xref: /freebsd/contrib/llvm-project/clang/lib/StaticAnalyzer/Checkers/CStringChecker.cpp (revision 357378bbdedf24ce2b90e9bd831af4a9db3ec70a)
1 //= CStringChecker.cpp - Checks calls to C string functions --------*- C++ -*-//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This defines CStringChecker, which is an assortment of checks on calls
10 // to functions in <string.h>.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InterCheckerAPI.h"
15 #include "clang/Basic/Builtins.h"
16 #include "clang/Basic/CharInfo.h"
17 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
18 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
19 #include "clang/StaticAnalyzer/Core/Checker.h"
20 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
21 #include "clang/StaticAnalyzer/Core/PathSensitive/CallDescription.h"
22 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
23 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
24 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicExtent.h"
25 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallString.h"
28 #include "llvm/ADT/StringExtras.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include <functional>
31 #include <optional>
32 
33 using namespace clang;
34 using namespace ento;
35 using namespace std::placeholders;
36 
37 namespace {
38 struct AnyArgExpr {
39   const Expr *Expression;
40   unsigned ArgumentIndex;
41 };
42 struct SourceArgExpr : AnyArgExpr {};
43 struct DestinationArgExpr : AnyArgExpr {};
44 struct SizeArgExpr : AnyArgExpr {};
45 
46 using ErrorMessage = SmallString<128>;
47 enum class AccessKind { write, read };
48 
49 static ErrorMessage createOutOfBoundErrorMsg(StringRef FunctionDescription,
50                                              AccessKind Access) {
51   ErrorMessage Message;
52   llvm::raw_svector_ostream Os(Message);
53 
54   // Function classification like: Memory copy function
55   Os << toUppercase(FunctionDescription.front())
56      << &FunctionDescription.data()[1];
57 
58   if (Access == AccessKind::write) {
59     Os << " overflows the destination buffer";
60   } else { // read access
61     Os << " accesses out-of-bound array element";
62   }
63 
64   return Message;
65 }
66 
67 enum class ConcatFnKind { none = 0, strcat = 1, strlcat = 2 };
68 
69 enum class CharKind { Regular = 0, Wide };
70 constexpr CharKind CK_Regular = CharKind::Regular;
71 constexpr CharKind CK_Wide = CharKind::Wide;
72 
73 static QualType getCharPtrType(ASTContext &Ctx, CharKind CK) {
74   return Ctx.getPointerType(CK == CharKind::Regular ? Ctx.CharTy
75                                                     : Ctx.WideCharTy);
76 }
77 
78 class CStringChecker : public Checker< eval::Call,
79                                          check::PreStmt<DeclStmt>,
80                                          check::LiveSymbols,
81                                          check::DeadSymbols,
82                                          check::RegionChanges
83                                          > {
84   mutable std::unique_ptr<BugType> BT_Null, BT_Bounds, BT_Overlap,
85       BT_NotCString, BT_AdditionOverflow, BT_UninitRead;
86 
87   mutable const char *CurrentFunctionDescription = nullptr;
88 
89 public:
90   /// The filter is used to filter out the diagnostics which are not enabled by
91   /// the user.
92   struct CStringChecksFilter {
93     bool CheckCStringNullArg = false;
94     bool CheckCStringOutOfBounds = false;
95     bool CheckCStringBufferOverlap = false;
96     bool CheckCStringNotNullTerm = false;
97     bool CheckCStringUninitializedRead = false;
98 
99     CheckerNameRef CheckNameCStringNullArg;
100     CheckerNameRef CheckNameCStringOutOfBounds;
101     CheckerNameRef CheckNameCStringBufferOverlap;
102     CheckerNameRef CheckNameCStringNotNullTerm;
103     CheckerNameRef CheckNameCStringUninitializedRead;
104   };
105 
106   CStringChecksFilter Filter;
107 
108   static void *getTag() { static int tag; return &tag; }
109 
110   bool evalCall(const CallEvent &Call, CheckerContext &C) const;
111   void checkPreStmt(const DeclStmt *DS, CheckerContext &C) const;
112   void checkLiveSymbols(ProgramStateRef state, SymbolReaper &SR) const;
113   void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const;
114 
115   ProgramStateRef
116     checkRegionChanges(ProgramStateRef state,
117                        const InvalidatedSymbols *,
118                        ArrayRef<const MemRegion *> ExplicitRegions,
119                        ArrayRef<const MemRegion *> Regions,
120                        const LocationContext *LCtx,
121                        const CallEvent *Call) const;
122 
123   using FnCheck = std::function<void(const CStringChecker *, CheckerContext &,
124                                      const CallEvent &)>;
125 
126   CallDescriptionMap<FnCheck> Callbacks = {
127       {{CDF_MaybeBuiltin, {"memcpy"}, 3},
128        std::bind(&CStringChecker::evalMemcpy, _1, _2, _3, CK_Regular)},
129       {{CDF_MaybeBuiltin, {"wmemcpy"}, 3},
130        std::bind(&CStringChecker::evalMemcpy, _1, _2, _3, CK_Wide)},
131       {{CDF_MaybeBuiltin, {"mempcpy"}, 3},
132        std::bind(&CStringChecker::evalMempcpy, _1, _2, _3, CK_Regular)},
133       {{CDF_None, {"wmempcpy"}, 3},
134        std::bind(&CStringChecker::evalMempcpy, _1, _2, _3, CK_Wide)},
135       {{CDF_MaybeBuiltin, {"memcmp"}, 3},
136        std::bind(&CStringChecker::evalMemcmp, _1, _2, _3, CK_Regular)},
137       {{CDF_MaybeBuiltin, {"wmemcmp"}, 3},
138        std::bind(&CStringChecker::evalMemcmp, _1, _2, _3, CK_Wide)},
139       {{CDF_MaybeBuiltin, {"memmove"}, 3},
140        std::bind(&CStringChecker::evalMemmove, _1, _2, _3, CK_Regular)},
141       {{CDF_MaybeBuiltin, {"wmemmove"}, 3},
142        std::bind(&CStringChecker::evalMemmove, _1, _2, _3, CK_Wide)},
143       {{CDF_MaybeBuiltin, {"memset"}, 3}, &CStringChecker::evalMemset},
144       {{CDF_MaybeBuiltin, {"explicit_memset"}, 3}, &CStringChecker::evalMemset},
145       {{CDF_MaybeBuiltin, {"strcpy"}, 2}, &CStringChecker::evalStrcpy},
146       {{CDF_MaybeBuiltin, {"strncpy"}, 3}, &CStringChecker::evalStrncpy},
147       {{CDF_MaybeBuiltin, {"stpcpy"}, 2}, &CStringChecker::evalStpcpy},
148       {{CDF_MaybeBuiltin, {"strlcpy"}, 3}, &CStringChecker::evalStrlcpy},
149       {{CDF_MaybeBuiltin, {"strcat"}, 2}, &CStringChecker::evalStrcat},
150       {{CDF_MaybeBuiltin, {"strncat"}, 3}, &CStringChecker::evalStrncat},
151       {{CDF_MaybeBuiltin, {"strlcat"}, 3}, &CStringChecker::evalStrlcat},
152       {{CDF_MaybeBuiltin, {"strlen"}, 1}, &CStringChecker::evalstrLength},
153       {{CDF_MaybeBuiltin, {"wcslen"}, 1}, &CStringChecker::evalstrLength},
154       {{CDF_MaybeBuiltin, {"strnlen"}, 2}, &CStringChecker::evalstrnLength},
155       {{CDF_MaybeBuiltin, {"wcsnlen"}, 2}, &CStringChecker::evalstrnLength},
156       {{CDF_MaybeBuiltin, {"strcmp"}, 2}, &CStringChecker::evalStrcmp},
157       {{CDF_MaybeBuiltin, {"strncmp"}, 3}, &CStringChecker::evalStrncmp},
158       {{CDF_MaybeBuiltin, {"strcasecmp"}, 2}, &CStringChecker::evalStrcasecmp},
159       {{CDF_MaybeBuiltin, {"strncasecmp"}, 3},
160        &CStringChecker::evalStrncasecmp},
161       {{CDF_MaybeBuiltin, {"strsep"}, 2}, &CStringChecker::evalStrsep},
162       {{CDF_MaybeBuiltin, {"bcopy"}, 3}, &CStringChecker::evalBcopy},
163       {{CDF_MaybeBuiltin, {"bcmp"}, 3},
164        std::bind(&CStringChecker::evalMemcmp, _1, _2, _3, CK_Regular)},
165       {{CDF_MaybeBuiltin, {"bzero"}, 2}, &CStringChecker::evalBzero},
166       {{CDF_MaybeBuiltin, {"explicit_bzero"}, 2}, &CStringChecker::evalBzero},
167       {{CDF_MaybeBuiltin, {"sprintf"}, 2}, &CStringChecker::evalSprintf},
168       {{CDF_MaybeBuiltin, {"snprintf"}, 2}, &CStringChecker::evalSnprintf},
169   };
170 
171   // These require a bit of special handling.
172   CallDescription StdCopy{{"std", "copy"}, 3},
173       StdCopyBackward{{"std", "copy_backward"}, 3};
174 
175   FnCheck identifyCall(const CallEvent &Call, CheckerContext &C) const;
176   void evalMemcpy(CheckerContext &C, const CallEvent &Call, CharKind CK) const;
177   void evalMempcpy(CheckerContext &C, const CallEvent &Call, CharKind CK) const;
178   void evalMemmove(CheckerContext &C, const CallEvent &Call, CharKind CK) const;
179   void evalBcopy(CheckerContext &C, const CallEvent &Call) const;
180   void evalCopyCommon(CheckerContext &C, const CallEvent &Call,
181                       ProgramStateRef state, SizeArgExpr Size,
182                       DestinationArgExpr Dest, SourceArgExpr Source,
183                       bool Restricted, bool IsMempcpy, CharKind CK) const;
184 
185   void evalMemcmp(CheckerContext &C, const CallEvent &Call, CharKind CK) const;
186 
187   void evalstrLength(CheckerContext &C, const CallEvent &Call) const;
188   void evalstrnLength(CheckerContext &C, const CallEvent &Call) const;
189   void evalstrLengthCommon(CheckerContext &C, const CallEvent &Call,
190                            bool IsStrnlen = false) const;
191 
192   void evalStrcpy(CheckerContext &C, const CallEvent &Call) const;
193   void evalStrncpy(CheckerContext &C, const CallEvent &Call) const;
194   void evalStpcpy(CheckerContext &C, const CallEvent &Call) const;
195   void evalStrlcpy(CheckerContext &C, const CallEvent &Call) const;
196   void evalStrcpyCommon(CheckerContext &C, const CallEvent &Call,
197                         bool ReturnEnd, bool IsBounded, ConcatFnKind appendK,
198                         bool returnPtr = true) const;
199 
200   void evalStrcat(CheckerContext &C, const CallEvent &Call) const;
201   void evalStrncat(CheckerContext &C, const CallEvent &Call) const;
202   void evalStrlcat(CheckerContext &C, const CallEvent &Call) const;
203 
204   void evalStrcmp(CheckerContext &C, const CallEvent &Call) const;
205   void evalStrncmp(CheckerContext &C, const CallEvent &Call) const;
206   void evalStrcasecmp(CheckerContext &C, const CallEvent &Call) const;
207   void evalStrncasecmp(CheckerContext &C, const CallEvent &Call) const;
208   void evalStrcmpCommon(CheckerContext &C, const CallEvent &Call,
209                         bool IsBounded = false, bool IgnoreCase = false) const;
210 
211   void evalStrsep(CheckerContext &C, const CallEvent &Call) const;
212 
213   void evalStdCopy(CheckerContext &C, const CallEvent &Call) const;
214   void evalStdCopyBackward(CheckerContext &C, const CallEvent &Call) const;
215   void evalStdCopyCommon(CheckerContext &C, const CallEvent &Call) const;
216   void evalMemset(CheckerContext &C, const CallEvent &Call) const;
217   void evalBzero(CheckerContext &C, const CallEvent &Call) const;
218 
219   void evalSprintf(CheckerContext &C, const CallEvent &Call) const;
220   void evalSnprintf(CheckerContext &C, const CallEvent &Call) const;
221   void evalSprintfCommon(CheckerContext &C, const CallEvent &Call,
222                          bool IsBounded, bool IsBuiltin) const;
223 
224   // Utility methods
225   std::pair<ProgramStateRef , ProgramStateRef >
226   static assumeZero(CheckerContext &C,
227                     ProgramStateRef state, SVal V, QualType Ty);
228 
229   static ProgramStateRef setCStringLength(ProgramStateRef state,
230                                               const MemRegion *MR,
231                                               SVal strLength);
232   static SVal getCStringLengthForRegion(CheckerContext &C,
233                                         ProgramStateRef &state,
234                                         const Expr *Ex,
235                                         const MemRegion *MR,
236                                         bool hypothetical);
237   SVal getCStringLength(CheckerContext &C,
238                         ProgramStateRef &state,
239                         const Expr *Ex,
240                         SVal Buf,
241                         bool hypothetical = false) const;
242 
243   const StringLiteral *getCStringLiteral(CheckerContext &C,
244                                          ProgramStateRef &state,
245                                          const Expr *expr,
246                                          SVal val) const;
247 
248   /// Invalidate the destination buffer determined by characters copied.
249   static ProgramStateRef
250   invalidateDestinationBufferBySize(CheckerContext &C, ProgramStateRef S,
251                                     const Expr *BufE, SVal BufV, SVal SizeV,
252                                     QualType SizeTy);
253 
254   /// Operation never overflows, do not invalidate the super region.
255   static ProgramStateRef invalidateDestinationBufferNeverOverflows(
256       CheckerContext &C, ProgramStateRef S, const Expr *BufE, SVal BufV);
257 
258   /// We do not know whether the operation can overflow (e.g. size is unknown),
259   /// invalidate the super region and escape related pointers.
260   static ProgramStateRef invalidateDestinationBufferAlwaysEscapeSuperRegion(
261       CheckerContext &C, ProgramStateRef S, const Expr *BufE, SVal BufV);
262 
263   /// Invalidate the source buffer for escaping pointers.
264   static ProgramStateRef invalidateSourceBuffer(CheckerContext &C,
265                                                 ProgramStateRef S,
266                                                 const Expr *BufE, SVal BufV);
267 
268   /// @param InvalidationTraitOperations Determine how to invlidate the
269   /// MemRegion by setting the invalidation traits. Return true to cause pointer
270   /// escape, or false otherwise.
