1 //= CStringChecker.cpp - Checks calls to C string functions --------*- C++ -*-// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This defines CStringChecker, which is an assortment of checks on calls 10 // to functions in <string.h>. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" 15 #include "InterCheckerAPI.h" 16 #include "clang/Basic/CharInfo.h" 17 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 18 #include "clang/StaticAnalyzer/Core/Checker.h" 19 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 20 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 21 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 22 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallString.h" 25 #include "llvm/Support/raw_ostream.h" 26 27 using namespace clang; 28 using namespace ento; 29 30 namespace { 31 class CStringChecker : public Checker< eval::Call, 32 check::PreStmt<DeclStmt>, 33 check::LiveSymbols, 34 check::DeadSymbols, 35 check::RegionChanges 36 > { 37 mutable std::unique_ptr<BugType> BT_Null, BT_Bounds, BT_Overlap, 38 BT_NotCString, BT_AdditionOverflow; 39 40 mutable const char *CurrentFunctionDescription; 41 42 public: 43 /// The filter is used to filter out the diagnostics which are not enabled by 44 /// the user. 45 struct CStringChecksFilter { 46 DefaultBool CheckCStringNullArg; 47 DefaultBool CheckCStringOutOfBounds; 48 DefaultBool CheckCStringBufferOverlap; 49 DefaultBool CheckCStringNotNullTerm; 50 51 CheckName CheckNameCStringNullArg; 52 CheckName CheckNameCStringOutOfBounds; 53 CheckName CheckNameCStringBufferOverlap; 54 CheckName CheckNameCStringNotNullTerm; 55 }; 56 57 CStringChecksFilter Filter; 58 59 static void *getTag() { static int tag; return &tag; } 60 61 bool evalCall(const CallEvent &Call, CheckerContext &C) const; 62 void checkPreStmt(const DeclStmt *DS, CheckerContext &C) const; 63 void checkLiveSymbols(ProgramStateRef state, SymbolReaper &SR) const; 64 void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const; 65 66 ProgramStateRef 67 checkRegionChanges(ProgramStateRef state, 68 const InvalidatedSymbols *, 69 ArrayRef<const MemRegion *> ExplicitRegions, 70 ArrayRef<const MemRegion *> Regions, 71 const LocationContext *LCtx, 72 const CallEvent *Call) const; 73 74 typedef void (CStringChecker::*FnCheck)(CheckerContext &, 75 const CallExpr *) const; 76 CallDescriptionMap<FnCheck> Callbacks = { 77 {{CDF_MaybeBuiltin, "memcpy", 3}, &CStringChecker::evalMemcpy}, 78 {{CDF_MaybeBuiltin, "mempcpy", 3}, &CStringChecker::evalMempcpy}, 79 {{CDF_MaybeBuiltin, "memcmp", 3}, &CStringChecker::evalMemcmp}, 80 {{CDF_MaybeBuiltin, "memmove", 3}, &CStringChecker::evalMemmove}, 81 {{CDF_MaybeBuiltin, "memset", 3}, &CStringChecker::evalMemset}, 82 {{CDF_MaybeBuiltin, "explicit_memset", 3}, &CStringChecker::evalMemset}, 83 {{CDF_MaybeBuiltin, "strcpy", 2}, &CStringChecker::evalStrcpy}, 84 {{CDF_MaybeBuiltin, "strncpy", 3}, &CStringChecker::evalStrncpy}, 85 {{CDF_MaybeBuiltin, "stpcpy", 2}, &CStringChecker::evalStpcpy}, 86 {{CDF_MaybeBuiltin, "strlcpy", 3}, &CStringChecker::evalStrlcpy}, 87 {{CDF_MaybeBuiltin, "strcat", 2}, &CStringChecker::evalStrcat}, 88 {{CDF_MaybeBuiltin, "strncat", 3}, &CStringChecker::evalStrncat}, 89 {{CDF_MaybeBuiltin, "strlcat", 3}, &CStringChecker::evalStrlcat}, 90 {{CDF_MaybeBuiltin, "strlen", 1}, &CStringChecker::evalstrLength}, 91 {{CDF_MaybeBuiltin, "strnlen", 2}, &CStringChecker::evalstrnLength}, 92 {{CDF_MaybeBuiltin, "strcmp", 2}, &CStringChecker::evalStrcmp}, 93 {{CDF_MaybeBuiltin, "strncmp", 3}, &CStringChecker::evalStrncmp}, 94 {{CDF_MaybeBuiltin, "strcasecmp", 2}, &CStringChecker::evalStrcasecmp}, 95 {{CDF_MaybeBuiltin, "strncasecmp", 3}, &CStringChecker::evalStrncasecmp}, 96 {{CDF_MaybeBuiltin, "strsep", 2}, &CStringChecker::evalStrsep}, 97 {{CDF_MaybeBuiltin, "bcopy", 3}, &CStringChecker::evalBcopy}, 98 {{CDF_MaybeBuiltin, "bcmp", 3}, &CStringChecker::evalMemcmp}, 99 {{CDF_MaybeBuiltin, "bzero", 2}, &CStringChecker::evalBzero}, 100 {{CDF_MaybeBuiltin, "explicit_bzero", 2}, &CStringChecker::evalBzero}, 101 }; 102 103 // These require a bit of special handling. 104 CallDescription StdCopy{{"std", "copy"}, 3}, 105 StdCopyBackward{{"std", "copy_backward"}, 3}; 106 107 FnCheck identifyCall(const CallEvent &Call, CheckerContext &C) const; 108 void evalMemcpy(CheckerContext &C, const CallExpr *CE) const; 109 void evalMempcpy(CheckerContext &C, const CallExpr *CE) const; 110 void evalMemmove(CheckerContext &C, const CallExpr *CE) const; 111 void evalBcopy(CheckerContext &C, const CallExpr *CE) const; 112 void evalCopyCommon(CheckerContext &C, const CallExpr *CE, 113 ProgramStateRef state, 114 const Expr *Size, 115 const Expr *Source, 116 const Expr *Dest, 117 bool Restricted = false, 118 bool IsMempcpy = false) const; 119 120 void evalMemcmp(CheckerContext &C, const CallExpr *CE) const; 121 122 void evalstrLength(CheckerContext &C, const CallExpr *CE) const; 123 void evalstrnLength(CheckerContext &C, const CallExpr *CE) const; 124 void evalstrLengthCommon(CheckerContext &C, 125 const CallExpr *CE, 126 bool IsStrnlen = false) const; 127 128 void evalStrcpy(CheckerContext &C, const CallExpr *CE) const; 129 void evalStrncpy(CheckerContext &C, const CallExpr *CE) const; 130 void evalStpcpy(CheckerContext &C, const CallExpr *CE) const; 131 void evalStrlcpy(CheckerContext &C, const CallExpr *CE) const; 132 void evalStrcpyCommon(CheckerContext &C, 133 const CallExpr *CE, 134 bool returnEnd, 135 bool isBounded, 136 bool isAppending, 137 bool returnPtr = true) const; 138 139 void evalStrcat(CheckerContext &C, const CallExpr *CE) const; 140 void evalStrncat(CheckerContext &C, const CallExpr *CE) const; 141 void evalStrlcat(CheckerContext &C, const CallExpr *CE) const; 142 143 void evalStrcmp(CheckerContext &C, const CallExpr *CE) const; 144 void evalStrncmp(CheckerContext &C, const CallExpr *CE) const; 145 void evalStrcasecmp(CheckerContext &C, const CallExpr *CE) const; 146 void evalStrncasecmp(CheckerContext &C, const CallExpr *CE) const; 147 void evalStrcmpCommon(CheckerContext &C, 148 const CallExpr *CE, 149 bool isBounded = false, 150 bool ignoreCase = false) const; 151 152 void evalStrsep(CheckerContext &C, const CallExpr *CE) const; 153 154 void evalStdCopy(CheckerContext &C, const CallExpr *CE) const; 155 void evalStdCopyBackward(CheckerContext &C, const CallExpr *CE) const; 156 void evalStdCopyCommon(CheckerContext &C, const CallExpr *CE) const; 157 void evalMemset(CheckerContext &C, const CallExpr *CE) const; 158 void evalBzero(CheckerContext &C, const CallExpr *CE) const; 159 160 // Utility methods 161 std::pair<ProgramStateRef , ProgramStateRef > 162 static assumeZero(CheckerContext &C, 163 ProgramStateRef state, SVal V, QualType Ty); 164 165 static ProgramStateRef setCStringLength(ProgramStateRef state, 166 const MemRegion *MR, 167 SVal strLength); 168 static SVal getCStringLengthForRegion(CheckerContext &C, 169 ProgramStateRef &state, 170 const Expr *Ex, 171 const MemRegion *MR, 172 bool hypothetical); 173 SVal getCStringLength(CheckerContext &C, 174 ProgramStateRef &state, 175 const Expr *Ex, 176 SVal Buf, 177 bool hypothetical = false) const; 178 179 const StringLiteral *getCStringLiteral(CheckerContext &C, 180 ProgramStateRef &state, 181 const Expr *expr, 182 SVal val) const; 183 184 static ProgramStateRef InvalidateBuffer(CheckerContext &C, 185 ProgramStateRef state, 186 const Expr *Ex, SVal V, 187 bool IsSourceBuffer, 188 const Expr *Size); 189 190 static bool SummarizeRegion(raw_ostream &os, ASTContext &Ctx, 191 const MemRegion *MR); 192 193 static bool memsetAux(const Expr *DstBuffer, SVal CharE, 194 const Expr *Size, CheckerContext &C, 195 ProgramStateRef &State); 196 197 // Re-usable checks 198 ProgramStateRef checkNonNull(CheckerContext &C, 199 ProgramStateRef state, 200 const Expr *S, 201 SVal l) const; 202 ProgramStateRef CheckLocation(CheckerContext &C, 203 ProgramStateRef state, 204 const Expr *S, 205 SVal l, 206 const char *message = nullptr) const; 207 ProgramStateRef CheckBufferAccess(CheckerContext &C, 208 ProgramStateRef state, 209 const Expr *Size, 210 const Expr *FirstBuf, 211 const Expr *SecondBuf, 212 const char *firstMessage = nullptr, 213 const char *secondMessage = nullptr, 214 bool WarnAboutSize = false) const; 215 216 ProgramStateRef CheckBufferAccess(CheckerContext &C, 217 ProgramStateRef state, 218 const Expr *Size, 219 const Expr *Buf, 220 const char *message = nullptr, 221 bool WarnAboutSize = false) const { 222 // This is a convenience overload. 223 return CheckBufferAccess(C, state, Size, Buf, nullptr, message, nullptr, 224 WarnAboutSize); 225 } 226 ProgramStateRef CheckOverlap(CheckerContext &C, 227 ProgramStateRef state, 228 const Expr *Size, 229 const Expr *First, 230 const Expr *Second) const; 231 void emitOverlapBug(CheckerContext &C, 232 ProgramStateRef state, 233 const Stmt *First, 234 const Stmt *Second) const; 235 236 void emitNullArgBug(CheckerContext &C, ProgramStateRef State, const Stmt *S, 237 StringRef WarningMsg) const; 238 void emitOutOfBoundsBug(CheckerContext &C, ProgramStateRef State, 239 const Stmt *S, StringRef WarningMsg) const; 240 void emitNotCStringBug(CheckerContext &C, ProgramStateRef State, 241 const Stmt *S, StringRef WarningMsg) const; 242 void emitAdditionOverflowBug(CheckerContext &C, ProgramStateRef State) const; 243 244 ProgramStateRef checkAdditionOverflow(CheckerContext &C, 245 ProgramStateRef state, 246 NonLoc left, 247 NonLoc right) const; 248 249 // Return true if the destination buffer of the copy function may be in bound. 250 // Expects SVal of Size to be positive and unsigned. 251 // Expects SVal of FirstBuf to be a FieldRegion. 252 static bool IsFirstBufInBound(CheckerContext &C, 253 ProgramStateRef state, 254 const Expr *FirstBuf, 255 const Expr *Size); 256 }; 257 258 } //end anonymous namespace 259 260 REGISTER_MAP_WITH_PROGRAMSTATE(CStringLength, const MemRegion *, SVal) 261 262 //===----------------------------------------------------------------------===// 263 // Individual checks and utility methods. 264 //===----------------------------------------------------------------------===// 265 266 std::pair<ProgramStateRef , ProgramStateRef > 267 CStringChecker::assumeZero(CheckerContext &C, ProgramStateRef state, SVal V, 268 QualType Ty) { 269 Optional<DefinedSVal> val = V.getAs<DefinedSVal>(); 270 if (!val) 271 return std::pair<ProgramStateRef , ProgramStateRef >(state, state); 272 273 SValBuilder &svalBuilder = C.getSValBuilder(); 274 DefinedOrUnknownSVal zero = svalBuilder.makeZeroVal(Ty); 275 return state->assume(svalBuilder.evalEQ(state, *val, zero)); 276 } 277 278 ProgramStateRef CStringChecker::checkNonNull(CheckerContext &C, 279 ProgramStateRef state, 280 const Expr *S, SVal l) const { 281 // If a previous check has failed, propagate the failure. 282 if (!state) 283 return nullptr; 284 285 ProgramStateRef stateNull, stateNonNull; 286 std::tie(stateNull, stateNonNull) = assumeZero(C, state, l, S->getType()); 287 288 if (stateNull && !stateNonNull) { 289 if (Filter.CheckCStringNullArg) { 290 SmallString<80> buf; 291 llvm::raw_svector_ostream os(buf); 292 assert(CurrentFunctionDescription); 293 os << "Null pointer argument in call to " << CurrentFunctionDescription; 294 295 emitNullArgBug(C, stateNull, S, os.str()); 296 } 297 return nullptr; 298 } 299 300 // From here on, assume that the value is non-null. 301 assert(stateNonNull); 302 return stateNonNull; 303 } 304 305 // FIXME: This was originally copied from ArrayBoundChecker.cpp. Refactor? 