLength = svalBuilder.evalBinOpNN(state, BO_LE, *strLn, 834 maxLength, sizeTy); 835 state = state->assume(evalLength.castAs<DefinedOrUnknownSVal>(), true); 836 } 837 state = state->set<CStringLength>(MR, strLength); 838 } 839 840 return strLength; 841 } 842 843 SVal CStringChecker::getCStringLength(CheckerContext &C, ProgramStateRef &state, 844 const Expr *Ex, SVal Buf, 845 bool hypothetical) const { 846 const MemRegion *MR = Buf.getAsRegion(); 847 if (!MR) { 848 // If we can't get a region, see if it's something we /know/ isn't a 849 // C string. In the context of locations, the only time we can issue such 850 // a warning is for labels. 851 if (Optional<loc::GotoLabel> Label = Buf.getAs<loc::GotoLabel>()) { 852 if (Filter.CheckCStringNotNullTerm) { 853 SmallString<120> buf; 854 llvm::raw_svector_ostream os(buf); 855 assert(CurrentFunctionDescription); 856 os << "Argument to " << CurrentFunctionDescription 857 << " is the address of the label '" << Label->getLabel()->getName() 858 << "', which is not a null-terminated string"; 859 860 emitNotCStringBug(C, state, Ex, os.str()); 861 } 862 return UndefinedVal(); 863 } 864 865 // If it's not a region and not a label, give up. 866 return UnknownVal(); 867 } 868 869 // If we have a region, strip casts from it and see if we can figure out 870 // its length. For anything we can't figure out, just return UnknownVal. 871 MR = MR->StripCasts(); 872 873 switch (MR->getKind()) { 874 case MemRegion::StringRegionKind: { 875 // Modifying the contents of string regions is undefined [C99 6.4.5p6], 876 // so we can assume that the byte length is the correct C string length. 877 SValBuilder &svalBuilder = C.getSValBuilder(); 878 QualType sizeTy = svalBuilder.getContext().getSizeType(); 879 const StringLiteral *strLit = cast<StringRegion>(MR)->getStringLiteral(); 880 return svalBuilder.makeIntVal(strLit->getLength(), sizeTy); 881 } 882 case MemRegion::SymbolicRegionKind: 883 case MemRegion::AllocaRegionKind: 884 case MemRegion::NonParamVarRegionKind: 885 case MemRegion::ParamVarRegionKind: 886 case MemRegion::FieldRegionKind: 887 case MemRegion::ObjCIvarRegionKind: 888 return getCStringLengthForRegion(C, state, Ex, MR, hypothetical); 889 case MemRegion::CompoundLiteralRegionKind: 890 // FIXME: Can we track this? Is it necessary? 891 return UnknownVal(); 892 case MemRegion::ElementRegionKind: 893 // FIXME: How can we handle this? It's not good enough to subtract the 894 // offset from the base string length; consider "123\x00567" and &a[5]. 895 return UnknownVal(); 896 default: 897 // Other regions (mostly non-data) can't have a reliable C string length. 898 // In this case, an error is emitted and UndefinedVal is returned. 899 // The caller should always be prepared to handle this case. 900 if (Filter.CheckCStringNotNullTerm) { 901 SmallString<120> buf; 902 llvm::raw_svector_ostream os(buf); 903 904 assert(CurrentFunctionDescription); 905 os << "Argument to " << CurrentFunctionDescription << " is "; 906 907 if (SummarizeRegion(os, C.getASTContext(), MR)) 908 os << ", which is not a null-terminated string"; 909 else 910 os << "not a null-terminated string"; 911 912 emitNotCStringBug(C, state, Ex, os.str()); 913 } 914 return UndefinedVal(); 915 } 916 } 917 918 const StringLiteral *CStringChecker::getCStringLiteral(CheckerContext &C, 919 ProgramStateRef &state, const Expr *expr, SVal val) const { 920 921 // Get the memory region pointed to by the val. 922 const MemRegion *bufRegion = val.getAsRegion(); 923 if (!bufRegion) 924 return nullptr; 925 926 // Strip casts off the memory region. 927 bufRegion = bufRegion->StripCasts(); 928 929 // Cast the memory region to a string region. 930 const StringRegion *strRegion= dyn_cast<StringRegion>(bufRegion); 931 if (!strRegion) 932 return nullptr; 933 934 // Return the actual string in the string region. 935 return strRegion->getStringLiteral(); 936 } 937 938 bool CStringChecker::IsFirstBufInBound(CheckerContext &C, 939 ProgramStateRef state, 940 const Expr *FirstBuf, 941 const Expr *Size) { 942 // If we do not know that the buffer is long enough we return 'true'. 943 // Otherwise the parent region of this field region would also get 944 // invalidated, which would lead to warnings based on an unknown state. 945 946 // Originally copied from CheckBufferAccess and CheckLocation. 947 SValBuilder &svalBuilder = C.getSValBuilder(); 948 ASTContext &Ctx = svalBuilder.getContext(); 949 const LocationContext *LCtx = C.getLocationContext(); 950 951 QualType sizeTy = Size->getType(); 952 QualType PtrTy = Ctx.getPointerType(Ctx.CharTy); 953 SVal BufVal = state->getSVal(FirstBuf, LCtx); 954 955 SVal LengthVal = state->getSVal(Size, LCtx); 956 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); 957 if (!Length) 958 return true; // cf top comment. 959 960 // Compute the offset of the last element to be accessed: size-1. 961 NonLoc One = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>(); 962 SVal Offset = svalBuilder.evalBinOpNN(state, BO_Sub, *Length, One, sizeTy); 963 if (Offset.isUnknown()) 964 return true; // cf top comment 965 NonLoc LastOffset = Offset.castAs<NonLoc>(); 966 967 // Check that the first buffer is sufficiently long. 968 SVal BufStart = svalBuilder.evalCast(BufVal, PtrTy, FirstBuf->getType()); 969 Optional<Loc> BufLoc = BufStart.getAs<Loc>(); 970 if (!BufLoc) 971 return true; // cf top comment. 972 973 SVal BufEnd = 974 svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc, LastOffset, PtrTy); 975 976 // Check for out of bound array element access. 977 const MemRegion *R = BufEnd.getAsRegion(); 978 if (!R) 979 return true; // cf top comment. 980 981 const ElementRegion *ER = dyn_cast<ElementRegion>(R); 982 if (!ER) 983 return true; // cf top comment. 984 985 // FIXME: Does this crash when a non-standard definition 986 // of a library function is encountered? 987 assert(ER->getValueType() == C.getASTContext().CharTy && 988 "IsFirstBufInBound should only be called with char* ElementRegions"); 989 990 // Get the size of the array. 991 const SubRegion *superReg = cast<SubRegion>(ER->getSuperRegion()); 992 DefinedOrUnknownSVal SizeDV = getDynamicExtent(state, superReg, svalBuilder); 993 994 // Get the index of the accessed element. 995 DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>(); 996 997 ProgramStateRef StInBound = state->assumeInBound(Idx, SizeDV, true); 998 999 return static_cast<bool>(StInBound); 1000 } 1001 1002 ProgramStateRef CStringChecker::InvalidateBuffer(CheckerContext &C, 1003 ProgramStateRef state, 1004 const Expr *E, SVal V, 1005 bool IsSourceBuffer, 1006 const Expr *Size) { 1007 Optional<Loc> L = V.getAs<Loc>(); 1008 if (!L) 1009 return state; 1010 1011 // FIXME: This is a simplified version of what's in CFRefCount.cpp -- it makes 1012 // some assumptions about the value that CFRefCount can't. Even so, it should 1013 // probably be refactored. 1014 if (Optional<loc::MemRegionVal> MR = L->getAs<loc::MemRegionVal>()) { 1015 const MemRegion *R = MR->getRegion()->StripCasts(); 1016 1017 // Are we dealing with an ElementRegion? If so, we should be invalidating 1018 // the super-region. 1019 if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) { 1020 R = ER->getSuperRegion(); 1021 // FIXME: What about layers of ElementRegions? 1022 } 1023 1024 // Invalidate this region. 1025 const LocationContext *LCtx = C.getPredecessor()->getLocationContext(); 1026 1027 bool CausesPointerEscape = false; 1028 RegionAndSymbolInvalidationTraits ITraits; 1029 // Invalidate and escape only indirect regions accessible through the source 1030 // buffer. 1031 if (IsSourceBuffer) { 1032 ITraits.setTrait(R->getBaseRegion(), 1033 RegionAndSymbolInvalidationTraits::TK_PreserveContents); 1034 ITraits.setTrait(R, RegionAndSymbolInvalidationTraits::TK_SuppressEscape); 1035 CausesPointerEscape = true; 1036 } else { 1037 const MemRegion::Kind& K = R->getKind(); 1038 if (K == MemRegion::FieldRegionKind) 1039 if (Size && IsFirstBufInBound(C, state, E, Size)) { 1040 // If destination buffer is a field region and access is in bound, 1041 // do not invalidate its super region. 