271   static ProgramStateRef invalidateBufferAux(
272       CheckerContext &C, ProgramStateRef State, const Expr *Ex, SVal V,
273       llvm::function_ref<bool(RegionAndSymbolInvalidationTraits &,
274                               const MemRegion *)>
275           InvalidationTraitOperations);
276 
277   static bool SummarizeRegion(raw_ostream &os, ASTContext &Ctx,
278                               const MemRegion *MR);
279 
280   static bool memsetAux(const Expr *DstBuffer, SVal CharE,
281                         const Expr *Size, CheckerContext &C,
282                         ProgramStateRef &State);
283 
284   // Re-usable checks
285   ProgramStateRef checkNonNull(CheckerContext &C, ProgramStateRef State,
286                                AnyArgExpr Arg, SVal l) const;
287   ProgramStateRef CheckLocation(CheckerContext &C, ProgramStateRef state,
288                                 AnyArgExpr Buffer, SVal Element,
289                                 AccessKind Access,
290                                 CharKind CK = CharKind::Regular) const;
291   ProgramStateRef CheckBufferAccess(CheckerContext &C, ProgramStateRef State,
292                                     AnyArgExpr Buffer, SizeArgExpr Size,
293                                     AccessKind Access,
294                                     CharKind CK = CharKind::Regular) const;
295   ProgramStateRef CheckOverlap(CheckerContext &C, ProgramStateRef state,
296                                SizeArgExpr Size, AnyArgExpr First,
297                                AnyArgExpr Second,
298                                CharKind CK = CharKind::Regular) const;
299   void emitOverlapBug(CheckerContext &C,
300                       ProgramStateRef state,
301                       const Stmt *First,
302                       const Stmt *Second) const;
303 
304   void emitNullArgBug(CheckerContext &C, ProgramStateRef State, const Stmt *S,
305                       StringRef WarningMsg) const;
306   void emitOutOfBoundsBug(CheckerContext &C, ProgramStateRef State,
307                           const Stmt *S, StringRef WarningMsg) const;
308   void emitNotCStringBug(CheckerContext &C, ProgramStateRef State,
309                          const Stmt *S, StringRef WarningMsg) const;
310   void emitAdditionOverflowBug(CheckerContext &C, ProgramStateRef State) const;
311   void emitUninitializedReadBug(CheckerContext &C, ProgramStateRef State,
312                              const Expr *E) const;
313   ProgramStateRef checkAdditionOverflow(CheckerContext &C,
314                                             ProgramStateRef state,
315                                             NonLoc left,
316                                             NonLoc right) const;
317 
318   // Return true if the destination buffer of the copy function may be in bound.
319   // Expects SVal of Size to be positive and unsigned.
320   // Expects SVal of FirstBuf to be a FieldRegion.
321   static bool isFirstBufInBound(CheckerContext &C, ProgramStateRef State,
322                                 SVal BufVal, QualType BufTy, SVal LengthVal,
323                                 QualType LengthTy);
324 };
325 
326 } //end anonymous namespace
327 
328 REGISTER_MAP_WITH_PROGRAMSTATE(CStringLength, const MemRegion *, SVal)
329 
330 //===----------------------------------------------------------------------===//
331 // Individual checks and utility methods.
332 //===----------------------------------------------------------------------===//
333 
334 std::pair<ProgramStateRef , ProgramStateRef >
335 CStringChecker::assumeZero(CheckerContext &C, ProgramStateRef state, SVal V,
336                            QualType Ty) {
337   std::optional<DefinedSVal> val = V.getAs<DefinedSVal>();
338   if (!val)
339     return std::pair<ProgramStateRef , ProgramStateRef >(state, state);
340 
341   SValBuilder &svalBuilder = C.getSValBuilder();
342   DefinedOrUnknownSVal zero = svalBuilder.makeZeroVal(Ty);
343   return state->assume(svalBuilder.evalEQ(state, *val, zero));
344 }
345 
346 ProgramStateRef CStringChecker::checkNonNull(CheckerContext &C,
347                                              ProgramStateRef State,
348                                              AnyArgExpr Arg, SVal l) const {
349   // If a previous check has failed, propagate the failure.
350   if (!State)
351     return nullptr;
352 
353   ProgramStateRef stateNull, stateNonNull;
354   std::tie(stateNull, stateNonNull) =
355       assumeZero(C, State, l, Arg.Expression->getType());
356 
357   if (stateNull && !stateNonNull) {
358     if (Filter.CheckCStringNullArg) {
359       SmallString<80> buf;
360       llvm::raw_svector_ostream OS(buf);
361       assert(CurrentFunctionDescription);
362       OS << "Null pointer passed as " << (Arg.ArgumentIndex + 1)
363          << llvm::getOrdinalSuffix(Arg.ArgumentIndex + 1) << " argument to "
364          << CurrentFunctionDescription;
365 
366       emitNullArgBug(C, stateNull, Arg.Expression, OS.str());
367     }
368     return nullptr;
369   }
370 
371   // From here on, assume that the value is non-null.
372   assert(stateNonNull);
373   return stateNonNull;
374 }
375 
376 // FIXME: This was originally copied from ArrayBoundChecker.cpp. Refactor?
377 ProgramStateRef CStringChecker::CheckLocation(CheckerContext &C,
378                                               ProgramStateRef state,
379                                               AnyArgExpr Buffer, SVal Element,
380                                               AccessKind Access,
381                                               CharKind CK) const {
382 
383   // If a previous check has failed, propagate the failure.
384   if (!state)
385     return nullptr;
386 
387   // Check for out of bound array element access.
388   const MemRegion *R = Element.getAsRegion();
389   if (!R)
390     return state;
391 
392   const auto *ER = dyn_cast<ElementRegion>(R);
393   if (!ER)
394     return state;
395 
396   SValBuilder &svalBuilder = C.getSValBuilder();
397   ASTContext &Ctx = svalBuilder.getContext();
398 
399   // Get the index of the accessed element.
400   NonLoc Idx = ER->getIndex();
401 
402   if (CK == CharKind::Regular) {
403     if (ER->getValueType() != Ctx.CharTy)
404       return state;
405   } else {
406     if (ER->getValueType() != Ctx.WideCharTy)
407       return state;
408 
409     QualType SizeTy = Ctx.getSizeType();
410     NonLoc WideSize =
411         svalBuilder
412             .makeIntVal(Ctx.getTypeSizeInChars(Ctx.WideCharTy).getQuantity(),
413                         SizeTy)
414             .castAs<NonLoc>();
415     SVal Offset = svalBuilder.evalBinOpNN(state, BO_Mul, Idx, WideSize, SizeTy);
416     if (Offset.isUnknown())
417       return state;
418     Idx = Offset.castAs<NonLoc>();
419   }
420 
421   // Get the size of the array.
422   const auto *superReg = cast<SubRegion>(ER->getSuperRegion());
423   DefinedOrUnknownSVal Size =
424       getDynamicExtent(state, superReg, C.getSValBuilder());
425 
426   ProgramStateRef StInBound, StOutBound;
427   std::tie(StInBound, StOutBound) = state->assumeInBoundDual(Idx, Size);
428   if (StOutBound && !StInBound) {
429     // These checks are either enabled by the CString out-of-bounds checker
430     // explicitly or implicitly by the Malloc checker.
431     // In the latter case we only do modeling but do not emit warning.
432     if (!Filter.CheckCStringOutOfBounds)
433       return nullptr;
434 
435     // Emit a bug report.
436     ErrorMessage Message =
437         createOutOfBoundErrorMsg(CurrentFunctionDescription, Access);
438     emitOutOfBoundsBug(C, StOutBound, Buffer.Expression, Message);
439     return nullptr;
440   }
441 
442   // Ensure that we wouldn't read uninitialized value.
443   if (Access == AccessKind::read) {
444     if (Filter.CheckCStringUninitializedRead &&
445         StInBound->getSVal(ER).isUndef()) {
446       emitUninitializedReadBug(C, StInBound, Buffer.Expression);
447       return nullptr;
448     }
449   }
450 
451   // Array bound check succeeded.  From this point forward the array bound
452   // should always succeed.
453   return StInBound;
454 }
455 
456 ProgramStateRef
457 CStringChecker::CheckBufferAccess(CheckerContext &C, ProgramStateRef State,
458                                   AnyArgExpr Buffer, SizeArgExpr Size,
459                                   AccessKind Access, CharKind CK) const {
460   // If a previous check has failed, propagate the failure.
461   if (!State)
462     return nullptr;
463 
464   SValBuilder &svalBuilder = C.getSValBuilder();
465   ASTContext &Ctx = svalBuilder.getContext();
466 
467   QualType SizeTy = Size.Expression->getType();
468   QualType PtrTy = getCharPtrType(Ctx, CK);
469 
470   // Check that the first buffer is non-null.
471   SVal BufVal = C.getSVal(Buffer.Expression);
472   State = checkNonNull(C, State, Buffer, BufVal);
473   if (!State)
474     return nullptr;
475 
476   // If out-of-bounds checking is turned off, skip the rest.
477   if (!Filter.CheckCStringOutOfBounds)
478     return State;
479 
480   SVal BufStart =
481       svalBuilder.evalCast(BufVal, PtrTy, Buffer.Expression->getType());
482 
483   // Check if the first byte of the buffer is accessible.
484   State = CheckLocation(C, State, Buffer, BufStart, Access, CK);
485   if (!State)
486     return nullptr;
487 
488   // Get the access length and make sure it is known.
489   // FIXME: This assumes the caller has already checked that the access length
490   // is positive. And that it's unsigned.
491   SVal LengthVal = C.getSVal(Size.Expression);
492   std::optional<NonLoc> Length = LengthVal.getAs<NonLoc>();
493   if (!Length)
494     return State;
495 
496   // Compute the offset of the last element to be accessed: size-1.
497   NonLoc One = svalBuilder.makeIntVal(1, SizeTy).castAs<NonLoc>();
498   SVal Offset = svalBuilder.evalBinOpNN(State, BO_Sub, *Length, One, SizeTy);
499   if (Offset.isUnknown())
500     return nullptr;
501   NonLoc LastOffset = Offset.castAs<NonLoc>();
502 
503   // Check that the first buffer is sufficiently long.
504   if (std::optional<Loc> BufLoc = BufStart.getAs<Loc>()) {
505 
506     SVal BufEnd =
507         svalBuilder.evalBinOpLN(State, BO_Add, *BufLoc, LastOffset, PtrTy);
508     State = CheckLocation(C, State, Buffer, BufEnd, Access, CK);
509 
510     // If the buffer isn't large enough, abort.
511     if (!State)
512       return nullptr;
513   }
514 
515   // Large enough or not, return this state!
516   return State;
517 }
518 
519 ProgramStateRef CStringChecker::CheckOverlap(CheckerContext &C,
520                                              ProgramStateRef state,
521                                              SizeArgExpr Size, AnyArgExpr First,
522                                              AnyArgExpr Second,
523                                              CharKind CK) const {
524   if (!Filter.CheckCStringBufferOverlap)
525     return state;
526 
527   // Do a simple check for overlap: if the two arguments are from the same
528   // buffer, see if the end of the first is greater than the start of the second
529   // or vice versa.
530 
531   // If a previous check has failed, propagate the failure.
532   if (!state)
533     return nullptr;
534 
535   ProgramStateRef stateTrue, stateFalse;
536 
537   // Assume different address spaces cannot overlap.
538   if (First.Expression->getType()->getPointeeType().getAddressSpace() !=
539       Second.Expression->getType()->getPointeeType().getAddressSpace())
540     return state;
541 
542   // Get the buffer values and make sure they're known locations.
543   const LocationContext *LCtx = C.getLocationContext();
544   SVal firstVal = state->getSVal(First.Expression, LCtx);
545   SVal secondVal = state->getSVal(Second.Expression, LCtx);
546 
547   std::optional<Loc> firstLoc = firstVal.getAs<Loc>();
548   if (!firstLoc)
549     return state;
550 
551   std::optional<Loc> secondLoc = secondVal.getAs<Loc>();
552   if (!secondLoc)
553     return state;
554 
555   // Are the two values the same?
556   SValBuilder &svalBuilder = C.getSValBuilder();
557   std::tie(stateTrue, stateFalse) =
558       state->assume(svalBuilder.evalEQ(state, *firstLoc, *secondLoc));
559 
560   if (stateTrue && !stateFalse) {
561     // If the values are known to be equal, that's automatically an overlap.
562     emitOverlapBug(C, stateTrue, First.Expression, Second.Expression);
563     return nullptr;
564   }
565 
566   // assume the two expressions are not equal.
567   assert(stateFalse);
568   state = stateFalse;
569 
570   // Which value comes first?
571   QualType cmpTy = svalBuilder.getConditionType();
572   SVal reverse =
573       svalBuilder.evalBinOpLL(state, BO_GT, *firstLoc, *secondLoc, cmpTy);
574   std::optional<DefinedOrUnknownSVal> reverseTest =
575       reverse.getAs<DefinedOrUnknownSVal>();
576   if (!reverseTest)
577     return state;
578 
579   std::tie(stateTrue, stateFalse) = state->assume(*reverseTest);
580   if (stateTrue) {
581     if (stateFalse) {
582       // If we don't know which one comes first, we can't perform this test.
583       return state;
584     } else {
585       // Switch the values so that firstVal is before secondVal.
586       std::swap(firstLoc, secondLoc);
587 
588       // Switch the Exprs as well, so that they still correspond.
589       std::swap(First, Second);
590     }
591   }
592 
593   // Get the length, and make sure it too is known.
594   SVal LengthVal = state->getSVal(Size.Expression, LCtx);
595   std::optional<NonLoc> Length = LengthVal.getAs<NonLoc>();
596   if (!Length)
597     return state;
598 
599   // Convert the first buffer's start address to char*.
600   // Bail out if the cast fails.
601   ASTContext &Ctx = svalBuilder.getContext();
602   QualType CharPtrTy = getCharPtrType(Ctx, CK);
603   SVal FirstStart =
604       svalBuilder.evalCast(*firstLoc, CharPtrTy, First.Expression->getType());
605   std::optional<Loc> FirstStartLoc = FirstStart.getAs<Loc>();
606   if (!FirstStartLoc)
607     return state;
608 
609   // Compute the end of the first buffer. Bail out if THAT fails.
610   SVal FirstEnd = svalBuilder.evalBinOpLN(state, BO_Add, *FirstStartLoc,
611                                           *Length, CharPtrTy);
612   std::optional<Loc> FirstEndLoc = FirstEnd.getAs<Loc>();
613   if (!FirstEndLoc)
614     return state;
615 
616   // Is the end of the first buffer past the start of the second buffer?
617   SVal Overlap =
618       svalBuilder.evalBinOpLL(state, BO_GT, *FirstEndLoc, *secondLoc, cmpTy);
619   std::optional<DefinedOrUnknownSVal> OverlapTest =
620       Overlap.getAs<DefinedOrUnknownSVal>();
621   if (!OverlapTest)
622     return state;
623 
624   std::tie(stateTrue, stateFalse) = state->assume(*OverlapTest);
625 
626   if (stateTrue && !stateFalse) {
627     // Overlap!
628     emitOverlapBug(C, stateTrue, First.Expression, Second.Expression);
629     return nullptr;
630   }
631 
632   // assume the two expressions don't overlap.
633   assert(stateFalse);
634   return stateFalse;
635 }
636 
637 void CStringChecker::emitOverlapBug(CheckerContext &C, ProgramStateRef state,
638                                   const Stmt *First, const Stmt *Second) const {
639   ExplodedNode *N = C.generateErrorNode(state);
640   if (!N)
641     return;
642 
643   if (!BT_Overlap)
644     BT_Overlap.reset(new BugType(Filter.CheckNameCStringBufferOverlap,
645                                  categories::UnixAPI, "Improper arguments"));
646 
647   // Generate a report for this bug.
