xref: /freebsd/contrib/llvm-project/clang/lib/StaticAnalyzer/Checkers/CStringChecker.cpp (revision 99282790b7d01ec3c4072621d46a0d7302517ad4)
1 //= CStringChecker.cpp - Checks calls to C string functions --------*- C++ -*-//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This defines CStringChecker, which is an assortment of checks on calls
10 // to functions in <string.h>.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
15 #include "InterCheckerAPI.h"
16 #include "clang/Basic/CharInfo.h"
17 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
18 #include "clang/StaticAnalyzer/Core/Checker.h"
19 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
20 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
21 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
22 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallString.h"
25 #include "llvm/Support/raw_ostream.h"
26 
27 using namespace clang;
28 using namespace ento;
29 
30 namespace {
31 enum class ConcatFnKind { none = 0, strcat = 1, strlcat = 2 };
32 class CStringChecker : public Checker< eval::Call,
33                                          check::PreStmt<DeclStmt>,
34                                          check::LiveSymbols,
35                                          check::DeadSymbols,
36                                          check::RegionChanges
37                                          > {
38   mutable std::unique_ptr<BugType> BT_Null, BT_Bounds, BT_Overlap,
39       BT_NotCString, BT_AdditionOverflow;
40 
41   mutable const char *CurrentFunctionDescription;
42 
43 public:
44   /// The filter is used to filter out the diagnostics which are not enabled by
45   /// the user.
46   struct CStringChecksFilter {
47     DefaultBool CheckCStringNullArg;
48     DefaultBool CheckCStringOutOfBounds;
49     DefaultBool CheckCStringBufferOverlap;
50     DefaultBool CheckCStringNotNullTerm;
51 
52     CheckerNameRef CheckNameCStringNullArg;
53     CheckerNameRef CheckNameCStringOutOfBounds;
54     CheckerNameRef CheckNameCStringBufferOverlap;
55     CheckerNameRef CheckNameCStringNotNullTerm;
56   };
57 
58   CStringChecksFilter Filter;
59 
60   static void *getTag() { static int tag; return &tag; }
61 
62   bool evalCall(const CallEvent &Call, CheckerContext &C) const;
63   void checkPreStmt(const DeclStmt *DS, CheckerContext &C) const;
64   void checkLiveSymbols(ProgramStateRef state, SymbolReaper &SR) const;
65   void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const;
66 
67   ProgramStateRef
68     checkRegionChanges(ProgramStateRef state,
69                        const InvalidatedSymbols *,
70                        ArrayRef<const MemRegion *> ExplicitRegions,
71                        ArrayRef<const MemRegion *> Regions,
72                        const LocationContext *LCtx,
73                        const CallEvent *Call) const;
74 
75   typedef void (CStringChecker::*FnCheck)(CheckerContext &,
76                                           const CallExpr *) const;
77   CallDescriptionMap<FnCheck> Callbacks = {
78       {{CDF_MaybeBuiltin, "memcpy", 3}, &CStringChecker::evalMemcpy},
79       {{CDF_MaybeBuiltin, "mempcpy", 3}, &CStringChecker::evalMempcpy},
80       {{CDF_MaybeBuiltin, "memcmp", 3}, &CStringChecker::evalMemcmp},
81       {{CDF_MaybeBuiltin, "memmove", 3}, &CStringChecker::evalMemmove},
82       {{CDF_MaybeBuiltin, "memset", 3}, &CStringChecker::evalMemset},
83       {{CDF_MaybeBuiltin, "explicit_memset", 3}, &CStringChecker::evalMemset},
84       {{CDF_MaybeBuiltin, "strcpy", 2}, &CStringChecker::evalStrcpy},
85       {{CDF_MaybeBuiltin, "strncpy", 3}, &CStringChecker::evalStrncpy},
86       {{CDF_MaybeBuiltin, "stpcpy", 2}, &CStringChecker::evalStpcpy},
87       {{CDF_MaybeBuiltin, "strlcpy", 3}, &CStringChecker::evalStrlcpy},
88       {{CDF_MaybeBuiltin, "strcat", 2}, &CStringChecker::evalStrcat},
89       {{CDF_MaybeBuiltin, "strncat", 3}, &CStringChecker::evalStrncat},
90       {{CDF_MaybeBuiltin, "strlcat", 3}, &CStringChecker::evalStrlcat},
91       {{CDF_MaybeBuiltin, "strlen", 1}, &CStringChecker::evalstrLength},
92       {{CDF_MaybeBuiltin, "strnlen", 2}, &CStringChecker::evalstrnLength},
93       {{CDF_MaybeBuiltin, "strcmp", 2}, &CStringChecker::evalStrcmp},
94       {{CDF_MaybeBuiltin, "strncmp", 3}, &CStringChecker::evalStrncmp},
95       {{CDF_MaybeBuiltin, "strcasecmp", 2}, &CStringChecker::evalStrcasecmp},
96       {{CDF_MaybeBuiltin, "strncasecmp", 3}, &CStringChecker::evalStrncasecmp},
97       {{CDF_MaybeBuiltin, "strsep", 2}, &CStringChecker::evalStrsep},
98       {{CDF_MaybeBuiltin, "bcopy", 3}, &CStringChecker::evalBcopy},
99       {{CDF_MaybeBuiltin, "bcmp", 3}, &CStringChecker::evalMemcmp},
100       {{CDF_MaybeBuiltin, "bzero", 2}, &CStringChecker::evalBzero},
101       {{CDF_MaybeBuiltin, "explicit_bzero", 2}, &CStringChecker::evalBzero},
102   };
103 
104   // These require a bit of special handling.
105   CallDescription StdCopy{{"std", "copy"}, 3},
106       StdCopyBackward{{"std", "copy_backward"}, 3};
107 
108   FnCheck identifyCall(const CallEvent &Call, CheckerContext &C) const;
109   void evalMemcpy(CheckerContext &C, const CallExpr *CE) const;
110   void evalMempcpy(CheckerContext &C, const CallExpr *CE) const;
111   void evalMemmove(CheckerContext &C, const CallExpr *CE) const;
112   void evalBcopy(CheckerContext &C, const CallExpr *CE) const;
113   void evalCopyCommon(CheckerContext &C, const CallExpr *CE,
114                       ProgramStateRef state,
115                       const Expr *Size,
116                       const Expr *Source,
117                       const Expr *Dest,
118                       bool Restricted = false,
119                       bool IsMempcpy = false) const;
120 
121   void evalMemcmp(CheckerContext &C, const CallExpr *CE) const;
122 
123   void evalstrLength(CheckerContext &C, const CallExpr *CE) const;
124   void evalstrnLength(CheckerContext &C, const CallExpr *CE) const;
125   void evalstrLengthCommon(CheckerContext &C,
126                            const CallExpr *CE,
127                            bool IsStrnlen = false) const;
128 
129   void evalStrcpy(CheckerContext &C, const CallExpr *CE) const;
130   void evalStrncpy(CheckerContext &C, const CallExpr *CE) const;
131   void evalStpcpy(CheckerContext &C, const CallExpr *CE) const;
132   void evalStrlcpy(CheckerContext &C, const CallExpr *CE) const;
133   void evalStrcpyCommon(CheckerContext &C, const CallExpr *CE, bool ReturnEnd,
134                         bool IsBounded, ConcatFnKind appendK,
135                         bool returnPtr = true) const;
136 
137   void evalStrcat(CheckerContext &C, const CallExpr *CE) const;
138   void evalStrncat(CheckerContext &C, const CallExpr *CE) const;
139   void evalStrlcat(CheckerContext &C, const CallExpr *CE) const;
140 
141   void evalStrcmp(CheckerContext &C, const CallExpr *CE) const;
142   void evalStrncmp(CheckerContext &C, const CallExpr *CE) const;
143   void evalStrcasecmp(CheckerContext &C, const CallExpr *CE) const;
144   void evalStrncasecmp(CheckerContext &C, const CallExpr *CE) const;
145   void evalStrcmpCommon(CheckerContext &C,
146                         const CallExpr *CE,
147                         bool IsBounded = false,
148                         bool IgnoreCase = false) const;
149 
150   void evalStrsep(CheckerContext &C, const CallExpr *CE) const;
151 
152   void evalStdCopy(CheckerContext &C, const CallExpr *CE) const;
153   void evalStdCopyBackward(CheckerContext &C, const CallExpr *CE) const;
154   void evalStdCopyCommon(CheckerContext &C, const CallExpr *CE) const;
155   void evalMemset(CheckerContext &C, const CallExpr *CE) const;
156   void evalBzero(CheckerContext &C, const CallExpr *CE) const;
157 
158   // Utility methods
159   std::pair<ProgramStateRef , ProgramStateRef >
160   static assumeZero(CheckerContext &C,
161                     ProgramStateRef state, SVal V, QualType Ty);
162 
163   static ProgramStateRef setCStringLength(ProgramStateRef state,
164                                               const MemRegion *MR,
165                                               SVal strLength);
166   static SVal getCStringLengthForRegion(CheckerContext &C,
167                                         ProgramStateRef &state,
168                                         const Expr *Ex,
169                                         const MemRegion *MR,
170                                         bool hypothetical);
171   SVal getCStringLength(CheckerContext &C,
172                         ProgramStateRef &state,
173                         const Expr *Ex,
174                         SVal Buf,
175                         bool hypothetical = false) const;
176 
177   const StringLiteral *getCStringLiteral(CheckerContext &C,
178                                          ProgramStateRef &state,
179                                          const Expr *expr,
180                                          SVal val) const;
181 
182   static ProgramStateRef InvalidateBuffer(CheckerContext &C,
183                                           ProgramStateRef state,
184                                           const Expr *Ex, SVal V,
185                                           bool IsSourceBuffer,
186                                           const Expr *Size);
187 
188   static bool SummarizeRegion(raw_ostream &os, ASTContext &Ctx,
189                               const MemRegion *MR);
190 
191   static bool memsetAux(const Expr *DstBuffer, SVal CharE,
192                         const Expr *Size, CheckerContext &C,
193                         ProgramStateRef &State);
194 
195   // Re-usable checks
196   ProgramStateRef checkNonNull(CheckerContext &C,
197                                    ProgramStateRef state,
198                                    const Expr *S,
199                                    SVal l,
200                                    unsigned IdxOfArg) const;
201   ProgramStateRef CheckLocation(CheckerContext &C,
202                                     ProgramStateRef state,
203                                     const Expr *S,
204                                     SVal l,
205                                     const char *message = nullptr) const;
206   ProgramStateRef CheckBufferAccess(CheckerContext &C,
207                                         ProgramStateRef state,
208                                         const Expr *Size,
209                                         const Expr *FirstBuf,
210                                         const Expr *SecondBuf,
211                                         const char *firstMessage = nullptr,
212                                         const char *secondMessage = nullptr,
213                                         bool WarnAboutSize = false) const;
214 
215   ProgramStateRef CheckBufferAccess(CheckerContext &C,
216                                         ProgramStateRef state,
217                                         const Expr *Size,
218                                         const Expr *Buf,
219                                         const char *message = nullptr,
220                                         bool WarnAboutSize = false) const {
221     // This is a convenience overload.
222     return CheckBufferAccess(C, state, Size, Buf, nullptr, message, nullptr,
223                              WarnAboutSize);
224   }
225   ProgramStateRef CheckOverlap(CheckerContext &C,
226                                    ProgramStateRef state,
227                                    const Expr *Size,
228                                    const Expr *First,
229                                    const Expr *Second) const;
230   void emitOverlapBug(CheckerContext &C,
231                       ProgramStateRef state,
232                       const Stmt *First,
233                       const Stmt *Second) const;
234 
235   void emitNullArgBug(CheckerContext &C, ProgramStateRef State, const Stmt *S,
236                       StringRef WarningMsg) const;
237   void emitOutOfBoundsBug(CheckerContext &C, ProgramStateRef State,
238                           const Stmt *S, StringRef WarningMsg) const;
239   void emitNotCStringBug(CheckerContext &C, ProgramStateRef State,
240                          const Stmt *S, StringRef WarningMsg) const;
241   void emitAdditionOverflowBug(CheckerContext &C, ProgramStateRef State) const;
242 
243   ProgramStateRef checkAdditionOverflow(CheckerContext &C,
244                                             ProgramStateRef state,
245                                             NonLoc left,
246                                             NonLoc right) const;
247 
248   // Return true if the destination buffer of the copy function may be in bound.
249   // Expects SVal of Size to be positive and unsigned.
250   // Expects SVal of FirstBuf to be a FieldRegion.
251   static bool IsFirstBufInBound(CheckerContext &C,
252                                 ProgramStateRef state,
253                                 const Expr *FirstBuf,
254                                 const Expr *Size);
255 };
256 
257 } //end anonymous namespace
258 
259 REGISTER_MAP_WITH_PROGRAMSTATE(CStringLength, const MemRegion *, SVal)
260 
261 //===----------------------------------------------------------------------===//
262 // Individual checks and utility methods.