1042 ITraits.setTrait( 1043 R, 1044 RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion); 1045 } 1046 } 1047 1048 return state->invalidateRegions(R, E, C.blockCount(), LCtx, 1049 CausesPointerEscape, nullptr, nullptr, 1050 &ITraits); 1051 } 1052 1053 // If we have a non-region value by chance, just remove the binding. 1054 // FIXME: is this necessary or correct? This handles the non-Region 1055 // cases. Is it ever valid to store to these? 1056 return state->killBinding(*L); 1057 } 1058 1059 bool CStringChecker::SummarizeRegion(raw_ostream &os, ASTContext &Ctx, 1060 const MemRegion *MR) { 1061 switch (MR->getKind()) { 1062 case MemRegion::FunctionCodeRegionKind: { 1063 if (const auto *FD = cast<FunctionCodeRegion>(MR)->getDecl()) 1064 os << "the address of the function '" << *FD << '\''; 1065 else 1066 os << "the address of a function"; 1067 return true; 1068 } 1069 case MemRegion::BlockCodeRegionKind: 1070 os << "block text"; 1071 return true; 1072 case MemRegion::BlockDataRegionKind: 1073 os << "a block"; 1074 return true; 1075 case MemRegion::CXXThisRegionKind: 1076 case MemRegion::CXXTempObjectRegionKind: 1077 os << "a C++ temp object of type " 1078 << cast<TypedValueRegion>(MR)->getValueType(); 1079 return true; 1080 case MemRegion::NonParamVarRegionKind: 1081 os << "a variable of type" << cast<TypedValueRegion>(MR)->getValueType(); 1082 return true; 1083 case MemRegion::ParamVarRegionKind: 1084 os << "a parameter of type" << cast<TypedValueRegion>(MR)->getValueType(); 1085 return true; 1086 case MemRegion::FieldRegionKind: 1087 os << "a field of type " << cast<TypedValueRegion>(MR)->getValueType(); 1088 return true; 1089 case MemRegion::ObjCIvarRegionKind: 1090 os << "an instance variable of type " 1091 << cast<TypedValueRegion>(MR)->getValueType(); 1092 return true; 1093 default: 1094 return false; 1095 } 1096 } 1097 1098 bool CStringChecker::memsetAux(const Expr *DstBuffer, SVal CharVal, 1099 const Expr *Size, CheckerContext &C, 1100 ProgramStateRef &State) { 1101 SVal MemVal = C.getSVal(DstBuffer); 1102 SVal SizeVal = C.getSVal(Size); 1103 const MemRegion *MR = MemVal.getAsRegion(); 1104 if (!MR) 1105 return false; 1106 1107 // We're about to model memset by producing a "default binding" in the Store. 1108 // Our current implementation - RegionStore - doesn't support default bindings 1109 // that don't cover the whole base region. So we should first get the offset 1110 // and the base region to figure out whether the offset of buffer is 0. 1111 RegionOffset Offset = MR->getAsOffset(); 1112 const MemRegion *BR = Offset.getRegion(); 1113 1114 Optional<NonLoc> SizeNL = SizeVal.getAs<NonLoc>(); 1115 if (!SizeNL) 1116 return false; 1117 1118 SValBuilder &svalBuilder = C.getSValBuilder(); 1119 ASTContext &Ctx = C.getASTContext(); 1120 1121 // void *memset(void *dest, int ch, size_t count); 1122 // For now we can only handle the case of offset is 0 and concrete char value. 1123 if (Offset.isValid() && !Offset.hasSymbolicOffset() && 1124 Offset.getOffset() == 0) { 1125 // Get the base region's size. 1126 DefinedOrUnknownSVal SizeDV = getDynamicExtent(State, BR, svalBuilder); 1127 1128 ProgramStateRef StateWholeReg, StateNotWholeReg; 1129 std::tie(StateWholeReg, StateNotWholeReg) = 1130 State->assume(svalBuilder.evalEQ(State, SizeDV, *SizeNL)); 1131 1132 // With the semantic of 'memset()', we should convert the CharVal to 1133 // unsigned char. 1134 CharVal = svalBuilder.evalCast(CharVal, Ctx.UnsignedCharTy, Ctx.IntTy); 1135 1136 ProgramStateRef StateNullChar, StateNonNullChar; 1137 std::tie(StateNullChar, StateNonNullChar) = 1138 assumeZero(C, State, CharVal, Ctx.UnsignedCharTy); 1139 1140 if (StateWholeReg && !StateNotWholeReg && StateNullChar && 1141 !StateNonNullChar) { 1142 // If the 'memset()' acts on the whole region of destination buffer and 1143 // the value of the second argument of 'memset()' is zero, bind the second 1144 // argument's value to the destination buffer with 'default binding'. 1145 // FIXME: Since there is no perfect way to bind the non-zero character, we 1146 // can only deal with zero value here. In the future, we need to deal with 1147 // the binding of non-zero value in the case of whole region. 1148 State = State->bindDefaultZero(svalBuilder.makeLoc(BR), 1149 C.getLocationContext()); 1150 } else { 1151 // If the destination buffer's extent is not equal to the value of 1152 // third argument, just invalidate buffer. 1153 State = InvalidateBuffer(C, State, DstBuffer, MemVal, 1154 /*IsSourceBuffer*/ false, Size); 1155 } 1156 1157 if (StateNullChar && !StateNonNullChar) { 1158 // If the value of the second argument of 'memset()' is zero, set the 1159 // string length of destination buffer to 0 directly. 1160 State = setCStringLength(State, MR, 1161 svalBuilder.makeZeroVal(Ctx.getSizeType())); 1162 } else if (!StateNullChar && StateNonNullChar) { 1163 SVal NewStrLen = svalBuilder.getMetadataSymbolVal( 1164 CStringChecker::getTag(), MR, DstBuffer, Ctx.getSizeType(), 1165 C.getLocationContext(), C.blockCount()); 1166 1167 // If the value of second argument is not zero, then the string length 1168 // is at least the size argument. 1169 SVal NewStrLenGESize = svalBuilder.evalBinOp( 1170 State, BO_GE, NewStrLen, SizeVal, svalBuilder.getConditionType()); 1171 1172 State = setCStringLength( 1173 State->assume(NewStrLenGESize.castAs<DefinedOrUnknownSVal>(), true), 1174 MR, NewStrLen); 1175 } 1176 } else { 1177 // If the offset is not zero and char value is not concrete, we can do 1178 // nothing but invalidate the buffer. 1179 State = InvalidateBuffer(C, State, DstBuffer, MemVal, 1180 /*IsSourceBuffer*/ false, Size); 1181 } 1182 return true; 1183 } 1184 1185 //===----------------------------------------------------------------------===// 1186 // evaluation of individual function calls. 1187 //===----------------------------------------------------------------------===// 1188 1189 void CStringChecker::evalCopyCommon(CheckerContext &C, const CallExpr *CE, 1190 ProgramStateRef state, SizeArgExpr Size, 1191 DestinationArgExpr Dest, 1192 SourceArgExpr Source, bool Restricted, 1193 bool IsMempcpy, bool IsWide) const { 1194 CurrentFunctionDescription = "memory copy function"; 1195 1196 // See if the size argument is zero. 1197 const LocationContext *LCtx = C.getLocationContext(); 1198 SVal sizeVal = state->getSVal(Size.Expression, LCtx); 1199 QualType sizeTy = Size.Expression->getType(); 1200 1201 ProgramStateRef stateZeroSize, stateNonZeroSize; 1202 std::tie(stateZeroSize, stateNonZeroSize) = 1203 assumeZero(C, state, sizeVal, sizeTy); 1204 1205 // Get the value of the Dest. 1206 SVal destVal = state->getSVal(Dest.Expression, LCtx); 1207 1208 // If the size is zero, there won't be any actual memory access, so 1209 // just bind the return value to the destination buffer and return. 1210 if (stateZeroSize && !stateNonZeroSize) { 1211 stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, destVal); 1212 C.addTransition(stateZeroSize); 1213 return; 1214 } 1215 1216 // If the size can be nonzero, we have to check the other arguments. 1217 if (stateNonZeroSize) { 1218 state = stateNonZeroSize; 1219 1220 // Ensure the destination is not null. If it is NULL there will be a 1221 // NULL pointer dereference. 1222 state = checkNonNull(C, state, Dest, destVal); 1223 if (!state) 1224 return; 1225 1226 // Get the value of the Src. 1227 SVal srcVal = state->getSVal(Source.Expression, LCtx); 1228 1229 // Ensure the source is not null. If it is NULL there will be a 1230 // NULL pointer dereference. 1231 state = checkNonNull(C, state, Source, srcVal); 1232 if (!state) 1233 return; 1234 1235 // Ensure the accesses are valid and that the buffers do not overlap. 1236 state = CheckBufferAccess(C, state, Dest, Size, AccessKind::write, IsWide); 1237 state = CheckBufferAccess(C, state, Source, Size, AccessKind::read, IsWide); 1238 1239 if (Restricted) 1240 state = CheckOverlap(C, state, Size, Dest, Source, IsWide); 1241 1242 if (!state) 1243 return; 1244 1245 // If this is mempcpy, get the byte after the last byte copied and 1246 // bind the expr. 1247 if (IsMempcpy) { 1248 // Get the byte after the last byte copied. 