1 //= CStringChecker.cpp - Checks calls to C string functions --------*- C++ -*-// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This defines CStringChecker, which is an assortment of checks on calls 10 // to functions in <string.h>. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InterCheckerAPI.h" 15 #include "clang/Basic/Builtins.h" 16 #include "clang/Basic/CharInfo.h" 17 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" 18 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 19 #include "clang/StaticAnalyzer/Core/Checker.h" 20 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 21 #include "clang/StaticAnalyzer/Core/PathSensitive/CallDescription.h" 22 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 23 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 24 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicExtent.h" 25 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SmallString.h" 28 #include "llvm/ADT/StringExtras.h" 29 #include "llvm/Support/raw_ostream.h" 30 #include <functional> 31 #include <optional> 32 33 using namespace clang; 34 using namespace ento; 35 using namespace std::placeholders; 36 37 namespace { 38 struct AnyArgExpr { 39 const Expr *Expression; 40 unsigned ArgumentIndex; 41 }; 42 struct SourceArgExpr : AnyArgExpr {}; 43 struct DestinationArgExpr : AnyArgExpr {}; 44 struct SizeArgExpr : AnyArgExpr {}; 45 46 using ErrorMessage = SmallString<128>; 47 enum class AccessKind { write, read }; 48 49 static ErrorMessage createOutOfBoundErrorMsg(StringRef FunctionDescription, 50 AccessKind Access) { 51 ErrorMessage Message; 52 llvm::raw_svector_ostream Os(Message); 53 54 // Function classification like: Memory copy function 55 Os << toUppercase(FunctionDescription.front()) 56 << &FunctionDescription.data()[1]; 57 58 if (Access == AccessKind::write) { 59 Os << " overflows the destination buffer"; 60 } else { // read access 61 Os << " accesses out-of-bound array element"; 62 } 63 64 return Message; 65 } 66 67 enum class ConcatFnKind { none = 0, strcat = 1, strlcat = 2 }; 68 69 enum class CharKind { Regular = 0, Wide }; 70 constexpr CharKind CK_Regular = CharKind::Regular; 71 constexpr CharKind CK_Wide = CharKind::Wide; 72 73 static QualType getCharPtrType(ASTContext &Ctx, CharKind CK) { 74 return Ctx.getPointerType(CK == CharKind::Regular ? Ctx.CharTy 75 : Ctx.WideCharTy); 76 } 77 78 class CStringChecker : public Checker< eval::Call, 79 check::PreStmt<DeclStmt>, 80 check::LiveSymbols, 81 check::DeadSymbols, 82 check::RegionChanges 83 > { 84 mutable std::unique_ptr<BugType> BT_Null, BT_Bounds, BT_Overlap, 85 BT_NotCString, BT_AdditionOverflow, BT_UninitRead; 86 87 mutable const char *CurrentFunctionDescription = nullptr; 88 89 public: 90 /// The filter is used to filter out the diagnostics which are not enabled by 91 /// the user. 92 struct CStringChecksFilter { 93 bool CheckCStringNullArg = false; 94 bool CheckCStringOutOfBounds = false; 95 bool CheckCStringBufferOverlap = false; 96 bool CheckCStringNotNullTerm = false; 97 bool CheckCStringUninitializedRead = false; 98 99 CheckerNameRef CheckNameCStringNullArg; 100 CheckerNameRef CheckNameCStringOutOfBounds; 101 CheckerNameRef CheckNameCStringBufferOverlap; 102 CheckerNameRef CheckNameCStringNotNullTerm; 103 CheckerNameRef CheckNameCStringUninitializedRead; 104 }; 105 106 CStringChecksFilter Filter; 107 108 static void *getTag() { static int tag; return &tag; } 109 110 bool evalCall(const CallEvent &Call, CheckerContext &C) const; 111 void checkPreStmt(const DeclStmt *DS, CheckerContext &C) const; 112 void checkLiveSymbols(ProgramStateRef state, SymbolReaper &SR) const; 113 void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const; 114 115 ProgramStateRef 116 checkRegionChanges(ProgramStateRef state, 117 const InvalidatedSymbols *, 118 ArrayRef<const MemRegion *> ExplicitRegions, 119 ArrayRef<const MemRegion *> Regions, 120 const LocationContext *LCtx, 121 const CallEvent *Call) const; 122 123 using FnCheck = std::function<void(const CStringChecker *, CheckerContext &, 124 const CallEvent &)>; 125 126 CallDescriptionMap<FnCheck> Callbacks = { 127 {{CDF_MaybeBuiltin, {"memcpy"}, 3}, 128 std::bind(&CStringChecker::evalMemcpy, _1, _2, _3, CK_Regular)}, 129 {{CDF_MaybeBuiltin, {"wmemcpy"}, 3}, 130 std::bind(&CStringChecker::evalMemcpy, _1, _2, _3, CK_Wide)}, 131 {{CDF_MaybeBuiltin, {"mempcpy"}, 3}, 132 std::bind(&CStringChecker::evalMempcpy, _1, _2, _3, CK_Regular)}, 133 {{CDF_None, {"wmempcpy"}, 3}, 134 std::bind(&CStringChecker::evalMempcpy, _1, _2, _3, CK_Wide)}, 135 {{CDF_MaybeBuiltin, {"memcmp"}, 3}, 136 std::bind(&CStringChecker::evalMemcmp, _1, _2, _3, CK_Regular)}, 137 {{CDF_MaybeBuiltin, {"wmemcmp"}, 3}, 138 std::bind(&CStringChecker::evalMemcmp, _1, _2, _3, CK_Wide)}, 139 {{CDF_MaybeBuiltin, {"memmove"}, 3}, 140 std::bind(&CStringChecker::evalMemmove, _1, _2, _3, CK_Regular)}, 141 {{CDF_MaybeBuiltin, {"wmemmove"}, 3}, 142 std::bind(&CStringChecker::evalMemmove, _1, _2, _3, CK_Wide)}, 143 {{CDF_MaybeBuiltin, {"memset"}, 3}, &CStringChecker::evalMemset}, 144 {{CDF_MaybeBuiltin, {"explicit_memset"}, 3}, &CStringChecker::evalMemset}, 145 {{CDF_MaybeBuiltin, {"strcpy"}, 2}, &CStringChecker::evalStrcpy}, 146 {{CDF_MaybeBuiltin, {"strncpy"}, 3}, &CStringChecker::evalStrncpy}, 147 {{CDF_MaybeBuiltin, {"stpcpy"}, 2}, &CStringChecker::evalStpcpy}, 148 {{CDF_MaybeBuiltin, {"strlcpy"}, 3}, &CStringChecker::evalStrlcpy}, 149 {{CDF_MaybeBuiltin, {"strcat"}, 2}, &CStringChecker::evalStrcat}, 150 {{CDF_MaybeBuiltin, {"strncat"}, 3}, &CStringChecker::evalStrncat}, 151 {{CDF_MaybeBuiltin, {"strlcat"}, 3}, &CStringChecker::evalStrlcat}, 152 {{CDF_MaybeBuiltin, {"strlen"}, 1}, &CStringChecker::evalstrLength}, 153 {{CDF_MaybeBuiltin, {"wcslen"}, 1}, &CStringChecker::evalstrLength}, 154 {{CDF_MaybeBuiltin, {"strnlen"}, 2}, &CStringChecker::evalstrnLength}, 155 {{CDF_MaybeBuiltin, {"wcsnlen"}, 2}, &CStringChecker::evalstrnLength}, 156 {{CDF_MaybeBuiltin, {"strcmp"}, 2}, &CStringChecker::evalStrcmp}, 157 {{CDF_MaybeBuiltin, {"strncmp"}, 3}, &CStringChecker::evalStrncmp}, 158 {{CDF_MaybeBuiltin, {"strcasecmp"}, 2}, &CStringChecker::evalStrcasecmp}, 159 {{CDF_MaybeBuiltin, {"strncasecmp"}, 3}, 160 &CStringChecker::evalStrncasecmp}, 161 {{CDF_MaybeBuiltin, {"strsep"}, 2}, &CStringChecker::evalStrsep}, 162 {{CDF_MaybeBuiltin, {"bcopy"}, 3}, &CStringChecker::evalBcopy}, 163 {{CDF_MaybeBuiltin, {"bcmp"}, 3}, 164 std::bind(&CStringChecker::evalMemcmp, _1, _2, _3, CK_Regular)}, 165 {{CDF_MaybeBuiltin, {"bzero"}, 2}, &CStringChecker::evalBzero}, 166 {{CDF_MaybeBuiltin, {"explicit_bzero"}, 2}, &CStringChecker::evalBzero}, 167 {{CDF_MaybeBuiltin, {"sprintf"}, 2}, &CStringChecker::evalSprintf}, 168 {{CDF_MaybeBuiltin, {"snprintf"}, 2}, &CStringChecker::evalSnprintf}, 169 }; 170 171 // These require a bit of special handling. 172 CallDescription StdCopy{{"std", "copy"}, 3}, 173 StdCopyBackward{{"std", "copy_backward"}, 3}; 174 175 FnCheck identifyCall(const CallEvent &Call, CheckerContext &C) const; 176 void evalMemcpy(CheckerContext &C, const CallEvent &Call, CharKind CK) const; 177 void evalMempcpy(CheckerContext &C, const CallEvent &Call, CharKind CK) const; 178 void evalMemmove(CheckerContext &C, const CallEvent &Call, CharKind CK) const; 179 void evalBcopy(CheckerContext &C, const CallEvent &Call) const; 180 void evalCopyCommon(CheckerContext &C, const CallEvent &Call, 181 ProgramStateRef state, SizeArgExpr Size, 182 DestinationArgExpr Dest, SourceArgExpr Source, 183 bool Restricted, bool IsMempcpy, CharKind CK) const; 184 185 void evalMemcmp(CheckerContext &C, const CallEvent &Call, CharKind CK) const; 186 187 void evalstrLength(CheckerContext &C, const CallEvent &Call) const; 188 void evalstrnLength(CheckerContext &C, const CallEvent &Call) const; 189 void evalstrLengthCommon(CheckerContext &C, const CallEvent &Call, 190 bool IsStrnlen = false) const; 191 192 void evalStrcpy(CheckerContext &C, const CallEvent &Call) const; 193 void evalStrncpy(CheckerContext &C, const CallEvent &Call) const; 194 void evalStpcpy(CheckerContext &C, const CallEvent &Call) const; 195 void evalStrlcpy(CheckerContext &C, const CallEvent &Call) const; 196 void evalStrcpyCommon(CheckerContext &C, const CallEvent &Call, 197 bool ReturnEnd, bool IsBounded, ConcatFnKind appendK, 198 bool returnPtr = true) const; 199 200 void evalStrcat(CheckerContext &C, const CallEvent &Call) const; 201 void evalStrncat(CheckerContext &C, const CallEvent &Call) const; 202 void evalStrlcat(CheckerContext &C, const CallEvent &Call) const; 203 204 void evalStrcmp(CheckerContext &C, const CallEvent &Call) const; 205 void evalStrncmp(CheckerContext &C, const CallEvent &Call) const; 206 void evalStrcasecmp(CheckerContext &C, const CallEvent &Call) const; 207 void evalStrncasecmp(CheckerContext &C, const CallEvent &Call) const; 208 void evalStrcmpCommon(CheckerContext &C, const CallEvent &Call, 209 bool IsBounded = false, bool IgnoreCase = false) const; 210 211 void evalStrsep(CheckerContext &C, const CallEvent &Call) const; 212 213 void evalStdCopy(CheckerContext &C, const CallEvent &Call) const; 214 void evalStdCopyBackward(CheckerContext &C, const CallEvent &Call) const; 215 void evalStdCopyCommon(CheckerContext &C, const CallEvent &Call) const; 216 void evalMemset(CheckerContext &C, const CallEvent &Call) const; 217 void evalBzero(CheckerContext &C, const CallEvent &Call) const; 218 219 void evalSprintf(CheckerContext &C, const CallEvent &Call) const; 220 void evalSnprintf(CheckerContext &C, const CallEvent &Call) const; 221 void evalSprintfCommon(CheckerContext &C, const CallEvent &Call, 222 bool IsBounded, bool IsBuiltin) const; 223 224 // Utility methods 225 std::pair<ProgramStateRef , ProgramStateRef > 226 static assumeZero(CheckerContext &C, 227 ProgramStateRef state, SVal V, QualType Ty); 228 229 static ProgramStateRef setCStringLength(ProgramStateRef state, 230 const MemRegion *MR, 231 SVal strLength); 232 static SVal getCStringLengthForRegion(CheckerContext &C, 233 ProgramStateRef &state, 234 const Expr *Ex, 235 const MemRegion *MR, 236 bool hypothetical); 237 SVal getCStringLength(CheckerContext &C, 238 ProgramStateRef &state, 239 const Expr *Ex, 240 SVal Buf, 241 bool hypothetical = false) const; 242 243 const StringLiteral *getCStringLiteral(CheckerContext &C, 244 ProgramStateRef &state, 245 const Expr *expr, 246 SVal val) const; 247 248 /// Invalidate the destination buffer determined by characters copied. 249 static ProgramStateRef 250 invalidateDestinationBufferBySize(CheckerContext &C, ProgramStateRef S, 251 const Expr *BufE, SVal BufV, SVal SizeV, 252 QualType SizeTy); 253 254 /// Operation never overflows, do not invalidate the super region. 255 static ProgramStateRef invalidateDestinationBufferNeverOverflows( 256 CheckerContext &C, ProgramStateRef S, const Expr *BufE, SVal BufV); 257 258 /// We do not know whether the operation can overflow (e.g. size is unknown), 259 /// invalidate the super region and escape related pointers. 260 static ProgramStateRef invalidateDestinationBufferAlwaysEscapeSuperRegion( 261 CheckerContext &C, ProgramStateRef S, const Expr *BufE, SVal BufV); 262 263 /// Invalidate the source buffer for escaping pointers. 264 static ProgramStateRef invalidateSourceBuffer(CheckerContext &C, 265 ProgramStateRef S, 266 const Expr *BufE, SVal BufV); 267 268 /// @param InvalidationTraitOperations Determine how to invlidate the 269 /// MemRegion by setting the invalidation traits. Return true to cause pointer 270 /// escape, or false otherwise. 271 static ProgramStateRef invalidateBufferAux( 272 CheckerContext &C, ProgramStateRef State, const Expr *Ex, SVal V, 273 llvm::function_ref<bool(RegionAndSymbolInvalidationTraits &, 274 const MemRegion *)> 275 InvalidationTraitOperations); 276 277 static bool SummarizeRegion(raw_ostream &os, ASTContext &Ctx, 278 const MemRegion *MR); 279 280 static bool memsetAux(const Expr *DstBuffer, SVal CharE, 281 const Expr *Size, CheckerContext &C, 282 ProgramStateRef &State); 283 284 // Re-usable checks 285 ProgramStateRef checkNonNull(CheckerContext &C, ProgramStateRef State, 286 AnyArgExpr Arg, SVal l) const; 287 ProgramStateRef CheckLocation(CheckerContext &C, ProgramStateRef state, 288 AnyArgExpr Buffer, SVal Element, 289 AccessKind Access, 290 CharKind CK = CharKind::Regular) const; 291 ProgramStateRef CheckBufferAccess(CheckerContext &C, ProgramStateRef State, 292 AnyArgExpr Buffer, SizeArgExpr Size, 293 AccessKind Access, 294 CharKind CK = CharKind::Regular) const; 295 ProgramStateRef CheckOverlap(CheckerContext &C, ProgramStateRef state, 296 SizeArgExpr Size, AnyArgExpr First, 297 AnyArgExpr Second, 298 CharKind CK = CharKind::Regular) const; 299 void emitOverlapBug(CheckerContext &C, 300 ProgramStateRef state, 301 const Stmt *First, 302 const Stmt *Second) const; 303 304 void emitNullArgBug(CheckerContext &C, ProgramStateRef State, const Stmt *S, 305 StringRef WarningMsg) const; 306 void emitOutOfBoundsBug(CheckerContext &C, ProgramStateRef State, 307 const Stmt *S, StringRef WarningMsg) const; 308 void emitNotCStringBug(CheckerContext &C, ProgramStateRef State, 309 const Stmt *S, StringRef WarningMsg) const; 310 void emitAdditionOverflowBug(CheckerContext &C, ProgramStateRef State) const; 311 void emitUninitializedReadBug(CheckerContext &C, ProgramStateRef State, 312 const Expr *E) const; 313 ProgramStateRef checkAdditionOverflow(CheckerContext &C, 314 ProgramStateRef state, 315 NonLoc left, 316 NonLoc right) const; 317 318 // Return true if the destination buffer of the copy function may be in bound. 