263 //===----------------------------------------------------------------------===//
264 
265 std::pair<ProgramStateRef , ProgramStateRef >
266 CStringChecker::assumeZero(CheckerContext &C, ProgramStateRef state, SVal V,
267                            QualType Ty) {
268   Optional<DefinedSVal> val = V.getAs<DefinedSVal>();
269   if (!val)
270     return std::pair<ProgramStateRef , ProgramStateRef >(state, state);
271 
272   SValBuilder &svalBuilder = C.getSValBuilder();
273   DefinedOrUnknownSVal zero = svalBuilder.makeZeroVal(Ty);
274   return state->assume(svalBuilder.evalEQ(state, *val, zero));
275 }
276 
277 ProgramStateRef CStringChecker::checkNonNull(CheckerContext &C,
278                                             ProgramStateRef state,
279                                             const Expr *S, SVal l,
280                                             unsigned IdxOfArg) const {
281   // If a previous check has failed, propagate the failure.
282   if (!state)
283     return nullptr;
284 
285   ProgramStateRef stateNull, stateNonNull;
286   std::tie(stateNull, stateNonNull) = assumeZero(C, state, l, S->getType());
287 
288   if (stateNull && !stateNonNull) {
289     if (Filter.CheckCStringNullArg) {
290       SmallString<80> buf;
291       llvm::raw_svector_ostream OS(buf);
292       assert(CurrentFunctionDescription);
293       OS << "Null pointer passed as " << IdxOfArg
294          << llvm::getOrdinalSuffix(IdxOfArg) << " argument to "
295          << CurrentFunctionDescription;
296 
297       emitNullArgBug(C, stateNull, S, OS.str());
298     }
299     return nullptr;
300   }
301 
302   // From here on, assume that the value is non-null.
303   assert(stateNonNull);
304   return stateNonNull;
305 }
306 
307 // FIXME: This was originally copied from ArrayBoundChecker.cpp. Refactor?
308 ProgramStateRef CStringChecker::CheckLocation(CheckerContext &C,
309                                              ProgramStateRef state,
310                                              const Expr *S, SVal l,
311                                              const char *warningMsg) const {
312   // If a previous check has failed, propagate the failure.
313   if (!state)
314     return nullptr;
315 
316   // Check for out of bound array element access.
317   const MemRegion *R = l.getAsRegion();
318   if (!R)
319     return state;
320 
321   const ElementRegion *ER = dyn_cast<ElementRegion>(R);
322   if (!ER)
323     return state;
324 
325   if (ER->getValueType() != C.getASTContext().CharTy)
326     return state;
327 
328   // Get the size of the array.
329   const SubRegion *superReg = cast<SubRegion>(ER->getSuperRegion());
330   SValBuilder &svalBuilder = C.getSValBuilder();
331   SVal Extent =
332     svalBuilder.convertToArrayIndex(superReg->getExtent(svalBuilder));
333   DefinedOrUnknownSVal Size = Extent.castAs<DefinedOrUnknownSVal>();
334 
335   // Get the index of the accessed element.
336   DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>();
337 
338   ProgramStateRef StInBound = state->assumeInBound(Idx, Size, true);
339   ProgramStateRef StOutBound = state->assumeInBound(Idx, Size, false);
340   if (StOutBound && !StInBound) {
341     // These checks are either enabled by the CString out-of-bounds checker
342     // explicitly or implicitly by the Malloc checker.
343     // In the latter case we only do modeling but do not emit warning.
344     if (!Filter.CheckCStringOutOfBounds)
345       return nullptr;
346     // Emit a bug report.
347     if (warningMsg) {
348       emitOutOfBoundsBug(C, StOutBound, S, warningMsg);
349     } else {
350       assert(CurrentFunctionDescription);
351       assert(CurrentFunctionDescription[0] != '\0');
352 
353       SmallString<80> buf;
354       llvm::raw_svector_ostream os(buf);
355       os << toUppercase(CurrentFunctionDescription[0])
356          << &CurrentFunctionDescription[1]
357          << " accesses out-of-bound array element";
358       emitOutOfBoundsBug(C, StOutBound, S, os.str());
359     }
360     return nullptr;
361   }
362 
363   // Array bound check succeeded.  From this point forward the array bound
364   // should always succeed.
365   return StInBound;
366 }
367 
368 ProgramStateRef CStringChecker::CheckBufferAccess(CheckerContext &C,
369                                                  ProgramStateRef state,
370                                                  const Expr *Size,
371                                                  const Expr *FirstBuf,
372                                                  const Expr *SecondBuf,
373                                                  const char *firstMessage,
374                                                  const char *secondMessage,
375                                                  bool WarnAboutSize) const {
376   // If a previous check has failed, propagate the failure.
377   if (!state)
378     return nullptr;
379 
380   SValBuilder &svalBuilder = C.getSValBuilder();
381   ASTContext &Ctx = svalBuilder.getContext();
382   const LocationContext *LCtx = C.getLocationContext();
383 
384   QualType sizeTy = Size->getType();
385   QualType PtrTy = Ctx.getPointerType(Ctx.CharTy);
386 
387   // Check that the first buffer is non-null.
388   SVal BufVal = C.getSVal(FirstBuf);
389   state = checkNonNull(C, state, FirstBuf, BufVal, 1);
390   if (!state)
391     return nullptr;
392 
393   // If out-of-bounds checking is turned off, skip the rest.
394   if (!Filter.CheckCStringOutOfBounds)
395     return state;
396 
397   // Get the access length and make sure it is known.
398   // FIXME: This assumes the caller has already checked that the access length
399   // is positive. And that it's unsigned.
400   SVal LengthVal = C.getSVal(Size);
401   Optional<NonLoc> Length = LengthVal.getAs<NonLoc>();
402   if (!Length)
403     return state;
404 
405   // Compute the offset of the last element to be accessed: size-1.
406   NonLoc One = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>();
407   SVal Offset = svalBuilder.evalBinOpNN(state, BO_Sub, *Length, One, sizeTy);
408   if (Offset.isUnknown())
409     return nullptr;
410   NonLoc LastOffset = Offset.castAs<NonLoc>();
411 
412   // Check that the first buffer is sufficiently long.
413   SVal BufStart = svalBuilder.evalCast(BufVal, PtrTy, FirstBuf->getType());
414   if (Optional<Loc> BufLoc = BufStart.getAs<Loc>()) {
415     const Expr *warningExpr = (WarnAboutSize ? Size : FirstBuf);
416 
417     SVal BufEnd = svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc,
418                                           LastOffset, PtrTy);
419     state = CheckLocation(C, state, warningExpr, BufEnd, firstMessage);
420 
421     // If the buffer isn't large enough, abort.
422     if (!state)
423       return nullptr;
424   }
425 
426   // If there's a second buffer, check it as well.
427   if (SecondBuf) {
428     BufVal = state->getSVal(SecondBuf, LCtx);
429     state = checkNonNull(C, state, SecondBuf, BufVal, 2);
430     if (!state)
431       return nullptr;
432 
433     BufStart = svalBuilder.evalCast(BufVal, PtrTy, SecondBuf->getType());
434     if (Optional<Loc> BufLoc = BufStart.getAs<Loc>()) {
435       const Expr *warningExpr = (WarnAboutSize ? Size : SecondBuf);
436 
437       SVal BufEnd = svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc,
438                                             LastOffset, PtrTy);
439       state = CheckLocation(C, state, warningExpr, BufEnd, secondMessage);
440     }
441   }
442 
443   // Large enough or not, return this state!
444   return state;
445 }
446 
447 ProgramStateRef CStringChecker::CheckOverlap(CheckerContext &C,
448                                             ProgramStateRef state,
449                                             const Expr *Size,
450                                             const Expr *First,
451                                             const Expr *Second) const {
452   if (!Filter.CheckCStringBufferOverlap)
453     return state;
454 
455   // Do a simple check for overlap: if the two arguments are from the same
456   // buffer, see if the end of the first is greater than the start of the second
457   // or vice versa.
458 
459   // If a previous check has failed, propagate the failure.
460   if (!state)
461     return nullptr;
462 
463   ProgramStateRef stateTrue, stateFalse;
464 
465   // Get the buffer values and make sure they're known locations.
466   const LocationContext *LCtx = C.getLocationContext();
467   SVal firstVal = state->getSVal(First, LCtx);
468   SVal secondVal = state->getSVal(Second, LCtx);
469 
470   Optional<Loc> firstLoc = firstVal.getAs<Loc>();
471   if (!firstLoc)
472     return state;
473 
474   Optional<Loc> secondLoc = secondVal.getAs<Loc>();
475   if (!secondLoc)
476     return state;
477 
478   // Are the two values the same?
479   SValBuilder &svalBuilder = C.getSValBuilder();
480   std::tie(stateTrue, stateFalse) =
481     state->assume(svalBuilder.evalEQ(state, *firstLoc, *secondLoc));
482 
483   if (stateTrue && !stateFalse) {
484     // If the values are known to be equal, that's automatically an overlap.
485     emitOverlapBug(C, stateTrue, First, Second);
486     return nullptr;
487   }
488 
489   // assume the two expressions are not equal.
490   assert(stateFalse);
491   state = stateFalse;
492 
493   // Which value comes first?
494   QualType cmpTy = svalBuilder.getConditionType();
495   SVal reverse = svalBuilder.evalBinOpLL(state, BO_GT,
496                                          *firstLoc, *secondLoc, cmpTy);
497   Optional<DefinedOrUnknownSVal> reverseTest =
498       reverse.getAs<DefinedOrUnknownSVal>();
499   if (!reverseTest)
500     return state;
501 
502   std::tie(stateTrue, stateFalse) = state->assume(*reverseTest);
503   if (stateTrue) {
504     if (stateFalse) {
505       // If we don't know which one comes first, we can't perform this test.
506       return state;
507     } else {
508       // Switch the values so that firstVal is before secondVal.
509       std::swap(firstLoc, secondLoc);
510 
511       // Switch the Exprs as well, so that they still correspond.
512       std::swap(First, Second);
513     }
514   }
515 
516   // Get the length, and make sure it too is known.
517   SVal LengthVal = state->getSVal(Size, LCtx);
518   Optional<NonLoc> Length = LengthVal.getAs<NonLoc>();
519   if (!Length)
520     return state;
521 
522   // Convert the first buffer's start address to char*.
523   // Bail out if the cast fails.
524   ASTContext &Ctx = svalBuilder.getContext();
525   QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy);
526   SVal FirstStart = svalBuilder.evalCast(*firstLoc, CharPtrTy,
527                                          First->getType());
528   Optional<Loc> FirstStartLoc = FirstStart.getAs<Loc>();
529   if (!FirstStartLoc)
530     return state;
531 
532   // Compute the end of the first buffer. Bail out if THAT fails.
533   SVal FirstEnd = svalBuilder.evalBinOpLN(state, BO_Add,
534                                  *FirstStartLoc, *Length, CharPtrTy);
535   Optional<Loc> FirstEndLoc = FirstEnd.getAs<Loc>();
536   if (!FirstEndLoc)
537     return state;
538 
539   // Is the end of the first buffer past the start of the second buffer?
540   SVal Overlap = svalBuilder.evalBinOpLL(state, BO_GT,
541                                 *FirstEndLoc, *secondLoc, cmpTy);
542   Optional<DefinedOrUnknownSVal> OverlapTest =
543       Overlap.getAs<DefinedOrUnknownSVal>();
544   if (!OverlapTest)
545     return state;
546 
547   std::tie(stateTrue, stateFalse) = state->assume(*OverlapTest);
548 
549   if (stateTrue && !stateFalse) {
550     // Overlap!
551     emitOverlapBug(C, stateTrue, First, Second);
552     return nullptr;
553   }
554 
555   // assume the two expressions don't overlap.
556   assert(stateFalse);
557   return stateFalse;
558 }
559 
560 void CStringChecker::emitOverlapBug(CheckerContext &C, ProgramStateRef state,
561                                   const Stmt *First, const Stmt *Second) const {
562   ExplodedNode *N = C.generateErrorNode(state);
563   if (!N)
564     return;
565 
566   if (!BT_Overlap)
567     BT_Overlap.reset(new BugType(Filter.CheckNameCStringBufferOverlap,
568                                  categories::UnixAPI, "Improper arguments"));
569 
570   // Generate a report for this bug.
571   auto report = std::make_unique<PathSensitiveBugReport>(
572       *BT_Overlap, "Arguments must not be overlapping buffers", N);
573   report->addRange(First->getSourceRange());
574   report->addRange(Second->getSourceRange());
575 
576   C.emitReport(std::move(report));
577 }
578 
579 void CStringChecker::emitNullArgBug(CheckerContext &C, ProgramStateRef State,
580                                     const Stmt *S, StringRef WarningMsg) const {
581   if (ExplodedNode *N = C.generateErrorNode(State)) {
582     if (!BT_Null)
583       BT_Null.reset(new BuiltinBug(
584           Filter.CheckNameCStringNullArg, categories::UnixAPI,
585           "Null pointer argument in call to byte string function"));
586 
587     BuiltinBug *BT = static_cast<BuiltinBug *>(BT_Null.get());
588     auto Report = std::make_unique<PathSensitiveBugReport>(*BT, WarningMsg, N);
589     Report->addRange(S->getSourceRange());
590     if (const auto *Ex = dyn_cast<Expr>(S))
591       bugreporter::trackExpressionValue(N, Ex, *Report);
592     C.emitReport(std::move(Report));
593   }
594 }
595 
596 void CStringChecker::emitOutOfBoundsBug(CheckerContext &C,
597                                         ProgramStateRef State, const Stmt *S,
598                                         StringRef WarningMsg) const {
599   if (ExplodedNode *N = C.generateErrorNode(State)) {
600     if (!BT_Bounds)
601       BT_Bounds.reset(new BuiltinBug(
602           Filter.CheckCStringOutOfBounds ? Filter.CheckNameCStringOutOfBounds
603                                          : Filter.CheckNameCStringNullArg,
604           "Out-of-bound array access",
605           "Byte string function accesses out-of-bound array element"));
606 
607     BuiltinBug *BT = static_cast<BuiltinBug *>(BT_Bounds.get());
608 
609     // FIXME: It would be nice to eventually make this diagnostic more clear,
610     // e.g., by referencing the original declaration or by saying *why* this
611     // reference is outside the range.