648   auto report = std::make_unique<PathSensitiveBugReport>(
649       *BT_Overlap, "Arguments must not be overlapping buffers", N);
650   report->addRange(First->getSourceRange());
651   report->addRange(Second->getSourceRange());
652 
653   C.emitReport(std::move(report));
654 }
655 
656 void CStringChecker::emitNullArgBug(CheckerContext &C, ProgramStateRef State,
657                                     const Stmt *S, StringRef WarningMsg) const {
658   if (ExplodedNode *N = C.generateErrorNode(State)) {
659     if (!BT_Null) {
660       // FIXME: This call uses the string constant 'categories::UnixAPI' as the
661       // description of the bug; it should be replaced by a real description.
662       BT_Null.reset(
663           new BugType(Filter.CheckNameCStringNullArg, categories::UnixAPI));
664     }
665 
666     auto Report =
667         std::make_unique<PathSensitiveBugReport>(*BT_Null, WarningMsg, N);
668     Report->addRange(S->getSourceRange());
669     if (const auto *Ex = dyn_cast<Expr>(S))
670       bugreporter::trackExpressionValue(N, Ex, *Report);
671     C.emitReport(std::move(Report));
672   }
673 }
674 
675 void CStringChecker::emitUninitializedReadBug(CheckerContext &C,
676                                               ProgramStateRef State,
677                                               const Expr *E) const {
678   if (ExplodedNode *N = C.generateErrorNode(State)) {
679     const char *Msg =
680         "Bytes string function accesses uninitialized/garbage values";
681     if (!BT_UninitRead)
682       BT_UninitRead.reset(new BugType(Filter.CheckNameCStringUninitializedRead,
683                                       "Accessing unitialized/garbage values"));
684 
685     auto Report =
686         std::make_unique<PathSensitiveBugReport>(*BT_UninitRead, Msg, N);
687     Report->addRange(E->getSourceRange());
688     bugreporter::trackExpressionValue(N, E, *Report);
689     C.emitReport(std::move(Report));
690   }
691 }
692 
693 void CStringChecker::emitOutOfBoundsBug(CheckerContext &C,
694                                         ProgramStateRef State, const Stmt *S,
695                                         StringRef WarningMsg) const {
696   if (ExplodedNode *N = C.generateErrorNode(State)) {
697     if (!BT_Bounds)
698       BT_Bounds.reset(new BugType(Filter.CheckCStringOutOfBounds
699                                       ? Filter.CheckNameCStringOutOfBounds
700                                       : Filter.CheckNameCStringNullArg,
701                                   "Out-of-bound array access"));
702 
703     // FIXME: It would be nice to eventually make this diagnostic more clear,
704     // e.g., by referencing the original declaration or by saying *why* this
705     // reference is outside the range.
706     auto Report =
707         std::make_unique<PathSensitiveBugReport>(*BT_Bounds, WarningMsg, N);
708     Report->addRange(S->getSourceRange());
709     C.emitReport(std::move(Report));
710   }
711 }
712 
713 void CStringChecker::emitNotCStringBug(CheckerContext &C, ProgramStateRef State,
714                                        const Stmt *S,
715                                        StringRef WarningMsg) const {
716   if (ExplodedNode *N = C.generateNonFatalErrorNode(State)) {
717     if (!BT_NotCString) {
718       // FIXME: This call uses the string constant 'categories::UnixAPI' as the
719       // description of the bug; it should be replaced by a real description.
720       BT_NotCString.reset(
721           new BugType(Filter.CheckNameCStringNotNullTerm, categories::UnixAPI));
722     }
723 
724     auto Report =
725         std::make_unique<PathSensitiveBugReport>(*BT_NotCString, WarningMsg, N);
726 
727     Report->addRange(S->getSourceRange());
728     C.emitReport(std::move(Report));
729   }
730 }
731 
732 void CStringChecker::emitAdditionOverflowBug(CheckerContext &C,
733                                              ProgramStateRef State) const {
734   if (ExplodedNode *N = C.generateErrorNode(State)) {
735     if (!BT_AdditionOverflow) {
736       // FIXME: This call uses the word "API" as the description of the bug;
737       // it should be replaced by a better error message (if this unlikely
738       // situation continues to exist as a separate bug type).
739       BT_AdditionOverflow.reset(
740           new BugType(Filter.CheckNameCStringOutOfBounds, "API"));
741     }
742 
743     // This isn't a great error message, but this should never occur in real
744     // code anyway -- you'd have to create a buffer longer than a size_t can
745     // represent, which is sort of a contradiction.
746     const char *WarningMsg =
747         "This expression will create a string whose length is too big to "
748         "be represented as a size_t";
749 
750     auto Report = std::make_unique<PathSensitiveBugReport>(*BT_AdditionOverflow,
751                                                            WarningMsg, N);
752     C.emitReport(std::move(Report));
753   }
754 }
755 
756 ProgramStateRef CStringChecker::checkAdditionOverflow(CheckerContext &C,
757                                                      ProgramStateRef state,
758                                                      NonLoc left,
759                                                      NonLoc right) const {
760   // If out-of-bounds checking is turned off, skip the rest.
761   if (!Filter.CheckCStringOutOfBounds)
762     return state;
763 
764   // If a previous check has failed, propagate the failure.
765   if (!state)
766     return nullptr;
767 
768   SValBuilder &svalBuilder = C.getSValBuilder();
769   BasicValueFactory &BVF = svalBuilder.getBasicValueFactory();
770 
771   QualType sizeTy = svalBuilder.getContext().getSizeType();
772   const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy);
773   NonLoc maxVal = svalBuilder.makeIntVal(maxValInt);
774 
775   SVal maxMinusRight;
776   if (isa<nonloc::ConcreteInt>(right)) {
777     maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, right,
778                                                  sizeTy);
779   } else {
780     // Try switching the operands. (The order of these two assignments is
781     // important!)
782     maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, left,
783                                             sizeTy);
784     left = right;
785   }
786 
787   if (std::optional<NonLoc> maxMinusRightNL = maxMinusRight.getAs<NonLoc>()) {
788     QualType cmpTy = svalBuilder.getConditionType();
789     // If left > max - right, we have an overflow.
790     SVal willOverflow = svalBuilder.evalBinOpNN(state, BO_GT, left,
791                                                 *maxMinusRightNL, cmpTy);
792 
793     ProgramStateRef stateOverflow, stateOkay;
794     std::tie(stateOverflow, stateOkay) =
795       state->assume(willOverflow.castAs<DefinedOrUnknownSVal>());
796 
797     if (stateOverflow && !stateOkay) {
798       // We have an overflow. Emit a bug report.
799       emitAdditionOverflowBug(C, stateOverflow);
800       return nullptr;
801     }
802 
803     // From now on, assume an overflow didn't occur.
804     assert(stateOkay);
805     state = stateOkay;
806   }
807 
808   return state;
809 }
810 
811 ProgramStateRef CStringChecker::setCStringLength(ProgramStateRef state,
812                                                 const MemRegion *MR,
813                                                 SVal strLength) {
814   assert(!strLength.isUndef() && "Attempt to set an undefined string length");
815 
816   MR = MR->StripCasts();
817 
818   switch (MR->getKind()) {
819   case MemRegion::StringRegionKind:
820     // FIXME: This can happen if we strcpy() into a string region. This is
821     // undefined [C99 6.4.5p6], but we should still warn about it.
822     return state;
823 
824   case MemRegion::SymbolicRegionKind:
825   case MemRegion::AllocaRegionKind:
826   case MemRegion::NonParamVarRegionKind:
827   case MemRegion::ParamVarRegionKind:
828   case MemRegion::FieldRegionKind:
829   case MemRegion::ObjCIvarRegionKind:
830     // These are the types we can currently track string lengths for.
831     break;
832 
833   case MemRegion::ElementRegionKind:
834     // FIXME: Handle element regions by upper-bounding the parent region's
835     // string length.
836     return state;
837 
838   default:
839     // Other regions (mostly non-data) can't have a reliable C string length.
840     // For now, just ignore the change.
841     // FIXME: These are rare but not impossible. We should output some kind of
842     // warning for things like strcpy((char[]){'a', 0}, "b");
843     return state;
844   }
845 
846   if (strLength.isUnknown())
847     return state->remove<CStringLength>(MR);
848 
849   return state->set<CStringLength>(MR, strLength);
850 }
851 
852 SVal CStringChecker::getCStringLengthForRegion(CheckerContext &C,
853                                                ProgramStateRef &state,
854                                                const Expr *Ex,
855                                                const MemRegion *MR,
856                                                bool hypothetical) {
857   if (!hypothetical) {
858     // If there's a recorded length, go ahead and return it.
859     const SVal *Recorded = state->get<CStringLength>(MR);
860     if (Recorded)
861       return *Recorded;
862   }
863 
864   // Otherwise, get a new symbol and update the state.
865   SValBuilder &svalBuilder = C.getSValBuilder();
866   QualType sizeTy = svalBuilder.getContext().getSizeType();
867   SVal strLength = svalBuilder.getMetadataSymbolVal(CStringChecker::getTag(),
868                                                     MR, Ex, sizeTy,
869                                                     C.getLocationContext(),
870                                                     C.blockCount());
871 
872   if (!hypothetical) {
873     if (std::optional<NonLoc> strLn = strLength.getAs<NonLoc>()) {
874       // In case of unbounded calls strlen etc bound the range to SIZE_MAX/4
875       BasicValueFactory &BVF = svalBuilder.getBasicValueFactory();
876       const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy);
877       llvm::APSInt fourInt = APSIntType(maxValInt).getValue(4);
878       const llvm::APSInt *maxLengthInt = BVF.evalAPSInt(BO_Div, maxValInt,
879                                                         fourInt);
880       NonLoc maxLength = svalBuilder.makeIntVal(*maxLengthInt);
881       SVal evalLength = svalBuilder.evalBinOpNN(state, BO_LE, *strLn, maxLength,
882                                                 svalBuilder.getConditionType());
883       state = state->assume(evalLength.castAs<DefinedOrUnknownSVal>(), true);
884     }
885     state = state->set<CStringLength>(MR, strLength);
886   }
887 
888   return strLength;
889 }
890 
891 SVal CStringChecker::getCStringLength(CheckerContext &C, ProgramStateRef &state,
892                                       const Expr *Ex, SVal Buf,
893                                       bool hypothetical) const {
894   const MemRegion *MR = Buf.getAsRegion();
895   if (!MR) {
896     // If we can't get a region, see if it's something we /know/ isn't a
897     // C string. In the context of locations, the only time we can issue such
898     // a warning is for labels.
899     if (std::optional<loc::GotoLabel> Label = Buf.getAs<loc::GotoLabel>()) {
900       if (Filter.CheckCStringNotNullTerm) {
901         SmallString<120> buf;
902         llvm::raw_svector_ostream os(buf);
903         assert(CurrentFunctionDescription);
904         os << "Argument to " << CurrentFunctionDescription
905            << " is the address of the label '" << Label->getLabel()->getName()
906            << "', which is not a null-terminated string";
907 
908         emitNotCStringBug(C, state, Ex, os.str());
909       }
910       return UndefinedVal();
911     }
912 
913     // If it's not a region and not a label, give up.
914     return UnknownVal();
915   }
916 
917   // If we have a region, strip casts from it and see if we can figure out
918   // its length. For anything we can't figure out, just return UnknownVal.
919   MR = MR->StripCasts();
920 
921   switch (MR->getKind()) {
922   case MemRegion::StringRegionKind: {
923     // Modifying the contents of string regions is undefined [C99 6.4.5p6],
924     // so we can assume that the byte length is the correct C string length.
925     SValBuilder &svalBuilder = C.getSValBuilder();
926     QualType sizeTy = svalBuilder.getContext().getSizeType();
927     const StringLiteral *strLit = cast<StringRegion>(MR)->getStringLiteral();
928     return svalBuilder.makeIntVal(strLit->getLength(), sizeTy);
929   }
930   case MemRegion::NonParamVarRegionKind: {
931     // If we have a global constant with a string literal initializer,
932     // compute the initializer's length.
933     const VarDecl *Decl = cast<NonParamVarRegion>(MR)->getDecl();
934     if (Decl->getType().isConstQualified() && Decl->hasGlobalStorage()) {
935       if (const Expr *Init = Decl->getInit()) {
936         if (auto *StrLit = dyn_cast<StringLiteral>(Init)) {
937           SValBuilder &SvalBuilder = C.getSValBuilder();
938           QualType SizeTy = SvalBuilder.getContext().getSizeType();
939           return SvalBuilder.makeIntVal(StrLit->getLength(), SizeTy);
940         }
941       }
942     }
943     [[fallthrough]];
944   }
945   case MemRegion::SymbolicRegionKind:
946   case MemRegion::AllocaRegionKind:
947   case MemRegion::ParamVarRegionKind:
948   case MemRegion::FieldRegionKind:
949   case MemRegion::ObjCIvarRegionKind:
950     return getCStringLengthForRegion(C, state, Ex, MR, hypothetical);
951   case MemRegion::CompoundLiteralRegionKind:
952     // FIXME: Can we track this? Is it necessary?
953     return UnknownVal();
954   case MemRegion::ElementRegionKind:
955     // FIXME: How can we handle this? It's not good enough to subtract the
956     // offset from the base string length; consider "123\x00567" and &a[5].
957     return UnknownVal();
958   default:
959     // Other regions (mostly non-data) can't have a reliable C string length.
960     // In this case, an error is emitted and UndefinedVal is returned.
961     // The caller should always be prepared to handle this case.
962     if (Filter.CheckCStringNotNullTerm) {
963       SmallString<120> buf;
964       llvm::raw_svector_ostream os(buf);
965 
966       assert(CurrentFunctionDescription);
967       os << "Argument to " << CurrentFunctionDescription << " is ";
968 
969       if (SummarizeRegion(os, C.getASTContext(), MR))
970         os << ", which is not a null-terminated string";
971       else
972         os << "not a null-terminated string";
973 
974       emitNotCStringBug(C, state, Ex, os.str());
975     }
976     return UndefinedVal();
977   }
978 }
979 
980 const StringLiteral *CStringChecker::getCStringLiteral(CheckerContext &C,
981   ProgramStateRef &state, const Expr *expr, SVal val) const {
982 
983   // Get the memory region pointed to by the val.
984   const MemRegion *bufRegion = val.getAsRegion();
985   if (!bufRegion)
986     return nullptr;
987 
988   // Strip casts off the memory region.
989   bufRegion = bufRegion->StripCasts();
990 
991   // Cast the memory region to a string region.
992   const StringRegion *strRegion= dyn_cast<StringRegion>(bufRegion);
993   if (!strRegion)
994     return nullptr;
995 
996   // Return the actual string in the string region.
997   return strRegion->getStringLiteral();
998 }
999 
1000 bool CStringChecker::isFirstBufInBound(CheckerContext &C, ProgramStateRef State,
1001                                        SVal BufVal, QualType BufTy,
1002                                        SVal LengthVal, QualType LengthTy) {
1003   // If we do not know that the buffer is long enough we return 'true'.
1004   // Otherwise the parent region of this field region would also get
1005   // invalidated, which would lead to warnings based on an unknown state.
1006 
1007   if (LengthVal.isUnknown())
1008     return false;
1009 
1010   // Originally copied from CheckBufferAccess and CheckLocation.
1011   SValBuilder &SB = C.getSValBuilder();
1012   ASTContext &Ctx = C.getASTContext();
1013 
1014   QualType PtrTy = Ctx.getPointerType(Ctx.CharTy);
1015 
1016   std::optional<NonLoc> Length = LengthVal.getAs<NonLoc>();
1017   if (!Length)
1018     return true; // cf top comment.
