1 //= CStringChecker.cpp - Checks calls to C string functions --------*- C++ -*-// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This defines CStringChecker, which is an assortment of checks on calls 10 // to functions in <string.h>. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" 15 #include "InterCheckerAPI.h" 16 #include "clang/Basic/CharInfo.h" 17 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 18 #include "clang/StaticAnalyzer/Core/Checker.h" 19 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 20 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 21 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 22 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallString.h" 25 #include "llvm/Support/raw_ostream.h" 26 27 using namespace clang; 28 using namespace ento; 29 30 namespace { 31 enum class ConcatFnKind { none = 0, strcat = 1, strlcat = 2 }; 32 class CStringChecker : public Checker< eval::Call, 33 check::PreStmt<DeclStmt>, 34 check::LiveSymbols, 35 check::DeadSymbols, 36 check::RegionChanges 37 > { 38 mutable std::unique_ptr<BugType> BT_Null, BT_Bounds, BT_Overlap, 39 BT_NotCString, BT_AdditionOverflow; 40 41 mutable const char *CurrentFunctionDescription; 42 43 public: 44 /// The filter is used to filter out the diagnostics which are not enabled by 45 /// the user. 46 struct CStringChecksFilter { 47 DefaultBool CheckCStringNullArg; 48 DefaultBool CheckCStringOutOfBounds; 49 DefaultBool CheckCStringBufferOverlap; 50 DefaultBool CheckCStringNotNullTerm; 51 52 CheckerNameRef CheckNameCStringNullArg; 53 CheckerNameRef CheckNameCStringOutOfBounds; 54 CheckerNameRef CheckNameCStringBufferOverlap; 55 CheckerNameRef CheckNameCStringNotNullTerm; 56 }; 57 58 CStringChecksFilter Filter; 59 60 static void *getTag() { static int tag; return &tag; } 61 62 bool evalCall(const CallEvent &Call, CheckerContext &C) const; 63 void checkPreStmt(const DeclStmt *DS, CheckerContext &C) const; 64 void checkLiveSymbols(ProgramStateRef state, SymbolReaper &SR) const; 65 void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const; 66 67 ProgramStateRef 68 checkRegionChanges(ProgramStateRef state, 69 const InvalidatedSymbols *, 70 ArrayRef<const MemRegion *> ExplicitRegions, 71 ArrayRef<const MemRegion *> Regions, 72 const LocationContext *LCtx, 73 const CallEvent *Call) const; 74 75 typedef void (CStringChecker::*FnCheck)(CheckerContext &, 76 const CallExpr *) const; 77 CallDescriptionMap<FnCheck> Callbacks = { 78 {{CDF_MaybeBuiltin, "memcpy", 3}, &CStringChecker::evalMemcpy}, 79 {{CDF_MaybeBuiltin, "mempcpy", 3}, &CStringChecker::evalMempcpy}, 80 {{CDF_MaybeBuiltin, "memcmp", 3}, &CStringChecker::evalMemcmp}, 81 {{CDF_MaybeBuiltin, "memmove", 3}, &CStringChecker::evalMemmove}, 82 {{CDF_MaybeBuiltin, "memset", 3}, &CStringChecker::evalMemset}, 83 {{CDF_MaybeBuiltin, "explicit_memset", 3}, &CStringChecker::evalMemset}, 84 {{CDF_MaybeBuiltin, "strcpy", 2}, &CStringChecker::evalStrcpy}, 85 {{CDF_MaybeBuiltin, "strncpy", 3}, &CStringChecker::evalStrncpy}, 86 {{CDF_MaybeBuiltin, "stpcpy", 2}, &CStringChecker::evalStpcpy}, 87 {{CDF_MaybeBuiltin, "strlcpy", 3}, &CStringChecker::evalStrlcpy}, 88 {{CDF_MaybeBuiltin, "strcat", 2}, &CStringChecker::evalStrcat}, 89 {{CDF_MaybeBuiltin, "strncat", 3}, &CStringChecker::evalStrncat}, 90 {{CDF_MaybeBuiltin, "strlcat", 3}, &CStringChecker::evalStrlcat}, 91 {{CDF_MaybeBuiltin, "strlen", 1}, &CStringChecker::evalstrLength}, 92 {{CDF_MaybeBuiltin, "strnlen", 2}, &CStringChecker::evalstrnLength}, 93 {{CDF_MaybeBuiltin, "strcmp", 2}, &CStringChecker::evalStrcmp}, 94 {{CDF_MaybeBuiltin, "strncmp", 3}, &CStringChecker::evalStrncmp}, 95 {{CDF_MaybeBuiltin, "strcasecmp", 2}, &CStringChecker::evalStrcasecmp}, 96 {{CDF_MaybeBuiltin, "strncasecmp", 3}, &CStringChecker::evalStrncasecmp}, 97 {{CDF_MaybeBuiltin, "strsep", 2}, &CStringChecker::evalStrsep}, 98 {{CDF_MaybeBuiltin, "bcopy", 3}, &CStringChecker::evalBcopy}, 99 {{CDF_MaybeBuiltin, "bcmp", 3}, &CStringChecker::evalMemcmp}, 100 {{CDF_MaybeBuiltin, "bzero", 2}, &CStringChecker::evalBzero}, 101 {{CDF_MaybeBuiltin, "explicit_bzero", 2}, &CStringChecker::evalBzero}, 102 }; 103 104 // These require a bit of special handling. 105 CallDescription StdCopy{{"std", "copy"}, 3}, 106 StdCopyBackward{{"std", "copy_backward"}, 3}; 107 108 FnCheck identifyCall(const CallEvent &Call, CheckerContext &C) const; 109 void evalMemcpy(CheckerContext &C, const CallExpr *CE) const; 110 void evalMempcpy(CheckerContext &C, const CallExpr *CE) const; 111 void evalMemmove(CheckerContext &C, const CallExpr *CE) const; 112 void evalBcopy(CheckerContext &C, const CallExpr *CE) const; 113 void evalCopyCommon(CheckerContext &C, const CallExpr *CE, 114 ProgramStateRef state, 115 const Expr *Size, 116 const Expr *Source, 117 const Expr *Dest, 118 bool Restricted = false, 119 bool IsMempcpy = false) const; 120 121 void evalMemcmp(CheckerContext &C, const CallExpr *CE) const; 122 123 void evalstrLength(CheckerContext &C, const CallExpr *CE) const; 124 void evalstrnLength(CheckerContext &C, const CallExpr *CE) const; 125 void evalstrLengthCommon(CheckerContext &C, 126 const CallExpr *CE, 127 bool IsStrnlen = false) const; 128 129 void evalStrcpy(CheckerContext &C, const CallExpr *CE) const; 130 void evalStrncpy(CheckerContext &C, const CallExpr *CE) const; 131 void evalStpcpy(CheckerContext &C, const CallExpr *CE) const; 132 void evalStrlcpy(CheckerContext &C, const CallExpr *CE) const; 133 void evalStrcpyCommon(CheckerContext &C, const CallExpr *CE, bool ReturnEnd, 134 bool IsBounded, ConcatFnKind appendK, 135 bool returnPtr = true) const; 136 137 void evalStrcat(CheckerContext &C, const CallExpr *CE) const; 138 void evalStrncat(CheckerContext &C, const CallExpr *CE) const; 139 void evalStrlcat(CheckerContext &C, const CallExpr *CE) const; 140 141 void evalStrcmp(CheckerContext &C, const CallExpr *CE) const; 142 void evalStrncmp(CheckerContext &C, const CallExpr *CE) const; 143 void evalStrcasecmp(CheckerContext &C, const CallExpr *CE) const; 144 void evalStrncasecmp(CheckerContext &C, const CallExpr *CE) const; 145 void evalStrcmpCommon(CheckerContext &C, 146 const CallExpr *CE, 147 bool IsBounded = false, 148 bool IgnoreCase = false) const; 149 150 void evalStrsep(CheckerContext &C, const CallExpr *CE) const; 151 152 void evalStdCopy(CheckerContext &C, const CallExpr *CE) const; 153 void evalStdCopyBackward(CheckerContext &C, const CallExpr *CE) const; 154 void evalStdCopyCommon(CheckerContext &C, const CallExpr *CE) const; 155 void evalMemset(CheckerContext &C, const CallExpr *CE) const; 156 void evalBzero(CheckerContext &C, const CallExpr *CE) const; 157 158 // Utility methods 159 std::pair<ProgramStateRef , ProgramStateRef > 160 static assumeZero(CheckerContext &C, 161 ProgramStateRef state, SVal V, QualType Ty); 162 163 static ProgramStateRef setCStringLength(ProgramStateRef state, 164 const MemRegion *MR, 165 SVal strLength); 166 static SVal getCStringLengthForRegion(CheckerContext &C, 167 ProgramStateRef &state, 168 const Expr *Ex, 169 const MemRegion *MR, 170 bool hypothetical); 171 SVal getCStringLength(CheckerContext &C, 172 ProgramStateRef &state, 173 const Expr *Ex, 174 SVal Buf, 175 bool hypothetical = false) const; 176 177 const StringLiteral *getCStringLiteral(CheckerContext &C, 178 ProgramStateRef &state, 179 const Expr *expr, 180 SVal val) const; 181 182 static ProgramStateRef InvalidateBuffer(CheckerContext &C, 183 ProgramStateRef state, 184 const Expr *Ex, SVal V, 185 bool IsSourceBuffer, 186 const Expr *Size); 187 188 static bool SummarizeRegion(raw_ostream &os, ASTContext &Ctx, 189 const MemRegion *MR); 190 191 static bool memsetAux(const Expr *DstBuffer, SVal CharE, 192 const Expr *Size, CheckerContext &C, 193 ProgramStateRef &State); 194 195 // Re-usable checks 196 ProgramStateRef checkNonNull(CheckerContext &C, 197 ProgramStateRef state, 198 const Expr *S, 199 SVal l, 200 unsigned IdxOfArg) const; 201 ProgramStateRef CheckLocation(CheckerContext &C, 202 ProgramStateRef state, 203 const Expr *S, 204 SVal l, 205 const char *message = nullptr) const; 206 ProgramStateRef CheckBufferAccess(CheckerContext &C, 207 ProgramStateRef state, 208 const Expr *Size, 209 const Expr *FirstBuf, 210 const Expr *SecondBuf, 211 const char *firstMessage = nullptr, 212 const char *secondMessage = nullptr, 213 bool WarnAboutSize = false) const; 214 215 ProgramStateRef CheckBufferAccess(CheckerContext &C, 216 ProgramStateRef state, 217 const Expr *Size, 218 const Expr *Buf, 219 const char *message = nullptr, 220 bool WarnAboutSize = false) const { 221 // This is a convenience overload. 222 return CheckBufferAccess(C, state, Size, Buf, nullptr, message, nullptr, 223 WarnAboutSize); 224 } 225 ProgramStateRef CheckOverlap(CheckerContext &C, 226 ProgramStateRef state, 227 const Expr *Size, 228 const Expr *First, 229 const Expr *Second) const; 230 void emitOverlapBug(CheckerContext &C, 231 ProgramStateRef state, 232 const Stmt *First, 233 const Stmt *Second) const; 234 235 void emitNullArgBug(CheckerContext &C, ProgramStateRef State, const Stmt *S, 236 StringRef WarningMsg) const; 237 void emitOutOfBoundsBug(CheckerContext &C, ProgramStateRef State, 238 const Stmt *S, StringRef WarningMsg) const; 239 void emitNotCStringBug(CheckerContext &C, ProgramStateRef State, 240 const Stmt *S, StringRef WarningMsg) const; 241 void emitAdditionOverflowBug(CheckerContext &C, ProgramStateRef State) const; 242 243 ProgramStateRef checkAdditionOverflow(CheckerContext &C, 244 ProgramStateRef state, 245 NonLoc left, 246 NonLoc right) const; 247 248 // Return true if the destination buffer of the copy function may be in bound. 249 // Expects SVal of Size to be positive and unsigned. 250 // Expects SVal of FirstBuf to be a FieldRegion. 251 static bool IsFirstBufInBound(CheckerContext &C, 252 ProgramStateRef state, 253 const Expr *FirstBuf, 254 const Expr *Size); 255 }; 256 257 } //end anonymous namespace 258 259 REGISTER_MAP_WITH_PROGRAMSTATE(CStringLength, const MemRegion *, SVal) 260 261 //===----------------------------------------------------------------------===// 262 // Individual checks and utility methods. 263 //===----------------------------------------------------------------------===// 264 265 std::pair<ProgramStateRef , ProgramStateRef > 266 CStringChecker::assumeZero(CheckerContext &C, ProgramStateRef state, SVal V, 267 QualType Ty) { 268 Optional<DefinedSVal> val = V.getAs<DefinedSVal>(); 269 if (!val) 270 return std::pair<ProgramStateRef , ProgramStateRef >(state, state); 271 272 SValBuilder &svalBuilder = C.getSValBuilder(); 273 DefinedOrUnknownSVal zero = svalBuilder.makeZeroVal(Ty); 274 return state->assume(svalBuilder.evalEQ(state, *val, zero)); 275 } 276 277 ProgramStateRef CStringChecker::checkNonNull(CheckerContext &C, 278 ProgramStateRef state, 279 const Expr *S, SVal l, 280 unsigned IdxOfArg) const { 281 // If a previous check has failed, propagate the failure. 282 if (!state) 283 return nullptr; 284 285 ProgramStateRef stateNull, stateNonNull; 286 std::tie(stateNull, stateNonNull) = assumeZero(C, state, l, S->getType()); 287 288 if (stateNull && !stateNonNull) { 289 if (Filter.CheckCStringNullArg) { 290 SmallString<80> buf; 291 llvm::raw_svector_ostream OS(buf); 292 assert(CurrentFunctionDescription); 293 OS << "Null pointer passed as " << IdxOfArg 294 << llvm::getOrdinalSuffix(IdxOfArg) << " argument to " 295 << CurrentFunctionDescription; 296 297 emitNullArgBug(C, stateNull, S, OS.str()); 298 } 299 return nullptr; 300 } 301 302 // From here on, assume that the value is non-null. 303 assert(stateNonNull); 304 return stateNonNull; 305 } 306 307 // FIXME: This was originally copied from ArrayBoundChecker.cpp. Refactor? 