1249 SValBuilder &SvalBuilder = C.getSValBuilder(); 1250 ASTContext &Ctx = SvalBuilder.getContext(); 1251 QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy); 1252 SVal DestRegCharVal = 1253 SvalBuilder.evalCast(destVal, CharPtrTy, Dest.Expression->getType()); 1254 SVal lastElement = C.getSValBuilder().evalBinOp( 1255 state, BO_Add, DestRegCharVal, sizeVal, Dest.Expression->getType()); 1256 // If we don't know how much we copied, we can at least 1257 // conjure a return value for later. 1258 if (lastElement.isUnknown()) 1259 lastElement = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx, 1260 C.blockCount()); 1261 1262 // The byte after the last byte copied is the return value. 1263 state = state->BindExpr(CE, LCtx, lastElement); 1264 } else { 1265 // All other copies return the destination buffer. 1266 // (Well, bcopy() has a void return type, but this won't hurt.) 1267 state = state->BindExpr(CE, LCtx, destVal); 1268 } 1269 1270 // Invalidate the destination (regular invalidation without pointer-escaping 1271 // the address of the top-level region). 1272 // FIXME: Even if we can't perfectly model the copy, we should see if we 1273 // can use LazyCompoundVals to copy the source values into the destination. 1274 // This would probably remove any existing bindings past the end of the 1275 // copied region, but that's still an improvement over blank invalidation. 1276 state = 1277 InvalidateBuffer(C, state, Dest.Expression, C.getSVal(Dest.Expression), 1278 /*IsSourceBuffer*/ false, Size.Expression); 1279 1280 // Invalidate the source (const-invalidation without const-pointer-escaping 1281 // the address of the top-level region). 1282 state = InvalidateBuffer(C, state, Source.Expression, 1283 C.getSVal(Source.Expression), 1284 /*IsSourceBuffer*/ true, nullptr); 1285 1286 C.addTransition(state); 1287 } 1288 } 1289 1290 void CStringChecker::evalMemcpy(CheckerContext &C, const CallExpr *CE, 1291 bool IsWide) const { 1292 // void *memcpy(void *restrict dst, const void *restrict src, size_t n); 1293 // The return value is the address of the destination buffer. 1294 DestinationArgExpr Dest = {CE->getArg(0), 0}; 1295 SourceArgExpr Src = {CE->getArg(1), 1}; 1296 SizeArgExpr Size = {CE->getArg(2), 2}; 1297 1298 ProgramStateRef State = C.getState(); 1299 1300 constexpr bool IsRestricted = true; 1301 constexpr bool IsMempcpy = false; 1302 evalCopyCommon(C, CE, State, Size, Dest, Src, IsRestricted, IsMempcpy, 1303 IsWide); 1304 } 1305 1306 void CStringChecker::evalMempcpy(CheckerContext &C, const CallExpr *CE) const { 1307 // void *mempcpy(void *restrict dst, const void *restrict src, size_t n); 1308 // The return value is a pointer to the byte following the last written byte. 1309 DestinationArgExpr Dest = {CE->getArg(0), 0}; 1310 SourceArgExpr Src = {CE->getArg(1), 1}; 1311 SizeArgExpr Size = {CE->getArg(2), 2}; 1312 1313 constexpr bool IsRestricted = true; 1314 constexpr bool IsMempcpy = true; 1315 evalCopyCommon(C, CE, C.getState(), Size, Dest, Src, IsRestricted, IsMempcpy, 1316 false); 1317 } 1318 1319 void CStringChecker::evalMemmove(CheckerContext &C, const CallExpr *CE) const { 1320 // void *memmove(void *dst, const void *src, size_t n); 1321 // The return value is the address of the destination buffer. 1322 DestinationArgExpr Dest = {CE->getArg(0), 0}; 1323 SourceArgExpr Src = {CE->getArg(1), 1}; 1324 SizeArgExpr Size = {CE->getArg(2), 2}; 1325 1326 constexpr bool IsRestricted = false; 1327 constexpr bool IsMempcpy = false; 1328 evalCopyCommon(C, CE, C.getState(), Size, Dest, Src, IsRestricted, IsMempcpy, 1329 false); 1330 } 1331 1332 void CStringChecker::evalBcopy(CheckerContext &C, const CallExpr *CE) const { 1333 // void bcopy(const void *src, void *dst, size_t n); 1334 SourceArgExpr Src(CE->getArg(0), 0); 1335 DestinationArgExpr Dest = {CE->getArg(1), 1}; 1336 SizeArgExpr Size = {CE->getArg(2), 2}; 1337 1338 constexpr bool IsRestricted = false; 1339 constexpr bool IsMempcpy = false; 1340 evalCopyCommon(C, CE, C.getState(), Size, Dest, Src, IsRestricted, IsMempcpy, 1341 false); 1342 } 1343 1344 void CStringChecker::evalMemcmp(CheckerContext &C, const CallExpr *CE) const { 1345 // int memcmp(const void *s1, const void *s2, size_t n); 1346 CurrentFunctionDescription = "memory comparison function"; 1347 1348 AnyArgExpr Left = {CE->getArg(0), 0}; 1349 AnyArgExpr Right = {CE->getArg(1), 1}; 1350 SizeArgExpr Size = {CE->getArg(2), 2}; 1351 1352 ProgramStateRef State = C.getState(); 1353 SValBuilder &Builder = C.getSValBuilder(); 1354 const LocationContext *LCtx = C.getLocationContext(); 1355 1356 // See if the size argument is zero. 1357 SVal sizeVal = State->getSVal(Size.Expression, LCtx); 1358 QualType sizeTy = Size.Expression->getType(); 1359 1360 ProgramStateRef stateZeroSize, stateNonZeroSize; 1361 std::tie(stateZeroSize, stateNonZeroSize) = 1362 assumeZero(C, State, sizeVal, sizeTy); 1363 1364 // If the size can be zero, the result will be 0 in that case, and we don't 1365 // have to check either of the buffers. 1366 if (stateZeroSize) { 1367 State = stateZeroSize; 1368 State = State->BindExpr(CE, LCtx, Builder.makeZeroVal(CE->getType())); 1369 C.addTransition(State); 1370 } 1371 1372 // If the size can be nonzero, we have to check the other arguments. 1373 if (stateNonZeroSize) { 1374 State = stateNonZeroSize; 1375 // If we know the two buffers are the same, we know the result is 0. 1376 // First, get the two buffers' addresses. Another checker will have already 1377 // made sure they're not undefined. 1378 DefinedOrUnknownSVal LV = 1379 State->getSVal(Left.Expression, LCtx).castAs<DefinedOrUnknownSVal>(); 1380 DefinedOrUnknownSVal RV = 1381 State->getSVal(Right.Expression, LCtx).castAs<DefinedOrUnknownSVal>(); 1382 1383 // See if they are the same. 1384 ProgramStateRef SameBuffer, NotSameBuffer; 1385 std::tie(SameBuffer, NotSameBuffer) = 1386 State->assume(Builder.evalEQ(State, LV, RV)); 1387 1388 // If the two arguments are the same buffer, we know the result is 0, 1389 // and we only need to check one size. 1390 if (SameBuffer && !NotSameBuffer) { 1391 State = SameBuffer; 1392 State = CheckBufferAccess(C, State, Left, Size, AccessKind::read); 1393 if (State) { 1394 State = 1395 SameBuffer->BindExpr(CE, LCtx, Builder.makeZeroVal(CE->getType())); 1396 C.addTransition(State); 1397 } 1398 return; 1399 } 1400 1401 // If the two arguments might be different buffers, we have to check 1402 // the size of both of them. 1403 assert(NotSameBuffer); 1404 State = CheckBufferAccess(C, State, Right, Size, AccessKind::read); 1405 State = CheckBufferAccess(C, State, Left, Size, AccessKind::read); 1406 if (State) { 1407 // The return value is the comparison result, which we don't know. 1408 SVal CmpV = Builder.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount()); 1409 State = State->BindExpr(CE, LCtx, CmpV); 1410 C.addTransition(State); 1411 } 1412 } 1413 } 1414 1415 void CStringChecker::evalstrLength(CheckerContext &C, 1416 const CallExpr *CE) const { 1417 // size_t strlen(const char *s); 1418 evalstrLengthCommon(C, CE, /* IsStrnlen = */ false); 1419 } 1420 1421 void CStringChecker::evalstrnLength(CheckerContext &C, 1422 const CallExpr *CE) const { 1423 // size_t strnlen(const char *s, size_t maxlen); 1424 evalstrLengthCommon(C, CE, /* IsStrnlen = */ true); 1425 } 1426 1427 void CStringChecker::evalstrLengthCommon(CheckerContext &C, const CallExpr *CE, 1428 bool IsStrnlen) const { 1429 CurrentFunctionDescription = "string length function"; 1430 ProgramStateRef state = C.getState(); 1431 const LocationContext *LCtx = C.getLocationContext(); 1432 1433 if (IsStrnlen) { 1434 const Expr *maxlenExpr = CE->getArg(1); 1435 SVal maxlenVal = state->getSVal(maxlenExpr, LCtx); 1436 1437 ProgramStateRef stateZeroSize, stateNonZeroSize; 1438 std::tie(stateZeroSize, stateNonZeroSize) = 1439 assumeZero(C, state, maxlenVal, maxlenExpr->getType()); 1440 1441 // If the size can be zero, the result will be 0 in that case, and we don't 1442 // have to check the string itself. 