612     auto Report = std::make_unique<PathSensitiveBugReport>(*BT, WarningMsg, N);
613     Report->addRange(S->getSourceRange());
614     C.emitReport(std::move(Report));
615   }
616 }
617 
618 void CStringChecker::emitNotCStringBug(CheckerContext &C, ProgramStateRef State,
619                                        const Stmt *S,
620                                        StringRef WarningMsg) const {
621   if (ExplodedNode *N = C.generateNonFatalErrorNode(State)) {
622     if (!BT_NotCString)
623       BT_NotCString.reset(new BuiltinBug(
624           Filter.CheckNameCStringNotNullTerm, categories::UnixAPI,
625           "Argument is not a null-terminated string."));
626 
627     auto Report =
628         std::make_unique<PathSensitiveBugReport>(*BT_NotCString, WarningMsg, N);
629 
630     Report->addRange(S->getSourceRange());
631     C.emitReport(std::move(Report));
632   }
633 }
634 
635 void CStringChecker::emitAdditionOverflowBug(CheckerContext &C,
636                                              ProgramStateRef State) const {
637   if (ExplodedNode *N = C.generateErrorNode(State)) {
638     if (!BT_NotCString)
639       BT_NotCString.reset(
640           new BuiltinBug(Filter.CheckNameCStringOutOfBounds, "API",
641                          "Sum of expressions causes overflow."));
642 
643     // This isn't a great error message, but this should never occur in real
644     // code anyway -- you'd have to create a buffer longer than a size_t can
645     // represent, which is sort of a contradiction.
646     const char *WarningMsg =
647         "This expression will create a string whose length is too big to "
648         "be represented as a size_t";
649 
650     auto Report =
651         std::make_unique<PathSensitiveBugReport>(*BT_NotCString, WarningMsg, N);
652     C.emitReport(std::move(Report));
653   }
654 }
655 
656 ProgramStateRef CStringChecker::checkAdditionOverflow(CheckerContext &C,
657                                                      ProgramStateRef state,
658                                                      NonLoc left,
659                                                      NonLoc right) const {
660   // If out-of-bounds checking is turned off, skip the rest.
661   if (!Filter.CheckCStringOutOfBounds)
662     return state;
663 
664   // If a previous check has failed, propagate the failure.
665   if (!state)
666     return nullptr;
667 
668   SValBuilder &svalBuilder = C.getSValBuilder();
669   BasicValueFactory &BVF = svalBuilder.getBasicValueFactory();
670 
671   QualType sizeTy = svalBuilder.getContext().getSizeType();
672   const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy);
673   NonLoc maxVal = svalBuilder.makeIntVal(maxValInt);
674 
675   SVal maxMinusRight;
676   if (right.getAs<nonloc::ConcreteInt>()) {
677     maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, right,
678                                                  sizeTy);
679   } else {
680     // Try switching the operands. (The order of these two assignments is
681     // important!)
682     maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, left,
683                                             sizeTy);
684     left = right;
685   }
686 
687   if (Optional<NonLoc> maxMinusRightNL = maxMinusRight.getAs<NonLoc>()) {
688     QualType cmpTy = svalBuilder.getConditionType();
689     // If left > max - right, we have an overflow.
690     SVal willOverflow = svalBuilder.evalBinOpNN(state, BO_GT, left,
691                                                 *maxMinusRightNL, cmpTy);
692 
693     ProgramStateRef stateOverflow, stateOkay;
694     std::tie(stateOverflow, stateOkay) =
695       state->assume(willOverflow.castAs<DefinedOrUnknownSVal>());
696 
697     if (stateOverflow && !stateOkay) {
698       // We have an overflow. Emit a bug report.
699       emitAdditionOverflowBug(C, stateOverflow);
700       return nullptr;
701     }
702 
703     // From now on, assume an overflow didn't occur.
704     assert(stateOkay);
705     state = stateOkay;
706   }
707 
708   return state;
709 }
710 
711 ProgramStateRef CStringChecker::setCStringLength(ProgramStateRef state,
712                                                 const MemRegion *MR,
713                                                 SVal strLength) {
714   assert(!strLength.isUndef() && "Attempt to set an undefined string length");
715 
716   MR = MR->StripCasts();
717 
718   switch (MR->getKind()) {
719   case MemRegion::StringRegionKind:
720     // FIXME: This can happen if we strcpy() into a string region. This is
721     // undefined [C99 6.4.5p6], but we should still warn about it.
722     return state;
723 
724   case MemRegion::SymbolicRegionKind:
725   case MemRegion::AllocaRegionKind:
726   case MemRegion::VarRegionKind:
727   case MemRegion::FieldRegionKind:
728   case MemRegion::ObjCIvarRegionKind:
729     // These are the types we can currently track string lengths for.
730     break;
731 
732   case MemRegion::ElementRegionKind:
733     // FIXME: Handle element regions by upper-bounding the parent region's
734     // string length.
735     return state;
736 
737   default:
738     // Other regions (mostly non-data) can't have a reliable C string length.
739     // For now, just ignore the change.
740     // FIXME: These are rare but not impossible. We should output some kind of
741     // warning for things like strcpy((char[]){'a', 0}, "b");
742     return state;
743   }
744 
745   if (strLength.isUnknown())
746     return state->remove<CStringLength>(MR);
747 
748   return state->set<CStringLength>(MR, strLength);
749 }
750 
751 SVal CStringChecker::getCStringLengthForRegion(CheckerContext &C,
752                                                ProgramStateRef &state,
753                                                const Expr *Ex,
754                                                const MemRegion *MR,
755                                                bool hypothetical) {
756   if (!hypothetical) {
757     // If there's a recorded length, go ahead and return it.
758     const SVal *Recorded = state->get<CStringLength>(MR);
759     if (Recorded)
760       return *Recorded;
761   }
762 
763   // Otherwise, get a new symbol and update the state.
764   SValBuilder &svalBuilder = C.getSValBuilder();
765   QualType sizeTy = svalBuilder.getContext().getSizeType();
766   SVal strLength = svalBuilder.getMetadataSymbolVal(CStringChecker::getTag(),
767                                                     MR, Ex, sizeTy,
768                                                     C.getLocationContext(),
769                                                     C.blockCount());
770 
771   if (!hypothetical) {
772     if (Optional<NonLoc> strLn = strLength.getAs<NonLoc>()) {
773       // In case of unbounded calls strlen etc bound the range to SIZE_MAX/4
774       BasicValueFactory &BVF = svalBuilder.getBasicValueFactory();
775       const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy);
776       llvm::APSInt fourInt = APSIntType(maxValInt).getValue(4);
777       const llvm::APSInt *maxLengthInt = BVF.evalAPSInt(BO_Div, maxValInt,
778                                                         fourInt);
779       NonLoc maxLength = svalBuilder.makeIntVal(*maxLengthInt);
780       SVal evalLength = svalBuilder.evalBinOpNN(state, BO_LE, *strLn,
781                                                 maxLength, sizeTy);
782       state = state->assume(evalLength.castAs<DefinedOrUnknownSVal>(), true);
783     }
784     state = state->set<CStringLength>(MR, strLength);
785   }
786 
787   return strLength;
788 }
789 
790 SVal CStringChecker::getCStringLength(CheckerContext &C, ProgramStateRef &state,
791                                       const Expr *Ex, SVal Buf,
792                                       bool hypothetical) const {
793   const MemRegion *MR = Buf.getAsRegion();
794   if (!MR) {
795     // If we can't get a region, see if it's something we /know/ isn't a
796     // C string. In the context of locations, the only time we can issue such
797     // a warning is for labels.
798     if (Optional<loc::GotoLabel> Label = Buf.getAs<loc::GotoLabel>()) {
799       if (Filter.CheckCStringNotNullTerm) {
800         SmallString<120> buf;
801         llvm::raw_svector_ostream os(buf);
802         assert(CurrentFunctionDescription);
803         os << "Argument to " << CurrentFunctionDescription
804            << " is the address of the label '" << Label->getLabel()->getName()
805            << "', which is not a null-terminated string";
806 
807         emitNotCStringBug(C, state, Ex, os.str());
808       }
809       return UndefinedVal();
810     }
811 
812     // If it's not a region and not a label, give up.
813     return UnknownVal();
814   }
815 
816   // If we have a region, strip casts from it and see if we can figure out
817   // its length. For anything we can't figure out, just return UnknownVal.
818   MR = MR->StripCasts();
819 
820   switch (MR->getKind()) {
821   case MemRegion::StringRegionKind: {
822     // Modifying the contents of string regions is undefined [C99 6.4.5p6],
823     // so we can assume that the byte length is the correct C string length.
824     SValBuilder &svalBuilder = C.getSValBuilder();
825     QualType sizeTy = svalBuilder.getContext().getSizeType();
826     const StringLiteral *strLit = cast<StringRegion>(MR)->getStringLiteral();
827     return svalBuilder.makeIntVal(strLit->getByteLength(), sizeTy);
828   }
829   case MemRegion::SymbolicRegionKind:
830   case MemRegion::AllocaRegionKind:
831   case MemRegion::VarRegionKind:
832   case MemRegion::FieldRegionKind:
833   case MemRegion::ObjCIvarRegionKind:
834     return getCStringLengthForRegion(C, state, Ex, MR, hypothetical);
835   case MemRegion::CompoundLiteralRegionKind:
836     // FIXME: Can we track this? Is it necessary?
837     return UnknownVal();
838   case MemRegion::ElementRegionKind:
839     // FIXME: How can we handle this? It's not good enough to subtract the
840     // offset from the base string length; consider "123\x00567" and &a[5].
841     return UnknownVal();
842   default:
843     // Other regions (mostly non-data) can't have a reliable C string length.
844     // In this case, an error is emitted and UndefinedVal is returned.
845     // The caller should always be prepared to handle this case.
846     if (Filter.CheckCStringNotNullTerm) {
847       SmallString<120> buf;
848       llvm::raw_svector_ostream os(buf);
849 
850       assert(CurrentFunctionDescription);
851       os << "Argument to " << CurrentFunctionDescription << " is ";
852 
853       if (SummarizeRegion(os, C.getASTContext(), MR))
854         os << ", which is not a null-terminated string";
855       else
856         os << "not a null-terminated string";
857 
858       emitNotCStringBug(C, state, Ex, os.str());
859     }
860     return UndefinedVal();
861   }
862 }
863 
864 const StringLiteral *CStringChecker::getCStringLiteral(CheckerContext &C,
865   ProgramStateRef &state, const Expr *expr, SVal val) const {
866 
867   // Get the memory region pointed to by the val.
868   const MemRegion *bufRegion = val.getAsRegion();
869   if (!bufRegion)
870     return nullptr;
871 
872   // Strip casts off the memory region.
873   bufRegion = bufRegion->StripCasts();
874 
875   // Cast the memory region to a string region.
876   const StringRegion *strRegion= dyn_cast<StringRegion>(bufRegion);
877   if (!strRegion)
878     return nullptr;
879 
880   // Return the actual string in the string region.
881   return strRegion->getStringLiteral();
882 }
883 
884 bool CStringChecker::IsFirstBufInBound(CheckerContext &C,
885                                        ProgramStateRef state,
886                                        const Expr *FirstBuf,
887                                        const Expr *Size) {
888   // If we do not know that the buffer is long enough we return 'true'.
889   // Otherwise the parent region of this field region would also get
890   // invalidated, which would lead to warnings based on an unknown state.
891 
892   // Originally copied from CheckBufferAccess and CheckLocation.
893   SValBuilder &svalBuilder = C.getSValBuilder();
894   ASTContext &Ctx = svalBuilder.getContext();
895   const LocationContext *LCtx = C.getLocationContext();
896 
897   QualType sizeTy = Size->getType();
898   QualType PtrTy = Ctx.getPointerType(Ctx.CharTy);
899   SVal BufVal = state->getSVal(FirstBuf, LCtx);
900 
901   SVal LengthVal = state->getSVal(Size, LCtx);
902   Optional<NonLoc> Length = LengthVal.getAs<NonLoc>();
903   if (!Length)
904     return true; // cf top comment.
905 
906   // Compute the offset of the last element to be accessed: size-1.