1019 
1020   // Compute the offset of the last element to be accessed: size-1.
1021   NonLoc One = SB.makeIntVal(1, LengthTy).castAs<NonLoc>();
1022   SVal Offset = SB.evalBinOpNN(State, BO_Sub, *Length, One, LengthTy);
1023   if (Offset.isUnknown())
1024     return true; // cf top comment
1025   NonLoc LastOffset = Offset.castAs<NonLoc>();
1026 
1027   // Check that the first buffer is sufficiently long.
1028   SVal BufStart = SB.evalCast(BufVal, PtrTy, BufTy);
1029   std::optional<Loc> BufLoc = BufStart.getAs<Loc>();
1030   if (!BufLoc)
1031     return true; // cf top comment.
1032 
1033   SVal BufEnd = SB.evalBinOpLN(State, BO_Add, *BufLoc, LastOffset, PtrTy);
1034 
1035   // Check for out of bound array element access.
1036   const MemRegion *R = BufEnd.getAsRegion();
1037   if (!R)
1038     return true; // cf top comment.
1039 
1040   const ElementRegion *ER = dyn_cast<ElementRegion>(R);
1041   if (!ER)
1042     return true; // cf top comment.
1043 
1044   // FIXME: Does this crash when a non-standard definition
1045   // of a library function is encountered?
1046   assert(ER->getValueType() == C.getASTContext().CharTy &&
1047          "isFirstBufInBound should only be called with char* ElementRegions");
1048 
1049   // Get the size of the array.
1050   const SubRegion *superReg = cast<SubRegion>(ER->getSuperRegion());
1051   DefinedOrUnknownSVal SizeDV = getDynamicExtent(State, superReg, SB);
1052 
1053   // Get the index of the accessed element.
1054   DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>();
1055 
1056   ProgramStateRef StInBound = State->assumeInBound(Idx, SizeDV, true);
1057 
1058   return static_cast<bool>(StInBound);
1059 }
1060 
1061 ProgramStateRef CStringChecker::invalidateDestinationBufferBySize(
1062     CheckerContext &C, ProgramStateRef S, const Expr *BufE, SVal BufV,
1063     SVal SizeV, QualType SizeTy) {
1064   auto InvalidationTraitOperations =
1065       [&C, S, BufTy = BufE->getType(), BufV, SizeV,
1066        SizeTy](RegionAndSymbolInvalidationTraits &ITraits, const MemRegion *R) {
1067         // If destination buffer is a field region and access is in bound, do
1068         // not invalidate its super region.
1069         if (MemRegion::FieldRegionKind == R->getKind() &&
1070             isFirstBufInBound(C, S, BufV, BufTy, SizeV, SizeTy)) {
1071           ITraits.setTrait(
1072               R,
1073               RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
1074         }
1075         return false;
1076       };
1077 
1078   return invalidateBufferAux(C, S, BufE, BufV, InvalidationTraitOperations);
1079 }
1080 
1081 ProgramStateRef
1082 CStringChecker::invalidateDestinationBufferAlwaysEscapeSuperRegion(
1083     CheckerContext &C, ProgramStateRef S, const Expr *BufE, SVal BufV) {
1084   auto InvalidationTraitOperations = [](RegionAndSymbolInvalidationTraits &,
1085                                         const MemRegion *R) {
1086     return isa<FieldRegion>(R);
1087   };
1088 
1089   return invalidateBufferAux(C, S, BufE, BufV, InvalidationTraitOperations);
1090 }
1091 
1092 ProgramStateRef CStringChecker::invalidateDestinationBufferNeverOverflows(
1093     CheckerContext &C, ProgramStateRef S, const Expr *BufE, SVal BufV) {
1094   auto InvalidationTraitOperations =
1095       [](RegionAndSymbolInvalidationTraits &ITraits, const MemRegion *R) {
1096         if (MemRegion::FieldRegionKind == R->getKind())
1097           ITraits.setTrait(
1098               R,
1099               RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
1100         return false;
1101       };
1102 
1103   return invalidateBufferAux(C, S, BufE, BufV, InvalidationTraitOperations);
1104 }
1105 
1106 ProgramStateRef CStringChecker::invalidateSourceBuffer(CheckerContext &C,
1107                                                        ProgramStateRef S,
1108                                                        const Expr *BufE,
1109                                                        SVal BufV) {
1110   auto InvalidationTraitOperations =
1111       [](RegionAndSymbolInvalidationTraits &ITraits, const MemRegion *R) {
1112         ITraits.setTrait(
1113             R->getBaseRegion(),
1114             RegionAndSymbolInvalidationTraits::TK_PreserveContents);
1115         ITraits.setTrait(R,
1116                          RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
1117         return true;
1118       };
1119 
1120   return invalidateBufferAux(C, S, BufE, BufV, InvalidationTraitOperations);
1121 }
1122 
1123 ProgramStateRef CStringChecker::invalidateBufferAux(
1124     CheckerContext &C, ProgramStateRef State, const Expr *E, SVal V,
1125     llvm::function_ref<bool(RegionAndSymbolInvalidationTraits &,
1126                             const MemRegion *)>
1127         InvalidationTraitOperations) {
1128   std::optional<Loc> L = V.getAs<Loc>();
1129   if (!L)
1130     return State;
1131 
1132   // FIXME: This is a simplified version of what's in CFRefCount.cpp -- it makes
1133   // some assumptions about the value that CFRefCount can't. Even so, it should
1134   // probably be refactored.
1135   if (std::optional<loc::MemRegionVal> MR = L->getAs<loc::MemRegionVal>()) {
1136     const MemRegion *R = MR->getRegion()->StripCasts();
1137 
1138     // Are we dealing with an ElementRegion?  If so, we should be invalidating
1139     // the super-region.
1140     if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
1141       R = ER->getSuperRegion();
1142       // FIXME: What about layers of ElementRegions?
1143     }
1144 
1145     // Invalidate this region.
1146     const LocationContext *LCtx = C.getPredecessor()->getLocationContext();
1147     RegionAndSymbolInvalidationTraits ITraits;
1148     bool CausesPointerEscape = InvalidationTraitOperations(ITraits, R);
1149 
1150     return State->invalidateRegions(R, E, C.blockCount(), LCtx,
1151                                     CausesPointerEscape, nullptr, nullptr,
1152                                     &ITraits);
1153   }
1154 
1155   // If we have a non-region value by chance, just remove the binding.
1156   // FIXME: is this necessary or correct? This handles the non-Region
1157   //  cases.  Is it ever valid to store to these?
1158   return State->killBinding(*L);
1159 }
1160 
1161 bool CStringChecker::SummarizeRegion(raw_ostream &os, ASTContext &Ctx,
1162                                      const MemRegion *MR) {
1163   switch (MR->getKind()) {
1164   case MemRegion::FunctionCodeRegionKind: {
1165     if (const auto *FD = cast<FunctionCodeRegion>(MR)->getDecl())
1166       os << "the address of the function '" << *FD << '\'';
1167     else
1168       os << "the address of a function";
1169     return true;
1170   }
1171   case MemRegion::BlockCodeRegionKind:
1172     os << "block text";
1173     return true;
1174   case MemRegion::BlockDataRegionKind:
1175     os << "a block";
1176     return true;
1177   case MemRegion::CXXThisRegionKind:
1178   case MemRegion::CXXTempObjectRegionKind:
1179     os << "a C++ temp object of type "
1180        << cast<TypedValueRegion>(MR)->getValueType();
1181     return true;
1182   case MemRegion::NonParamVarRegionKind:
1183     os << "a variable of type" << cast<TypedValueRegion>(MR)->getValueType();
1184     return true;
1185   case MemRegion::ParamVarRegionKind:
1186     os << "a parameter of type" << cast<TypedValueRegion>(MR)->getValueType();
1187     return true;
1188   case MemRegion::FieldRegionKind:
1189     os << "a field of type " << cast<TypedValueRegion>(MR)->getValueType();
1190     return true;
1191   case MemRegion::ObjCIvarRegionKind:
1192     os << "an instance variable of type "
1193        << cast<TypedValueRegion>(MR)->getValueType();
1194     return true;
1195   default:
1196     return false;
1197   }
1198 }
1199 
1200 bool CStringChecker::memsetAux(const Expr *DstBuffer, SVal CharVal,
1201                                const Expr *Size, CheckerContext &C,
1202                                ProgramStateRef &State) {
1203   SVal MemVal = C.getSVal(DstBuffer);
1204   SVal SizeVal = C.getSVal(Size);
1205   const MemRegion *MR = MemVal.getAsRegion();
1206   if (!MR)
1207     return false;
1208 
1209   // We're about to model memset by producing a "default binding" in the Store.
1210   // Our current implementation - RegionStore - doesn't support default bindings
1211   // that don't cover the whole base region. So we should first get the offset
1212   // and the base region to figure out whether the offset of buffer is 0.
1213   RegionOffset Offset = MR->getAsOffset();
1214   const MemRegion *BR = Offset.getRegion();
1215 
1216   std::optional<NonLoc> SizeNL = SizeVal.getAs<NonLoc>();
1217   if (!SizeNL)
1218     return false;
1219 
1220   SValBuilder &svalBuilder = C.getSValBuilder();
1221   ASTContext &Ctx = C.getASTContext();
1222 
1223   // void *memset(void *dest, int ch, size_t count);
1224   // For now we can only handle the case of offset is 0 and concrete char value.
1225   if (Offset.isValid() && !Offset.hasSymbolicOffset() &&
1226       Offset.getOffset() == 0) {
1227     // Get the base region's size.
1228     DefinedOrUnknownSVal SizeDV = getDynamicExtent(State, BR, svalBuilder);
1229 
1230     ProgramStateRef StateWholeReg, StateNotWholeReg;
1231     std::tie(StateWholeReg, StateNotWholeReg) =
1232         State->assume(svalBuilder.evalEQ(State, SizeDV, *SizeNL));
1233 
1234     // With the semantic of 'memset()', we should convert the CharVal to
1235     // unsigned char.
1236     CharVal = svalBuilder.evalCast(CharVal, Ctx.UnsignedCharTy, Ctx.IntTy);
1237 
1238     ProgramStateRef StateNullChar, StateNonNullChar;
1239     std::tie(StateNullChar, StateNonNullChar) =
1240         assumeZero(C, State, CharVal, Ctx.UnsignedCharTy);
1241 
1242     if (StateWholeReg && !StateNotWholeReg && StateNullChar &&
1243         !StateNonNullChar) {
1244       // If the 'memset()' acts on the whole region of destination buffer and
1245       // the value of the second argument of 'memset()' is zero, bind the second
1246       // argument's value to the destination buffer with 'default binding'.
1247       // FIXME: Since there is no perfect way to bind the non-zero character, we
1248       // can only deal with zero value here. In the future, we need to deal with
1249       // the binding of non-zero value in the case of whole region.
1250       State = State->bindDefaultZero(svalBuilder.makeLoc(BR),
1251                                      C.getLocationContext());
1252     } else {
1253       // If the destination buffer's extent is not equal to the value of
1254       // third argument, just invalidate buffer.
1255       State = invalidateDestinationBufferBySize(C, State, DstBuffer, MemVal,
1256                                                 SizeVal, Size->getType());
1257     }
1258 
1259     if (StateNullChar && !StateNonNullChar) {
1260       // If the value of the second argument of 'memset()' is zero, set the
1261       // string length of destination buffer to 0 directly.
1262       State = setCStringLength(State, MR,
1263                                svalBuilder.makeZeroVal(Ctx.getSizeType()));
1264     } else if (!StateNullChar && StateNonNullChar) {
1265       SVal NewStrLen = svalBuilder.getMetadataSymbolVal(
1266           CStringChecker::getTag(), MR, DstBuffer, Ctx.getSizeType(),
1267           C.getLocationContext(), C.blockCount());
1268 
1269       // If the value of second argument is not zero, then the string length
1270       // is at least the size argument.
1271       SVal NewStrLenGESize = svalBuilder.evalBinOp(
1272           State, BO_GE, NewStrLen, SizeVal, svalBuilder.getConditionType());
1273 
1274       State = setCStringLength(
1275           State->assume(NewStrLenGESize.castAs<DefinedOrUnknownSVal>(), true),
1276           MR, NewStrLen);
1277     }
1278   } else {
1279     // If the offset is not zero and char value is not concrete, we can do
1280     // nothing but invalidate the buffer.
1281     State = invalidateDestinationBufferBySize(C, State, DstBuffer, MemVal,
1282                                               SizeVal, Size->getType());
1283   }
1284   return true;
1285 }
1286 
1287 //===----------------------------------------------------------------------===//
1288 // evaluation of individual function calls.
1289 //===----------------------------------------------------------------------===//
1290 
1291 void CStringChecker::evalCopyCommon(CheckerContext &C, const CallEvent &Call,
1292                                     ProgramStateRef state, SizeArgExpr Size,
1293                                     DestinationArgExpr Dest,
1294                                     SourceArgExpr Source, bool Restricted,
1295                                     bool IsMempcpy, CharKind CK) const {
1296   CurrentFunctionDescription = "memory copy function";
1297 
1298   // See if the size argument is zero.
1299   const LocationContext *LCtx = C.getLocationContext();
1300   SVal sizeVal = state->getSVal(Size.Expression, LCtx);
1301   QualType sizeTy = Size.Expression->getType();
1302 
1303   ProgramStateRef stateZeroSize, stateNonZeroSize;
1304   std::tie(stateZeroSize, stateNonZeroSize) =
1305       assumeZero(C, state, sizeVal, sizeTy);
1306 
1307   // Get the value of the Dest.
1308   SVal destVal = state->getSVal(Dest.Expression, LCtx);
1309 
1310   // If the size is zero, there won't be any actual memory access, so
1311   // just bind the return value to the destination buffer and return.
1312   if (stateZeroSize && !stateNonZeroSize) {
1313     stateZeroSize =
1314         stateZeroSize->BindExpr(Call.getOriginExpr(), LCtx, destVal);
1315     C.addTransition(stateZeroSize);
1316     return;
1317   }
1318 
1319   // If the size can be nonzero, we have to check the other arguments.
1320   if (stateNonZeroSize) {
1321     state = stateNonZeroSize;
1322 
1323     // Ensure the destination is not null. If it is NULL there will be a
1324     // NULL pointer dereference.
1325     state = checkNonNull(C, state, Dest, destVal);
1326     if (!state)
1327       return;
1328 
1329     // Get the value of the Src.
1330     SVal srcVal = state->getSVal(Source.Expression, LCtx);
1331 
1332     // Ensure the source is not null. If it is NULL there will be a
1333     // NULL pointer dereference.
1334     state = checkNonNull(C, state, Source, srcVal);
1335     if (!state)
1336       return;
1337 
1338     // Ensure the accesses are valid and that the buffers do not overlap.
1339     state = CheckBufferAccess(C, state, Dest, Size, AccessKind::write, CK);
1340     state = CheckBufferAccess(C, state, Source, Size, AccessKind::read, CK);
1341 
1342     if (Restricted)
1343       state = CheckOverlap(C, state, Size, Dest, Source, CK);
1344 
1345     if (!state)
1346       return;
1347 
1348     // If this is mempcpy, get the byte after the last byte copied and
1349     // bind the expr.