306 ProgramStateRef CStringChecker::CheckLocation(CheckerContext &C, 307 ProgramStateRef state, 308 const Expr *S, SVal l, 309 const char *warningMsg) const { 310 // If a previous check has failed, propagate the failure. 311 if (!state) 312 return nullptr; 313 314 // Check for out of bound array element access. 315 const MemRegion *R = l.getAsRegion(); 316 if (!R) 317 return state; 318 319 const ElementRegion *ER = dyn_cast<ElementRegion>(R); 320 if (!ER) 321 return state; 322 323 if (ER->getValueType() != C.getASTContext().CharTy) 324 return state; 325 326 // Get the size of the array. 327 const SubRegion *superReg = cast<SubRegion>(ER->getSuperRegion()); 328 SValBuilder &svalBuilder = C.getSValBuilder(); 329 SVal Extent = 330 svalBuilder.convertToArrayIndex(superReg->getExtent(svalBuilder)); 331 DefinedOrUnknownSVal Size = Extent.castAs<DefinedOrUnknownSVal>(); 332 333 // Get the index of the accessed element. 334 DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>(); 335 336 ProgramStateRef StInBound = state->assumeInBound(Idx, Size, true); 337 ProgramStateRef StOutBound = state->assumeInBound(Idx, Size, false); 338 if (StOutBound && !StInBound) { 339 // These checks are either enabled by the CString out-of-bounds checker 340 // explicitly or implicitly by the Malloc checker. 341 // In the latter case we only do modeling but do not emit warning. 342 if (!Filter.CheckCStringOutOfBounds) 343 return nullptr; 344 // Emit a bug report. 345 if (warningMsg) { 346 emitOutOfBoundsBug(C, StOutBound, S, warningMsg); 347 } else { 348 assert(CurrentFunctionDescription); 349 assert(CurrentFunctionDescription[0] != '\0'); 350 351 SmallString<80> buf; 352 llvm::raw_svector_ostream os(buf); 353 os << toUppercase(CurrentFunctionDescription[0]) 354 << &CurrentFunctionDescription[1] 355 << " accesses out-of-bound array element"; 356 emitOutOfBoundsBug(C, StOutBound, S, os.str()); 357 } 358 return nullptr; 359 } 360 361 // Array bound check succeeded. From this point forward the array bound 362 // should always succeed. 363 return StInBound; 364 } 365 366 ProgramStateRef CStringChecker::CheckBufferAccess(CheckerContext &C, 367 ProgramStateRef state, 368 const Expr *Size, 369 const Expr *FirstBuf, 370 const Expr *SecondBuf, 371 const char *firstMessage, 372 const char *secondMessage, 373 bool WarnAboutSize) const { 374 // If a previous check has failed, propagate the failure. 375 if (!state) 376 return nullptr; 377 378 SValBuilder &svalBuilder = C.getSValBuilder(); 379 ASTContext &Ctx = svalBuilder.getContext(); 380 const LocationContext *LCtx = C.getLocationContext(); 381 382 QualType sizeTy = Size->getType(); 383 QualType PtrTy = Ctx.getPointerType(Ctx.CharTy); 384 385 // Check that the first buffer is non-null. 386 SVal BufVal = C.getSVal(FirstBuf); 387 state = checkNonNull(C, state, FirstBuf, BufVal); 388 if (!state) 389 return nullptr; 390 391 // If out-of-bounds checking is turned off, skip the rest. 392 if (!Filter.CheckCStringOutOfBounds) 393 return state; 394 395 // Get the access length and make sure it is known. 396 // FIXME: This assumes the caller has already checked that the access length 397 // is positive. And that it's unsigned. 398 SVal LengthVal = C.getSVal(Size); 399 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); 400 if (!Length) 401 return state; 402 403 // Compute the offset of the last element to be accessed: size-1. 404 NonLoc One = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>(); 405 SVal Offset = svalBuilder.evalBinOpNN(state, BO_Sub, *Length, One, sizeTy); 406 if (Offset.isUnknown()) 407 return nullptr; 408 NonLoc LastOffset = Offset.castAs<NonLoc>(); 409 410 // Check that the first buffer is sufficiently long. 411 SVal BufStart = svalBuilder.evalCast(BufVal, PtrTy, FirstBuf->getType()); 412 if (Optional<Loc> BufLoc = BufStart.getAs<Loc>()) { 413 const Expr *warningExpr = (WarnAboutSize ? Size : FirstBuf); 414 415 SVal BufEnd = svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc, 416 LastOffset, PtrTy); 417 state = CheckLocation(C, state, warningExpr, BufEnd, firstMessage); 418 419 // If the buffer isn't large enough, abort. 420 if (!state) 421 return nullptr; 422 } 423 424 // If there's a second buffer, check it as well. 425 if (SecondBuf) { 426 BufVal = state->getSVal(SecondBuf, LCtx); 427 state = checkNonNull(C, state, SecondBuf, BufVal); 428 if (!state) 429 return nullptr; 430 431 BufStart = svalBuilder.evalCast(BufVal, PtrTy, SecondBuf->getType()); 432 if (Optional<Loc> BufLoc = BufStart.getAs<Loc>()) { 433 const Expr *warningExpr = (WarnAboutSize ? Size : SecondBuf); 434 435 SVal BufEnd = svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc, 436 LastOffset, PtrTy); 437 state = CheckLocation(C, state, warningExpr, BufEnd, secondMessage); 438 } 439 } 440 441 // Large enough or not, return this state! 442 return state; 443 } 444 445 ProgramStateRef CStringChecker::CheckOverlap(CheckerContext &C, 446 ProgramStateRef state, 447 const Expr *Size, 448 const Expr *First, 449 const Expr *Second) const { 450 if (!Filter.CheckCStringBufferOverlap) 451 return state; 452 453 // Do a simple check for overlap: if the two arguments are from the same 454 // buffer, see if the end of the first is greater than the start of the second 455 // or vice versa. 456 457 // If a previous check has failed, propagate the failure. 458 if (!state) 459 return nullptr; 460 461 ProgramStateRef stateTrue, stateFalse; 462 463 // Get the buffer values and make sure they're known locations. 464 const LocationContext *LCtx = C.getLocationContext(); 465 SVal firstVal = state->getSVal(First, LCtx); 466 SVal secondVal = state->getSVal(Second, LCtx); 467 468 Optional<Loc> firstLoc = firstVal.getAs<Loc>(); 469 if (!firstLoc) 470 return state; 471 472 Optional<Loc> secondLoc = secondVal.getAs<Loc>(); 473 if (!secondLoc) 474 return state; 475 476 // Are the two values the same? 477 SValBuilder &svalBuilder = C.getSValBuilder(); 478 std::tie(stateTrue, stateFalse) = 479 state->assume(svalBuilder.evalEQ(state, *firstLoc, *secondLoc)); 480 481 if (stateTrue && !stateFalse) { 482 // If the values are known to be equal, that's automatically an overlap. 483 emitOverlapBug(C, stateTrue, First, Second); 484 return nullptr; 485 } 486 487 // assume the two expressions are not equal. 488 assert(stateFalse); 489 state = stateFalse; 490 491 // Which value comes first? 492 QualType cmpTy = svalBuilder.getConditionType(); 493 SVal reverse = svalBuilder.evalBinOpLL(state, BO_GT, 494 *firstLoc, *secondLoc, cmpTy); 495 Optional<DefinedOrUnknownSVal> reverseTest = 496 reverse.getAs<DefinedOrUnknownSVal>(); 497 if (!reverseTest) 498 return state; 499 500 std::tie(stateTrue, stateFalse) = state->assume(*reverseTest); 501 if (stateTrue) { 502 if (stateFalse) { 503 // If we don't know which one comes first, we can't perform this test. 504 return state; 505 } else { 506 // Switch the values so that firstVal is before secondVal. 507 std::swap(firstLoc, secondLoc); 508 509 // Switch the Exprs as well, so that they still correspond. 510 std::swap(First, Second); 511 } 512 } 513 514 // Get the length, and make sure it too is known. 515 SVal LengthVal = state->getSVal(Size, LCtx); 516 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); 517 if (!Length) 518 return state; 519 520 // Convert the first buffer's start address to char*. 521 // Bail out if the cast fails. 522 ASTContext &Ctx = svalBuilder.getContext(); 523 QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy); 524 SVal FirstStart = svalBuilder.evalCast(*firstLoc, CharPtrTy, 525 First->getType()); 526 Optional<Loc> FirstStartLoc = FirstStart.getAs<Loc>(); 527 if (!FirstStartLoc) 528 return state; 529 530 // Compute the end of the first buffer. Bail out if THAT fails. 531 SVal FirstEnd = svalBuilder.evalBinOpLN(state, BO_Add, 532 *FirstStartLoc, *Length, CharPtrTy); 533 Optional<Loc> FirstEndLoc = FirstEnd.getAs<Loc>(); 534 if (!FirstEndLoc) 535 return state; 536 537 // Is the end of the first buffer past the start of the second buffer? 538 SVal Overlap = svalBuilder.evalBinOpLL(state, BO_GT, 539 *FirstEndLoc, *secondLoc, cmpTy); 540 Optional<DefinedOrUnknownSVal> OverlapTest = 541 Overlap.getAs<DefinedOrUnknownSVal>(); 542 if (!OverlapTest) 543 return state; 544 545 std::tie(stateTrue, stateFalse) = state->assume(*OverlapTest); 546 547 if (stateTrue && !stateFalse) { 548 // Overlap! 549 emitOverlapBug(C, stateTrue, First, Second); 550 return nullptr; 551 } 552 553 // assume the two expressions don't overlap. 554 assert(stateFalse); 555 return stateFalse; 556 } 557 558 void CStringChecker::emitOverlapBug(CheckerContext &C, ProgramStateRef state, 559 const Stmt *First, const Stmt *Second) const { 560 ExplodedNode *N = C.generateErrorNode(state); 561 if (!N) 562 return; 563 564 if (!BT_Overlap) 565 BT_Overlap.reset(new BugType(Filter.CheckNameCStringBufferOverlap, 566 categories::UnixAPI, "Improper arguments")); 567 568 // Generate a report for this bug. 569 auto report = llvm::make_unique<BugReport>( 570 *BT_Overlap, "Arguments must not be overlapping buffers", N); 571 report->addRange(First->getSourceRange()); 572 report->addRange(Second->getSourceRange()); 573 574 C.emitReport(std::move(report)); 575 } 576 577 void CStringChecker::emitNullArgBug(CheckerContext &C, ProgramStateRef State, 578 const Stmt *S, StringRef WarningMsg) const { 579 if (ExplodedNode *N = C.generateErrorNode(State)) { 580 if (!BT_Null) 581 BT_Null.reset(new BuiltinBug( 582 Filter.CheckNameCStringNullArg, categories::UnixAPI, 583 "Null pointer argument in call to byte string function")); 584 585 BuiltinBug *BT = static_cast<BuiltinBug *>(BT_Null.get()); 586 auto Report = llvm::make_unique<BugReport>(*BT, WarningMsg, N); 587 Report->addRange(S->getSourceRange()); 588 if (const auto *Ex = dyn_cast<Expr>(S)) 589 bugreporter::trackExpressionValue(N, Ex, *Report); 590 C.emitReport(std::move(Report)); 591 } 592 } 593 594 void CStringChecker::emitOutOfBoundsBug(CheckerContext &C, 595 ProgramStateRef State, const Stmt *S, 596 StringRef WarningMsg) const { 597 if (ExplodedNode *N = C.generateErrorNode(State)) { 598 if (!BT_Bounds) 599 BT_Bounds.reset(new BuiltinBug( 600 Filter.CheckCStringOutOfBounds ? Filter.CheckNameCStringOutOfBounds 601 : Filter.CheckNameCStringNullArg, 602 "Out-of-bound array access", 603 "Byte string function accesses out-of-bound array element")); 604 605 BuiltinBug *BT = static_cast<BuiltinBug *>(BT_Bounds.get()); 606 607 // FIXME: It would be nice to eventually make this diagnostic more clear, 608 // e.g., by referencing the original declaration or by saying *why* this 609 // reference is outside the range. 