907   NonLoc One = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>();
908   SVal Offset = svalBuilder.evalBinOpNN(state, BO_Sub, *Length, One, sizeTy);
909   if (Offset.isUnknown())
910     return true; // cf top comment
911   NonLoc LastOffset = Offset.castAs<NonLoc>();
912 
913   // Check that the first buffer is sufficiently long.
914   SVal BufStart = svalBuilder.evalCast(BufVal, PtrTy, FirstBuf->getType());
915   Optional<Loc> BufLoc = BufStart.getAs<Loc>();
916   if (!BufLoc)
917     return true; // cf top comment.
918 
919   SVal BufEnd =
920       svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc, LastOffset, PtrTy);
921 
922   // Check for out of bound array element access.
923   const MemRegion *R = BufEnd.getAsRegion();
924   if (!R)
925     return true; // cf top comment.
926 
927   const ElementRegion *ER = dyn_cast<ElementRegion>(R);
928   if (!ER)
929     return true; // cf top comment.
930 
931   // FIXME: Does this crash when a non-standard definition
932   // of a library function is encountered?
933   assert(ER->getValueType() == C.getASTContext().CharTy &&
934          "IsFirstBufInBound should only be called with char* ElementRegions");
935 
936   // Get the size of the array.
937   const SubRegion *superReg = cast<SubRegion>(ER->getSuperRegion());
938   SVal Extent =
939       svalBuilder.convertToArrayIndex(superReg->getExtent(svalBuilder));
940   DefinedOrUnknownSVal ExtentSize = Extent.castAs<DefinedOrUnknownSVal>();
941 
942   // Get the index of the accessed element.
943   DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>();
944 
945   ProgramStateRef StInBound = state->assumeInBound(Idx, ExtentSize, true);
946 
947   return static_cast<bool>(StInBound);
948 }
949 
950 ProgramStateRef CStringChecker::InvalidateBuffer(CheckerContext &C,
951                                                  ProgramStateRef state,
952                                                  const Expr *E, SVal V,
953                                                  bool IsSourceBuffer,
954                                                  const Expr *Size) {
955   Optional<Loc> L = V.getAs<Loc>();
956   if (!L)
957     return state;
958 
959   // FIXME: This is a simplified version of what's in CFRefCount.cpp -- it makes
960   // some assumptions about the value that CFRefCount can't. Even so, it should
961   // probably be refactored.
962   if (Optional<loc::MemRegionVal> MR = L->getAs<loc::MemRegionVal>()) {
963     const MemRegion *R = MR->getRegion()->StripCasts();
964 
965     // Are we dealing with an ElementRegion?  If so, we should be invalidating
966     // the super-region.
967     if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
968       R = ER->getSuperRegion();
969       // FIXME: What about layers of ElementRegions?
970     }
971 
972     // Invalidate this region.
973     const LocationContext *LCtx = C.getPredecessor()->getLocationContext();
974 
975     bool CausesPointerEscape = false;
976     RegionAndSymbolInvalidationTraits ITraits;
977     // Invalidate and escape only indirect regions accessible through the source
978     // buffer.
979     if (IsSourceBuffer) {
980       ITraits.setTrait(R->getBaseRegion(),
981                        RegionAndSymbolInvalidationTraits::TK_PreserveContents);
982       ITraits.setTrait(R, RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
983       CausesPointerEscape = true;
984     } else {
985       const MemRegion::Kind& K = R->getKind();
986       if (K == MemRegion::FieldRegionKind)
987         if (Size && IsFirstBufInBound(C, state, E, Size)) {
988           // If destination buffer is a field region and access is in bound,
989           // do not invalidate its super region.
990           ITraits.setTrait(
991               R,
992               RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
993         }
994     }
995 
996     return state->invalidateRegions(R, E, C.blockCount(), LCtx,
997                                     CausesPointerEscape, nullptr, nullptr,
998                                     &ITraits);
999   }
1000 
1001   // If we have a non-region value by chance, just remove the binding.
1002   // FIXME: is this necessary or correct? This handles the non-Region
1003   //  cases.  Is it ever valid to store to these?
1004   return state->killBinding(*L);
1005 }
1006 
1007 bool CStringChecker::SummarizeRegion(raw_ostream &os, ASTContext &Ctx,
1008                                      const MemRegion *MR) {
1009   switch (MR->getKind()) {
1010   case MemRegion::FunctionCodeRegionKind: {
1011     if (const auto *FD = cast<FunctionCodeRegion>(MR)->getDecl())
1012       os << "the address of the function '" << *FD << '\'';
1013     else
1014       os << "the address of a function";
1015     return true;
1016   }
1017   case MemRegion::BlockCodeRegionKind:
1018     os << "block text";
1019     return true;
1020   case MemRegion::BlockDataRegionKind:
1021     os << "a block";
1022     return true;
1023   case MemRegion::CXXThisRegionKind:
1024   case MemRegion::CXXTempObjectRegionKind:
1025     os << "a C++ temp object of type "
1026        << cast<TypedValueRegion>(MR)->getValueType().getAsString();
1027     return true;
1028   case MemRegion::VarRegionKind:
1029     os << "a variable of type"
1030        << cast<TypedValueRegion>(MR)->getValueType().getAsString();
1031     return true;
1032   case MemRegion::FieldRegionKind:
1033     os << "a field of type "
1034        << cast<TypedValueRegion>(MR)->getValueType().getAsString();
1035     return true;
1036   case MemRegion::ObjCIvarRegionKind:
1037     os << "an instance variable of type "
1038        << cast<TypedValueRegion>(MR)->getValueType().getAsString();
1039     return true;
1040   default:
1041     return false;
1042   }
1043 }
1044 
1045 bool CStringChecker::memsetAux(const Expr *DstBuffer, SVal CharVal,
1046                                const Expr *Size, CheckerContext &C,
1047                                ProgramStateRef &State) {
1048   SVal MemVal = C.getSVal(DstBuffer);
1049   SVal SizeVal = C.getSVal(Size);
1050   const MemRegion *MR = MemVal.getAsRegion();
1051   if (!MR)
1052     return false;
1053 
1054   // We're about to model memset by producing a "default binding" in the Store.
1055   // Our current implementation - RegionStore - doesn't support default bindings
1056   // that don't cover the whole base region. So we should first get the offset
1057   // and the base region to figure out whether the offset of buffer is 0.
1058   RegionOffset Offset = MR->getAsOffset();
1059   const MemRegion *BR = Offset.getRegion();
1060 
1061   Optional<NonLoc> SizeNL = SizeVal.getAs<NonLoc>();
1062   if (!SizeNL)
1063     return false;
1064 
1065   SValBuilder &svalBuilder = C.getSValBuilder();
1066   ASTContext &Ctx = C.getASTContext();
1067 
1068   // void *memset(void *dest, int ch, size_t count);
1069   // For now we can only handle the case of offset is 0 and concrete char value.
1070   if (Offset.isValid() && !Offset.hasSymbolicOffset() &&
1071       Offset.getOffset() == 0) {
1072     // Get the base region's extent.
1073     auto *SubReg = cast<SubRegion>(BR);
1074     DefinedOrUnknownSVal Extent = SubReg->getExtent(svalBuilder);
1075 
1076     ProgramStateRef StateWholeReg, StateNotWholeReg;
1077     std::tie(StateWholeReg, StateNotWholeReg) =
1078         State->assume(svalBuilder.evalEQ(State, Extent, *SizeNL));
1079 
1080     // With the semantic of 'memset()', we should convert the CharVal to
1081     // unsigned char.
1082     CharVal = svalBuilder.evalCast(CharVal, Ctx.UnsignedCharTy, Ctx.IntTy);
1083 
1084     ProgramStateRef StateNullChar, StateNonNullChar;
1085     std::tie(StateNullChar, StateNonNullChar) =
1086         assumeZero(C, State, CharVal, Ctx.UnsignedCharTy);
1087 
1088     if (StateWholeReg && !StateNotWholeReg && StateNullChar &&
1089         !StateNonNullChar) {
1090       // If the 'memset()' acts on the whole region of destination buffer and
1091       // the value of the second argument of 'memset()' is zero, bind the second
1092       // argument's value to the destination buffer with 'default binding'.
1093       // FIXME: Since there is no perfect way to bind the non-zero character, we
1094       // can only deal with zero value here. In the future, we need to deal with
1095       // the binding of non-zero value in the case of whole region.
1096       State = State->bindDefaultZero(svalBuilder.makeLoc(BR),
1097                                      C.getLocationContext());
1098     } else {
1099       // If the destination buffer's extent is not equal to the value of
1100       // third argument, just invalidate buffer.
1101       State = InvalidateBuffer(C, State, DstBuffer, MemVal,
1102                                /*IsSourceBuffer*/ false, Size);
1103     }
1104 
1105     if (StateNullChar && !StateNonNullChar) {
1106       // If the value of the second argument of 'memset()' is zero, set the
1107       // string length of destination buffer to 0 directly.
1108       State = setCStringLength(State, MR,
1109                                svalBuilder.makeZeroVal(Ctx.getSizeType()));
1110     } else if (!StateNullChar && StateNonNullChar) {
1111       SVal NewStrLen = svalBuilder.getMetadataSymbolVal(
1112           CStringChecker::getTag(), MR, DstBuffer, Ctx.getSizeType(),
1113           C.getLocationContext(), C.blockCount());
1114 
1115       // If the value of second argument is not zero, then the string length
1116       // is at least the size argument.
1117       SVal NewStrLenGESize = svalBuilder.evalBinOp(
1118           State, BO_GE, NewStrLen, SizeVal, svalBuilder.getConditionType());
1119 
1120       State = setCStringLength(
1121           State->assume(NewStrLenGESize.castAs<DefinedOrUnknownSVal>(), true),
1122           MR, NewStrLen);
1123     }
1124   } else {
1125     // If the offset is not zero and char value is not concrete, we can do
1126     // nothing but invalidate the buffer.
1127     State = InvalidateBuffer(C, State, DstBuffer, MemVal,
1128                              /*IsSourceBuffer*/ false, Size);
1129   }
1130   return true;
1131 }
1132 
1133 //===----------------------------------------------------------------------===//
1134 // evaluation of individual function calls.
1135 //===----------------------------------------------------------------------===//
1136 
1137 void CStringChecker::evalCopyCommon(CheckerContext &C,
1138                                     const CallExpr *CE,
1139                                     ProgramStateRef state,
1140                                     const Expr *Size, const Expr *Dest,
1141                                     const Expr *Source, bool Restricted,
1142                                     bool IsMempcpy) const {
1143   CurrentFunctionDescription = "memory copy function";
1144 
1145   // See if the size argument is zero.
1146   const LocationContext *LCtx = C.getLocationContext();
1147   SVal sizeVal = state->getSVal(Size, LCtx);
1148   QualType sizeTy = Size->getType();
1149 
1150   ProgramStateRef stateZeroSize, stateNonZeroSize;
1151   std::tie(stateZeroSize, stateNonZeroSize) =
1152     assumeZero(C, state, sizeVal, sizeTy);
1153 
1154   // Get the value of the Dest.
1155   SVal destVal = state->getSVal(Dest, LCtx);
1156 
1157   // If the size is zero, there won't be any actual memory access, so
1158   // just bind the return value to the destination buffer and return.
1159   if (stateZeroSize && !stateNonZeroSize) {
1160     stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, destVal);
1161     C.addTransition(stateZeroSize);
1162     return;
1163   }
1164 
1165   // If the size can be nonzero, we have to check the other arguments.
1166   if (stateNonZeroSize) {
1167     state = stateNonZeroSize;
1168 
1169     // Ensure the destination is not null. If it is NULL there will be a
1170     // NULL pointer dereference.
1171     state = checkNonNull(C, state, Dest, destVal, 1);
1172     if (!state)
1173       return;
1174 
1175     // Get the value of the Src.
1176     SVal srcVal = state->getSVal(Source, LCtx);
1177 
1178     // Ensure the source is not null. If it is NULL there will be a
1179     // NULL pointer dereference.
1180     state = checkNonNull(C, state, Source, srcVal, 2);
1181     if (!state)
1182       return;
1183 
1184     // Ensure the accesses are valid and that the buffers do not overlap.
1185     const char * const writeWarning =
1186       "Memory copy function overflows destination buffer";
1187     state = CheckBufferAccess(C, state, Size, Dest, Source,
1188                               writeWarning, /* sourceWarning = */ nullptr);
1189     if (Restricted)
1190       state = CheckOverlap(C, state, Size, Dest, Source);
1191 
1192     if (!state)
1193       return;
1194 
1195     // If this is mempcpy, get the byte after the last byte copied and
1196     // bind the expr.
1197     if (IsMempcpy) {
1198       // Get the byte after the last byte copied.
1199       SValBuilder &SvalBuilder = C.getSValBuilder();
1200       ASTContext &Ctx = SvalBuilder.getContext();
1201       QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy);
1202       SVal DestRegCharVal =
1203           SvalBuilder.evalCast(destVal, CharPtrTy, Dest->getType());
1204       SVal lastElement = C.getSValBuilder().evalBinOp(
1205           state, BO_Add, DestRegCharVal, sizeVal, Dest->getType());
1206       // If we don't know how much we copied, we can at least
1207       // conjure a return value for later.
1208       if (lastElement.isUnknown())
1209         lastElement = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx,
1210                                                           C.blockCount());
1211 
1212       // The byte after the last byte copied is the return value.