308 ProgramStateRef CStringChecker::CheckLocation(CheckerContext &C, 309 ProgramStateRef state, 310 const Expr *S, SVal l, 311 const char *warningMsg) const { 312 // If a previous check has failed, propagate the failure. 313 if (!state) 314 return nullptr; 315 316 // Check for out of bound array element access. 317 const MemRegion *R = l.getAsRegion(); 318 if (!R) 319 return state; 320 321 const ElementRegion *ER = dyn_cast<ElementRegion>(R); 322 if (!ER) 323 return state; 324 325 if (ER->getValueType() != C.getASTContext().CharTy) 326 return state; 327 328 // Get the size of the array. 329 const SubRegion *superReg = cast<SubRegion>(ER->getSuperRegion()); 330 SValBuilder &svalBuilder = C.getSValBuilder(); 331 SVal Extent = 332 svalBuilder.convertToArrayIndex(superReg->getExtent(svalBuilder)); 333 DefinedOrUnknownSVal Size = Extent.castAs<DefinedOrUnknownSVal>(); 334 335 // Get the index of the accessed element. 336 DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>(); 337 338 ProgramStateRef StInBound = state->assumeInBound(Idx, Size, true); 339 ProgramStateRef StOutBound = state->assumeInBound(Idx, Size, false); 340 if (StOutBound && !StInBound) { 341 // These checks are either enabled by the CString out-of-bounds checker 342 // explicitly or implicitly by the Malloc checker. 343 // In the latter case we only do modeling but do not emit warning. 344 if (!Filter.CheckCStringOutOfBounds) 345 return nullptr; 346 // Emit a bug report. 347 if (warningMsg) { 348 emitOutOfBoundsBug(C, StOutBound, S, warningMsg); 349 } else { 350 assert(CurrentFunctionDescription); 351 assert(CurrentFunctionDescription[0] != '\0'); 352 353 SmallString<80> buf; 354 llvm::raw_svector_ostream os(buf); 355 os << toUppercase(CurrentFunctionDescription[0]) 356 << &CurrentFunctionDescription[1] 357 << " accesses out-of-bound array element"; 358 emitOutOfBoundsBug(C, StOutBound, S, os.str()); 359 } 360 return nullptr; 361 } 362 363 // Array bound check succeeded. From this point forward the array bound 364 // should always succeed. 365 return StInBound; 366 } 367 368 ProgramStateRef CStringChecker::CheckBufferAccess(CheckerContext &C, 369 ProgramStateRef state, 370 const Expr *Size, 371 const Expr *FirstBuf, 372 const Expr *SecondBuf, 373 const char *firstMessage, 374 const char *secondMessage, 375 bool WarnAboutSize) const { 376 // If a previous check has failed, propagate the failure. 377 if (!state) 378 return nullptr; 379 380 SValBuilder &svalBuilder = C.getSValBuilder(); 381 ASTContext &Ctx = svalBuilder.getContext(); 382 const LocationContext *LCtx = C.getLocationContext(); 383 384 QualType sizeTy = Size->getType(); 385 QualType PtrTy = Ctx.getPointerType(Ctx.CharTy); 386 387 // Check that the first buffer is non-null. 388 SVal BufVal = C.getSVal(FirstBuf); 389 state = checkNonNull(C, state, FirstBuf, BufVal, 1); 390 if (!state) 391 return nullptr; 392 393 // If out-of-bounds checking is turned off, skip the rest. 394 if (!Filter.CheckCStringOutOfBounds) 395 return state; 396 397 // Get the access length and make sure it is known. 398 // FIXME: This assumes the caller has already checked that the access length 399 // is positive. And that it's unsigned. 400 SVal LengthVal = C.getSVal(Size); 401 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); 402 if (!Length) 403 return state; 404 405 // Compute the offset of the last element to be accessed: size-1. 406 NonLoc One = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>(); 407 SVal Offset = svalBuilder.evalBinOpNN(state, BO_Sub, *Length, One, sizeTy); 408 if (Offset.isUnknown()) 409 return nullptr; 410 NonLoc LastOffset = Offset.castAs<NonLoc>(); 411 412 // Check that the first buffer is sufficiently long. 413 SVal BufStart = svalBuilder.evalCast(BufVal, PtrTy, FirstBuf->getType()); 414 if (Optional<Loc> BufLoc = BufStart.getAs<Loc>()) { 415 const Expr *warningExpr = (WarnAboutSize ? Size : FirstBuf); 416 417 SVal BufEnd = svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc, 418 LastOffset, PtrTy); 419 state = CheckLocation(C, state, warningExpr, BufEnd, firstMessage); 420 421 // If the buffer isn't large enough, abort. 422 if (!state) 423 return nullptr; 424 } 425 426 // If there's a second buffer, check it as well. 427 if (SecondBuf) { 428 BufVal = state->getSVal(SecondBuf, LCtx); 429 state = checkNonNull(C, state, SecondBuf, BufVal, 2); 430 if (!state) 431 return nullptr; 432 433 BufStart = svalBuilder.evalCast(BufVal, PtrTy, SecondBuf->getType()); 434 if (Optional<Loc> BufLoc = BufStart.getAs<Loc>()) { 435 const Expr *warningExpr = (WarnAboutSize ? Size : SecondBuf); 436 437 SVal BufEnd = svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc, 438 LastOffset, PtrTy); 439 state = CheckLocation(C, state, warningExpr, BufEnd, secondMessage); 440 } 441 } 442 443 // Large enough or not, return this state! 444 return state; 445 } 446 447 ProgramStateRef CStringChecker::CheckOverlap(CheckerContext &C, 448 ProgramStateRef state, 449 const Expr *Size, 450 const Expr *First, 451 const Expr *Second) const { 452 if (!Filter.CheckCStringBufferOverlap) 453 return state; 454 455 // Do a simple check for overlap: if the two arguments are from the same 456 // buffer, see if the end of the first is greater than the start of the second 457 // or vice versa. 458 459 // If a previous check has failed, propagate the failure. 460 if (!state) 461 return nullptr; 462 463 ProgramStateRef stateTrue, stateFalse; 464 465 // Get the buffer values and make sure they're known locations. 466 const LocationContext *LCtx = C.getLocationContext(); 467 SVal firstVal = state->getSVal(First, LCtx); 468 SVal secondVal = state->getSVal(Second, LCtx); 469 470 Optional<Loc> firstLoc = firstVal.getAs<Loc>(); 471 if (!firstLoc) 472 return state; 473 474 Optional<Loc> secondLoc = secondVal.getAs<Loc>(); 475 if (!secondLoc) 476 return state; 477 478 // Are the two values the same? 479 SValBuilder &svalBuilder = C.getSValBuilder(); 480 std::tie(stateTrue, stateFalse) = 481 state->assume(svalBuilder.evalEQ(state, *firstLoc, *secondLoc)); 482 483 if (stateTrue && !stateFalse) { 484 // If the values are known to be equal, that's automatically an overlap. 485 emitOverlapBug(C, stateTrue, First, Second); 486 return nullptr; 487 } 488 489 // assume the two expressions are not equal. 490 assert(stateFalse); 491 state = stateFalse; 492 493 // Which value comes first? 494 QualType cmpTy = svalBuilder.getConditionType(); 495 SVal reverse = svalBuilder.evalBinOpLL(state, BO_GT, 496 *firstLoc, *secondLoc, cmpTy); 497 Optional<DefinedOrUnknownSVal> reverseTest = 498 reverse.getAs<DefinedOrUnknownSVal>(); 499 if (!reverseTest) 500 return state; 501 502 std::tie(stateTrue, stateFalse) = state->assume(*reverseTest); 503 if (stateTrue) { 504 if (stateFalse) { 505 // If we don't know which one comes first, we can't perform this test. 506 return state; 507 } else { 508 // Switch the values so that firstVal is before secondVal. 509 std::swap(firstLoc, secondLoc); 510 511 // Switch the Exprs as well, so that they still correspond. 512 std::swap(First, Second); 513 } 514 } 515 516 // Get the length, and make sure it too is known. 517 SVal LengthVal = state->getSVal(Size, LCtx); 518 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); 519 if (!Length) 520 return state; 521 522 // Convert the first buffer's start address to char*. 523 // Bail out if the cast fails. 524 ASTContext &Ctx = svalBuilder.getContext(); 525 QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy); 526 SVal FirstStart = svalBuilder.evalCast(*firstLoc, CharPtrTy, 527 First->getType()); 528 Optional<Loc> FirstStartLoc = FirstStart.getAs<Loc>(); 529 if (!FirstStartLoc) 530 return state; 531 532 // Compute the end of the first buffer. Bail out if THAT fails. 533 SVal FirstEnd = svalBuilder.evalBinOpLN(state, BO_Add, 534 *FirstStartLoc, *Length, CharPtrTy); 535 Optional<Loc> FirstEndLoc = FirstEnd.getAs<Loc>(); 536 if (!FirstEndLoc) 537 return state; 538 539 // Is the end of the first buffer past the start of the second buffer? 540 SVal Overlap = svalBuilder.evalBinOpLL(state, BO_GT, 541 *FirstEndLoc, *secondLoc, cmpTy); 542 Optional<DefinedOrUnknownSVal> OverlapTest = 543 Overlap.getAs<DefinedOrUnknownSVal>(); 544 if (!OverlapTest) 545 return state; 546 547 std::tie(stateTrue, stateFalse) = state->assume(*OverlapTest); 548 549 if (stateTrue && !stateFalse) { 550 // Overlap! 551 emitOverlapBug(C, stateTrue, First, Second); 552 return nullptr; 553 } 554 555 // assume the two expressions don't overlap. 556 assert(stateFalse); 557 return stateFalse; 558 } 559 560 void CStringChecker::emitOverlapBug(CheckerContext &C, ProgramStateRef state, 561 const Stmt *First, const Stmt *Second) const { 562 ExplodedNode *N = C.generateErrorNode(state); 563 if (!N) 564 return; 565 566 if (!BT_Overlap) 567 BT_Overlap.reset(new BugType(Filter.CheckNameCStringBufferOverlap, 568 categories::UnixAPI, "Improper arguments")); 569 570 // Generate a report for this bug. 571 auto report = std::make_unique<PathSensitiveBugReport>( 572 *BT_Overlap, "Arguments must not be overlapping buffers", N); 573 report->addRange(First->getSourceRange()); 574 report->addRange(Second->getSourceRange()); 575 576 C.emitReport(std::move(report)); 577 } 578 579 void CStringChecker::emitNullArgBug(CheckerContext &C, ProgramStateRef State, 580 const Stmt *S, StringRef WarningMsg) const { 581 if (ExplodedNode *N = C.generateErrorNode(State)) { 582 if (!BT_Null) 583 BT_Null.reset(new BuiltinBug( 584 Filter.CheckNameCStringNullArg, categories::UnixAPI, 585 "Null pointer argument in call to byte string function")); 586 587 BuiltinBug *BT = static_cast<BuiltinBug *>(BT_Null.get()); 588 auto Report = std::make_unique<PathSensitiveBugReport>(*BT, WarningMsg, N); 589 Report->addRange(S->getSourceRange()); 590 if (const auto *Ex = dyn_cast<Expr>(S)) 591 bugreporter::trackExpressionValue(N, Ex, *Report); 592 C.emitReport(std::move(Report)); 593 } 594 } 595 596 void CStringChecker::emitOutOfBoundsBug(CheckerContext &C, 597 ProgramStateRef State, const Stmt *S, 598 StringRef WarningMsg) const { 599 if (ExplodedNode *N = C.generateErrorNode(State)) { 600 if (!BT_Bounds) 601 BT_Bounds.reset(new BuiltinBug( 602 Filter.CheckCStringOutOfBounds ? Filter.CheckNameCStringOutOfBounds 603 : Filter.CheckNameCStringNullArg, 604 "Out-of-bound array access", 605 "Byte string function accesses out-of-bound array element")); 606 607 BuiltinBug *BT = static_cast<BuiltinBug *>(BT_Bounds.get()); 608 609 // FIXME: It would be nice to eventually make this diagnostic more clear, 610 // e.g., by referencing the original declaration or by saying *why* this 611 // reference is outside the range. 