319 // Expects SVal of Size to be positive and unsigned. 320 // Expects SVal of FirstBuf to be a FieldRegion. 321 static bool isFirstBufInBound(CheckerContext &C, ProgramStateRef State, 322 SVal BufVal, QualType BufTy, SVal LengthVal, 323 QualType LengthTy); 324 }; 325 326 } //end anonymous namespace 327 328 REGISTER_MAP_WITH_PROGRAMSTATE(CStringLength, const MemRegion *, SVal) 329 330 //===----------------------------------------------------------------------===// 331 // Individual checks and utility methods. 332 //===----------------------------------------------------------------------===// 333 334 std::pair<ProgramStateRef , ProgramStateRef > 335 CStringChecker::assumeZero(CheckerContext &C, ProgramStateRef state, SVal V, 336 QualType Ty) { 337 std::optional<DefinedSVal> val = V.getAs<DefinedSVal>(); 338 if (!val) 339 return std::pair<ProgramStateRef , ProgramStateRef >(state, state); 340 341 SValBuilder &svalBuilder = C.getSValBuilder(); 342 DefinedOrUnknownSVal zero = svalBuilder.makeZeroVal(Ty); 343 return state->assume(svalBuilder.evalEQ(state, *val, zero)); 344 } 345 346 ProgramStateRef CStringChecker::checkNonNull(CheckerContext &C, 347 ProgramStateRef State, 348 AnyArgExpr Arg, SVal l) const { 349 // If a previous check has failed, propagate the failure. 350 if (!State) 351 return nullptr; 352 353 ProgramStateRef stateNull, stateNonNull; 354 std::tie(stateNull, stateNonNull) = 355 assumeZero(C, State, l, Arg.Expression->getType()); 356 357 if (stateNull && !stateNonNull) { 358 if (Filter.CheckCStringNullArg) { 359 SmallString<80> buf; 360 llvm::raw_svector_ostream OS(buf); 361 assert(CurrentFunctionDescription); 362 OS << "Null pointer passed as " << (Arg.ArgumentIndex + 1) 363 << llvm::getOrdinalSuffix(Arg.ArgumentIndex + 1) << " argument to " 364 << CurrentFunctionDescription; 365 366 emitNullArgBug(C, stateNull, Arg.Expression, OS.str()); 367 } 368 return nullptr; 369 } 370 371 // From here on, assume that the value is non-null. 372 assert(stateNonNull); 373 return stateNonNull; 374 } 375 376 // FIXME: This was originally copied from ArrayBoundChecker.cpp. Refactor? 377 ProgramStateRef CStringChecker::CheckLocation(CheckerContext &C, 378 ProgramStateRef state, 379 AnyArgExpr Buffer, SVal Element, 380 AccessKind Access, 381 CharKind CK) const { 382 383 // If a previous check has failed, propagate the failure. 384 if (!state) 385 return nullptr; 386 387 // Check for out of bound array element access. 388 const MemRegion *R = Element.getAsRegion(); 389 if (!R) 390 return state; 391 392 const auto *ER = dyn_cast<ElementRegion>(R); 393 if (!ER) 394 return state; 395 396 SValBuilder &svalBuilder = C.getSValBuilder(); 397 ASTContext &Ctx = svalBuilder.getContext(); 398 399 // Get the index of the accessed element. 400 NonLoc Idx = ER->getIndex(); 401 402 if (CK == CharKind::Regular) { 403 if (ER->getValueType() != Ctx.CharTy) 404 return state; 405 } else { 406 if (ER->getValueType() != Ctx.WideCharTy) 407 return state; 408 409 QualType SizeTy = Ctx.getSizeType(); 410 NonLoc WideSize = 411 svalBuilder 412 .makeIntVal(Ctx.getTypeSizeInChars(Ctx.WideCharTy).getQuantity(), 413 SizeTy) 414 .castAs<NonLoc>(); 415 SVal Offset = svalBuilder.evalBinOpNN(state, BO_Mul, Idx, WideSize, SizeTy); 416 if (Offset.isUnknown()) 417 return state; 418 Idx = Offset.castAs<NonLoc>(); 419 } 420 421 // Get the size of the array. 422 const auto *superReg = cast<SubRegion>(ER->getSuperRegion()); 423 DefinedOrUnknownSVal Size = 424 getDynamicExtent(state, superReg, C.getSValBuilder()); 425 426 ProgramStateRef StInBound, StOutBound; 427 std::tie(StInBound, StOutBound) = state->assumeInBoundDual(Idx, Size); 428 if (StOutBound && !StInBound) { 429 // These checks are either enabled by the CString out-of-bounds checker 430 // explicitly or implicitly by the Malloc checker. 431 // In the latter case we only do modeling but do not emit warning. 432 if (!Filter.CheckCStringOutOfBounds) 433 return nullptr; 434 435 // Emit a bug report. 436 ErrorMessage Message = 437 createOutOfBoundErrorMsg(CurrentFunctionDescription, Access); 438 emitOutOfBoundsBug(C, StOutBound, Buffer.Expression, Message); 439 return nullptr; 440 } 441 442 // Ensure that we wouldn't read uninitialized value. 443 if (Access == AccessKind::read) { 444 if (Filter.CheckCStringUninitializedRead && 445 StInBound->getSVal(ER).isUndef()) { 446 emitUninitializedReadBug(C, StInBound, Buffer.Expression); 447 return nullptr; 448 } 449 } 450 451 // Array bound check succeeded. From this point forward the array bound 452 // should always succeed. 453 return StInBound; 454 } 455 456 ProgramStateRef 457 CStringChecker::CheckBufferAccess(CheckerContext &C, ProgramStateRef State, 458 AnyArgExpr Buffer, SizeArgExpr Size, 459 AccessKind Access, CharKind CK) const { 460 // If a previous check has failed, propagate the failure. 461 if (!State) 462 return nullptr; 463 464 SValBuilder &svalBuilder = C.getSValBuilder(); 465 ASTContext &Ctx = svalBuilder.getContext(); 466 467 QualType SizeTy = Size.Expression->getType(); 468 QualType PtrTy = getCharPtrType(Ctx, CK); 469 470 // Check that the first buffer is non-null. 471 SVal BufVal = C.getSVal(Buffer.Expression); 472 State = checkNonNull(C, State, Buffer, BufVal); 473 if (!State) 474 return nullptr; 475 476 // If out-of-bounds checking is turned off, skip the rest. 477 if (!Filter.CheckCStringOutOfBounds) 478 return State; 479 480 SVal BufStart = 481 svalBuilder.evalCast(BufVal, PtrTy, Buffer.Expression->getType()); 482 483 // Check if the first byte of the buffer is accessible. 484 State = CheckLocation(C, State, Buffer, BufStart, Access, CK); 485 if (!State) 486 return nullptr; 487 488 // Get the access length and make sure it is known. 489 // FIXME: This assumes the caller has already checked that the access length 490 // is positive. And that it's unsigned. 491 SVal LengthVal = C.getSVal(Size.Expression); 492 std::optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); 493 if (!Length) 494 return State; 495 496 // Compute the offset of the last element to be accessed: size-1. 497 NonLoc One = svalBuilder.makeIntVal(1, SizeTy).castAs<NonLoc>(); 498 SVal Offset = svalBuilder.evalBinOpNN(State, BO_Sub, *Length, One, SizeTy); 499 if (Offset.isUnknown()) 500 return nullptr; 501 NonLoc LastOffset = Offset.castAs<NonLoc>(); 502 503 // Check that the first buffer is sufficiently long. 504 if (std::optional<Loc> BufLoc = BufStart.getAs<Loc>()) { 505 506 SVal BufEnd = 507 svalBuilder.evalBinOpLN(State, BO_Add, *BufLoc, LastOffset, PtrTy); 508 State = CheckLocation(C, State, Buffer, BufEnd, Access, CK); 509 510 // If the buffer isn't large enough, abort. 511 if (!State) 512 return nullptr; 513 } 514 515 // Large enough or not, return this state! 516 return State; 517 } 518 519 ProgramStateRef CStringChecker::CheckOverlap(CheckerContext &C, 520 ProgramStateRef state, 521 SizeArgExpr Size, AnyArgExpr First, 522 AnyArgExpr Second, 523 CharKind CK) const { 524 if (!Filter.CheckCStringBufferOverlap) 525 return state; 526 527 // Do a simple check for overlap: if the two arguments are from the same 528 // buffer, see if the end of the first is greater than the start of the second 529 // or vice versa. 530 531 // If a previous check has failed, propagate the failure. 532 if (!state) 533 return nullptr; 534 535 ProgramStateRef stateTrue, stateFalse; 536 537 // Assume different address spaces cannot overlap. 538 if (First.Expression->getType()->getPointeeType().getAddressSpace() != 539 Second.Expression->getType()->getPointeeType().getAddressSpace()) 540 return state; 541 542 // Get the buffer values and make sure they're known locations. 543 const LocationContext *LCtx = C.getLocationContext(); 544 SVal firstVal = state->getSVal(First.Expression, LCtx); 545 SVal secondVal = state->getSVal(Second.Expression, LCtx); 546 547 std::optional<Loc> firstLoc = firstVal.getAs<Loc>(); 548 if (!firstLoc) 549 return state; 550 551 std::optional<Loc> secondLoc = secondVal.getAs<Loc>(); 552 if (!secondLoc) 553 return state; 554 555 // Are the two values the same? 556 SValBuilder &svalBuilder = C.getSValBuilder(); 557 std::tie(stateTrue, stateFalse) = 558 state->assume(svalBuilder.evalEQ(state, *firstLoc, *secondLoc)); 559 560 if (stateTrue && !stateFalse) { 561 // If the values are known to be equal, that's automatically an overlap. 562 emitOverlapBug(C, stateTrue, First.Expression, Second.Expression); 563 return nullptr; 564 } 565 566 // assume the two expressions are not equal. 567 assert(stateFalse); 568 state = stateFalse; 569 570 // Which value comes first? 571 QualType cmpTy = svalBuilder.getConditionType(); 572 SVal reverse = 573 svalBuilder.evalBinOpLL(state, BO_GT, *firstLoc, *secondLoc, cmpTy); 574 std::optional<DefinedOrUnknownSVal> reverseTest = 575 reverse.getAs<DefinedOrUnknownSVal>(); 576 if (!reverseTest) 577 return state; 578 579 std::tie(stateTrue, stateFalse) = state->assume(*reverseTest); 580 if (stateTrue) { 581 if (stateFalse) { 582 // If we don't know which one comes first, we can't perform this test. 583 return state; 584 } else { 585 // Switch the values so that firstVal is before secondVal. 586 std::swap(firstLoc, secondLoc); 587 588 // Switch the Exprs as well, so that they still correspond. 589 std::swap(First, Second); 590 } 591 } 592 593 // Get the length, and make sure it too is known. 594 SVal LengthVal = state->getSVal(Size.Expression, LCtx); 595 std::optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); 596 if (!Length) 597 return state; 598 599 // Convert the first buffer's start address to char*. 600 // Bail out if the cast fails. 601 ASTContext &Ctx = svalBuilder.getContext(); 602 QualType CharPtrTy = getCharPtrType(Ctx, CK); 603 SVal FirstStart = 604 svalBuilder.evalCast(*firstLoc, CharPtrTy, First.Expression->getType()); 605 std::optional<Loc> FirstStartLoc = FirstStart.getAs<Loc>(); 606 if (!FirstStartLoc) 607 return state; 608 609 // Compute the end of the first buffer. Bail out if THAT fails. 610 SVal FirstEnd = svalBuilder.evalBinOpLN(state, BO_Add, *FirstStartLoc, 611 *Length, CharPtrTy); 612 std::optional<Loc> FirstEndLoc = FirstEnd.getAs<Loc>(); 613 if (!FirstEndLoc) 614 return state; 615 616 // Is the end of the first buffer past the start of the second buffer? 617 SVal Overlap = 618 svalBuilder.evalBinOpLL(state, BO_GT, *FirstEndLoc, *secondLoc, cmpTy); 619 std::optional<DefinedOrUnknownSVal> OverlapTest = 620 Overlap.getAs<DefinedOrUnknownSVal>(); 621 if (!OverlapTest) 622 return state; 623 624 std::tie(stateTrue, stateFalse) = state->assume(*OverlapTest); 625 626 if (stateTrue && !stateFalse) { 627 // Overlap! 628 emitOverlapBug(C, stateTrue, First.Expression, Second.Expression); 629 return nullptr; 630 } 631 632 // assume the two expressions don't overlap. 633 assert(stateFalse); 634 return stateFalse; 635 } 636 637 void CStringChecker::emitOverlapBug(CheckerContext &C, ProgramStateRef state, 638 const Stmt *First, const Stmt *Second) const { 639 ExplodedNode *N = C.generateErrorNode(state); 640 if (!N) 641 return; 642 643 if (!BT_Overlap) 644 BT_Overlap.reset(new BugType(Filter.CheckNameCStringBufferOverlap, 645 categories::UnixAPI, "Improper arguments")); 646 647 // Generate a report for this bug. 648 auto report = std::make_unique<PathSensitiveBugReport>( 649 *BT_Overlap, "Arguments must not be overlapping buffers", N); 650 report->addRange(First->getSourceRange()); 651 report->addRange(Second->getSourceRange()); 652 653 C.emitReport(std::move(report)); 654 } 655 656 void CStringChecker::emitNullArgBug(CheckerContext &C, ProgramStateRef State, 657 const Stmt *S, StringRef WarningMsg) const { 658 if (ExplodedNode *N = C.generateErrorNode(State)) { 659 if (!BT_Null) { 660 // FIXME: This call uses the string constant 'categories::UnixAPI' as the 661 // description of the bug; it should be replaced by a real description. 