1213       state = state->BindExpr(CE, LCtx, lastElement);
1214     } else {
1215       // All other copies return the destination buffer.
1216       // (Well, bcopy() has a void return type, but this won't hurt.)
1217       state = state->BindExpr(CE, LCtx, destVal);
1218     }
1219 
1220     // Invalidate the destination (regular invalidation without pointer-escaping
1221     // the address of the top-level region).
1222     // FIXME: Even if we can't perfectly model the copy, we should see if we
1223     // can use LazyCompoundVals to copy the source values into the destination.
1224     // This would probably remove any existing bindings past the end of the
1225     // copied region, but that's still an improvement over blank invalidation.
1226     state = InvalidateBuffer(C, state, Dest, C.getSVal(Dest),
1227                              /*IsSourceBuffer*/false, Size);
1228 
1229     // Invalidate the source (const-invalidation without const-pointer-escaping
1230     // the address of the top-level region).
1231     state = InvalidateBuffer(C, state, Source, C.getSVal(Source),
1232                              /*IsSourceBuffer*/true, nullptr);
1233 
1234     C.addTransition(state);
1235   }
1236 }
1237 
1238 
1239 void CStringChecker::evalMemcpy(CheckerContext &C, const CallExpr *CE) const {
1240   // void *memcpy(void *restrict dst, const void *restrict src, size_t n);
1241   // The return value is the address of the destination buffer.
1242   const Expr *Dest = CE->getArg(0);
1243   ProgramStateRef state = C.getState();
1244 
1245   evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1), true);
1246 }
1247 
1248 void CStringChecker::evalMempcpy(CheckerContext &C, const CallExpr *CE) const {
1249   // void *mempcpy(void *restrict dst, const void *restrict src, size_t n);
1250   // The return value is a pointer to the byte following the last written byte.
1251   const Expr *Dest = CE->getArg(0);
1252   ProgramStateRef state = C.getState();
1253 
1254   evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1), true, true);
1255 }
1256 
1257 void CStringChecker::evalMemmove(CheckerContext &C, const CallExpr *CE) const {
1258   // void *memmove(void *dst, const void *src, size_t n);
1259   // The return value is the address of the destination buffer.
1260   const Expr *Dest = CE->getArg(0);
1261   ProgramStateRef state = C.getState();
1262 
1263   evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1));
1264 }
1265 
1266 void CStringChecker::evalBcopy(CheckerContext &C, const CallExpr *CE) const {
1267   // void bcopy(const void *src, void *dst, size_t n);
1268   evalCopyCommon(C, CE, C.getState(),
1269                  CE->getArg(2), CE->getArg(1), CE->getArg(0));
1270 }
1271 
1272 void CStringChecker::evalMemcmp(CheckerContext &C, const CallExpr *CE) const {
1273   // int memcmp(const void *s1, const void *s2, size_t n);
1274   CurrentFunctionDescription = "memory comparison function";
1275 
1276   const Expr *Left = CE->getArg(0);
1277   const Expr *Right = CE->getArg(1);
1278   const Expr *Size = CE->getArg(2);
1279 
1280   ProgramStateRef state = C.getState();
1281   SValBuilder &svalBuilder = C.getSValBuilder();
1282 
1283   // See if the size argument is zero.
1284   const LocationContext *LCtx = C.getLocationContext();
1285   SVal sizeVal = state->getSVal(Size, LCtx);
1286   QualType sizeTy = Size->getType();
1287 
1288   ProgramStateRef stateZeroSize, stateNonZeroSize;
1289   std::tie(stateZeroSize, stateNonZeroSize) =
1290     assumeZero(C, state, sizeVal, sizeTy);
1291 
1292   // If the size can be zero, the result will be 0 in that case, and we don't
1293   // have to check either of the buffers.
1294   if (stateZeroSize) {
1295     state = stateZeroSize;
1296     state = state->BindExpr(CE, LCtx,
1297                             svalBuilder.makeZeroVal(CE->getType()));
1298     C.addTransition(state);
1299   }
1300 
1301   // If the size can be nonzero, we have to check the other arguments.
1302   if (stateNonZeroSize) {
1303     state = stateNonZeroSize;
1304     // If we know the two buffers are the same, we know the result is 0.
1305     // First, get the two buffers' addresses. Another checker will have already
1306     // made sure they're not undefined.
1307     DefinedOrUnknownSVal LV =
1308         state->getSVal(Left, LCtx).castAs<DefinedOrUnknownSVal>();
1309     DefinedOrUnknownSVal RV =
1310         state->getSVal(Right, LCtx).castAs<DefinedOrUnknownSVal>();
1311 
1312     // See if they are the same.
1313     DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV);
1314     ProgramStateRef StSameBuf, StNotSameBuf;
1315     std::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf);
1316 
1317     // If the two arguments are the same buffer, we know the result is 0,
1318     // and we only need to check one size.
1319     if (StSameBuf && !StNotSameBuf) {
1320       state = StSameBuf;
1321       state = CheckBufferAccess(C, state, Size, Left);
1322       if (state) {
1323         state = StSameBuf->BindExpr(CE, LCtx,
1324                                     svalBuilder.makeZeroVal(CE->getType()));
1325         C.addTransition(state);
1326       }
1327       return;
1328     }
1329 
1330     // If the two arguments might be different buffers, we have to check
1331     // the size of both of them.
1332     assert(StNotSameBuf);
1333     state = CheckBufferAccess(C, state, Size, Left, Right);
1334     if (state) {
1335       // The return value is the comparison result, which we don't know.
1336       SVal CmpV =
1337           svalBuilder.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount());
1338       state = state->BindExpr(CE, LCtx, CmpV);
1339       C.addTransition(state);
1340     }
1341   }
1342 }
1343 
1344 void CStringChecker::evalstrLength(CheckerContext &C,
1345                                    const CallExpr *CE) const {
1346   // size_t strlen(const char *s);
1347   evalstrLengthCommon(C, CE, /* IsStrnlen = */ false);
1348 }
1349 
1350 void CStringChecker::evalstrnLength(CheckerContext &C,
1351                                     const CallExpr *CE) const {
1352   // size_t strnlen(const char *s, size_t maxlen);
1353   evalstrLengthCommon(C, CE, /* IsStrnlen = */ true);
1354 }
1355 
1356 void CStringChecker::evalstrLengthCommon(CheckerContext &C, const CallExpr *CE,
1357                                          bool IsStrnlen) const {
1358   CurrentFunctionDescription = "string length function";
1359   ProgramStateRef state = C.getState();
1360   const LocationContext *LCtx = C.getLocationContext();
1361 
1362   if (IsStrnlen) {
1363     const Expr *maxlenExpr = CE->getArg(1);
1364     SVal maxlenVal = state->getSVal(maxlenExpr, LCtx);
1365 
1366     ProgramStateRef stateZeroSize, stateNonZeroSize;
1367     std::tie(stateZeroSize, stateNonZeroSize) =
1368       assumeZero(C, state, maxlenVal, maxlenExpr->getType());
1369 
1370     // If the size can be zero, the result will be 0 in that case, and we don't
1371     // have to check the string itself.
1372     if (stateZeroSize) {
1373       SVal zero = C.getSValBuilder().makeZeroVal(CE->getType());
1374       stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, zero);
1375       C.addTransition(stateZeroSize);
1376     }
1377 
1378     // If the size is GUARANTEED to be zero, we're done!
1379     if (!stateNonZeroSize)
1380       return;
1381 
1382     // Otherwise, record the assumption that the size is nonzero.
1383     state = stateNonZeroSize;
1384   }
1385 
1386   // Check that the string argument is non-null.
1387   const Expr *Arg = CE->getArg(0);
1388   SVal ArgVal = state->getSVal(Arg, LCtx);
1389 
1390   state = checkNonNull(C, state, Arg, ArgVal, 1);
1391 
1392   if (!state)
1393     return;
1394 
1395   SVal strLength = getCStringLength(C, state, Arg, ArgVal);
1396 
1397   // If the argument isn't a valid C string, there's no valid state to
1398   // transition to.
1399   if (strLength.isUndef())
1400     return;
1401 
1402   DefinedOrUnknownSVal result = UnknownVal();
1403 
1404   // If the check is for strnlen() then bind the return value to no more than
1405   // the maxlen value.
1406   if (IsStrnlen) {
1407     QualType cmpTy = C.getSValBuilder().getConditionType();
1408 
1409     // It's a little unfortunate to be getting this again,
1410     // but it's not that expensive...
1411     const Expr *maxlenExpr = CE->getArg(1);
1412     SVal maxlenVal = state->getSVal(maxlenExpr, LCtx);
1413 
1414     Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>();
1415     Optional<NonLoc> maxlenValNL = maxlenVal.getAs<NonLoc>();
1416 
1417     if (strLengthNL && maxlenValNL) {
1418       ProgramStateRef stateStringTooLong, stateStringNotTooLong;
1419 
1420       // Check if the strLength is greater than the maxlen.
1421       std::tie(stateStringTooLong, stateStringNotTooLong) = state->assume(
1422           C.getSValBuilder()
1423               .evalBinOpNN(state, BO_GT, *strLengthNL, *maxlenValNL, cmpTy)
1424               .castAs<DefinedOrUnknownSVal>());
1425 
1426       if (stateStringTooLong && !stateStringNotTooLong) {
1427         // If the string is longer than maxlen, return maxlen.
1428         result = *maxlenValNL;
1429       } else if (stateStringNotTooLong && !stateStringTooLong) {
1430         // If the string is shorter than maxlen, return its length.
1431         result = *strLengthNL;
1432       }
1433     }
1434 
1435     if (result.isUnknown()) {
1436       // If we don't have enough information for a comparison, there's
1437       // no guarantee the full string length will actually be returned.
1438       // All we know is the return value is the min of the string length
1439       // and the limit. This is better than nothing.
1440       result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx,
1441                                                    C.blockCount());
1442       NonLoc resultNL = result.castAs<NonLoc>();
1443 
1444       if (strLengthNL) {
1445         state = state->assume(C.getSValBuilder().evalBinOpNN(
1446                                   state, BO_LE, resultNL, *strLengthNL, cmpTy)
1447                                   .castAs<DefinedOrUnknownSVal>(), true);
1448       }
1449 
1450       if (maxlenValNL) {
1451         state = state->assume(C.getSValBuilder().evalBinOpNN(
1452                                   state, BO_LE, resultNL, *maxlenValNL, cmpTy)
1453                                   .castAs<DefinedOrUnknownSVal>(), true);
1454       }
1455     }
1456 
1457   } else {
1458     // This is a plain strlen(), not strnlen().
1459     result = strLength.castAs<DefinedOrUnknownSVal>();
1460 
1461     // If we don't know the length of the string, conjure a return
1462     // value, so it can be used in constraints, at least.
1463     if (result.isUnknown()) {
1464       result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx,
1465                                                    C.blockCount());
1466     }
1467   }
1468 
1469   // Bind the return value.
1470   assert(!result.isUnknown() && "Should have conjured a value by now");
1471   state = state->BindExpr(CE, LCtx, result);
1472   C.addTransition(state);
1473 }
1474 
1475 void CStringChecker::evalStrcpy(CheckerContext &C, const CallExpr *CE) const {
1476   // char *strcpy(char *restrict dst, const char *restrict src);
1477   evalStrcpyCommon(C, CE,
1478                    /* ReturnEnd = */ false,
1479                    /* IsBounded = */ false,
1480                    /* appendK = */ ConcatFnKind::none);
1481 }
1482 
1483 void CStringChecker::evalStrncpy(CheckerContext &C, const CallExpr *CE) const {
1484   // char *strncpy(char *restrict dst, const char *restrict src, size_t n);
1485   evalStrcpyCommon(C, CE,
1486                    /* ReturnEnd = */ false,
1487                    /* IsBounded = */ true,
1488                    /* appendK = */ ConcatFnKind::none);
1489 }
1490 
1491 void CStringChecker::evalStpcpy(CheckerContext &C, const CallExpr *CE) const {
1492   // char *stpcpy(char *restrict dst, const char *restrict src);
1493   evalStrcpyCommon(C, CE,
1494                    /* ReturnEnd = */ true,
1495                    /* IsBounded = */ false,
1496                    /* appendK = */ ConcatFnKind::none);
1497 }
1498 
1499 void CStringChecker::evalStrlcpy(CheckerContext &C, const CallExpr *CE) const {
1500   // size_t strlcpy(char *dest, const char *src, size_t size);
1501   evalStrcpyCommon(C, CE,
1502                    /* ReturnEnd = */ true,
1503                    /* IsBounded = */ true,
1504                    /* appendK = */ ConcatFnKind::none,
1505                    /* returnPtr = */ false);
1506 }
1507 
1508 void CStringChecker::evalStrcat(CheckerContext &C, const CallExpr *CE) const {
1509   // char *strcat(char *restrict s1, const char *restrict s2);
1510   evalStrcpyCommon(C, CE,
1511                    /* ReturnEnd = */ false,
1512                    /* IsBounded = */ false,
1513                    /* appendK = */ ConcatFnKind::strcat);
1514 }
1515 
1516 void CStringChecker::evalStrncat(CheckerContext &C, const CallExpr *CE) const {
1517   //char *strncat(char *restrict s1, const char *restrict s2, size_t n);
1518   evalStrcpyCommon(C, CE,
1519                    /* ReturnEnd = */ false,
1520                    /* IsBounded = */ true,
1521                    /* appendK = */ ConcatFnKind::strcat);
1522 }
1523 
1524 void CStringChecker::evalStrlcat(CheckerContext &C, const CallExpr *CE) const {
1525   // size_t strlcat(char *dst, const char *src, size_t size);
1526   // It will append at most size - strlen(dst) - 1 bytes,
1527   // NULL-terminating the result.