610 auto Report = llvm::make_unique<BugReport>(*BT, WarningMsg, N); 611 Report->addRange(S->getSourceRange()); 612 C.emitReport(std::move(Report)); 613 } 614 } 615 616 void CStringChecker::emitNotCStringBug(CheckerContext &C, ProgramStateRef State, 617 const Stmt *S, 618 StringRef WarningMsg) const { 619 if (ExplodedNode *N = C.generateNonFatalErrorNode(State)) { 620 if (!BT_NotCString) 621 BT_NotCString.reset(new BuiltinBug( 622 Filter.CheckNameCStringNotNullTerm, categories::UnixAPI, 623 "Argument is not a null-terminated string.")); 624 625 auto Report = llvm::make_unique<BugReport>(*BT_NotCString, WarningMsg, N); 626 627 Report->addRange(S->getSourceRange()); 628 C.emitReport(std::move(Report)); 629 } 630 } 631 632 void CStringChecker::emitAdditionOverflowBug(CheckerContext &C, 633 ProgramStateRef State) const { 634 if (ExplodedNode *N = C.generateErrorNode(State)) { 635 if (!BT_NotCString) 636 BT_NotCString.reset( 637 new BuiltinBug(Filter.CheckNameCStringOutOfBounds, "API", 638 "Sum of expressions causes overflow.")); 639 640 // This isn't a great error message, but this should never occur in real 641 // code anyway -- you'd have to create a buffer longer than a size_t can 642 // represent, which is sort of a contradiction. 643 const char *WarningMsg = 644 "This expression will create a string whose length is too big to " 645 "be represented as a size_t"; 646 647 auto Report = llvm::make_unique<BugReport>(*BT_NotCString, WarningMsg, N); 648 C.emitReport(std::move(Report)); 649 } 650 } 651 652 ProgramStateRef CStringChecker::checkAdditionOverflow(CheckerContext &C, 653 ProgramStateRef state, 654 NonLoc left, 655 NonLoc right) const { 656 // If out-of-bounds checking is turned off, skip the rest. 657 if (!Filter.CheckCStringOutOfBounds) 658 return state; 659 660 // If a previous check has failed, propagate the failure. 661 if (!state) 662 return nullptr; 663 664 SValBuilder &svalBuilder = C.getSValBuilder(); 665 BasicValueFactory &BVF = svalBuilder.getBasicValueFactory(); 666 667 QualType sizeTy = svalBuilder.getContext().getSizeType(); 668 const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy); 669 NonLoc maxVal = svalBuilder.makeIntVal(maxValInt); 670 671 SVal maxMinusRight; 672 if (right.getAs<nonloc::ConcreteInt>()) { 673 maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, right, 674 sizeTy); 675 } else { 676 // Try switching the operands. (The order of these two assignments is 677 // important!) 678 maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, left, 679 sizeTy); 680 left = right; 681 } 682 683 if (Optional<NonLoc> maxMinusRightNL = maxMinusRight.getAs<NonLoc>()) { 684 QualType cmpTy = svalBuilder.getConditionType(); 685 // If left > max - right, we have an overflow. 686 SVal willOverflow = svalBuilder.evalBinOpNN(state, BO_GT, left, 687 *maxMinusRightNL, cmpTy); 688 689 ProgramStateRef stateOverflow, stateOkay; 690 std::tie(stateOverflow, stateOkay) = 691 state->assume(willOverflow.castAs<DefinedOrUnknownSVal>()); 692 693 if (stateOverflow && !stateOkay) { 694 // We have an overflow. Emit a bug report. 695 emitAdditionOverflowBug(C, stateOverflow); 696 return nullptr; 697 } 698 699 // From now on, assume an overflow didn't occur. 700 assert(stateOkay); 701 state = stateOkay; 702 } 703 704 return state; 705 } 706 707 ProgramStateRef CStringChecker::setCStringLength(ProgramStateRef state, 708 const MemRegion *MR, 709 SVal strLength) { 710 assert(!strLength.isUndef() && "Attempt to set an undefined string length"); 711 712 MR = MR->StripCasts(); 713 714 switch (MR->getKind()) { 715 case MemRegion::StringRegionKind: 716 // FIXME: This can happen if we strcpy() into a string region. This is 717 // undefined [C99 6.4.5p6], but we should still warn about it. 718 return state; 719 720 case MemRegion::SymbolicRegionKind: 721 case MemRegion::AllocaRegionKind: 722 case MemRegion::VarRegionKind: 723 case MemRegion::FieldRegionKind: 724 case MemRegion::ObjCIvarRegionKind: 725 // These are the types we can currently track string lengths for. 726 break; 727 728 case MemRegion::ElementRegionKind: 729 // FIXME: Handle element regions by upper-bounding the parent region's 730 // string length. 731 return state; 732 733 default: 734 // Other regions (mostly non-data) can't have a reliable C string length. 735 // For now, just ignore the change. 736 // FIXME: These are rare but not impossible. We should output some kind of 737 // warning for things like strcpy((char[]){'a', 0}, "b"); 738 return state; 739 } 740 741 if (strLength.isUnknown()) 742 return state->remove<CStringLength>(MR); 743 744 return state->set<CStringLength>(MR, strLength); 745 } 746 747 SVal CStringChecker::getCStringLengthForRegion(CheckerContext &C, 748 ProgramStateRef &state, 749 const Expr *Ex, 750 const MemRegion *MR, 751 bool hypothetical) { 752 if (!hypothetical) { 753 // If there's a recorded length, go ahead and return it. 754 const SVal *Recorded = state->get<CStringLength>(MR); 755 if (Recorded) 756 return *Recorded; 757 } 758 759 // Otherwise, get a new symbol and update the state. 760 SValBuilder &svalBuilder = C.getSValBuilder(); 761 QualType sizeTy = svalBuilder.getContext().getSizeType(); 762 SVal strLength = svalBuilder.getMetadataSymbolVal(CStringChecker::getTag(), 763 MR, Ex, sizeTy, 764 C.getLocationContext(), 765 C.blockCount()); 766 767 if (!hypothetical) { 768 if (Optional<NonLoc> strLn = strLength.getAs<NonLoc>()) { 769 // In case of unbounded calls strlen etc bound the range to SIZE_MAX/4 770 BasicValueFactory &BVF = svalBuilder.getBasicValueFactory(); 771 const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy); 772 llvm::APSInt fourInt = APSIntType(maxValInt).getValue(4); 773 const llvm::APSInt *maxLengthInt = BVF.evalAPSInt(BO_Div, maxValInt, 774 fourInt); 775 NonLoc maxLength = svalBuilder.makeIntVal(*maxLengthInt); 776 SVal evalLength = svalBuilder.evalBinOpNN(state, BO_LE, *strLn, 777 maxLength, sizeTy); 778 state = state->assume(evalLength.castAs<DefinedOrUnknownSVal>(), true); 779 } 780 state = state->set<CStringLength>(MR, strLength); 781 } 782 783 return strLength; 784 } 785 786 SVal CStringChecker::getCStringLength(CheckerContext &C, ProgramStateRef &state, 787 const Expr *Ex, SVal Buf, 788 bool hypothetical) const { 789 const MemRegion *MR = Buf.getAsRegion(); 790 if (!MR) { 791 // If we can't get a region, see if it's something we /know/ isn't a 792 // C string. In the context of locations, the only time we can issue such 793 // a warning is for labels. 794 if (Optional<loc::GotoLabel> Label = Buf.getAs<loc::GotoLabel>()) { 795 if (Filter.CheckCStringNotNullTerm) { 796 SmallString<120> buf; 797 llvm::raw_svector_ostream os(buf); 798 assert(CurrentFunctionDescription); 799 os << "Argument to " << CurrentFunctionDescription 800 << " is the address of the label '" << Label->getLabel()->getName() 801 << "', which is not a null-terminated string"; 802 803 emitNotCStringBug(C, state, Ex, os.str()); 804 } 805 return UndefinedVal(); 806 } 807 808 // If it's not a region and not a label, give up. 809 return UnknownVal(); 810 } 811 812 // If we have a region, strip casts from it and see if we can figure out 813 // its length. For anything we can't figure out, just return UnknownVal. 814 MR = MR->StripCasts(); 815 816 switch (MR->getKind()) { 817 case MemRegion::StringRegionKind: { 818 // Modifying the contents of string regions is undefined [C99 6.4.5p6], 819 // so we can assume that the byte length is the correct C string length. 820 SValBuilder &svalBuilder = C.getSValBuilder(); 821 QualType sizeTy = svalBuilder.getContext().getSizeType(); 822 const StringLiteral *strLit = cast<StringRegion>(MR)->getStringLiteral(); 823 return svalBuilder.makeIntVal(strLit->getByteLength(), sizeTy); 824 } 825 case MemRegion::SymbolicRegionKind: 826 case MemRegion::AllocaRegionKind: 827 case MemRegion::VarRegionKind: 828 case MemRegion::FieldRegionKind: 829 case MemRegion::ObjCIvarRegionKind: 830 return getCStringLengthForRegion(C, state, Ex, MR, hypothetical); 831 case MemRegion::CompoundLiteralRegionKind: 832 // FIXME: Can we track this? Is it necessary? 833 return UnknownVal(); 834 case MemRegion::ElementRegionKind: 835 // FIXME: How can we handle this? It's not good enough to subtract the 836 // offset from the base string length; consider "123\x00567" and &a[5]. 837 return UnknownVal(); 838 default: 839 // Other regions (mostly non-data) can't have a reliable C string length. 840 // In this case, an error is emitted and UndefinedVal is returned. 841 // The caller should always be prepared to handle this case. 842 if (Filter.CheckCStringNotNullTerm) { 843 SmallString<120> buf; 844 llvm::raw_svector_ostream os(buf); 845 846 assert(CurrentFunctionDescription); 847 os << "Argument to " << CurrentFunctionDescription << " is "; 848 849 if (SummarizeRegion(os, C.getASTContext(), MR)) 850 os << ", which is not a null-terminated string"; 851 else 852 os << "not a null-terminated string"; 853 854 emitNotCStringBug(C, state, Ex, os.str()); 855 } 856 return UndefinedVal(); 857 } 858 } 859 860 const StringLiteral *CStringChecker::getCStringLiteral(CheckerContext &C, 861 ProgramStateRef &state, const Expr *expr, SVal val) const { 862 863 // Get the memory region pointed to by the val. 864 const MemRegion *bufRegion = val.getAsRegion(); 865 if (!bufRegion) 866 return nullptr; 867 868 // Strip casts off the memory region. 869 bufRegion = bufRegion->StripCasts(); 870 871 // Cast the memory region to a string region. 872 const StringRegion *strRegion= dyn_cast<StringRegion>(bufRegion); 873 if (!strRegion) 874 return nullptr; 875 876 // Return the actual string in the string region. 877 return strRegion->getStringLiteral(); 878 } 879 880 bool CStringChecker::IsFirstBufInBound(CheckerContext &C, 881 ProgramStateRef state, 882 const Expr *FirstBuf, 883 const Expr *Size) { 884 // If we do not know that the buffer is long enough we return 'true'. 885 // Otherwise the parent region of this field region would also get 886 // invalidated, which would lead to warnings based on an unknown state. 887 888 // Originally copied from CheckBufferAccess and CheckLocation. 889 SValBuilder &svalBuilder = C.getSValBuilder(); 890 ASTContext &Ctx = svalBuilder.getContext(); 891 const LocationContext *LCtx = C.getLocationContext(); 892 893 QualType sizeTy = Size->getType(); 894 QualType PtrTy = Ctx.getPointerType(Ctx.CharTy); 895 SVal BufVal = state->getSVal(FirstBuf, LCtx); 896 897 SVal LengthVal = state->getSVal(Size, LCtx); 898 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); 899 if (!Length) 900 return true; // cf top comment. 901 902 // Compute the offset of the last element to be accessed: size-1. 903 NonLoc One = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>(); 904 SVal Offset = svalBuilder.evalBinOpNN(state, BO_Sub, *Length, One, sizeTy); 905 if (Offset.isUnknown()) 906 return true; // cf top comment 907 NonLoc LastOffset = Offset.castAs<NonLoc>(); 908 909 // Check that the first buffer is sufficiently long. 910 SVal BufStart = svalBuilder.evalCast(BufVal, PtrTy, FirstBuf->getType()); 911 Optional<Loc> BufLoc = BufStart.getAs<Loc>(); 912 if (!BufLoc) 913 return true; // cf top comment. 914 915 SVal BufEnd = 916 svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc, LastOffset, PtrTy); 917 918 // Check for out of bound array element access. 