662 BT_Null.reset( 663 new BugType(Filter.CheckNameCStringNullArg, categories::UnixAPI)); 664 } 665 666 auto Report = 667 std::make_unique<PathSensitiveBugReport>(*BT_Null, WarningMsg, N); 668 Report->addRange(S->getSourceRange()); 669 if (const auto *Ex = dyn_cast<Expr>(S)) 670 bugreporter::trackExpressionValue(N, Ex, *Report); 671 C.emitReport(std::move(Report)); 672 } 673 } 674 675 void CStringChecker::emitUninitializedReadBug(CheckerContext &C, 676 ProgramStateRef State, 677 const Expr *E) const { 678 if (ExplodedNode *N = C.generateErrorNode(State)) { 679 const char *Msg = 680 "Bytes string function accesses uninitialized/garbage values"; 681 if (!BT_UninitRead) 682 BT_UninitRead.reset(new BugType(Filter.CheckNameCStringUninitializedRead, 683 "Accessing unitialized/garbage values")); 684 685 auto Report = 686 std::make_unique<PathSensitiveBugReport>(*BT_UninitRead, Msg, N); 687 Report->addRange(E->getSourceRange()); 688 bugreporter::trackExpressionValue(N, E, *Report); 689 C.emitReport(std::move(Report)); 690 } 691 } 692 693 void CStringChecker::emitOutOfBoundsBug(CheckerContext &C, 694 ProgramStateRef State, const Stmt *S, 695 StringRef WarningMsg) const { 696 if (ExplodedNode *N = C.generateErrorNode(State)) { 697 if (!BT_Bounds) 698 BT_Bounds.reset(new BugType(Filter.CheckCStringOutOfBounds 699 ? Filter.CheckNameCStringOutOfBounds 700 : Filter.CheckNameCStringNullArg, 701 "Out-of-bound array access")); 702 703 // FIXME: It would be nice to eventually make this diagnostic more clear, 704 // e.g., by referencing the original declaration or by saying *why* this 705 // reference is outside the range. 706 auto Report = 707 std::make_unique<PathSensitiveBugReport>(*BT_Bounds, WarningMsg, N); 708 Report->addRange(S->getSourceRange()); 709 C.emitReport(std::move(Report)); 710 } 711 } 712 713 void CStringChecker::emitNotCStringBug(CheckerContext &C, ProgramStateRef State, 714 const Stmt *S, 715 StringRef WarningMsg) const { 716 if (ExplodedNode *N = C.generateNonFatalErrorNode(State)) { 717 if (!BT_NotCString) { 718 // FIXME: This call uses the string constant 'categories::UnixAPI' as the 719 // description of the bug; it should be replaced by a real description. 720 BT_NotCString.reset( 721 new BugType(Filter.CheckNameCStringNotNullTerm, categories::UnixAPI)); 722 } 723 724 auto Report = 725 std::make_unique<PathSensitiveBugReport>(*BT_NotCString, WarningMsg, N); 726 727 Report->addRange(S->getSourceRange()); 728 C.emitReport(std::move(Report)); 729 } 730 } 731 732 void CStringChecker::emitAdditionOverflowBug(CheckerContext &C, 733 ProgramStateRef State) const { 734 if (ExplodedNode *N = C.generateErrorNode(State)) { 735 if (!BT_AdditionOverflow) { 736 // FIXME: This call uses the word "API" as the description of the bug; 737 // it should be replaced by a better error message (if this unlikely 738 // situation continues to exist as a separate bug type). 739 BT_AdditionOverflow.reset( 740 new BugType(Filter.CheckNameCStringOutOfBounds, "API")); 741 } 742 743 // This isn't a great error message, but this should never occur in real 744 // code anyway -- you'd have to create a buffer longer than a size_t can 745 // represent, which is sort of a contradiction. 746 const char *WarningMsg = 747 "This expression will create a string whose length is too big to " 748 "be represented as a size_t"; 749 750 auto Report = std::make_unique<PathSensitiveBugReport>(*BT_AdditionOverflow, 751 WarningMsg, N); 752 C.emitReport(std::move(Report)); 753 } 754 } 755 756 ProgramStateRef CStringChecker::checkAdditionOverflow(CheckerContext &C, 757 ProgramStateRef state, 758 NonLoc left, 759 NonLoc right) const { 760 // If out-of-bounds checking is turned off, skip the rest. 761 if (!Filter.CheckCStringOutOfBounds) 762 return state; 763 764 // If a previous check has failed, propagate the failure. 765 if (!state) 766 return nullptr; 767 768 SValBuilder &svalBuilder = C.getSValBuilder(); 769 BasicValueFactory &BVF = svalBuilder.getBasicValueFactory(); 770 771 QualType sizeTy = svalBuilder.getContext().getSizeType(); 772 const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy); 773 NonLoc maxVal = svalBuilder.makeIntVal(maxValInt); 774 775 SVal maxMinusRight; 776 if (isa<nonloc::ConcreteInt>(right)) { 777 maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, right, 778 sizeTy); 779 } else { 780 // Try switching the operands. (The order of these two assignments is 781 // important!) 782 maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, left, 783 sizeTy); 784 left = right; 785 } 786 787 if (std::optional<NonLoc> maxMinusRightNL = maxMinusRight.getAs<NonLoc>()) { 788 QualType cmpTy = svalBuilder.getConditionType(); 789 // If left > max - right, we have an overflow. 790 SVal willOverflow = svalBuilder.evalBinOpNN(state, BO_GT, left, 791 *maxMinusRightNL, cmpTy); 792 793 ProgramStateRef stateOverflow, stateOkay; 794 std::tie(stateOverflow, stateOkay) = 795 state->assume(willOverflow.castAs<DefinedOrUnknownSVal>()); 796 797 if (stateOverflow && !stateOkay) { 798 // We have an overflow. Emit a bug report. 799 emitAdditionOverflowBug(C, stateOverflow); 800 return nullptr; 801 } 802 803 // From now on, assume an overflow didn't occur. 804 assert(stateOkay); 805 state = stateOkay; 806 } 807 808 return state; 809 } 810 811 ProgramStateRef CStringChecker::setCStringLength(ProgramStateRef state, 812 const MemRegion *MR, 813 SVal strLength) { 814 assert(!strLength.isUndef() && "Attempt to set an undefined string length"); 815 816 MR = MR->StripCasts(); 817 818 switch (MR->getKind()) { 819 case MemRegion::StringRegionKind: 820 // FIXME: This can happen if we strcpy() into a string region. This is 821 // undefined [C99 6.4.5p6], but we should still warn about it. 822 return state; 823 824 case MemRegion::SymbolicRegionKind: 825 case MemRegion::AllocaRegionKind: 826 case MemRegion::NonParamVarRegionKind: 827 case MemRegion::ParamVarRegionKind: 828 case MemRegion::FieldRegionKind: 829 case MemRegion::ObjCIvarRegionKind: 830 // These are the types we can currently track string lengths for. 831 break; 832 833 case MemRegion::ElementRegionKind: 834 // FIXME: Handle element regions by upper-bounding the parent region's 835 // string length. 836 return state; 837 838 default: 839 // Other regions (mostly non-data) can't have a reliable C string length. 840 // For now, just ignore the change. 841 // FIXME: These are rare but not impossible. We should output some kind of 842 // warning for things like strcpy((char[]){'a', 0}, "b"); 843 return state; 844 } 845 846 if (strLength.isUnknown()) 847 return state->remove<CStringLength>(MR); 848 849 return state->set<CStringLength>(MR, strLength); 850 } 851 852 SVal CStringChecker::getCStringLengthForRegion(CheckerContext &C, 853 ProgramStateRef &state, 854 const Expr *Ex, 855 const MemRegion *MR, 856 bool hypothetical) { 857 if (!hypothetical) { 858 // If there's a recorded length, go ahead and return it. 859 const SVal *Recorded = state->get<CStringLength>(MR); 860 if (Recorded) 861 return *Recorded; 862 } 863 864 // Otherwise, get a new symbol and update the state. 865 SValBuilder &svalBuilder = C.getSValBuilder(); 866 QualType sizeTy = svalBuilder.getContext().getSizeType(); 867 SVal strLength = svalBuilder.getMetadataSymbolVal(CStringChecker::getTag(), 868 MR, Ex, sizeTy, 869 C.getLocationContext(), 870 C.blockCount()); 871 872 if (!hypothetical) { 873 if (std::optional<NonLoc> strLn = strLength.getAs<NonLoc>()) { 874 // In case of unbounded calls strlen etc bound the range to SIZE_MAX/4 875 BasicValueFactory &BVF = svalBuilder.getBasicValueFactory(); 876 const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy); 877 llvm::APSInt fourInt = APSIntType(maxValInt).getValue(4); 878 const llvm::APSInt *maxLengthInt = BVF.evalAPSInt(BO_Div, maxValInt, 879 fourInt); 880 NonLoc maxLength = svalBuilder.makeIntVal(*maxLengthInt); 881 SVal evalLength = svalBuilder.evalBinOpNN(state, BO_LE, *strLn, maxLength, 882 svalBuilder.getConditionType()); 883 state = state->assume(evalLength.castAs<DefinedOrUnknownSVal>(), true); 884 } 885 state = state->set<CStringLength>(MR, strLength); 886 } 887 888 return strLength; 889 } 890 891 SVal CStringChecker::getCStringLength(CheckerContext &C, ProgramStateRef &state, 892 const Expr *Ex, SVal Buf, 893 bool hypothetical) const { 894 const MemRegion *MR = Buf.getAsRegion(); 895 if (!MR) { 896 // If we can't get a region, see if it's something we /know/ isn't a 897 // C string. In the context of locations, the only time we can issue such 898 // a warning is for labels. 899 if (std::optional<loc::GotoLabel> Label = Buf.getAs<loc::GotoLabel>()) { 900 if (Filter.CheckCStringNotNullTerm) { 901 SmallString<120> buf; 902 llvm::raw_svector_ostream os(buf); 903 assert(CurrentFunctionDescription); 904 os << "Argument to " << CurrentFunctionDescription 905 << " is the address of the label '" << Label->getLabel()->getName() 906 << "', which is not a null-terminated string"; 907 908 emitNotCStringBug(C, state, Ex, os.str()); 909 } 910 return UndefinedVal(); 911 } 912 913 // If it's not a region and not a label, give up. 914 return UnknownVal(); 915 } 916 917 // If we have a region, strip casts from it and see if we can figure out 918 // its length. For anything we can't figure out, just return UnknownVal. 919 MR = MR->StripCasts(); 920 921 switch (MR->getKind()) { 922 case MemRegion::StringRegionKind: { 923 // Modifying the contents of string regions is undefined [C99 6.4.5p6], 924 // so we can assume that the byte length is the correct C string length. 925 SValBuilder &svalBuilder = C.getSValBuilder(); 926 QualType sizeTy = svalBuilder.getContext().getSizeType(); 927 const StringLiteral *strLit = cast<StringRegion>(MR)->getStringLiteral(); 928 return svalBuilder.makeIntVal(strLit->getLength(), sizeTy); 929 } 930 case MemRegion::NonParamVarRegionKind: { 931 // If we have a global constant with a string literal initializer, 932 // compute the initializer's length. 933 const VarDecl *Decl = cast<NonParamVarRegion>(MR)->getDecl(); 934 if (Decl->getType().isConstQualified() && Decl->hasGlobalStorage()) { 935 if (const Expr *Init = Decl->getInit()) { 936 if (auto *StrLit = dyn_cast<StringLiteral>(Init)) { 937 SValBuilder &SvalBuilder = C.getSValBuilder(); 938 QualType SizeTy = SvalBuilder.getContext().getSizeType(); 939 return SvalBuilder.makeIntVal(StrLit->getLength(), SizeTy); 940 } 941 } 942 } 943 [[fallthrough]]; 944 } 945 case MemRegion::SymbolicRegionKind: 946 case MemRegion::AllocaRegionKind: 947 case MemRegion::ParamVarRegionKind: 948 case MemRegion::FieldRegionKind: 949 case MemRegion::ObjCIvarRegionKind: 950 return getCStringLengthForRegion(C, state, Ex, MR, hypothetical); 951 case MemRegion::CompoundLiteralRegionKind: 952 // FIXME: Can we track this? Is it necessary? 953 return UnknownVal(); 954 case MemRegion::ElementRegionKind: 955 // FIXME: How can we handle this? It's not good enough to subtract the 956 // offset from the base string length; consider "123\x00567" and &a[5]. 957 return UnknownVal(); 958 default: 959 // Other regions (mostly non-data) can't have a reliable C string length. 960 // In this case, an error is emitted and UndefinedVal is returned. 961 // The caller should always be prepared to handle this case. 962 if (Filter.CheckCStringNotNullTerm) { 963 SmallString<120> buf; 964 llvm::raw_svector_ostream os(buf); 965 966 assert(CurrentFunctionDescription); 967 os << "Argument to " << CurrentFunctionDescription << " is "; 968 969 if (SummarizeRegion(os, C.getASTContext(), MR)) 970 os << ", which is not a null-terminated string"; 971 else 972 os << "not a null-terminated string"; 973 974 emitNotCStringBug(C, state, Ex, os.str()); 975 } 976 return UndefinedVal(); 977 } 978 } 979 980 const StringLiteral *CStringChecker::getCStringLiteral(CheckerContext &C, 981 ProgramStateRef &state, const Expr *expr, SVal val) const { 982 983 // Get the memory region pointed to by the val. 984 const MemRegion *bufRegion = val.getAsRegion(); 985 if (!bufRegion) 986 return nullptr; 987 988 // Strip casts off the memory region. 989 bufRegion = bufRegion->StripCasts(); 990 991 // Cast the memory region to a string region. 992 const StringRegion *strRegion= dyn_cast<StringRegion>(bufRegion); 993 if (!strRegion) 994 return nullptr; 995 996 // Return the actual string in the string region. 997 return strRegion->getStringLiteral(); 998 } 999 1000 bool CStringChecker::isFirstBufInBound(CheckerContext &C, ProgramStateRef State, 1001 SVal BufVal, QualType BufTy, 1002 SVal LengthVal, QualType LengthTy) { 1003 // If we do not know that the buffer is long enough we return 'true'. 1004 // Otherwise the parent region of this field region would also get 1005 // invalidated, which would lead to warnings based on an unknown state. 1006 1007 if (LengthVal.isUnknown()) 1008 return false; 1009 1010 // Originally copied from CheckBufferAccess and CheckLocation. 1011 SValBuilder &SB = C.getSValBuilder(); 1012 ASTContext &Ctx = C.getASTContext(); 1013 1014 QualType PtrTy = Ctx.getPointerType(Ctx.CharTy); 1015 1016 std::optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); 1017 if (!Length) 1018 return true; // cf top comment. 1019 1020 // Compute the offset of the last element to be accessed: size-1. 