1350     if (IsMempcpy) {
1351       // Get the byte after the last byte copied.
1352       SValBuilder &SvalBuilder = C.getSValBuilder();
1353       ASTContext &Ctx = SvalBuilder.getContext();
1354       QualType CharPtrTy = getCharPtrType(Ctx, CK);
1355       SVal DestRegCharVal =
1356           SvalBuilder.evalCast(destVal, CharPtrTy, Dest.Expression->getType());
1357       SVal lastElement = C.getSValBuilder().evalBinOp(
1358           state, BO_Add, DestRegCharVal, sizeVal, Dest.Expression->getType());
1359       // If we don't know how much we copied, we can at least
1360       // conjure a return value for later.
1361       if (lastElement.isUnknown())
1362         lastElement = C.getSValBuilder().conjureSymbolVal(
1363             nullptr, Call.getOriginExpr(), LCtx, C.blockCount());
1364 
1365       // The byte after the last byte copied is the return value.
1366       state = state->BindExpr(Call.getOriginExpr(), LCtx, lastElement);
1367     } else {
1368       // All other copies return the destination buffer.
1369       // (Well, bcopy() has a void return type, but this won't hurt.)
1370       state = state->BindExpr(Call.getOriginExpr(), LCtx, destVal);
1371     }
1372 
1373     // Invalidate the destination (regular invalidation without pointer-escaping
1374     // the address of the top-level region).
1375     // FIXME: Even if we can't perfectly model the copy, we should see if we
1376     // can use LazyCompoundVals to copy the source values into the destination.
1377     // This would probably remove any existing bindings past the end of the
1378     // copied region, but that's still an improvement over blank invalidation.
1379     state = invalidateDestinationBufferBySize(
1380         C, state, Dest.Expression, C.getSVal(Dest.Expression), sizeVal,
1381         Size.Expression->getType());
1382 
1383     // Invalidate the source (const-invalidation without const-pointer-escaping
1384     // the address of the top-level region).
1385     state = invalidateSourceBuffer(C, state, Source.Expression,
1386                                    C.getSVal(Source.Expression));
1387 
1388     C.addTransition(state);
1389   }
1390 }
1391 
1392 void CStringChecker::evalMemcpy(CheckerContext &C, const CallEvent &Call,
1393                                 CharKind CK) const {
1394   // void *memcpy(void *restrict dst, const void *restrict src, size_t n);
1395   // The return value is the address of the destination buffer.
1396   DestinationArgExpr Dest = {{Call.getArgExpr(0), 0}};
1397   SourceArgExpr Src = {{Call.getArgExpr(1), 1}};
1398   SizeArgExpr Size = {{Call.getArgExpr(2), 2}};
1399 
1400   ProgramStateRef State = C.getState();
1401 
1402   constexpr bool IsRestricted = true;
1403   constexpr bool IsMempcpy = false;
1404   evalCopyCommon(C, Call, State, Size, Dest, Src, IsRestricted, IsMempcpy, CK);
1405 }
1406 
1407 void CStringChecker::evalMempcpy(CheckerContext &C, const CallEvent &Call,
1408                                  CharKind CK) const {
1409   // void *mempcpy(void *restrict dst, const void *restrict src, size_t n);
1410   // The return value is a pointer to the byte following the last written byte.
1411   DestinationArgExpr Dest = {{Call.getArgExpr(0), 0}};
1412   SourceArgExpr Src = {{Call.getArgExpr(1), 1}};
1413   SizeArgExpr Size = {{Call.getArgExpr(2), 2}};
1414 
1415   constexpr bool IsRestricted = true;
1416   constexpr bool IsMempcpy = true;
1417   evalCopyCommon(C, Call, C.getState(), Size, Dest, Src, IsRestricted,
1418                  IsMempcpy, CK);
1419 }
1420 
1421 void CStringChecker::evalMemmove(CheckerContext &C, const CallEvent &Call,
1422                                  CharKind CK) const {
1423   // void *memmove(void *dst, const void *src, size_t n);
1424   // The return value is the address of the destination buffer.
1425   DestinationArgExpr Dest = {{Call.getArgExpr(0), 0}};
1426   SourceArgExpr Src = {{Call.getArgExpr(1), 1}};
1427   SizeArgExpr Size = {{Call.getArgExpr(2), 2}};
1428 
1429   constexpr bool IsRestricted = false;
1430   constexpr bool IsMempcpy = false;
1431   evalCopyCommon(C, Call, C.getState(), Size, Dest, Src, IsRestricted,
1432                  IsMempcpy, CK);
1433 }
1434 
1435 void CStringChecker::evalBcopy(CheckerContext &C, const CallEvent &Call) const {
1436   // void bcopy(const void *src, void *dst, size_t n);
1437   SourceArgExpr Src{{Call.getArgExpr(0), 0}};
1438   DestinationArgExpr Dest = {{Call.getArgExpr(1), 1}};
1439   SizeArgExpr Size = {{Call.getArgExpr(2), 2}};
1440 
1441   constexpr bool IsRestricted = false;
1442   constexpr bool IsMempcpy = false;
1443   evalCopyCommon(C, Call, C.getState(), Size, Dest, Src, IsRestricted,
1444                  IsMempcpy, CharKind::Regular);
1445 }
1446 
1447 void CStringChecker::evalMemcmp(CheckerContext &C, const CallEvent &Call,
1448                                 CharKind CK) const {
1449   // int memcmp(const void *s1, const void *s2, size_t n);
1450   CurrentFunctionDescription = "memory comparison function";
1451 
1452   AnyArgExpr Left = {Call.getArgExpr(0), 0};
1453   AnyArgExpr Right = {Call.getArgExpr(1), 1};
1454   SizeArgExpr Size = {{Call.getArgExpr(2), 2}};
1455 
1456   ProgramStateRef State = C.getState();
1457   SValBuilder &Builder = C.getSValBuilder();
1458   const LocationContext *LCtx = C.getLocationContext();
1459 
1460   // See if the size argument is zero.
1461   SVal sizeVal = State->getSVal(Size.Expression, LCtx);
1462   QualType sizeTy = Size.Expression->getType();
1463 
1464   ProgramStateRef stateZeroSize, stateNonZeroSize;
1465   std::tie(stateZeroSize, stateNonZeroSize) =
1466       assumeZero(C, State, sizeVal, sizeTy);
1467 
1468   // If the size can be zero, the result will be 0 in that case, and we don't
1469   // have to check either of the buffers.
1470   if (stateZeroSize) {
1471     State = stateZeroSize;
1472     State = State->BindExpr(Call.getOriginExpr(), LCtx,
1473                             Builder.makeZeroVal(Call.getResultType()));
1474     C.addTransition(State);
1475   }
1476 
1477   // If the size can be nonzero, we have to check the other arguments.
1478   if (stateNonZeroSize) {
1479     State = stateNonZeroSize;
1480     // If we know the two buffers are the same, we know the result is 0.
1481     // First, get the two buffers' addresses. Another checker will have already
1482     // made sure they're not undefined.
1483     DefinedOrUnknownSVal LV =
1484         State->getSVal(Left.Expression, LCtx).castAs<DefinedOrUnknownSVal>();
1485     DefinedOrUnknownSVal RV =
1486         State->getSVal(Right.Expression, LCtx).castAs<DefinedOrUnknownSVal>();
1487 
1488     // See if they are the same.
1489     ProgramStateRef SameBuffer, NotSameBuffer;
1490     std::tie(SameBuffer, NotSameBuffer) =
1491         State->assume(Builder.evalEQ(State, LV, RV));
1492 
1493     // If the two arguments are the same buffer, we know the result is 0,
1494     // and we only need to check one size.
1495     if (SameBuffer && !NotSameBuffer) {
1496       State = SameBuffer;
1497       State = CheckBufferAccess(C, State, Left, Size, AccessKind::read);
1498       if (State) {
1499         State = SameBuffer->BindExpr(Call.getOriginExpr(), LCtx,
1500                                      Builder.makeZeroVal(Call.getResultType()));
1501         C.addTransition(State);
1502       }
1503       return;
1504     }
1505 
1506     // If the two arguments might be different buffers, we have to check
1507     // the size of both of them.
1508     assert(NotSameBuffer);
1509     State = CheckBufferAccess(C, State, Right, Size, AccessKind::read, CK);
1510     State = CheckBufferAccess(C, State, Left, Size, AccessKind::read, CK);
1511     if (State) {
1512       // The return value is the comparison result, which we don't know.
1513       SVal CmpV = Builder.conjureSymbolVal(nullptr, Call.getOriginExpr(), LCtx,
1514                                            C.blockCount());
1515       State = State->BindExpr(Call.getOriginExpr(), LCtx, CmpV);
1516       C.addTransition(State);
1517     }
1518   }
1519 }
1520 
1521 void CStringChecker::evalstrLength(CheckerContext &C,
1522                                    const CallEvent &Call) const {
1523   // size_t strlen(const char *s);
1524   evalstrLengthCommon(C, Call, /* IsStrnlen = */ false);
1525 }
1526 
1527 void CStringChecker::evalstrnLength(CheckerContext &C,
1528                                     const CallEvent &Call) const {
1529   // size_t strnlen(const char *s, size_t maxlen);
1530   evalstrLengthCommon(C, Call, /* IsStrnlen = */ true);
1531 }
1532 
1533 void CStringChecker::evalstrLengthCommon(CheckerContext &C,
1534                                          const CallEvent &Call,
1535                                          bool IsStrnlen) const {
1536   CurrentFunctionDescription = "string length function";
1537   ProgramStateRef state = C.getState();
1538   const LocationContext *LCtx = C.getLocationContext();
1539 
1540   if (IsStrnlen) {
1541     const Expr *maxlenExpr = Call.getArgExpr(1);
1542     SVal maxlenVal = state->getSVal(maxlenExpr, LCtx);
1543 
1544     ProgramStateRef stateZeroSize, stateNonZeroSize;
1545     std::tie(stateZeroSize, stateNonZeroSize) =
1546       assumeZero(C, state, maxlenVal, maxlenExpr->getType());
1547 
1548     // If the size can be zero, the result will be 0 in that case, and we don't
1549     // have to check the string itself.
1550     if (stateZeroSize) {
1551       SVal zero = C.getSValBuilder().makeZeroVal(Call.getResultType());
1552       stateZeroSize = stateZeroSize->BindExpr(Call.getOriginExpr(), LCtx, zero);
1553       C.addTransition(stateZeroSize);
1554     }
1555 
1556     // If the size is GUARANTEED to be zero, we're done!
1557     if (!stateNonZeroSize)
1558       return;
1559 
1560     // Otherwise, record the assumption that the size is nonzero.
1561     state = stateNonZeroSize;
1562   }
1563 
1564   // Check that the string argument is non-null.
1565   AnyArgExpr Arg = {Call.getArgExpr(0), 0};
1566   SVal ArgVal = state->getSVal(Arg.Expression, LCtx);
1567   state = checkNonNull(C, state, Arg, ArgVal);
1568 
1569   if (!state)
1570     return;
1571 
1572   SVal strLength = getCStringLength(C, state, Arg.Expression, ArgVal);
1573 
1574   // If the argument isn't a valid C string, there's no valid state to
1575   // transition to.
1576   if (strLength.isUndef())
1577     return;
1578 
1579   DefinedOrUnknownSVal result = UnknownVal();
1580 
1581   // If the check is for strnlen() then bind the return value to no more than
1582   // the maxlen value.
1583   if (IsStrnlen) {
1584     QualType cmpTy = C.getSValBuilder().getConditionType();
1585 
1586     // It's a little unfortunate to be getting this again,
1587     // but it's not that expensive...
1588     const Expr *maxlenExpr = Call.getArgExpr(1);
1589     SVal maxlenVal = state->getSVal(maxlenExpr, LCtx);
1590 
1591     std::optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>();
1592     std::optional<NonLoc> maxlenValNL = maxlenVal.getAs<NonLoc>();
1593 
1594     if (strLengthNL && maxlenValNL) {
1595       ProgramStateRef stateStringTooLong, stateStringNotTooLong;
1596 
1597       // Check if the strLength is greater than the maxlen.
1598       std::tie(stateStringTooLong, stateStringNotTooLong) = state->assume(
1599           C.getSValBuilder()
1600               .evalBinOpNN(state, BO_GT, *strLengthNL, *maxlenValNL, cmpTy)
1601               .castAs<DefinedOrUnknownSVal>());
1602 
1603       if (stateStringTooLong && !stateStringNotTooLong) {
1604         // If the string is longer than maxlen, return maxlen.
1605         result = *maxlenValNL;
1606       } else if (stateStringNotTooLong && !stateStringTooLong) {
1607         // If the string is shorter than maxlen, return its length.
1608         result = *strLengthNL;
1609       }
1610     }
1611 
1612     if (result.isUnknown()) {
1613       // If we don't have enough information for a comparison, there's
1614       // no guarantee the full string length will actually be returned.
1615       // All we know is the return value is the min of the string length
1616       // and the limit. This is better than nothing.
1617       result = C.getSValBuilder().conjureSymbolVal(
1618           nullptr, Call.getOriginExpr(), LCtx, C.blockCount());
1619       NonLoc resultNL = result.castAs<NonLoc>();
1620 
1621       if (strLengthNL) {
1622         state = state->assume(C.getSValBuilder().evalBinOpNN(
1623                                   state, BO_LE, resultNL, *strLengthNL, cmpTy)
1624                                   .castAs<DefinedOrUnknownSVal>(), true);
1625       }
1626 
1627       if (maxlenValNL) {
1628         state = state->assume(C.getSValBuilder().evalBinOpNN(
1629                                   state, BO_LE, resultNL, *maxlenValNL, cmpTy)
1630                                   .castAs<DefinedOrUnknownSVal>(), true);
1631       }
1632     }
1633 
1634   } else {
1635     // This is a plain strlen(), not strnlen().
1636     result = strLength.castAs<DefinedOrUnknownSVal>();
1637 
1638     // If we don't know the length of the string, conjure a return
1639     // value, so it can be used in constraints, at least.
1640     if (result.isUnknown()) {
1641       result = C.getSValBuilder().conjureSymbolVal(
1642           nullptr, Call.getOriginExpr(), LCtx, C.blockCount());
1643     }
1644   }
1645 
1646   // Bind the return value.