1443 if (stateZeroSize) { 1444 SVal zero = C.getSValBuilder().makeZeroVal(CE->getType()); 1445 stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, zero); 1446 C.addTransition(stateZeroSize); 1447 } 1448 1449 // If the size is GUARANTEED to be zero, we're done! 1450 if (!stateNonZeroSize) 1451 return; 1452 1453 // Otherwise, record the assumption that the size is nonzero. 1454 state = stateNonZeroSize; 1455 } 1456 1457 // Check that the string argument is non-null. 1458 AnyArgExpr Arg = {CE->getArg(0), 0}; 1459 SVal ArgVal = state->getSVal(Arg.Expression, LCtx); 1460 state = checkNonNull(C, state, Arg, ArgVal); 1461 1462 if (!state) 1463 return; 1464 1465 SVal strLength = getCStringLength(C, state, Arg.Expression, ArgVal); 1466 1467 // If the argument isn't a valid C string, there's no valid state to 1468 // transition to. 1469 if (strLength.isUndef()) 1470 return; 1471 1472 DefinedOrUnknownSVal result = UnknownVal(); 1473 1474 // If the check is for strnlen() then bind the return value to no more than 1475 // the maxlen value. 1476 if (IsStrnlen) { 1477 QualType cmpTy = C.getSValBuilder().getConditionType(); 1478 1479 // It's a little unfortunate to be getting this again, 1480 // but it's not that expensive... 1481 const Expr *maxlenExpr = CE->getArg(1); 1482 SVal maxlenVal = state->getSVal(maxlenExpr, LCtx); 1483 1484 Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>(); 1485 Optional<NonLoc> maxlenValNL = maxlenVal.getAs<NonLoc>(); 1486 1487 if (strLengthNL && maxlenValNL) { 1488 ProgramStateRef stateStringTooLong, stateStringNotTooLong; 1489 1490 // Check if the strLength is greater than the maxlen. 1491 std::tie(stateStringTooLong, stateStringNotTooLong) = state->assume( 1492 C.getSValBuilder() 1493 .evalBinOpNN(state, BO_GT, *strLengthNL, *maxlenValNL, cmpTy) 1494 .castAs<DefinedOrUnknownSVal>()); 1495 1496 if (stateStringTooLong && !stateStringNotTooLong) { 1497 // If the string is longer than maxlen, return maxlen. 1498 result = *maxlenValNL; 1499 } else if (stateStringNotTooLong && !stateStringTooLong) { 1500 // If the string is shorter than maxlen, return its length. 1501 result = *strLengthNL; 1502 } 1503 } 1504 1505 if (result.isUnknown()) { 1506 // If we don't have enough information for a comparison, there's 1507 // no guarantee the full string length will actually be returned. 1508 // All we know is the return value is the min of the string length 1509 // and the limit. This is better than nothing. 1510 result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx, 1511 C.blockCount()); 1512 NonLoc resultNL = result.castAs<NonLoc>(); 1513 1514 if (strLengthNL) { 1515 state = state->assume(C.getSValBuilder().evalBinOpNN( 1516 state, BO_LE, resultNL, *strLengthNL, cmpTy) 1517 .castAs<DefinedOrUnknownSVal>(), true); 1518 } 1519 1520 if (maxlenValNL) { 1521 state = state->assume(C.getSValBuilder().evalBinOpNN( 1522 state, BO_LE, resultNL, *maxlenValNL, cmpTy) 1523 .castAs<DefinedOrUnknownSVal>(), true); 1524 } 1525 } 1526 1527 } else { 1528 // This is a plain strlen(), not strnlen(). 1529 result = strLength.castAs<DefinedOrUnknownSVal>(); 1530 1531 // If we don't know the length of the string, conjure a return 1532 // value, so it can be used in constraints, at least. 1533 if (result.isUnknown()) { 1534 result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx, 1535 C.blockCount()); 1536 } 1537 } 1538 1539 // Bind the return value. 1540 assert(!result.isUnknown() && "Should have conjured a value by now"); 1541 state = state->BindExpr(CE, LCtx, result); 1542 C.addTransition(state); 1543 } 1544 1545 void CStringChecker::evalStrcpy(CheckerContext &C, const CallExpr *CE) const { 1546 // char *strcpy(char *restrict dst, const char *restrict src); 1547 evalStrcpyCommon(C, CE, 1548 /* ReturnEnd = */ false, 1549 /* IsBounded = */ false, 1550 /* appendK = */ ConcatFnKind::none); 1551 } 1552 1553 void CStringChecker::evalStrncpy(CheckerContext &C, const CallExpr *CE) const { 1554 // char *strncpy(char *restrict dst, const char *restrict src, size_t n); 1555 evalStrcpyCommon(C, CE, 1556 /* ReturnEnd = */ false, 1557 /* IsBounded = */ true, 1558 /* appendK = */ ConcatFnKind::none); 1559 } 1560 1561 void CStringChecker::evalStpcpy(CheckerContext &C, const CallExpr *CE) const { 1562 // char *stpcpy(char *restrict dst, const char *restrict src); 1563 evalStrcpyCommon(C, CE, 1564 /* ReturnEnd = */ true, 1565 /* IsBounded = */ false, 1566 /* appendK = */ ConcatFnKind::none); 1567 } 1568 1569 void CStringChecker::evalStrlcpy(CheckerContext &C, const CallExpr *CE) const { 1570 // size_t strlcpy(char *dest, const char *src, size_t size); 1571 evalStrcpyCommon(C, CE, 1572 /* ReturnEnd = */ true, 1573 /* IsBounded = */ true, 1574 /* appendK = */ ConcatFnKind::none, 1575 /* returnPtr = */ false); 1576 } 1577 1578 void CStringChecker::evalStrcat(CheckerContext &C, const CallExpr *CE) const { 1579 // char *strcat(char *restrict s1, const char *restrict s2); 1580 evalStrcpyCommon(C, CE, 1581 /* ReturnEnd = */ false, 1582 /* IsBounded = */ false, 1583 /* appendK = */ ConcatFnKind::strcat); 1584 } 1585 1586 void CStringChecker::evalStrncat(CheckerContext &C, const CallExpr *CE) const { 1587 // char *strncat(char *restrict s1, const char *restrict s2, size_t n); 1588 evalStrcpyCommon(C, CE, 1589 /* ReturnEnd = */ false, 1590 /* IsBounded = */ true, 1591 /* appendK = */ ConcatFnKind::strcat); 1592 } 1593 1594 void CStringChecker::evalStrlcat(CheckerContext &C, const CallExpr *CE) const { 1595 // size_t strlcat(char *dst, const char *src, size_t size); 1596 // It will append at most size - strlen(dst) - 1 bytes, 1597 // NULL-terminating the result. 1598 evalStrcpyCommon(C, CE, 1599 /* ReturnEnd = */ false, 1600 /* IsBounded = */ true, 1601 /* appendK = */ ConcatFnKind::strlcat, 1602 /* returnPtr = */ false); 1603 } 1604 1605 void CStringChecker::evalStrcpyCommon(CheckerContext &C, const CallExpr *CE, 1606 bool ReturnEnd, bool IsBounded, 1607 ConcatFnKind appendK, 1608 bool returnPtr) const { 1609 if (appendK == ConcatFnKind::none) 1610 CurrentFunctionDescription = "string copy function"; 1611 else 1612 CurrentFunctionDescription = "string concatenation function"; 1613 1614 ProgramStateRef state = C.getState(); 1615 const LocationContext *LCtx = C.getLocationContext(); 1616 1617 // Check that the destination is non-null. 1618 DestinationArgExpr Dst = {CE->getArg(0), 0}; 1619 SVal DstVal = state->getSVal(Dst.Expression, LCtx); 1620 state = checkNonNull(C, state, Dst, DstVal); 1621 if (!state) 1622 return; 1623 1624 // Check that the source is non-null. 1625 SourceArgExpr srcExpr = {CE->getArg(1), 1}; 1626 SVal srcVal = state->getSVal(srcExpr.Expression, LCtx); 1627 state = checkNonNull(C, state, srcExpr, srcVal); 1628 if (!state) 1629 return; 1630 1631 // Get the string length of the source. 1632 SVal strLength = getCStringLength(C, state, srcExpr.Expression, srcVal); 1633 Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>(); 1634 1635 // Get the string length of the destination buffer. 1636 SVal dstStrLength = getCStringLength(C, state, Dst.Expression, DstVal); 1637 Optional<NonLoc> dstStrLengthNL = dstStrLength.getAs<NonLoc>(); 1638 1639 // If the source isn't a valid C string, give up. 1640 if (strLength.isUndef()) 1641 return; 1642 1643 SValBuilder &svalBuilder = C.getSValBuilder(); 1644 QualType cmpTy = svalBuilder.getConditionType(); 1645 QualType sizeTy = svalBuilder.getContext().getSizeType(); 1646 1647 // These two values allow checking two kinds of errors: 1648 // - actual overflows caused by a source that doesn't fit in the destination 1649 // - potential overflows caused by a bound that could exceed the destination 1650 SVal amountCopied = UnknownVal(); 1651 SVal maxLastElementIndex = UnknownVal(); 1652 const char *boundWarning = nullptr; 1653 1654 // FIXME: Why do we choose the srcExpr if the access has no size? 1655 // Note that the 3rd argument of the call would be the size parameter. 