919 const MemRegion *R = BufEnd.getAsRegion(); 920 if (!R) 921 return true; // cf top comment. 922 923 const ElementRegion *ER = dyn_cast<ElementRegion>(R); 924 if (!ER) 925 return true; // cf top comment. 926 927 // FIXME: Does this crash when a non-standard definition 928 // of a library function is encountered? 929 assert(ER->getValueType() == C.getASTContext().CharTy && 930 "IsFirstBufInBound should only be called with char* ElementRegions"); 931 932 // Get the size of the array. 933 const SubRegion *superReg = cast<SubRegion>(ER->getSuperRegion()); 934 SVal Extent = 935 svalBuilder.convertToArrayIndex(superReg->getExtent(svalBuilder)); 936 DefinedOrUnknownSVal ExtentSize = Extent.castAs<DefinedOrUnknownSVal>(); 937 938 // Get the index of the accessed element. 939 DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>(); 940 941 ProgramStateRef StInBound = state->assumeInBound(Idx, ExtentSize, true); 942 943 return static_cast<bool>(StInBound); 944 } 945 946 ProgramStateRef CStringChecker::InvalidateBuffer(CheckerContext &C, 947 ProgramStateRef state, 948 const Expr *E, SVal V, 949 bool IsSourceBuffer, 950 const Expr *Size) { 951 Optional<Loc> L = V.getAs<Loc>(); 952 if (!L) 953 return state; 954 955 // FIXME: This is a simplified version of what's in CFRefCount.cpp -- it makes 956 // some assumptions about the value that CFRefCount can't. Even so, it should 957 // probably be refactored. 958 if (Optional<loc::MemRegionVal> MR = L->getAs<loc::MemRegionVal>()) { 959 const MemRegion *R = MR->getRegion()->StripCasts(); 960 961 // Are we dealing with an ElementRegion? If so, we should be invalidating 962 // the super-region. 963 if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) { 964 R = ER->getSuperRegion(); 965 // FIXME: What about layers of ElementRegions? 966 } 967 968 // Invalidate this region. 969 const LocationContext *LCtx = C.getPredecessor()->getLocationContext(); 970 971 bool CausesPointerEscape = false; 972 RegionAndSymbolInvalidationTraits ITraits; 973 // Invalidate and escape only indirect regions accessible through the source 974 // buffer. 975 if (IsSourceBuffer) { 976 ITraits.setTrait(R->getBaseRegion(), 977 RegionAndSymbolInvalidationTraits::TK_PreserveContents); 978 ITraits.setTrait(R, RegionAndSymbolInvalidationTraits::TK_SuppressEscape); 979 CausesPointerEscape = true; 980 } else { 981 const MemRegion::Kind& K = R->getKind(); 982 if (K == MemRegion::FieldRegionKind) 983 if (Size && IsFirstBufInBound(C, state, E, Size)) { 984 // If destination buffer is a field region and access is in bound, 985 // do not invalidate its super region. 986 ITraits.setTrait( 987 R, 988 RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion); 989 } 990 } 991 992 return state->invalidateRegions(R, E, C.blockCount(), LCtx, 993 CausesPointerEscape, nullptr, nullptr, 994 &ITraits); 995 } 996 997 // If we have a non-region value by chance, just remove the binding. 998 // FIXME: is this necessary or correct? This handles the non-Region 999 // cases. Is it ever valid to store to these? 1000 return state->killBinding(*L); 1001 } 1002 1003 bool CStringChecker::SummarizeRegion(raw_ostream &os, ASTContext &Ctx, 1004 const MemRegion *MR) { 1005 const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(MR); 1006 1007 switch (MR->getKind()) { 1008 case MemRegion::FunctionCodeRegionKind: { 1009 const NamedDecl *FD = cast<FunctionCodeRegion>(MR)->getDecl(); 1010 if (FD) 1011 os << "the address of the function '" << *FD << '\''; 1012 else 1013 os << "the address of a function"; 1014 return true; 1015 } 1016 case MemRegion::BlockCodeRegionKind: 1017 os << "block text"; 1018 return true; 1019 case MemRegion::BlockDataRegionKind: 1020 os << "a block"; 1021 return true; 1022 case MemRegion::CXXThisRegionKind: 1023 case MemRegion::CXXTempObjectRegionKind: 1024 os << "a C++ temp object of type " << TVR->getValueType().getAsString(); 1025 return true; 1026 case MemRegion::VarRegionKind: 1027 os << "a variable of type" << TVR->getValueType().getAsString(); 1028 return true; 1029 case MemRegion::FieldRegionKind: 1030 os << "a field of type " << TVR->getValueType().getAsString(); 1031 return true; 1032 case MemRegion::ObjCIvarRegionKind: 1033 os << "an instance variable of type " << TVR->getValueType().getAsString(); 1034 return true; 1035 default: 1036 return false; 1037 } 1038 } 1039 1040 bool CStringChecker::memsetAux(const Expr *DstBuffer, SVal CharVal, 1041 const Expr *Size, CheckerContext &C, 1042 ProgramStateRef &State) { 1043 SVal MemVal = C.getSVal(DstBuffer); 1044 SVal SizeVal = C.getSVal(Size); 1045 const MemRegion *MR = MemVal.getAsRegion(); 1046 if (!MR) 1047 return false; 1048 1049 // We're about to model memset by producing a "default binding" in the Store. 1050 // Our current implementation - RegionStore - doesn't support default bindings 1051 // that don't cover the whole base region. So we should first get the offset 1052 // and the base region to figure out whether the offset of buffer is 0. 1053 RegionOffset Offset = MR->getAsOffset(); 1054 const MemRegion *BR = Offset.getRegion(); 1055 1056 Optional<NonLoc> SizeNL = SizeVal.getAs<NonLoc>(); 1057 if (!SizeNL) 1058 return false; 1059 1060 SValBuilder &svalBuilder = C.getSValBuilder(); 1061 ASTContext &Ctx = C.getASTContext(); 1062 1063 // void *memset(void *dest, int ch, size_t count); 1064 // For now we can only handle the case of offset is 0 and concrete char value. 1065 if (Offset.isValid() && !Offset.hasSymbolicOffset() && 1066 Offset.getOffset() == 0) { 1067 // Get the base region's extent. 1068 auto *SubReg = cast<SubRegion>(BR); 1069 DefinedOrUnknownSVal Extent = SubReg->getExtent(svalBuilder); 1070 1071 ProgramStateRef StateWholeReg, StateNotWholeReg; 1072 std::tie(StateWholeReg, StateNotWholeReg) = 1073 State->assume(svalBuilder.evalEQ(State, Extent, *SizeNL)); 1074 1075 // With the semantic of 'memset()', we should convert the CharVal to 1076 // unsigned char. 1077 CharVal = svalBuilder.evalCast(CharVal, Ctx.UnsignedCharTy, Ctx.IntTy); 1078 1079 ProgramStateRef StateNullChar, StateNonNullChar; 1080 std::tie(StateNullChar, StateNonNullChar) = 1081 assumeZero(C, State, CharVal, Ctx.UnsignedCharTy); 1082 1083 if (StateWholeReg && !StateNotWholeReg && StateNullChar && 1084 !StateNonNullChar) { 1085 // If the 'memset()' acts on the whole region of destination buffer and 1086 // the value of the second argument of 'memset()' is zero, bind the second 1087 // argument's value to the destination buffer with 'default binding'. 1088 // FIXME: Since there is no perfect way to bind the non-zero character, we 1089 // can only deal with zero value here. In the future, we need to deal with 1090 // the binding of non-zero value in the case of whole region. 1091 State = State->bindDefaultZero(svalBuilder.makeLoc(BR), 1092 C.getLocationContext()); 1093 } else { 1094 // If the destination buffer's extent is not equal to the value of 1095 // third argument, just invalidate buffer. 1096 State = InvalidateBuffer(C, State, DstBuffer, MemVal, 1097 /*IsSourceBuffer*/ false, Size); 1098 } 1099 1100 if (StateNullChar && !StateNonNullChar) { 1101 // If the value of the second argument of 'memset()' is zero, set the 1102 // string length of destination buffer to 0 directly. 1103 State = setCStringLength(State, MR, 1104 svalBuilder.makeZeroVal(Ctx.getSizeType())); 1105 } else if (!StateNullChar && StateNonNullChar) { 1106 SVal NewStrLen = svalBuilder.getMetadataSymbolVal( 1107 CStringChecker::getTag(), MR, DstBuffer, Ctx.getSizeType(), 1108 C.getLocationContext(), C.blockCount()); 1109 1110 // If the value of second argument is not zero, then the string length 1111 // is at least the size argument. 1112 SVal NewStrLenGESize = svalBuilder.evalBinOp( 1113 State, BO_GE, NewStrLen, SizeVal, svalBuilder.getConditionType()); 1114 1115 State = setCStringLength( 1116 State->assume(NewStrLenGESize.castAs<DefinedOrUnknownSVal>(), true), 1117 MR, NewStrLen); 1118 } 1119 } else { 1120 // If the offset is not zero and char value is not concrete, we can do 1121 // nothing but invalidate the buffer. 1122 State = InvalidateBuffer(C, State, DstBuffer, MemVal, 1123 /*IsSourceBuffer*/ false, Size); 1124 } 1125 return true; 1126 } 1127 1128 //===----------------------------------------------------------------------===// 1129 // evaluation of individual function calls. 1130 //===----------------------------------------------------------------------===// 1131 1132 void CStringChecker::evalCopyCommon(CheckerContext &C, 1133 const CallExpr *CE, 1134 ProgramStateRef state, 1135 const Expr *Size, const Expr *Dest, 1136 const Expr *Source, bool Restricted, 1137 bool IsMempcpy) const { 1138 CurrentFunctionDescription = "memory copy function"; 1139 1140 // See if the size argument is zero. 1141 const LocationContext *LCtx = C.getLocationContext(); 1142 SVal sizeVal = state->getSVal(Size, LCtx); 1143 QualType sizeTy = Size->getType(); 1144 1145 ProgramStateRef stateZeroSize, stateNonZeroSize; 1146 std::tie(stateZeroSize, stateNonZeroSize) = 1147 assumeZero(C, state, sizeVal, sizeTy); 1148 1149 // Get the value of the Dest. 1150 SVal destVal = state->getSVal(Dest, LCtx); 1151 1152 // If the size is zero, there won't be any actual memory access, so 1153 // just bind the return value to the destination buffer and return. 1154 if (stateZeroSize && !stateNonZeroSize) { 1155 stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, destVal); 1156 C.addTransition(stateZeroSize); 1157 return; 1158 } 1159 1160 // If the size can be nonzero, we have to check the other arguments. 1161 if (stateNonZeroSize) { 1162 state = stateNonZeroSize; 1163 1164 // Ensure the destination is not null. If it is NULL there will be a 1165 // NULL pointer dereference. 1166 state = checkNonNull(C, state, Dest, destVal); 1167 if (!state) 1168 return; 1169 1170 // Get the value of the Src. 1171 SVal srcVal = state->getSVal(Source, LCtx); 1172 1173 // Ensure the source is not null. If it is NULL there will be a 1174 // NULL pointer dereference. 1175 state = checkNonNull(C, state, Source, srcVal); 1176 if (!state) 1177 return; 1178 1179 // Ensure the accesses are valid and that the buffers do not overlap. 1180 const char * const writeWarning = 1181 "Memory copy function overflows destination buffer"; 1182 state = CheckBufferAccess(C, state, Size, Dest, Source, 1183 writeWarning, /* sourceWarning = */ nullptr); 1184 if (Restricted) 1185 state = CheckOverlap(C, state, Size, Dest, Source); 1186 1187 if (!state) 1188 return; 1189 1190 // If this is mempcpy, get the byte after the last byte copied and 1191 // bind the expr. 1192 if (IsMempcpy) { 1193 // Get the byte after the last byte copied. 1194 SValBuilder &SvalBuilder = C.getSValBuilder(); 1195 ASTContext &Ctx = SvalBuilder.getContext(); 1196 QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy); 1197 SVal DestRegCharVal = 1198 SvalBuilder.evalCast(destVal, CharPtrTy, Dest->getType()); 1199 SVal lastElement = C.getSValBuilder().evalBinOp( 1200 state, BO_Add, DestRegCharVal, sizeVal, Dest->getType()); 1201 // If we don't know how much we copied, we can at least 1202 // conjure a return value for later. 