1021 NonLoc One = SB.makeIntVal(1, LengthTy).castAs<NonLoc>(); 1022 SVal Offset = SB.evalBinOpNN(State, BO_Sub, *Length, One, LengthTy); 1023 if (Offset.isUnknown()) 1024 return true; // cf top comment 1025 NonLoc LastOffset = Offset.castAs<NonLoc>(); 1026 1027 // Check that the first buffer is sufficiently long. 1028 SVal BufStart = SB.evalCast(BufVal, PtrTy, BufTy); 1029 std::optional<Loc> BufLoc = BufStart.getAs<Loc>(); 1030 if (!BufLoc) 1031 return true; // cf top comment. 1032 1033 SVal BufEnd = SB.evalBinOpLN(State, BO_Add, *BufLoc, LastOffset, PtrTy); 1034 1035 // Check for out of bound array element access. 1036 const MemRegion *R = BufEnd.getAsRegion(); 1037 if (!R) 1038 return true; // cf top comment. 1039 1040 const ElementRegion *ER = dyn_cast<ElementRegion>(R); 1041 if (!ER) 1042 return true; // cf top comment. 1043 1044 // FIXME: Does this crash when a non-standard definition 1045 // of a library function is encountered? 1046 assert(ER->getValueType() == C.getASTContext().CharTy && 1047 "isFirstBufInBound should only be called with char* ElementRegions"); 1048 1049 // Get the size of the array. 1050 const SubRegion *superReg = cast<SubRegion>(ER->getSuperRegion()); 1051 DefinedOrUnknownSVal SizeDV = getDynamicExtent(State, superReg, SB); 1052 1053 // Get the index of the accessed element. 1054 DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>(); 1055 1056 ProgramStateRef StInBound = State->assumeInBound(Idx, SizeDV, true); 1057 1058 return static_cast<bool>(StInBound); 1059 } 1060 1061 ProgramStateRef CStringChecker::invalidateDestinationBufferBySize( 1062 CheckerContext &C, ProgramStateRef S, const Expr *BufE, SVal BufV, 1063 SVal SizeV, QualType SizeTy) { 1064 auto InvalidationTraitOperations = 1065 [&C, S, BufTy = BufE->getType(), BufV, SizeV, 1066 SizeTy](RegionAndSymbolInvalidationTraits &ITraits, const MemRegion *R) { 1067 // If destination buffer is a field region and access is in bound, do 1068 // not invalidate its super region. 1069 if (MemRegion::FieldRegionKind == R->getKind() && 1070 isFirstBufInBound(C, S, BufV, BufTy, SizeV, SizeTy)) { 1071 ITraits.setTrait( 1072 R, 1073 RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion); 1074 } 1075 return false; 1076 }; 1077 1078 return invalidateBufferAux(C, S, BufE, BufV, InvalidationTraitOperations); 1079 } 1080 1081 ProgramStateRef 1082 CStringChecker::invalidateDestinationBufferAlwaysEscapeSuperRegion( 1083 CheckerContext &C, ProgramStateRef S, const Expr *BufE, SVal BufV) { 1084 auto InvalidationTraitOperations = [](RegionAndSymbolInvalidationTraits &, 1085 const MemRegion *R) { 1086 return isa<FieldRegion>(R); 1087 }; 1088 1089 return invalidateBufferAux(C, S, BufE, BufV, InvalidationTraitOperations); 1090 } 1091 1092 ProgramStateRef CStringChecker::invalidateDestinationBufferNeverOverflows( 1093 CheckerContext &C, ProgramStateRef S, const Expr *BufE, SVal BufV) { 1094 auto InvalidationTraitOperations = 1095 [](RegionAndSymbolInvalidationTraits &ITraits, const MemRegion *R) { 1096 if (MemRegion::FieldRegionKind == R->getKind()) 1097 ITraits.setTrait( 1098 R, 1099 RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion); 1100 return false; 1101 }; 1102 1103 return invalidateBufferAux(C, S, BufE, BufV, InvalidationTraitOperations); 1104 } 1105 1106 ProgramStateRef CStringChecker::invalidateSourceBuffer(CheckerContext &C, 1107 ProgramStateRef S, 1108 const Expr *BufE, 1109 SVal BufV) { 1110 auto InvalidationTraitOperations = 1111 [](RegionAndSymbolInvalidationTraits &ITraits, const MemRegion *R) { 1112 ITraits.setTrait( 1113 R->getBaseRegion(), 1114 RegionAndSymbolInvalidationTraits::TK_PreserveContents); 1115 ITraits.setTrait(R, 1116 RegionAndSymbolInvalidationTraits::TK_SuppressEscape); 1117 return true; 1118 }; 1119 1120 return invalidateBufferAux(C, S, BufE, BufV, InvalidationTraitOperations); 1121 } 1122 1123 ProgramStateRef CStringChecker::invalidateBufferAux( 1124 CheckerContext &C, ProgramStateRef State, const Expr *E, SVal V, 1125 llvm::function_ref<bool(RegionAndSymbolInvalidationTraits &, 1126 const MemRegion *)> 1127 InvalidationTraitOperations) { 1128 std::optional<Loc> L = V.getAs<Loc>(); 1129 if (!L) 1130 return State; 1131 1132 // FIXME: This is a simplified version of what's in CFRefCount.cpp -- it makes 1133 // some assumptions about the value that CFRefCount can't. Even so, it should 1134 // probably be refactored. 1135 if (std::optional<loc::MemRegionVal> MR = L->getAs<loc::MemRegionVal>()) { 1136 const MemRegion *R = MR->getRegion()->StripCasts(); 1137 1138 // Are we dealing with an ElementRegion? If so, we should be invalidating 1139 // the super-region. 1140 if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) { 1141 R = ER->getSuperRegion(); 1142 // FIXME: What about layers of ElementRegions? 1143 } 1144 1145 // Invalidate this region. 1146 const LocationContext *LCtx = C.getPredecessor()->getLocationContext(); 1147 RegionAndSymbolInvalidationTraits ITraits; 1148 bool CausesPointerEscape = InvalidationTraitOperations(ITraits, R); 1149 1150 return State->invalidateRegions(R, E, C.blockCount(), LCtx, 1151 CausesPointerEscape, nullptr, nullptr, 1152 &ITraits); 1153 } 1154 1155 // If we have a non-region value by chance, just remove the binding. 1156 // FIXME: is this necessary or correct? This handles the non-Region 1157 // cases. Is it ever valid to store to these? 1158 return State->killBinding(*L); 1159 } 1160 1161 bool CStringChecker::SummarizeRegion(raw_ostream &os, ASTContext &Ctx, 1162 const MemRegion *MR) { 1163 switch (MR->getKind()) { 1164 case MemRegion::FunctionCodeRegionKind: { 1165 if (const auto *FD = cast<FunctionCodeRegion>(MR)->getDecl()) 1166 os << "the address of the function '" << *FD << '\''; 1167 else 1168 os << "the address of a function"; 1169 return true; 1170 } 1171 case MemRegion::BlockCodeRegionKind: 1172 os << "block text"; 1173 return true; 1174 case MemRegion::BlockDataRegionKind: 1175 os << "a block"; 1176 return true; 1177 case MemRegion::CXXThisRegionKind: 1178 case MemRegion::CXXTempObjectRegionKind: 1179 os << "a C++ temp object of type " 1180 << cast<TypedValueRegion>(MR)->getValueType(); 1181 return true; 1182 case MemRegion::NonParamVarRegionKind: 1183 os << "a variable of type" << cast<TypedValueRegion>(MR)->getValueType(); 1184 return true; 1185 case MemRegion::ParamVarRegionKind: 1186 os << "a parameter of type" << cast<TypedValueRegion>(MR)->getValueType(); 1187 return true; 1188 case MemRegion::FieldRegionKind: 1189 os << "a field of type " << cast<TypedValueRegion>(MR)->getValueType(); 1190 return true; 1191 case MemRegion::ObjCIvarRegionKind: 1192 os << "an instance variable of type " 1193 << cast<TypedValueRegion>(MR)->getValueType(); 1194 return true; 1195 default: 1196 return false; 1197 } 1198 } 1199 1200 bool CStringChecker::memsetAux(const Expr *DstBuffer, SVal CharVal, 1201 const Expr *Size, CheckerContext &C, 1202 ProgramStateRef &State) { 1203 SVal MemVal = C.getSVal(DstBuffer); 1204 SVal SizeVal = C.getSVal(Size); 1205 const MemRegion *MR = MemVal.getAsRegion(); 1206 if (!MR) 1207 return false; 1208 1209 // We're about to model memset by producing a "default binding" in the Store. 1210 // Our current implementation - RegionStore - doesn't support default bindings 1211 // that don't cover the whole base region. So we should first get the offset 1212 // and the base region to figure out whether the offset of buffer is 0. 1213 RegionOffset Offset = MR->getAsOffset(); 1214 const MemRegion *BR = Offset.getRegion(); 1215 1216 std::optional<NonLoc> SizeNL = SizeVal.getAs<NonLoc>(); 1217 if (!SizeNL) 1218 return false; 1219 1220 SValBuilder &svalBuilder = C.getSValBuilder(); 1221 ASTContext &Ctx = C.getASTContext(); 1222 1223 // void *memset(void *dest, int ch, size_t count); 1224 // For now we can only handle the case of offset is 0 and concrete char value. 1225 if (Offset.isValid() && !Offset.hasSymbolicOffset() && 1226 Offset.getOffset() == 0) { 1227 // Get the base region's size. 1228 DefinedOrUnknownSVal SizeDV = getDynamicExtent(State, BR, svalBuilder); 1229 1230 ProgramStateRef StateWholeReg, StateNotWholeReg; 1231 std::tie(StateWholeReg, StateNotWholeReg) = 1232 State->assume(svalBuilder.evalEQ(State, SizeDV, *SizeNL)); 1233 1234 // With the semantic of 'memset()', we should convert the CharVal to 1235 // unsigned char. 1236 CharVal = svalBuilder.evalCast(CharVal, Ctx.UnsignedCharTy, Ctx.IntTy); 1237 1238 ProgramStateRef StateNullChar, StateNonNullChar; 1239 std::tie(StateNullChar, StateNonNullChar) = 1240 assumeZero(C, State, CharVal, Ctx.UnsignedCharTy); 1241 1242 if (StateWholeReg && !StateNotWholeReg && StateNullChar && 1243 !StateNonNullChar) { 1244 // If the 'memset()' acts on the whole region of destination buffer and 1245 // the value of the second argument of 'memset()' is zero, bind the second 1246 // argument's value to the destination buffer with 'default binding'. 1247 // FIXME: Since there is no perfect way to bind the non-zero character, we 1248 // can only deal with zero value here. In the future, we need to deal with 1249 // the binding of non-zero value in the case of whole region. 1250 State = State->bindDefaultZero(svalBuilder.makeLoc(BR), 1251 C.getLocationContext()); 1252 } else { 1253 // If the destination buffer's extent is not equal to the value of 1254 // third argument, just invalidate buffer. 1255 State = invalidateDestinationBufferBySize(C, State, DstBuffer, MemVal, 1256 SizeVal, Size->getType()); 1257 } 1258 1259 if (StateNullChar && !StateNonNullChar) { 1260 // If the value of the second argument of 'memset()' is zero, set the 1261 // string length of destination buffer to 0 directly. 1262 State = setCStringLength(State, MR, 1263 svalBuilder.makeZeroVal(Ctx.getSizeType())); 1264 } else if (!StateNullChar && StateNonNullChar) { 1265 SVal NewStrLen = svalBuilder.getMetadataSymbolVal( 1266 CStringChecker::getTag(), MR, DstBuffer, Ctx.getSizeType(), 1267 C.getLocationContext(), C.blockCount()); 1268 1269 // If the value of second argument is not zero, then the string length 1270 // is at least the size argument. 1271 SVal NewStrLenGESize = svalBuilder.evalBinOp( 1272 State, BO_GE, NewStrLen, SizeVal, svalBuilder.getConditionType()); 1273 1274 State = setCStringLength( 1275 State->assume(NewStrLenGESize.castAs<DefinedOrUnknownSVal>(), true), 1276 MR, NewStrLen); 1277 } 1278 } else { 1279 // If the offset is not zero and char value is not concrete, we can do 1280 // nothing but invalidate the buffer. 1281 State = invalidateDestinationBufferBySize(C, State, DstBuffer, MemVal, 1282 SizeVal, Size->getType()); 1283 } 1284 return true; 1285 } 1286 1287 //===----------------------------------------------------------------------===// 1288 // evaluation of individual function calls. 1289 //===----------------------------------------------------------------------===// 1290 1291 void CStringChecker::evalCopyCommon(CheckerContext &C, const CallEvent &Call, 1292 ProgramStateRef state, SizeArgExpr Size, 1293 DestinationArgExpr Dest, 1294 SourceArgExpr Source, bool Restricted, 1295 bool IsMempcpy, CharKind CK) const { 1296 CurrentFunctionDescription = "memory copy function"; 1297 1298 // See if the size argument is zero. 1299 const LocationContext *LCtx = C.getLocationContext(); 1300 SVal sizeVal = state->getSVal(Size.Expression, LCtx); 1301 QualType sizeTy = Size.Expression->getType(); 1302 1303 ProgramStateRef stateZeroSize, stateNonZeroSize; 1304 std::tie(stateZeroSize, stateNonZeroSize) = 1305 assumeZero(C, state, sizeVal, sizeTy); 1306 1307 // Get the value of the Dest. 1308 SVal destVal = state->getSVal(Dest.Expression, LCtx); 1309 1310 // If the size is zero, there won't be any actual memory access, so 1311 // just bind the return value to the destination buffer and return. 1312 if (stateZeroSize && !stateNonZeroSize) { 1313 stateZeroSize = 1314 stateZeroSize->BindExpr(Call.getOriginExpr(), LCtx, destVal); 1315 C.addTransition(stateZeroSize); 1316 return; 1317 } 1318 1319 // If the size can be nonzero, we have to check the other arguments. 1320 if (stateNonZeroSize) { 1321 state = stateNonZeroSize; 1322 1323 // Ensure the destination is not null. If it is NULL there will be a 1324 // NULL pointer dereference. 1325 state = checkNonNull(C, state, Dest, destVal); 1326 if (!state) 1327 return; 1328 1329 // Get the value of the Src. 1330 SVal srcVal = state->getSVal(Source.Expression, LCtx); 1331 1332 // Ensure the source is not null. If it is NULL there will be a 1333 // NULL pointer dereference. 1334 state = checkNonNull(C, state, Source, srcVal); 1335 if (!state) 1336 return; 1337 1338 // Ensure the accesses are valid and that the buffers do not overlap. 1339 state = CheckBufferAccess(C, state, Dest, Size, AccessKind::write, CK); 1340 state = CheckBufferAccess(C, state, Source, Size, AccessKind::read, CK); 1341 1342 if (Restricted) 1343 state = CheckOverlap(C, state, Size, Dest, Source, CK); 1344 1345 if (!state) 1346 return; 1347 1348 // If this is mempcpy, get the byte after the last byte copied and 1349 // bind the expr. 1350 if (IsMempcpy) { 1351 // Get the byte after the last byte copied. 