612 auto Report = std::make_unique<PathSensitiveBugReport>(*BT, WarningMsg, N); 613 Report->addRange(S->getSourceRange()); 614 C.emitReport(std::move(Report)); 615 } 616 } 617 618 void CStringChecker::emitNotCStringBug(CheckerContext &C, ProgramStateRef State, 619 const Stmt *S, 620 StringRef WarningMsg) const { 621 if (ExplodedNode *N = C.generateNonFatalErrorNode(State)) { 622 if (!BT_NotCString) 623 BT_NotCString.reset(new BuiltinBug( 624 Filter.CheckNameCStringNotNullTerm, categories::UnixAPI, 625 "Argument is not a null-terminated string.")); 626 627 auto Report = 628 std::make_unique<PathSensitiveBugReport>(*BT_NotCString, WarningMsg, N); 629 630 Report->addRange(S->getSourceRange()); 631 C.emitReport(std::move(Report)); 632 } 633 } 634 635 void CStringChecker::emitAdditionOverflowBug(CheckerContext &C, 636 ProgramStateRef State) const { 637 if (ExplodedNode *N = C.generateErrorNode(State)) { 638 if (!BT_NotCString) 639 BT_NotCString.reset( 640 new BuiltinBug(Filter.CheckNameCStringOutOfBounds, "API", 641 "Sum of expressions causes overflow.")); 642 643 // This isn't a great error message, but this should never occur in real 644 // code anyway -- you'd have to create a buffer longer than a size_t can 645 // represent, which is sort of a contradiction. 646 const char *WarningMsg = 647 "This expression will create a string whose length is too big to " 648 "be represented as a size_t"; 649 650 auto Report = 651 std::make_unique<PathSensitiveBugReport>(*BT_NotCString, WarningMsg, N); 652 C.emitReport(std::move(Report)); 653 } 654 } 655 656 ProgramStateRef CStringChecker::checkAdditionOverflow(CheckerContext &C, 657 ProgramStateRef state, 658 NonLoc left, 659 NonLoc right) const { 660 // If out-of-bounds checking is turned off, skip the rest. 661 if (!Filter.CheckCStringOutOfBounds) 662 return state; 663 664 // If a previous check has failed, propagate the failure. 665 if (!state) 666 return nullptr; 667 668 SValBuilder &svalBuilder = C.getSValBuilder(); 669 BasicValueFactory &BVF = svalBuilder.getBasicValueFactory(); 670 671 QualType sizeTy = svalBuilder.getContext().getSizeType(); 672 const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy); 673 NonLoc maxVal = svalBuilder.makeIntVal(maxValInt); 674 675 SVal maxMinusRight; 676 if (right.getAs<nonloc::ConcreteInt>()) { 677 maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, right, 678 sizeTy); 679 } else { 680 // Try switching the operands. (The order of these two assignments is 681 // important!) 682 maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, left, 683 sizeTy); 684 left = right; 685 } 686 687 if (Optional<NonLoc> maxMinusRightNL = maxMinusRight.getAs<NonLoc>()) { 688 QualType cmpTy = svalBuilder.getConditionType(); 689 // If left > max - right, we have an overflow. 690 SVal willOverflow = svalBuilder.evalBinOpNN(state, BO_GT, left, 691 *maxMinusRightNL, cmpTy); 692 693 ProgramStateRef stateOverflow, stateOkay; 694 std::tie(stateOverflow, stateOkay) = 695 state->assume(willOverflow.castAs<DefinedOrUnknownSVal>()); 696 697 if (stateOverflow && !stateOkay) { 698 // We have an overflow. Emit a bug report. 699 emitAdditionOverflowBug(C, stateOverflow); 700 return nullptr; 701 } 702 703 // From now on, assume an overflow didn't occur. 704 assert(stateOkay); 705 state = stateOkay; 706 } 707 708 return state; 709 } 710 711 ProgramStateRef CStringChecker::setCStringLength(ProgramStateRef state, 712 const MemRegion *MR, 713 SVal strLength) { 714 assert(!strLength.isUndef() && "Attempt to set an undefined string length"); 715 716 MR = MR->StripCasts(); 717 718 switch (MR->getKind()) { 719 case MemRegion::StringRegionKind: 720 // FIXME: This can happen if we strcpy() into a string region. This is 721 // undefined [C99 6.4.5p6], but we should still warn about it. 722 return state; 723 724 case MemRegion::SymbolicRegionKind: 725 case MemRegion::AllocaRegionKind: 726 case MemRegion::VarRegionKind: 727 case MemRegion::FieldRegionKind: 728 case MemRegion::ObjCIvarRegionKind: 729 // These are the types we can currently track string lengths for. 730 break; 731 732 case MemRegion::ElementRegionKind: 733 // FIXME: Handle element regions by upper-bounding the parent region's 734 // string length. 735 return state; 736 737 default: 738 // Other regions (mostly non-data) can't have a reliable C string length. 739 // For now, just ignore the change. 740 // FIXME: These are rare but not impossible. We should output some kind of 741 // warning for things like strcpy((char[]){'a', 0}, "b"); 742 return state; 743 } 744 745 if (strLength.isUnknown()) 746 return state->remove<CStringLength>(MR); 747 748 return state->set<CStringLength>(MR, strLength); 749 } 750 751 SVal CStringChecker::getCStringLengthForRegion(CheckerContext &C, 752 ProgramStateRef &state, 753 const Expr *Ex, 754 const MemRegion *MR, 755 bool hypothetical) { 756 if (!hypothetical) { 757 // If there's a recorded length, go ahead and return it. 758 const SVal *Recorded = state->get<CStringLength>(MR); 759 if (Recorded) 760 return *Recorded; 761 } 762 763 // Otherwise, get a new symbol and update the state. 764 SValBuilder &svalBuilder = C.getSValBuilder(); 765 QualType sizeTy = svalBuilder.getContext().getSizeType(); 766 SVal strLength = svalBuilder.getMetadataSymbolVal(CStringChecker::getTag(), 767 MR, Ex, sizeTy, 768 C.getLocationContext(), 769 C.blockCount()); 770 771 if (!hypothetical) { 772 if (Optional<NonLoc> strLn = strLength.getAs<NonLoc>()) { 773 // In case of unbounded calls strlen etc bound the range to SIZE_MAX/4 774 BasicValueFactory &BVF = svalBuilder.getBasicValueFactory(); 775 const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy); 776 llvm::APSInt fourInt = APSIntType(maxValInt).getValue(4); 777 const llvm::APSInt *maxLengthInt = BVF.evalAPSInt(BO_Div, maxValInt, 778 fourInt); 779 NonLoc maxLength = svalBuilder.makeIntVal(*maxLengthInt); 780 SVal evalLength = svalBuilder.evalBinOpNN(state, BO_LE, *strLn, 781 maxLength, sizeTy); 782 state = state->assume(evalLength.castAs<DefinedOrUnknownSVal>(), true); 783 } 784 state = state->set<CStringLength>(MR, strLength); 785 } 786 787 return strLength; 788 } 789 790 SVal CStringChecker::getCStringLength(CheckerContext &C, ProgramStateRef &state, 791 const Expr *Ex, SVal Buf, 792 bool hypothetical) const { 793 const MemRegion *MR = Buf.getAsRegion(); 794 if (!MR) { 795 // If we can't get a region, see if it's something we /know/ isn't a 796 // C string. In the context of locations, the only time we can issue such 797 // a warning is for labels. 798 if (Optional<loc::GotoLabel> Label = Buf.getAs<loc::GotoLabel>()) { 799 if (Filter.CheckCStringNotNullTerm) { 800 SmallString<120> buf; 801 llvm::raw_svector_ostream os(buf); 802 assert(CurrentFunctionDescription); 803 os << "Argument to " << CurrentFunctionDescription 804 << " is the address of the label '" << Label->getLabel()->getName() 805 << "', which is not a null-terminated string"; 806 807 emitNotCStringBug(C, state, Ex, os.str()); 808 } 809 return UndefinedVal(); 810 } 811 812 // If it's not a region and not a label, give up. 813 return UnknownVal(); 814 } 815 816 // If we have a region, strip casts from it and see if we can figure out 817 // its length. For anything we can't figure out, just return UnknownVal. 818 MR = MR->StripCasts(); 819 820 switch (MR->getKind()) { 821 case MemRegion::StringRegionKind: { 822 // Modifying the contents of string regions is undefined [C99 6.4.5p6], 823 // so we can assume that the byte length is the correct C string length. 824 SValBuilder &svalBuilder = C.getSValBuilder(); 825 QualType sizeTy = svalBuilder.getContext().getSizeType(); 826 const StringLiteral *strLit = cast<StringRegion>(MR)->getStringLiteral(); 827 return svalBuilder.makeIntVal(strLit->getByteLength(), sizeTy); 828 } 829 case MemRegion::SymbolicRegionKind: 830 case MemRegion::AllocaRegionKind: 831 case MemRegion::VarRegionKind: 832 case MemRegion::FieldRegionKind: 833 case MemRegion::ObjCIvarRegionKind: 834 return getCStringLengthForRegion(C, state, Ex, MR, hypothetical); 835 case MemRegion::CompoundLiteralRegionKind: 836 // FIXME: Can we track this? Is it necessary? 837 return UnknownVal(); 838 case MemRegion::ElementRegionKind: 839 // FIXME: How can we handle this? It's not good enough to subtract the 840 // offset from the base string length; consider "123\x00567" and &a[5]. 841 return UnknownVal(); 842 default: 843 // Other regions (mostly non-data) can't have a reliable C string length. 844 // In this case, an error is emitted and UndefinedVal is returned. 845 // The caller should always be prepared to handle this case. 846 if (Filter.CheckCStringNotNullTerm) { 847 SmallString<120> buf; 848 llvm::raw_svector_ostream os(buf); 849 850 assert(CurrentFunctionDescription); 851 os << "Argument to " << CurrentFunctionDescription << " is "; 852 853 if (SummarizeRegion(os, C.getASTContext(), MR)) 854 os << ", which is not a null-terminated string"; 855 else 856 os << "not a null-terminated string"; 857 858 emitNotCStringBug(C, state, Ex, os.str()); 859 } 860 return UndefinedVal(); 861 } 862 } 863 864 const StringLiteral *CStringChecker::getCStringLiteral(CheckerContext &C, 865 ProgramStateRef &state, const Expr *expr, SVal val) const { 866 867 // Get the memory region pointed to by the val. 868 const MemRegion *bufRegion = val.getAsRegion(); 869 if (!bufRegion) 870 return nullptr; 871 872 // Strip casts off the memory region. 873 bufRegion = bufRegion->StripCasts(); 874 875 // Cast the memory region to a string region. 876 const StringRegion *strRegion= dyn_cast<StringRegion>(bufRegion); 877 if (!strRegion) 878 return nullptr; 879 880 // Return the actual string in the string region. 881 return strRegion->getStringLiteral(); 882 } 883 884 bool CStringChecker::IsFirstBufInBound(CheckerContext &C, 885 ProgramStateRef state, 886 const Expr *FirstBuf, 887 const Expr *Size) { 888 // If we do not know that the buffer is long enough we return 'true'. 889 // Otherwise the parent region of this field region would also get 890 // invalidated, which would lead to warnings based on an unknown state. 891 892 // Originally copied from CheckBufferAccess and CheckLocation. 893 SValBuilder &svalBuilder = C.getSValBuilder(); 894 ASTContext &Ctx = svalBuilder.getContext(); 895 const LocationContext *LCtx = C.getLocationContext(); 896 897 QualType sizeTy = Size->getType(); 898 QualType PtrTy = Ctx.getPointerType(Ctx.CharTy); 899 SVal BufVal = state->getSVal(FirstBuf, LCtx); 900 901 SVal LengthVal = state->getSVal(Size, LCtx); 902 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); 903 if (!Length) 904 return true; // cf top comment. 905 906 // Compute the offset of the last element to be accessed: size-1. 907 NonLoc One = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>(); 908 SVal Offset = svalBuilder.evalBinOpNN(state, BO_Sub, *Length, One, sizeTy); 909 if (Offset.isUnknown()) 910 return true; // cf top comment 911 NonLoc LastOffset = Offset.castAs<NonLoc>(); 912 913 // Check that the first buffer is sufficiently long. 914 SVal BufStart = svalBuilder.evalCast(BufVal, PtrTy, FirstBuf->getType()); 915 Optional<Loc> BufLoc = BufStart.getAs<Loc>(); 916 if (!BufLoc) 917 return true; // cf top comment. 918 919 SVal BufEnd = 920 svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc, LastOffset, PtrTy); 921 922 // Check for out of bound array element access. 923 const MemRegion *R = BufEnd.getAsRegion(); 924 if (!R) 925 return true; // cf top comment. 926 927 const ElementRegion *ER = dyn_cast<ElementRegion>(R); 928 if (!ER) 929 return true; // cf top comment. 930 931 // FIXME: Does this crash when a non-standard definition 932 // of a library function is encountered? 