1203 if (lastElement.isUnknown()) 1204 lastElement = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx, 1205 C.blockCount()); 1206 1207 // The byte after the last byte copied is the return value. 1208 state = state->BindExpr(CE, LCtx, lastElement); 1209 } else { 1210 // All other copies return the destination buffer. 1211 // (Well, bcopy() has a void return type, but this won't hurt.) 1212 state = state->BindExpr(CE, LCtx, destVal); 1213 } 1214 1215 // Invalidate the destination (regular invalidation without pointer-escaping 1216 // the address of the top-level region). 1217 // FIXME: Even if we can't perfectly model the copy, we should see if we 1218 // can use LazyCompoundVals to copy the source values into the destination. 1219 // This would probably remove any existing bindings past the end of the 1220 // copied region, but that's still an improvement over blank invalidation. 1221 state = InvalidateBuffer(C, state, Dest, C.getSVal(Dest), 1222 /*IsSourceBuffer*/false, Size); 1223 1224 // Invalidate the source (const-invalidation without const-pointer-escaping 1225 // the address of the top-level region). 1226 state = InvalidateBuffer(C, state, Source, C.getSVal(Source), 1227 /*IsSourceBuffer*/true, nullptr); 1228 1229 C.addTransition(state); 1230 } 1231 } 1232 1233 1234 void CStringChecker::evalMemcpy(CheckerContext &C, const CallExpr *CE) const { 1235 // void *memcpy(void *restrict dst, const void *restrict src, size_t n); 1236 // The return value is the address of the destination buffer. 1237 const Expr *Dest = CE->getArg(0); 1238 ProgramStateRef state = C.getState(); 1239 1240 evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1), true); 1241 } 1242 1243 void CStringChecker::evalMempcpy(CheckerContext &C, const CallExpr *CE) const { 1244 // void *mempcpy(void *restrict dst, const void *restrict src, size_t n); 1245 // The return value is a pointer to the byte following the last written byte. 1246 const Expr *Dest = CE->getArg(0); 1247 ProgramStateRef state = C.getState(); 1248 1249 evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1), true, true); 1250 } 1251 1252 void CStringChecker::evalMemmove(CheckerContext &C, const CallExpr *CE) const { 1253 // void *memmove(void *dst, const void *src, size_t n); 1254 // The return value is the address of the destination buffer. 1255 const Expr *Dest = CE->getArg(0); 1256 ProgramStateRef state = C.getState(); 1257 1258 evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1)); 1259 } 1260 1261 void CStringChecker::evalBcopy(CheckerContext &C, const CallExpr *CE) const { 1262 // void bcopy(const void *src, void *dst, size_t n); 1263 evalCopyCommon(C, CE, C.getState(), 1264 CE->getArg(2), CE->getArg(1), CE->getArg(0)); 1265 } 1266 1267 void CStringChecker::evalMemcmp(CheckerContext &C, const CallExpr *CE) const { 1268 // int memcmp(const void *s1, const void *s2, size_t n); 1269 CurrentFunctionDescription = "memory comparison function"; 1270 1271 const Expr *Left = CE->getArg(0); 1272 const Expr *Right = CE->getArg(1); 1273 const Expr *Size = CE->getArg(2); 1274 1275 ProgramStateRef state = C.getState(); 1276 SValBuilder &svalBuilder = C.getSValBuilder(); 1277 1278 // See if the size argument is zero. 1279 const LocationContext *LCtx = C.getLocationContext(); 1280 SVal sizeVal = state->getSVal(Size, LCtx); 1281 QualType sizeTy = Size->getType(); 1282 1283 ProgramStateRef stateZeroSize, stateNonZeroSize; 1284 std::tie(stateZeroSize, stateNonZeroSize) = 1285 assumeZero(C, state, sizeVal, sizeTy); 1286 1287 // If the size can be zero, the result will be 0 in that case, and we don't 1288 // have to check either of the buffers. 1289 if (stateZeroSize) { 1290 state = stateZeroSize; 1291 state = state->BindExpr(CE, LCtx, 1292 svalBuilder.makeZeroVal(CE->getType())); 1293 C.addTransition(state); 1294 } 1295 1296 // If the size can be nonzero, we have to check the other arguments. 1297 if (stateNonZeroSize) { 1298 state = stateNonZeroSize; 1299 // If we know the two buffers are the same, we know the result is 0. 1300 // First, get the two buffers' addresses. Another checker will have already 1301 // made sure they're not undefined. 1302 DefinedOrUnknownSVal LV = 1303 state->getSVal(Left, LCtx).castAs<DefinedOrUnknownSVal>(); 1304 DefinedOrUnknownSVal RV = 1305 state->getSVal(Right, LCtx).castAs<DefinedOrUnknownSVal>(); 1306 1307 // See if they are the same. 1308 DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV); 1309 ProgramStateRef StSameBuf, StNotSameBuf; 1310 std::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf); 1311 1312 // If the two arguments might be the same buffer, we know the result is 0, 1313 // and we only need to check one size. 1314 if (StSameBuf) { 1315 state = StSameBuf; 1316 state = CheckBufferAccess(C, state, Size, Left); 1317 if (state) { 1318 state = StSameBuf->BindExpr(CE, LCtx, 1319 svalBuilder.makeZeroVal(CE->getType())); 1320 C.addTransition(state); 1321 } 1322 } 1323 1324 // If the two arguments might be different buffers, we have to check the 1325 // size of both of them. 1326 if (StNotSameBuf) { 1327 state = StNotSameBuf; 1328 state = CheckBufferAccess(C, state, Size, Left, Right); 1329 if (state) { 1330 // The return value is the comparison result, which we don't know. 1331 SVal CmpV = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx, 1332 C.blockCount()); 1333 state = state->BindExpr(CE, LCtx, CmpV); 1334 C.addTransition(state); 1335 } 1336 } 1337 } 1338 } 1339 1340 void CStringChecker::evalstrLength(CheckerContext &C, 1341 const CallExpr *CE) const { 1342 // size_t strlen(const char *s); 1343 evalstrLengthCommon(C, CE, /* IsStrnlen = */ false); 1344 } 1345 1346 void CStringChecker::evalstrnLength(CheckerContext &C, 1347 const CallExpr *CE) const { 1348 // size_t strnlen(const char *s, size_t maxlen); 1349 evalstrLengthCommon(C, CE, /* IsStrnlen = */ true); 1350 } 1351 1352 void CStringChecker::evalstrLengthCommon(CheckerContext &C, const CallExpr *CE, 1353 bool IsStrnlen) const { 1354 CurrentFunctionDescription = "string length function"; 1355 ProgramStateRef state = C.getState(); 1356 const LocationContext *LCtx = C.getLocationContext(); 1357 1358 if (IsStrnlen) { 1359 const Expr *maxlenExpr = CE->getArg(1); 1360 SVal maxlenVal = state->getSVal(maxlenExpr, LCtx); 1361 1362 ProgramStateRef stateZeroSize, stateNonZeroSize; 1363 std::tie(stateZeroSize, stateNonZeroSize) = 1364 assumeZero(C, state, maxlenVal, maxlenExpr->getType()); 1365 1366 // If the size can be zero, the result will be 0 in that case, and we don't 1367 // have to check the string itself. 1368 if (stateZeroSize) { 1369 SVal zero = C.getSValBuilder().makeZeroVal(CE->getType()); 1370 stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, zero); 1371 C.addTransition(stateZeroSize); 1372 } 1373 1374 // If the size is GUARANTEED to be zero, we're done! 1375 if (!stateNonZeroSize) 1376 return; 1377 1378 // Otherwise, record the assumption that the size is nonzero. 1379 state = stateNonZeroSize; 1380 } 1381 1382 // Check that the string argument is non-null. 1383 const Expr *Arg = CE->getArg(0); 1384 SVal ArgVal = state->getSVal(Arg, LCtx); 1385 1386 state = checkNonNull(C, state, Arg, ArgVal); 1387 1388 if (!state) 1389 return; 1390 1391 SVal strLength = getCStringLength(C, state, Arg, ArgVal); 1392 1393 // If the argument isn't a valid C string, there's no valid state to 1394 // transition to. 1395 if (strLength.isUndef()) 1396 return; 1397 1398 DefinedOrUnknownSVal result = UnknownVal(); 1399 1400 // If the check is for strnlen() then bind the return value to no more than 1401 // the maxlen value. 1402 if (IsStrnlen) { 1403 QualType cmpTy = C.getSValBuilder().getConditionType(); 1404 1405 // It's a little unfortunate to be getting this again, 1406 // but it's not that expensive... 1407 const Expr *maxlenExpr = CE->getArg(1); 1408 SVal maxlenVal = state->getSVal(maxlenExpr, LCtx); 1409 1410 Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>(); 1411 Optional<NonLoc> maxlenValNL = maxlenVal.getAs<NonLoc>(); 1412 1413 if (strLengthNL && maxlenValNL) { 1414 ProgramStateRef stateStringTooLong, stateStringNotTooLong; 1415 1416 // Check if the strLength is greater than the maxlen. 1417 std::tie(stateStringTooLong, stateStringNotTooLong) = state->assume( 1418 C.getSValBuilder() 1419 .evalBinOpNN(state, BO_GT, *strLengthNL, *maxlenValNL, cmpTy) 1420 .castAs<DefinedOrUnknownSVal>()); 1421 1422 if (stateStringTooLong && !stateStringNotTooLong) { 1423 // If the string is longer than maxlen, return maxlen. 1424 result = *maxlenValNL; 1425 } else if (stateStringNotTooLong && !stateStringTooLong) { 1426 // If the string is shorter than maxlen, return its length. 1427 result = *strLengthNL; 1428 } 1429 } 1430 1431 if (result.isUnknown()) { 1432 // If we don't have enough information for a comparison, there's 1433 // no guarantee the full string length will actually be returned. 1434 // All we know is the return value is the min of the string length 1435 // and the limit. This is better than nothing. 1436 result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx, 1437 C.blockCount()); 1438 NonLoc resultNL = result.castAs<NonLoc>(); 1439 1440 if (strLengthNL) { 1441 state = state->assume(C.getSValBuilder().evalBinOpNN( 1442 state, BO_LE, resultNL, *strLengthNL, cmpTy) 1443 .castAs<DefinedOrUnknownSVal>(), true); 1444 } 1445 1446 if (maxlenValNL) { 1447 state = state->assume(C.getSValBuilder().evalBinOpNN( 1448 state, BO_LE, resultNL, *maxlenValNL, cmpTy) 1449 .castAs<DefinedOrUnknownSVal>(), true); 1450 } 1451 } 1452 1453 } else { 1454 // This is a plain strlen(), not strnlen(). 1455 result = strLength.castAs<DefinedOrUnknownSVal>(); 1456 1457 // If we don't know the length of the string, conjure a return 1458 // value, so it can be used in constraints, at least. 1459 if (result.isUnknown()) { 1460 result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx, 1461 C.blockCount()); 1462 } 1463 } 1464 1465 // Bind the return value. 1466 assert(!result.isUnknown() && "Should have conjured a value by now"); 1467 state = state->BindExpr(CE, LCtx, result); 1468 C.addTransition(state); 1469 } 1470 1471 void CStringChecker::evalStrcpy(CheckerContext &C, const CallExpr *CE) const { 1472 // char *strcpy(char *restrict dst, const char *restrict src); 1473 evalStrcpyCommon(C, CE, 1474 /* returnEnd = */ false, 1475 /* isBounded = */ false, 1476 /* isAppending = */ false); 1477 } 1478 1479 void CStringChecker::evalStrncpy(CheckerContext &C, const CallExpr *CE) const { 1480 // char *strncpy(char *restrict dst, const char *restrict src, size_t n); 1481 evalStrcpyCommon(C, CE, 1482 /* returnEnd = */ false, 1483 /* isBounded = */ true, 1484 /* isAppending = */ false); 1485 } 1486 1487 void CStringChecker::evalStpcpy(CheckerContext &C, const CallExpr *CE) const { 1488 // char *stpcpy(char *restrict dst, const char *restrict src); 1489 evalStrcpyCommon(C, CE, 1490 /* returnEnd = */ true, 1491 /* isBounded = */ false, 1492 /* isAppending = */ false); 1493 } 1494 1495 void CStringChecker::evalStrlcpy(CheckerContext &C, const CallExpr *CE) const { 1496 // char *strlcpy(char *dst, const char *src, size_t n); 1497 evalStrcpyCommon(C, CE, 1498 /* returnEnd = */ true, 1499 /* isBounded = */ true, 1500 /* isAppending = */ false, 1501 /* returnPtr = */ false); 1502 } 1503 1504 void CStringChecker::evalStrcat(CheckerContext &C, const CallExpr *CE) const { 1505 //char *strcat(char *restrict s1, const char *restrict s2); 1506 evalStrcpyCommon(C, CE, 1507 /* returnEnd = */ false, 1508 /* isBounded = */ false, 1509 /* isAppending = */ true); 1510 } 1511 1512 void CStringChecker::evalStrncat(CheckerContext &C, const CallExpr *CE) const { 1513 //char *strncat(char *restrict s1, const char *restrict s2, size_t n); 1514 evalStrcpyCommon(C, CE, 1515 /* returnEnd = */ false, 1516 /* isBounded = */ true, 1517 /* isAppending = */ true); 1518 } 1519 1520 void CStringChecker::evalStrlcat(CheckerContext &C, const CallExpr *CE) const { 1521 // FIXME: strlcat() uses a different rule for bound checking, i.e. 