1352 SValBuilder &SvalBuilder = C.getSValBuilder(); 1353 ASTContext &Ctx = SvalBuilder.getContext(); 1354 QualType CharPtrTy = getCharPtrType(Ctx, CK); 1355 SVal DestRegCharVal = 1356 SvalBuilder.evalCast(destVal, CharPtrTy, Dest.Expression->getType()); 1357 SVal lastElement = C.getSValBuilder().evalBinOp( 1358 state, BO_Add, DestRegCharVal, sizeVal, Dest.Expression->getType()); 1359 // If we don't know how much we copied, we can at least 1360 // conjure a return value for later. 1361 if (lastElement.isUnknown()) 1362 lastElement = C.getSValBuilder().conjureSymbolVal( 1363 nullptr, Call.getOriginExpr(), LCtx, C.blockCount()); 1364 1365 // The byte after the last byte copied is the return value. 1366 state = state->BindExpr(Call.getOriginExpr(), LCtx, lastElement); 1367 } else { 1368 // All other copies return the destination buffer. 1369 // (Well, bcopy() has a void return type, but this won't hurt.) 1370 state = state->BindExpr(Call.getOriginExpr(), LCtx, destVal); 1371 } 1372 1373 // Invalidate the destination (regular invalidation without pointer-escaping 1374 // the address of the top-level region). 1375 // FIXME: Even if we can't perfectly model the copy, we should see if we 1376 // can use LazyCompoundVals to copy the source values into the destination. 1377 // This would probably remove any existing bindings past the end of the 1378 // copied region, but that's still an improvement over blank invalidation. 1379 state = invalidateDestinationBufferBySize( 1380 C, state, Dest.Expression, C.getSVal(Dest.Expression), sizeVal, 1381 Size.Expression->getType()); 1382 1383 // Invalidate the source (const-invalidation without const-pointer-escaping 1384 // the address of the top-level region). 1385 state = invalidateSourceBuffer(C, state, Source.Expression, 1386 C.getSVal(Source.Expression)); 1387 1388 C.addTransition(state); 1389 } 1390 } 1391 1392 void CStringChecker::evalMemcpy(CheckerContext &C, const CallEvent &Call, 1393 CharKind CK) const { 1394 // void *memcpy(void *restrict dst, const void *restrict src, size_t n); 1395 // The return value is the address of the destination buffer. 1396 DestinationArgExpr Dest = {{Call.getArgExpr(0), 0}}; 1397 SourceArgExpr Src = {{Call.getArgExpr(1), 1}}; 1398 SizeArgExpr Size = {{Call.getArgExpr(2), 2}}; 1399 1400 ProgramStateRef State = C.getState(); 1401 1402 constexpr bool IsRestricted = true; 1403 constexpr bool IsMempcpy = false; 1404 evalCopyCommon(C, Call, State, Size, Dest, Src, IsRestricted, IsMempcpy, CK); 1405 } 1406 1407 void CStringChecker::evalMempcpy(CheckerContext &C, const CallEvent &Call, 1408 CharKind CK) const { 1409 // void *mempcpy(void *restrict dst, const void *restrict src, size_t n); 1410 // The return value is a pointer to the byte following the last written byte. 1411 DestinationArgExpr Dest = {{Call.getArgExpr(0), 0}}; 1412 SourceArgExpr Src = {{Call.getArgExpr(1), 1}}; 1413 SizeArgExpr Size = {{Call.getArgExpr(2), 2}}; 1414 1415 constexpr bool IsRestricted = true; 1416 constexpr bool IsMempcpy = true; 1417 evalCopyCommon(C, Call, C.getState(), Size, Dest, Src, IsRestricted, 1418 IsMempcpy, CK); 1419 } 1420 1421 void CStringChecker::evalMemmove(CheckerContext &C, const CallEvent &Call, 1422 CharKind CK) const { 1423 // void *memmove(void *dst, const void *src, size_t n); 1424 // The return value is the address of the destination buffer. 1425 DestinationArgExpr Dest = {{Call.getArgExpr(0), 0}}; 1426 SourceArgExpr Src = {{Call.getArgExpr(1), 1}}; 1427 SizeArgExpr Size = {{Call.getArgExpr(2), 2}}; 1428 1429 constexpr bool IsRestricted = false; 1430 constexpr bool IsMempcpy = false; 1431 evalCopyCommon(C, Call, C.getState(), Size, Dest, Src, IsRestricted, 1432 IsMempcpy, CK); 1433 } 1434 1435 void CStringChecker::evalBcopy(CheckerContext &C, const CallEvent &Call) const { 1436 // void bcopy(const void *src, void *dst, size_t n); 1437 SourceArgExpr Src{{Call.getArgExpr(0), 0}}; 1438 DestinationArgExpr Dest = {{Call.getArgExpr(1), 1}}; 1439 SizeArgExpr Size = {{Call.getArgExpr(2), 2}}; 1440 1441 constexpr bool IsRestricted = false; 1442 constexpr bool IsMempcpy = false; 1443 evalCopyCommon(C, Call, C.getState(), Size, Dest, Src, IsRestricted, 1444 IsMempcpy, CharKind::Regular); 1445 } 1446 1447 void CStringChecker::evalMemcmp(CheckerContext &C, const CallEvent &Call, 1448 CharKind CK) const { 1449 // int memcmp(const void *s1, const void *s2, size_t n); 1450 CurrentFunctionDescription = "memory comparison function"; 1451 1452 AnyArgExpr Left = {Call.getArgExpr(0), 0}; 1453 AnyArgExpr Right = {Call.getArgExpr(1), 1}; 1454 SizeArgExpr Size = {{Call.getArgExpr(2), 2}}; 1455 1456 ProgramStateRef State = C.getState(); 1457 SValBuilder &Builder = C.getSValBuilder(); 1458 const LocationContext *LCtx = C.getLocationContext(); 1459 1460 // See if the size argument is zero. 1461 SVal sizeVal = State->getSVal(Size.Expression, LCtx); 1462 QualType sizeTy = Size.Expression->getType(); 1463 1464 ProgramStateRef stateZeroSize, stateNonZeroSize; 1465 std::tie(stateZeroSize, stateNonZeroSize) = 1466 assumeZero(C, State, sizeVal, sizeTy); 1467 1468 // If the size can be zero, the result will be 0 in that case, and we don't 1469 // have to check either of the buffers. 1470 if (stateZeroSize) { 1471 State = stateZeroSize; 1472 State = State->BindExpr(Call.getOriginExpr(), LCtx, 1473 Builder.makeZeroVal(Call.getResultType())); 1474 C.addTransition(State); 1475 } 1476 1477 // If the size can be nonzero, we have to check the other arguments. 1478 if (stateNonZeroSize) { 1479 State = stateNonZeroSize; 1480 // If we know the two buffers are the same, we know the result is 0. 1481 // First, get the two buffers' addresses. Another checker will have already 1482 // made sure they're not undefined. 1483 DefinedOrUnknownSVal LV = 1484 State->getSVal(Left.Expression, LCtx).castAs<DefinedOrUnknownSVal>(); 1485 DefinedOrUnknownSVal RV = 1486 State->getSVal(Right.Expression, LCtx).castAs<DefinedOrUnknownSVal>(); 1487 1488 // See if they are the same. 1489 ProgramStateRef SameBuffer, NotSameBuffer; 1490 std::tie(SameBuffer, NotSameBuffer) = 1491 State->assume(Builder.evalEQ(State, LV, RV)); 1492 1493 // If the two arguments are the same buffer, we know the result is 0, 1494 // and we only need to check one size. 1495 if (SameBuffer && !NotSameBuffer) { 1496 State = SameBuffer; 1497 State = CheckBufferAccess(C, State, Left, Size, AccessKind::read); 1498 if (State) { 1499 State = SameBuffer->BindExpr(Call.getOriginExpr(), LCtx, 1500 Builder.makeZeroVal(Call.getResultType())); 1501 C.addTransition(State); 1502 } 1503 return; 1504 } 1505 1506 // If the two arguments might be different buffers, we have to check 1507 // the size of both of them. 1508 assert(NotSameBuffer); 1509 State = CheckBufferAccess(C, State, Right, Size, AccessKind::read, CK); 1510 State = CheckBufferAccess(C, State, Left, Size, AccessKind::read, CK); 1511 if (State) { 1512 // The return value is the comparison result, which we don't know. 1513 SVal CmpV = Builder.conjureSymbolVal(nullptr, Call.getOriginExpr(), LCtx, 1514 C.blockCount()); 1515 State = State->BindExpr(Call.getOriginExpr(), LCtx, CmpV); 1516 C.addTransition(State); 1517 } 1518 } 1519 } 1520 1521 void CStringChecker::evalstrLength(CheckerContext &C, 1522 const CallEvent &Call) const { 1523 // size_t strlen(const char *s); 1524 evalstrLengthCommon(C, Call, /* IsStrnlen = */ false); 1525 } 1526 1527 void CStringChecker::evalstrnLength(CheckerContext &C, 1528 const CallEvent &Call) const { 1529 // size_t strnlen(const char *s, size_t maxlen); 1530 evalstrLengthCommon(C, Call, /* IsStrnlen = */ true); 1531 } 1532 1533 void CStringChecker::evalstrLengthCommon(CheckerContext &C, 1534 const CallEvent &Call, 1535 bool IsStrnlen) const { 1536 CurrentFunctionDescription = "string length function"; 1537 ProgramStateRef state = C.getState(); 1538 const LocationContext *LCtx = C.getLocationContext(); 1539 1540 if (IsStrnlen) { 1541 const Expr *maxlenExpr = Call.getArgExpr(1); 1542 SVal maxlenVal = state->getSVal(maxlenExpr, LCtx); 1543 1544 ProgramStateRef stateZeroSize, stateNonZeroSize; 1545 std::tie(stateZeroSize, stateNonZeroSize) = 1546 assumeZero(C, state, maxlenVal, maxlenExpr->getType()); 1547 1548 // If the size can be zero, the result will be 0 in that case, and we don't 1549 // have to check the string itself. 1550 if (stateZeroSize) { 1551 SVal zero = C.getSValBuilder().makeZeroVal(Call.getResultType()); 1552 stateZeroSize = stateZeroSize->BindExpr(Call.getOriginExpr(), LCtx, zero); 1553 C.addTransition(stateZeroSize); 1554 } 1555 1556 // If the size is GUARANTEED to be zero, we're done! 1557 if (!stateNonZeroSize) 1558 return; 1559 1560 // Otherwise, record the assumption that the size is nonzero. 1561 state = stateNonZeroSize; 1562 } 1563 1564 // Check that the string argument is non-null. 1565 AnyArgExpr Arg = {Call.getArgExpr(0), 0}; 1566 SVal ArgVal = state->getSVal(Arg.Expression, LCtx); 1567 state = checkNonNull(C, state, Arg, ArgVal); 1568 1569 if (!state) 1570 return; 1571 1572 SVal strLength = getCStringLength(C, state, Arg.Expression, ArgVal); 1573 1574 // If the argument isn't a valid C string, there's no valid state to 1575 // transition to. 1576 if (strLength.isUndef()) 1577 return; 1578 1579 DefinedOrUnknownSVal result = UnknownVal(); 1580 1581 // If the check is for strnlen() then bind the return value to no more than 1582 // the maxlen value. 1583 if (IsStrnlen) { 1584 QualType cmpTy = C.getSValBuilder().getConditionType(); 1585 1586 // It's a little unfortunate to be getting this again, 1587 // but it's not that expensive... 1588 const Expr *maxlenExpr = Call.getArgExpr(1); 1589 SVal maxlenVal = state->getSVal(maxlenExpr, LCtx); 1590 1591 std::optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>(); 1592 std::optional<NonLoc> maxlenValNL = maxlenVal.getAs<NonLoc>(); 1593 1594 if (strLengthNL && maxlenValNL) { 1595 ProgramStateRef stateStringTooLong, stateStringNotTooLong; 1596 1597 // Check if the strLength is greater than the maxlen. 1598 std::tie(stateStringTooLong, stateStringNotTooLong) = state->assume( 1599 C.getSValBuilder() 1600 .evalBinOpNN(state, BO_GT, *strLengthNL, *maxlenValNL, cmpTy) 1601 .castAs<DefinedOrUnknownSVal>()); 1602 1603 if (stateStringTooLong && !stateStringNotTooLong) { 1604 // If the string is longer than maxlen, return maxlen. 1605 result = *maxlenValNL; 1606 } else if (stateStringNotTooLong && !stateStringTooLong) { 1607 // If the string is shorter than maxlen, return its length. 1608 result = *strLengthNL; 1609 } 1610 } 1611 1612 if (result.isUnknown()) { 1613 // If we don't have enough information for a comparison, there's 1614 // no guarantee the full string length will actually be returned. 1615 // All we know is the return value is the min of the string length 1616 // and the limit. This is better than nothing. 1617 result = C.getSValBuilder().conjureSymbolVal( 1618 nullptr, Call.getOriginExpr(), LCtx, C.blockCount()); 1619 NonLoc resultNL = result.castAs<NonLoc>(); 1620 1621 if (strLengthNL) { 1622 state = state->assume(C.getSValBuilder().evalBinOpNN( 1623 state, BO_LE, resultNL, *strLengthNL, cmpTy) 1624 .castAs<DefinedOrUnknownSVal>(), true); 1625 } 1626 1627 if (maxlenValNL) { 1628 state = state->assume(C.getSValBuilder().evalBinOpNN( 1629 state, BO_LE, resultNL, *maxlenValNL, cmpTy) 1630 .castAs<DefinedOrUnknownSVal>(), true); 1631 } 1632 } 1633 1634 } else { 1635 // This is a plain strlen(), not strnlen(). 1636 result = strLength.castAs<DefinedOrUnknownSVal>(); 1637 1638 // If we don't know the length of the string, conjure a return 1639 // value, so it can be used in constraints, at least. 1640 if (result.isUnknown()) { 1641 result = C.getSValBuilder().conjureSymbolVal( 1642 nullptr, Call.getOriginExpr(), LCtx, C.blockCount()); 1643 } 1644 } 1645 1646 // Bind the return value. 