933 assert(ER->getValueType() == C.getASTContext().CharTy && 934 "IsFirstBufInBound should only be called with char* ElementRegions"); 935 936 // Get the size of the array. 937 const SubRegion *superReg = cast<SubRegion>(ER->getSuperRegion()); 938 SVal Extent = 939 svalBuilder.convertToArrayIndex(superReg->getExtent(svalBuilder)); 940 DefinedOrUnknownSVal ExtentSize = Extent.castAs<DefinedOrUnknownSVal>(); 941 942 // Get the index of the accessed element. 943 DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>(); 944 945 ProgramStateRef StInBound = state->assumeInBound(Idx, ExtentSize, true); 946 947 return static_cast<bool>(StInBound); 948 } 949 950 ProgramStateRef CStringChecker::InvalidateBuffer(CheckerContext &C, 951 ProgramStateRef state, 952 const Expr *E, SVal V, 953 bool IsSourceBuffer, 954 const Expr *Size) { 955 Optional<Loc> L = V.getAs<Loc>(); 956 if (!L) 957 return state; 958 959 // FIXME: This is a simplified version of what's in CFRefCount.cpp -- it makes 960 // some assumptions about the value that CFRefCount can't. Even so, it should 961 // probably be refactored. 962 if (Optional<loc::MemRegionVal> MR = L->getAs<loc::MemRegionVal>()) { 963 const MemRegion *R = MR->getRegion()->StripCasts(); 964 965 // Are we dealing with an ElementRegion? If so, we should be invalidating 966 // the super-region. 967 if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) { 968 R = ER->getSuperRegion(); 969 // FIXME: What about layers of ElementRegions? 970 } 971 972 // Invalidate this region. 973 const LocationContext *LCtx = C.getPredecessor()->getLocationContext(); 974 975 bool CausesPointerEscape = false; 976 RegionAndSymbolInvalidationTraits ITraits; 977 // Invalidate and escape only indirect regions accessible through the source 978 // buffer. 979 if (IsSourceBuffer) { 980 ITraits.setTrait(R->getBaseRegion(), 981 RegionAndSymbolInvalidationTraits::TK_PreserveContents); 982 ITraits.setTrait(R, RegionAndSymbolInvalidationTraits::TK_SuppressEscape); 983 CausesPointerEscape = true; 984 } else { 985 const MemRegion::Kind& K = R->getKind(); 986 if (K == MemRegion::FieldRegionKind) 987 if (Size && IsFirstBufInBound(C, state, E, Size)) { 988 // If destination buffer is a field region and access is in bound, 989 // do not invalidate its super region. 990 ITraits.setTrait( 991 R, 992 RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion); 993 } 994 } 995 996 return state->invalidateRegions(R, E, C.blockCount(), LCtx, 997 CausesPointerEscape, nullptr, nullptr, 998 &ITraits); 999 } 1000 1001 // If we have a non-region value by chance, just remove the binding. 1002 // FIXME: is this necessary or correct? This handles the non-Region 1003 // cases. Is it ever valid to store to these? 1004 return state->killBinding(*L); 1005 } 1006 1007 bool CStringChecker::SummarizeRegion(raw_ostream &os, ASTContext &Ctx, 1008 const MemRegion *MR) { 1009 switch (MR->getKind()) { 1010 case MemRegion::FunctionCodeRegionKind: { 1011 if (const auto *FD = cast<FunctionCodeRegion>(MR)->getDecl()) 1012 os << "the address of the function '" << *FD << '\''; 1013 else 1014 os << "the address of a function"; 1015 return true; 1016 } 1017 case MemRegion::BlockCodeRegionKind: 1018 os << "block text"; 1019 return true; 1020 case MemRegion::BlockDataRegionKind: 1021 os << "a block"; 1022 return true; 1023 case MemRegion::CXXThisRegionKind: 1024 case MemRegion::CXXTempObjectRegionKind: 1025 os << "a C++ temp object of type " 1026 << cast<TypedValueRegion>(MR)->getValueType().getAsString(); 1027 return true; 1028 case MemRegion::VarRegionKind: 1029 os << "a variable of type" 1030 << cast<TypedValueRegion>(MR)->getValueType().getAsString(); 1031 return true; 1032 case MemRegion::FieldRegionKind: 1033 os << "a field of type " 1034 << cast<TypedValueRegion>(MR)->getValueType().getAsString(); 1035 return true; 1036 case MemRegion::ObjCIvarRegionKind: 1037 os << "an instance variable of type " 1038 << cast<TypedValueRegion>(MR)->getValueType().getAsString(); 1039 return true; 1040 default: 1041 return false; 1042 } 1043 } 1044 1045 bool CStringChecker::memsetAux(const Expr *DstBuffer, SVal CharVal, 1046 const Expr *Size, CheckerContext &C, 1047 ProgramStateRef &State) { 1048 SVal MemVal = C.getSVal(DstBuffer); 1049 SVal SizeVal = C.getSVal(Size); 1050 const MemRegion *MR = MemVal.getAsRegion(); 1051 if (!MR) 1052 return false; 1053 1054 // We're about to model memset by producing a "default binding" in the Store. 1055 // Our current implementation - RegionStore - doesn't support default bindings 1056 // that don't cover the whole base region. So we should first get the offset 1057 // and the base region to figure out whether the offset of buffer is 0. 1058 RegionOffset Offset = MR->getAsOffset(); 1059 const MemRegion *BR = Offset.getRegion(); 1060 1061 Optional<NonLoc> SizeNL = SizeVal.getAs<NonLoc>(); 1062 if (!SizeNL) 1063 return false; 1064 1065 SValBuilder &svalBuilder = C.getSValBuilder(); 1066 ASTContext &Ctx = C.getASTContext(); 1067 1068 // void *memset(void *dest, int ch, size_t count); 1069 // For now we can only handle the case of offset is 0 and concrete char value. 1070 if (Offset.isValid() && !Offset.hasSymbolicOffset() && 1071 Offset.getOffset() == 0) { 1072 // Get the base region's extent. 1073 auto *SubReg = cast<SubRegion>(BR); 1074 DefinedOrUnknownSVal Extent = SubReg->getExtent(svalBuilder); 1075 1076 ProgramStateRef StateWholeReg, StateNotWholeReg; 1077 std::tie(StateWholeReg, StateNotWholeReg) = 1078 State->assume(svalBuilder.evalEQ(State, Extent, *SizeNL)); 1079 1080 // With the semantic of 'memset()', we should convert the CharVal to 1081 // unsigned char. 1082 CharVal = svalBuilder.evalCast(CharVal, Ctx.UnsignedCharTy, Ctx.IntTy); 1083 1084 ProgramStateRef StateNullChar, StateNonNullChar; 1085 std::tie(StateNullChar, StateNonNullChar) = 1086 assumeZero(C, State, CharVal, Ctx.UnsignedCharTy); 1087 1088 if (StateWholeReg && !StateNotWholeReg && StateNullChar && 1089 !StateNonNullChar) { 1090 // If the 'memset()' acts on the whole region of destination buffer and 1091 // the value of the second argument of 'memset()' is zero, bind the second 1092 // argument's value to the destination buffer with 'default binding'. 1093 // FIXME: Since there is no perfect way to bind the non-zero character, we 1094 // can only deal with zero value here. In the future, we need to deal with 1095 // the binding of non-zero value in the case of whole region. 1096 State = State->bindDefaultZero(svalBuilder.makeLoc(BR), 1097 C.getLocationContext()); 1098 } else { 1099 // If the destination buffer's extent is not equal to the value of 1100 // third argument, just invalidate buffer. 1101 State = InvalidateBuffer(C, State, DstBuffer, MemVal, 1102 /*IsSourceBuffer*/ false, Size); 1103 } 1104 1105 if (StateNullChar && !StateNonNullChar) { 1106 // If the value of the second argument of 'memset()' is zero, set the 1107 // string length of destination buffer to 0 directly. 1108 State = setCStringLength(State, MR, 1109 svalBuilder.makeZeroVal(Ctx.getSizeType())); 1110 } else if (!StateNullChar && StateNonNullChar) { 1111 SVal NewStrLen = svalBuilder.getMetadataSymbolVal( 1112 CStringChecker::getTag(), MR, DstBuffer, Ctx.getSizeType(), 1113 C.getLocationContext(), C.blockCount()); 1114 1115 // If the value of second argument is not zero, then the string length 1116 // is at least the size argument. 1117 SVal NewStrLenGESize = svalBuilder.evalBinOp( 1118 State, BO_GE, NewStrLen, SizeVal, svalBuilder.getConditionType()); 1119 1120 State = setCStringLength( 1121 State->assume(NewStrLenGESize.castAs<DefinedOrUnknownSVal>(), true), 1122 MR, NewStrLen); 1123 } 1124 } else { 1125 // If the offset is not zero and char value is not concrete, we can do 1126 // nothing but invalidate the buffer. 1127 State = InvalidateBuffer(C, State, DstBuffer, MemVal, 1128 /*IsSourceBuffer*/ false, Size); 1129 } 1130 return true; 1131 } 1132 1133 //===----------------------------------------------------------------------===// 1134 // evaluation of individual function calls. 1135 //===----------------------------------------------------------------------===// 1136 1137 void CStringChecker::evalCopyCommon(CheckerContext &C, 1138 const CallExpr *CE, 1139 ProgramStateRef state, 1140 const Expr *Size, const Expr *Dest, 1141 const Expr *Source, bool Restricted, 1142 bool IsMempcpy) const { 1143 CurrentFunctionDescription = "memory copy function"; 1144 1145 // See if the size argument is zero. 1146 const LocationContext *LCtx = C.getLocationContext(); 1147 SVal sizeVal = state->getSVal(Size, LCtx); 1148 QualType sizeTy = Size->getType(); 1149 1150 ProgramStateRef stateZeroSize, stateNonZeroSize; 1151 std::tie(stateZeroSize, stateNonZeroSize) = 1152 assumeZero(C, state, sizeVal, sizeTy); 1153 1154 // Get the value of the Dest. 1155 SVal destVal = state->getSVal(Dest, LCtx); 1156 1157 // If the size is zero, there won't be any actual memory access, so 1158 // just bind the return value to the destination buffer and return. 1159 if (stateZeroSize && !stateNonZeroSize) { 1160 stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, destVal); 1161 C.addTransition(stateZeroSize); 1162 return; 1163 } 1164 1165 // If the size can be nonzero, we have to check the other arguments. 1166 if (stateNonZeroSize) { 1167 state = stateNonZeroSize; 1168 1169 // Ensure the destination is not null. If it is NULL there will be a 1170 // NULL pointer dereference. 1171 state = checkNonNull(C, state, Dest, destVal, 1); 1172 if (!state) 1173 return; 1174 1175 // Get the value of the Src. 1176 SVal srcVal = state->getSVal(Source, LCtx); 1177 1178 // Ensure the source is not null. If it is NULL there will be a 1179 // NULL pointer dereference. 1180 state = checkNonNull(C, state, Source, srcVal, 2); 1181 if (!state) 1182 return; 1183 1184 // Ensure the accesses are valid and that the buffers do not overlap. 1185 const char * const writeWarning = 1186 "Memory copy function overflows destination buffer"; 1187 state = CheckBufferAccess(C, state, Size, Dest, Source, 1188 writeWarning, /* sourceWarning = */ nullptr); 1189 if (Restricted) 1190 state = CheckOverlap(C, state, Size, Dest, Source); 1191 1192 if (!state) 1193 return; 1194 1195 // If this is mempcpy, get the byte after the last byte copied and 1196 // bind the expr. 1197 if (IsMempcpy) { 1198 // Get the byte after the last byte copied. 1199 SValBuilder &SvalBuilder = C.getSValBuilder(); 1200 ASTContext &Ctx = SvalBuilder.getContext(); 1201 QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy); 1202 SVal DestRegCharVal = 1203 SvalBuilder.evalCast(destVal, CharPtrTy, Dest->getType()); 1204 SVal lastElement = C.getSValBuilder().evalBinOp( 1205 state, BO_Add, DestRegCharVal, sizeVal, Dest->getType()); 1206 // If we don't know how much we copied, we can at least 1207 // conjure a return value for later. 1208 if (lastElement.isUnknown()) 1209 lastElement = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx, 1210 C.blockCount()); 1211 1212 // The byte after the last byte copied is the return value. 1213 state = state->BindExpr(CE, LCtx, lastElement); 1214 } else { 1215 // All other copies return the destination buffer. 1216 // (Well, bcopy() has a void return type, but this won't hurt.) 1217 state = state->BindExpr(CE, LCtx, destVal); 1218 } 1219 1220 // Invalidate the destination (regular invalidation without pointer-escaping 1221 // the address of the top-level region). 