'n' means 1522 // a different thing as compared to strncat(). This currently causes 1523 // false positives in the alpha string bound checker. 1524 1525 //char *strlcat(char *s1, const char *s2, size_t n); 1526 evalStrcpyCommon(C, CE, 1527 /* returnEnd = */ false, 1528 /* isBounded = */ true, 1529 /* isAppending = */ true, 1530 /* returnPtr = */ false); 1531 } 1532 1533 void CStringChecker::evalStrcpyCommon(CheckerContext &C, const CallExpr *CE, 1534 bool returnEnd, bool isBounded, 1535 bool isAppending, bool returnPtr) const { 1536 CurrentFunctionDescription = "string copy function"; 1537 ProgramStateRef state = C.getState(); 1538 const LocationContext *LCtx = C.getLocationContext(); 1539 1540 // Check that the destination is non-null. 1541 const Expr *Dst = CE->getArg(0); 1542 SVal DstVal = state->getSVal(Dst, LCtx); 1543 1544 state = checkNonNull(C, state, Dst, DstVal); 1545 if (!state) 1546 return; 1547 1548 // Check that the source is non-null. 1549 const Expr *srcExpr = CE->getArg(1); 1550 SVal srcVal = state->getSVal(srcExpr, LCtx); 1551 state = checkNonNull(C, state, srcExpr, srcVal); 1552 if (!state) 1553 return; 1554 1555 // Get the string length of the source. 1556 SVal strLength = getCStringLength(C, state, srcExpr, srcVal); 1557 1558 // If the source isn't a valid C string, give up. 1559 if (strLength.isUndef()) 1560 return; 1561 1562 SValBuilder &svalBuilder = C.getSValBuilder(); 1563 QualType cmpTy = svalBuilder.getConditionType(); 1564 QualType sizeTy = svalBuilder.getContext().getSizeType(); 1565 1566 // These two values allow checking two kinds of errors: 1567 // - actual overflows caused by a source that doesn't fit in the destination 1568 // - potential overflows caused by a bound that could exceed the destination 1569 SVal amountCopied = UnknownVal(); 1570 SVal maxLastElementIndex = UnknownVal(); 1571 const char *boundWarning = nullptr; 1572 1573 state = CheckOverlap(C, state, isBounded ? CE->getArg(2) : CE->getArg(1), Dst, srcExpr); 1574 1575 if (!state) 1576 return; 1577 1578 // If the function is strncpy, strncat, etc... it is bounded. 1579 if (isBounded) { 1580 // Get the max number of characters to copy. 1581 const Expr *lenExpr = CE->getArg(2); 1582 SVal lenVal = state->getSVal(lenExpr, LCtx); 1583 1584 // Protect against misdeclared strncpy(). 1585 lenVal = svalBuilder.evalCast(lenVal, sizeTy, lenExpr->getType()); 1586 1587 Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>(); 1588 Optional<NonLoc> lenValNL = lenVal.getAs<NonLoc>(); 1589 1590 // If we know both values, we might be able to figure out how much 1591 // we're copying. 1592 if (strLengthNL && lenValNL) { 1593 ProgramStateRef stateSourceTooLong, stateSourceNotTooLong; 1594 1595 // Check if the max number to copy is less than the length of the src. 1596 // If the bound is equal to the source length, strncpy won't null- 1597 // terminate the result! 1598 std::tie(stateSourceTooLong, stateSourceNotTooLong) = state->assume( 1599 svalBuilder.evalBinOpNN(state, BO_GE, *strLengthNL, *lenValNL, cmpTy) 1600 .castAs<DefinedOrUnknownSVal>()); 1601 1602 if (stateSourceTooLong && !stateSourceNotTooLong) { 1603 // Max number to copy is less than the length of the src, so the actual 1604 // strLength copied is the max number arg. 1605 state = stateSourceTooLong; 1606 amountCopied = lenVal; 1607 1608 } else if (!stateSourceTooLong && stateSourceNotTooLong) { 1609 // The source buffer entirely fits in the bound. 1610 state = stateSourceNotTooLong; 1611 amountCopied = strLength; 1612 } 1613 } 1614 1615 // We still want to know if the bound is known to be too large. 1616 if (lenValNL) { 1617 if (isAppending) { 1618 // For strncat, the check is strlen(dst) + lenVal < sizeof(dst) 1619 1620 // Get the string length of the destination. If the destination is 1621 // memory that can't have a string length, we shouldn't be copying 1622 // into it anyway. 1623 SVal dstStrLength = getCStringLength(C, state, Dst, DstVal); 1624 if (dstStrLength.isUndef()) 1625 return; 1626 1627 if (Optional<NonLoc> dstStrLengthNL = dstStrLength.getAs<NonLoc>()) { 1628 maxLastElementIndex = svalBuilder.evalBinOpNN(state, BO_Add, 1629 *lenValNL, 1630 *dstStrLengthNL, 1631 sizeTy); 1632 boundWarning = "Size argument is greater than the free space in the " 1633 "destination buffer"; 1634 } 1635 1636 } else { 1637 // For strncpy, this is just checking that lenVal <= sizeof(dst) 1638 // (Yes, strncpy and strncat differ in how they treat termination. 1639 // strncat ALWAYS terminates, but strncpy doesn't.) 1640 1641 // We need a special case for when the copy size is zero, in which 1642 // case strncpy will do no work at all. Our bounds check uses n-1 1643 // as the last element accessed, so n == 0 is problematic. 1644 ProgramStateRef StateZeroSize, StateNonZeroSize; 1645 std::tie(StateZeroSize, StateNonZeroSize) = 1646 assumeZero(C, state, *lenValNL, sizeTy); 1647 1648 // If the size is known to be zero, we're done. 1649 if (StateZeroSize && !StateNonZeroSize) { 1650 if (returnPtr) { 1651 StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, DstVal); 1652 } else { 1653 StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, *lenValNL); 1654 } 1655 C.addTransition(StateZeroSize); 1656 return; 1657 } 1658 1659 // Otherwise, go ahead and figure out the last element we'll touch. 1660 // We don't record the non-zero assumption here because we can't 1661 // be sure. We won't warn on a possible zero. 1662 NonLoc one = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>(); 1663 maxLastElementIndex = svalBuilder.evalBinOpNN(state, BO_Sub, *lenValNL, 1664 one, sizeTy); 1665 boundWarning = "Size argument is greater than the length of the " 1666 "destination buffer"; 1667 } 1668 } 1669 1670 // If we couldn't pin down the copy length, at least bound it. 1671 // FIXME: We should actually run this code path for append as well, but 1672 // right now it creates problems with constraints (since we can end up 1673 // trying to pass constraints from symbol to symbol). 1674 if (amountCopied.isUnknown() && !isAppending) { 1675 // Try to get a "hypothetical" string length symbol, which we can later 1676 // set as a real value if that turns out to be the case. 1677 amountCopied = getCStringLength(C, state, lenExpr, srcVal, true); 1678 assert(!amountCopied.isUndef()); 1679 1680 if (Optional<NonLoc> amountCopiedNL = amountCopied.getAs<NonLoc>()) { 1681 if (lenValNL) { 1682 // amountCopied <= lenVal 1683 SVal copiedLessThanBound = svalBuilder.evalBinOpNN(state, BO_LE, 1684 *amountCopiedNL, 1685 *lenValNL, 1686 cmpTy); 1687 state = state->assume( 1688 copiedLessThanBound.castAs<DefinedOrUnknownSVal>(), true); 1689 if (!state) 1690 return; 1691 } 1692 1693 if (strLengthNL) { 1694 // amountCopied <= strlen(source) 1695 SVal copiedLessThanSrc = svalBuilder.evalBinOpNN(state, BO_LE, 1696 *amountCopiedNL, 1697 *strLengthNL, 1698 cmpTy); 1699 state = state->assume( 1700 copiedLessThanSrc.castAs<DefinedOrUnknownSVal>(), true); 1701 if (!state) 1702 return; 1703 } 1704 } 1705 } 1706 1707 } else { 1708 // The function isn't bounded. The amount copied should match the length 1709 // of the source buffer. 1710 amountCopied = strLength; 1711 } 1712 1713 assert(state); 1714 1715 // This represents the number of characters copied into the destination 1716 // buffer. (It may not actually be the strlen if the destination buffer 1717 // is not terminated.) 1718 SVal finalStrLength = UnknownVal(); 1719 1720 // If this is an appending function (strcat, strncat...) then set the 1721 // string length to strlen(src) + strlen(dst) since the buffer will 1722 // ultimately contain both. 1723 if (isAppending) { 1724 // Get the string length of the destination. If the destination is memory 1725 // that can't have a string length, we shouldn't be copying into it anyway. 1726 SVal dstStrLength = getCStringLength(C, state, Dst, DstVal); 1727 if (dstStrLength.isUndef()) 1728 return; 1729 1730 Optional<NonLoc> srcStrLengthNL = amountCopied.getAs<NonLoc>(); 1731 Optional<NonLoc> dstStrLengthNL = dstStrLength.getAs<NonLoc>(); 1732 1733 // If we know both string lengths, we might know the final string length. 1734 if (srcStrLengthNL && dstStrLengthNL) { 1735 // Make sure the two lengths together don't overflow a size_t. 1736 state = checkAdditionOverflow(C, state, *srcStrLengthNL, *dstStrLengthNL); 1737 if (!state) 1738 return; 1739 1740 finalStrLength = svalBuilder.evalBinOpNN(state, BO_Add, *srcStrLengthNL, 1741 *dstStrLengthNL, sizeTy); 1742 } 1743 1744 // If we couldn't get a single value for the final string length, 1745 // we can at least bound it by the individual lengths. 1746 if (finalStrLength.isUnknown()) { 1747 // Try to get a "hypothetical" string length symbol, which we can later 1748 // set as a real value if that turns out to be the case. 1749 finalStrLength = getCStringLength(C, state, CE, DstVal, true); 1750 assert(!finalStrLength.isUndef()); 1751 1752 if (Optional<NonLoc> finalStrLengthNL = finalStrLength.getAs<NonLoc>()) { 1753 if (srcStrLengthNL) { 1754 // finalStrLength >= srcStrLength 1755 SVal sourceInResult = svalBuilder.evalBinOpNN(state, BO_GE, 1756 *finalStrLengthNL, 1757 *srcStrLengthNL, 1758 cmpTy); 1759 state = state->assume(sourceInResult.castAs<DefinedOrUnknownSVal>(), 1760 true); 1761 if (!state) 1762 return; 1763 } 1764 1765 if (dstStrLengthNL) { 1766 // finalStrLength >= dstStrLength 1767 SVal destInResult = svalBuilder.evalBinOpNN(state, BO_GE, 1768 *finalStrLengthNL, 1769 *dstStrLengthNL, 1770 cmpTy); 1771 state = 1772 state->assume(destInResult.castAs<DefinedOrUnknownSVal>(), true); 1773 if (!state) 1774 return; 1775 } 1776 } 1777 } 1778 1779 } else { 1780 // Otherwise, this is a copy-over function (strcpy, strncpy, ...), and 1781 // the final string length will match the input string length. 1782 finalStrLength = amountCopied; 1783 } 1784 1785 SVal Result; 1786 1787 if (returnPtr) { 1788 // The final result of the function will either be a pointer past the last 1789 // copied element, or a pointer to the start of the destination buffer. 1790 Result = (returnEnd ? UnknownVal() : DstVal); 1791 } else { 1792 Result = finalStrLength; 1793 } 1794 1795 assert(state); 1796 1797 // If the destination is a MemRegion, try to check for a buffer overflow and 1798 // record the new string length. 