1528   evalStrcpyCommon(C, CE,
1529                    /* ReturnEnd = */ false,
1530                    /* IsBounded = */ true,
1531                    /* appendK = */ ConcatFnKind::strlcat,
1532                    /* returnPtr = */ false);
1533 }
1534 
1535 void CStringChecker::evalStrcpyCommon(CheckerContext &C, const CallExpr *CE,
1536                                       bool ReturnEnd, bool IsBounded,
1537                                       ConcatFnKind appendK,
1538                                       bool returnPtr) const {
1539   if (appendK == ConcatFnKind::none)
1540     CurrentFunctionDescription = "string copy function";
1541   else
1542     CurrentFunctionDescription = "string concatenation function";
1543   ProgramStateRef state = C.getState();
1544   const LocationContext *LCtx = C.getLocationContext();
1545 
1546   // Check that the destination is non-null.
1547   const Expr *Dst = CE->getArg(0);
1548   SVal DstVal = state->getSVal(Dst, LCtx);
1549 
1550   state = checkNonNull(C, state, Dst, DstVal, 1);
1551   if (!state)
1552     return;
1553 
1554   // Check that the source is non-null.
1555   const Expr *srcExpr = CE->getArg(1);
1556   SVal srcVal = state->getSVal(srcExpr, LCtx);
1557   state = checkNonNull(C, state, srcExpr, srcVal, 2);
1558   if (!state)
1559     return;
1560 
1561   // Get the string length of the source.
1562   SVal strLength = getCStringLength(C, state, srcExpr, srcVal);
1563   Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>();
1564 
1565   // Get the string length of the destination buffer.
1566   SVal dstStrLength = getCStringLength(C, state, Dst, DstVal);
1567   Optional<NonLoc> dstStrLengthNL = dstStrLength.getAs<NonLoc>();
1568 
1569   // If the source isn't a valid C string, give up.
1570   if (strLength.isUndef())
1571     return;
1572 
1573   SValBuilder &svalBuilder = C.getSValBuilder();
1574   QualType cmpTy = svalBuilder.getConditionType();
1575   QualType sizeTy = svalBuilder.getContext().getSizeType();
1576 
1577   // These two values allow checking two kinds of errors:
1578   // - actual overflows caused by a source that doesn't fit in the destination
1579   // - potential overflows caused by a bound that could exceed the destination
1580   SVal amountCopied = UnknownVal();
1581   SVal maxLastElementIndex = UnknownVal();
1582   const char *boundWarning = nullptr;
1583 
1584   state = CheckOverlap(C, state, IsBounded ? CE->getArg(2) : CE->getArg(1), Dst,
1585                        srcExpr);
1586 
1587   if (!state)
1588     return;
1589 
1590   // If the function is strncpy, strncat, etc... it is bounded.
1591   if (IsBounded) {
1592     // Get the max number of characters to copy.
1593     const Expr *lenExpr = CE->getArg(2);
1594     SVal lenVal = state->getSVal(lenExpr, LCtx);
1595 
1596     // Protect against misdeclared strncpy().
1597     lenVal = svalBuilder.evalCast(lenVal, sizeTy, lenExpr->getType());
1598 
1599     Optional<NonLoc> lenValNL = lenVal.getAs<NonLoc>();
1600 
1601     // If we know both values, we might be able to figure out how much
1602     // we're copying.
1603     if (strLengthNL && lenValNL) {
1604       switch (appendK) {
1605       case ConcatFnKind::none:
1606       case ConcatFnKind::strcat: {
1607         ProgramStateRef stateSourceTooLong, stateSourceNotTooLong;
1608         // Check if the max number to copy is less than the length of the src.
1609         // If the bound is equal to the source length, strncpy won't null-
1610         // terminate the result!
1611         std::tie(stateSourceTooLong, stateSourceNotTooLong) = state->assume(
1612             svalBuilder
1613                 .evalBinOpNN(state, BO_GE, *strLengthNL, *lenValNL, cmpTy)
1614                 .castAs<DefinedOrUnknownSVal>());
1615 
1616         if (stateSourceTooLong && !stateSourceNotTooLong) {
1617           // Max number to copy is less than the length of the src, so the
1618           // actual strLength copied is the max number arg.
1619           state = stateSourceTooLong;
1620           amountCopied = lenVal;
1621 
1622         } else if (!stateSourceTooLong && stateSourceNotTooLong) {
1623           // The source buffer entirely fits in the bound.
1624           state = stateSourceNotTooLong;
1625           amountCopied = strLength;
1626         }
1627         break;
1628       }
1629       case ConcatFnKind::strlcat:
1630         if (!dstStrLengthNL)
1631           return;
1632 
1633         // amountCopied = min (size - dstLen - 1 , srcLen)
1634         SVal freeSpace = svalBuilder.evalBinOpNN(state, BO_Sub, *lenValNL,
1635                                                  *dstStrLengthNL, sizeTy);
1636         if (!freeSpace.getAs<NonLoc>())
1637           return;
1638         freeSpace =
1639             svalBuilder.evalBinOp(state, BO_Sub, freeSpace,
1640                                   svalBuilder.makeIntVal(1, sizeTy), sizeTy);
1641         Optional<NonLoc> freeSpaceNL = freeSpace.getAs<NonLoc>();
1642 
1643         // While unlikely, it is possible that the subtraction is
1644         // too complex to compute, let's check whether it succeeded.
1645         if (!freeSpaceNL)
1646           return;
1647         SVal hasEnoughSpace = svalBuilder.evalBinOpNN(
1648             state, BO_LE, *strLengthNL, *freeSpaceNL, cmpTy);
1649 
1650         ProgramStateRef TrueState, FalseState;
1651         std::tie(TrueState, FalseState) =
1652             state->assume(hasEnoughSpace.castAs<DefinedOrUnknownSVal>());
1653 
1654         // srcStrLength <= size - dstStrLength -1
1655         if (TrueState && !FalseState) {
1656           amountCopied = strLength;
1657         }
1658 
1659         // srcStrLength > size - dstStrLength -1
1660         if (!TrueState && FalseState) {
1661           amountCopied = freeSpace;
1662         }
1663 
1664         if (TrueState && FalseState)
1665           amountCopied = UnknownVal();
1666         break;
1667       }
1668     }
1669     // We still want to know if the bound is known to be too large.
1670     if (lenValNL) {
1671       switch (appendK) {
1672       case ConcatFnKind::strcat:
1673         // For strncat, the check is strlen(dst) + lenVal < sizeof(dst)
1674 
1675         // Get the string length of the destination. If the destination is
1676         // memory that can't have a string length, we shouldn't be copying
1677         // into it anyway.
1678         if (dstStrLength.isUndef())
1679           return;
1680 
1681         if (dstStrLengthNL) {
1682           maxLastElementIndex = svalBuilder.evalBinOpNN(
1683               state, BO_Add, *lenValNL, *dstStrLengthNL, sizeTy);
1684 
1685           boundWarning = "Size argument is greater than the free space in the "
1686                          "destination buffer";
1687         }
1688         break;
1689       case ConcatFnKind::none:
1690       case ConcatFnKind::strlcat:
1691         // For strncpy and strlcat, this is just checking
1692         //  that lenVal <= sizeof(dst).
1693         // (Yes, strncpy and strncat differ in how they treat termination.
1694         // strncat ALWAYS terminates, but strncpy doesn't.)
1695 
1696         // We need a special case for when the copy size is zero, in which
1697         // case strncpy will do no work at all. Our bounds check uses n-1
1698         // as the last element accessed, so n == 0 is problematic.
1699         ProgramStateRef StateZeroSize, StateNonZeroSize;
1700         std::tie(StateZeroSize, StateNonZeroSize) =
1701             assumeZero(C, state, *lenValNL, sizeTy);
1702 
1703         // If the size is known to be zero, we're done.
1704         if (StateZeroSize && !StateNonZeroSize) {
1705           if (returnPtr) {
1706             StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, DstVal);
1707           } else {
1708             if (appendK == ConcatFnKind::none) {
1709               // strlcpy returns strlen(src)
1710               StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, strLength);
1711             } else {
1712               // strlcat returns strlen(src) + strlen(dst)
1713               SVal retSize = svalBuilder.evalBinOp(
1714                   state, BO_Add, strLength, dstStrLength, sizeTy);
1715               StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, retSize);
1716             }
1717           }
1718           C.addTransition(StateZeroSize);
1719           return;
1720         }
1721 
1722         // Otherwise, go ahead and figure out the last element we'll touch.
1723         // We don't record the non-zero assumption here because we can't
1724         // be sure. We won't warn on a possible zero.
1725         NonLoc one = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>();
1726         maxLastElementIndex =
1727             svalBuilder.evalBinOpNN(state, BO_Sub, *lenValNL, one, sizeTy);
1728         boundWarning = "Size argument is greater than the length of the "
1729                        "destination buffer";
1730         break;
1731       }
1732     }
1733   } else {
1734     // The function isn't bounded. The amount copied should match the length
1735     // of the source buffer.
1736     amountCopied = strLength;
1737   }
1738 
1739   assert(state);
1740 
1741   // This represents the number of characters copied into the destination
1742   // buffer. (It may not actually be the strlen if the destination buffer
1743   // is not terminated.)
1744   SVal finalStrLength = UnknownVal();
1745   SVal strlRetVal = UnknownVal();
1746 
1747   if (appendK == ConcatFnKind::none && !returnPtr) {
1748     // strlcpy returns the sizeof(src)
1749     strlRetVal = strLength;
1750   }
1751 
1752   // If this is an appending function (strcat, strncat...) then set the
1753   // string length to strlen(src) + strlen(dst) since the buffer will
1754   // ultimately contain both.
1755   if (appendK != ConcatFnKind::none) {
1756     // Get the string length of the destination. If the destination is memory
1757     // that can't have a string length, we shouldn't be copying into it anyway.
1758     if (dstStrLength.isUndef())
1759       return;
1760 
1761     if (appendK == ConcatFnKind::strlcat && dstStrLengthNL && strLengthNL) {
1762       strlRetVal = svalBuilder.evalBinOpNN(state, BO_Add, *strLengthNL,
1763                                            *dstStrLengthNL, sizeTy);
1764     }
1765 
1766     Optional<NonLoc> amountCopiedNL = amountCopied.getAs<NonLoc>();
1767 
1768     // If we know both string lengths, we might know the final string length.
1769     if (amountCopiedNL && dstStrLengthNL) {
1770       // Make sure the two lengths together don't overflow a size_t.
1771       state = checkAdditionOverflow(C, state, *amountCopiedNL, *dstStrLengthNL);
1772       if (!state)
1773         return;
1774 
1775       finalStrLength = svalBuilder.evalBinOpNN(state, BO_Add, *amountCopiedNL,
1776                                                *dstStrLengthNL, sizeTy);
1777     }
1778 
1779     // If we couldn't get a single value for the final string length,
1780     // we can at least bound it by the individual lengths.
1781     if (finalStrLength.isUnknown()) {
1782       // Try to get a "hypothetical" string length symbol, which we can later
1783       // set as a real value if that turns out to be the case.
1784       finalStrLength = getCStringLength(C, state, CE, DstVal, true);
1785       assert(!finalStrLength.isUndef());
1786 
1787       if (Optional<NonLoc> finalStrLengthNL = finalStrLength.getAs<NonLoc>()) {
1788         if (amountCopiedNL && appendK == ConcatFnKind::none) {
1789           // we overwrite dst string with the src
1790           // finalStrLength >= srcStrLength
1791           SVal sourceInResult = svalBuilder.evalBinOpNN(
1792               state, BO_GE, *finalStrLengthNL, *amountCopiedNL, cmpTy);
1793           state = state->assume(sourceInResult.castAs<DefinedOrUnknownSVal>(),
1794                                 true);
1795           if (!state)
1796             return;
1797         }
1798 
1799         if (dstStrLengthNL && appendK != ConcatFnKind::none) {
1800           // we extend the dst string with the src
1801           // finalStrLength >= dstStrLength
1802           SVal destInResult = svalBuilder.evalBinOpNN(state, BO_GE,
1803                                                       *finalStrLengthNL,
1804                                                       *dstStrLengthNL,
1805                                                       cmpTy);
1806           state =
1807               state->assume(destInResult.castAs<DefinedOrUnknownSVal>(), true);
1808           if (!state)
1809             return;
1810         }
1811       }
1812     }
1813 
1814   } else {
1815     // Otherwise, this is a copy-over function (strcpy, strncpy, ...), and
1816     // the final string length will match the input string length.