1647 assert(!result.isUnknown() && "Should have conjured a value by now"); 1648 state = state->BindExpr(Call.getOriginExpr(), LCtx, result); 1649 C.addTransition(state); 1650 } 1651 1652 void CStringChecker::evalStrcpy(CheckerContext &C, 1653 const CallEvent &Call) const { 1654 // char *strcpy(char *restrict dst, const char *restrict src); 1655 evalStrcpyCommon(C, Call, 1656 /* ReturnEnd = */ false, 1657 /* IsBounded = */ false, 1658 /* appendK = */ ConcatFnKind::none); 1659 } 1660 1661 void CStringChecker::evalStrncpy(CheckerContext &C, 1662 const CallEvent &Call) const { 1663 // char *strncpy(char *restrict dst, const char *restrict src, size_t n); 1664 evalStrcpyCommon(C, Call, 1665 /* ReturnEnd = */ false, 1666 /* IsBounded = */ true, 1667 /* appendK = */ ConcatFnKind::none); 1668 } 1669 1670 void CStringChecker::evalStpcpy(CheckerContext &C, 1671 const CallEvent &Call) const { 1672 // char *stpcpy(char *restrict dst, const char *restrict src); 1673 evalStrcpyCommon(C, Call, 1674 /* ReturnEnd = */ true, 1675 /* IsBounded = */ false, 1676 /* appendK = */ ConcatFnKind::none); 1677 } 1678 1679 void CStringChecker::evalStrlcpy(CheckerContext &C, 1680 const CallEvent &Call) const { 1681 // size_t strlcpy(char *dest, const char *src, size_t size); 1682 evalStrcpyCommon(C, Call, 1683 /* ReturnEnd = */ true, 1684 /* IsBounded = */ true, 1685 /* appendK = */ ConcatFnKind::none, 1686 /* returnPtr = */ false); 1687 } 1688 1689 void CStringChecker::evalStrcat(CheckerContext &C, 1690 const CallEvent &Call) const { 1691 // char *strcat(char *restrict s1, const char *restrict s2); 1692 evalStrcpyCommon(C, Call, 1693 /* ReturnEnd = */ false, 1694 /* IsBounded = */ false, 1695 /* appendK = */ ConcatFnKind::strcat); 1696 } 1697 1698 void CStringChecker::evalStrncat(CheckerContext &C, 1699 const CallEvent &Call) const { 1700 // char *strncat(char *restrict s1, const char *restrict s2, size_t n); 1701 evalStrcpyCommon(C, Call, 1702 /* ReturnEnd = */ false, 1703 /* IsBounded = */ true, 1704 /* appendK = */ ConcatFnKind::strcat); 1705 } 1706 1707 void CStringChecker::evalStrlcat(CheckerContext &C, 1708 const CallEvent &Call) const { 1709 // size_t strlcat(char *dst, const char *src, size_t size); 1710 // It will append at most size - strlen(dst) - 1 bytes, 1711 // NULL-terminating the result. 1712 evalStrcpyCommon(C, Call, 1713 /* ReturnEnd = */ false, 1714 /* IsBounded = */ true, 1715 /* appendK = */ ConcatFnKind::strlcat, 1716 /* returnPtr = */ false); 1717 } 1718 1719 void CStringChecker::evalStrcpyCommon(CheckerContext &C, const CallEvent &Call, 1720 bool ReturnEnd, bool IsBounded, 1721 ConcatFnKind appendK, 1722 bool returnPtr) const { 1723 if (appendK == ConcatFnKind::none) 1724 CurrentFunctionDescription = "string copy function"; 1725 else 1726 CurrentFunctionDescription = "string concatenation function"; 1727 1728 ProgramStateRef state = C.getState(); 1729 const LocationContext *LCtx = C.getLocationContext(); 1730 1731 // Check that the destination is non-null. 1732 DestinationArgExpr Dst = {{Call.getArgExpr(0), 0}}; 1733 SVal DstVal = state->getSVal(Dst.Expression, LCtx); 1734 state = checkNonNull(C, state, Dst, DstVal); 1735 if (!state) 1736 return; 1737 1738 // Check that the source is non-null. 1739 SourceArgExpr srcExpr = {{Call.getArgExpr(1), 1}}; 1740 SVal srcVal = state->getSVal(srcExpr.Expression, LCtx); 1741 state = checkNonNull(C, state, srcExpr, srcVal); 1742 if (!state) 1743 return; 1744 1745 // Get the string length of the source. 1746 SVal strLength = getCStringLength(C, state, srcExpr.Expression, srcVal); 1747 std::optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>(); 1748 1749 // Get the string length of the destination buffer. 1750 SVal dstStrLength = getCStringLength(C, state, Dst.Expression, DstVal); 1751 std::optional<NonLoc> dstStrLengthNL = dstStrLength.getAs<NonLoc>(); 1752 1753 // If the source isn't a valid C string, give up. 1754 if (strLength.isUndef()) 1755 return; 1756 1757 SValBuilder &svalBuilder = C.getSValBuilder(); 1758 QualType cmpTy = svalBuilder.getConditionType(); 1759 QualType sizeTy = svalBuilder.getContext().getSizeType(); 1760 1761 // These two values allow checking two kinds of errors: 1762 // - actual overflows caused by a source that doesn't fit in the destination 1763 // - potential overflows caused by a bound that could exceed the destination 1764 SVal amountCopied = UnknownVal(); 1765 SVal maxLastElementIndex = UnknownVal(); 1766 const char *boundWarning = nullptr; 1767 1768 // FIXME: Why do we choose the srcExpr if the access has no size? 1769 // Note that the 3rd argument of the call would be the size parameter. 1770 SizeArgExpr SrcExprAsSizeDummy = { 1771 {srcExpr.Expression, srcExpr.ArgumentIndex}}; 1772 state = CheckOverlap( 1773 C, state, 1774 (IsBounded ? SizeArgExpr{{Call.getArgExpr(2), 2}} : SrcExprAsSizeDummy), 1775 Dst, srcExpr); 1776 1777 if (!state) 1778 return; 1779 1780 // If the function is strncpy, strncat, etc... it is bounded. 1781 if (IsBounded) { 1782 // Get the max number of characters to copy. 1783 SizeArgExpr lenExpr = {{Call.getArgExpr(2), 2}}; 1784 SVal lenVal = state->getSVal(lenExpr.Expression, LCtx); 1785 1786 // Protect against misdeclared strncpy(). 1787 lenVal = 1788 svalBuilder.evalCast(lenVal, sizeTy, lenExpr.Expression->getType()); 1789 1790 std::optional<NonLoc> lenValNL = lenVal.getAs<NonLoc>(); 1791 1792 // If we know both values, we might be able to figure out how much 1793 // we're copying. 1794 if (strLengthNL && lenValNL) { 1795 switch (appendK) { 1796 case ConcatFnKind::none: 1797 case ConcatFnKind::strcat: { 1798 ProgramStateRef stateSourceTooLong, stateSourceNotTooLong; 1799 // Check if the max number to copy is less than the length of the src. 1800 // If the bound is equal to the source length, strncpy won't null- 1801 // terminate the result! 1802 std::tie(stateSourceTooLong, stateSourceNotTooLong) = state->assume( 1803 svalBuilder 1804 .evalBinOpNN(state, BO_GE, *strLengthNL, *lenValNL, cmpTy) 1805 .castAs<DefinedOrUnknownSVal>()); 1806 1807 if (stateSourceTooLong && !stateSourceNotTooLong) { 1808 // Max number to copy is less than the length of the src, so the 1809 // actual strLength copied is the max number arg. 1810 state = stateSourceTooLong; 1811 amountCopied = lenVal; 1812 1813 } else if (!stateSourceTooLong && stateSourceNotTooLong) { 1814 // The source buffer entirely fits in the bound. 1815 state = stateSourceNotTooLong; 1816 amountCopied = strLength; 1817 } 1818 break; 1819 } 1820 case ConcatFnKind::strlcat: 1821 if (!dstStrLengthNL) 1822 return; 1823 1824 // amountCopied = min (size - dstLen - 1 , srcLen) 1825 SVal freeSpace = svalBuilder.evalBinOpNN(state, BO_Sub, *lenValNL, 1826 *dstStrLengthNL, sizeTy); 1827 if (!isa<NonLoc>(freeSpace)) 1828 return; 1829 freeSpace = 1830 svalBuilder.evalBinOp(state, BO_Sub, freeSpace, 1831 svalBuilder.makeIntVal(1, sizeTy), sizeTy); 1832 std::optional<NonLoc> freeSpaceNL = freeSpace.getAs<NonLoc>(); 1833 1834 // While unlikely, it is possible that the subtraction is 1835 // too complex to compute, let's check whether it succeeded. 1836 if (!freeSpaceNL) 1837 return; 1838 SVal hasEnoughSpace = svalBuilder.evalBinOpNN( 1839 state, BO_LE, *strLengthNL, *freeSpaceNL, cmpTy); 1840 1841 ProgramStateRef TrueState, FalseState; 1842 std::tie(TrueState, FalseState) = 1843 state->assume(hasEnoughSpace.castAs<DefinedOrUnknownSVal>()); 1844 1845 // srcStrLength <= size - dstStrLength -1 1846 if (TrueState && !FalseState) { 1847 amountCopied = strLength; 1848 } 1849 1850 // srcStrLength > size - dstStrLength -1 1851 if (!TrueState && FalseState) { 1852 amountCopied = freeSpace; 1853 } 1854 1855 if (TrueState && FalseState) 1856 amountCopied = UnknownVal(); 1857 break; 1858 } 1859 } 1860 // We still want to know if the bound is known to be too large. 1861 if (lenValNL) { 1862 switch (appendK) { 1863 case ConcatFnKind::strcat: 1864 // For strncat, the check is strlen(dst) + lenVal < sizeof(dst) 1865 1866 // Get the string length of the destination. If the destination is 1867 // memory that can't have a string length, we shouldn't be copying 1868 // into it anyway. 1869 if (dstStrLength.isUndef()) 1870 return; 1871 1872 if (dstStrLengthNL) { 1873 maxLastElementIndex = svalBuilder.evalBinOpNN( 1874 state, BO_Add, *lenValNL, *dstStrLengthNL, sizeTy); 1875 1876 boundWarning = "Size argument is greater than the free space in the " 1877 "destination buffer"; 1878 } 1879 break; 1880 case ConcatFnKind::none: 1881 case ConcatFnKind::strlcat: 1882 // For strncpy and strlcat, this is just checking 1883 // that lenVal <= sizeof(dst). 1884 // (Yes, strncpy and strncat differ in how they treat termination. 1885 // strncat ALWAYS terminates, but strncpy doesn't.) 1886 1887 // We need a special case for when the copy size is zero, in which 1888 // case strncpy will do no work at all. Our bounds check uses n-1 1889 // as the last element accessed, so n == 0 is problematic. 1890 ProgramStateRef StateZeroSize, StateNonZeroSize; 1891 std::tie(StateZeroSize, StateNonZeroSize) = 1892 assumeZero(C, state, *lenValNL, sizeTy); 1893 1894 // If the size is known to be zero, we're done. 1895 if (StateZeroSize && !StateNonZeroSize) { 1896 if (returnPtr) { 1897 StateZeroSize = 1898 StateZeroSize->BindExpr(Call.getOriginExpr(), LCtx, DstVal); 1899 } else { 1900 if (appendK == ConcatFnKind::none) { 1901 // strlcpy returns strlen(src) 1902 StateZeroSize = StateZeroSize->BindExpr(Call.getOriginExpr(), 1903 LCtx, strLength); 1904 } else { 1905 // strlcat returns strlen(src) + strlen(dst) 1906 SVal retSize = svalBuilder.evalBinOp( 1907 state, BO_Add, strLength, dstStrLength, sizeTy); 1908 StateZeroSize = 1909 StateZeroSize->BindExpr(Call.getOriginExpr(), LCtx, retSize); 1910 } 1911 } 1912 C.addTransition(StateZeroSize); 1913 return; 1914 } 1915 1916 // Otherwise, go ahead and figure out the last element we'll touch. 1917 // We don't record the non-zero assumption here because we can't 1918 // be sure. We won't warn on a possible zero. 1919 NonLoc one = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>(); 1920 maxLastElementIndex = 1921 svalBuilder.evalBinOpNN(state, BO_Sub, *lenValNL, one, sizeTy); 1922 boundWarning = "Size argument is greater than the length of the " 1923 "destination buffer"; 1924 break; 1925 } 1926 } 1927 } else { 1928 // The function isn't bounded. The amount copied should match the length 1929 // of the source buffer. 1930 amountCopied = strLength; 1931 } 1932 1933 assert(state); 1934 1935 // This represents the number of characters copied into the destination 1936 // buffer. (It may not actually be the strlen if the destination buffer 1937 // is not terminated.) 1938 SVal finalStrLength = UnknownVal(); 1939 SVal strlRetVal = UnknownVal(); 1940 1941 if (appendK == ConcatFnKind::none && !returnPtr) { 1942 // strlcpy returns the sizeof(src) 1943 strlRetVal = strLength; 1944 } 1945 1946 // If this is an appending function (strcat, strncat...) then set the 1947 // string length to strlen(src) + strlen(dst) since the buffer will 1948 // ultimately contain both. 1949 if (appendK != ConcatFnKind::none) { 1950 // Get the string length of the destination. If the destination is memory 1951 // that can't have a string length, we shouldn't be copying into it anyway. 1952 if (dstStrLength.isUndef()) 1953 return; 1954 1955 if (appendK == ConcatFnKind::strlcat && dstStrLengthNL && strLengthNL) { 1956 strlRetVal = svalBuilder.evalBinOpNN(state, BO_Add, *strLengthNL, 1957 *dstStrLengthNL, sizeTy); 1958 } 1959 1960 std::optional<NonLoc> amountCopiedNL = amountCopied.getAs<NonLoc>(); 1961 1962 // If we know both string lengths, we might know the final string length. 1963 if (amountCopiedNL && dstStrLengthNL) { 1964 // Make sure the two lengths together don't overflow a size_t. 1965 state = checkAdditionOverflow(C, state, *amountCopiedNL, *dstStrLengthNL); 1966 if (!state) 1967 return; 1968 1969 finalStrLength = svalBuilder.evalBinOpNN(state, BO_Add, *amountCopiedNL, 1970 *dstStrLengthNL, sizeTy); 1971 } 1972 1973 // If we couldn't get a single value for the final string length, 1974 // we can at least bound it by the individual lengths. 1975 if (finalStrLength.isUnknown()) { 1976 // Try to get a "hypothetical" string length symbol, which we can later 1977 // set as a real value if that turns out to be the case. 1978 finalStrLength = 1979 getCStringLength(C, state, Call.getOriginExpr(), DstVal, true); 1980 assert(!finalStrLength.isUndef()); 1981 1982 if (std::optional<NonLoc> finalStrLengthNL = 1983 finalStrLength.getAs<NonLoc>()) { 1984 if (amountCopiedNL && appendK == ConcatFnKind::none) { 1985 // we overwrite dst string with the src 1986 // finalStrLength >= srcStrLength 1987 SVal sourceInResult = svalBuilder.evalBinOpNN( 1988 state, BO_GE, *finalStrLengthNL, *amountCopiedNL, cmpTy); 1989 state = state->assume(sourceInResult.castAs<DefinedOrUnknownSVal>(), 1990 true); 1991 if (!state) 1992 return; 1993 } 1994 1995 if (dstStrLengthNL && appendK != ConcatFnKind::none) { 1996 // we extend the dst string with the src 1997 // finalStrLength >= dstStrLength 1998 SVal destInResult = svalBuilder.evalBinOpNN(state, BO_GE, 1999 *finalStrLengthNL, 2000 *dstStrLengthNL, 2001 cmpTy); 2002 state = 2003 state->assume(destInResult.castAs<DefinedOrUnknownSVal>(), true); 2004 if (!state) 2005 return; 2006 } 2007 } 2008 } 2009 2010 } else { 2011 // Otherwise, this is a copy-over function (strcpy, strncpy, ...), and 2012 // the final string length will match the input string length. 2013 finalStrLength = amountCopied; 2014 } 2015 2016 SVal Result; 2017 2018 if (returnPtr) { 2019 // The final result of the function will either be a pointer past the last 2020 // copied element, or a pointer to the start of the destination buffer. 