1799 if (Optional<loc::MemRegionVal> dstRegVal = 1800 DstVal.getAs<loc::MemRegionVal>()) { 1801 QualType ptrTy = Dst->getType(); 1802 1803 // If we have an exact value on a bounded copy, use that to check for 1804 // overflows, rather than our estimate about how much is actually copied. 1805 if (boundWarning) { 1806 if (Optional<NonLoc> maxLastNL = maxLastElementIndex.getAs<NonLoc>()) { 1807 SVal maxLastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal, 1808 *maxLastNL, ptrTy); 1809 state = CheckLocation(C, state, CE->getArg(2), maxLastElement, 1810 boundWarning); 1811 if (!state) 1812 return; 1813 } 1814 } 1815 1816 // Then, if the final length is known... 1817 if (Optional<NonLoc> knownStrLength = finalStrLength.getAs<NonLoc>()) { 1818 SVal lastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal, 1819 *knownStrLength, ptrTy); 1820 1821 // ...and we haven't checked the bound, we'll check the actual copy. 1822 if (!boundWarning) { 1823 const char * const warningMsg = 1824 "String copy function overflows destination buffer"; 1825 state = CheckLocation(C, state, Dst, lastElement, warningMsg); 1826 if (!state) 1827 return; 1828 } 1829 1830 // If this is a stpcpy-style copy, the last element is the return value. 1831 if (returnPtr && returnEnd) 1832 Result = lastElement; 1833 } 1834 1835 // Invalidate the destination (regular invalidation without pointer-escaping 1836 // the address of the top-level region). This must happen before we set the 1837 // C string length because invalidation will clear the length. 1838 // FIXME: Even if we can't perfectly model the copy, we should see if we 1839 // can use LazyCompoundVals to copy the source values into the destination. 1840 // This would probably remove any existing bindings past the end of the 1841 // string, but that's still an improvement over blank invalidation. 1842 state = InvalidateBuffer(C, state, Dst, *dstRegVal, 1843 /*IsSourceBuffer*/false, nullptr); 1844 1845 // Invalidate the source (const-invalidation without const-pointer-escaping 1846 // the address of the top-level region). 1847 state = InvalidateBuffer(C, state, srcExpr, srcVal, /*IsSourceBuffer*/true, 1848 nullptr); 1849 1850 // Set the C string length of the destination, if we know it. 1851 if (isBounded && !isAppending) { 1852 // strncpy is annoying in that it doesn't guarantee to null-terminate 1853 // the result string. If the original string didn't fit entirely inside 1854 // the bound (including the null-terminator), we don't know how long the 1855 // result is. 1856 if (amountCopied != strLength) 1857 finalStrLength = UnknownVal(); 1858 } 1859 state = setCStringLength(state, dstRegVal->getRegion(), finalStrLength); 1860 } 1861 1862 assert(state); 1863 1864 if (returnPtr) { 1865 // If this is a stpcpy-style copy, but we were unable to check for a buffer 1866 // overflow, we still need a result. Conjure a return value. 1867 if (returnEnd && Result.isUnknown()) { 1868 Result = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount()); 1869 } 1870 } 1871 // Set the return value. 1872 state = state->BindExpr(CE, LCtx, Result); 1873 C.addTransition(state); 1874 } 1875 1876 void CStringChecker::evalStrcmp(CheckerContext &C, const CallExpr *CE) const { 1877 //int strcmp(const char *s1, const char *s2); 1878 evalStrcmpCommon(C, CE, /* isBounded = */ false, /* ignoreCase = */ false); 1879 } 1880 1881 void CStringChecker::evalStrncmp(CheckerContext &C, const CallExpr *CE) const { 1882 //int strncmp(const char *s1, const char *s2, size_t n); 1883 evalStrcmpCommon(C, CE, /* isBounded = */ true, /* ignoreCase = */ false); 1884 } 1885 1886 void CStringChecker::evalStrcasecmp(CheckerContext &C, 1887 const CallExpr *CE) const { 1888 //int strcasecmp(const char *s1, const char *s2); 1889 evalStrcmpCommon(C, CE, /* isBounded = */ false, /* ignoreCase = */ true); 1890 } 1891 1892 void CStringChecker::evalStrncasecmp(CheckerContext &C, 1893 const CallExpr *CE) const { 1894 //int strncasecmp(const char *s1, const char *s2, size_t n); 1895 evalStrcmpCommon(C, CE, /* isBounded = */ true, /* ignoreCase = */ true); 1896 } 1897 1898 void CStringChecker::evalStrcmpCommon(CheckerContext &C, const CallExpr *CE, 1899 bool isBounded, bool ignoreCase) const { 1900 CurrentFunctionDescription = "string comparison function"; 1901 ProgramStateRef state = C.getState(); 1902 const LocationContext *LCtx = C.getLocationContext(); 1903 1904 // Check that the first string is non-null 1905 const Expr *s1 = CE->getArg(0); 1906 SVal s1Val = state->getSVal(s1, LCtx); 1907 state = checkNonNull(C, state, s1, s1Val); 1908 if (!state) 1909 return; 1910 1911 // Check that the second string is non-null. 1912 const Expr *s2 = CE->getArg(1); 1913 SVal s2Val = state->getSVal(s2, LCtx); 1914 state = checkNonNull(C, state, s2, s2Val); 1915 if (!state) 1916 return; 1917 1918 // Get the string length of the first string or give up. 1919 SVal s1Length = getCStringLength(C, state, s1, s1Val); 1920 if (s1Length.isUndef()) 1921 return; 1922 1923 // Get the string length of the second string or give up. 1924 SVal s2Length = getCStringLength(C, state, s2, s2Val); 1925 if (s2Length.isUndef()) 1926 return; 1927 1928 // If we know the two buffers are the same, we know the result is 0. 1929 // First, get the two buffers' addresses. Another checker will have already 1930 // made sure they're not undefined. 1931 DefinedOrUnknownSVal LV = s1Val.castAs<DefinedOrUnknownSVal>(); 1932 DefinedOrUnknownSVal RV = s2Val.castAs<DefinedOrUnknownSVal>(); 1933 1934 // See if they are the same. 1935 SValBuilder &svalBuilder = C.getSValBuilder(); 1936 DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV); 1937 ProgramStateRef StSameBuf, StNotSameBuf; 1938 std::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf); 1939 1940 // If the two arguments might be the same buffer, we know the result is 0, 1941 // and we only need to check one size. 1942 if (StSameBuf) { 1943 StSameBuf = StSameBuf->BindExpr(CE, LCtx, 1944 svalBuilder.makeZeroVal(CE->getType())); 1945 C.addTransition(StSameBuf); 1946 1947 // If the two arguments are GUARANTEED to be the same, we're done! 1948 if (!StNotSameBuf) 1949 return; 1950 } 1951 1952 assert(StNotSameBuf); 1953 state = StNotSameBuf; 1954 1955 // At this point we can go about comparing the two buffers. 1956 // For now, we only do this if they're both known string literals. 1957 1958 // Attempt to extract string literals from both expressions. 1959 const StringLiteral *s1StrLiteral = getCStringLiteral(C, state, s1, s1Val); 1960 const StringLiteral *s2StrLiteral = getCStringLiteral(C, state, s2, s2Val); 1961 bool canComputeResult = false; 1962 SVal resultVal = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx, 1963 C.blockCount()); 1964 1965 if (s1StrLiteral && s2StrLiteral) { 1966 StringRef s1StrRef = s1StrLiteral->getString(); 1967 StringRef s2StrRef = s2StrLiteral->getString(); 1968 1969 if (isBounded) { 1970 // Get the max number of characters to compare. 1971 const Expr *lenExpr = CE->getArg(2); 1972 SVal lenVal = state->getSVal(lenExpr, LCtx); 1973 1974 // If the length is known, we can get the right substrings. 1975 if (const llvm::APSInt *len = svalBuilder.getKnownValue(state, lenVal)) { 1976 // Create substrings of each to compare the prefix. 1977 s1StrRef = s1StrRef.substr(0, (size_t)len->getZExtValue()); 1978 s2StrRef = s2StrRef.substr(0, (size_t)len->getZExtValue()); 1979 canComputeResult = true; 1980 } 1981 } else { 1982 // This is a normal, unbounded strcmp. 1983 canComputeResult = true; 1984 } 1985 1986 if (canComputeResult) { 1987 // Real strcmp stops at null characters. 1988 size_t s1Term = s1StrRef.find('\0'); 1989 if (s1Term != StringRef::npos) 1990 s1StrRef = s1StrRef.substr(0, s1Term); 1991 1992 size_t s2Term = s2StrRef.find('\0'); 1993 if (s2Term != StringRef::npos) 1994 s2StrRef = s2StrRef.substr(0, s2Term); 1995 1996 // Use StringRef's comparison methods to compute the actual result. 1997 int compareRes = ignoreCase ? s1StrRef.compare_lower(s2StrRef) 1998 : s1StrRef.compare(s2StrRef); 1999 2000 // The strcmp function returns an integer greater than, equal to, or less 2001 // than zero, [c11, p7.24.4.2]. 2002 if (compareRes == 0) { 2003 resultVal = svalBuilder.makeIntVal(compareRes, CE->getType()); 2004 } 2005 else { 2006 DefinedSVal zeroVal = svalBuilder.makeIntVal(0, CE->getType()); 2007 // Constrain strcmp's result range based on the result of StringRef's 2008 // comparison methods. 2009 BinaryOperatorKind op = (compareRes == 1) ? BO_GT : BO_LT; 2010 SVal compareWithZero = 2011 svalBuilder.evalBinOp(state, op, resultVal, zeroVal, 2012 svalBuilder.getConditionType()); 2013 DefinedSVal compareWithZeroVal = compareWithZero.castAs<DefinedSVal>(); 2014 state = state->assume(compareWithZeroVal, true); 2015 } 2016 } 2017 } 2018 2019 state = state->BindExpr(CE, LCtx, resultVal); 2020 2021 // Record this as a possible path. 2022 C.addTransition(state); 2023 } 2024 2025 void CStringChecker::evalStrsep(CheckerContext &C, const CallExpr *CE) const { 2026 //char *strsep(char **stringp, const char *delim); 2027 // Sanity: does the search string parameter match the return type? 2028 const Expr *SearchStrPtr = CE->getArg(0); 2029 QualType CharPtrTy = SearchStrPtr->getType()->getPointeeType(); 2030 if (CharPtrTy.isNull() || 2031 CE->getType().getUnqualifiedType() != CharPtrTy.getUnqualifiedType()) 2032 return; 2033 2034 CurrentFunctionDescription = "strsep()"; 2035 ProgramStateRef State = C.getState(); 2036 const LocationContext *LCtx = C.getLocationContext(); 2037 2038 // Check that the search string pointer is non-null (though it may point to 2039 // a null string). 2040 SVal SearchStrVal = State->getSVal(SearchStrPtr, LCtx); 2041 State = checkNonNull(C, State, SearchStrPtr, SearchStrVal); 2042 if (!State) 2043 return; 2044 2045 // Check that the delimiter string is non-null. 2046 const Expr *DelimStr = CE->getArg(1); 2047 SVal DelimStrVal = State->getSVal(DelimStr, LCtx); 2048 State = checkNonNull(C, State, DelimStr, DelimStrVal); 2049 if (!State) 2050 return; 2051 2052 SValBuilder &SVB = C.getSValBuilder(); 2053 SVal Result; 2054 if (Optional<Loc> SearchStrLoc = SearchStrVal.getAs<Loc>()) { 2055 // Get the current value of the search string pointer, as a char*. 2056 Result = State->getSVal(*SearchStrLoc, CharPtrTy); 2057 2058 // Invalidate the search string, representing the change of one delimiter 2059 // character to NUL. 2060 State = InvalidateBuffer(C, State, SearchStrPtr, Result, 2061 /*IsSourceBuffer*/false, nullptr); 2062 2063 // Overwrite the search string pointer. The new value is either an address 2064 // further along in the same string, or NULL if there are no more tokens. 2065 State = State->bindLoc(*SearchStrLoc, 2066 SVB.conjureSymbolVal(getTag(), 2067 CE, 2068 LCtx, 2069 CharPtrTy, 2070 C.blockCount()), 2071 LCtx); 2072 } else { 2073 assert(SearchStrVal.isUnknown()); 2074 // Conjure a symbolic value. It's the best we can do. 2075 Result = SVB.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount()); 2076 } 2077 2078 // Set the return value, and finish. 2079 State = State->BindExpr(CE, LCtx, Result); 2080 C.addTransition(State); 2081 } 2082 2083 // These should probably be moved into a C++ standard library checker. 