1656 SizeArgExpr SrcExprAsSizeDummy = {srcExpr.Expression, srcExpr.ArgumentIndex}; 1657 state = CheckOverlap( 1658 C, state, 1659 (IsBounded ? SizeArgExpr{CE->getArg(2), 2} : SrcExprAsSizeDummy), Dst, 1660 srcExpr); 1661 1662 if (!state) 1663 return; 1664 1665 // If the function is strncpy, strncat, etc... it is bounded. 1666 if (IsBounded) { 1667 // Get the max number of characters to copy. 1668 SizeArgExpr lenExpr = {CE->getArg(2), 2}; 1669 SVal lenVal = state->getSVal(lenExpr.Expression, LCtx); 1670 1671 // Protect against misdeclared strncpy(). 1672 lenVal = 1673 svalBuilder.evalCast(lenVal, sizeTy, lenExpr.Expression->getType()); 1674 1675 Optional<NonLoc> lenValNL = lenVal.getAs<NonLoc>(); 1676 1677 // If we know both values, we might be able to figure out how much 1678 // we're copying. 1679 if (strLengthNL && lenValNL) { 1680 switch (appendK) { 1681 case ConcatFnKind::none: 1682 case ConcatFnKind::strcat: { 1683 ProgramStateRef stateSourceTooLong, stateSourceNotTooLong; 1684 // Check if the max number to copy is less than the length of the src. 1685 // If the bound is equal to the source length, strncpy won't null- 1686 // terminate the result! 1687 std::tie(stateSourceTooLong, stateSourceNotTooLong) = state->assume( 1688 svalBuilder 1689 .evalBinOpNN(state, BO_GE, *strLengthNL, *lenValNL, cmpTy) 1690 .castAs<DefinedOrUnknownSVal>()); 1691 1692 if (stateSourceTooLong && !stateSourceNotTooLong) { 1693 // Max number to copy is less than the length of the src, so the 1694 // actual strLength copied is the max number arg. 1695 state = stateSourceTooLong; 1696 amountCopied = lenVal; 1697 1698 } else if (!stateSourceTooLong && stateSourceNotTooLong) { 1699 // The source buffer entirely fits in the bound. 1700 state = stateSourceNotTooLong; 1701 amountCopied = strLength; 1702 } 1703 break; 1704 } 1705 case ConcatFnKind::strlcat: 1706 if (!dstStrLengthNL) 1707 return; 1708 1709 // amountCopied = min (size - dstLen - 1 , srcLen) 1710 SVal freeSpace = svalBuilder.evalBinOpNN(state, BO_Sub, *lenValNL, 1711 *dstStrLengthNL, sizeTy); 1712 if (!isa<NonLoc>(freeSpace)) 1713 return; 1714 freeSpace = 1715 svalBuilder.evalBinOp(state, BO_Sub, freeSpace, 1716 svalBuilder.makeIntVal(1, sizeTy), sizeTy); 1717 Optional<NonLoc> freeSpaceNL = freeSpace.getAs<NonLoc>(); 1718 1719 // While unlikely, it is possible that the subtraction is 1720 // too complex to compute, let's check whether it succeeded. 1721 if (!freeSpaceNL) 1722 return; 1723 SVal hasEnoughSpace = svalBuilder.evalBinOpNN( 1724 state, BO_LE, *strLengthNL, *freeSpaceNL, cmpTy); 1725 1726 ProgramStateRef TrueState, FalseState; 1727 std::tie(TrueState, FalseState) = 1728 state->assume(hasEnoughSpace.castAs<DefinedOrUnknownSVal>()); 1729 1730 // srcStrLength <= size - dstStrLength -1 1731 if (TrueState && !FalseState) { 1732 amountCopied = strLength; 1733 } 1734 1735 // srcStrLength > size - dstStrLength -1 1736 if (!TrueState && FalseState) { 1737 amountCopied = freeSpace; 1738 } 1739 1740 if (TrueState && FalseState) 1741 amountCopied = UnknownVal(); 1742 break; 1743 } 1744 } 1745 // We still want to know if the bound is known to be too large. 1746 if (lenValNL) { 1747 switch (appendK) { 1748 case ConcatFnKind::strcat: 1749 // For strncat, the check is strlen(dst) + lenVal < sizeof(dst) 1750 1751 // Get the string length of the destination. If the destination is 1752 // memory that can't have a string length, we shouldn't be copying 1753 // into it anyway. 1754 if (dstStrLength.isUndef()) 1755 return; 1756 1757 if (dstStrLengthNL) { 1758 maxLastElementIndex = svalBuilder.evalBinOpNN( 1759 state, BO_Add, *lenValNL, *dstStrLengthNL, sizeTy); 1760 1761 boundWarning = "Size argument is greater than the free space in the " 1762 "destination buffer"; 1763 } 1764 break; 1765 case ConcatFnKind::none: 1766 case ConcatFnKind::strlcat: 1767 // For strncpy and strlcat, this is just checking 1768 // that lenVal <= sizeof(dst). 1769 // (Yes, strncpy and strncat differ in how they treat termination. 1770 // strncat ALWAYS terminates, but strncpy doesn't.) 1771 1772 // We need a special case for when the copy size is zero, in which 1773 // case strncpy will do no work at all. Our bounds check uses n-1 1774 // as the last element accessed, so n == 0 is problematic. 1775 ProgramStateRef StateZeroSize, StateNonZeroSize; 1776 std::tie(StateZeroSize, StateNonZeroSize) = 1777 assumeZero(C, state, *lenValNL, sizeTy); 1778 1779 // If the size is known to be zero, we're done. 1780 if (StateZeroSize && !StateNonZeroSize) { 1781 if (returnPtr) { 1782 StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, DstVal); 1783 } else { 1784 if (appendK == ConcatFnKind::none) { 1785 // strlcpy returns strlen(src) 1786 StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, strLength); 1787 } else { 1788 // strlcat returns strlen(src) + strlen(dst) 1789 SVal retSize = svalBuilder.evalBinOp( 1790 state, BO_Add, strLength, dstStrLength, sizeTy); 1791 StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, retSize); 1792 } 1793 } 1794 C.addTransition(StateZeroSize); 1795 return; 1796 } 1797 1798 // Otherwise, go ahead and figure out the last element we'll touch. 1799 // We don't record the non-zero assumption here because we can't 1800 // be sure. We won't warn on a possible zero. 1801 NonLoc one = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>(); 1802 maxLastElementIndex = 1803 svalBuilder.evalBinOpNN(state, BO_Sub, *lenValNL, one, sizeTy); 1804 boundWarning = "Size argument is greater than the length of the " 1805 "destination buffer"; 1806 break; 1807 } 1808 } 1809 } else { 1810 // The function isn't bounded. The amount copied should match the length 1811 // of the source buffer. 1812 amountCopied = strLength; 1813 } 1814 1815 assert(state); 1816 1817 // This represents the number of characters copied into the destination 1818 // buffer. (It may not actually be the strlen if the destination buffer 1819 // is not terminated.) 1820 SVal finalStrLength = UnknownVal(); 1821 SVal strlRetVal = UnknownVal(); 1822 1823 if (appendK == ConcatFnKind::none && !returnPtr) { 1824 // strlcpy returns the sizeof(src) 1825 strlRetVal = strLength; 1826 } 1827 1828 // If this is an appending function (strcat, strncat...) then set the 1829 // string length to strlen(src) + strlen(dst) since the buffer will 1830 // ultimately contain both. 1831 if (appendK != ConcatFnKind::none) { 1832 // Get the string length of the destination. If the destination is memory 1833 // that can't have a string length, we shouldn't be copying into it anyway. 1834 if (dstStrLength.isUndef()) 1835 return; 1836 1837 if (appendK == ConcatFnKind::strlcat && dstStrLengthNL && strLengthNL) { 1838 strlRetVal = svalBuilder.evalBinOpNN(state, BO_Add, *strLengthNL, 1839 *dstStrLengthNL, sizeTy); 1840 } 1841 1842 Optional<NonLoc> amountCopiedNL = amountCopied.getAs<NonLoc>(); 1843 1844 // If we know both string lengths, we might know the final string length. 1845 if (amountCopiedNL && dstStrLengthNL) { 1846 // Make sure the two lengths together don't overflow a size_t. 1847 state = checkAdditionOverflow(C, state, *amountCopiedNL, *dstStrLengthNL); 1848 if (!state) 1849 return; 1850 1851 finalStrLength = svalBuilder.evalBinOpNN(state, BO_Add, *amountCopiedNL, 1852 *dstStrLengthNL, sizeTy); 1853 } 1854 1855 // If we couldn't get a single value for the final string length, 1856 // we can at least bound it by the individual lengths. 