2021 Result = (ReturnEnd ? UnknownVal() : DstVal); 2022 } else { 2023 if (appendK == ConcatFnKind::strlcat || appendK == ConcatFnKind::none) 2024 //strlcpy, strlcat 2025 Result = strlRetVal; 2026 else 2027 Result = finalStrLength; 2028 } 2029 2030 assert(state); 2031 2032 // If the destination is a MemRegion, try to check for a buffer overflow and 2033 // record the new string length. 2034 if (std::optional<loc::MemRegionVal> dstRegVal = 2035 DstVal.getAs<loc::MemRegionVal>()) { 2036 QualType ptrTy = Dst.Expression->getType(); 2037 2038 // If we have an exact value on a bounded copy, use that to check for 2039 // overflows, rather than our estimate about how much is actually copied. 2040 if (std::optional<NonLoc> maxLastNL = maxLastElementIndex.getAs<NonLoc>()) { 2041 SVal maxLastElement = 2042 svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal, *maxLastNL, ptrTy); 2043 2044 // Check if the first byte of the destination is writable. 2045 state = CheckLocation(C, state, Dst, DstVal, AccessKind::write); 2046 if (!state) 2047 return; 2048 // Check if the last byte of the destination is writable. 2049 state = CheckLocation(C, state, Dst, maxLastElement, AccessKind::write); 2050 if (!state) 2051 return; 2052 } 2053 2054 // Then, if the final length is known... 2055 if (std::optional<NonLoc> knownStrLength = finalStrLength.getAs<NonLoc>()) { 2056 SVal lastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal, 2057 *knownStrLength, ptrTy); 2058 2059 // ...and we haven't checked the bound, we'll check the actual copy. 2060 if (!boundWarning) { 2061 // Check if the first byte of the destination is writable. 2062 state = CheckLocation(C, state, Dst, DstVal, AccessKind::write); 2063 if (!state) 2064 return; 2065 // Check if the last byte of the destination is writable. 2066 state = CheckLocation(C, state, Dst, lastElement, AccessKind::write); 2067 if (!state) 2068 return; 2069 } 2070 2071 // If this is a stpcpy-style copy, the last element is the return value. 2072 if (returnPtr && ReturnEnd) 2073 Result = lastElement; 2074 } 2075 2076 // Invalidate the destination (regular invalidation without pointer-escaping 2077 // the address of the top-level region). This must happen before we set the 2078 // C string length because invalidation will clear the length. 2079 // FIXME: Even if we can't perfectly model the copy, we should see if we 2080 // can use LazyCompoundVals to copy the source values into the destination. 2081 // This would probably remove any existing bindings past the end of the 2082 // string, but that's still an improvement over blank invalidation. 2083 state = invalidateDestinationBufferBySize(C, state, Dst.Expression, 2084 *dstRegVal, amountCopied, 2085 C.getASTContext().getSizeType()); 2086 2087 // Invalidate the source (const-invalidation without const-pointer-escaping 2088 // the address of the top-level region). 2089 state = invalidateSourceBuffer(C, state, srcExpr.Expression, srcVal); 2090 2091 // Set the C string length of the destination, if we know it. 2092 if (IsBounded && (appendK == ConcatFnKind::none)) { 2093 // strncpy is annoying in that it doesn't guarantee to null-terminate 2094 // the result string. If the original string didn't fit entirely inside 2095 // the bound (including the null-terminator), we don't know how long the 2096 // result is. 2097 if (amountCopied != strLength) 2098 finalStrLength = UnknownVal(); 2099 } 2100 state = setCStringLength(state, dstRegVal->getRegion(), finalStrLength); 2101 } 2102 2103 assert(state); 2104 2105 if (returnPtr) { 2106 // If this is a stpcpy-style copy, but we were unable to check for a buffer 2107 // overflow, we still need a result. Conjure a return value. 2108 if (ReturnEnd && Result.isUnknown()) { 2109 Result = svalBuilder.conjureSymbolVal(nullptr, Call.getOriginExpr(), LCtx, 2110 C.blockCount()); 2111 } 2112 } 2113 // Set the return value. 2114 state = state->BindExpr(Call.getOriginExpr(), LCtx, Result); 2115 C.addTransition(state); 2116 } 2117 2118 void CStringChecker::evalStrcmp(CheckerContext &C, 2119 const CallEvent &Call) const { 2120 //int strcmp(const char *s1, const char *s2); 2121 evalStrcmpCommon(C, Call, /* IsBounded = */ false, /* IgnoreCase = */ false); 2122 } 2123 2124 void CStringChecker::evalStrncmp(CheckerContext &C, 2125 const CallEvent &Call) const { 2126 //int strncmp(const char *s1, const char *s2, size_t n); 2127 evalStrcmpCommon(C, Call, /* IsBounded = */ true, /* IgnoreCase = */ false); 2128 } 2129 2130 void CStringChecker::evalStrcasecmp(CheckerContext &C, 2131 const CallEvent &Call) const { 2132 //int strcasecmp(const char *s1, const char *s2); 2133 evalStrcmpCommon(C, Call, /* IsBounded = */ false, /* IgnoreCase = */ true); 2134 } 2135 2136 void CStringChecker::evalStrncasecmp(CheckerContext &C, 2137 const CallEvent &Call) const { 2138 //int strncasecmp(const char *s1, const char *s2, size_t n); 2139 evalStrcmpCommon(C, Call, /* IsBounded = */ true, /* IgnoreCase = */ true); 2140 } 2141 2142 void CStringChecker::evalStrcmpCommon(CheckerContext &C, const CallEvent &Call, 2143 bool IsBounded, bool IgnoreCase) const { 2144 CurrentFunctionDescription = "string comparison function"; 2145 ProgramStateRef state = C.getState(); 2146 const LocationContext *LCtx = C.getLocationContext(); 2147 2148 // Check that the first string is non-null 2149 AnyArgExpr Left = {Call.getArgExpr(0), 0}; 2150 SVal LeftVal = state->getSVal(Left.Expression, LCtx); 2151 state = checkNonNull(C, state, Left, LeftVal); 2152 if (!state) 2153 return; 2154 2155 // Check that the second string is non-null. 2156 AnyArgExpr Right = {Call.getArgExpr(1), 1}; 2157 SVal RightVal = state->getSVal(Right.Expression, LCtx); 2158 state = checkNonNull(C, state, Right, RightVal); 2159 if (!state) 2160 return; 2161 2162 // Get the string length of the first string or give up. 2163 SVal LeftLength = getCStringLength(C, state, Left.Expression, LeftVal); 2164 if (LeftLength.isUndef()) 2165 return; 2166 2167 // Get the string length of the second string or give up. 2168 SVal RightLength = getCStringLength(C, state, Right.Expression, RightVal); 2169 if (RightLength.isUndef()) 2170 return; 2171 2172 // If we know the two buffers are the same, we know the result is 0. 2173 // First, get the two buffers' addresses. Another checker will have already 2174 // made sure they're not undefined. 2175 DefinedOrUnknownSVal LV = LeftVal.castAs<DefinedOrUnknownSVal>(); 2176 DefinedOrUnknownSVal RV = RightVal.castAs<DefinedOrUnknownSVal>(); 2177 2178 // See if they are the same. 2179 SValBuilder &svalBuilder = C.getSValBuilder(); 2180 DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV); 2181 ProgramStateRef StSameBuf, StNotSameBuf; 2182 std::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf); 2183 2184 // If the two arguments might be the same buffer, we know the result is 0, 2185 // and we only need to check one size. 2186 if (StSameBuf) { 2187 StSameBuf = 2188 StSameBuf->BindExpr(Call.getOriginExpr(), LCtx, 2189 svalBuilder.makeZeroVal(Call.getResultType())); 2190 C.addTransition(StSameBuf); 2191 2192 // If the two arguments are GUARANTEED to be the same, we're done! 2193 if (!StNotSameBuf) 2194 return; 2195 } 2196 2197 assert(StNotSameBuf); 2198 state = StNotSameBuf; 2199 2200 // At this point we can go about comparing the two buffers. 2201 // For now, we only do this if they're both known string literals. 2202 2203 // Attempt to extract string literals from both expressions. 2204 const StringLiteral *LeftStrLiteral = 2205 getCStringLiteral(C, state, Left.Expression, LeftVal); 2206 const StringLiteral *RightStrLiteral = 2207 getCStringLiteral(C, state, Right.Expression, RightVal); 2208 bool canComputeResult = false; 2209 SVal resultVal = svalBuilder.conjureSymbolVal(nullptr, Call.getOriginExpr(), 2210 LCtx, C.blockCount()); 2211 2212 if (LeftStrLiteral && RightStrLiteral) { 2213 StringRef LeftStrRef = LeftStrLiteral->getString(); 2214 StringRef RightStrRef = RightStrLiteral->getString(); 2215 2216 if (IsBounded) { 2217 // Get the max number of characters to compare. 2218 const Expr *lenExpr = Call.getArgExpr(2); 2219 SVal lenVal = state->getSVal(lenExpr, LCtx); 2220 2221 // If the length is known, we can get the right substrings. 2222 if (const llvm::APSInt *len = svalBuilder.getKnownValue(state, lenVal)) { 2223 // Create substrings of each to compare the prefix. 2224 LeftStrRef = LeftStrRef.substr(0, (size_t)len->getZExtValue()); 2225 RightStrRef = RightStrRef.substr(0, (size_t)len->getZExtValue()); 2226 canComputeResult = true; 2227 } 2228 } else { 2229 // This is a normal, unbounded strcmp. 2230 canComputeResult = true; 2231 } 2232 2233 if (canComputeResult) { 2234 // Real strcmp stops at null characters. 2235 size_t s1Term = LeftStrRef.find('\0'); 2236 if (s1Term != StringRef::npos) 2237 LeftStrRef = LeftStrRef.substr(0, s1Term); 2238 2239 size_t s2Term = RightStrRef.find('\0'); 2240 if (s2Term != StringRef::npos) 2241 RightStrRef = RightStrRef.substr(0, s2Term); 2242 2243 // Use StringRef's comparison methods to compute the actual result. 2244 int compareRes = IgnoreCase ? LeftStrRef.compare_insensitive(RightStrRef) 2245 : LeftStrRef.compare(RightStrRef); 2246 2247 // The strcmp function returns an integer greater than, equal to, or less 2248 // than zero, [c11, p7.24.4.2]. 2249 if (compareRes == 0) { 2250 resultVal = svalBuilder.makeIntVal(compareRes, Call.getResultType()); 2251 } 2252 else { 2253 DefinedSVal zeroVal = svalBuilder.makeIntVal(0, Call.getResultType()); 2254 // Constrain strcmp's result range based on the result of StringRef's 2255 // comparison methods. 2256 BinaryOperatorKind op = (compareRes > 0) ? BO_GT : BO_LT; 2257 SVal compareWithZero = 2258 svalBuilder.evalBinOp(state, op, resultVal, zeroVal, 2259 svalBuilder.getConditionType()); 2260 DefinedSVal compareWithZeroVal = compareWithZero.castAs<DefinedSVal>(); 2261 state = state->assume(compareWithZeroVal, true); 2262 } 2263 } 2264 } 2265 2266 state = state->BindExpr(Call.getOriginExpr(), LCtx, resultVal); 2267 2268 // Record this as a possible path. 2269 C.addTransition(state); 2270 } 2271 2272 void CStringChecker::evalStrsep(CheckerContext &C, 2273 const CallEvent &Call) const { 2274 // char *strsep(char **stringp, const char *delim); 2275 // Verify whether the search string parameter matches the return type. 2276 SourceArgExpr SearchStrPtr = {{Call.getArgExpr(0), 0}}; 2277 2278 QualType CharPtrTy = SearchStrPtr.Expression->getType()->getPointeeType(); 2279 if (CharPtrTy.isNull() || Call.getResultType().getUnqualifiedType() != 2280 CharPtrTy.getUnqualifiedType()) 2281 return; 2282 2283 CurrentFunctionDescription = "strsep()"; 2284 ProgramStateRef State = C.getState(); 2285 const LocationContext *LCtx = C.getLocationContext(); 2286 2287 // Check that the search string pointer is non-null (though it may point to 2288 // a null string). 2289 SVal SearchStrVal = State->getSVal(SearchStrPtr.Expression, LCtx); 2290 State = checkNonNull(C, State, SearchStrPtr, SearchStrVal); 2291 if (!State) 2292 return; 2293 2294 // Check that the delimiter string is non-null. 2295 AnyArgExpr DelimStr = {Call.getArgExpr(1), 1}; 2296 SVal DelimStrVal = State->getSVal(DelimStr.Expression, LCtx); 2297 State = checkNonNull(C, State, DelimStr, DelimStrVal); 2298 if (!State) 2299 return; 2300 2301 SValBuilder &SVB = C.getSValBuilder(); 2302 SVal Result; 2303 if (std::optional<Loc> SearchStrLoc = SearchStrVal.getAs<Loc>()) { 2304 // Get the current value of the search string pointer, as a char*. 2305 Result = State->getSVal(*SearchStrLoc, CharPtrTy); 2306 2307 // Invalidate the search string, representing the change of one delimiter 2308 // character to NUL. 2309 // As the replacement never overflows, do not invalidate its super region. 2310 State = invalidateDestinationBufferNeverOverflows( 2311 C, State, SearchStrPtr.Expression, Result); 2312 2313 // Overwrite the search string pointer. The new value is either an address 2314 // further along in the same string, or NULL if there are no more tokens. 2315 State = 2316 State->bindLoc(*SearchStrLoc, 2317 SVB.conjureSymbolVal(getTag(), Call.getOriginExpr(), 2318 LCtx, CharPtrTy, C.blockCount()), 2319 LCtx); 2320 } else { 2321 assert(SearchStrVal.isUnknown()); 2322 // Conjure a symbolic value. It's the best we can do. 2323 Result = SVB.conjureSymbolVal(nullptr, Call.getOriginExpr(), LCtx, 2324 C.blockCount()); 2325 } 2326 2327 // Set the return value, and finish. 2328 State = State->BindExpr(Call.getOriginExpr(), LCtx, Result); 2329 C.addTransition(State); 2330 } 2331 2332 // These should probably be moved into a C++ standard library checker. 