1817     finalStrLength = amountCopied;
1818   }
1819 
1820   SVal Result;
1821 
1822   if (returnPtr) {
1823     // The final result of the function will either be a pointer past the last
1824     // copied element, or a pointer to the start of the destination buffer.
1825     Result = (ReturnEnd ? UnknownVal() : DstVal);
1826   } else {
1827     if (appendK == ConcatFnKind::strlcat || appendK == ConcatFnKind::none)
1828       //strlcpy, strlcat
1829       Result = strlRetVal;
1830     else
1831       Result = finalStrLength;
1832   }
1833 
1834   assert(state);
1835 
1836   // If the destination is a MemRegion, try to check for a buffer overflow and
1837   // record the new string length.
1838   if (Optional<loc::MemRegionVal> dstRegVal =
1839       DstVal.getAs<loc::MemRegionVal>()) {
1840     QualType ptrTy = Dst->getType();
1841 
1842     // If we have an exact value on a bounded copy, use that to check for
1843     // overflows, rather than our estimate about how much is actually copied.
1844     if (boundWarning) {
1845       if (Optional<NonLoc> maxLastNL = maxLastElementIndex.getAs<NonLoc>()) {
1846         SVal maxLastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal,
1847             *maxLastNL, ptrTy);
1848         state = CheckLocation(C, state, CE->getArg(2), maxLastElement,
1849             boundWarning);
1850         if (!state)
1851           return;
1852       }
1853     }
1854 
1855     // Then, if the final length is known...
1856     if (Optional<NonLoc> knownStrLength = finalStrLength.getAs<NonLoc>()) {
1857       SVal lastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal,
1858           *knownStrLength, ptrTy);
1859 
1860       // ...and we haven't checked the bound, we'll check the actual copy.
1861       if (!boundWarning) {
1862         const char * const warningMsg =
1863           "String copy function overflows destination buffer";
1864         state = CheckLocation(C, state, Dst, lastElement, warningMsg);
1865         if (!state)
1866           return;
1867       }
1868 
1869       // If this is a stpcpy-style copy, the last element is the return value.
1870       if (returnPtr && ReturnEnd)
1871         Result = lastElement;
1872     }
1873 
1874     // Invalidate the destination (regular invalidation without pointer-escaping
1875     // the address of the top-level region). This must happen before we set the
1876     // C string length because invalidation will clear the length.
1877     // FIXME: Even if we can't perfectly model the copy, we should see if we
1878     // can use LazyCompoundVals to copy the source values into the destination.
1879     // This would probably remove any existing bindings past the end of the
1880     // string, but that's still an improvement over blank invalidation.
1881     state = InvalidateBuffer(C, state, Dst, *dstRegVal,
1882         /*IsSourceBuffer*/false, nullptr);
1883 
1884     // Invalidate the source (const-invalidation without const-pointer-escaping
1885     // the address of the top-level region).
1886     state = InvalidateBuffer(C, state, srcExpr, srcVal, /*IsSourceBuffer*/true,
1887         nullptr);
1888 
1889     // Set the C string length of the destination, if we know it.
1890     if (IsBounded && (appendK == ConcatFnKind::none)) {
1891       // strncpy is annoying in that it doesn't guarantee to null-terminate
1892       // the result string. If the original string didn't fit entirely inside
1893       // the bound (including the null-terminator), we don't know how long the
1894       // result is.
1895       if (amountCopied != strLength)
1896         finalStrLength = UnknownVal();
1897     }
1898     state = setCStringLength(state, dstRegVal->getRegion(), finalStrLength);
1899   }
1900 
1901   assert(state);
1902 
1903   if (returnPtr) {
1904     // If this is a stpcpy-style copy, but we were unable to check for a buffer
1905     // overflow, we still need a result. Conjure a return value.
1906     if (ReturnEnd && Result.isUnknown()) {
1907       Result = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount());
1908     }
1909   }
1910   // Set the return value.
1911   state = state->BindExpr(CE, LCtx, Result);
1912   C.addTransition(state);
1913 }
1914 
1915 void CStringChecker::evalStrcmp(CheckerContext &C, const CallExpr *CE) const {
1916   //int strcmp(const char *s1, const char *s2);
1917   evalStrcmpCommon(C, CE, /* IsBounded = */ false, /* IgnoreCase = */ false);
1918 }
1919 
1920 void CStringChecker::evalStrncmp(CheckerContext &C, const CallExpr *CE) const {
1921   //int strncmp(const char *s1, const char *s2, size_t n);
1922   evalStrcmpCommon(C, CE, /* IsBounded = */ true, /* IgnoreCase = */ false);
1923 }
1924 
1925 void CStringChecker::evalStrcasecmp(CheckerContext &C,
1926     const CallExpr *CE) const {
1927   //int strcasecmp(const char *s1, const char *s2);
1928   evalStrcmpCommon(C, CE, /* IsBounded = */ false, /* IgnoreCase = */ true);
1929 }
1930 
1931 void CStringChecker::evalStrncasecmp(CheckerContext &C,
1932     const CallExpr *CE) const {
1933   //int strncasecmp(const char *s1, const char *s2, size_t n);
1934   evalStrcmpCommon(C, CE, /* IsBounded = */ true, /* IgnoreCase = */ true);
1935 }
1936 
1937 void CStringChecker::evalStrcmpCommon(CheckerContext &C, const CallExpr *CE,
1938     bool IsBounded, bool IgnoreCase) const {
1939   CurrentFunctionDescription = "string comparison function";
1940   ProgramStateRef state = C.getState();
1941   const LocationContext *LCtx = C.getLocationContext();
1942 
1943   // Check that the first string is non-null
1944   const Expr *s1 = CE->getArg(0);
1945   SVal s1Val = state->getSVal(s1, LCtx);
1946   state = checkNonNull(C, state, s1, s1Val, 1);
1947   if (!state)
1948     return;
1949 
1950   // Check that the second string is non-null.
1951   const Expr *s2 = CE->getArg(1);
1952   SVal s2Val = state->getSVal(s2, LCtx);
1953   state = checkNonNull(C, state, s2, s2Val, 2);
1954   if (!state)
1955     return;
1956 
1957   // Get the string length of the first string or give up.
1958   SVal s1Length = getCStringLength(C, state, s1, s1Val);
1959   if (s1Length.isUndef())
1960     return;
1961 
1962   // Get the string length of the second string or give up.
1963   SVal s2Length = getCStringLength(C, state, s2, s2Val);
1964   if (s2Length.isUndef())
1965     return;
1966 
1967   // If we know the two buffers are the same, we know the result is 0.
1968   // First, get the two buffers' addresses. Another checker will have already
1969   // made sure they're not undefined.
1970   DefinedOrUnknownSVal LV = s1Val.castAs<DefinedOrUnknownSVal>();
1971   DefinedOrUnknownSVal RV = s2Val.castAs<DefinedOrUnknownSVal>();
1972 
1973   // See if they are the same.
1974   SValBuilder &svalBuilder = C.getSValBuilder();
1975   DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV);
1976   ProgramStateRef StSameBuf, StNotSameBuf;
1977   std::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf);
1978 
1979   // If the two arguments might be the same buffer, we know the result is 0,
1980   // and we only need to check one size.
1981   if (StSameBuf) {
1982     StSameBuf = StSameBuf->BindExpr(CE, LCtx,
1983         svalBuilder.makeZeroVal(CE->getType()));
1984     C.addTransition(StSameBuf);
1985 
1986     // If the two arguments are GUARANTEED to be the same, we're done!
1987     if (!StNotSameBuf)
1988       return;
1989   }
1990 
1991   assert(StNotSameBuf);
1992   state = StNotSameBuf;
1993 
1994   // At this point we can go about comparing the two buffers.
1995   // For now, we only do this if they're both known string literals.
1996 
1997   // Attempt to extract string literals from both expressions.
1998   const StringLiteral *s1StrLiteral = getCStringLiteral(C, state, s1, s1Val);
1999   const StringLiteral *s2StrLiteral = getCStringLiteral(C, state, s2, s2Val);
2000   bool canComputeResult = false;
2001   SVal resultVal = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx,
2002       C.blockCount());
2003 
2004   if (s1StrLiteral && s2StrLiteral) {
2005     StringRef s1StrRef = s1StrLiteral->getString();
2006     StringRef s2StrRef = s2StrLiteral->getString();
2007 
2008     if (IsBounded) {
2009       // Get the max number of characters to compare.
2010       const Expr *lenExpr = CE->getArg(2);
2011       SVal lenVal = state->getSVal(lenExpr, LCtx);
2012 
2013       // If the length is known, we can get the right substrings.
2014       if (const llvm::APSInt *len = svalBuilder.getKnownValue(state, lenVal)) {
2015         // Create substrings of each to compare the prefix.
2016         s1StrRef = s1StrRef.substr(0, (size_t)len->getZExtValue());
2017         s2StrRef = s2StrRef.substr(0, (size_t)len->getZExtValue());
2018         canComputeResult = true;
2019       }
2020     } else {
2021       // This is a normal, unbounded strcmp.
2022       canComputeResult = true;
2023     }
2024 
2025     if (canComputeResult) {
2026       // Real strcmp stops at null characters.
2027       size_t s1Term = s1StrRef.find('\0');
2028       if (s1Term != StringRef::npos)
2029         s1StrRef = s1StrRef.substr(0, s1Term);
2030 
2031       size_t s2Term = s2StrRef.find('\0');
2032       if (s2Term != StringRef::npos)
2033         s2StrRef = s2StrRef.substr(0, s2Term);
2034 
2035       // Use StringRef's comparison methods to compute the actual result.
2036       int compareRes = IgnoreCase ? s1StrRef.compare_lower(s2StrRef)
2037         : s1StrRef.compare(s2StrRef);
2038 
2039       // The strcmp function returns an integer greater than, equal to, or less
2040       // than zero, [c11, p7.24.4.2].
2041       if (compareRes == 0) {
2042         resultVal = svalBuilder.makeIntVal(compareRes, CE->getType());
2043       }
2044       else {
2045         DefinedSVal zeroVal = svalBuilder.makeIntVal(0, CE->getType());
2046         // Constrain strcmp's result range based on the result of StringRef's
2047         // comparison methods.
2048         BinaryOperatorKind op = (compareRes == 1) ? BO_GT : BO_LT;
2049         SVal compareWithZero =
2050           svalBuilder.evalBinOp(state, op, resultVal, zeroVal,
2051               svalBuilder.getConditionType());
2052         DefinedSVal compareWithZeroVal = compareWithZero.castAs<DefinedSVal>();
2053         state = state->assume(compareWithZeroVal, true);
2054       }
2055     }
2056   }
2057 
2058   state = state->BindExpr(CE, LCtx, resultVal);
2059 
2060   // Record this as a possible path.
2061   C.addTransition(state);
2062 }
2063 
2064 void CStringChecker::evalStrsep(CheckerContext &C, const CallExpr *CE) const {
2065   //char *strsep(char **stringp, const char *delim);
2066   // Sanity: does the search string parameter match the return type?
2067   const Expr *SearchStrPtr = CE->getArg(0);
2068   QualType CharPtrTy = SearchStrPtr->getType()->getPointeeType();
2069   if (CharPtrTy.isNull() ||
2070       CE->getType().getUnqualifiedType() != CharPtrTy.getUnqualifiedType())
2071     return;
2072 
2073   CurrentFunctionDescription = "strsep()";
2074   ProgramStateRef State = C.getState();
2075   const LocationContext *LCtx = C.getLocationContext();
2076 
2077   // Check that the search string pointer is non-null (though it may point to
2078   // a null string).
2079   SVal SearchStrVal = State->getSVal(SearchStrPtr, LCtx);
2080   State = checkNonNull(C, State, SearchStrPtr, SearchStrVal, 1);
2081   if (!State)
2082     return;
2083 
2084   // Check that the delimiter string is non-null.
2085   const Expr *DelimStr = CE->getArg(1);
2086   SVal DelimStrVal = State->getSVal(DelimStr, LCtx);
2087   State = checkNonNull(C, State, DelimStr, DelimStrVal, 2);
2088   if (!State)
2089     return;
2090 
2091   SValBuilder &SVB = C.getSValBuilder();
2092   SVal Result;
2093   if (Optional<Loc> SearchStrLoc = SearchStrVal.getAs<Loc>()) {
2094     // Get the current value of the search string pointer, as a char*.
2095     Result = State->getSVal(*SearchStrLoc, CharPtrTy);
2096 
2097     // Invalidate the search string, representing the change of one delimiter
2098     // character to NUL.
2099     State = InvalidateBuffer(C, State, SearchStrPtr, Result,
2100         /*IsSourceBuffer*/false, nullptr);
2101 
2102     // Overwrite the search string pointer. The new value is either an address
2103     // further along in the same string, or NULL if there are no more tokens.
2104     State = State->bindLoc(*SearchStrLoc,
2105         SVB.conjureSymbolVal(getTag(),
2106           CE,
2107           LCtx,
2108           CharPtrTy,
2109           C.blockCount()),
2110         LCtx);
2111   } else {
2112     assert(SearchStrVal.isUnknown());
2113     // Conjure a symbolic value. It's the best we can do.
2114     Result = SVB.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount());
2115   }
2116 
2117   // Set the return value, and finish.