1857 if (finalStrLength.isUnknown()) { 1858 // Try to get a "hypothetical" string length symbol, which we can later 1859 // set as a real value if that turns out to be the case. 1860 finalStrLength = getCStringLength(C, state, CE, DstVal, true); 1861 assert(!finalStrLength.isUndef()); 1862 1863 if (Optional<NonLoc> finalStrLengthNL = finalStrLength.getAs<NonLoc>()) { 1864 if (amountCopiedNL && appendK == ConcatFnKind::none) { 1865 // we overwrite dst string with the src 1866 // finalStrLength >= srcStrLength 1867 SVal sourceInResult = svalBuilder.evalBinOpNN( 1868 state, BO_GE, *finalStrLengthNL, *amountCopiedNL, cmpTy); 1869 state = state->assume(sourceInResult.castAs<DefinedOrUnknownSVal>(), 1870 true); 1871 if (!state) 1872 return; 1873 } 1874 1875 if (dstStrLengthNL && appendK != ConcatFnKind::none) { 1876 // we extend the dst string with the src 1877 // finalStrLength >= dstStrLength 1878 SVal destInResult = svalBuilder.evalBinOpNN(state, BO_GE, 1879 *finalStrLengthNL, 1880 *dstStrLengthNL, 1881 cmpTy); 1882 state = 1883 state->assume(destInResult.castAs<DefinedOrUnknownSVal>(), true); 1884 if (!state) 1885 return; 1886 } 1887 } 1888 } 1889 1890 } else { 1891 // Otherwise, this is a copy-over function (strcpy, strncpy, ...), and 1892 // the final string length will match the input string length. 1893 finalStrLength = amountCopied; 1894 } 1895 1896 SVal Result; 1897 1898 if (returnPtr) { 1899 // The final result of the function will either be a pointer past the last 1900 // copied element, or a pointer to the start of the destination buffer. 1901 Result = (ReturnEnd ? UnknownVal() : DstVal); 1902 } else { 1903 if (appendK == ConcatFnKind::strlcat || appendK == ConcatFnKind::none) 1904 //strlcpy, strlcat 1905 Result = strlRetVal; 1906 else 1907 Result = finalStrLength; 1908 } 1909 1910 assert(state); 1911 1912 // If the destination is a MemRegion, try to check for a buffer overflow and 1913 // record the new string length. 1914 if (Optional<loc::MemRegionVal> dstRegVal = 1915 DstVal.getAs<loc::MemRegionVal>()) { 1916 QualType ptrTy = Dst.Expression->getType(); 1917 1918 // If we have an exact value on a bounded copy, use that to check for 1919 // overflows, rather than our estimate about how much is actually copied. 1920 if (Optional<NonLoc> maxLastNL = maxLastElementIndex.getAs<NonLoc>()) { 1921 SVal maxLastElement = 1922 svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal, *maxLastNL, ptrTy); 1923 1924 state = CheckLocation(C, state, Dst, maxLastElement, AccessKind::write); 1925 if (!state) 1926 return; 1927 } 1928 1929 // Then, if the final length is known... 1930 if (Optional<NonLoc> knownStrLength = finalStrLength.getAs<NonLoc>()) { 1931 SVal lastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal, 1932 *knownStrLength, ptrTy); 1933 1934 // ...and we haven't checked the bound, we'll check the actual copy. 1935 if (!boundWarning) { 1936 state = CheckLocation(C, state, Dst, lastElement, AccessKind::write); 1937 if (!state) 1938 return; 1939 } 1940 1941 // If this is a stpcpy-style copy, the last element is the return value. 1942 if (returnPtr && ReturnEnd) 1943 Result = lastElement; 1944 } 1945 1946 // Invalidate the destination (regular invalidation without pointer-escaping 1947 // the address of the top-level region). This must happen before we set the 1948 // C string length because invalidation will clear the length. 1949 // FIXME: Even if we can't perfectly model the copy, we should see if we 1950 // can use LazyCompoundVals to copy the source values into the destination. 1951 // This would probably remove any existing bindings past the end of the 1952 // string, but that's still an improvement over blank invalidation. 1953 state = InvalidateBuffer(C, state, Dst.Expression, *dstRegVal, 1954 /*IsSourceBuffer*/ false, nullptr); 1955 1956 // Invalidate the source (const-invalidation without const-pointer-escaping 1957 // the address of the top-level region). 1958 state = InvalidateBuffer(C, state, srcExpr.Expression, srcVal, 1959 /*IsSourceBuffer*/ true, nullptr); 1960 1961 // Set the C string length of the destination, if we know it. 1962 if (IsBounded && (appendK == ConcatFnKind::none)) { 1963 // strncpy is annoying in that it doesn't guarantee to null-terminate 1964 // the result string. If the original string didn't fit entirely inside 1965 // the bound (including the null-terminator), we don't know how long the 1966 // result is. 1967 if (amountCopied != strLength) 1968 finalStrLength = UnknownVal(); 1969 } 1970 state = setCStringLength(state, dstRegVal->getRegion(), finalStrLength); 1971 } 1972 1973 assert(state); 1974 1975 if (returnPtr) { 1976 // If this is a stpcpy-style copy, but we were unable to check for a buffer 1977 // overflow, we still need a result. Conjure a return value. 1978 if (ReturnEnd && Result.isUnknown()) { 1979 Result = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount()); 1980 } 1981 } 1982 // Set the return value. 1983 state = state->BindExpr(CE, LCtx, Result); 1984 C.addTransition(state); 1985 } 1986 1987 void CStringChecker::evalStrcmp(CheckerContext &C, const CallExpr *CE) const { 1988 //int strcmp(const char *s1, const char *s2); 1989 evalStrcmpCommon(C, CE, /* IsBounded = */ false, /* IgnoreCase = */ false); 1990 } 1991 1992 void CStringChecker::evalStrncmp(CheckerContext &C, const CallExpr *CE) const { 1993 //int strncmp(const char *s1, const char *s2, size_t n); 1994 evalStrcmpCommon(C, CE, /* IsBounded = */ true, /* IgnoreCase = */ false); 1995 } 1996 1997 void CStringChecker::evalStrcasecmp(CheckerContext &C, 1998 const CallExpr *CE) const { 1999 //int strcasecmp(const char *s1, const char *s2); 2000 evalStrcmpCommon(C, CE, /* IsBounded = */ false, /* IgnoreCase = */ true); 2001 } 2002 2003 void CStringChecker::evalStrncasecmp(CheckerContext &C, 2004 const CallExpr *CE) const { 2005 //int strncasecmp(const char *s1, const char *s2, size_t n); 2006 evalStrcmpCommon(C, CE, /* IsBounded = */ true, /* IgnoreCase = */ true); 2007 } 2008 2009 void CStringChecker::evalStrcmpCommon(CheckerContext &C, const CallExpr *CE, 2010 bool IsBounded, bool IgnoreCase) const { 2011 CurrentFunctionDescription = "string comparison function"; 2012 ProgramStateRef state = C.getState(); 2013 const LocationContext *LCtx = C.getLocationContext(); 2014 2015 // Check that the first string is non-null 2016 AnyArgExpr Left = {CE->getArg(0), 0}; 2017 SVal LeftVal = state->getSVal(Left.Expression, LCtx); 2018 state = checkNonNull(C, state, Left, LeftVal); 2019 if (!state) 2020 return; 2021 2022 // Check that the second string is non-null. 2023 AnyArgExpr Right = {CE->getArg(1), 1}; 2024 SVal RightVal = state->getSVal(Right.Expression, LCtx); 2025 state = checkNonNull(C, state, Right, RightVal); 2026 if (!state) 2027 return; 2028 2029 // Get the string length of the first string or give up. 2030 SVal LeftLength = getCStringLength(C, state, Left.Expression, LeftVal); 2031 if (LeftLength.isUndef()) 2032 return; 2033 2034 // Get the string length of the second string or give up. 2035 SVal RightLength = getCStringLength(C, state, Right.Expression, RightVal); 2036 if (RightLength.isUndef()) 2037 return; 2038 2039 // If we know the two buffers are the same, we know the result is 0. 2040 // First, get the two buffers' addresses. Another checker will have already 2041 // made sure they're not undefined. 2042 DefinedOrUnknownSVal LV = LeftVal.castAs<DefinedOrUnknownSVal>(); 2043 DefinedOrUnknownSVal RV = RightVal.castAs<DefinedOrUnknownSVal>(); 2044 2045 // See if they are the same. 2046 SValBuilder &svalBuilder = C.getSValBuilder(); 2047 DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV); 2048 ProgramStateRef StSameBuf, StNotSameBuf; 2049 std::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf); 2050 2051 // If the two arguments might be the same buffer, we know the result is 0, 2052 // and we only need to check one size. 2053 if (StSameBuf) { 2054 StSameBuf = StSameBuf->BindExpr(CE, LCtx, 2055 svalBuilder.makeZeroVal(CE->getType())); 2056 C.addTransition(StSameBuf); 2057 2058 // If the two arguments are GUARANTEED to be the same, we're done! 2059 if (!StNotSameBuf) 2060 return; 2061 } 2062 2063 assert(StNotSameBuf); 2064 state = StNotSameBuf; 2065 2066 // At this point we can go about comparing the two buffers. 2067 // For now, we only do this if they're both known string literals. 2068 2069 // Attempt to extract string literals from both expressions. 