1647   assert(!result.isUnknown() && "Should have conjured a value by now");
1648   state = state->BindExpr(Call.getOriginExpr(), LCtx, result);
1649   C.addTransition(state);
1650 }
1651 
1652 void CStringChecker::evalStrcpy(CheckerContext &C,
1653                                 const CallEvent &Call) const {
1654   // char *strcpy(char *restrict dst, const char *restrict src);
1655   evalStrcpyCommon(C, Call,
1656                    /* ReturnEnd = */ false,
1657                    /* IsBounded = */ false,
1658                    /* appendK = */ ConcatFnKind::none);
1659 }
1660 
1661 void CStringChecker::evalStrncpy(CheckerContext &C,
1662                                  const CallEvent &Call) const {
1663   // char *strncpy(char *restrict dst, const char *restrict src, size_t n);
1664   evalStrcpyCommon(C, Call,
1665                    /* ReturnEnd = */ false,
1666                    /* IsBounded = */ true,
1667                    /* appendK = */ ConcatFnKind::none);
1668 }
1669 
1670 void CStringChecker::evalStpcpy(CheckerContext &C,
1671                                 const CallEvent &Call) const {
1672   // char *stpcpy(char *restrict dst, const char *restrict src);
1673   evalStrcpyCommon(C, Call,
1674                    /* ReturnEnd = */ true,
1675                    /* IsBounded = */ false,
1676                    /* appendK = */ ConcatFnKind::none);
1677 }
1678 
1679 void CStringChecker::evalStrlcpy(CheckerContext &C,
1680                                  const CallEvent &Call) const {
1681   // size_t strlcpy(char *dest, const char *src, size_t size);
1682   evalStrcpyCommon(C, Call,
1683                    /* ReturnEnd = */ true,
1684                    /* IsBounded = */ true,
1685                    /* appendK = */ ConcatFnKind::none,
1686                    /* returnPtr = */ false);
1687 }
1688 
1689 void CStringChecker::evalStrcat(CheckerContext &C,
1690                                 const CallEvent &Call) const {
1691   // char *strcat(char *restrict s1, const char *restrict s2);
1692   evalStrcpyCommon(C, Call,
1693                    /* ReturnEnd = */ false,
1694                    /* IsBounded = */ false,
1695                    /* appendK = */ ConcatFnKind::strcat);
1696 }
1697 
1698 void CStringChecker::evalStrncat(CheckerContext &C,
1699                                  const CallEvent &Call) const {
1700   // char *strncat(char *restrict s1, const char *restrict s2, size_t n);
1701   evalStrcpyCommon(C, Call,
1702                    /* ReturnEnd = */ false,
1703                    /* IsBounded = */ true,
1704                    /* appendK = */ ConcatFnKind::strcat);
1705 }
1706 
1707 void CStringChecker::evalStrlcat(CheckerContext &C,
1708                                  const CallEvent &Call) const {
1709   // size_t strlcat(char *dst, const char *src, size_t size);
1710   // It will append at most size - strlen(dst) - 1 bytes,
1711   // NULL-terminating the result.
1712   evalStrcpyCommon(C, Call,
1713                    /* ReturnEnd = */ false,
1714                    /* IsBounded = */ true,
1715                    /* appendK = */ ConcatFnKind::strlcat,
1716                    /* returnPtr = */ false);
1717 }
1718 
1719 void CStringChecker::evalStrcpyCommon(CheckerContext &C, const CallEvent &Call,
1720                                       bool ReturnEnd, bool IsBounded,
1721                                       ConcatFnKind appendK,
1722                                       bool returnPtr) const {
1723   if (appendK == ConcatFnKind::none)
1724     CurrentFunctionDescription = "string copy function";
1725   else
1726     CurrentFunctionDescription = "string concatenation function";
1727 
1728   ProgramStateRef state = C.getState();
1729   const LocationContext *LCtx = C.getLocationContext();
1730 
1731   // Check that the destination is non-null.
1732   DestinationArgExpr Dst = {{Call.getArgExpr(0), 0}};
1733   SVal DstVal = state->getSVal(Dst.Expression, LCtx);
1734   state = checkNonNull(C, state, Dst, DstVal);
1735   if (!state)
1736     return;
1737 
1738   // Check that the source is non-null.
1739   SourceArgExpr srcExpr = {{Call.getArgExpr(1), 1}};
1740   SVal srcVal = state->getSVal(srcExpr.Expression, LCtx);
1741   state = checkNonNull(C, state, srcExpr, srcVal);
1742   if (!state)
1743     return;
1744 
1745   // Get the string length of the source.
1746   SVal strLength = getCStringLength(C, state, srcExpr.Expression, srcVal);
1747   std::optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>();
1748 
1749   // Get the string length of the destination buffer.
1750   SVal dstStrLength = getCStringLength(C, state, Dst.Expression, DstVal);
1751   std::optional<NonLoc> dstStrLengthNL = dstStrLength.getAs<NonLoc>();
1752 
1753   // If the source isn't a valid C string, give up.
1754   if (strLength.isUndef())
1755     return;
1756 
1757   SValBuilder &svalBuilder = C.getSValBuilder();
1758   QualType cmpTy = svalBuilder.getConditionType();
1759   QualType sizeTy = svalBuilder.getContext().getSizeType();
1760 
1761   // These two values allow checking two kinds of errors:
1762   // - actual overflows caused by a source that doesn't fit in the destination
1763   // - potential overflows caused by a bound that could exceed the destination
1764   SVal amountCopied = UnknownVal();
1765   SVal maxLastElementIndex = UnknownVal();
1766   const char *boundWarning = nullptr;
1767 
1768   // FIXME: Why do we choose the srcExpr if the access has no size?
1769   //  Note that the 3rd argument of the call would be the size parameter.
1770   SizeArgExpr SrcExprAsSizeDummy = {
1771       {srcExpr.Expression, srcExpr.ArgumentIndex}};
1772   state = CheckOverlap(
1773       C, state,
1774       (IsBounded ? SizeArgExpr{{Call.getArgExpr(2), 2}} : SrcExprAsSizeDummy),
1775       Dst, srcExpr);
1776 
1777   if (!state)
1778     return;
1779 
1780   // If the function is strncpy, strncat, etc... it is bounded.
1781   if (IsBounded) {
1782     // Get the max number of characters to copy.
1783     SizeArgExpr lenExpr = {{Call.getArgExpr(2), 2}};
1784     SVal lenVal = state->getSVal(lenExpr.Expression, LCtx);
1785 
1786     // Protect against misdeclared strncpy().
1787     lenVal =
1788         svalBuilder.evalCast(lenVal, sizeTy, lenExpr.Expression->getType());
1789 
1790     std::optional<NonLoc> lenValNL = lenVal.getAs<NonLoc>();
1791 
1792     // If we know both values, we might be able to figure out how much
1793     // we're copying.
1794     if (strLengthNL && lenValNL) {
1795       switch (appendK) {
1796       case ConcatFnKind::none:
1797       case ConcatFnKind::strcat: {
1798         ProgramStateRef stateSourceTooLong, stateSourceNotTooLong;
1799         // Check if the max number to copy is less than the length of the src.
1800         // If the bound is equal to the source length, strncpy won't null-
1801         // terminate the result!
1802         std::tie(stateSourceTooLong, stateSourceNotTooLong) = state->assume(
1803             svalBuilder
1804                 .evalBinOpNN(state, BO_GE, *strLengthNL, *lenValNL, cmpTy)
1805                 .castAs<DefinedOrUnknownSVal>());
1806 
1807         if (stateSourceTooLong && !stateSourceNotTooLong) {
1808           // Max number to copy is less than the length of the src, so the
1809           // actual strLength copied is the max number arg.
1810           state = stateSourceTooLong;
1811           amountCopied = lenVal;
1812 
1813         } else if (!stateSourceTooLong && stateSourceNotTooLong) {
1814           // The source buffer entirely fits in the bound.
1815           state = stateSourceNotTooLong;
1816           amountCopied = strLength;
1817         }
1818         break;
1819       }
1820       case ConcatFnKind::strlcat:
1821         if (!dstStrLengthNL)
1822           return;
1823 
1824         // amountCopied = min (size - dstLen - 1 , srcLen)
1825         SVal freeSpace = svalBuilder.evalBinOpNN(state, BO_Sub, *lenValNL,
1826                                                  *dstStrLengthNL, sizeTy);
1827         if (!isa<NonLoc>(freeSpace))
1828           return;
1829         freeSpace =
1830             svalBuilder.evalBinOp(state, BO_Sub, freeSpace,
1831                                   svalBuilder.makeIntVal(1, sizeTy), sizeTy);
1832         std::optional<NonLoc> freeSpaceNL = freeSpace.getAs<NonLoc>();
1833 
1834         // While unlikely, it is possible that the subtraction is
1835         // too complex to compute, let's check whether it succeeded.
1836         if (!freeSpaceNL)
1837           return;
1838         SVal hasEnoughSpace = svalBuilder.evalBinOpNN(
1839             state, BO_LE, *strLengthNL, *freeSpaceNL, cmpTy);
1840 
1841         ProgramStateRef TrueState, FalseState;
1842         std::tie(TrueState, FalseState) =
1843             state->assume(hasEnoughSpace.castAs<DefinedOrUnknownSVal>());
1844 
1845         // srcStrLength <= size - dstStrLength -1
1846         if (TrueState && !FalseState) {
1847           amountCopied = strLength;
1848         }
1849 
1850         // srcStrLength > size - dstStrLength -1
1851         if (!TrueState && FalseState) {
1852           amountCopied = freeSpace;
1853         }
1854 
1855         if (TrueState && FalseState)
1856           amountCopied = UnknownVal();
1857         break;
1858       }
1859     }
1860     // We still want to know if the bound is known to be too large.
1861     if (lenValNL) {
1862       switch (appendK) {
1863       case ConcatFnKind::strcat:
1864         // For strncat, the check is strlen(dst) + lenVal < sizeof(dst)
1865 
1866         // Get the string length of the destination. If the destination is
1867         // memory that can't have a string length, we shouldn't be copying
1868         // into it anyway.
1869         if (dstStrLength.isUndef())
1870           return;
1871 
1872         if (dstStrLengthNL) {
1873           maxLastElementIndex = svalBuilder.evalBinOpNN(
1874               state, BO_Add, *lenValNL, *dstStrLengthNL, sizeTy);
1875 
1876           boundWarning = "Size argument is greater than the free space in the "
1877                          "destination buffer";
1878         }
1879         break;
1880       case ConcatFnKind::none:
1881       case ConcatFnKind::strlcat:
1882         // For strncpy and strlcat, this is just checking
1883         //  that lenVal <= sizeof(dst).
1884         // (Yes, strncpy and strncat differ in how they treat termination.
1885         // strncat ALWAYS terminates, but strncpy doesn't.)
1886 
1887         // We need a special case for when the copy size is zero, in which
1888         // case strncpy will do no work at all. Our bounds check uses n-1
1889         // as the last element accessed, so n == 0 is problematic.
1890         ProgramStateRef StateZeroSize, StateNonZeroSize;
1891         std::tie(StateZeroSize, StateNonZeroSize) =
1892             assumeZero(C, state, *lenValNL, sizeTy);
1893 
1894         // If the size is known to be zero, we're done.
1895         if (StateZeroSize && !StateNonZeroSize) {
1896           if (returnPtr) {
1897             StateZeroSize =
1898                 StateZeroSize->BindExpr(Call.getOriginExpr(), LCtx, DstVal);
1899           } else {
1900             if (appendK == ConcatFnKind::none) {
1901               // strlcpy returns strlen(src)
1902               StateZeroSize = StateZeroSize->BindExpr(Call.getOriginExpr(),
1903                                                       LCtx, strLength);
1904             } else {
1905               // strlcat returns strlen(src) + strlen(dst)
1906               SVal retSize = svalBuilder.evalBinOp(
1907                   state, BO_Add, strLength, dstStrLength, sizeTy);
1908               StateZeroSize =
1909                   StateZeroSize->BindExpr(Call.getOriginExpr(), LCtx, retSize);
1910             }
1911           }
1912           C.addTransition(StateZeroSize);
1913           return;
1914         }
1915 
1916         // Otherwise, go ahead and figure out the last element we'll touch.
1917         // We don't record the non-zero assumption here because we can't
1918         // be sure. We won't warn on a possible zero.
1919         NonLoc one = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>();
1920         maxLastElementIndex =
1921             svalBuilder.evalBinOpNN(state, BO_Sub, *lenValNL, one, sizeTy);
1922         boundWarning = "Size argument is greater than the length of the "
1923                        "destination buffer";
1924         break;
1925       }
1926     }
1927   } else {
1928     // The function isn't bounded. The amount copied should match the length
1929     // of the source buffer.
1930     amountCopied = strLength;
1931   }
1932 
1933   assert(state);
1934 
1935   // This represents the number of characters copied into the destination
1936   // buffer. (It may not actually be the strlen if the destination buffer
1937   // is not terminated.)
1938   SVal finalStrLength = UnknownVal();
1939   SVal strlRetVal = UnknownVal();
1940 
1941   if (appendK == ConcatFnKind::none && !returnPtr) {
1942     // strlcpy returns the sizeof(src)
1943     strlRetVal = strLength;
1944   }
1945 
1946   // If this is an appending function (strcat, strncat...) then set the
1947   // string length to strlen(src) + strlen(dst) since the buffer will
1948   // ultimately contain both.
1949   if (appendK != ConcatFnKind::none) {
1950     // Get the string length of the destination. If the destination is memory
1951     // that can't have a string length, we shouldn't be copying into it anyway.
1952     if (dstStrLength.isUndef())
1953       return;
1954 
1955     if (appendK == ConcatFnKind::strlcat && dstStrLengthNL && strLengthNL) {
1956       strlRetVal = svalBuilder.evalBinOpNN(state, BO_Add, *strLengthNL,
1957                                            *dstStrLengthNL, sizeTy);
1958     }
1959 
1960     std::optional<NonLoc> amountCopiedNL = amountCopied.getAs<NonLoc>();
1961 
1962     // If we know both string lengths, we might know the final string length.
1963     if (amountCopiedNL && dstStrLengthNL) {
1964       // Make sure the two lengths together don't overflow a size_t.
1965       state = checkAdditionOverflow(C, state, *amountCopiedNL, *dstStrLengthNL);
1966       if (!state)
1967         return;
1968 
1969       finalStrLength = svalBuilder.evalBinOpNN(state, BO_Add, *amountCopiedNL,
1970                                                *dstStrLengthNL, sizeTy);
1971     }
1972 
1973     // If we couldn't get a single value for the final string length,
1974     // we can at least bound it by the individual lengths.
1975     if (finalStrLength.isUnknown()) {
1976       // Try to get a "hypothetical" string length symbol, which we can later
1977       // set as a real value if that turns out to be the case.
1978       finalStrLength =
1979           getCStringLength(C, state, Call.getOriginExpr(), DstVal, true);
1980       assert(!finalStrLength.isUndef());
1981 
1982       if (std::optional<NonLoc> finalStrLengthNL =
1983               finalStrLength.getAs<NonLoc>()) {
1984         if (amountCopiedNL && appendK == ConcatFnKind::none) {
1985           // we overwrite dst string with the src
1986           // finalStrLength >= srcStrLength
1987           SVal sourceInResult = svalBuilder.evalBinOpNN(
1988               state, BO_GE, *finalStrLengthNL, *amountCopiedNL, cmpTy);
1989           state = state->assume(sourceInResult.castAs<DefinedOrUnknownSVal>(),
1990                                 true);
1991           if (!state)
1992             return;
1993         }
1994 
1995         if (dstStrLengthNL && appendK != ConcatFnKind::none) {
1996           // we extend the dst string with the src
1997           // finalStrLength >= dstStrLength
1998           SVal destInResult = svalBuilder.evalBinOpNN(state, BO_GE,
1999                                                       *finalStrLengthNL,
2000                                                       *dstStrLengthNL,
2001                                                       cmpTy);
2002           state =
2003               state->assume(destInResult.castAs<DefinedOrUnknownSVal>(), true);
2004           if (!state)
2005             return;
2006         }
2007       }
2008     }
2009 
2010   } else {
2011     // Otherwise, this is a copy-over function (strcpy, strncpy, ...), and
2012     // the final string length will match the input string length.