1222 // FIXME: Even if we can't perfectly model the copy, we should see if we 1223 // can use LazyCompoundVals to copy the source values into the destination. 1224 // This would probably remove any existing bindings past the end of the 1225 // copied region, but that's still an improvement over blank invalidation. 1226 state = InvalidateBuffer(C, state, Dest, C.getSVal(Dest), 1227 /*IsSourceBuffer*/false, Size); 1228 1229 // Invalidate the source (const-invalidation without const-pointer-escaping 1230 // the address of the top-level region). 1231 state = InvalidateBuffer(C, state, Source, C.getSVal(Source), 1232 /*IsSourceBuffer*/true, nullptr); 1233 1234 C.addTransition(state); 1235 } 1236 } 1237 1238 1239 void CStringChecker::evalMemcpy(CheckerContext &C, const CallExpr *CE) const { 1240 // void *memcpy(void *restrict dst, const void *restrict src, size_t n); 1241 // The return value is the address of the destination buffer. 1242 const Expr *Dest = CE->getArg(0); 1243 ProgramStateRef state = C.getState(); 1244 1245 evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1), true); 1246 } 1247 1248 void CStringChecker::evalMempcpy(CheckerContext &C, const CallExpr *CE) const { 1249 // void *mempcpy(void *restrict dst, const void *restrict src, size_t n); 1250 // The return value is a pointer to the byte following the last written byte. 1251 const Expr *Dest = CE->getArg(0); 1252 ProgramStateRef state = C.getState(); 1253 1254 evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1), true, true); 1255 } 1256 1257 void CStringChecker::evalMemmove(CheckerContext &C, const CallExpr *CE) const { 1258 // void *memmove(void *dst, const void *src, size_t n); 1259 // The return value is the address of the destination buffer. 1260 const Expr *Dest = CE->getArg(0); 1261 ProgramStateRef state = C.getState(); 1262 1263 evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1)); 1264 } 1265 1266 void CStringChecker::evalBcopy(CheckerContext &C, const CallExpr *CE) const { 1267 // void bcopy(const void *src, void *dst, size_t n); 1268 evalCopyCommon(C, CE, C.getState(), 1269 CE->getArg(2), CE->getArg(1), CE->getArg(0)); 1270 } 1271 1272 void CStringChecker::evalMemcmp(CheckerContext &C, const CallExpr *CE) const { 1273 // int memcmp(const void *s1, const void *s2, size_t n); 1274 CurrentFunctionDescription = "memory comparison function"; 1275 1276 const Expr *Left = CE->getArg(0); 1277 const Expr *Right = CE->getArg(1); 1278 const Expr *Size = CE->getArg(2); 1279 1280 ProgramStateRef state = C.getState(); 1281 SValBuilder &svalBuilder = C.getSValBuilder(); 1282 1283 // See if the size argument is zero. 1284 const LocationContext *LCtx = C.getLocationContext(); 1285 SVal sizeVal = state->getSVal(Size, LCtx); 1286 QualType sizeTy = Size->getType(); 1287 1288 ProgramStateRef stateZeroSize, stateNonZeroSize; 1289 std::tie(stateZeroSize, stateNonZeroSize) = 1290 assumeZero(C, state, sizeVal, sizeTy); 1291 1292 // If the size can be zero, the result will be 0 in that case, and we don't 1293 // have to check either of the buffers. 1294 if (stateZeroSize) { 1295 state = stateZeroSize; 1296 state = state->BindExpr(CE, LCtx, 1297 svalBuilder.makeZeroVal(CE->getType())); 1298 C.addTransition(state); 1299 } 1300 1301 // If the size can be nonzero, we have to check the other arguments. 1302 if (stateNonZeroSize) { 1303 state = stateNonZeroSize; 1304 // If we know the two buffers are the same, we know the result is 0. 1305 // First, get the two buffers' addresses. Another checker will have already 1306 // made sure they're not undefined. 1307 DefinedOrUnknownSVal LV = 1308 state->getSVal(Left, LCtx).castAs<DefinedOrUnknownSVal>(); 1309 DefinedOrUnknownSVal RV = 1310 state->getSVal(Right, LCtx).castAs<DefinedOrUnknownSVal>(); 1311 1312 // See if they are the same. 1313 DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV); 1314 ProgramStateRef StSameBuf, StNotSameBuf; 1315 std::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf); 1316 1317 // If the two arguments are the same buffer, we know the result is 0, 1318 // and we only need to check one size. 1319 if (StSameBuf && !StNotSameBuf) { 1320 state = StSameBuf; 1321 state = CheckBufferAccess(C, state, Size, Left); 1322 if (state) { 1323 state = StSameBuf->BindExpr(CE, LCtx, 1324 svalBuilder.makeZeroVal(CE->getType())); 1325 C.addTransition(state); 1326 } 1327 return; 1328 } 1329 1330 // If the two arguments might be different buffers, we have to check 1331 // the size of both of them. 1332 assert(StNotSameBuf); 1333 state = CheckBufferAccess(C, state, Size, Left, Right); 1334 if (state) { 1335 // The return value is the comparison result, which we don't know. 1336 SVal CmpV = 1337 svalBuilder.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount()); 1338 state = state->BindExpr(CE, LCtx, CmpV); 1339 C.addTransition(state); 1340 } 1341 } 1342 } 1343 1344 void CStringChecker::evalstrLength(CheckerContext &C, 1345 const CallExpr *CE) const { 1346 // size_t strlen(const char *s); 1347 evalstrLengthCommon(C, CE, /* IsStrnlen = */ false); 1348 } 1349 1350 void CStringChecker::evalstrnLength(CheckerContext &C, 1351 const CallExpr *CE) const { 1352 // size_t strnlen(const char *s, size_t maxlen); 1353 evalstrLengthCommon(C, CE, /* IsStrnlen = */ true); 1354 } 1355 1356 void CStringChecker::evalstrLengthCommon(CheckerContext &C, const CallExpr *CE, 1357 bool IsStrnlen) const { 1358 CurrentFunctionDescription = "string length function"; 1359 ProgramStateRef state = C.getState(); 1360 const LocationContext *LCtx = C.getLocationContext(); 1361 1362 if (IsStrnlen) { 1363 const Expr *maxlenExpr = CE->getArg(1); 1364 SVal maxlenVal = state->getSVal(maxlenExpr, LCtx); 1365 1366 ProgramStateRef stateZeroSize, stateNonZeroSize; 1367 std::tie(stateZeroSize, stateNonZeroSize) = 1368 assumeZero(C, state, maxlenVal, maxlenExpr->getType()); 1369 1370 // If the size can be zero, the result will be 0 in that case, and we don't 1371 // have to check the string itself. 1372 if (stateZeroSize) { 1373 SVal zero = C.getSValBuilder().makeZeroVal(CE->getType()); 1374 stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, zero); 1375 C.addTransition(stateZeroSize); 1376 } 1377 1378 // If the size is GUARANTEED to be zero, we're done! 1379 if (!stateNonZeroSize) 1380 return; 1381 1382 // Otherwise, record the assumption that the size is nonzero. 1383 state = stateNonZeroSize; 1384 } 1385 1386 // Check that the string argument is non-null. 1387 const Expr *Arg = CE->getArg(0); 1388 SVal ArgVal = state->getSVal(Arg, LCtx); 1389 1390 state = checkNonNull(C, state, Arg, ArgVal, 1); 1391 1392 if (!state) 1393 return; 1394 1395 SVal strLength = getCStringLength(C, state, Arg, ArgVal); 1396 1397 // If the argument isn't a valid C string, there's no valid state to 1398 // transition to. 1399 if (strLength.isUndef()) 1400 return; 1401 1402 DefinedOrUnknownSVal result = UnknownVal(); 1403 1404 // If the check is for strnlen() then bind the return value to no more than 1405 // the maxlen value. 1406 if (IsStrnlen) { 1407 QualType cmpTy = C.getSValBuilder().getConditionType(); 1408 1409 // It's a little unfortunate to be getting this again, 1410 // but it's not that expensive... 1411 const Expr *maxlenExpr = CE->getArg(1); 1412 SVal maxlenVal = state->getSVal(maxlenExpr, LCtx); 1413 1414 Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>(); 1415 Optional<NonLoc> maxlenValNL = maxlenVal.getAs<NonLoc>(); 1416 1417 if (strLengthNL && maxlenValNL) { 1418 ProgramStateRef stateStringTooLong, stateStringNotTooLong; 1419 1420 // Check if the strLength is greater than the maxlen. 1421 std::tie(stateStringTooLong, stateStringNotTooLong) = state->assume( 1422 C.getSValBuilder() 1423 .evalBinOpNN(state, BO_GT, *strLengthNL, *maxlenValNL, cmpTy) 1424 .castAs<DefinedOrUnknownSVal>()); 1425 1426 if (stateStringTooLong && !stateStringNotTooLong) { 1427 // If the string is longer than maxlen, return maxlen. 1428 result = *maxlenValNL; 1429 } else if (stateStringNotTooLong && !stateStringTooLong) { 1430 // If the string is shorter than maxlen, return its length. 1431 result = *strLengthNL; 1432 } 1433 } 1434 1435 if (result.isUnknown()) { 1436 // If we don't have enough information for a comparison, there's 1437 // no guarantee the full string length will actually be returned. 1438 // All we know is the return value is the min of the string length 1439 // and the limit. This is better than nothing. 1440 result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx, 1441 C.blockCount()); 1442 NonLoc resultNL = result.castAs<NonLoc>(); 1443 1444 if (strLengthNL) { 1445 state = state->assume(C.getSValBuilder().evalBinOpNN( 1446 state, BO_LE, resultNL, *strLengthNL, cmpTy) 1447 .castAs<DefinedOrUnknownSVal>(), true); 1448 } 1449 1450 if (maxlenValNL) { 1451 state = state->assume(C.getSValBuilder().evalBinOpNN( 1452 state, BO_LE, resultNL, *maxlenValNL, cmpTy) 1453 .castAs<DefinedOrUnknownSVal>(), true); 1454 } 1455 } 1456 1457 } else { 1458 // This is a plain strlen(), not strnlen(). 1459 result = strLength.castAs<DefinedOrUnknownSVal>(); 1460 1461 // If we don't know the length of the string, conjure a return 1462 // value, so it can be used in constraints, at least. 1463 if (result.isUnknown()) { 1464 result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx, 1465 C.blockCount()); 1466 } 1467 } 1468 1469 // Bind the return value. 1470 assert(!result.isUnknown() && "Should have conjured a value by now"); 1471 state = state->BindExpr(CE, LCtx, result); 1472 C.addTransition(state); 1473 } 1474 1475 void CStringChecker::evalStrcpy(CheckerContext &C, const CallExpr *CE) const { 1476 // char *strcpy(char *restrict dst, const char *restrict src); 1477 evalStrcpyCommon(C, CE, 1478 /* ReturnEnd = */ false, 1479 /* IsBounded = */ false, 1480 /* appendK = */ ConcatFnKind::none); 1481 } 1482 1483 void CStringChecker::evalStrncpy(CheckerContext &C, const CallExpr *CE) const { 1484 // char *strncpy(char *restrict dst, const char *restrict src, size_t n); 1485 evalStrcpyCommon(C, CE, 1486 /* ReturnEnd = */ false, 1487 /* IsBounded = */ true, 1488 /* appendK = */ ConcatFnKind::none); 1489 } 1490 1491 void CStringChecker::evalStpcpy(CheckerContext &C, const CallExpr *CE) const { 1492 // char *stpcpy(char *restrict dst, const char *restrict src); 1493 evalStrcpyCommon(C, CE, 1494 /* ReturnEnd = */ true, 1495 /* IsBounded = */ false, 1496 /* appendK = */ ConcatFnKind::none); 1497 } 1498 1499 void CStringChecker::evalStrlcpy(CheckerContext &C, const CallExpr *CE) const { 1500 // size_t strlcpy(char *dest, const char *src, size_t size); 1501 evalStrcpyCommon(C, CE, 1502 /* ReturnEnd = */ true, 1503 /* IsBounded = */ true, 1504 /* appendK = */ ConcatFnKind::none, 1505 /* returnPtr = */ false); 1506 } 1507 1508 void CStringChecker::evalStrcat(CheckerContext &C, const CallExpr *CE) const { 1509 // char *strcat(char *restrict s1, const char *restrict s2); 1510 evalStrcpyCommon(C, CE, 1511 /* ReturnEnd = */ false, 1512 /* IsBounded = */ false, 1513 /* appendK = */ ConcatFnKind::strcat); 1514 } 1515 1516 void CStringChecker::evalStrncat(CheckerContext &C, const CallExpr *CE) const { 1517 //char *strncat(char *restrict s1, const char *restrict s2, size_t n); 1518 evalStrcpyCommon(C, CE, 1519 /* ReturnEnd = */ false, 1520 /* IsBounded = */ true, 1521 /* appendK = */ ConcatFnKind::strcat); 1522 } 1523 1524 void CStringChecker::evalStrlcat(CheckerContext &C, const CallExpr *CE) const { 1525 // size_t strlcat(char *dst, const char *src, size_t size); 1526 // It will append at most size - strlen(dst) - 1 bytes, 1527 // NULL-terminating the result. 