2084 void CStringChecker::evalStdCopy(CheckerContext &C, const CallExpr *CE) const { 2085 evalStdCopyCommon(C, CE); 2086 } 2087 2088 void CStringChecker::evalStdCopyBackward(CheckerContext &C, 2089 const CallExpr *CE) const { 2090 evalStdCopyCommon(C, CE); 2091 } 2092 2093 void CStringChecker::evalStdCopyCommon(CheckerContext &C, 2094 const CallExpr *CE) const { 2095 if (!CE->getArg(2)->getType()->isPointerType()) 2096 return; 2097 2098 ProgramStateRef State = C.getState(); 2099 2100 const LocationContext *LCtx = C.getLocationContext(); 2101 2102 // template <class _InputIterator, class _OutputIterator> 2103 // _OutputIterator 2104 // copy(_InputIterator __first, _InputIterator __last, 2105 // _OutputIterator __result) 2106 2107 // Invalidate the destination buffer 2108 const Expr *Dst = CE->getArg(2); 2109 SVal DstVal = State->getSVal(Dst, LCtx); 2110 State = InvalidateBuffer(C, State, Dst, DstVal, /*IsSource=*/false, 2111 /*Size=*/nullptr); 2112 2113 SValBuilder &SVB = C.getSValBuilder(); 2114 2115 SVal ResultVal = SVB.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount()); 2116 State = State->BindExpr(CE, LCtx, ResultVal); 2117 2118 C.addTransition(State); 2119 } 2120 2121 void CStringChecker::evalMemset(CheckerContext &C, const CallExpr *CE) const { 2122 CurrentFunctionDescription = "memory set function"; 2123 2124 const Expr *Mem = CE->getArg(0); 2125 const Expr *CharE = CE->getArg(1); 2126 const Expr *Size = CE->getArg(2); 2127 ProgramStateRef State = C.getState(); 2128 2129 // See if the size argument is zero. 2130 const LocationContext *LCtx = C.getLocationContext(); 2131 SVal SizeVal = State->getSVal(Size, LCtx); 2132 QualType SizeTy = Size->getType(); 2133 2134 ProgramStateRef StateZeroSize, StateNonZeroSize; 2135 std::tie(StateZeroSize, StateNonZeroSize) = 2136 assumeZero(C, State, SizeVal, SizeTy); 2137 2138 // Get the value of the memory area. 2139 SVal MemVal = State->getSVal(Mem, LCtx); 2140 2141 // If the size is zero, there won't be any actual memory access, so 2142 // just bind the return value to the Mem buffer and return. 2143 if (StateZeroSize && !StateNonZeroSize) { 2144 StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, MemVal); 2145 C.addTransition(StateZeroSize); 2146 return; 2147 } 2148 2149 // Ensure the memory area is not null. 2150 // If it is NULL there will be a NULL pointer dereference. 2151 State = checkNonNull(C, StateNonZeroSize, Mem, MemVal); 2152 if (!State) 2153 return; 2154 2155 State = CheckBufferAccess(C, State, Size, Mem); 2156 if (!State) 2157 return; 2158 2159 // According to the values of the arguments, bind the value of the second 2160 // argument to the destination buffer and set string length, or just 2161 // invalidate the destination buffer. 2162 if (!memsetAux(Mem, C.getSVal(CharE), Size, C, State)) 2163 return; 2164 2165 State = State->BindExpr(CE, LCtx, MemVal); 2166 C.addTransition(State); 2167 } 2168 2169 void CStringChecker::evalBzero(CheckerContext &C, const CallExpr *CE) const { 2170 CurrentFunctionDescription = "memory clearance function"; 2171 2172 const Expr *Mem = CE->getArg(0); 2173 const Expr *Size = CE->getArg(1); 2174 SVal Zero = C.getSValBuilder().makeZeroVal(C.getASTContext().IntTy); 2175 2176 ProgramStateRef State = C.getState(); 2177 2178 // See if the size argument is zero. 2179 SVal SizeVal = C.getSVal(Size); 2180 QualType SizeTy = Size->getType(); 2181 2182 ProgramStateRef StateZeroSize, StateNonZeroSize; 2183 std::tie(StateZeroSize, StateNonZeroSize) = 2184 assumeZero(C, State, SizeVal, SizeTy); 2185 2186 // If the size is zero, there won't be any actual memory access, 2187 // In this case we just return. 2188 if (StateZeroSize && !StateNonZeroSize) { 2189 C.addTransition(StateZeroSize); 2190 return; 2191 } 2192 2193 // Get the value of the memory area. 2194 SVal MemVal = C.getSVal(Mem); 2195 2196 // Ensure the memory area is not null. 2197 // If it is NULL there will be a NULL pointer dereference. 2198 State = checkNonNull(C, StateNonZeroSize, Mem, MemVal); 2199 if (!State) 2200 return; 2201 2202 State = CheckBufferAccess(C, State, Size, Mem); 2203 if (!State) 2204 return; 2205 2206 if (!memsetAux(Mem, Zero, Size, C, State)) 2207 return; 2208 2209 C.addTransition(State); 2210 } 2211 2212 //===----------------------------------------------------------------------===// 2213 // The driver method, and other Checker callbacks. 2214 //===----------------------------------------------------------------------===// 2215 2216 CStringChecker::FnCheck CStringChecker::identifyCall(const CallEvent &Call, 2217 CheckerContext &C) const { 2218 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); 2219 if (!CE) 2220 return nullptr; 2221 2222 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Call.getDecl()); 2223 if (!FD) 2224 return nullptr; 2225 2226 if (Call.isCalled(StdCopy)) { 2227 return &CStringChecker::evalStdCopy; 2228 } else if (Call.isCalled(StdCopyBackward)) { 2229 return &CStringChecker::evalStdCopyBackward; 2230 } 2231 2232 // Pro-actively check that argument types are safe to do arithmetic upon. 2233 // We do not want to crash if someone accidentally passes a structure 2234 // into, say, a C++ overload of any of these functions. We could not check 2235 // that for std::copy because they may have arguments of other types. 2236 for (auto I : CE->arguments()) { 2237 QualType T = I->getType(); 2238 if (!T->isIntegralOrEnumerationType() && !T->isPointerType()) 2239 return nullptr; 2240 } 2241 2242 const FnCheck *Callback = Callbacks.lookup(Call); 2243 if (Callback) 2244 return *Callback; 2245 2246 return nullptr; 2247 } 2248 2249 bool CStringChecker::evalCall(const CallEvent &Call, CheckerContext &C) const { 2250 FnCheck Callback = identifyCall(Call, C); 2251 2252 // If the callee isn't a string function, let another checker handle it. 2253 if (!Callback) 2254 return false; 2255 2256 // Check and evaluate the call. 2257 const auto *CE = cast<CallExpr>(Call.getOriginExpr()); 2258 (this->*Callback)(C, CE); 2259 2260 // If the evaluate call resulted in no change, chain to the next eval call 2261 // handler. 2262 // Note, the custom CString evaluation calls assume that basic safety 2263 // properties are held. However, if the user chooses to turn off some of these 2264 // checks, we ignore the issues and leave the call evaluation to a generic 2265 // handler. 2266 return C.isDifferent(); 2267 } 2268 2269 void CStringChecker::checkPreStmt(const DeclStmt *DS, CheckerContext &C) const { 2270 // Record string length for char a[] = "abc"; 2271 ProgramStateRef state = C.getState(); 2272 2273 for (const auto *I : DS->decls()) { 2274 const VarDecl *D = dyn_cast<VarDecl>(I); 2275 if (!D) 2276 continue; 2277 2278 // FIXME: Handle array fields of structs. 2279 if (!D->getType()->isArrayType()) 2280 continue; 2281 2282 const Expr *Init = D->getInit(); 2283 if (!Init) 2284 continue; 2285 if (!isa<StringLiteral>(Init)) 2286 continue; 2287 2288 Loc VarLoc = state->getLValue(D, C.getLocationContext()); 2289 const MemRegion *MR = VarLoc.getAsRegion(); 2290 if (!MR) 2291 continue; 2292 2293 SVal StrVal = C.getSVal(Init); 2294 assert(StrVal.isValid() && "Initializer string is unknown or undefined"); 2295 DefinedOrUnknownSVal strLength = 2296 getCStringLength(C, state, Init, StrVal).castAs<DefinedOrUnknownSVal>(); 2297 2298 state = state->set<CStringLength>(MR, strLength); 2299 } 2300 2301 C.addTransition(state); 2302 } 2303 2304 ProgramStateRef 2305 CStringChecker::checkRegionChanges(ProgramStateRef state, 2306 const InvalidatedSymbols *, 2307 ArrayRef<const MemRegion *> ExplicitRegions, 2308 ArrayRef<const MemRegion *> Regions, 2309 const LocationContext *LCtx, 2310 const CallEvent *Call) const { 2311 CStringLengthTy Entries = state->get<CStringLength>(); 2312 if (Entries.isEmpty()) 2313 return state; 2314 2315 llvm::SmallPtrSet<const MemRegion *, 8> Invalidated; 2316 llvm::SmallPtrSet<const MemRegion *, 32> SuperRegions; 2317 2318 // First build sets for the changed regions and their super-regions. 2319 for (ArrayRef<const MemRegion *>::iterator 2320 I = Regions.begin(), E = Regions.end(); I != E; ++I) { 2321 const MemRegion *MR = *I; 2322 Invalidated.insert(MR); 2323 2324 SuperRegions.insert(MR); 2325 while (const SubRegion *SR = dyn_cast<SubRegion>(MR)) { 2326 MR = SR->getSuperRegion(); 2327 SuperRegions.insert(MR); 2328 } 2329 } 2330 2331 CStringLengthTy::Factory &F = state->get_context<CStringLength>(); 2332 2333 // Then loop over the entries in the current state. 2334 for (CStringLengthTy::iterator I = Entries.begin(), 2335 E = Entries.end(); I != E; ++I) { 2336 const MemRegion *MR = I.getKey(); 2337 2338 // Is this entry for a super-region of a changed region? 2339 if (SuperRegions.count(MR)) { 2340 Entries = F.remove(Entries, MR); 2341 continue; 2342 } 2343 2344 // Is this entry for a sub-region of a changed region? 2345 const MemRegion *Super = MR; 2346 while (const SubRegion *SR = dyn_cast<SubRegion>(Super)) { 2347 Super = SR->getSuperRegion(); 2348 if (Invalidated.count(Super)) { 2349 Entries = F.remove(Entries, MR); 2350 break; 2351 } 2352 } 2353 } 2354 2355 return state->set<CStringLength>(Entries); 2356 } 2357 2358 void CStringChecker::checkLiveSymbols(ProgramStateRef state, 2359 SymbolReaper &SR) const { 2360 // Mark all symbols in our string length map as valid. 2361 CStringLengthTy Entries = state->get<CStringLength>(); 2362 2363 for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end(); 2364 I != E; ++I) { 2365 SVal Len = I.getData(); 2366 2367 for (SymExpr::symbol_iterator si = Len.symbol_begin(), 2368 se = Len.symbol_end(); si != se; ++si) 2369 SR.markInUse(*si); 2370 } 2371 } 2372 2373 void CStringChecker::checkDeadSymbols(SymbolReaper &SR, 2374 CheckerContext &C) const { 2375 ProgramStateRef state = C.getState(); 2376 CStringLengthTy Entries = state->get<CStringLength>(); 2377 if (Entries.isEmpty()) 2378 return; 2379 2380 CStringLengthTy::Factory &F = state->get_context<CStringLength>(); 2381 for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end(); 2382 I != E; ++I) { 2383 SVal Len = I.getData(); 2384 if (SymbolRef Sym = Len.getAsSymbol()) { 2385 if (SR.isDead(Sym)) 2386 Entries = F.remove(Entries, I.getKey()); 2387 } 2388 } 2389 2390 state = state->set<CStringLength>(Entries); 2391 C.addTransition(state); 2392 } 2393 2394 void ento::registerCStringModeling(CheckerManager &Mgr) { 2395 Mgr.registerChecker<CStringChecker>(); 2396 } 2397 2398 bool ento::shouldRegisterCStringModeling(const LangOptions &LO) { 2399 return true; 2400 } 2401 2402 #define REGISTER_CHECKER(name) \ 2403 void ento::register##name(CheckerManager &mgr) { \ 2404 CStringChecker *checker = mgr.getChecker<CStringChecker>(); \ 2405 checker->Filter.Check##name = true; \ 2406 checker->Filter.CheckName##name = mgr.getCurrentCheckName(); \ 2407 } \ 2408 \ 2409 bool ento::shouldRegister##name(const LangOptions &LO) { \ 2410 return true; \ 2411 } 2412 2413 REGISTER_CHECKER(CStringNullArg) 2414 REGISTER_CHECKER(CStringOutOfBounds) 2415 REGISTER_CHECKER(CStringBufferOverlap) 2416 REGISTER_CHECKER(CStringNotNullTerm) 2417