2013     finalStrLength = amountCopied;
2014   }
2015 
2016   SVal Result;
2017 
2018   if (returnPtr) {
2019     // The final result of the function will either be a pointer past the last
2020     // copied element, or a pointer to the start of the destination buffer.
2021     Result = (ReturnEnd ? UnknownVal() : DstVal);
2022   } else {
2023     if (appendK == ConcatFnKind::strlcat || appendK == ConcatFnKind::none)
2024       //strlcpy, strlcat
2025       Result = strlRetVal;
2026     else
2027       Result = finalStrLength;
2028   }
2029 
2030   assert(state);
2031 
2032   // If the destination is a MemRegion, try to check for a buffer overflow and
2033   // record the new string length.
2034   if (std::optional<loc::MemRegionVal> dstRegVal =
2035           DstVal.getAs<loc::MemRegionVal>()) {
2036     QualType ptrTy = Dst.Expression->getType();
2037 
2038     // If we have an exact value on a bounded copy, use that to check for
2039     // overflows, rather than our estimate about how much is actually copied.
2040     if (std::optional<NonLoc> maxLastNL = maxLastElementIndex.getAs<NonLoc>()) {
2041       SVal maxLastElement =
2042           svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal, *maxLastNL, ptrTy);
2043 
2044       // Check if the first byte of the destination is writable.
2045       state = CheckLocation(C, state, Dst, DstVal, AccessKind::write);
2046       if (!state)
2047         return;
2048       // Check if the last byte of the destination is writable.
2049       state = CheckLocation(C, state, Dst, maxLastElement, AccessKind::write);
2050       if (!state)
2051         return;
2052     }
2053 
2054     // Then, if the final length is known...
2055     if (std::optional<NonLoc> knownStrLength = finalStrLength.getAs<NonLoc>()) {
2056       SVal lastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal,
2057           *knownStrLength, ptrTy);
2058 
2059       // ...and we haven't checked the bound, we'll check the actual copy.
2060       if (!boundWarning) {
2061         // Check if the first byte of the destination is writable.
2062         state = CheckLocation(C, state, Dst, DstVal, AccessKind::write);
2063         if (!state)
2064           return;
2065         // Check if the last byte of the destination is writable.
2066         state = CheckLocation(C, state, Dst, lastElement, AccessKind::write);
2067         if (!state)
2068           return;
2069       }
2070 
2071       // If this is a stpcpy-style copy, the last element is the return value.
2072       if (returnPtr && ReturnEnd)
2073         Result = lastElement;
2074     }
2075 
2076     // Invalidate the destination (regular invalidation without pointer-escaping
2077     // the address of the top-level region). This must happen before we set the
2078     // C string length because invalidation will clear the length.
2079     // FIXME: Even if we can't perfectly model the copy, we should see if we
2080     // can use LazyCompoundVals to copy the source values into the destination.
2081     // This would probably remove any existing bindings past the end of the
2082     // string, but that's still an improvement over blank invalidation.
2083     state = invalidateDestinationBufferBySize(C, state, Dst.Expression,
2084                                               *dstRegVal, amountCopied,
2085                                               C.getASTContext().getSizeType());
2086 
2087     // Invalidate the source (const-invalidation without const-pointer-escaping
2088     // the address of the top-level region).
2089     state = invalidateSourceBuffer(C, state, srcExpr.Expression, srcVal);
2090 
2091     // Set the C string length of the destination, if we know it.
2092     if (IsBounded && (appendK == ConcatFnKind::none)) {
2093       // strncpy is annoying in that it doesn't guarantee to null-terminate
2094       // the result string. If the original string didn't fit entirely inside
2095       // the bound (including the null-terminator), we don't know how long the
2096       // result is.
2097       if (amountCopied != strLength)
2098         finalStrLength = UnknownVal();
2099     }
2100     state = setCStringLength(state, dstRegVal->getRegion(), finalStrLength);
2101   }
2102 
2103   assert(state);
2104 
2105   if (returnPtr) {
2106     // If this is a stpcpy-style copy, but we were unable to check for a buffer
2107     // overflow, we still need a result. Conjure a return value.
2108     if (ReturnEnd && Result.isUnknown()) {
2109       Result = svalBuilder.conjureSymbolVal(nullptr, Call.getOriginExpr(), LCtx,
2110                                             C.blockCount());
2111     }
2112   }
2113   // Set the return value.
2114   state = state->BindExpr(Call.getOriginExpr(), LCtx, Result);
2115   C.addTransition(state);
2116 }
2117 
2118 void CStringChecker::evalStrcmp(CheckerContext &C,
2119                                 const CallEvent &Call) const {
2120   //int strcmp(const char *s1, const char *s2);
2121   evalStrcmpCommon(C, Call, /* IsBounded = */ false, /* IgnoreCase = */ false);
2122 }
2123 
2124 void CStringChecker::evalStrncmp(CheckerContext &C,
2125                                  const CallEvent &Call) const {
2126   //int strncmp(const char *s1, const char *s2, size_t n);
2127   evalStrcmpCommon(C, Call, /* IsBounded = */ true, /* IgnoreCase = */ false);
2128 }
2129 
2130 void CStringChecker::evalStrcasecmp(CheckerContext &C,
2131                                     const CallEvent &Call) const {
2132   //int strcasecmp(const char *s1, const char *s2);
2133   evalStrcmpCommon(C, Call, /* IsBounded = */ false, /* IgnoreCase = */ true);
2134 }
2135 
2136 void CStringChecker::evalStrncasecmp(CheckerContext &C,
2137                                      const CallEvent &Call) const {
2138   //int strncasecmp(const char *s1, const char *s2, size_t n);
2139   evalStrcmpCommon(C, Call, /* IsBounded = */ true, /* IgnoreCase = */ true);
2140 }
2141 
2142 void CStringChecker::evalStrcmpCommon(CheckerContext &C, const CallEvent &Call,
2143                                       bool IsBounded, bool IgnoreCase) const {
2144   CurrentFunctionDescription = "string comparison function";
2145   ProgramStateRef state = C.getState();
2146   const LocationContext *LCtx = C.getLocationContext();
2147 
2148   // Check that the first string is non-null
2149   AnyArgExpr Left = {Call.getArgExpr(0), 0};
2150   SVal LeftVal = state->getSVal(Left.Expression, LCtx);
2151   state = checkNonNull(C, state, Left, LeftVal);
2152   if (!state)
2153     return;
2154 
2155   // Check that the second string is non-null.
2156   AnyArgExpr Right = {Call.getArgExpr(1), 1};
2157   SVal RightVal = state->getSVal(Right.Expression, LCtx);
2158   state = checkNonNull(C, state, Right, RightVal);
2159   if (!state)
2160     return;
2161 
2162   // Get the string length of the first string or give up.
2163   SVal LeftLength = getCStringLength(C, state, Left.Expression, LeftVal);
2164   if (LeftLength.isUndef())
2165     return;
2166 
2167   // Get the string length of the second string or give up.
2168   SVal RightLength = getCStringLength(C, state, Right.Expression, RightVal);
2169   if (RightLength.isUndef())
2170     return;
2171 
2172   // If we know the two buffers are the same, we know the result is 0.
2173   // First, get the two buffers' addresses. Another checker will have already
2174   // made sure they're not undefined.
2175   DefinedOrUnknownSVal LV = LeftVal.castAs<DefinedOrUnknownSVal>();
2176   DefinedOrUnknownSVal RV = RightVal.castAs<DefinedOrUnknownSVal>();
2177 
2178   // See if they are the same.
2179   SValBuilder &svalBuilder = C.getSValBuilder();
2180   DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV);
2181   ProgramStateRef StSameBuf, StNotSameBuf;
2182   std::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf);
2183 
2184   // If the two arguments might be the same buffer, we know the result is 0,
2185   // and we only need to check one size.
2186   if (StSameBuf) {
2187     StSameBuf =
2188         StSameBuf->BindExpr(Call.getOriginExpr(), LCtx,
2189                             svalBuilder.makeZeroVal(Call.getResultType()));
2190     C.addTransition(StSameBuf);
2191 
2192     // If the two arguments are GUARANTEED to be the same, we're done!
2193     if (!StNotSameBuf)
2194       return;
2195   }
2196 
2197   assert(StNotSameBuf);
2198   state = StNotSameBuf;
2199 
2200   // At this point we can go about comparing the two buffers.
2201   // For now, we only do this if they're both known string literals.
2202 
2203   // Attempt to extract string literals from both expressions.
2204   const StringLiteral *LeftStrLiteral =
2205       getCStringLiteral(C, state, Left.Expression, LeftVal);
2206   const StringLiteral *RightStrLiteral =
2207       getCStringLiteral(C, state, Right.Expression, RightVal);
2208   bool canComputeResult = false;
2209   SVal resultVal = svalBuilder.conjureSymbolVal(nullptr, Call.getOriginExpr(),
2210                                                 LCtx, C.blockCount());
2211 
2212   if (LeftStrLiteral && RightStrLiteral) {
2213     StringRef LeftStrRef = LeftStrLiteral->getString();
2214     StringRef RightStrRef = RightStrLiteral->getString();
2215 
2216     if (IsBounded) {
2217       // Get the max number of characters to compare.
2218       const Expr *lenExpr = Call.getArgExpr(2);
2219       SVal lenVal = state->getSVal(lenExpr, LCtx);
2220 
2221       // If the length is known, we can get the right substrings.
2222       if (const llvm::APSInt *len = svalBuilder.getKnownValue(state, lenVal)) {
2223         // Create substrings of each to compare the prefix.
2224         LeftStrRef = LeftStrRef.substr(0, (size_t)len->getZExtValue());
2225         RightStrRef = RightStrRef.substr(0, (size_t)len->getZExtValue());
2226         canComputeResult = true;
2227       }
2228     } else {
2229       // This is a normal, unbounded strcmp.
2230       canComputeResult = true;
2231     }
2232 
2233     if (canComputeResult) {
2234       // Real strcmp stops at null characters.
2235       size_t s1Term = LeftStrRef.find('\0');
2236       if (s1Term != StringRef::npos)
2237         LeftStrRef = LeftStrRef.substr(0, s1Term);
2238 
2239       size_t s2Term = RightStrRef.find('\0');
2240       if (s2Term != StringRef::npos)
2241         RightStrRef = RightStrRef.substr(0, s2Term);
2242 
2243       // Use StringRef's comparison methods to compute the actual result.
2244       int compareRes = IgnoreCase ? LeftStrRef.compare_insensitive(RightStrRef)
2245                                   : LeftStrRef.compare(RightStrRef);
2246 
2247       // The strcmp function returns an integer greater than, equal to, or less
2248       // than zero, [c11, p7.24.4.2].
2249       if (compareRes == 0) {
2250         resultVal = svalBuilder.makeIntVal(compareRes, Call.getResultType());
2251       }
2252       else {
2253         DefinedSVal zeroVal = svalBuilder.makeIntVal(0, Call.getResultType());
2254         // Constrain strcmp's result range based on the result of StringRef's
2255         // comparison methods.
2256         BinaryOperatorKind op = (compareRes > 0) ? BO_GT : BO_LT;
2257         SVal compareWithZero =
2258           svalBuilder.evalBinOp(state, op, resultVal, zeroVal,
2259               svalBuilder.getConditionType());
2260         DefinedSVal compareWithZeroVal = compareWithZero.castAs<DefinedSVal>();
2261         state = state->assume(compareWithZeroVal, true);
2262       }
2263     }
2264   }
2265 
2266   state = state->BindExpr(Call.getOriginExpr(), LCtx, resultVal);
2267 
2268   // Record this as a possible path.
2269   C.addTransition(state);
2270 }
2271 
2272 void CStringChecker::evalStrsep(CheckerContext &C,
2273                                 const CallEvent &Call) const {
2274   // char *strsep(char **stringp, const char *delim);
2275   // Verify whether the search string parameter matches the return type.
2276   SourceArgExpr SearchStrPtr = {{Call.getArgExpr(0), 0}};
2277 
2278   QualType CharPtrTy = SearchStrPtr.Expression->getType()->getPointeeType();
2279   if (CharPtrTy.isNull() || Call.getResultType().getUnqualifiedType() !=
2280                                 CharPtrTy.getUnqualifiedType())
2281     return;
2282 
2283   CurrentFunctionDescription = "strsep()";
2284   ProgramStateRef State = C.getState();
2285   const LocationContext *LCtx = C.getLocationContext();
2286 
2287   // Check that the search string pointer is non-null (though it may point to
2288   // a null string).
2289   SVal SearchStrVal = State->getSVal(SearchStrPtr.Expression, LCtx);
2290   State = checkNonNull(C, State, SearchStrPtr, SearchStrVal);
2291   if (!State)
2292     return;
2293 
2294   // Check that the delimiter string is non-null.
2295   AnyArgExpr DelimStr = {Call.getArgExpr(1), 1};
2296   SVal DelimStrVal = State->getSVal(DelimStr.Expression, LCtx);
2297   State = checkNonNull(C, State, DelimStr, DelimStrVal);
2298   if (!State)
2299     return;
2300 
2301   SValBuilder &SVB = C.getSValBuilder();
2302   SVal Result;
2303   if (std::optional<Loc> SearchStrLoc = SearchStrVal.getAs<Loc>()) {
2304     // Get the current value of the search string pointer, as a char*.
2305     Result = State->getSVal(*SearchStrLoc, CharPtrTy);
2306 
2307     // Invalidate the search string, representing the change of one delimiter
2308     // character to NUL.
2309     // As the replacement never overflows, do not invalidate its super region.
2310     State = invalidateDestinationBufferNeverOverflows(
2311         C, State, SearchStrPtr.Expression, Result);
2312 
2313     // Overwrite the search string pointer. The new value is either an address
2314     // further along in the same string, or NULL if there are no more tokens.
2315     State =
2316         State->bindLoc(*SearchStrLoc,
2317                        SVB.conjureSymbolVal(getTag(), Call.getOriginExpr(),
2318                                             LCtx, CharPtrTy, C.blockCount()),
2319                        LCtx);
2320   } else {
2321     assert(SearchStrVal.isUnknown());
2322     // Conjure a symbolic value. It's the best we can do.
2323     Result = SVB.conjureSymbolVal(nullptr, Call.getOriginExpr(), LCtx,
2324                                   C.blockCount());
2325   }
2326 
2327   // Set the return value, and finish.
2328   State = State->BindExpr(Call.getOriginExpr(), LCtx, Result);
2329   C.addTransition(State);
2330 }
2331 
2332 // These should probably be moved into a C++ standard library checker.
2333 void CStringChecker::evalStdCopy(CheckerContext &C,
2334                                  const CallEvent &Call) const {
2335   evalStdCopyCommon(C, Call);
2336 }
2337 
2338 void CStringChecker::evalStdCopyBackward(CheckerContext &C,
2339                                          const CallEvent &Call) const {
2340   evalStdCopyCommon(C, Call);
2341 }
2342 
2343 void CStringChecker::evalStdCopyCommon(CheckerContext &C,
2344                                        const CallEvent &Call) const {
2345   if (!Call.getArgExpr(2)->getType()->isPointerType())
2346     return;
2347 
2348   ProgramStateRef State = C.getState();
2349 
2350   const LocationContext *LCtx = C.getLocationContext();
2351 
2352   // template <class _InputIterator, class _OutputIterator>
2353   // _OutputIterator
2354   // copy(_InputIterator __first, _InputIterator __last,
2355   //        _OutputIterator __result)
2356 
2357   // Invalidate the destination buffer
2358   const Expr *Dst = Call.getArgExpr(2);
2359   SVal DstVal = State->getSVal(Dst, LCtx);
2360   // FIXME: As we do not know how many items are copied, we also invalidate the
2361   // super region containing the target location.