1528 evalStrcpyCommon(C, CE, 1529 /* ReturnEnd = */ false, 1530 /* IsBounded = */ true, 1531 /* appendK = */ ConcatFnKind::strlcat, 1532 /* returnPtr = */ false); 1533 } 1534 1535 void CStringChecker::evalStrcpyCommon(CheckerContext &C, const CallExpr *CE, 1536 bool ReturnEnd, bool IsBounded, 1537 ConcatFnKind appendK, 1538 bool returnPtr) const { 1539 if (appendK == ConcatFnKind::none) 1540 CurrentFunctionDescription = "string copy function"; 1541 else 1542 CurrentFunctionDescription = "string concatenation function"; 1543 ProgramStateRef state = C.getState(); 1544 const LocationContext *LCtx = C.getLocationContext(); 1545 1546 // Check that the destination is non-null. 1547 const Expr *Dst = CE->getArg(0); 1548 SVal DstVal = state->getSVal(Dst, LCtx); 1549 1550 state = checkNonNull(C, state, Dst, DstVal, 1); 1551 if (!state) 1552 return; 1553 1554 // Check that the source is non-null. 1555 const Expr *srcExpr = CE->getArg(1); 1556 SVal srcVal = state->getSVal(srcExpr, LCtx); 1557 state = checkNonNull(C, state, srcExpr, srcVal, 2); 1558 if (!state) 1559 return; 1560 1561 // Get the string length of the source. 1562 SVal strLength = getCStringLength(C, state, srcExpr, srcVal); 1563 Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>(); 1564 1565 // Get the string length of the destination buffer. 1566 SVal dstStrLength = getCStringLength(C, state, Dst, DstVal); 1567 Optional<NonLoc> dstStrLengthNL = dstStrLength.getAs<NonLoc>(); 1568 1569 // If the source isn't a valid C string, give up. 1570 if (strLength.isUndef()) 1571 return; 1572 1573 SValBuilder &svalBuilder = C.getSValBuilder(); 1574 QualType cmpTy = svalBuilder.getConditionType(); 1575 QualType sizeTy = svalBuilder.getContext().getSizeType(); 1576 1577 // These two values allow checking two kinds of errors: 1578 // - actual overflows caused by a source that doesn't fit in the destination 1579 // - potential overflows caused by a bound that could exceed the destination 1580 SVal amountCopied = UnknownVal(); 1581 SVal maxLastElementIndex = UnknownVal(); 1582 const char *boundWarning = nullptr; 1583 1584 state = CheckOverlap(C, state, IsBounded ? CE->getArg(2) : CE->getArg(1), Dst, 1585 srcExpr); 1586 1587 if (!state) 1588 return; 1589 1590 // If the function is strncpy, strncat, etc... it is bounded. 1591 if (IsBounded) { 1592 // Get the max number of characters to copy. 1593 const Expr *lenExpr = CE->getArg(2); 1594 SVal lenVal = state->getSVal(lenExpr, LCtx); 1595 1596 // Protect against misdeclared strncpy(). 1597 lenVal = svalBuilder.evalCast(lenVal, sizeTy, lenExpr->getType()); 1598 1599 Optional<NonLoc> lenValNL = lenVal.getAs<NonLoc>(); 1600 1601 // If we know both values, we might be able to figure out how much 1602 // we're copying. 1603 if (strLengthNL && lenValNL) { 1604 switch (appendK) { 1605 case ConcatFnKind::none: 1606 case ConcatFnKind::strcat: { 1607 ProgramStateRef stateSourceTooLong, stateSourceNotTooLong; 1608 // Check if the max number to copy is less than the length of the src. 1609 // If the bound is equal to the source length, strncpy won't null- 1610 // terminate the result! 1611 std::tie(stateSourceTooLong, stateSourceNotTooLong) = state->assume( 1612 svalBuilder 1613 .evalBinOpNN(state, BO_GE, *strLengthNL, *lenValNL, cmpTy) 1614 .castAs<DefinedOrUnknownSVal>()); 1615 1616 if (stateSourceTooLong && !stateSourceNotTooLong) { 1617 // Max number to copy is less than the length of the src, so the 1618 // actual strLength copied is the max number arg. 1619 state = stateSourceTooLong; 1620 amountCopied = lenVal; 1621 1622 } else if (!stateSourceTooLong && stateSourceNotTooLong) { 1623 // The source buffer entirely fits in the bound. 1624 state = stateSourceNotTooLong; 1625 amountCopied = strLength; 1626 } 1627 break; 1628 } 1629 case ConcatFnKind::strlcat: 1630 if (!dstStrLengthNL) 1631 return; 1632 1633 // amountCopied = min (size - dstLen - 1 , srcLen) 1634 SVal freeSpace = svalBuilder.evalBinOpNN(state, BO_Sub, *lenValNL, 1635 *dstStrLengthNL, sizeTy); 1636 if (!freeSpace.getAs<NonLoc>()) 1637 return; 1638 freeSpace = 1639 svalBuilder.evalBinOp(state, BO_Sub, freeSpace, 1640 svalBuilder.makeIntVal(1, sizeTy), sizeTy); 1641 Optional<NonLoc> freeSpaceNL = freeSpace.getAs<NonLoc>(); 1642 1643 // While unlikely, it is possible that the subtraction is 1644 // too complex to compute, let's check whether it succeeded. 1645 if (!freeSpaceNL) 1646 return; 1647 SVal hasEnoughSpace = svalBuilder.evalBinOpNN( 1648 state, BO_LE, *strLengthNL, *freeSpaceNL, cmpTy); 1649 1650 ProgramStateRef TrueState, FalseState; 1651 std::tie(TrueState, FalseState) = 1652 state->assume(hasEnoughSpace.castAs<DefinedOrUnknownSVal>()); 1653 1654 // srcStrLength <= size - dstStrLength -1 1655 if (TrueState && !FalseState) { 1656 amountCopied = strLength; 1657 } 1658 1659 // srcStrLength > size - dstStrLength -1 1660 if (!TrueState && FalseState) { 1661 amountCopied = freeSpace; 1662 } 1663 1664 if (TrueState && FalseState) 1665 amountCopied = UnknownVal(); 1666 break; 1667 } 1668 } 1669 // We still want to know if the bound is known to be too large. 1670 if (lenValNL) { 1671 switch (appendK) { 1672 case ConcatFnKind::strcat: 1673 // For strncat, the check is strlen(dst) + lenVal < sizeof(dst) 1674 1675 // Get the string length of the destination. If the destination is 1676 // memory that can't have a string length, we shouldn't be copying 1677 // into it anyway. 1678 if (dstStrLength.isUndef()) 1679 return; 1680 1681 if (dstStrLengthNL) { 1682 maxLastElementIndex = svalBuilder.evalBinOpNN( 1683 state, BO_Add, *lenValNL, *dstStrLengthNL, sizeTy); 1684 1685 boundWarning = "Size argument is greater than the free space in the " 1686 "destination buffer"; 1687 } 1688 break; 1689 case ConcatFnKind::none: 1690 case ConcatFnKind::strlcat: 1691 // For strncpy and strlcat, this is just checking 1692 // that lenVal <= sizeof(dst). 1693 // (Yes, strncpy and strncat differ in how they treat termination. 1694 // strncat ALWAYS terminates, but strncpy doesn't.) 1695 1696 // We need a special case for when the copy size is zero, in which 1697 // case strncpy will do no work at all. Our bounds check uses n-1 1698 // as the last element accessed, so n == 0 is problematic. 1699 ProgramStateRef StateZeroSize, StateNonZeroSize; 1700 std::tie(StateZeroSize, StateNonZeroSize) = 1701 assumeZero(C, state, *lenValNL, sizeTy); 1702 1703 // If the size is known to be zero, we're done. 1704 if (StateZeroSize && !StateNonZeroSize) { 1705 if (returnPtr) { 1706 StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, DstVal); 1707 } else { 1708 if (appendK == ConcatFnKind::none) { 1709 // strlcpy returns strlen(src) 1710 StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, strLength); 1711 } else { 1712 // strlcat returns strlen(src) + strlen(dst) 1713 SVal retSize = svalBuilder.evalBinOp( 1714 state, BO_Add, strLength, dstStrLength, sizeTy); 1715 StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, retSize); 1716 } 1717 } 1718 C.addTransition(StateZeroSize); 1719 return; 1720 } 1721 1722 // Otherwise, go ahead and figure out the last element we'll touch. 1723 // We don't record the non-zero assumption here because we can't 1724 // be sure. We won't warn on a possible zero. 1725 NonLoc one = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>(); 1726 maxLastElementIndex = 1727 svalBuilder.evalBinOpNN(state, BO_Sub, *lenValNL, one, sizeTy); 1728 boundWarning = "Size argument is greater than the length of the " 1729 "destination buffer"; 1730 break; 1731 } 1732 } 1733 } else { 1734 // The function isn't bounded. The amount copied should match the length 1735 // of the source buffer. 1736 amountCopied = strLength; 1737 } 1738 1739 assert(state); 1740 1741 // This represents the number of characters copied into the destination 1742 // buffer. (It may not actually be the strlen if the destination buffer 1743 // is not terminated.) 1744 SVal finalStrLength = UnknownVal(); 1745 SVal strlRetVal = UnknownVal(); 1746 1747 if (appendK == ConcatFnKind::none && !returnPtr) { 1748 // strlcpy returns the sizeof(src) 1749 strlRetVal = strLength; 1750 } 1751 1752 // If this is an appending function (strcat, strncat...) then set the 1753 // string length to strlen(src) + strlen(dst) since the buffer will 1754 // ultimately contain both. 1755 if (appendK != ConcatFnKind::none) { 1756 // Get the string length of the destination. If the destination is memory 1757 // that can't have a string length, we shouldn't be copying into it anyway. 1758 if (dstStrLength.isUndef()) 1759 return; 1760 1761 if (appendK == ConcatFnKind::strlcat && dstStrLengthNL && strLengthNL) { 1762 strlRetVal = svalBuilder.evalBinOpNN(state, BO_Add, *strLengthNL, 1763 *dstStrLengthNL, sizeTy); 1764 } 1765 1766 Optional<NonLoc> amountCopiedNL = amountCopied.getAs<NonLoc>(); 1767 1768 // If we know both string lengths, we might know the final string length. 1769 if (amountCopiedNL && dstStrLengthNL) { 1770 // Make sure the two lengths together don't overflow a size_t. 1771 state = checkAdditionOverflow(C, state, *amountCopiedNL, *dstStrLengthNL); 1772 if (!state) 1773 return; 1774 1775 finalStrLength = svalBuilder.evalBinOpNN(state, BO_Add, *amountCopiedNL, 1776 *dstStrLengthNL, sizeTy); 1777 } 1778 1779 // If we couldn't get a single value for the final string length, 1780 // we can at least bound it by the individual lengths. 1781 if (finalStrLength.isUnknown()) { 1782 // Try to get a "hypothetical" string length symbol, which we can later 1783 // set as a real value if that turns out to be the case. 1784 finalStrLength = getCStringLength(C, state, CE, DstVal, true); 1785 assert(!finalStrLength.isUndef()); 1786 1787 if (Optional<NonLoc> finalStrLengthNL = finalStrLength.getAs<NonLoc>()) { 1788 if (amountCopiedNL && appendK == ConcatFnKind::none) { 1789 // we overwrite dst string with the src 1790 // finalStrLength >= srcStrLength 1791 SVal sourceInResult = svalBuilder.evalBinOpNN( 1792 state, BO_GE, *finalStrLengthNL, *amountCopiedNL, cmpTy); 1793 state = state->assume(sourceInResult.castAs<DefinedOrUnknownSVal>(), 1794 true); 1795 if (!state) 1796 return; 1797 } 1798 1799 if (dstStrLengthNL && appendK != ConcatFnKind::none) { 1800 // we extend the dst string with the src 1801 // finalStrLength >= dstStrLength 1802 SVal destInResult = svalBuilder.evalBinOpNN(state, BO_GE, 1803 *finalStrLengthNL, 1804 *dstStrLengthNL, 1805 cmpTy); 1806 state = 1807 state->assume(destInResult.castAs<DefinedOrUnknownSVal>(), true); 1808 if (!state) 1809 return; 1810 } 1811 } 1812 } 1813 1814 } else { 1815 // Otherwise, this is a copy-over function (strcpy, strncpy, ...), and 1816 // the final string length will match the input string length. 1817 finalStrLength = amountCopied; 1818 } 1819 1820 SVal Result; 1821 1822 if (returnPtr) { 1823 // The final result of the function will either be a pointer past the last 1824 // copied element, or a pointer to the start of the destination buffer. 