2118   State = State->BindExpr(CE, LCtx, Result);
2119   C.addTransition(State);
2120 }
2121 
2122 // These should probably be moved into a C++ standard library checker.
2123 void CStringChecker::evalStdCopy(CheckerContext &C, const CallExpr *CE) const {
2124   evalStdCopyCommon(C, CE);
2125 }
2126 
2127 void CStringChecker::evalStdCopyBackward(CheckerContext &C,
2128     const CallExpr *CE) const {
2129   evalStdCopyCommon(C, CE);
2130 }
2131 
2132 void CStringChecker::evalStdCopyCommon(CheckerContext &C,
2133     const CallExpr *CE) const {
2134   if (!CE->getArg(2)->getType()->isPointerType())
2135     return;
2136 
2137   ProgramStateRef State = C.getState();
2138 
2139   const LocationContext *LCtx = C.getLocationContext();
2140 
2141   // template <class _InputIterator, class _OutputIterator>
2142   // _OutputIterator
2143   // copy(_InputIterator __first, _InputIterator __last,
2144   //        _OutputIterator __result)
2145 
2146   // Invalidate the destination buffer
2147   const Expr *Dst = CE->getArg(2);
2148   SVal DstVal = State->getSVal(Dst, LCtx);
2149   State = InvalidateBuffer(C, State, Dst, DstVal, /*IsSource=*/false,
2150       /*Size=*/nullptr);
2151 
2152   SValBuilder &SVB = C.getSValBuilder();
2153 
2154   SVal ResultVal = SVB.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount());
2155   State = State->BindExpr(CE, LCtx, ResultVal);
2156 
2157   C.addTransition(State);
2158 }
2159 
2160 void CStringChecker::evalMemset(CheckerContext &C, const CallExpr *CE) const {
2161   CurrentFunctionDescription = "memory set function";
2162 
2163   const Expr *Mem = CE->getArg(0);
2164   const Expr *CharE = CE->getArg(1);
2165   const Expr *Size = CE->getArg(2);
2166   ProgramStateRef State = C.getState();
2167 
2168   // See if the size argument is zero.
2169   const LocationContext *LCtx = C.getLocationContext();
2170   SVal SizeVal = State->getSVal(Size, LCtx);
2171   QualType SizeTy = Size->getType();
2172 
2173   ProgramStateRef StateZeroSize, StateNonZeroSize;
2174   std::tie(StateZeroSize, StateNonZeroSize) =
2175     assumeZero(C, State, SizeVal, SizeTy);
2176 
2177   // Get the value of the memory area.
2178   SVal MemVal = State->getSVal(Mem, LCtx);
2179 
2180   // If the size is zero, there won't be any actual memory access, so
2181   // just bind the return value to the Mem buffer and return.
2182   if (StateZeroSize && !StateNonZeroSize) {
2183     StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, MemVal);
2184     C.addTransition(StateZeroSize);
2185     return;
2186   }
2187 
2188   // Ensure the memory area is not null.
2189   // If it is NULL there will be a NULL pointer dereference.
2190   State = checkNonNull(C, StateNonZeroSize, Mem, MemVal, 1);
2191   if (!State)
2192     return;
2193 
2194   State = CheckBufferAccess(C, State, Size, Mem);
2195   if (!State)
2196     return;
2197 
2198   // According to the values of the arguments, bind the value of the second
2199   // argument to the destination buffer and set string length, or just
2200   // invalidate the destination buffer.
2201   if (!memsetAux(Mem, C.getSVal(CharE), Size, C, State))
2202     return;
2203 
2204   State = State->BindExpr(CE, LCtx, MemVal);
2205   C.addTransition(State);
2206 }
2207 
2208 void CStringChecker::evalBzero(CheckerContext &C, const CallExpr *CE) const {
2209   CurrentFunctionDescription = "memory clearance function";
2210 
2211   const Expr *Mem = CE->getArg(0);
2212   const Expr *Size = CE->getArg(1);
2213   SVal Zero = C.getSValBuilder().makeZeroVal(C.getASTContext().IntTy);
2214 
2215   ProgramStateRef State = C.getState();
2216 
2217   // See if the size argument is zero.
2218   SVal SizeVal = C.getSVal(Size);
2219   QualType SizeTy = Size->getType();
2220 
2221   ProgramStateRef StateZeroSize, StateNonZeroSize;
2222   std::tie(StateZeroSize, StateNonZeroSize) =
2223     assumeZero(C, State, SizeVal, SizeTy);
2224 
2225   // If the size is zero, there won't be any actual memory access,
2226   // In this case we just return.
2227   if (StateZeroSize && !StateNonZeroSize) {
2228     C.addTransition(StateZeroSize);
2229     return;
2230   }
2231 
2232   // Get the value of the memory area.
2233   SVal MemVal = C.getSVal(Mem);
2234 
2235   // Ensure the memory area is not null.
2236   // If it is NULL there will be a NULL pointer dereference.
2237   State = checkNonNull(C, StateNonZeroSize, Mem, MemVal, 1);
2238   if (!State)
2239     return;
2240 
2241   State = CheckBufferAccess(C, State, Size, Mem);
2242   if (!State)
2243     return;
2244 
2245   if (!memsetAux(Mem, Zero, Size, C, State))
2246     return;
2247 
2248   C.addTransition(State);
2249 }
2250 
2251 //===----------------------------------------------------------------------===//
2252 // The driver method, and other Checker callbacks.
2253 //===----------------------------------------------------------------------===//
2254 
2255 CStringChecker::FnCheck CStringChecker::identifyCall(const CallEvent &Call,
2256                                                      CheckerContext &C) const {
2257   const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr());
2258   if (!CE)
2259     return nullptr;
2260 
2261   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Call.getDecl());
2262   if (!FD)
2263     return nullptr;
2264 
2265   if (Call.isCalled(StdCopy)) {
2266     return &CStringChecker::evalStdCopy;
2267   } else if (Call.isCalled(StdCopyBackward)) {
2268     return &CStringChecker::evalStdCopyBackward;
2269   }
2270 
2271   // Pro-actively check that argument types are safe to do arithmetic upon.
2272   // We do not want to crash if someone accidentally passes a structure
2273   // into, say, a C++ overload of any of these functions. We could not check
2274   // that for std::copy because they may have arguments of other types.
2275   for (auto I : CE->arguments()) {
2276     QualType T = I->getType();
2277     if (!T->isIntegralOrEnumerationType() && !T->isPointerType())
2278       return nullptr;
2279   }
2280 
2281   const FnCheck *Callback = Callbacks.lookup(Call);
2282   if (Callback)
2283     return *Callback;
2284 
2285   return nullptr;
2286 }
2287 
2288 bool CStringChecker::evalCall(const CallEvent &Call, CheckerContext &C) const {
2289   FnCheck Callback = identifyCall(Call, C);
2290 
2291   // If the callee isn't a string function, let another checker handle it.
2292   if (!Callback)
2293     return false;
2294 
2295   // Check and evaluate the call.
2296   const auto *CE = cast<CallExpr>(Call.getOriginExpr());
2297   (this->*Callback)(C, CE);
2298 
2299   // If the evaluate call resulted in no change, chain to the next eval call
2300   // handler.
2301   // Note, the custom CString evaluation calls assume that basic safety
2302   // properties are held. However, if the user chooses to turn off some of these
2303   // checks, we ignore the issues and leave the call evaluation to a generic
2304   // handler.
2305   return C.isDifferent();
2306 }
2307 
2308 void CStringChecker::checkPreStmt(const DeclStmt *DS, CheckerContext &C) const {
2309   // Record string length for char a[] = "abc";
2310   ProgramStateRef state = C.getState();
2311 
2312   for (const auto *I : DS->decls()) {
2313     const VarDecl *D = dyn_cast<VarDecl>(I);
2314     if (!D)
2315       continue;
2316 
2317     // FIXME: Handle array fields of structs.
2318     if (!D->getType()->isArrayType())
2319       continue;
2320 
2321     const Expr *Init = D->getInit();
2322     if (!Init)
2323       continue;
2324     if (!isa<StringLiteral>(Init))
2325       continue;
2326 
2327     Loc VarLoc = state->getLValue(D, C.getLocationContext());
2328     const MemRegion *MR = VarLoc.getAsRegion();
2329     if (!MR)
2330       continue;
2331 
2332     SVal StrVal = C.getSVal(Init);
2333     assert(StrVal.isValid() && "Initializer string is unknown or undefined");
2334     DefinedOrUnknownSVal strLength =
2335       getCStringLength(C, state, Init, StrVal).castAs<DefinedOrUnknownSVal>();
2336 
2337     state = state->set<CStringLength>(MR, strLength);
2338   }
2339 
2340   C.addTransition(state);
2341 }
2342 
2343 ProgramStateRef
2344 CStringChecker::checkRegionChanges(ProgramStateRef state,
2345     const InvalidatedSymbols *,
2346     ArrayRef<const MemRegion *> ExplicitRegions,
2347     ArrayRef<const MemRegion *> Regions,
2348     const LocationContext *LCtx,
2349     const CallEvent *Call) const {
2350   CStringLengthTy Entries = state->get<CStringLength>();
2351   if (Entries.isEmpty())
2352     return state;
2353 
2354   llvm::SmallPtrSet<const MemRegion *, 8> Invalidated;
2355   llvm::SmallPtrSet<const MemRegion *, 32> SuperRegions;
2356 
2357   // First build sets for the changed regions and their super-regions.
2358   for (ArrayRef<const MemRegion *>::iterator
2359       I = Regions.begin(), E = Regions.end(); I != E; ++I) {
2360     const MemRegion *MR = *I;
2361     Invalidated.insert(MR);
2362 
2363     SuperRegions.insert(MR);
2364     while (const SubRegion *SR = dyn_cast<SubRegion>(MR)) {
2365       MR = SR->getSuperRegion();
2366       SuperRegions.insert(MR);
2367     }
2368   }
2369 
2370   CStringLengthTy::Factory &F = state->get_context<CStringLength>();
2371 
2372   // Then loop over the entries in the current state.
2373   for (CStringLengthTy::iterator I = Entries.begin(),
2374       E = Entries.end(); I != E; ++I) {
2375     const MemRegion *MR = I.getKey();
2376 
2377     // Is this entry for a super-region of a changed region?
2378     if (SuperRegions.count(MR)) {
2379       Entries = F.remove(Entries, MR);
2380       continue;
2381     }
2382 
2383     // Is this entry for a sub-region of a changed region?
2384     const MemRegion *Super = MR;
2385     while (const SubRegion *SR = dyn_cast<SubRegion>(Super)) {
2386       Super = SR->getSuperRegion();
2387       if (Invalidated.count(Super)) {
2388         Entries = F.remove(Entries, MR);
2389         break;
2390       }
2391     }
2392   }
2393 
2394   return state->set<CStringLength>(Entries);
2395 }
2396 
2397 void CStringChecker::checkLiveSymbols(ProgramStateRef state,
2398     SymbolReaper &SR) const {
2399   // Mark all symbols in our string length map as valid.
2400   CStringLengthTy Entries = state->get<CStringLength>();
2401 
2402   for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end();
2403       I != E; ++I) {
2404     SVal Len = I.getData();
2405 
2406     for (SymExpr::symbol_iterator si = Len.symbol_begin(),
2407         se = Len.symbol_end(); si != se; ++si)
2408       SR.markInUse(*si);
2409   }
2410 }
2411 
2412 void CStringChecker::checkDeadSymbols(SymbolReaper &SR,
2413     CheckerContext &C) const {
2414   ProgramStateRef state = C.getState();
2415   CStringLengthTy Entries = state->get<CStringLength>();
2416   if (Entries.isEmpty())
2417     return;
2418 
2419   CStringLengthTy::Factory &F = state->get_context<CStringLength>();
2420   for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end();
2421       I != E; ++I) {
2422     SVal Len = I.getData();
2423     if (SymbolRef Sym = Len.getAsSymbol()) {
2424       if (SR.isDead(Sym))
2425         Entries = F.remove(Entries, I.getKey());
2426     }
2427   }
2428 
2429   state = state->set<CStringLength>(Entries);
2430   C.addTransition(state);
2431 }
2432 
2433 void ento::registerCStringModeling(CheckerManager &Mgr) {
2434   Mgr.registerChecker<CStringChecker>();
2435 }
2436 
2437 bool ento::shouldRegisterCStringModeling(const LangOptions &LO) {
2438   return true;
2439 }
2440 
2441 #define REGISTER_CHECKER(name)                                                 \
2442   void ento::register##name(CheckerManager &mgr) {                             \
2443     CStringChecker *checker = mgr.getChecker<CStringChecker>();                \
2444     checker->Filter.Check##name = true;                                        \
2445     checker->Filter.CheckName##name = mgr.getCurrentCheckerName();             \
2446   }                                                                            \
2447                                                                                \
2448   bool ento::shouldRegister##name(const LangOptions &LO) { return true; }
2449 
2450 REGISTER_CHECKER(CStringNullArg)
2451 REGISTER_CHECKER(CStringOutOfBounds)
2452 REGISTER_CHECKER(CStringBufferOverlap)
2453 REGISTER_CHECKER(CStringNotNullTerm)
2454