2362   State =
2363       invalidateDestinationBufferAlwaysEscapeSuperRegion(C, State, Dst, DstVal);
2364 
2365   SValBuilder &SVB = C.getSValBuilder();
2366 
2367   SVal ResultVal =
2368       SVB.conjureSymbolVal(nullptr, Call.getOriginExpr(), LCtx, C.blockCount());
2369   State = State->BindExpr(Call.getOriginExpr(), LCtx, ResultVal);
2370 
2371   C.addTransition(State);
2372 }
2373 
2374 void CStringChecker::evalMemset(CheckerContext &C,
2375                                 const CallEvent &Call) const {
2376   // void *memset(void *s, int c, size_t n);
2377   CurrentFunctionDescription = "memory set function";
2378 
2379   DestinationArgExpr Buffer = {{Call.getArgExpr(0), 0}};
2380   AnyArgExpr CharE = {Call.getArgExpr(1), 1};
2381   SizeArgExpr Size = {{Call.getArgExpr(2), 2}};
2382 
2383   ProgramStateRef State = C.getState();
2384 
2385   // See if the size argument is zero.
2386   const LocationContext *LCtx = C.getLocationContext();
2387   SVal SizeVal = C.getSVal(Size.Expression);
2388   QualType SizeTy = Size.Expression->getType();
2389 
2390   ProgramStateRef ZeroSize, NonZeroSize;
2391   std::tie(ZeroSize, NonZeroSize) = assumeZero(C, State, SizeVal, SizeTy);
2392 
2393   // Get the value of the memory area.
2394   SVal BufferPtrVal = C.getSVal(Buffer.Expression);
2395 
2396   // If the size is zero, there won't be any actual memory access, so
2397   // just bind the return value to the buffer and return.
2398   if (ZeroSize && !NonZeroSize) {
2399     ZeroSize = ZeroSize->BindExpr(Call.getOriginExpr(), LCtx, BufferPtrVal);
2400     C.addTransition(ZeroSize);
2401     return;
2402   }
2403 
2404   // Ensure the memory area is not null.
2405   // If it is NULL there will be a NULL pointer dereference.
2406   State = checkNonNull(C, NonZeroSize, Buffer, BufferPtrVal);
2407   if (!State)
2408     return;
2409 
2410   State = CheckBufferAccess(C, State, Buffer, Size, AccessKind::write);
2411   if (!State)
2412     return;
2413 
2414   // According to the values of the arguments, bind the value of the second
2415   // argument to the destination buffer and set string length, or just
2416   // invalidate the destination buffer.
2417   if (!memsetAux(Buffer.Expression, C.getSVal(CharE.Expression),
2418                  Size.Expression, C, State))
2419     return;
2420 
2421   State = State->BindExpr(Call.getOriginExpr(), LCtx, BufferPtrVal);
2422   C.addTransition(State);
2423 }
2424 
2425 void CStringChecker::evalBzero(CheckerContext &C, const CallEvent &Call) const {
2426   CurrentFunctionDescription = "memory clearance function";
2427 
2428   DestinationArgExpr Buffer = {{Call.getArgExpr(0), 0}};
2429   SizeArgExpr Size = {{Call.getArgExpr(1), 1}};
2430   SVal Zero = C.getSValBuilder().makeZeroVal(C.getASTContext().IntTy);
2431 
2432   ProgramStateRef State = C.getState();
2433 
2434   // See if the size argument is zero.
2435   SVal SizeVal = C.getSVal(Size.Expression);
2436   QualType SizeTy = Size.Expression->getType();
2437 
2438   ProgramStateRef StateZeroSize, StateNonZeroSize;
2439   std::tie(StateZeroSize, StateNonZeroSize) =
2440     assumeZero(C, State, SizeVal, SizeTy);
2441 
2442   // If the size is zero, there won't be any actual memory access,
2443   // In this case we just return.
2444   if (StateZeroSize && !StateNonZeroSize) {
2445     C.addTransition(StateZeroSize);
2446     return;
2447   }
2448 
2449   // Get the value of the memory area.
2450   SVal MemVal = C.getSVal(Buffer.Expression);
2451 
2452   // Ensure the memory area is not null.
2453   // If it is NULL there will be a NULL pointer dereference.
2454   State = checkNonNull(C, StateNonZeroSize, Buffer, MemVal);
2455   if (!State)
2456     return;
2457 
2458   State = CheckBufferAccess(C, State, Buffer, Size, AccessKind::write);
2459   if (!State)
2460     return;
2461 
2462   if (!memsetAux(Buffer.Expression, Zero, Size.Expression, C, State))
2463     return;
2464 
2465   C.addTransition(State);
2466 }
2467 
2468 void CStringChecker::evalSprintf(CheckerContext &C,
2469                                  const CallEvent &Call) const {
2470   CurrentFunctionDescription = "'sprintf'";
2471   const auto *CE = cast<CallExpr>(Call.getOriginExpr());
2472   bool IsBI = CE->getBuiltinCallee() == Builtin::BI__builtin___sprintf_chk;
2473   evalSprintfCommon(C, Call, /* IsBounded */ false, IsBI);
2474 }
2475 
2476 void CStringChecker::evalSnprintf(CheckerContext &C,
2477                                   const CallEvent &Call) const {
2478   CurrentFunctionDescription = "'snprintf'";
2479   const auto *CE = cast<CallExpr>(Call.getOriginExpr());
2480   bool IsBI = CE->getBuiltinCallee() == Builtin::BI__builtin___snprintf_chk;
2481   evalSprintfCommon(C, Call, /* IsBounded */ true, IsBI);
2482 }
2483 
2484 void CStringChecker::evalSprintfCommon(CheckerContext &C, const CallEvent &Call,
2485                                        bool IsBounded, bool IsBuiltin) const {
2486   ProgramStateRef State = C.getState();
2487   const auto *CE = cast<CallExpr>(Call.getOriginExpr());
2488   DestinationArgExpr Dest = {{Call.getArgExpr(0), 0}};
2489 
2490   const auto NumParams = Call.parameters().size();
2491   assert(CE->getNumArgs() >= NumParams);
2492 
2493   const auto AllArguments =
2494       llvm::make_range(CE->getArgs(), CE->getArgs() + CE->getNumArgs());
2495   const auto VariadicArguments = drop_begin(enumerate(AllArguments), NumParams);
2496 
2497   for (const auto &[ArgIdx, ArgExpr] : VariadicArguments) {
2498     // We consider only string buffers
2499     if (const QualType type = ArgExpr->getType();
2500         !type->isAnyPointerType() ||
2501         !type->getPointeeType()->isAnyCharacterType())
2502       continue;
2503     SourceArgExpr Source = {{ArgExpr, unsigned(ArgIdx)}};
2504 
2505     // Ensure the buffers do not overlap.
2506     SizeArgExpr SrcExprAsSizeDummy = {
2507         {Source.Expression, Source.ArgumentIndex}};
2508     State = CheckOverlap(
2509         C, State,
2510         (IsBounded ? SizeArgExpr{{Call.getArgExpr(1), 1}} : SrcExprAsSizeDummy),
2511         Dest, Source);
2512     if (!State)
2513       return;
2514   }
2515 
2516   C.addTransition(State);
2517 }
2518 
2519 //===----------------------------------------------------------------------===//
2520 // The driver method, and other Checker callbacks.
2521 //===----------------------------------------------------------------------===//
2522 
2523 CStringChecker::FnCheck CStringChecker::identifyCall(const CallEvent &Call,
2524                                                      CheckerContext &C) const {
2525   const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr());
2526   if (!CE)
2527     return nullptr;
2528 
2529   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Call.getDecl());
2530   if (!FD)
2531     return nullptr;
2532 
2533   if (StdCopy.matches(Call))
2534     return &CStringChecker::evalStdCopy;
2535   if (StdCopyBackward.matches(Call))
2536     return &CStringChecker::evalStdCopyBackward;
2537 
2538   // Pro-actively check that argument types are safe to do arithmetic upon.
2539   // We do not want to crash if someone accidentally passes a structure
2540   // into, say, a C++ overload of any of these functions. We could not check
2541   // that for std::copy because they may have arguments of other types.
2542   for (auto I : CE->arguments()) {
2543     QualType T = I->getType();
2544     if (!T->isIntegralOrEnumerationType() && !T->isPointerType())
2545       return nullptr;
2546   }
2547 
2548   const FnCheck *Callback = Callbacks.lookup(Call);
2549   if (Callback)
2550     return *Callback;
2551 
2552   return nullptr;
2553 }
2554 
2555 bool CStringChecker::evalCall(const CallEvent &Call, CheckerContext &C) const {
2556   FnCheck Callback = identifyCall(Call, C);
2557 
2558   // If the callee isn't a string function, let another checker handle it.
2559   if (!Callback)
2560     return false;
2561 
2562   // Check and evaluate the call.
2563   assert(isa<CallExpr>(Call.getOriginExpr()));
2564   Callback(this, C, Call);
2565 
2566   // If the evaluate call resulted in no change, chain to the next eval call
2567   // handler.
2568   // Note, the custom CString evaluation calls assume that basic safety
2569   // properties are held. However, if the user chooses to turn off some of these
2570   // checks, we ignore the issues and leave the call evaluation to a generic
2571   // handler.
2572   return C.isDifferent();
2573 }
2574 
2575 void CStringChecker::checkPreStmt(const DeclStmt *DS, CheckerContext &C) const {
2576   // Record string length for char a[] = "abc";
2577   ProgramStateRef state = C.getState();
2578 
2579   for (const auto *I : DS->decls()) {
2580     const VarDecl *D = dyn_cast<VarDecl>(I);
2581     if (!D)
2582       continue;
2583 
2584     // FIXME: Handle array fields of structs.
2585     if (!D->getType()->isArrayType())
2586       continue;
2587 
2588     const Expr *Init = D->getInit();
2589     if (!Init)
2590       continue;
2591     if (!isa<StringLiteral>(Init))
2592       continue;
2593 
2594     Loc VarLoc = state->getLValue(D, C.getLocationContext());
2595     const MemRegion *MR = VarLoc.getAsRegion();
2596     if (!MR)
2597       continue;
2598 
2599     SVal StrVal = C.getSVal(Init);
2600     assert(StrVal.isValid() && "Initializer string is unknown or undefined");
2601     DefinedOrUnknownSVal strLength =
2602       getCStringLength(C, state, Init, StrVal).castAs<DefinedOrUnknownSVal>();
2603 
2604     state = state->set<CStringLength>(MR, strLength);
2605   }
2606 
2607   C.addTransition(state);
2608 }
2609 
2610 ProgramStateRef
2611 CStringChecker::checkRegionChanges(ProgramStateRef state,
2612     const InvalidatedSymbols *,
2613     ArrayRef<const MemRegion *> ExplicitRegions,
2614     ArrayRef<const MemRegion *> Regions,
2615     const LocationContext *LCtx,
2616     const CallEvent *Call) const {
2617   CStringLengthTy Entries = state->get<CStringLength>();
2618   if (Entries.isEmpty())
2619     return state;
2620 
2621   llvm::SmallPtrSet<const MemRegion *, 8> Invalidated;
2622   llvm::SmallPtrSet<const MemRegion *, 32> SuperRegions;
2623 
2624   // First build sets for the changed regions and their super-regions.
2625   for (const MemRegion *MR : Regions) {
2626     Invalidated.insert(MR);
2627 
2628     SuperRegions.insert(MR);
2629     while (const SubRegion *SR = dyn_cast<SubRegion>(MR)) {
2630       MR = SR->getSuperRegion();
2631       SuperRegions.insert(MR);
2632     }
2633   }
2634 
2635   CStringLengthTy::Factory &F = state->get_context<CStringLength>();
2636 
2637   // Then loop over the entries in the current state.
2638   for (const MemRegion *MR : llvm::make_first_range(Entries)) {
2639     // Is this entry for a super-region of a changed region?
2640     if (SuperRegions.count(MR)) {
2641       Entries = F.remove(Entries, MR);
2642       continue;
2643     }
2644 
2645     // Is this entry for a sub-region of a changed region?
2646     const MemRegion *Super = MR;
2647     while (const SubRegion *SR = dyn_cast<SubRegion>(Super)) {
2648       Super = SR->getSuperRegion();
2649       if (Invalidated.count(Super)) {
2650         Entries = F.remove(Entries, MR);
2651         break;
2652       }
2653     }
2654   }
2655 
2656   return state->set<CStringLength>(Entries);
2657 }
2658 
2659 void CStringChecker::checkLiveSymbols(ProgramStateRef state,
2660     SymbolReaper &SR) const {
2661   // Mark all symbols in our string length map as valid.
2662   CStringLengthTy Entries = state->get<CStringLength>();
2663 
2664   for (SVal Len : llvm::make_second_range(Entries)) {
2665     for (SymbolRef Sym : Len.symbols())
2666       SR.markInUse(Sym);
2667   }
2668 }
2669 
2670 void CStringChecker::checkDeadSymbols(SymbolReaper &SR,
2671     CheckerContext &C) const {
2672   ProgramStateRef state = C.getState();
2673   CStringLengthTy Entries = state->get<CStringLength>();
2674   if (Entries.isEmpty())
2675     return;
2676 
2677   CStringLengthTy::Factory &F = state->get_context<CStringLength>();
2678   for (auto [Reg, Len] : Entries) {
2679     if (SymbolRef Sym = Len.getAsSymbol()) {
2680       if (SR.isDead(Sym))
2681         Entries = F.remove(Entries, Reg);
2682     }
2683   }
2684 
2685   state = state->set<CStringLength>(Entries);
2686   C.addTransition(state);
2687 }
2688 
2689 void ento::registerCStringModeling(CheckerManager &Mgr) {
2690   Mgr.registerChecker<CStringChecker>();
2691 }
2692 
2693 bool ento::shouldRegisterCStringModeling(const CheckerManager &mgr) {
2694   return true;
2695 }
2696 
2697 #define REGISTER_CHECKER(name)                                                 \
2698   void ento::register##name(CheckerManager &mgr) {                             \
2699     CStringChecker *checker = mgr.getChecker<CStringChecker>();                \
2700     checker->Filter.Check##name = true;                                        \
2701     checker->Filter.CheckName##name = mgr.getCurrentCheckerName();             \
2702   }                                                                            \
2703                                                                                \
2704   bool ento::shouldRegister##name(const CheckerManager &mgr) { return true; }
2705 
2706 REGISTER_CHECKER(CStringNullArg)
2707 REGISTER_CHECKER(CStringOutOfBounds)
2708 REGISTER_CHECKER(CStringBufferOverlap)
2709 REGISTER_CHECKER(CStringNotNullTerm)
2710 REGISTER_CHECKER(CStringUninitializedRead)
2711