2070 const StringLiteral *LeftStrLiteral = 2071 getCStringLiteral(C, state, Left.Expression, LeftVal); 2072 const StringLiteral *RightStrLiteral = 2073 getCStringLiteral(C, state, Right.Expression, RightVal); 2074 bool canComputeResult = false; 2075 SVal resultVal = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx, 2076 C.blockCount()); 2077 2078 if (LeftStrLiteral && RightStrLiteral) { 2079 StringRef LeftStrRef = LeftStrLiteral->getString(); 2080 StringRef RightStrRef = RightStrLiteral->getString(); 2081 2082 if (IsBounded) { 2083 // Get the max number of characters to compare. 2084 const Expr *lenExpr = CE->getArg(2); 2085 SVal lenVal = state->getSVal(lenExpr, LCtx); 2086 2087 // If the length is known, we can get the right substrings. 2088 if (const llvm::APSInt *len = svalBuilder.getKnownValue(state, lenVal)) { 2089 // Create substrings of each to compare the prefix. 2090 LeftStrRef = LeftStrRef.substr(0, (size_t)len->getZExtValue()); 2091 RightStrRef = RightStrRef.substr(0, (size_t)len->getZExtValue()); 2092 canComputeResult = true; 2093 } 2094 } else { 2095 // This is a normal, unbounded strcmp. 2096 canComputeResult = true; 2097 } 2098 2099 if (canComputeResult) { 2100 // Real strcmp stops at null characters. 2101 size_t s1Term = LeftStrRef.find('\0'); 2102 if (s1Term != StringRef::npos) 2103 LeftStrRef = LeftStrRef.substr(0, s1Term); 2104 2105 size_t s2Term = RightStrRef.find('\0'); 2106 if (s2Term != StringRef::npos) 2107 RightStrRef = RightStrRef.substr(0, s2Term); 2108 2109 // Use StringRef's comparison methods to compute the actual result. 2110 int compareRes = IgnoreCase ? LeftStrRef.compare_insensitive(RightStrRef) 2111 : LeftStrRef.compare(RightStrRef); 2112 2113 // The strcmp function returns an integer greater than, equal to, or less 2114 // than zero, [c11, p7.24.4.2]. 2115 if (compareRes == 0) { 2116 resultVal = svalBuilder.makeIntVal(compareRes, CE->getType()); 2117 } 2118 else { 2119 DefinedSVal zeroVal = svalBuilder.makeIntVal(0, CE->getType()); 2120 // Constrain strcmp's result range based on the result of StringRef's 2121 // comparison methods. 2122 BinaryOperatorKind op = (compareRes == 1) ? BO_GT : BO_LT; 2123 SVal compareWithZero = 2124 svalBuilder.evalBinOp(state, op, resultVal, zeroVal, 2125 svalBuilder.getConditionType()); 2126 DefinedSVal compareWithZeroVal = compareWithZero.castAs<DefinedSVal>(); 2127 state = state->assume(compareWithZeroVal, true); 2128 } 2129 } 2130 } 2131 2132 state = state->BindExpr(CE, LCtx, resultVal); 2133 2134 // Record this as a possible path. 2135 C.addTransition(state); 2136 } 2137 2138 void CStringChecker::evalStrsep(CheckerContext &C, const CallExpr *CE) const { 2139 // char *strsep(char **stringp, const char *delim); 2140 // Verify whether the search string parameter matches the return type. 2141 SourceArgExpr SearchStrPtr = {CE->getArg(0), 0}; 2142 2143 QualType CharPtrTy = SearchStrPtr.Expression->getType()->getPointeeType(); 2144 if (CharPtrTy.isNull() || 2145 CE->getType().getUnqualifiedType() != CharPtrTy.getUnqualifiedType()) 2146 return; 2147 2148 CurrentFunctionDescription = "strsep()"; 2149 ProgramStateRef State = C.getState(); 2150 const LocationContext *LCtx = C.getLocationContext(); 2151 2152 // Check that the search string pointer is non-null (though it may point to 2153 // a null string). 2154 SVal SearchStrVal = State->getSVal(SearchStrPtr.Expression, LCtx); 2155 State = checkNonNull(C, State, SearchStrPtr, SearchStrVal); 2156 if (!State) 2157 return; 2158 2159 // Check that the delimiter string is non-null. 2160 AnyArgExpr DelimStr = {CE->getArg(1), 1}; 2161 SVal DelimStrVal = State->getSVal(DelimStr.Expression, LCtx); 2162 State = checkNonNull(C, State, DelimStr, DelimStrVal); 2163 if (!State) 2164 return; 2165 2166 SValBuilder &SVB = C.getSValBuilder(); 2167 SVal Result; 2168 if (Optional<Loc> SearchStrLoc = SearchStrVal.getAs<Loc>()) { 2169 // Get the current value of the search string pointer, as a char*. 2170 Result = State->getSVal(*SearchStrLoc, CharPtrTy); 2171 2172 // Invalidate the search string, representing the change of one delimiter 2173 // character to NUL. 2174 State = InvalidateBuffer(C, State, SearchStrPtr.Expression, Result, 2175 /*IsSourceBuffer*/ false, nullptr); 2176 2177 // Overwrite the search string pointer. The new value is either an address 2178 // further along in the same string, or NULL if there are no more tokens. 2179 State = State->bindLoc(*SearchStrLoc, 2180 SVB.conjureSymbolVal(getTag(), 2181 CE, 2182 LCtx, 2183 CharPtrTy, 2184 C.blockCount()), 2185 LCtx); 2186 } else { 2187 assert(SearchStrVal.isUnknown()); 2188 // Conjure a symbolic value. It's the best we can do. 2189 Result = SVB.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount()); 2190 } 2191 2192 // Set the return value, and finish. 2193 State = State->BindExpr(CE, LCtx, Result); 2194 C.addTransition(State); 2195 } 2196 2197 // These should probably be moved into a C++ standard library checker. 2198 void CStringChecker::evalStdCopy(CheckerContext &C, const CallExpr *CE) const { 2199 evalStdCopyCommon(C, CE); 2200 } 2201 2202 void CStringChecker::evalStdCopyBackward(CheckerContext &C, 2203 const CallExpr *CE) const { 2204 evalStdCopyCommon(C, CE); 2205 } 2206 2207 void CStringChecker::evalStdCopyCommon(CheckerContext &C, 2208 const CallExpr *CE) const { 2209 if (!CE->getArg(2)->getType()->isPointerType()) 2210 return; 2211 2212 ProgramStateRef State = C.getState(); 2213 2214 const LocationContext *LCtx = C.getLocationContext(); 2215 2216 // template <class _InputIterator, class _OutputIterator> 2217 // _OutputIterator 2218 // copy(_InputIterator __first, _InputIterator __last, 2219 // _OutputIterator __result) 2220 2221 // Invalidate the destination buffer 2222 const Expr *Dst = CE->getArg(2); 2223 SVal DstVal = State->getSVal(Dst, LCtx); 2224 State = InvalidateBuffer(C, State, Dst, DstVal, /*IsSource=*/false, 2225 /*Size=*/nullptr); 2226 2227 SValBuilder &SVB = C.getSValBuilder(); 2228 2229 SVal ResultVal = SVB.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount()); 2230 State = State->BindExpr(CE, LCtx, ResultVal); 2231 2232 C.addTransition(State); 2233 } 2234 2235 void CStringChecker::evalMemset(CheckerContext &C, const CallExpr *CE) const { 2236 // void *memset(void *s, int c, size_t n); 2237 CurrentFunctionDescription = "memory set function"; 2238 2239 DestinationArgExpr Buffer = {CE->getArg(0), 0}; 2240 AnyArgExpr CharE = {CE->getArg(1), 1}; 2241 SizeArgExpr Size = {CE->getArg(2), 2}; 2242 2243 ProgramStateRef State = C.getState(); 2244 2245 // See if the size argument is zero. 2246 const LocationContext *LCtx = C.getLocationContext(); 2247 SVal SizeVal = C.getSVal(Size.Expression); 2248 QualType SizeTy = Size.Expression->getType(); 2249 2250 ProgramStateRef ZeroSize, NonZeroSize; 2251 std::tie(ZeroSize, NonZeroSize) = assumeZero(C, State, SizeVal, SizeTy); 2252 2253 // Get the value of the memory area. 2254 SVal BufferPtrVal = C.getSVal(Buffer.Expression); 2255 2256 // If the size is zero, there won't be any actual memory access, so 2257 // just bind the return value to the buffer and return. 2258 if (ZeroSize && !NonZeroSize) { 2259 ZeroSize = ZeroSize->BindExpr(CE, LCtx, BufferPtrVal); 2260 C.addTransition(ZeroSize); 2261 return; 2262 } 2263 2264 // Ensure the memory area is not null. 2265 // If it is NULL there will be a NULL pointer dereference. 2266 State = checkNonNull(C, NonZeroSize, Buffer, BufferPtrVal); 2267 if (!State) 2268 return; 2269 2270 State = CheckBufferAccess(C, State, Buffer, Size, AccessKind::write); 2271 if (!State) 2272 return; 2273 2274 // According to the values of the arguments, bind the value of the second 2275 // argument to the destination buffer and set string length, or just 2276 // invalidate the destination buffer. 