1825 Result = (ReturnEnd ? UnknownVal() : DstVal); 1826 } else { 1827 if (appendK == ConcatFnKind::strlcat || appendK == ConcatFnKind::none) 1828 //strlcpy, strlcat 1829 Result = strlRetVal; 1830 else 1831 Result = finalStrLength; 1832 } 1833 1834 assert(state); 1835 1836 // If the destination is a MemRegion, try to check for a buffer overflow and 1837 // record the new string length. 1838 if (Optional<loc::MemRegionVal> dstRegVal = 1839 DstVal.getAs<loc::MemRegionVal>()) { 1840 QualType ptrTy = Dst->getType(); 1841 1842 // If we have an exact value on a bounded copy, use that to check for 1843 // overflows, rather than our estimate about how much is actually copied. 1844 if (boundWarning) { 1845 if (Optional<NonLoc> maxLastNL = maxLastElementIndex.getAs<NonLoc>()) { 1846 SVal maxLastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal, 1847 *maxLastNL, ptrTy); 1848 state = CheckLocation(C, state, CE->getArg(2), maxLastElement, 1849 boundWarning); 1850 if (!state) 1851 return; 1852 } 1853 } 1854 1855 // Then, if the final length is known... 1856 if (Optional<NonLoc> knownStrLength = finalStrLength.getAs<NonLoc>()) { 1857 SVal lastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal, 1858 *knownStrLength, ptrTy); 1859 1860 // ...and we haven't checked the bound, we'll check the actual copy. 1861 if (!boundWarning) { 1862 const char * const warningMsg = 1863 "String copy function overflows destination buffer"; 1864 state = CheckLocation(C, state, Dst, lastElement, warningMsg); 1865 if (!state) 1866 return; 1867 } 1868 1869 // If this is a stpcpy-style copy, the last element is the return value. 1870 if (returnPtr && ReturnEnd) 1871 Result = lastElement; 1872 } 1873 1874 // Invalidate the destination (regular invalidation without pointer-escaping 1875 // the address of the top-level region). This must happen before we set the 1876 // C string length because invalidation will clear the length. 1877 // FIXME: Even if we can't perfectly model the copy, we should see if we 1878 // can use LazyCompoundVals to copy the source values into the destination. 1879 // This would probably remove any existing bindings past the end of the 1880 // string, but that's still an improvement over blank invalidation. 1881 state = InvalidateBuffer(C, state, Dst, *dstRegVal, 1882 /*IsSourceBuffer*/false, nullptr); 1883 1884 // Invalidate the source (const-invalidation without const-pointer-escaping 1885 // the address of the top-level region). 1886 state = InvalidateBuffer(C, state, srcExpr, srcVal, /*IsSourceBuffer*/true, 1887 nullptr); 1888 1889 // Set the C string length of the destination, if we know it. 1890 if (IsBounded && (appendK == ConcatFnKind::none)) { 1891 // strncpy is annoying in that it doesn't guarantee to null-terminate 1892 // the result string. If the original string didn't fit entirely inside 1893 // the bound (including the null-terminator), we don't know how long the 1894 // result is. 1895 if (amountCopied != strLength) 1896 finalStrLength = UnknownVal(); 1897 } 1898 state = setCStringLength(state, dstRegVal->getRegion(), finalStrLength); 1899 } 1900 1901 assert(state); 1902 1903 if (returnPtr) { 1904 // If this is a stpcpy-style copy, but we were unable to check for a buffer 1905 // overflow, we still need a result. Conjure a return value. 1906 if (ReturnEnd && Result.isUnknown()) { 1907 Result = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount()); 1908 } 1909 } 1910 // Set the return value. 1911 state = state->BindExpr(CE, LCtx, Result); 1912 C.addTransition(state); 1913 } 1914 1915 void CStringChecker::evalStrcmp(CheckerContext &C, const CallExpr *CE) const { 1916 //int strcmp(const char *s1, const char *s2); 1917 evalStrcmpCommon(C, CE, /* IsBounded = */ false, /* IgnoreCase = */ false); 1918 } 1919 1920 void CStringChecker::evalStrncmp(CheckerContext &C, const CallExpr *CE) const { 1921 //int strncmp(const char *s1, const char *s2, size_t n); 1922 evalStrcmpCommon(C, CE, /* IsBounded = */ true, /* IgnoreCase = */ false); 1923 } 1924 1925 void CStringChecker::evalStrcasecmp(CheckerContext &C, 1926 const CallExpr *CE) const { 1927 //int strcasecmp(const char *s1, const char *s2); 1928 evalStrcmpCommon(C, CE, /* IsBounded = */ false, /* IgnoreCase = */ true); 1929 } 1930 1931 void CStringChecker::evalStrncasecmp(CheckerContext &C, 1932 const CallExpr *CE) const { 1933 //int strncasecmp(const char *s1, const char *s2, size_t n); 1934 evalStrcmpCommon(C, CE, /* IsBounded = */ true, /* IgnoreCase = */ true); 1935 } 1936 1937 void CStringChecker::evalStrcmpCommon(CheckerContext &C, const CallExpr *CE, 1938 bool IsBounded, bool IgnoreCase) const { 1939 CurrentFunctionDescription = "string comparison function"; 1940 ProgramStateRef state = C.getState(); 1941 const LocationContext *LCtx = C.getLocationContext(); 1942 1943 // Check that the first string is non-null 1944 const Expr *s1 = CE->getArg(0); 1945 SVal s1Val = state->getSVal(s1, LCtx); 1946 state = checkNonNull(C, state, s1, s1Val, 1); 1947 if (!state) 1948 return; 1949 1950 // Check that the second string is non-null. 1951 const Expr *s2 = CE->getArg(1); 1952 SVal s2Val = state->getSVal(s2, LCtx); 1953 state = checkNonNull(C, state, s2, s2Val, 2); 1954 if (!state) 1955 return; 1956 1957 // Get the string length of the first string or give up. 1958 SVal s1Length = getCStringLength(C, state, s1, s1Val); 1959 if (s1Length.isUndef()) 1960 return; 1961 1962 // Get the string length of the second string or give up. 1963 SVal s2Length = getCStringLength(C, state, s2, s2Val); 1964 if (s2Length.isUndef()) 1965 return; 1966 1967 // If we know the two buffers are the same, we know the result is 0. 1968 // First, get the two buffers' addresses. Another checker will have already 1969 // made sure they're not undefined. 1970 DefinedOrUnknownSVal LV = s1Val.castAs<DefinedOrUnknownSVal>(); 1971 DefinedOrUnknownSVal RV = s2Val.castAs<DefinedOrUnknownSVal>(); 1972 1973 // See if they are the same. 1974 SValBuilder &svalBuilder = C.getSValBuilder(); 1975 DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV); 1976 ProgramStateRef StSameBuf, StNotSameBuf; 1977 std::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf); 1978 1979 // If the two arguments might be the same buffer, we know the result is 0, 1980 // and we only need to check one size. 1981 if (StSameBuf) { 1982 StSameBuf = StSameBuf->BindExpr(CE, LCtx, 1983 svalBuilder.makeZeroVal(CE->getType())); 1984 C.addTransition(StSameBuf); 1985 1986 // If the two arguments are GUARANTEED to be the same, we're done! 1987 if (!StNotSameBuf) 1988 return; 1989 } 1990 1991 assert(StNotSameBuf); 1992 state = StNotSameBuf; 1993 1994 // At this point we can go about comparing the two buffers. 1995 // For now, we only do this if they're both known string literals. 1996 1997 // Attempt to extract string literals from both expressions. 1998 const StringLiteral *s1StrLiteral = getCStringLiteral(C, state, s1, s1Val); 1999 const StringLiteral *s2StrLiteral = getCStringLiteral(C, state, s2, s2Val); 2000 bool canComputeResult = false; 2001 SVal resultVal = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx, 2002 C.blockCount()); 2003 2004 if (s1StrLiteral && s2StrLiteral) { 2005 StringRef s1StrRef = s1StrLiteral->getString(); 2006 StringRef s2StrRef = s2StrLiteral->getString(); 2007 2008 if (IsBounded) { 2009 // Get the max number of characters to compare. 2010 const Expr *lenExpr = CE->getArg(2); 2011 SVal lenVal = state->getSVal(lenExpr, LCtx); 2012 2013 // If the length is known, we can get the right substrings. 2014 if (const llvm::APSInt *len = svalBuilder.getKnownValue(state, lenVal)) { 2015 // Create substrings of each to compare the prefix. 2016 s1StrRef = s1StrRef.substr(0, (size_t)len->getZExtValue()); 2017 s2StrRef = s2StrRef.substr(0, (size_t)len->getZExtValue()); 2018 canComputeResult = true; 2019 } 2020 } else { 2021 // This is a normal, unbounded strcmp. 2022 canComputeResult = true; 2023 } 2024 2025 if (canComputeResult) { 2026 // Real strcmp stops at null characters. 2027 size_t s1Term = s1StrRef.find('\0'); 2028 if (s1Term != StringRef::npos) 2029 s1StrRef = s1StrRef.substr(0, s1Term); 2030 2031 size_t s2Term = s2StrRef.find('\0'); 2032 if (s2Term != StringRef::npos) 2033 s2StrRef = s2StrRef.substr(0, s2Term); 2034 2035 // Use StringRef's comparison methods to compute the actual result. 2036 int compareRes = IgnoreCase ? s1StrRef.compare_lower(s2StrRef) 2037 : s1StrRef.compare(s2StrRef); 2038 2039 // The strcmp function returns an integer greater than, equal to, or less 2040 // than zero, [c11, p7.24.4.2]. 2041 if (compareRes == 0) { 2042 resultVal = svalBuilder.makeIntVal(compareRes, CE->getType()); 2043 } 2044 else { 2045 DefinedSVal zeroVal = svalBuilder.makeIntVal(0, CE->getType()); 2046 // Constrain strcmp's result range based on the result of StringRef's 2047 // comparison methods. 2048 BinaryOperatorKind op = (compareRes == 1) ? BO_GT : BO_LT; 2049 SVal compareWithZero = 2050 svalBuilder.evalBinOp(state, op, resultVal, zeroVal, 2051 svalBuilder.getConditionType()); 2052 DefinedSVal compareWithZeroVal = compareWithZero.castAs<DefinedSVal>(); 2053 state = state->assume(compareWithZeroVal, true); 2054 } 2055 } 2056 } 2057 2058 state = state->BindExpr(CE, LCtx, resultVal); 2059 2060 // Record this as a possible path. 2061 C.addTransition(state); 2062 } 2063 2064 void CStringChecker::evalStrsep(CheckerContext &C, const CallExpr *CE) const { 2065 //char *strsep(char **stringp, const char *delim); 2066 // Sanity: does the search string parameter match the return type? 2067 const Expr *SearchStrPtr = CE->getArg(0); 2068 QualType CharPtrTy = SearchStrPtr->getType()->getPointeeType(); 2069 if (CharPtrTy.isNull() || 2070 CE->getType().getUnqualifiedType() != CharPtrTy.getUnqualifiedType()) 2071 return; 2072 2073 CurrentFunctionDescription = "strsep()"; 2074 ProgramStateRef State = C.getState(); 2075 const LocationContext *LCtx = C.getLocationContext(); 2076 2077 // Check that the search string pointer is non-null (though it may point to 2078 // a null string). 2079 SVal SearchStrVal = State->getSVal(SearchStrPtr, LCtx); 2080 State = checkNonNull(C, State, SearchStrPtr, SearchStrVal, 1); 2081 if (!State) 2082 return; 2083 2084 // Check that the delimiter string is non-null. 2085 const Expr *DelimStr = CE->getArg(1); 2086 SVal DelimStrVal = State->getSVal(DelimStr, LCtx); 2087 State = checkNonNull(C, State, DelimStr, DelimStrVal, 2); 2088 if (!State) 2089 return; 2090 2091 SValBuilder &SVB = C.getSValBuilder(); 2092 SVal Result; 2093 if (Optional<Loc> SearchStrLoc = SearchStrVal.getAs<Loc>()) { 2094 // Get the current value of the search string pointer, as a char*. 2095 Result = State->getSVal(*SearchStrLoc, CharPtrTy); 2096 2097 // Invalidate the search string, representing the change of one delimiter 2098 // character to NUL. 2099 State = InvalidateBuffer(C, State, SearchStrPtr, Result, 2100 /*IsSourceBuffer*/false, nullptr); 2101 2102 // Overwrite the search string pointer. The new value is either an address 2103 // further along in the same string, or NULL if there are no more tokens. 2104 State = State->bindLoc(*SearchStrLoc, 2105 SVB.conjureSymbolVal(getTag(), 2106 CE, 2107 LCtx, 2108 CharPtrTy, 2109 C.blockCount()), 2110 LCtx); 2111 } else { 2112 assert(SearchStrVal.isUnknown()); 2113 // Conjure a symbolic value. It's the best we can do. 2114 Result = SVB.