2333 void CStringChecker::evalStdCopy(CheckerContext &C, 2334 const CallEvent &Call) const { 2335 evalStdCopyCommon(C, Call); 2336 } 2337 2338 void CStringChecker::evalStdCopyBackward(CheckerContext &C, 2339 const CallEvent &Call) const { 2340 evalStdCopyCommon(C, Call); 2341 } 2342 2343 void CStringChecker::evalStdCopyCommon(CheckerContext &C, 2344 const CallEvent &Call) const { 2345 if (!Call.getArgExpr(2)->getType()->isPointerType()) 2346 return; 2347 2348 ProgramStateRef State = C.getState(); 2349 2350 const LocationContext *LCtx = C.getLocationContext(); 2351 2352 // template <class _InputIterator, class _OutputIterator> 2353 // _OutputIterator 2354 // copy(_InputIterator __first, _InputIterator __last, 2355 // _OutputIterator __result) 2356 2357 // Invalidate the destination buffer 2358 const Expr *Dst = Call.getArgExpr(2); 2359 SVal DstVal = State->getSVal(Dst, LCtx); 2360 // FIXME: As we do not know how many items are copied, we also invalidate the 2361 // super region containing the target location. 2362 State = 2363 invalidateDestinationBufferAlwaysEscapeSuperRegion(C, State, Dst, DstVal); 2364 2365 SValBuilder &SVB = C.getSValBuilder(); 2366 2367 SVal ResultVal = 2368 SVB.conjureSymbolVal(nullptr, Call.getOriginExpr(), LCtx, C.blockCount()); 2369 State = State->BindExpr(Call.getOriginExpr(), LCtx, ResultVal); 2370 2371 C.addTransition(State); 2372 } 2373 2374 void CStringChecker::evalMemset(CheckerContext &C, 2375 const CallEvent &Call) const { 2376 // void *memset(void *s, int c, size_t n); 2377 CurrentFunctionDescription = "memory set function"; 2378 2379 DestinationArgExpr Buffer = {{Call.getArgExpr(0), 0}}; 2380 AnyArgExpr CharE = {Call.getArgExpr(1), 1}; 2381 SizeArgExpr Size = {{Call.getArgExpr(2), 2}}; 2382 2383 ProgramStateRef State = C.getState(); 2384 2385 // See if the size argument is zero. 2386 const LocationContext *LCtx = C.getLocationContext(); 2387 SVal SizeVal = C.getSVal(Size.Expression); 2388 QualType SizeTy = Size.Expression->getType(); 2389 2390 ProgramStateRef ZeroSize, NonZeroSize; 2391 std::tie(ZeroSize, NonZeroSize) = assumeZero(C, State, SizeVal, SizeTy); 2392 2393 // Get the value of the memory area. 2394 SVal BufferPtrVal = C.getSVal(Buffer.Expression); 2395 2396 // If the size is zero, there won't be any actual memory access, so 2397 // just bind the return value to the buffer and return. 2398 if (ZeroSize && !NonZeroSize) { 2399 ZeroSize = ZeroSize->BindExpr(Call.getOriginExpr(), LCtx, BufferPtrVal); 2400 C.addTransition(ZeroSize); 2401 return; 2402 } 2403 2404 // Ensure the memory area is not null. 2405 // If it is NULL there will be a NULL pointer dereference. 2406 State = checkNonNull(C, NonZeroSize, Buffer, BufferPtrVal); 2407 if (!State) 2408 return; 2409 2410 State = CheckBufferAccess(C, State, Buffer, Size, AccessKind::write); 2411 if (!State) 2412 return; 2413 2414 // According to the values of the arguments, bind the value of the second 2415 // argument to the destination buffer and set string length, or just 2416 // invalidate the destination buffer. 2417 if (!memsetAux(Buffer.Expression, C.getSVal(CharE.Expression), 2418 Size.Expression, C, State)) 2419 return; 2420 2421 State = State->BindExpr(Call.getOriginExpr(), LCtx, BufferPtrVal); 2422 C.addTransition(State); 2423 } 2424 2425 void CStringChecker::evalBzero(CheckerContext &C, const CallEvent &Call) const { 2426 CurrentFunctionDescription = "memory clearance function"; 2427 2428 DestinationArgExpr Buffer = {{Call.getArgExpr(0), 0}}; 2429 SizeArgExpr Size = {{Call.getArgExpr(1), 1}}; 2430 SVal Zero = C.getSValBuilder().makeZeroVal(C.getASTContext().IntTy); 2431 2432 ProgramStateRef State = C.getState(); 2433 2434 // See if the size argument is zero. 2435 SVal SizeVal = C.getSVal(Size.Expression); 2436 QualType SizeTy = Size.Expression->getType(); 2437 2438 ProgramStateRef StateZeroSize, StateNonZeroSize; 2439 std::tie(StateZeroSize, StateNonZeroSize) = 2440 assumeZero(C, State, SizeVal, SizeTy); 2441 2442 // If the size is zero, there won't be any actual memory access, 2443 // In this case we just return. 2444 if (StateZeroSize && !StateNonZeroSize) { 2445 C.addTransition(StateZeroSize); 2446 return; 2447 } 2448 2449 // Get the value of the memory area. 2450 SVal MemVal = C.getSVal(Buffer.Expression); 2451 2452 // Ensure the memory area is not null. 2453 // If it is NULL there will be a NULL pointer dereference. 2454 State = checkNonNull(C, StateNonZeroSize, Buffer, MemVal); 2455 if (!State) 2456 return; 2457 2458 State = CheckBufferAccess(C, State, Buffer, Size, AccessKind::write); 2459 if (!State) 2460 return; 2461 2462 if (!memsetAux(Buffer.Expression, Zero, Size.Expression, C, State)) 2463 return; 2464 2465 C.addTransition(State); 2466 } 2467 2468 void CStringChecker::evalSprintf(CheckerContext &C, 2469 const CallEvent &Call) const { 2470 CurrentFunctionDescription = "'sprintf'"; 2471 const auto *CE = cast<CallExpr>(Call.getOriginExpr()); 2472 bool IsBI = CE->getBuiltinCallee() == Builtin::BI__builtin___sprintf_chk; 2473 evalSprintfCommon(C, Call, /* IsBounded */ false, IsBI); 2474 } 2475 2476 void CStringChecker::evalSnprintf(CheckerContext &C, 2477 const CallEvent &Call) const { 2478 CurrentFunctionDescription = "'snprintf'"; 2479 const auto *CE = cast<CallExpr>(Call.getOriginExpr()); 2480 bool IsBI = CE->getBuiltinCallee() == Builtin::BI__builtin___snprintf_chk; 2481 evalSprintfCommon(C, Call, /* IsBounded */ true, IsBI); 2482 } 2483 2484 void CStringChecker::evalSprintfCommon(CheckerContext &C, const CallEvent &Call, 2485 bool IsBounded, bool IsBuiltin) const { 2486 ProgramStateRef State = C.getState(); 2487 const auto *CE = cast<CallExpr>(Call.getOriginExpr()); 2488 DestinationArgExpr Dest = {{Call.getArgExpr(0), 0}}; 2489 2490 const auto NumParams = Call.parameters().size(); 2491 assert(CE->getNumArgs() >= NumParams); 2492 2493 const auto AllArguments = 2494 llvm::make_range(CE->getArgs(), CE->getArgs() + CE->getNumArgs()); 2495 const auto VariadicArguments = drop_begin(enumerate(AllArguments), NumParams); 2496 2497 for (const auto &[ArgIdx, ArgExpr] : VariadicArguments) { 2498 // We consider only string buffers 2499 if (const QualType type = ArgExpr->getType(); 2500 !type->isAnyPointerType() || 2501 !type->getPointeeType()->isAnyCharacterType()) 2502 continue; 2503 SourceArgExpr Source = {{ArgExpr, unsigned(ArgIdx)}}; 2504 2505 // Ensure the buffers do not overlap. 2506 SizeArgExpr SrcExprAsSizeDummy = { 2507 {Source.Expression, Source.ArgumentIndex}}; 2508 State = CheckOverlap( 2509 C, State, 2510 (IsBounded ? SizeArgExpr{{Call.getArgExpr(1), 1}} : SrcExprAsSizeDummy), 2511 Dest, Source); 2512 if (!State) 2513 return; 2514 } 2515 2516 C.addTransition(State); 2517 } 2518 2519 //===----------------------------------------------------------------------===// 2520 // The driver method, and other Checker callbacks. 2521 //===----------------------------------------------------------------------===// 2522 2523 CStringChecker::FnCheck CStringChecker::identifyCall(const CallEvent &Call, 2524 CheckerContext &C) const { 2525 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); 2526 if (!CE) 2527 return nullptr; 2528 2529 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Call.getDecl()); 2530 if (!FD) 2531 return nullptr; 2532 2533 if (StdCopy.matches(Call)) 2534 return &CStringChecker::evalStdCopy; 2535 if (StdCopyBackward.matches(Call)) 2536 return &CStringChecker::evalStdCopyBackward; 2537 2538 // Pro-actively check that argument types are safe to do arithmetic upon. 2539 // We do not want to crash if someone accidentally passes a structure 2540 // into, say, a C++ overload of any of these functions. We could not check 2541 // that for std::copy because they may have arguments of other types. 2542 for (auto I : CE->arguments()) { 2543 QualType T = I->getType(); 2544 if (!T->isIntegralOrEnumerationType() && !T->isPointerType()) 2545 return nullptr; 2546 } 2547 2548 const FnCheck *Callback = Callbacks.lookup(Call); 2549 if (Callback) 2550 return *Callback; 2551 2552 return nullptr; 2553 } 2554 2555 bool CStringChecker::evalCall(const CallEvent &Call, CheckerContext &C) const { 2556 FnCheck Callback = identifyCall(Call, C); 2557 2558 // If the callee isn't a string function, let another checker handle it. 2559 if (!Callback) 2560 return false; 2561 2562 // Check and evaluate the call. 2563 assert(isa<CallExpr>(Call.getOriginExpr())); 2564 Callback(this, C, Call); 2565 2566 // If the evaluate call resulted in no change, chain to the next eval call 2567 // handler. 2568 // Note, the custom CString evaluation calls assume that basic safety 2569 // properties are held. However, if the user chooses to turn off some of these 2570 // checks, we ignore the issues and leave the call evaluation to a generic 2571 // handler. 2572 return C.isDifferent(); 2573 } 2574 2575 void CStringChecker::checkPreStmt(const DeclStmt *DS, CheckerContext &C) const { 2576 // Record string length for char a[] = "abc"; 2577 ProgramStateRef state = C.getState(); 2578 2579 for (const auto *I : DS->decls()) { 2580 const VarDecl *D = dyn_cast<VarDecl>(I); 2581 if (!D) 2582 continue; 2583 2584 // FIXME: Handle array fields of structs. 2585 if (!D->getType()->isArrayType()) 2586 continue; 2587 2588 const Expr *Init = D->getInit(); 2589 if (!Init) 2590 continue; 2591 if (!isa<StringLiteral>(Init)) 2592 continue; 2593 2594 Loc VarLoc = state->getLValue(D, C.getLocationContext()); 2595 const MemRegion *MR = VarLoc.getAsRegion(); 2596 if (!MR) 2597 continue; 2598 2599 SVal StrVal = C.getSVal(Init); 2600 assert(StrVal.isValid() && "Initializer string is unknown or undefined"); 2601 DefinedOrUnknownSVal strLength = 2602 getCStringLength(C, state, Init, StrVal).castAs<DefinedOrUnknownSVal>(); 2603 2604 state = state->set<CStringLength>(MR, strLength); 2605 } 2606 2607 C.addTransition(state); 2608 } 2609 2610 ProgramStateRef 2611 CStringChecker::checkRegionChanges(ProgramStateRef state, 2612 const InvalidatedSymbols *, 2613 ArrayRef<const MemRegion *> ExplicitRegions, 2614 ArrayRef<const MemRegion *> Regions, 2615 const LocationContext *LCtx, 2616 const CallEvent *Call) const { 2617 CStringLengthTy Entries = state->get<CStringLength>(); 2618 if (Entries.isEmpty()) 2619 return state; 2620 2621 llvm::SmallPtrSet<const MemRegion *, 8> Invalidated; 2622 llvm::SmallPtrSet<const MemRegion *, 32> SuperRegions; 2623 2624 // First build sets for the changed regions and their super-regions. 2625 for (const MemRegion *MR : Regions) { 2626 Invalidated.insert(MR); 2627 2628 SuperRegions.insert(MR); 2629 while (const SubRegion *SR = dyn_cast<SubRegion>(MR)) { 2630 MR = SR->getSuperRegion(); 2631 SuperRegions.insert(MR); 2632 } 2633 } 2634 2635 CStringLengthTy::Factory &F = state->get_context<CStringLength>(); 2636 2637 // Then loop over the entries in the current state. 2638 for (const MemRegion *MR : llvm::make_first_range(Entries)) { 2639 // Is this entry for a super-region of a changed region? 2640 if (SuperRegions.count(MR)) { 2641 Entries = F.remove(Entries, MR); 2642 continue; 2643 } 2644 2645 // Is this entry for a sub-region of a changed region? 2646 const MemRegion *Super = MR; 2647 while (const SubRegion *SR = dyn_cast<SubRegion>(Super)) { 2648 Super = SR->getSuperRegion(); 2649 if (Invalidated.count(Super)) { 2650 Entries = F.remove(Entries, MR); 2651 break; 2652 } 2653 } 2654 } 2655 2656 return state->set<CStringLength>(Entries); 2657 } 2658 2659 void CStringChecker::checkLiveSymbols(ProgramStateRef state, 2660 SymbolReaper &SR) const { 2661 // Mark all symbols in our string length map as valid. 2662 CStringLengthTy Entries = state->get<CStringLength>(); 2663 2664 for (SVal Len : llvm::make_second_range(Entries)) { 2665 for (SymbolRef Sym : Len.symbols()) 2666 SR.markInUse(Sym); 2667 } 2668 } 2669 2670 void CStringChecker::checkDeadSymbols(SymbolReaper &SR, 2671 CheckerContext &C) const { 2672 ProgramStateRef state = C.getState(); 2673 CStringLengthTy Entries = state->get<CStringLength>(); 2674 if (Entries.isEmpty()) 2675 return; 2676 2677 CStringLengthTy::Factory &F = state->get_context<CStringLength>(); 2678 for (auto [Reg, Len] : Entries) { 2679 if (SymbolRef Sym = Len.getAsSymbol()) { 2680 if (SR.isDead(Sym)) 2681 Entries = F.remove(Entries, Reg); 2682 } 2683 } 2684 2685 state = state->set<CStringLength>(Entries); 2686 C.addTransition(state); 2687 } 2688 2689 void ento::registerCStringModeling(CheckerManager &Mgr) { 2690 Mgr.registerChecker<CStringChecker>(); 2691 } 2692 2693 bool ento::shouldRegisterCStringModeling(const CheckerManager &mgr) { 2694 return true; 2695 } 2696 2697 #define REGISTER_CHECKER(name) \ 2698 void ento::register##name(CheckerManager &mgr) { \ 2699 CStringChecker *checker = mgr.getChecker<CStringChecker>(); \ 2700 checker->Filter.Check##name = true; \ 2701 checker->Filter.CheckName##name = mgr.getCurrentCheckerName(); \ 2702 } \ 2703 \ 2704 bool ento::shouldRegister##name(const CheckerManager &mgr) { return true; } 2705 2706 REGISTER_CHECKER(CStringNullArg) 2707 REGISTER_CHECKER(CStringOutOfBounds) 2708 REGISTER_CHECKER(CStringBufferOverlap) 2709 REGISTER_CHECKER(CStringNotNullTerm) 2710 REGISTER_CHECKER(CStringUninitializedRead) 2711