2277 if (!memsetAux(Buffer.Expression, C.getSVal(CharE.Expression), 2278 Size.Expression, C, State)) 2279 return; 2280 2281 State = State->BindExpr(CE, LCtx, BufferPtrVal); 2282 C.addTransition(State); 2283 } 2284 2285 void CStringChecker::evalBzero(CheckerContext &C, const CallExpr *CE) const { 2286 CurrentFunctionDescription = "memory clearance function"; 2287 2288 DestinationArgExpr Buffer = {CE->getArg(0), 0}; 2289 SizeArgExpr Size = {CE->getArg(1), 1}; 2290 SVal Zero = C.getSValBuilder().makeZeroVal(C.getASTContext().IntTy); 2291 2292 ProgramStateRef State = C.getState(); 2293 2294 // See if the size argument is zero. 2295 SVal SizeVal = C.getSVal(Size.Expression); 2296 QualType SizeTy = Size.Expression->getType(); 2297 2298 ProgramStateRef StateZeroSize, StateNonZeroSize; 2299 std::tie(StateZeroSize, StateNonZeroSize) = 2300 assumeZero(C, State, SizeVal, SizeTy); 2301 2302 // If the size is zero, there won't be any actual memory access, 2303 // In this case we just return. 2304 if (StateZeroSize && !StateNonZeroSize) { 2305 C.addTransition(StateZeroSize); 2306 return; 2307 } 2308 2309 // Get the value of the memory area. 2310 SVal MemVal = C.getSVal(Buffer.Expression); 2311 2312 // Ensure the memory area is not null. 2313 // If it is NULL there will be a NULL pointer dereference. 2314 State = checkNonNull(C, StateNonZeroSize, Buffer, MemVal); 2315 if (!State) 2316 return; 2317 2318 State = CheckBufferAccess(C, State, Buffer, Size, AccessKind::write); 2319 if (!State) 2320 return; 2321 2322 if (!memsetAux(Buffer.Expression, Zero, Size.Expression, C, State)) 2323 return; 2324 2325 C.addTransition(State); 2326 } 2327 2328 //===----------------------------------------------------------------------===// 2329 // The driver method, and other Checker callbacks. 2330 //===----------------------------------------------------------------------===// 2331 2332 CStringChecker::FnCheck CStringChecker::identifyCall(const CallEvent &Call, 2333 CheckerContext &C) const { 2334 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); 2335 if (!CE) 2336 return nullptr; 2337 2338 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Call.getDecl()); 2339 if (!FD) 2340 return nullptr; 2341 2342 if (StdCopy.matches(Call)) 2343 return &CStringChecker::evalStdCopy; 2344 if (StdCopyBackward.matches(Call)) 2345 return &CStringChecker::evalStdCopyBackward; 2346 2347 // Pro-actively check that argument types are safe to do arithmetic upon. 2348 // We do not want to crash if someone accidentally passes a structure 2349 // into, say, a C++ overload of any of these functions. We could not check 2350 // that for std::copy because they may have arguments of other types. 2351 for (auto I : CE->arguments()) { 2352 QualType T = I->getType(); 2353 if (!T->isIntegralOrEnumerationType() && !T->isPointerType()) 2354 return nullptr; 2355 } 2356 2357 const FnCheck *Callback = Callbacks.lookup(Call); 2358 if (Callback) 2359 return *Callback; 2360 2361 return nullptr; 2362 } 2363 2364 bool CStringChecker::evalCall(const CallEvent &Call, CheckerContext &C) const { 2365 FnCheck Callback = identifyCall(Call, C); 2366 2367 // If the callee isn't a string function, let another checker handle it. 2368 if (!Callback) 2369 return false; 2370 2371 // Check and evaluate the call. 2372 const auto *CE = cast<CallExpr>(Call.getOriginExpr()); 2373 Callback(this, C, CE); 2374 2375 // If the evaluate call resulted in no change, chain to the next eval call 2376 // handler. 2377 // Note, the custom CString evaluation calls assume that basic safety 2378 // properties are held. However, if the user chooses to turn off some of these 2379 // checks, we ignore the issues and leave the call evaluation to a generic 2380 // handler. 2381 return C.isDifferent(); 2382 } 2383 2384 void CStringChecker::checkPreStmt(const DeclStmt *DS, CheckerContext &C) const { 2385 // Record string length for char a[] = "abc"; 2386 ProgramStateRef state = C.getState(); 2387 2388 for (const auto *I : DS->decls()) { 2389 const VarDecl *D = dyn_cast<VarDecl>(I); 2390 if (!D) 2391 continue; 2392 2393 // FIXME: Handle array fields of structs. 2394 if (!D->getType()->isArrayType()) 2395 continue; 2396 2397 const Expr *Init = D->getInit(); 2398 if (!Init) 2399 continue; 2400 if (!isa<StringLiteral>(Init)) 2401 continue; 2402 2403 Loc VarLoc = state->getLValue(D, C.getLocationContext()); 2404 const MemRegion *MR = VarLoc.getAsRegion(); 2405 if (!MR) 2406 continue; 2407 2408 SVal StrVal = C.getSVal(Init); 2409 assert(StrVal.isValid() && "Initializer string is unknown or undefined"); 2410 DefinedOrUnknownSVal strLength = 2411 getCStringLength(C, state, Init, StrVal).castAs<DefinedOrUnknownSVal>(); 2412 2413 state = state->set<CStringLength>(MR, strLength); 2414 } 2415 2416 C.addTransition(state); 2417 } 2418 2419 ProgramStateRef 2420 CStringChecker::checkRegionChanges(ProgramStateRef state, 2421 const InvalidatedSymbols *, 2422 ArrayRef<const MemRegion *> ExplicitRegions, 2423 ArrayRef<const MemRegion *> Regions, 2424 const LocationContext *LCtx, 2425 const CallEvent *Call) const { 2426 CStringLengthTy Entries = state->get<CStringLength>(); 2427 if (Entries.isEmpty()) 2428 return state; 2429 2430 llvm::SmallPtrSet<const MemRegion *, 8> Invalidated; 2431 llvm::SmallPtrSet<const MemRegion *, 32> SuperRegions; 2432 2433 // First build sets for the changed regions and their super-regions. 2434 for (ArrayRef<const MemRegion *>::iterator 2435 I = Regions.begin(), E = Regions.end(); I != E; ++I) { 2436 const MemRegion *MR = *I; 2437 Invalidated.insert(MR); 2438 2439 SuperRegions.insert(MR); 2440 while (const SubRegion *SR = dyn_cast<SubRegion>(MR)) { 2441 MR = SR->getSuperRegion(); 2442 SuperRegions.insert(MR); 2443 } 2444 } 2445 2446 CStringLengthTy::Factory &F = state->get_context<CStringLength>(); 2447 2448 // Then loop over the entries in the current state. 2449 for (CStringLengthTy::iterator I = Entries.begin(), 2450 E = Entries.end(); I != E; ++I) { 2451 const MemRegion *MR = I.getKey(); 2452 2453 // Is this entry for a super-region of a changed region? 2454 if (SuperRegions.count(MR)) { 2455 Entries = F.remove(Entries, MR); 2456 continue; 2457 } 2458 2459 // Is this entry for a sub-region of a changed region? 2460 const MemRegion *Super = MR; 2461 while (const SubRegion *SR = dyn_cast<SubRegion>(Super)) { 2462 Super = SR->getSuperRegion(); 2463 if (Invalidated.count(Super)) { 2464 Entries = F.remove(Entries, MR); 2465 break; 2466 } 2467 } 2468 } 2469 2470 return state->set<CStringLength>(Entries); 2471 } 2472 2473 void CStringChecker::checkLiveSymbols(ProgramStateRef state, 2474 SymbolReaper &SR) const { 2475 // Mark all symbols in our string length map as valid. 2476 CStringLengthTy Entries = state->get<CStringLength>(); 2477 2478 for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end(); 2479 I != E; ++I) { 2480 SVal Len = I.getData(); 2481 2482 for (SymExpr::symbol_iterator si = Len.symbol_begin(), 2483 se = Len.symbol_end(); si != se; ++si) 2484 SR.markInUse(*si); 2485 } 2486 } 2487 2488 void CStringChecker::checkDeadSymbols(SymbolReaper &SR, 2489 CheckerContext &C) const { 2490 ProgramStateRef state = C.getState(); 2491 CStringLengthTy Entries = state->get<CStringLength>(); 2492 if (Entries.isEmpty()) 2493 return; 2494 2495 CStringLengthTy::Factory &F = state->get_context<CStringLength>(); 2496 for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end(); 2497 I != E; ++I) { 2498 SVal Len = I.getData(); 2499 if (SymbolRef Sym = Len.getAsSymbol()) { 2500 if (SR.isDead(Sym)) 2501 Entries = F.remove(Entries, I.getKey()); 2502 } 2503 } 2504 2505 state = state->set<CStringLength>(Entries); 2506 C.addTransition(state); 2507 } 2508 2509 void ento::registerCStringModeling(CheckerManager &Mgr) { 2510 Mgr.registerChecker<CStringChecker>(); 2511 } 2512 2513 bool ento::shouldRegisterCStringModeling(const CheckerManager &mgr) { 2514 return true; 2515 } 2516 2517 #define REGISTER_CHECKER(name) \ 2518 void ento::register##name(CheckerManager &mgr) { \ 2519 CStringChecker *checker = mgr.getChecker<CStringChecker>(); \ 2520 checker->Filter.Check##name = true; \ 2521 checker->Filter.CheckName##name = mgr.getCurrentCheckerName(); \ 2522 } \ 2523 \ 2524 bool ento::shouldRegister##name(const CheckerManager &mgr) { return true; } 2525 2526 REGISTER_CHECKER(CStringNullArg) 2527 REGISTER_CHECKER(CStringOutOfBounds) 2528 REGISTER_CHECKER(CStringBufferOverlap) 2529 REGISTER_CHECKER(CStringNotNullTerm) 2530 REGISTER_CHECKER(CStringUninitializedRead) 2531