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount()); 2115 } 2116 2117 // Set the return value, and finish. 2118 State = State->BindExpr(CE, LCtx, Result); 2119 C.addTransition(State); 2120 } 2121 2122 // These should probably be moved into a C++ standard library checker. 2123 void CStringChecker::evalStdCopy(CheckerContext &C, const CallExpr *CE) const { 2124 evalStdCopyCommon(C, CE); 2125 } 2126 2127 void CStringChecker::evalStdCopyBackward(CheckerContext &C, 2128 const CallExpr *CE) const { 2129 evalStdCopyCommon(C, CE); 2130 } 2131 2132 void CStringChecker::evalStdCopyCommon(CheckerContext &C, 2133 const CallExpr *CE) const { 2134 if (!CE->getArg(2)->getType()->isPointerType()) 2135 return; 2136 2137 ProgramStateRef State = C.getState(); 2138 2139 const LocationContext *LCtx = C.getLocationContext(); 2140 2141 // template <class _InputIterator, class _OutputIterator> 2142 // _OutputIterator 2143 // copy(_InputIterator __first, _InputIterator __last, 2144 // _OutputIterator __result) 2145 2146 // Invalidate the destination buffer 2147 const Expr *Dst = CE->getArg(2); 2148 SVal DstVal = State->getSVal(Dst, LCtx); 2149 State = InvalidateBuffer(C, State, Dst, DstVal, /*IsSource=*/false, 2150 /*Size=*/nullptr); 2151 2152 SValBuilder &SVB = C.getSValBuilder(); 2153 2154 SVal ResultVal = SVB.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount()); 2155 State = State->BindExpr(CE, LCtx, ResultVal); 2156 2157 C.addTransition(State); 2158 } 2159 2160 void CStringChecker::evalMemset(CheckerContext &C, const CallExpr *CE) const { 2161 CurrentFunctionDescription = "memory set function"; 2162 2163 const Expr *Mem = CE->getArg(0); 2164 const Expr *CharE = CE->getArg(1); 2165 const Expr *Size = CE->getArg(2); 2166 ProgramStateRef State = C.getState(); 2167 2168 // See if the size argument is zero. 2169 const LocationContext *LCtx = C.getLocationContext(); 2170 SVal SizeVal = State->getSVal(Size, LCtx); 2171 QualType SizeTy = Size->getType(); 2172 2173 ProgramStateRef StateZeroSize, StateNonZeroSize; 2174 std::tie(StateZeroSize, StateNonZeroSize) = 2175 assumeZero(C, State, SizeVal, SizeTy); 2176 2177 // Get the value of the memory area. 2178 SVal MemVal = State->getSVal(Mem, LCtx); 2179 2180 // If the size is zero, there won't be any actual memory access, so 2181 // just bind the return value to the Mem buffer and return. 2182 if (StateZeroSize && !StateNonZeroSize) { 2183 StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, MemVal); 2184 C.addTransition(StateZeroSize); 2185 return; 2186 } 2187 2188 // Ensure the memory area is not null. 2189 // If it is NULL there will be a NULL pointer dereference. 2190 State = checkNonNull(C, StateNonZeroSize, Mem, MemVal, 1); 2191 if (!State) 2192 return; 2193 2194 State = CheckBufferAccess(C, State, Size, Mem); 2195 if (!State) 2196 return; 2197 2198 // According to the values of the arguments, bind the value of the second 2199 // argument to the destination buffer and set string length, or just 2200 // invalidate the destination buffer. 2201 if (!memsetAux(Mem, C.getSVal(CharE), Size, C, State)) 2202 return; 2203 2204 State = State->BindExpr(CE, LCtx, MemVal); 2205 C.addTransition(State); 2206 } 2207 2208 void CStringChecker::evalBzero(CheckerContext &C, const CallExpr *CE) const { 2209 CurrentFunctionDescription = "memory clearance function"; 2210 2211 const Expr *Mem = CE->getArg(0); 2212 const Expr *Size = CE->getArg(1); 2213 SVal Zero = C.getSValBuilder().makeZeroVal(C.getASTContext().IntTy); 2214 2215 ProgramStateRef State = C.getState(); 2216 2217 // See if the size argument is zero. 2218 SVal SizeVal = C.getSVal(Size); 2219 QualType SizeTy = Size->getType(); 2220 2221 ProgramStateRef StateZeroSize, StateNonZeroSize; 2222 std::tie(StateZeroSize, StateNonZeroSize) = 2223 assumeZero(C, State, SizeVal, SizeTy); 2224 2225 // If the size is zero, there won't be any actual memory access, 2226 // In this case we just return. 2227 if (StateZeroSize && !StateNonZeroSize) { 2228 C.addTransition(StateZeroSize); 2229 return; 2230 } 2231 2232 // Get the value of the memory area. 2233 SVal MemVal = C.getSVal(Mem); 2234 2235 // Ensure the memory area is not null. 2236 // If it is NULL there will be a NULL pointer dereference. 2237 State = checkNonNull(C, StateNonZeroSize, Mem, MemVal, 1); 2238 if (!State) 2239 return; 2240 2241 State = CheckBufferAccess(C, State, Size, Mem); 2242 if (!State) 2243 return; 2244 2245 if (!memsetAux(Mem, Zero, Size, C, State)) 2246 return; 2247 2248 C.addTransition(State); 2249 } 2250 2251 //===----------------------------------------------------------------------===// 2252 // The driver method, and other Checker callbacks. 2253 //===----------------------------------------------------------------------===// 2254 2255 CStringChecker::FnCheck CStringChecker::identifyCall(const CallEvent &Call, 2256 CheckerContext &C) const { 2257 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); 2258 if (!CE) 2259 return nullptr; 2260 2261 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Call.getDecl()); 2262 if (!FD) 2263 return nullptr; 2264 2265 if (Call.isCalled(StdCopy)) { 2266 return &CStringChecker::evalStdCopy; 2267 } else if (Call.isCalled(StdCopyBackward)) { 2268 return &CStringChecker::evalStdCopyBackward; 2269 } 2270 2271 // Pro-actively check that argument types are safe to do arithmetic upon. 2272 // We do not want to crash if someone accidentally passes a structure 2273 // into, say, a C++ overload of any of these functions. We could not check 2274 // that for std::copy because they may have arguments of other types. 2275 for (auto I : CE->arguments()) { 2276 QualType T = I->getType(); 2277 if (!T->isIntegralOrEnumerationType() && !T->isPointerType()) 2278 return nullptr; 2279 } 2280 2281 const FnCheck *Callback = Callbacks.lookup(Call); 2282 if (Callback) 2283 return *Callback; 2284 2285 return nullptr; 2286 } 2287 2288 bool CStringChecker::evalCall(const CallEvent &Call, CheckerContext &C) const { 2289 FnCheck Callback = identifyCall(Call, C); 2290 2291 // If the callee isn't a string function, let another checker handle it. 2292 if (!Callback) 2293 return false; 2294 2295 // Check and evaluate the call. 2296 const auto *CE = cast<CallExpr>(Call.getOriginExpr()); 2297 (this->*Callback)(C, CE); 2298 2299 // If the evaluate call resulted in no change, chain to the next eval call 2300 // handler. 2301 // Note, the custom CString evaluation calls assume that basic safety 2302 // properties are held. However, if the user chooses to turn off some of these 2303 // checks, we ignore the issues and leave the call evaluation to a generic 2304 // handler. 2305 return C.isDifferent(); 2306 } 2307 2308 void CStringChecker::checkPreStmt(const DeclStmt *DS, CheckerContext &C) const { 2309 // Record string length for char a[] = "abc"; 2310 ProgramStateRef state = C.getState(); 2311 2312 for (const auto *I : DS->decls()) { 2313 const VarDecl *D = dyn_cast<VarDecl>(I); 2314 if (!D) 2315 continue; 2316 2317 // FIXME: Handle array fields of structs. 2318 if (!D->getType()->isArrayType()) 2319 continue; 2320 2321 const Expr *Init = D->getInit(); 2322 if (!Init) 2323 continue; 2324 if (!isa<StringLiteral>(Init)) 2325 continue; 2326 2327 Loc VarLoc = state->getLValue(D, C.getLocationContext()); 2328 const MemRegion *MR = VarLoc.getAsRegion(); 2329 if (!MR) 2330 continue; 2331 2332 SVal StrVal = C.getSVal(Init); 2333 assert(StrVal.isValid() && "Initializer string is unknown or undefined"); 2334 DefinedOrUnknownSVal strLength = 2335 getCStringLength(C, state, Init, StrVal).castAs<DefinedOrUnknownSVal>(); 2336 2337 state = state->set<CStringLength>(MR, strLength); 2338 } 2339 2340 C.addTransition(state); 2341 } 2342 2343 ProgramStateRef 2344 CStringChecker::checkRegionChanges(ProgramStateRef state, 2345 const InvalidatedSymbols *, 2346 ArrayRef<const MemRegion *> ExplicitRegions, 2347 ArrayRef<const MemRegion *> Regions, 2348 const LocationContext *LCtx, 2349 const CallEvent *Call) const { 2350 CStringLengthTy Entries = state->get<CStringLength>(); 2351 if (Entries.isEmpty()) 2352 return state; 2353 2354 llvm::SmallPtrSet<const MemRegion *, 8> Invalidated; 2355 llvm::SmallPtrSet<const MemRegion *, 32> SuperRegions; 2356 2357 // First build sets for the changed regions and their super-regions. 2358 for (ArrayRef<const MemRegion *>::iterator 2359 I = Regions.begin(), E = Regions.end(); I != E; ++I) { 2360 const MemRegion *MR = *I; 2361 Invalidated.insert(MR); 2362 2363 SuperRegions.insert(MR); 2364 while (const SubRegion *SR = dyn_cast<SubRegion>(MR)) { 2365 MR = SR->getSuperRegion(); 2366 SuperRegions.insert(MR); 2367 } 2368 } 2369 2370 CStringLengthTy::Factory &F = state->get_context<CStringLength>(); 2371 2372 // Then loop over the entries in the current state. 2373 for (CStringLengthTy::iterator I = Entries.begin(), 2374 E = Entries.end(); I != E; ++I) { 2375 const MemRegion *MR = I.getKey(); 2376 2377 // Is this entry for a super-region of a changed region? 2378 if (SuperRegions.count(MR)) { 2379 Entries = F.remove(Entries, MR); 2380 continue; 2381 } 2382 2383 // Is this entry for a sub-region of a changed region? 2384 const MemRegion *Super = MR; 2385 while (const SubRegion *SR = dyn_cast<SubRegion>(Super)) { 2386 Super = SR->getSuperRegion(); 2387 if (Invalidated.count(Super)) { 2388 Entries = F.remove(Entries, MR); 2389 break; 2390 } 2391 } 2392 } 2393 2394 return state->set<CStringLength>(Entries); 2395 } 2396 2397 void CStringChecker::checkLiveSymbols(ProgramStateRef state, 2398 SymbolReaper &SR) const { 2399 // Mark all symbols in our string length map as valid. 2400 CStringLengthTy Entries = state->get<CStringLength>(); 2401 2402 for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end(); 2403 I != E; ++I) { 2404 SVal Len = I.getData(); 2405 2406 for (SymExpr::symbol_iterator si = Len.symbol_begin(), 2407 se = Len.symbol_end(); si != se; ++si) 2408 SR.markInUse(*si); 2409 } 2410 } 2411 2412 void CStringChecker::checkDeadSymbols(SymbolReaper &SR, 2413 CheckerContext &C) const { 2414 ProgramStateRef state = C.getState(); 2415 CStringLengthTy Entries = state->get<CStringLength>(); 2416 if (Entries.isEmpty()) 2417 return; 2418 2419 CStringLengthTy::Factory &F = state->get_context<CStringLength>(); 2420 for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end(); 2421 I != E; ++I) { 2422 SVal Len = I.getData(); 2423 if (SymbolRef Sym = Len.getAsSymbol()) { 2424 if (SR.isDead(Sym)) 2425 Entries = F.remove(Entries, I.getKey()); 2426 } 2427 } 2428 2429 state = state->set<CStringLength>(Entries); 2430 C.addTransition(state); 2431 } 2432 2433 void ento::registerCStringModeling(CheckerManager &Mgr) { 2434 Mgr.registerChecker<CStringChecker>(); 2435 } 2436 2437 bool ento::shouldRegisterCStringModeling(const LangOptions &LO) { 2438 return true; 2439 } 2440 2441 #define REGISTER_CHECKER(name) \ 2442 void ento::register##name(CheckerManager &mgr) { \ 2443 CStringChecker *checker = mgr.getChecker<CStringChecker>(); \ 2444 checker->Filter.Check##name = true; \ 2445 checker->Filter.CheckName##name = mgr.getCurrentCheckerName(); \ 2446 } \ 2447 \ 2448 bool ento::shouldRegister##name(const LangOptions &LO) { return true; } 2449 2450 REGISTER_CHECKER(CStringNullArg) 2451 REGISTER_CHECKER(CStringOutOfBounds) 2452 REGISTER_CHECKER(CStringBufferOverlap) 2453 REGISTER_CHECKER(CStringNotNullTerm) 2454